-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.nf
486 lines (384 loc) · 14.6 KB
/
main.nf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
#!/usr/bin/env nextflow
nextflow.enable.dsl=2
println \
"""
=================================
K I N C - N F P I P E L I N E
=================================
Workflow Information:
---------------------
Project Directory: ${workflow.projectDir}
Launch Directory: ${workflow.launchDir}
Work Directory: ${workflow.workDir}
Config Files: ${workflow.configFiles}
Container Engine: ${workflow.containerEngine}
Profiles: ${workflow.profile}
Execution Parameters:
---------------------
import-emx
enabled: ${params.import_emx}
similarity
enabled: ${params.similarity}
chunkrun: ${params.similarity_chunkrun}
chunks: ${params.similarity_chunks}
hardware_type: ${params.similarity_hardware_type}
threads: ${params.similarity_threads}
clusmethod: ${params.similarity_clusmethod}
corrmethod: ${params.similarity_corrmethod}
export-cmx
enabled: ${params.export_cmx}
corrpower
enabled: ${params.corrpower}
chunks: ${params.corrpower_chunks}
alpha: ${params.corrpower_alpha}
power: ${params.corrpower_power}
cond-test
enabled: ${params.condtest}
chunks: ${params.condtest_chunks}
feat_tests: ${params.condtest_feat_tests}
feat_types: ${params.condtest_feat_types}
alpha: ${params.condtest_alpha}
power: ${params.condtest_power}
extract
enabled: ${params.extract}
filter-pvalue: ${params.extract_filter_pvalue}
filter-rsquare: ${params.extract_filter_rsquare}
"""
workflow {
// load input files
emx_txt_files = Channel.fromFilePairs("${params.input_dir}/${params.emx_txt_files}", size: 1, flat: true)
emx_files = Channel.fromFilePairs("${params.input_dir}/${params.emx_files}", size: 1, flat: true)
ccm_files = Channel.fromFilePairs("${params.input_dir}/${params.ccm_files}", size: 1, flat: true)
cmx_files = Channel.fromFilePairs("${params.input_dir}/${params.cmx_files}", size: 1, flat: true)
amx_files = Channel.fromFilePairs("${params.input_dir}/${params.amx_files}", size: 1, flat: true)
// import emx files if specified
if ( params.import_emx == true ) {
import_emx(emx_txt_files)
emx_files = emx_files.mix(import_emx.out.emx_files)
}
// make sure that similarity_chunk is using more than one chunk if enabled
if ( params.similarity_chunkrun == true && params.similarity_chunks == 1 ) {
error "error: chunkrun cannot be run with only one chunk"
}
// change similarity threads to 1 if GPU acceleration is not enabled
if ( params.similarity_hardware_type == "cpu" ) {
params.similarity_threads = 1
}
// perform similarity_chunk if specified
if ( params.similarity == true && params.similarity_chunkrun == true ) {
// process similarity chunks
indices = Channel.from( 0 .. params.similarity_chunks-1 )
similarity_chunk(emx_files, indices)
// merge chunks into ccm/cmx files
chunks = similarity_chunk.out.chunks.groupTuple(size: params.similarity_chunks)
merge_inputs = emx_files.join(chunks)
similarity_merge(merge_inputs)
ccm_files = ccm_files.mix(similarity_merge.out.ccm_files)
cmx_files = cmx_files.mix(similarity_merge.out.cmx_files)
}
// perform similarity_mpi if specified
if ( params.similarity == true && params.similarity_chunkrun == false ) {
similarity_mpi(emx_files)
ccm_files = ccm_files.mix(similarity_mpi.out.ccm_files)
cmx_files = cmx_files.mix(similarity_mpi.out.cmx_files)
}
// export cmx files if specified
if ( params.export_cmx == true ) {
inputs = emx_files
.join(ccm_files)
.join(cmx_files)
export_cmx(inputs)
}
// perform correlation power analysis if specified
if ( params.corrpower == true ) {
inputs = ccm_files.join(cmx_files)
corrpower(inputs)
paf_ccm_files = corrpower.out.paf_ccm_files
paf_cmx_files = corrpower.out.paf_cmx_files
}
else {
paf_ccm_files = Channel.empty()
paf_cmx_files = Channel.empty()
}
// perform condition testing if specified
if ( params.condtest == true ) {
inputs = emx_files
.join(paf_ccm_files)
.join(paf_cmx_files)
.join(amx_files)
condtest(inputs)
csm_files = condtest.out.csm_files
}
// extract network files if specified
if ( params.extract == true ) {
inputs = emx_files
.join(paf_ccm_files)
.join(paf_cmx_files)
.join(csm_files)
extract(inputs)
}
}
/**
* The import_emx process converts a plain-text expression matrix into
* an emx file.
