-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeldataset.py
232 lines (181 loc) · 8.83 KB
/
meldataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import math
import os
import random
import torch
import torch.utils.data
import numpy as np
import pickle
from librosa.util import normalize
from scipy.io.wavfile import read
from librosa.filters import mel as librosa_mel_fn
from librosa import power_to_db, db_to_power
# see https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.read.html
# MAX_WAV_VALUE = 32768.0 # for pcm_s16
MAX_WAV_VALUE = 2147483648.0 # for pcm_s32
MEL_NORM_OFFSET = 3
MEL_NORM_SCALING = 10
def denorm_am_mel(mel):
if len(mel.shape) == 3:
return np.stack([denorm_am_mel(mel[i]) for i in range(mel.shape[0])])
mel = (mel - MEL_NORM_OFFSET) * MEL_NORM_SCALING
mel = mel.transpose()
mel = db_to_power(mel)
mel = mel.transpose()
return mel
def norm_mel(mel):
if len(mel.shape) == 3:
return np.stack([norm_mel(mel[i]) for i in range(mel.shape[0])])
# To log scale
mel = power_to_db(mel)
# Transpose
mel = mel.transpose()
# Normalize
mel = mel / MEL_NORM_SCALING + MEL_NORM_OFFSET
return mel
def get_mel_from_pkl(pkl_filename: str):
with open(pkl_filename, 'rb') as f:
mel = pickle.load(f)['mel']
mel = np.transpose(mel)
mel = np.expand_dims(mel,0)
mel = denorm_am_mel(mel)
mel = dynamic_range_compression(mel)
return torch.FloatTensor(mel)
def load_wav(full_path):
sampling_rate, data = read(full_path)
return data, sampling_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False, pad=True):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global mel_basis, hann_window
if fmax not in mel_basis:
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
if pad:
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
center=center, pad_mode='reflect', normalized=False, onesided=True)
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
spec = spectral_normalize_torch(spec)
return spec
def get_dataset_filelist(a):
with open(a.input_training_file, 'r', encoding='utf-8') as fi:
training_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
for x in fi.read().split('\n') if len(x) > 0]
with open(a.input_validation_file, 'r', encoding='utf-8') as fi:
validation_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
for x in fi.read().split('\n') if len(x) > 0]
return training_files, validation_files
class MelDataset(torch.utils.data.Dataset):
def __init__(self, training_files, segment_size, n_fft, num_mels,
hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1,
device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None):
self.audio_files = training_files
random.seed(1234)
if shuffle:
random.shuffle(self.audio_files)
self.segment_size = segment_size
self.sampling_rate = sampling_rate
self.split = split
self.n_fft = n_fft
self.num_mels = num_mels
self.hop_size = hop_size
self.win_size = win_size
self.fmin = fmin
self.fmax = fmax
self.fmax_loss = fmax_loss
self.cached_wav = None
self.n_cache_reuse = n_cache_reuse
self._cache_ref_count = 0
self.device = device
self.fine_tuning = fine_tuning
self.base_mels_path = base_mels_path
def __getitem__(self, index):
filename = self.audio_files[index]
if self._cache_ref_count == 0:
audio, sampling_rate = load_wav(filename)
audio = audio / MAX_WAV_VALUE
if not self.fine_tuning:
audio = normalize(audio) * 0.95
self.cached_wav = audio
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
self._cache_ref_count = self.n_cache_reuse
else:
audio = self.cached_wav
self._cache_ref_count -= 1
audio = torch.FloatTensor(audio)
audio = audio.unsqueeze(0)
if not self.fine_tuning:
if self.split:
if audio.size(1) >= self.segment_size:
max_audio_start = audio.size(1) - self.segment_size
audio_start = random.randint(0, max_audio_start)
audio = audio[:, audio_start:audio_start+self.segment_size]
else:
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
mel = mel_spectrogram(audio, self.n_fft, self.num_mels,
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax,
center=False, pad = self.split)
else:
pkl_file = os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + '.pkl')
with open(pkl_file, 'rb') as f:
mel = pickle.load(f)['mel']
if mel.shape[0] != self.num_mels:
mel = np.transpose(mel)
assert mel.shape[0] == self.num_mels
mel = np.expand_dims(mel,0)
mel = denorm_am_mel(mel)
mel = dynamic_range_compression(mel)
mel = torch.from_numpy(mel)
if len(mel.shape) < 3:
mel = mel.unsqueeze(0)
assert torch.all(~torch.isnan(mel))
if self.split:
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
if audio.size(1) >= self.segment_size:
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
while (mel_start + frames_per_seg) * self.hop_size > audio.shape[1]:
print(f"random segment of {filename} too small, take new segment")
print(f"mel: {(mel.size(1), mel.size(2))}; audio({audio.shape}) frames_per_seg: {frames_per_seg}; mel_start {mel_start}")
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
mel = mel[:, :, mel_start:mel_start + frames_per_seg]
audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size]
else:
mel = torch.nn.functional.pad(mel, (0, frames_per_seg - mel.size(2)), 'constant')
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels,
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss,
center=False, pad = self.split)
if mel.shape[2] > mel_loss.shape[2]:
print(f"mel {mel.shape} > mel_loss { mel_loss.shape}; {filename}; append mel_gt")
mel_difference = mel[:,:,mel_loss.shape[2]:mel.shape[2]]
mel_loss = torch.cat((mel_loss, mel_difference), 2)
print(mel_loss.shape)
elif mel.shape[2] < mel_loss.shape[2]:
print(f"mel {mel.shape} < mel_loss { mel_loss.shape}; {filename}; cut mel_gt")
mel_loss = mel_loss[:,:,:mel.shape[2]]
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
def __len__(self):
return len(self.audio_files)