-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgsw_C_from_SP.m
417 lines (377 loc) · 14.8 KB
/
gsw_C_from_SP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
function C = gsw_C_from_SP(SP,t,p)
% gsw_C_from_SP conductivity from SP
%==========================================================================
%
% USAGE:
% C = gsw_C_from_SP(SP,t,p)
%
% DESCRIPTION:
% Calculates conductivity, C, from (SP,t,p) using PSS-78 in the range
% 2 < SP < 42. If the input Practical Salinity is less than 2 then a
% modified form of the Hill et al. (1986) fomula is used for Practical
% Salinity. The modification of the Hill et al. (1986) expression is to
% ensure that it is exactly consistent with PSS-78 at SP = 2.
%
% The conductivity ratio returned by this function is consistent with the
% input value of Practical Salinity, SP, to 2x10^-14 psu over the full
% range of input parameters (from pure fresh water up to SP = 42 psu).
% This error of 2x10^-14 psu is machine precision at typical seawater
% salinities. This accuracy is achieved by having four different
% polynomials for the starting value of Rtx (the square root of Rt) in
% four different ranges of SP, and by using one and a half iterations of
% a computationally efficient modified Newton-Raphson technique (McDougall
% and Wotherspoon, 2013) to find the root of the equation.
%
% Note that strictly speaking PSS-78 (Unesco, 1983) defines Practical
% Salinity in terms of the conductivity ratio, R, without actually
% specifying the value of C(35,15,0) (which we currently take to be
% 42.9140 mS/cm).
%
% INPUT:
% SP = Practical Salinity (PSS-78) [ unitless ]
% t = in-situ temperature (ITS-90) [ deg C ]
% p = sea pressure [ dbar ]
% ( i.e. absolute pressure - 10.1325 dbar )
%
% SP & t need to have the same dimensions.
% p may have dimensions 1x1 or Mx1 or 1xN or MxN, where SP & t are MxN.
%
% OUTPUT:
% C = conductivity [ mS/cm ]
%
% AUTHOR:
% Trevor McDougall, Paul Barker and Rich Pawlowicz [ [email protected] ]
%
% VERSION NUMBER: 3.05 (27th January 2015)
%
% REFERENCES:
% Hill, K.D., T.M. Dauphinee and D.J. Woods, 1986: The extension of the
% Practical Salinity Scale 1978 to low salinities. IEEE J. Oceanic Eng.,
% OE-11, 1, 109 - 112.
%
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
% seawater - 2010: Calculation and use of thermodynamic properties.
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org
% See appendix E of this TEOS-10 Manual.
%
% McDougall T. J. and S. J. Wotherspoon, 2013: A simple modification of
% Newton's method to achieve convergence of order 1 + sqrt(2). Applied
% Mathematics Letters, 29, 20-25.
%
% Unesco, 1983: Algorithms for computation of fundamental properties of
% seawater. Unesco Technical Papers in Marine Science, 44, 53 pp.
%
% The software is available from http://www.TEOS-10.org
%
%==========================================================================
%--------------------------------------------------------------------------
% Check variables and resize if necessary
%--------------------------------------------------------------------------
if ~(nargin == 3)
error('gsw_C_from_SP: Must have 3 input arguments')
end %if
% This line ensures that SP is non-negative.
if any(SP < 0)
error('gsw_C_from_SP: SP must be non-negative!')
end
[ms,ns] = size(SP);
[mt,nt] = size(t);
[mp,np] = size(p);
if (mt ~= ms | nt ~= ns)
error('gsw_C_from_SP: SP and t must have same dimensions')
end
if (mp == 1) & (np == 1) % p is a scalar,
p = p*ones(ms,ns); % Fill to size of SP.
elseif (np == ns) & (mp == 1) % p is row vector,
p = p(ones(1,ms),:); % copy down each column.
elseif (mp == ms) & (np == 1) % p is column vector,
p = p(:,ones(1,ns)); % copy across each row.
