forked from libantioch/model_doc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkinetics_computations.tex
448 lines (424 loc) · 19.2 KB
/
kinetics_computations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
\subsubsection{Kinetics models}
The kinetics models are all given in Tab.~\ref{antioch::kinMod}.
The kinetics model will render the temperature evolution of
the rate constant, thus the only differential that is needed
at that level is the temperature differentiation.
The typical interpretation of the kinetics model comes from
Arrhenius (See Fig.~\ref{Arrhenius_interp}). The activation
energy is the wall the reactants have to overcome to reassemble
into the products. This quantity is a purely kinetics one, meaning
it is related only to the rate of the reaction. The enthalpy of reaction
is the difference of enthalpy between the reactants and the products.
This is, contrary of the activation energy, a purely thermodynamics
quantity, therefore containing information upon the equilibrium
state (the relative quantity of products/reactants).
This interpretation is accurate only in an elementary reaction, when
indeed a reaction consists of the reactants forming a transitional
state and going to the products (Fig.~\ref{Arrhenius_interp}, blue curve).
A reaction, more generally, will have one, or several, reaction intermediate(s),
and the Arrhenius interpretation will be an approximation (Fig.~\ref{Arrhenius_interp},
red curve). This explains
why the Arrhenius equation typically needs some modifications (see Tab.~\ref{antioch::kinMod}).
\begin{figure}
\centering
\includegraphics{Arrhenius_interpretation}
\caption{\label{Arrhenius_interp}The activation energy (\AcEn) is the energy wall
(in most chemical cases the enthalpy) between the reactants and the
transitional form. The enthalpy of reaction (\Denth[r]) is the difference
of enthalpy between the reactants state and the products state. The activation
energy is a purely kinetics quantity while the enthalpy of reaction is purely
thermodynamics.}
\end{figure}
\begin{table}
\centering\renewcommand{\arraystretch}{1.5}
\begin{tabular}{clr}\toprule
\multirow{2}{*}{Kinetics model}
& Expression & Parameters \\
& $\frac{\dd}{\dd T}$ Expression &\\\midrule
\multirow{2}{*}{Hercourt-Hessen}
& $\kinMod = \PreExp \left(\frac{\Temp}{\Tref}\right)^\Power$
& \multirow{2}{*}{\PreExp, \Power}\\
& $\ddoverdT{\kinMod} = \kinMod \frac{\Power}{\Temp}$ \\[10pt]
\multirow{2}{*}{Berthelot}
& $\kinMod = \PreExp \exp\left(\BerthExp\Temp\right)$
& \multirow{2}{*}{\PreExp, \BerthExp}\\
& $\ddoverdT{\kinMod} = \kinMod \BerthExp$ \\[10pt]
\multirow{2}{*}{Arrhenius}
& $\kinMod = \PreExp \exp\left(-\frac{\AcEn}{\Rg\Temp}\right)$
& \multirow{2}{*}{\PreExp, \AcEn}\\
& $\ddoverdT{\kinMod} = \kinMod \frac{\AcEn}{\Rg\Temp^2}$ \\[10pt]
\multirow{2}{*}{Kooij}
& $\kinMod = \PreExp \left(\frac{\Temp}{\Tref}\right)^\Power\exp\left(-\frac{\AcEn}{\Rg\Temp}\right)$
& \multirow{2}{*}{\PreExp, \Power, \AcEn}\\
& $\ddoverdT{\kinMod} = \kinMod \left(\frac{\Power}{\Temp} + \frac{\AcEn}{\Rg\Temp^2}\right)$ \\[10pt]
\multirow{2}{*}{Berthelot Hercourt-Essen}
& $\kinMod = \PreExp \left(\frac{\Temp}{\Tref}\right)^\Power\exp\left(\BerthExp\Temp\right)$
& \multirow{2}{*}{\PreExp, \Power, \BerthExp}\\
& $\ddoverdT{\kinMod} = \kinMod \left(\frac{\Power}{\Temp} + \BerthExp\right)$ \\[10pt]
\multirow{2}{*}{Van't Hoff}
& $\kinMod = \PreExp \left(\frac{\Temp}{\Tref}\right)^\Power\exp\left(\BerthExp\Temp-\frac{\AcEn}{\Rg\Temp}\right)$
& \multirow{2}{*}{\PreExp, \Power, \BerthExp, \AcEn}\\
& $\ddoverdT{\kinMod} = \kinMod \left(\frac{\Power}{\Temp} + \BerthExp + \frac{\AcEn}{\Rg\Temp^2}\right)$ \\
\multirow{2}{*}{Photochemistry}
& $\kinMod = \int_0^\infty f(\wavelength)\crosssection\dd\wavelength$
& \multirow{2}{*}{\wavelength, \crosssection}\\
& $\ddoverdT{\kinMod} = 0$\\
\bottomrule
\end{tabular}
\caption[Kinetics models]{\label{antioch::kinMod}Kinetics models available in \Antioch. In the photochemical
kinetics model, $f$ is the photon flux, which is user-defined, \wavelength\ and \crosssection\
are vectors.}
\end{table}
\subsubsection{Chemical processes}
\label{subsec:chem_proc}
The chemical processes is how this kinetics model behave with respect to
the densities of the molecules in the medium. Either they're all equivalent,
and only the total density matters (falloff type), or each species can
influence the rate constant in a specific manner (three-body type).
