-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths7_predict_gene.py
212 lines (173 loc) · 7.91 KB
/
s7_predict_gene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python
# _*_ coding: utf-8 _*_
import os
import json
import pickle
import numpy as np
from Bio import SeqIO
from sklearn import svm
from pubscripts import *
from descnucleotide import *
# To get the common OG which have dN/dS and conservation score
def common_OG() :
OG1 = list()
OG2 = list()
with open('./complementaryData/evolutionary_data/conservation_score_sce_based_on_original_protein_align_15461.csv', 'r') as infile1 :
lines1 = infile1.readlines()[1:]
# print(len(lines1))
for line in lines1 :
data = line.strip().split(',')
if data[2] :
OG_line = line.strip().split(',')[1].split('_')[0]
OG1.append(OG_line)
OG1_set = set(OG1)
# print(OG1_set)
print(len(OG1_set)) # 15439
with open('./complementaryData/evolutionary_data/gene_dn_ds_03_02.csv', 'r') as infile2 :
lines2 = infile2.readlines()[1:]
# print(len(lines2))
for line in lines2 :
data = line.strip().split(',')
# print(data)
if data[2] :
OG_line = line.strip().split(',')[1].split('.')[0]
OG2.append(OG_line)
OG2_set = set(OG2)
# print(OG2_set)
print(len(OG2_set)) # 13163
overlap_OG = OG2_set.intersection(OG1_set)
overlap_OG = list(overlap_OG)
print(len(overlap_OG))
# print(overlap_OG[:3])
return overlap_OG
def getIndex() :
# get the ortholog accoding to protein sequence id, that means Alloascoidea_hylecoeti@Seq_1 as the key, 0_0 as the value
with open("../Data/orthomcl_output/orthomcl_SeqIDs_index.txt", "r") as indexFile :
indexs = indexFile.readlines()
indexSeqId = dict()
for index in indexs :
index_Seq = index.strip().split(": ")
indexSeqId[index_Seq[0]] = index_Seq[1]
return indexSeqId
def getOrthologIndex() :
with open("../Data/orthomcl_output/orthomcl_clusters.txt", "r") as orthologFile :
orthologs = orthologFile.readlines()
orthologIndex = dict()
for ortholog in orthologs :
ortholog_Index = ortholog.strip().split(" ")
# orthologIndex = {'OG1001': {'328_2397', '189_1696', '279_256',.....}}
ortholog = ortholog_Index[0][:-1]
orthologIndex[ortholog] = ortholog_Index[1:]
return orthologIndex
def get_refSeq() :
# get the protein sequence accoding to protein sequence id
with open("/Users/leyu/Documents/Le/Data/orthomcl_output/343taxa_proteins.fasta", "r") as handleGene :
proteinSeq = dict()
for record in SeqIO.parse(handleGene, "fasta") :
# ['__add__', '__bool__', '__class__', '__contains__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__',
# '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__le___', '__len__', '__lt__',
# '__module__', '__ne__', '__new__', '__nonzero__', '__radd__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',
# '__subclasshook__', '__weakref__', '_per_letter_annotations', '_seq', '_set_per_letter_annotations', '_set_seq', 'annotations', 'dbxrefs', 'description',
# 'features', 'format', 'id', 'letter_annotations', 'lower', 'name', 'reverse_complement', 'seq', 'translate', 'upper']
# if record.id.startswith("Candida_albicans") :
# if record.id == gene :
proteinSeq[record.id] = str(record.seq)
# print("The protein number of %s is: %d" % (gene,len(proteinSeq)))
return proteinSeq
def get_ML_yeast_data() :
overlap_OG = common_OG()
indexSeqId = getIndex()
orthologIndex = getOrthologIndex()
gene_seq = get_refSeq()
seqId_OG = dict()
