-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgsw_deltaSA_from_SP.m
159 lines (141 loc) · 5.69 KB
/
gsw_deltaSA_from_SP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
function deltaSA = gsw_deltaSA_from_SP(SP,p,long,lat)
% gsw_deltaSA_from_SP Absolute Salinity Anomaly
% from Practical Salinity
%==========================================================================
%
% USAGE:
% deltaSA = gsw_deltaSA_from_SP(SP,p,long,lat)
%
% DESCRIPTION:
% Calculates Absolute Salinity Anomaly from Practical Salinity. Since SP
% is non-negative by definition, this function changes any negative input
% values of SP to be zero.
%
% INPUT:
% SP = Practical Salinity (PSS-78) [ unitless ]
% p = sea pressure [ dbar ]
% ( i.e. absolute pressure - 10.1325 dbar )
% long = longitude in decimal degrees [ 0 ... +360 ]
% or [ -180 ... +180 ]
% lat = latitude in decimal degrees north [ -90 ... +90 ]
%
% p, lat & long may have dimensions 1x1 or Mx1 or 1xN or MxN,
% where SP is MxN.
%
% OUTPUT:
% deltaSA = Absolute Salinity Anomaly [ g/kg ]
%
% AUTHOR:
% Trevor McDougall & Paul Barker [ [email protected] ]
%
% VERSION NUMBER: 3.05 (27th January 2015)
%
% REFERENCES:
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
% seawater - 2010: Calculation and use of thermodynamic properties.
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org
% See section 2.5 and appendices A.4 and A.5 of this TEOS-10 Manual.
%
% McDougall, T.J., D.R. Jackett, F.J. Millero, R. Pawlowicz and
% P.M. Barker, 2012: A global algorithm for estimating Absolute Salinity.
% Ocean Science, 8, 1117-1128.
% http://www.ocean-sci.net/8/1117/2012/os-8-1117-2012.pdf
%
% The software is available from http://www.TEOS-10.org
%
%==========================================================================
%--------------------------------------------------------------------------
% Check variables and resize if necessary
%--------------------------------------------------------------------------
if ~(nargin==4)
error('gsw_deltaSA_from_SP: Requires four inputs')
end %if
[ms,ns] = size(SP);
[mp,np] = size(p);
if (mp == 1) & (np == 1) % p is a scalar - fill to size of SP
p = p*ones(size(SP));
elseif (ns == np) & (mp == 1) % p is row vector,
p = p(ones(1,ms), :); % copy down each column.
elseif (ms == mp) & (np == 1) % p is column vector,
p = p(:,ones(1,ns)); % copy across each row.
elseif (ns == mp) & (np == 1) % p is a transposed row vector,
p = p.'; % transposed then
p = p(ones(1,ms), :); % copy down each column.
elseif (ms == mp) & (ns == np)
% ok
else
error('gsw_deltaSA_from_SP: Inputs array dimensions arguments do not agree')
end %if
[mla,nla] = size(lat);
if (mla == 1) & (nla == 1) % lat is a scalar - fill to size of SP
lat = lat*ones(size(SP));
elseif (ns == nla) & (mla == 1) % lat is a row vector,
lat = lat(ones(1,ms), :); % copy down each column.
elseif (ms == mla) & (nla == 1) % lat is a column vector,
lat = lat(:,ones(1,ns)); % copy across each row.
elseif (ns == mla) & (nla == 1) % lat is a transposed row vector,
lat = lat.'; % transposed then
lat = lat(ones(1,ms), :); % copy down each column.
elseif (ms == mla) & (ns == nla)
% ok
else
error('gsw_deltaSA_from_SP: Inputs array dimensions arguments do not agree')
end %if
[mlo,nlo] = size(long);
long(long < 0) = long(long < 0) + 360;
if (mlo == 1) & (nlo == 1) % long is a scalar - fill to size of SP
long = long*ones(size(SP));
elseif (ns == nlo) & (mlo == 1) % long is a row vector,
long = long(ones(1,ms), :); % copy down each column.
elseif (ms == mlo) & (nlo == 1) % long is a column vector,
long = long(:,ones(1,ns)); % copy across each row.
elseif (ns == mlo) & (nlo == 1) % long is a transposed row vector,
long = long.'; % transposed then
long = long(ones(1,ms), :); % copy down each column.
elseif (ms == nlo) & (mlo == 1) % long is a transposed column vector,
long = long.'; % transposed then
long = long(:,ones(1,ns)); % copy down each column.
elseif (ms == mlo) & (ns == nlo)
% ok
else
error('gsw_deltaSA_from_SP: Inputs array dimensions arguments do not agree')
end %if
if ms == 1
SP = SP.';
p = p.';
lat = lat.';
long = long.';
transposed = 1;
else
transposed = 0;
end
% remove out of range values.
SP(p < 100 & SP > 120) = NaN;
SP(p >= 100 & SP > 42) = NaN;
% change standard blank fill values to NaN's.
SP(abs(SP) == 99999 | abs(SP) == 999999) = NaN;
p(abs(p) == 99999 | abs(p) == 999999) = NaN;
long(abs(long) == 9999 | abs(long) == 99999) = NaN;
lat(abs(lat) == 9999 | abs(lat) == 99999) = NaN;
if any(p < -1.5 | p > 12000)
error('gsw_deltaSA_from_SP: pressure is out of range')
end
if any(long < 0 | long > 360)
error('gsw_deltaSA_from_SP: longitude is out of range')
end
if any(abs(lat) > 90)
error('gsw_deltaSA_from_SP: latitude is out of range')
end
%--------------------------------------------------------------------------
% Start of the calculation
%--------------------------------------------------------------------------
% This ensures that SP is non-negative.
SP(SP < 0) = 0;
SA = gsw_SA_from_SP(SP,p,long,lat);
SR = gsw_SR_from_SP(SP);
deltaSA = SA - SR;
if transposed
deltaSA = deltaSA.';
end
end