The chemical processes are given in Tab.~\ref{antioch::chemProc}. This is where
chemical modeling begins to be stretched a little: as seen on section~\ref{kinetics_gen},
we assume that every reaction modeled is an elementary step, even in the case of
non-elementary reactions. Therefore some corrections need to be made. This is where
the chemical process adds, if needed, more suppleness to the rate constant
function, from adding degrees of freedom to the temperature dependency (duplicate
chemical process) to adding a pressure dependency over the temperature dependency
(falloff).
\begin{table}
\centering\renewcommand{\arraystretch}{2}
\begin{tabular}{ccc}\toprule
\multirow{2}{*}{Chemical process}
& \multirow{2}{*}{Expression}
& $\doverdT{\text{Expression}}$ \\
& & $\doverdc{\text{Expression}}$ \\\midrule
\multirow{2}{*}{Elementary}
& \multirow{2}{*}{$\chemProc = \kinMod$}
& $\doverdT{\chemProc} = \ddoverdT{\kinMod}$ \\
& & $\doverdc{\chemProc} = 0$ \\[10pt]
\multirow{2}{*}{Duplicate \dag}
& \multirow{2}{*}{$\chemProc = \displaystyle\sum_i^{\mathrm{N_{proc}}}\kinMod_i$}
& $\doverdT{\chemProc} = \displaystyle\sum_i^\mathrm{N_{proc}}\ddoverdT{\kinMod_i}$ \\
& & $\doverdc{\chemProc} = 0$ \\[10pt]
\multirow{2}{*}{Three-Body}
& \multirow{2}{*}{$\chemProc = \kinMod \threeBody$}
& $\doverdT{\chemProc} = \ddoverdT{\kinMod}\threeBody$ \\
& & $\doverdc[I]{\chemProc} = \kinMod\epsilon_i$ \\[10pt]
\multirow{2}{*}{Falloff}
& \multirow{2}{*}{$\chemProc = \frac{\conc[M]\kinModZ}{1 + \conc[M]\frac{\kinModZ}{\kinModI}}\Falloff$}
& \ref{Falloff:doverdT} with $F = \FLind\text{ or }\FTroe$\\
& & \ref{Falloff:doverdc} with $F = \FLind\text{ or }\FTroe$\\[10pt]
\multirow{2}{*}{Three-Body falloff}
& \multirow{2}{*}{$\chemProc = \frac{\kinModZ\threeBody}{1 + \frac{\kinModZ}{\kinModI}\threeBody}\Falloff$}
& \parbox{5cm}{\ref{Falloff:doverdT} with $F = \FTroe$ or $\FLind$
and $[M] = \threeBody$}\\
& & \ref{Falloff_Three:doverdc} with $F = \FTroe\text{ or }\FLind$\\[10pt]
\bottomrule
\end{tabular}
\caption[Chemical processes]{\label{antioch::chemProc}Chemical processes available in \Antioch.
\dag: the duplicate chemical process do not permit several kinetics
models to be mixed. The functions $F$ for the falloff are described in section~\ref{subsub:falloff}}
\end{table}
\paragraph{Elementary process}
An elementary process is the smallest unit of reaction. Within a chemical
network, elementary processes are the elementary steps, when the collision
of the reactants produces the reactants without any intermediate. All
reactions approximated to an elementary process are therefore coded with
a simple kinetics model.
\paragraph{Duplicate process}
In the case the elementary approximation breaks down, and one kinetics
process is not sufficient to properly render measurements, it is possible
to add several kinetics model to obtain the necessary temperature
dependency.
\paragraph{Three body process}
\label{subsub:three_body}
A third body may have an influence over the reaction, therefore
changing a generic chemical equation \ce{A + B -> C + D} into
\ce{A + B + M -> C + D + M}. It acts like an homogeneous catalyst.
