forked from jkjung-avt/tensorrt_demos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_yolov3.py
95 lines (75 loc) · 3.23 KB
/
eval_yolov3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""eval_yolov3.py
This script is for evaluating mAP (accuracy) of YOLOv3 models.
"""
import os
import sys
import json
import argparse
import cv2
import pycuda.autoinit # This is needed for initializing CUDA driver
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from progressbar import progressbar
from utils.yolov3 import TrtYOLOv3
from utils.yolov3_classes import yolov3_cls_to_ssd
HOME = os.environ['HOME']
VAL_IMGS_DIR = HOME + '/data/coco/images/val2017'
VAL_ANNOTATIONS = HOME + '/data/coco/annotations/instances_val2017.json'
def parse_args():
"""Parse input arguments."""
desc = 'Evaluate mAP of SSD model'
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--imgs_dir', type=str, default=VAL_IMGS_DIR,
help='directory of validation images [%s]' % VAL_IMGS_DIR)
parser.add_argument('--annotations', type=str, default=VAL_ANNOTATIONS,
help='groundtruth annotations [%s]' % VAL_ANNOTATIONS)
parser.add_argument('--model', type=str, default='yolov3-416',
choices=['yolov3-288', 'yolov3-416', 'yolov3-608',
'yolov3-tiny-288', 'yolov3-tiny-416'])
args = parser.parse_args()
return args
def check_args(args):
"""Check and make sure command-line arguments are valid."""
if not os.path.isdir(args.imgs_dir):
sys.exit('%s is not a valid directory' % args.imgs_dir)
if not os.path.isfile(args.annotations):
sys.exit('%s is not a valid file' % args.annotations)
def generate_results(yolov3, imgs_dir, jpgs, results_file):
"""Run detection on each jpg and write results to file."""
results = []
for jpg in progressbar(jpgs):
img = cv2.imread(os.path.join(imgs_dir, jpg))
image_id = int(jpg.split('.')[0].split('_')[-1])
boxes, confs, clss = yolov3.detect(img, conf_th=1e-2)
for box, conf, cls in zip(boxes, confs, clss):
x = float(box[0])
y = float(box[1])
w = float(box[2] - box[0] + 1)
h = float(box[3] - box[1] + 1)
cls = yolov3_cls_to_ssd[cls]
results.append({'image_id': image_id,
'category_id': int(cls),
'bbox': [x, y, w, h],
'score': float(conf)})
with open(results_file, 'w') as f:
f.write(json.dumps(results, indent=4))
def main():
args = parse_args()
check_args(args)
results_file = 'yolov3_onnx/results_%s.json' % args.model
yolo_dim = int(args.model.split('-')[-1]) # 416 or 608
trt_yolov3 = TrtYOLOv3(args.model, (yolo_dim, yolo_dim))
jpgs = [j for j in os.listdir(args.imgs_dir) if j.endswith('.jpg')]
generate_results(trt_yolov3, args.imgs_dir, jpgs, results_file)
# Run COCO mAP evaluation
# Reference: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
cocoGt = COCO(args.annotations)
cocoDt = cocoGt.loadRes(results_file)
imgIds = sorted(cocoGt.getImgIds())
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.params.imgIds = imgIds
cocoEval.evaluate()
cocoEval.accumulate()
print(cocoEval.summarize())
if __name__ == '__main__':
main()