elseif (np == ms) & (np == 1) % p is a transposed row vector,
p = p.'; % transposed then
p = p(ones(1,ms), :); % copy down each column.
elseif (mp == ms) & (np == ns)
% ok
else
error('gsw_C_from_SP: p has wrong dimensions')
end %if
if ms == 1
SP = SP.';
t = t.';
p = p.';
transposed = 1;
else
transposed = 0;
end
%--------------------------------------------------------------------------
% Setting up the constants
%--------------------------------------------------------------------------
a0 = 0.0080;
a1 = -0.1692;
a2 = 25.3851;
a3 = 14.0941;
a4 = -7.0261;
a5 = 2.7081;
b0 = 0.0005;
b1 = -0.0056;
b2 = -0.0066;
b3 = -0.0375;
b4 = 0.0636;
b5 = -0.0144;
c0 = 0.6766097;
c1 = 2.00564e-2;
c2 = 1.104259e-4;
c3 = -6.9698e-7;
c4 = 1.0031e-9;
d1 = 3.426e-2;
d2 = 4.464e-4;
d3 = 4.215e-1;
d4 = -3.107e-3;
e1 = 2.070e-5;
e2 = -6.370e-10;
e3 = 3.989e-15;
p0 = 4.577801212923119e-3;
p1 = 1.924049429136640e-1;
p2 = 2.183871685127932e-5;
p3 = -7.292156330457999e-3;
p4 = 1.568129536470258e-4;
p5 = -1.478995271680869e-6;
p6 = 9.086442524716395e-4;
p7 = -1.949560839540487e-5;
p8 = -3.223058111118377e-6;
p9 = 1.175871639741131e-7;
p10 = -7.522895856600089e-5;
p11 = -2.254458513439107e-6;
p12 = 6.179992190192848e-7;
p13 = 1.005054226996868e-8;
p14 = -1.923745566122602e-9;
p15 = 2.259550611212616e-6;
p16 = 1.631749165091437e-7;
p17 = -5.931857989915256e-9;
p18 = -4.693392029005252e-9;
p19 = 2.571854839274148e-10;
p20 = 4.198786822861038e-12;
q0 = 5.540896868127855e-5;
q1 = 2.015419291097848e-1;
q2 = -1.445310045430192e-5;
q3 = -1.567047628411722e-2;
q4 = 2.464756294660119e-4;
q5 = -2.575458304732166e-7;
q6 = 5.071449842454419e-3;
q7 = -9.081985795339206e-5;
q8 = -3.635420818812898e-6;
q9 = 2.249490528450555e-8;
q10 = -1.143810377431888e-3;
q11 = 2.066112484281530e-5;
q12 = 7.482907137737503e-7;
q13 = 4.019321577844724e-8;
q14 = -5.755568141370501e-10;
q15 = 1.120748754429459e-4;
q16 = -2.420274029674485e-6;
q17 = -4.774829347564670e-8;
q18 = -4.279037686797859e-9;
q19 = -2.045829202713288e-10;
q20 = 5.025109163112005e-12;
r0 = 3.432285006604888e-3;
r1 = 1.672940491817403e-1;
r2 = 2.640304401023995e-5;
r3 = 1.082267090441036e-1;
r4 = -6.296778883666940e-5;
r5 = -4.542775152303671e-7;
r6 = -1.859711038699727e-1;
r7 = 7.659006320303959e-4;
r8 = -4.794661268817618e-7;
r9 = 8.093368602891911e-9;
r10 = 1.001140606840692e-1;
r11 = -1.038712945546608e-3;
r12 = -6.227915160991074e-6;
r13 = 2.798564479737090e-8;
r14 = -1.343623657549961e-10;
r15 = 1.024345179842964e-2;
r16 = 4.981135430579384e-4;
r17 = 4.466087528793912e-6;
r18 = 1.960872795577774e-8;