Thus the rate of the reaction will be written
\[
\chemProc = \kinMod[ABM]\conc[A]\conc[B]\conc[M]
\]
instead of
\[
\chemProc = \kinMod[AB]\conc[A]\conc[B]
\]
with typically $\kinMod[ABM] \propto \kinMod[AB]$.
Not all molecules have the same effect, meaning \rcons[ABM]
is dependant of \ce{M}. Therefore it is needed to
consider coefficients that are specific to third-bodies,
with a typical default of unity. Thus we derive a mixture
formul\ae:
\begin{equation}
\chemProc = \threeBody\kinMod
\label{kinproc:Three_body}
\end{equation}
\paragraph{Pressure dependency: falloffs}
\label{subsub:falloff}
The falloffs are reactions having two different regimes: a low-pressure (\kinModZ) and
a high-pressure (\kinModI) regime. Any pressure's rate constant can be expressed in
terms if those two regimes:
\begin{equation}
\chemProc = \frac{\conc[M]\kinModZ}{1 + \conc[M]\frac{\kinModZ}{\kinModI}} F
\label{falloff:k}
\end{equation}
with \conc[M] being the total molar density and $F$ the falloff model.
The differentiations are:
\begin{equation}
\begin{split}
\doverdT{\chemProc} & = \chemProc
\Bigg[\frac{1}{F}\doverdT{F} \\
& + \left(\frac{1}{\kinModZ} - \frac{\conc[M]}{\kinModI}\frac{1}{1 + \conc[M]\frac{\kinModZ}{\kinModI}}\right)\doverdT{\kinModZ} \\
& - \conc[M]\frac{\kinModZ}{\kinModI^2}\frac{1}{1 + \conc[M]\frac{\kinModZ}{\kinModI}}\doverdT{\kinModI}
\Bigg]
\end{split}
\label{Falloff:doverdT}
\end{equation}
and
\begin{equation}
\doverdc[I]{\chemProc} = \chemProc
\left(\frac{1}{\conc[M]} \frac{1}{1 + \conc[M]\frac{\kinModZ}{\kinModI}}
+ \doverdT{F}\frac{1}{F}
\right)
\label{Falloff:doverdc}
\end{equation}
\paragraph{A twist in the physics: three-body falloff}
As all models above are approximations of the ``truth'', it can
happen that some reactions do not fit well into any category.
In the case of a pressure-dependant reaction that behaves
differently depending of a third-body, the third-body model
and the falloff model can be combined. Note that this is not
very rigorous, we're mixing here two different hypothesises that
do not belong together.
A pressure-dependance reaction is a collision-driven reaction, hence
the change of regime depending of the collisions rate regime. Whereas
a three-body reaction is the contraction of $N$ reactions, one per
third-body. An increase in pressure for each of these $N$ reactions
is not the increase of the \threeBody\ term.
The rate of this type of reaction is:
\begin{equation}
\chemProc = \frac{\threeBody\kinModZ}{1 + \threeBody\frac{\kinModZ}{\kinModI}} F
\label{Falloff_Three:chem_proc}
\end{equation}
%
with the derivative with respect to densities:
%
\begin{equation}
\doverdc[I]{\chemProc} = \chemProc\epsilon_i
\left(\frac{1}{\threeBody} \frac{1}{1 + \threeBody\frac{\kinModZ}{\kinModI}}
+ \doverdT{F}\frac{1}{F}
\right)
\label{Falloff_Three:doverdc}
\end{equation}
\paragraph{Falloff models}
\subparagraph{Lindemann}
The Lindemann falloff is the simplest falloff, it is given by:
\begin{equation}
\FLind = 1,
\label{Falloff:Lindeman}
\end{equation}
which gives:
\begin{equation}
\begin{split}
\doverdT{\FLind} & = 0 \\
\doverdc{\FLind} & = 0 \\
\end{split}
\label{Falloff:Lindemann:diff}
\end{equation}
\subparagraph{Troe}
The Troe model is more elaborate and rely on the definition of three or
four parameters:
\begin{itemize}
\item \Troealpha, with \nounit,
\item \TroeTone\ in \unit{K},
\item \TroeTtwo\ in \unit{K},
\item \TroeTthree\ in \unit{K}.
\end{itemize}
Sometimes, the parameter \TroeTtwo\ is not provided, as its contribution
may be negligible.
