-
Notifications
You must be signed in to change notification settings - Fork 0
/
mm.c
372 lines (304 loc) · 10 KB
/
mm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/*
* mm-naive.c - The fastest, least memory-efficient malloc package.
*
* In this naive approach, a block is allocated by simply incrementing
* the brk pointer. A block is pure payload. There are no headers or
* footers. Blocks are never coalesced or reused. Realloc is
* implemented directly using mm_malloc and mm_free.
*
* NOTE TO STUDENTS: Replace this header comment with your own header
* comment that gives a high level description of your solution.
*/
#include "mm.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "memlib.h"
/*********************************************************
* NOTE TO STUDENTS: Before you do anything else, please
* provide your team information in the following struct.
********************************************************/
team_t team = {
/* Team name */
"team1",
/* First member's full name */
"Terry Ahn",
/* First member's email address */
/* Second member's full name (leave blank if none) */
"",
/* Second member's email address (leave blank if none) */
""};
/* single word (4) or double word (8) alignment */
#define ALIGNMENT 8
/* rounds up to the nearest multiple of ALIGNMENT */
#define ALIGN(size) (((size) + (ALIGNMENT - 1)) & ~0x7)
#define SIZE_T_SIZE (ALIGN(sizeof(size_t)))
/*
* macro
*/
#define WSIZE 4 // word size (bytes)
#define DSIZE 8 // double word size (bytes)
#define CHUNKSIZE (1 << 12) // increase heap size to 4KB (4096 bytes) 메모리 페이지 크기가 4KB.
#define MAX(x, y) ((x) > (y) ? (x) : (y))
// pack a size and allocated bit into a word
#define PACK(size, alloc) ((size) | (alloc)) // size + block available. OR 연산으로 헤더에 넣을 정보를 만듬 사이즈 + 가용여부(끝 3자리).
// Read and write a word at address p
#define GET(p) (*(unsigned int *)(p))
#define PUT(p, val) (*(unsigned int *)(p) = (int)(val))
// Read the size and allocated fields from address p
#define GET_SIZE(p) (GET(p) & ~0x7) // 00000111 의 보수(~) 를 취해서 11111000 을 가져와 AND 연산을 통해 블록 사이즈만 가져오겠다.
#define GET_ALLOC(p) (GET(p) & 0x1) // 00000001 과 AND 연을 통해 헤더에서 가용여부만 가져오겠다.
// Given block ptr bp, compute address of its header and footer
#define HDRP(bp) ((char *)(bp) - WSIZE)
#define FTRP(bp) ((char *)(bp) + GET_SIZE(HDRP(bp)) - DSIZE)
// Given block ptr bp, compute address of next and previous blocks
#define NEXT_BLKP(bp) ((char *)(bp) + GET_SIZE(((char *)(bp) - WSIZE)))
#define PREV_BLKP(bp) ((char *)(bp) - GET_SIZE(((char *)(bp) - DSIZE)))
// 가용리스트 명시적 주소 읽기 prev/next 블록이 가리키는 곳으로 가는 이중포인터 //byte 형식의 주솟값을 가르키는 포인터로 변환해서 바이트 단위로 연산하겠다.
#define PREV_FREE_P(bp) (*(char **)(bp))
#define NEXT_FREE_P(bp) (*(char **)(bp + WSIZE))
// size list num
#define SIZE_NUM 29 // 2**4 ~ 2**32 (byte) 4GB 까지
// list
static char *heap_listp; // 힙 포인터
void *seg_free_list[SIZE_NUM];
// function prototype
int mm_init(void);
void mm_free(void *bp);
void *mm_malloc(size_t size);
void *mm_realloc(void *bp, size_t size);
static void *extend_heap(size_t words);
static void *find_fit(size_t asize);
static void *coalesce(void *bp);
static void place(void *bp, size_t asize);
static void add_block_to_freelist(void *bp);
static void remove_block(void *bp);
int find_list_index(size_t size);
int find_next_power(int x);
/*
* mm_init - initialize the malloc package.