r19 = -2.723159418888634e-10;
r20 = 1.122200786423241e-12;
u0 = 5.180529787390576e-3;
u1 = 1.052097167201052e-3;
u2 = 3.666193708310848e-5;
u3 = 7.112223828976632;
u4 = -3.631366777096209e-4;
u5 = -7.336295318742821e-7;
u6 = -1.576886793288888e+2;
u7 = -1.840239113483083e-3;
u8 = 8.624279120240952e-6;
u9 = 1.233529799729501e-8;
u10 = 1.826482800939545e+3;
u11 = 1.633903983457674e-1;
u12 = -9.201096427222349e-5;
u13 = -9.187900959754842e-8;
u14 = -1.442010369809705e-10;
u15 = -8.542357182595853e+3;
u16 = -1.408635241899082;
u17 = 1.660164829963661e-4;
u18 = 6.797409608973845e-7;
u19 = 3.345074990451475e-10;
u20 = 8.285687652694768e-13;
k = 0.0162;
t68 = t.*1.00024;
ft68 = (t68 - 15)./(1 + k.*(t68 - 15));
x = sqrt(SP);
Rtx = nan(size(SP));
%--------------------------------------------------------------------------
% Finding the starting value of Rtx, the square root of Rt, using four
% different polynomials of SP and t68.
%--------------------------------------------------------------------------
if any(SP >= 9)
[I] = find(SP >= 9);
Rtx(I) = p0 + x(I).*(p1 + p4*t68(I) + x(I).*(p3 + p7*t68(I) + x(I).*(p6 ...
+ p11*t68(I) + x(I).*(p10 + p16*t68(I)+ x(I).*p15))))...
+ t68(I).*(p2+ t68(I).*(p5 + x(I).*x(I).*(p12 + x(I).*p17) + p8*x(I) ...
+ t68(I).*(p9 + x(I).*(p13 + x(I).*p18)+ t68(I).*(p14 + p19*x(I) + p20*t68(I)))));
end
if any(SP >= 0.25 & SP < 9)
[I] = find(SP >= 0.25 & SP < 9);
Rtx(I) = q0 + x(I).*(q1 + q4*t68(I) + x(I).*(q3 + q7*t68(I) + x(I).*(q6 ...
+ q11*t68(I) + x(I).*(q10 + q16*t68(I)+ x(I).*q15))))...
+ t68(I).*(q2+ t68(I).*(q5 + x(I).*x(I).*(q12 + x(I).*q17) + q8*x(I) ...
+ t68(I).*(q9 + x(I).*(q13 + x(I).*q18)+ t68(I).*(q14 + q19*x(I) + q20*t68(I)))));
end
if any(SP >= 0.003 & SP < 0.25)
[I] = find(SP >= 0.003 & SP < 0.25);
Rtx(I) = r0 + x(I).*(r1 + r4*t68(I) + x(I).*(r3 + r7*t68(I) + x(I).*(r6 ...
+ r11*t68(I) + x(I).*(r10 + r16*t68(I)+ x(I).*r15))))...
+ t68(I).*(r2+ t68(I).*(r5 + x(I).*x(I).*(r12 + x(I).*r17) + r8*x(I) ...
+ t68(I).*(r9 + x(I).*(r13 + x(I).*r18)+ t68(I).*(r14 + r19*x(I) + r20*t68(I)))));
end
if any(SP < 0.003)
[I] = find(SP < 0.003);
Rtx(I) = u0 + x(I).*(u1 + u4*t68(I) + x(I).*(u3 + u7*t68(I) + x(I).*(u6 ...
+ u11*t68(I) + x(I).*(u10 + u16*t68(I)+ x(I).*u15))))...
+ t68(I).*(u2+ t68(I).*(u5 + x(I).*x(I).*(u12 + x(I).*u17) + u8*x(I) ...
+ t68(I).*(u9 + x(I).*(u13 + x(I).*u18)+ t68(I).*(u14 + u19*x(I) + u20*t68(I)))));
end
%--------------------------------------------------------------------------
% Finding the starting value of dSP_dRtx, the derivative of SP with respect
% to Rtx.