The falloff calculations need the definition of several parameters:
\begin{equation}
\begin{split}
\TroeFcent & = \left(1 - \Troealpha\right)\exp\left(-\frac{\Temp}{\TroeTthree}\right)
+ \Troealpha \exp\left(-\frac{\Temp}{\TroeTone}\right)
+ \exp\left(-\frac{\TroeTtwo}{\Temp}\right) \\[5pt]
\Troen & = \numprint{0.75} - \numprint{1.27}\log_{10}\left(\TroeFcent\right) \\[5pt]
\Troec & = - \numprint{0.4} - \numprint{0.64}\log_{10}\left(\TroeFcent\right) \\[5pt]
\Troed & = \numprint{0.14}
\end{split}
\label{Troe:parameter}
\end{equation}
to finally have
\newcommand{\pr}{\ensuremath{\log_{10}\left(\frac{\conc[M]\kinMod_0}{\kinMod_\infty}\right)}}
\begin{equation}
\FTroe = \frac{\log_{10}\left(\TroeFcent\right)}
{1 + \left[
\log_{10}\left(
\frac{\pr + \Troec}
{\Troen - \Troed\left(
\pr + \Troec
\right)}
\right)
\right]^2}
\label{Troe:F}
\end{equation}
Thus the differentials will be:
\begin{equation}
\begin{split}
\doverdT{\TroeFcent} & = - \frac{1 - \Troealpha}{\TroeTthree}\exp\left(-\frac{\Temp}{\TroeTthree}\right)
- \frac{\Troealpha}{\TroeTone}\exp\left(-\frac{\Temp}{\TroeTone}\right)
+ \frac{\TroeTtwo}{\Temp^2}\exp\left(-\frac{\TroeTtwo}{\Temp}\right)\\[5pt]
\doverdT{\Troen} & = - \frac{\numprint{1.27}}{\ln(10)\TroeFcent}\doverdT{\TroeFcent} \\[5pt]
\doverdT{\Troec} & = - \frac{\numprint{0.64}}{\ln(10)\TroeFcent}\doverdT{\TroeFcent} \\[5pt]
\doverdT{\Troed} & = 0
\end{split}
\label{Troe:dparameterdT}
\end{equation}
and of course
\begin{equation}
\doverdc{\TroeFcent} = 0,\qquad
\doverdc{\Troen} = 0,\qquad
\doverdc{\Troec} = 0,\qquad
\doverdc{\Troed} = 0
\label{Troe:dparameterdc}
\end{equation}
For simplicity of writing, we define:
\begin{equation}
\begin{split}
g(\kinMod_0,\kinMod_\infty) = & \conc[M] \frac{\kinMod_0}{\kinMod_\infty} \\[5pt]
h(\kinMod_0,\kinMod_\infty) = & \log_{10}(g) + \Troec \\[5pt]
l(\kinMod_0,\kinMod_\infty) = & \log_{10}\left(\frac{h}{\Troen - \Troed h}\right) \\
\end{split}
\end{equation}
Therefore:
\begin{equation}
\FTroe = \frac{\log_{10}\left(\TroeFcent\right)}{1 + l^2}
\end{equation}
When we derive, we obtain:
\begin{equation}
\begin{split}
\doverdT{g} & = g \left(\frac{1}{\kinMod_0}\doverdT{\kinMod_0} - \frac{1}{\kinMod_\infty}\doverdT{\kinMod_\infty} \right) \\[5pt]
\doverdc{g} & = g \frac{1}{\conc[M]}\doverdc{\conc[M]}
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\doverdT{h} & = \frac{1}{g \ln(10)}\doverdT{g} + \doverdT{\Troec} \\[5pt]
\doverdc{h} & = \frac{1}{g\ln(10)}\doverdc{g}
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\doverdT{l} & = \frac{1}{h \ln(10)}\left[\left(1 + \frac{\Troed h}{\Troen - \Troed h}\right) \doverdT{h} - \frac{h}{\Troen - \Troed h}\doverdT{\Troen} \right] \\[5pt]
\doverdc{l} & = \frac{1}{h \ln(10)}\left(1 + \frac{h\Troed}{\Troen - \Troed h} \right)\doverdT{h}
\end{split}
\end{equation}
Thus, we have:
\begin{equation}
\doverdT{\FTroe} = \FTroe \left[
\frac{1}{\ln(10)\log_{10}(\TroeFcent)}\doverdT{\TroeFcent}
- \frac{2 l}{1 + l^2} \doverdT{l}
\right]
\end{equation}
and
\begin{equation}
\doverdc{\FTroe} = \FTroe \left[
\frac{1}{\ln(10)\log_{10}(\TroeFcent)}\doverdc{\TroeFcent}
- \frac{2 l}{1 + l^2} \doverdc{l}
\right]
\end{equation}
\begin{figure}
\centering
\includegraphics{falloffs}
\caption[Example of falloff reaction]{\label{kinetics::falloffs}%
Example of falloff for the reaction \ce{CH3 + CH3 ( + M) -> C2H6 ( + M)}.