*/
int mm_init(void) {
// seg_free_list 초기화
for (int i = 0; i < SIZE_NUM; i++) {
seg_free_list[i] = NULL;
}
if ((heap_listp = mem_sbrk(4 * WSIZE)) == (void *)-1) {
return -1;
}
PUT(heap_listp, 0); // padding for 2 word 배수
PUT(heap_listp + (1 * WSIZE), PACK(DSIZE, 1)); // prologue header
PUT(heap_listp + (2 * WSIZE), PACK(DSIZE, 1)); // prologue footer
PUT(heap_listp + (3 * WSIZE), PACK(0, 1)); // epilogue header
return 0;
}
/*
* exxtend_heap 힙을 특정 사이즈만큼 증가. 새 가용 블록 만들기
*/
static void *extend_heap(size_t words) {
char *bp;
size_t size;
size = (words % 2) ? (words + 1) * WSIZE : words * WSIZE;
bp = mem_sbrk(size);
if (bp == (void *)-1) {
return NULL;
}
PUT(HDRP(bp), PACK(size, 0));
PUT(FTRP(bp), PACK(size, 0));
PUT(HDRP(NEXT_BLKP(bp)), PACK(0, 1));
return coalesce(bp);
}
// find list index 집어넣을 사이즈에 적합한 리스트 찾기
int find_list_index(size_t size) {
int index = 0;
size = (size > 4) ? size : 4;
while ((1 << (index + 4)) < size && index < SIZE_NUM - 1) {
index++;
}
return index;
}
// 가용블록 병합 함수. 앞뒤 가용블럭과 free한 블럭 합치기
static void *coalesce(void *bp) {
size_t prev_alloc = GET_ALLOC(FTRP(PREV_BLKP(bp)));
size_t next_alloc = GET_ALLOC(HDRP(NEXT_BLKP(bp)));
size_t size = GET_SIZE(HDRP(bp));
// 이전 블록 과 병합
if (!prev_alloc) {
remove_block(PREV_BLKP(bp));
size += GET_SIZE(HDRP(PREV_BLKP(bp)));
bp = PREV_BLKP(bp);
PUT(HDRP(bp), PACK(size, 0));
PUT(FTRP(bp), PACK(size, 0));
}
// 다음 블록과 병합
if (!next_alloc) {
remove_block(NEXT_BLKP(bp));
size += GET_SIZE(HDRP(NEXT_BLKP(bp)));
PUT(HDRP(bp), PACK(size, 0));
PUT(FTRP(bp), PACK(size, 0));
}
add_block_to_freelist(bp);
return bp;
}
// 가용리스트 추가 함수
static void add_block_to_freelist(void *bp) {
int seg_list_index = find_list_index(GET_SIZE(HDRP(bp)));
PREV_FREE_P(bp) = NULL;
if (seg_free_list[seg_list_index] == NULL) {
NEXT_FREE_P(bp) = NULL;
} else {
NEXT_FREE_P(bp) = seg_free_list[seg_list_index];
PREV_FREE_P(seg_free_list[seg_list_index]) = bp;
}
seg_free_list[seg_list_index] = bp;
}
// block을 free 할때 가용리스트 업데이트
static void remove_block(void *bp) {
int seg_list_index = find_list_index(GET_SIZE(HDRP(bp)));
if (PREV_FREE_P(bp)) {
NEXT_FREE_P(PREV_FREE_P(bp)) = NEXT_FREE_P(bp);
} else {
seg_free_list[seg_list_index] = NEXT_FREE_P(bp);
}
if (NEXT_FREE_P(bp)) {
PREV_FREE_P(NEXT_FREE_P(bp)) = PREV_FREE_P(bp);
}
}
/*
* find fit // first fit search
*/
static void *find_fit(size_t asize) {
void *bp = NULL;
int index = find_list_index(asize);
while (index < SIZE_NUM) {
for (bp = seg_free_list[index]; bp != NULL; bp = NEXT_FREE_P(bp)) {
size_t current_size = GET_SIZE(HDRP(bp));
if (asize <= current_size) {
return bp;
}
}
index++;
}
return NULL;
}
/*
* place 가용블록에 데이터를 넣고 필요하다면 나머지 부분이 최소 블록크기와
* 같거나 크면 분할하는 함수
*/
static void place(void *bp, size_t asize) {
size_t csize = GET_SIZE(HDRP(bp));
remove_block(bp);
if ((csize - asize) >= (2 * DSIZE)) {
PUT(HDRP(bp), PACK(asize, 1));
PUT(FTRP(bp), PACK(asize, 1));
bp = NEXT_BLKP(bp);
PUT(HDRP(bp), PACK(csize - asize, 0));
PUT(FTRP(bp), PACK(csize - asize, 0));
coalesce(bp);
} else {
PUT(HDRP(bp), PACK(csize, 1));
PUT(FTRP(bp), PACK(csize, 1));
}
}
// x 보다 한단계 더큰 2의 제곱수로 올림.