*/
process import_emx {
tag "${dataset}"
publishDir "${params.output_dir}/${dataset}"
input:
tuple val(dataset), path(emx_txt_file)
output:
tuple val(dataset), path("${dataset}.emx"), emit: emx_files
script:
"""
echo "#TRACE dataset=${dataset}"
echo "#TRACE n_rows=`tail -n +1 ${emx_txt_file} | wc -l`"
echo "#TRACE n_cols=`head -n +1 ${emx_txt_file} | wc -w`"
kinc settings set cuda none
kinc settings set opencl none
kinc settings set logging off
kinc run import-emx \
--input ${emx_txt_file} \
--output ${dataset}.emx
"""
}
/**
* The similarity_chunk process performs a single chunk of KINC similarity.
*/
process similarity_chunk {
tag "${dataset}/${index}"
label "gpu"
input:
tuple val(dataset), path(emx_file)
each index
output:
tuple val(dataset), path("*.abd"), emit: chunks
script:
"""
echo "#TRACE dataset=${dataset}"
echo "#TRACE hardware_type=${params.similarity_hardware_type}"
echo "#TRACE chunks=${params.similarity_chunks}"
echo "#TRACE threads=${params.similarity_threads}"
kinc settings set cuda ${params.similarity_hardware_type == "cpu" ? "none" : "0"}
kinc settings set opencl none
kinc settings set threads ${params.similarity_threads}
kinc settings set logging off
kinc chunkrun ${index} ${params.similarity_chunks} similarity \
--input ${emx_file} \
--clusmethod ${params.similarity_clusmethod} \
--corrmethod ${params.similarity_corrmethod} \
--minexpr ${params.similarity_minexpr} \
--minsamp ${params.similarity_minsamp} \
--minclus ${params.similarity_minclus} \
--maxclus ${params.similarity_maxclus} \
--crit ${params.similarity_criterion} \
--preout ${params.similarity_preout} \
--postout ${params.similarity_postout} \
--mincorr ${params.similarity_mincorr} \
--maxcorr ${params.similarity_maxcorr} \
--bsize ${params.similarity_bsize} \
--gsize ${params.similarity_gsize} \
--lsize ${params.similarity_lsize}
"""
}
/**
* The similarity_merge process takes the output chunks from similarity
* and merges them into the final ccm and cmx files.
*/
process similarity_merge {
tag "${dataset}"
publishDir "${params.output_dir}/${dataset}"
input:
tuple val(dataset), path(emx_file), path(chunks)
output:
tuple val(dataset), path("${dataset}.ccm"), emit: ccm_files
tuple val(dataset), path("${dataset}.cmx"), emit: cmx_files
script:
"""
echo "#TRACE dataset=${dataset}"
echo "#TRACE chunks=${params.similarity_chunks}"
echo "#TRACE abd_bytes=`stat -Lc '%s' *.abd | awk '{sum += \$1} END {print sum}'`"
kinc settings set cuda none
kinc settings set opencl none
kinc settings set logging off
kinc merge ${params.similarity_chunks} similarity \
--input ${emx_file} \
--ccm ${dataset}.ccm \
--cmx ${dataset}.cmx \
--clusmethod ${params.similarity_clusmethod} \
--corrmethod ${params.similarity_corrmethod} \
--minexpr ${params.similarity_minexpr} \
--minsamp ${params.similarity_minsamp} \
--minclus ${params.similarity_minclus} \
--maxclus ${params.similarity_maxclus} \
--crit ${params.similarity_criterion} \
--preout ${params.similarity_preout} \
--postout ${params.similarity_postout} \
--mincorr ${params.similarity_mincorr} \
--maxcorr ${params.similarity_maxcorr} \
--bsize ${params.similarity_bsize} \
--gsize ${params.similarity_gsize} \
--lsize ${params.similarity_lsize}
"""
}
/**
* The similarity_mpi process computes an entire similarity matrix using MPI.
*/
process similarity_mpi {
tag "${dataset}"
publishDir "${params.output_dir}/${dataset}"
label "gpu"
input:
tuple val(dataset), path(emx_file)
output:
tuple val(dataset), path("${dataset}.ccm"), emit: ccm_files
tuple val(dataset), path("${dataset}.cmx"), emit: cmx_files
script:
"""
echo "#TRACE dataset=${dataset}"
echo "#TRACE hardware_type=${params.similarity_hardware_type}"
echo "#TRACE np=${params.similarity_chunks}"
echo "#TRACE threads=${params.similarity_threads}"
kinc settings set cuda ${params.similarity_hardware_type == "cpu" ? "none" : "0"}
kinc settings set opencl none
kinc settings set threads ${params.similarity_threads}
kinc settings set logging off
mpirun --allow-run-as-root -np ${params.similarity_chunks} \
kinc run similarity \
--input ${emx_file} \
--ccm ${dataset}.ccm \
--cmx ${dataset}.cmx \
--clusmethod ${params.similarity_clusmethod} \
--corrmethod ${params.similarity_corrmethod} \
--minexpr ${params.similarity_minexpr} \
--minsamp ${params.similarity_minsamp} \
--minclus ${params.similarity_minclus} \
--maxclus ${params.similarity_maxclus} \
--crit ${params.similarity_criterion} \
--preout ${params.similarity_preout} \
--postout ${params.similarity_postout} \
--mincorr ${params.similarity_mincorr} \
--maxcorr ${params.similarity_maxcorr} \
--bsize ${params.similarity_bsize} \
--gsize ${params.similarity_gsize} \
--lsize ${params.similarity_lsize}
"""
}
/**
* The export_cmx process exports the ccm and cmx files from similarity
* into a plain-text format.