The rate constants are calculated for a temperature of $T = 1000~\unit{K}$. The kinetics model
used is a Kooij model. Parameters are:
$\PreExp_0 = \numprint{1.135}\,10^{36}~\unit{mol^{-2}\,cm^6\,s^{-1}}$,
$\Power_0 = \numprint{-5.245}$,
$\AcEn_0 = \numprint{1704.8}~\unit{cal\,mol^{-1}}$,
$\PreExp_\infty = \numprint{6.22}\,10^{16}~\unit{mol^-2\,cm^6\,s^{-1}}$,
$\Power_\infty = \numprint{-1.174}$,
$\AcEn_\infty = \numprint{653.8}~\unit{cal\,mol^{-1}}$,
$\Troealpha = \numprint{0.405}$,
$\TroeTone = \numprint{69.6}~\unit{K}$ and
$\TroeTthree = \numprint{1120.0}~\unit{K}$.}
\end{figure}
\subsection{Thermodynamics}
\subsubsection{Macroscopic description}
\label{phys:NASA_therm}
\Antioch\ uses the NASA polynoms.
These relations are used in the standard state, \textit{i.e.} $\Press = \pz = 10^5~\unit{Pa}$.
Thus what is means is that, for any quantity $A$ (\enth, \entr, \dots), $A^0$ is $A$ at
\pz.
The relations are:
\begin{equation}
\frac{\enthZ(T)}{\Rg T} = - \tc{0} T^{-2}
+ \tc{1} T^{-1} \ln(T)
+ \tc{2}
+ \tc{3} \frac{T}{2}
+ \tc{4} \frac{T^2}{3}
+ \tc{5} \frac{T^3}{4}
+ \tc{6} \frac{T^4}{5}
+ \tc{8} T^{-1}
\label{therm:DH}
\end{equation}
and
\begin{equation}
\frac{\entrZ(T)}{\Rg} = - \tc{0} \frac{T^{-2}}{2}
- \tc{1} T^{-1}
+ \tc{2} \ln(T)
+ \tc{3} T
+ \tc{4} \frac{T^2}{2}
+ \tc{5} \frac{T^3}{3}
+ \tc{6} \frac{T^4}{4}
+ \tc{9}
\label{therm:DS}
\end{equation}
%
Table~\ref{therm:unit} gives the units of the parameters.
\begin{table}
\centering
\begin{tabular}{cccc}\toprule
Parameter & homegeneous SI unit &
Parameter & homegeneous SI unit \\\midrule
\tc{0} & \unit{K^2} &
\tc{1} & \unit{K} \\
\tc{2} & \nounit &
\tc{3} & \unit{K^{-1}} \\
\tc{4} & \unit{K^{-2}} &
\tc{5} & \unit{K^{-3}} \\
\tc{6} & \unit{K^{-4}} &
\tc{7} & not used, always 0 \\
\tc{8} & \unit{K} &
\tc{9} & \nounit \\
\bottomrule
\end{tabular}
\caption[Units of NASA polynoms parameters]{\label{therm:unit}Units of the parameters of the NASA polynoms, as defined in
Eq.~\ref{therm:DH} and \ref{therm:DS}.}
\end{table}
%
These equations are easily differentiables:
\begin{equation}
\doverdT{\left(\frac{\enthZ(T)}{\Rg T}\right)}
= 2 \tc{0} T^{-3}
- \tc{1} T^{-2} \ln(T)
+ \tc{1} T^{-2}
+ \tc{3} \frac{1}{2}
+ \tc{4} \frac{2}{3} T
+ \tc{5} \frac{3}{4} T^2
+ \tc{6} \frac{4}{5} T^3
- \tc{8} T^{-2}
\label{therm:dDH_dT}
\end{equation}
and
\begin{equation}
\doverdT{\left(\frac{\entrZ(T)}{\Rg}\right)}
= \tc{0} T^{-3}
+ \tc{1} T^{-2}
+ \tc{2} T^{-1}
+ \tc{3}
+ \tc{4} T
+ \tc{5} T^2
+ \tc{6} T^3
\label{therm:dDS_dT}
\end{equation}
\subsubsection{Microscopic description}