-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathApp.py
42 lines (39 loc) · 2.26 KB
/
App.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import streamlit as st
import pickle
from keras.preprocessing.sequence import pad_sequences
from keras.models import load_model
import plotly.express as px
import pandas as pd
token_form = pickle.load(open('tokenizer.pkl', 'rb'))
model = load_model("model.h5")
if __name__ == '__main__':
st.title('Suicidal Post Detection App ')
st.subheader("Input the Post content below")
sentence = st.text_input("Enter your post content here")
predict_btt = st.button("Predict")
if predict_btt:
# Define the post
st.write("Post: " +sentence)
twt = [sentence]
twt = token_form.texts_to_sequences(twt)
twt = pad_sequences(twt, maxlen=50)
# Predict the ideation
prediction = model.predict(twt)[0][0]
# Print the prediction
if(prediction > 0.5):
st.warning("Potential Suicide Post")
else:
st.success("Non Suicide Post")
class_label = ["Potential Suicide Post","Non Suicide Post"]
prob_list = [prediction*100,100-prediction*100]
prob_dict = {"Potential Suicide Post/Non Suicide Post":class_label,"Probability":prob_list}
df_prob = pd.DataFrame(prob_dict)
fig = px.bar(df_prob, x='Potential Suicide Post/Non Suicide Post', y='Probability')
model_option = "LSTM+GLove"
if prediction > 0.5:
fig.update_layout(title_text="{} model - prediction probability comparison between Potential Suicide Post and Non Suicide Post".format(model_option))
st.info("The {} model predicts that there is a higher {} probability that the post content is Potential Suicide Post compared to a {} probability of being Non Suicide Post".format(model_option,prediction*100,100-prediction*100))
else:
fig.update_layout(title_text="{} model - prediction probability comparison between Potential Suicide Post and Non Suicide Post".format(model_option))
st.info("Your post content is rather abstract, The {} model predicts that there a almost equal {} probability that the post content is Potential Suicide Post compared to a {} probability of being Non Suicide Post".format(model_option,prediction*100,100-prediction*100))
st.plotly_chart(fig, use_container_width=True)