%--------------------------------------------------------------------------
dSP_dRtx = a1 + (2*a2 + (3*a3 + (4*a4 + 5*a5.*Rtx).*Rtx).*Rtx).*Rtx ...
+ ft68.*(b1 + (2*b2 + (3*b3 + (4*b4 + 5*b5.*Rtx).*Rtx).*Rtx).*Rtx);
if any(SP < 2)
[I2] = find(SP < 2);
x = 400.*(Rtx(I2).*Rtx(I2));
sqrty = 10.*Rtx(I2);
part1 = 1 + x.*(1.5 + x) ;
part2 = 1 + sqrty.*(1 + sqrty.*(1 + sqrty));
Hill_ratio = gsw_Hill_ratio_at_SP2(t(I2));
dSP_dRtx(I2) = dSP_dRtx(I2)...
+ a0.*800.*Rtx(I2).*(1.5 + 2*x)./(part1.*part1)...
+ b0.*ft68(I2).*(10 + sqrty.*(20 + 30.*sqrty))./(part2.*part2);
dSP_dRtx(I2) = Hill_ratio.*dSP_dRtx(I2);
end
%--------------------------------------------------------------------------
% One iteration through the modified Newton-Raphson method (McDougall and
% Wotherspoon, 2012) achieves an error in Practical Salinity of about
% 10^-12 for all combinations of the inputs. One and a half iterations of
% the modified Newton-Raphson method achevies a maximum error in terms of
% Practical Salinity of better than 2x10^-14 everywhere.
%
% We recommend one and a half iterations of the modified Newton-Raphson
% method.
%
% Begin the modified Newton-Raphson method.
%--------------------------------------------------------------------------
SP_est = a0 + (a1 + (a2 + (a3 + (a4 + a5.*Rtx).*Rtx).*Rtx).*Rtx).*Rtx ...
+ ft68.*(b0 + (b1 + (b2+ (b3 + (b4 + b5.*Rtx).*Rtx).*Rtx).*Rtx).*Rtx);
if any(SP_est < 2)
[I2] = find(SP_est < 2);
x = 400.*(Rtx(I2).*Rtx(I2));
sqrty = 10.*Rtx(I2);
part1 = 1 + x.*(1.5 + x) ;
part2 = 1 + sqrty.*(1 + sqrty.*(1 + sqrty));
SP_Hill_raw = SP_est(I2) - a0./part1 - b0.*ft68(I2)./part2;
Hill_ratio = gsw_Hill_ratio_at_SP2(t(I2));
SP_est(I2) = Hill_ratio.*SP_Hill_raw;
end
Rtx_old = Rtx;
Rtx = Rtx_old - (SP_est - SP)./dSP_dRtx;
Rtxm = 0.5*(Rtx + Rtx_old); % This mean value of Rtx, Rtxm, is the
% value of Rtx at which the derivative dSP_dRtx is evaluated.
dSP_dRtx = a1 + (2*a2 + (3*a3 + (4*a4 + 5*a5.*Rtxm).*Rtxm).*Rtxm).*Rtxm ...
+ ft68.*(b1 + (2*b2 + (3*b3 + (4*b4 + 5*b5.*Rtxm).*Rtxm).*Rtxm).*Rtxm);
if any(SP_est < 2)
[I2] = find(SP_est < 2);
x = 400.*(Rtxm(I2).*Rtxm(I2));
sqrty = 10.*Rtxm(I2);
part1 = 1 + x.*(1.5 + x) ;
part2 = 1 + sqrty.*(1 + sqrty.*(1 + sqrty));
dSP_dRtx(I2) = dSP_dRtx(I2)...
+ a0.*800.*Rtxm(I2).*(1.5 + 2*x)./(part1.*part1)...