with open('./complementaryData/species/yeast_species.txt', 'r') as outfile :
lines = outfile.readlines()[1:]
all_species = [line.strip() for line in lines]
in_species = ['Saccharomyces_cerevisiae', 'Schizosaccharomyces_pombe', 'Yarrowia_lipolytica', 'Candida_albicans', 'Komagataella_pastoris']
yeast_species = list(set(all_species) - set(in_species))
print(len(yeast_species)) # 343-5 = 338
# print(yeast_species[-15:])
for ortholog in overlap_OG :
print(ortholog)
index_all = orthologIndex[ortholog]
# print(len(index_all))
for index in index_all :
seqId = indexSeqId[index]
# print(seqId)
seqId_OG[seqId] = ortholog
for yeast in yeast_species :
outfile = open("./complementaryData/all_yeast_input/%s.txt" % yeast, 'w')
for seqId, ortholog in seqId_OG.items() :
if seqId.split('@')[0] == yeast :
sequence = gene_seq[seqId]
outfile.write('>%s|%s|model' % (seqId,2))
outfile.write('\n')
outfile.write(sequence)
outfile.write('\n')
outfile.close()
def load_model() :
with open('./model.pickle', 'rb') as pickle_file :
svm_model = pickle.load(pickle_file)
return svm_model
def predict_gene() :
svm_model = load_model()
parameters = {'Method': "DNDS;Conservation;Occurance;ProteinNumber;DNC;Kmer", 'Kmer_Size': 3}
dna_cmd_coding = {
'Kmer': 'Kmer.Kmer(model_data, k=%s, **kw)' % parameters['Kmer_Size'],
'DNC': 'DNC.DNC(model_data, **kw)',
'DNDS': 'DNDS.dnds_all(model_data, **kw)',
'Conservation': 'Conservation.conservation_score_all(model_data, **kw)',
'Occurance': 'Occurance.occurance_number_all(model_data, **kw)',
'ProteinNumber': 'ProteinNumber.protein_number_all(model_data, **kw)',
}
all_files = os.listdir('./complementaryData/all_yeast_input')
all_files = [file for file in all_files if file.endswith('txt')]
# print(len(all_files)) # 338 = 343-5
# print(all_files[:3])
order = 0
essential_status = {'1':'Essential', '0': 'Non_essential'}
for file in all_files :
fastas = []
cmd_coding = {}
model_data = []
model_code_dict = {}
features = []
labels = []
outfile = open('./complementaryData/all_yeast_output/%s' % file, 'w')
outfile.write('Gene_id\tGene_phenotype\n')
order += 1
print('This is', order, '--------------------------------')
fastas = read_fasta_sequences.read_nucleotide_sequences('./complementaryData/all_yeast_input/%s' % file)
cmd_coding = dna_cmd_coding
for sequence in fastas:
if sequence[3] == 'model':
model_data.append(sequence)
kw = {'nclusters': 3, 'sof': 'sample', 'order': ''}
method_array = parameters['Method'].split(';')
for method in method_array :
if method in ('DNC', 'Kmer'):
kw['order'] = 'ACGT'
model_code_dict[method] = eval(cmd_coding[method])
model_code = np.array(model_code_dict[method_array[0]])
for i in range(1, len(method_array)):
# print(model_code)
# print(type(model_code))
if model_code_dict[method_array[i]] != 0:
model_code = np.concatenate((model_code, np.array(model_code_dict[method_array[i]])[:, 2:]), axis=1)
model_code = model_code.tolist()
# print(model_code[0])
# print(model_code[1])
# print(len(model_code)) # The first list is one explanation for the following lists
for info in model_code[1:] :
# print(info)
# print(info[0])
features = info[2:]
prediction = svm_model.predict([features]).tolist()
# print(prediction[0])
# print(essential_status[prediction[0]])
outfile.write('%s\t%s\n' % (info[0], essential_status[prediction[0]]))
outfile.close()
if __name__ == "__main__" :
# common_OG()
# get_ML_yeast_data()
predict_gene()