int find_next_power(int x) {
if (x < 1) {
return 1;
}
int power = 1;
while (power < x) {
power *= 2;
}
return power;
}
/*
* mm_malloc - Allocate a block by incrementing the brk pointer.
* Always allocate a block whose size is a multiple of the alignment.
*/
void *mm_malloc(size_t size) {
size_t asize;
size_t extendsize;
char *bp;
if (size == 0) return NULL;
if (size <= CHUNKSIZE) {
size = find_next_power(size);
}
if (size <= DSIZE) {
asize = 2 * DSIZE;
} else {
asize = DSIZE * ((size + (DSIZE) + (DSIZE - 1)) / DSIZE);
}
if ((bp = find_fit(asize)) != NULL) {
place(bp, asize);
return bp;
}
extendsize = MAX(asize, CHUNKSIZE);
if ((bp = extend_heap(extendsize / WSIZE)) == NULL) {
return NULL;
}
place(bp, asize);
return bp;
}
/*
* mm_free
*/
void mm_free(void *bp) {
size_t size = GET_SIZE(HDRP(bp));
PUT(HDRP(bp), PACK(size, 0));
PUT(FTRP(bp), PACK(size, 0));
coalesce(bp);
}
/*
* mm_realloc - Implemented simply in terms of mm_malloc and mm_free
*/
void *mm_realloc(void *bp, size_t size) {
size_t asize;
if (size <= 0) {
mm_free(bp);
return 0;
}
if (bp == NULL) {
return mm_malloc(size);
}
size_t oldsize = GET_SIZE(HDRP(bp));
if (size <= DSIZE) { // malloc 할 때 처럼 블록의 size를 정형화
asize = 2 * DSIZE;
} else {
asize = DSIZE * ((size + (DSIZE) + (DSIZE - 1)) / DSIZE);
}
// 변경할 사이즈가 기존보다 작을때
if (oldsize - DSIZE >= asize) {
return bp;
}
// if next block is free and
size_t next_alloc = GET_ALLOC(HDRP(NEXT_BLKP(bp)));
size_t next_size = GET_SIZE(HDRP(NEXT_BLKP(bp)));
if (!next_alloc && (oldsize + next_size >= asize)) {
remove_block(NEXT_BLKP(bp));
PUT(HDRP(bp), PACK(oldsize + next_size, 1));
PUT(FTRP(bp), PACK(oldsize + next_size, 1));
return bp;
}
size_t prev_alloc = GET_ALLOC(HDRP(PREV_BLKP(bp)));
size_t prev_size = GET_SIZE(HDRP(PREV_BLKP(bp)));
if (!prev_alloc && (oldsize + prev_size >= asize)) {
remove_block(PREV_BLKP(bp));
bp = PREV_BLKP(bp);
memmove(bp, NEXT_BLKP(bp), asize);
PUT(HDRP(bp), PACK(oldsize + prev_size, 1));
PUT(FTRP(bp), PACK(oldsize + prev_size, 1));
return bp;
}
// 기존 realloc
oldsize -= DSIZE;
void *newp = mm_malloc(size);
if (newp == NULL) {
return 0;
}
memcpy(newp, bp, oldsize);
mm_free(bp);
return newp;
}