+ b0.*ft68(I2).*(10 + sqrty.*(20 + 30.*sqrty))./(part2.*part2);
Hill_ratio = gsw_Hill_ratio_at_SP2(t(I2));
dSP_dRtx(I2) = Hill_ratio.*dSP_dRtx(I2);
end
%--------------------------------------------------------------------------
% The line below is where Rtx is updated at the end of the one full
% iteration of the modified Newton-Raphson technique.
%--------------------------------------------------------------------------
Rtx = Rtx_old - (SP_est - SP)./dSP_dRtx;
%--------------------------------------------------------------------------
% Now we do another half iteration of the modified Newton-Raphson
% technique, making a total of one and a half modified N-R iterations.
%--------------------------------------------------------------------------
SP_est = a0 + (a1 + (a2 + (a3 + (a4 + a5.*Rtx).*Rtx).*Rtx).*Rtx).*Rtx ...
+ ft68.*(b0 + (b1 + (b2+ (b3 + (b4 + b5.*Rtx).*Rtx).*Rtx).*Rtx).*Rtx);
if any(SP_est < 2)
[I2] = find(SP_est < 2);
x = 400.*(Rtx(I2).*Rtx(I2));
sqrty = 10.*Rtx(I2);
part1 = 1 + x.*(1.5 + x) ;
part2 = 1 + sqrty.*(1 + sqrty.*(1 + sqrty));
SP_Hill_raw = SP_est(I2) - a0./part1 - b0.*ft68(I2)./part2;
Hill_ratio = gsw_Hill_ratio_at_SP2(t(I2));
SP_est(I2) = Hill_ratio.*SP_Hill_raw;
end
Rtx = Rtx - (SP_est - SP)./dSP_dRtx;
%--------------------------------------------------------------------------
% The following lines of code are commented out, but when activated, return
% the error, SP_error, in Rtx (in terms of psu).
%
% SP_est = a0 + (a1 + (a2 + (a3 + (a4 + a5.*Rtx).*Rtx).*Rtx).*Rtx).*Rtx ...
% + ft68.*(b0 + (b1 + (b2+ (b3 + (b4 + b5.*Rtx).*Rtx).*Rtx).*Rtx).*Rtx);
% if any(SP_est < 2)
% [I2] = find(SP_est < 2);
% x = 400.*(Rtx(I2).*Rtx(I2));
% sqrty = 10.*Rtx(I2);
% part1 = 1 + x.*(1.5 + x) ;
% part2 = 1 + sqrty.*(1 + sqrty.*(1 + sqrty));
% SP_Hill_raw = SP_est(I2) - a0./part1 - b0.*ft68(I2)./part2;
% Hill_ratio = gsw_Hill_ratio_at_SP2(t(I2));
% SP_est(I2) = Hill_ratio.*SP_Hill_raw;
% end
%
% SP_error = abs(SP - SP_est);
%
%--------------This is the end of the error testing------------------------
%--------------------------------------------------------------------------
% Now go from Rtx to Rt and then to the conductivity ratio R at pressure p.
%--------------------------------------------------------------------------
Rt = Rtx.*Rtx;
A = d3 + d4.*t68;
B = 1 + d1.*t68 + d2.*t68.^2;
C = p.*(e1 + e2.*p + e3.*p.^2);
% rt_lc (i.e. rt_lower_case) corresponds to rt as defined in
% the UNESCO 44 (1983) routines.
rt_lc = c0 + (c1 + (c2 + (c3 + c4.*t68).*t68).*t68).*t68;
D = B - A.*rt_lc.*Rt;
E = rt_lc.*Rt.*A.*(B + C);
Ra = sqrt(D.^2 + 4*E) - D;
R = 0.5*Ra./A;
% The dimensionless conductivity ratio, R, is the conductivity input, C,
% divided by the present estimate of C(SP=35, t_68=15, p=0) which is
% 42.9140 mS/cm (=4.29140 S/m^).
C = 42.9140.*R;
if transposed
C = C.';
end
end