*/
process export_cmx {
tag "${dataset}"
publishDir "${params.output_dir}/${dataset}"
input:
tuple val(dataset), path(emx_file), path(ccm_file), path(cmx_file)
output:
tuple val(dataset), path("${dataset}.cmx.txt"), emit: cmx_txt_files
script:
"""
kinc settings set cuda none
kinc settings set opencl none
kinc settings set logging off
kinc run export-cmx \
--emx ${emx_file} \
--ccm ${ccm_file} \
--cmx ${cmx_file} \
--output ${dataset}.cmx.txt
"""
}
/**
* The corrpower process applies power filtering to a correlation matrix.
*/
process corrpower {
tag "${dataset}"
publishDir "${params.output_dir}/${dataset}"
input:
tuple val(dataset), path(ccm_file), path(cmx_file)
output:
tuple val(dataset), path("${dataset}.paf.ccm"), emit: paf_ccm_files
tuple val(dataset), path("${dataset}.paf.cmx"), emit: paf_cmx_files
script:
"""
echo "#TRACE dataset=${dataset}"
echo "#TRACE np=${params.corrpower_chunks}"
echo "#TRACE ccm_bytes=`stat -Lc '%s' ${ccm_file}`"
echo "#TRACE cmx_bytes=`stat -Lc '%s' ${cmx_file}`"
kinc settings set cuda none
kinc settings set opencl none
kinc settings set logging off
mpirun --allow-run-as-root -np ${params.corrpower_chunks} \
kinc run corrpower \
--ccm-in ${ccm_file} \
--cmx-in ${cmx_file} \
--ccm-out ${dataset}.paf.ccm \
--cmx-out ${dataset}.paf.cmx \
--alpha ${params.corrpower_alpha} \
--power ${params.corrpower_power}
"""
}
/**
* The condtest process performs condition-specific analysis on a
* correlation matrix.
*/
process condtest {
tag "${dataset}"
publishDir "${params.output_dir}/${dataset}"
input:
tuple val(dataset), path(emx_file), path(ccm_file), path(cmx_file), path(amx_file)
output:
tuple val(dataset), path("${dataset}.paf.csm"), emit: csm_files
script:
"""
echo "#TRACE dataset=${dataset}"
echo "#TRACE np=${params.condtest_chunks}"
echo "#TRACE ccm_bytes=`stat -Lc '%s' ${ccm_file}`"
echo "#TRACE cmx_bytes=`stat -Lc '%s' ${cmx_file}`"
kinc settings set cuda none
kinc settings set opencl none
kinc settings set logging off
mpirun --allow-run-as-root -np ${params.condtest_chunks} \
kinc run cond-test \
--emx ${emx_file} \
--ccm ${ccm_file} \
--cmx ${cmx_file} \
--amx ${amx_file} \
--output ${dataset}.paf.csm \
--feat-tests ${params.condtest_feat_tests} \
--feat-types ${params.condtest_feat_types} \
--alpha ${params.condtest_alpha} \
--power ${params.condtest_power}
"""
}
/**
* The extract process takes the correlation matrix from similarity and
* extracts a network with a given threshold.
*/
process extract {
tag "${dataset}"
publishDir "${params.output_dir}/${dataset}"
input:
tuple val(dataset), path(emx_file), path(ccm_file), path(cmx_file), path(csm_file)
output:
tuple val(dataset), path("${dataset}.paf-*.txt"), emit: net_files
script:
"""
echo "#TRACE dataset=${dataset}"
echo "#TRACE ccm_bytes=`stat -Lc '%s' ${ccm_file}`"
echo "#TRACE cmx_bytes=`stat -Lc '%s' ${cmx_file}`"
kinc settings set cuda none
kinc settings set opencl none
kinc settings set logging off
kinc run extract \
--emx ${emx_file} \
--ccm ${ccm_file} \
--cmx ${cmx_file} \
--csm ${csm_file} \
--format ${params.extract_format} \
--output ${dataset}.paf-th${params.extract_mincorr}-p${params.extract_filter_pvalue}-rsqr${params.extract_filter_rsquare}.txt \
--mincorr ${params.extract_mincorr} \
--maxcorr ${params.extract_maxcorr} \
--filter-pvalue ${params.extract_filter_pvalue} \
--filter-rsquare ${params.extract_filter_rsquare}
"""
}