-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
237 lines (201 loc) · 8.03 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
from utils import AverageMeter, accuracy_top1
from attacks.natural import natural_attack
from attacks.adv import adv_attack, batch_adv_attack
from attacks.trades import batch_trades_attack
def standard_loss(args, model, x, y):
logits = model(x)
loss = nn.CrossEntropyLoss()(logits, y)
return loss, logits
def adv_loss(args, model, x, y):
model.eval()
x_adv = batch_adv_attack(args, model, x, y)
model.train()
logits_adv = model(x_adv)
loss = nn.CrossEntropyLoss()(logits_adv, y)
return loss, logits_adv
def trades_loss(args, model, x, y, beta=6.0):
model.eval()
x_adv = batch_trades_attack(args, model, x, y)
model.train()
logits = model(torch.cat((x, x_adv), dim=0))
logits_cln, logits_adv = logits[:logits.size(0)//2], logits[logits.size(0)//2:]
kl = nn.KLDivLoss(reduction='batchmean')
loss_rob = kl(F.log_softmax(logits_adv, dim=1), F.softmax(logits_cln, dim=1))
loss_nat = nn.CrossEntropyLoss()(logits_cln, y)
loss = loss_nat + beta * loss_rob
return loss, logits_cln
def mart_loss(args, model, x_natural, y, beta=6.0):
kl = nn.KLDivLoss(reduction='none')
model.eval()
batch_size = len(x_natural)
x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach()
if args.constraint == 'Linf':
for _ in range(args.num_steps):
x_adv.requires_grad_()
with torch.enable_grad():
loss_ce = F.cross_entropy(model(x_adv), y)
grad = torch.autograd.grad(loss_ce, [x_adv])[0]
x_adv = x_adv.detach() + args.step_size * torch.sign(grad.detach())
x_adv = torch.min(torch.max(x_adv, x_natural - args.eps), x_natural + args.eps)
x_adv = torch.clamp(x_adv, 0.0, 1.0)
else:
x_adv = torch.clamp(x_adv, 0.0, 1.0)
model.train()
x_adv = torch.clamp(x_adv, 0.0, 1.0).clone().detach()
logits = model(x_natural)
logits_adv = model(x_adv)
adv_probs = F.softmax(logits_adv, dim=1)
tmp1 = torch.argsort(adv_probs, dim=1)[:, -2:]
new_y = torch.where(tmp1[:, -1] == y, tmp1[:, -2], tmp1[:, -1])
loss_adv = F.cross_entropy(logits_adv, y) + F.nll_loss(torch.log(1.0001 - adv_probs + 1e-12), new_y)
nat_probs = F.softmax(logits, dim=1)
true_probs = torch.gather(nat_probs, 1, (y.unsqueeze(1)).long()).squeeze()
loss_robust = (1.0 / batch_size) * torch.sum(
torch.sum(kl(torch.log(adv_probs + 1e-12), nat_probs), dim=1) * (1.0000001 - true_probs))
loss = loss_adv + beta * loss_robust
return loss, logits_adv
LOSS_FUNC = {
'': standard_loss,
'ST': standard_loss,
'AT': adv_loss,
'TRADES': trades_loss,
'MART': mart_loss,
}
def train(args, model, optimizer, loader, writer, epoch):
model.train()
loss_logger = AverageMeter()
acc_logger = AverageMeter()
iterator = tqdm(enumerate(loader), total=len(loader), ncols=95)
for i, (inp, target) in iterator:
inp = inp.cuda()
target = target.cuda()
loss, logits = LOSS_FUNC[args.train_loss](args, model, inp, target)
acc = accuracy_top1(logits, target)
loss_logger.update(loss.item(), inp.size(0))
acc_logger.update(acc, inp.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
desc = 'Train Epoch: {} | Loss {:.4f} | Accuracy {:.4f} ||'.format(epoch, loss_logger.avg, acc_logger.avg)
iterator.set_description(desc)
if writer is not None:
descs = ['loss', 'accuracy']
vals = [loss_logger, acc_logger]
for d, v in zip(descs, vals):
writer.add_scalar('train_{}'.format(d), v.avg, epoch)
return loss_logger.avg, acc_logger.avg
def train_model(args, model, optimizer, schedule, train_loader, val_loader, test_loader, writer):
if args.epochs == 0:
checkpoint = {
'model': model.state_dict(),
'epoch': 0,
'train_acc': -1,
'train_loss': -1,
'cln_val_acc': -1,
'cln_val_loss': -1,
'cln_test_acc': -1,
'cln_test_loss': -1,
'adv_val_acc': -1,
'adv_val_loss': -1,
'adv_test_acc': -1,
'adv_test_loss': -1,
}
torch.save(checkpoint, args.model_path)
torch.save(checkpoint, args.model_path_last)
best_acc = 0.
for epoch in range(args.epochs):
train_loss, train_acc = train(args, model, optimizer, train_loader, writer, epoch)
last_epoch = (epoch == (args.epochs - 1))
should_log = (epoch % args.log_gap == 0)
if should_log or last_epoch:
cln_val_loss, cln_val_acc, _ = natural_attack(args, model, val_loader, writer, epoch, 'val')
cln_test_loss, cln_test_acc, _ = natural_attack(args, model, test_loader, writer, epoch, 'test')
robust_target = (args.train_loss in ['AT', 'TRADES', 'MART'])
if robust_target:
adv_val_loss, adv_val_acc, _ = adv_attack(args, model, val_loader, writer, epoch, 'val')
adv_test_loss, adv_test_acc, _ = adv_attack(args, model, test_loader, writer, epoch, 'test')
our_acc = adv_val_acc
else:
adv_val_loss, adv_val_acc, adv_test_loss, adv_test_acc = -1, -1, -1, -1
our_acc = cln_val_acc
is_best = our_acc > best_acc
best_acc = max(our_acc, best_acc)
checkpoint = {
'model': model.state_dict(),
'epoch': epoch,
'train_acc': train_acc,
'train_loss': train_loss,
'cln_val_acc': cln_val_acc,
'cln_val_loss': cln_val_loss,
'cln_test_acc': cln_test_acc,
'cln_test_loss': cln_test_loss,
'adv_val_acc': adv_val_acc,
'adv_val_loss': adv_val_loss,
'adv_test_acc': adv_test_acc,
'adv_test_loss': adv_test_loss,
}
if is_best:
torch.save(checkpoint, args.model_path)
torch.save(checkpoint, args.model_path_last)
schedule.step()
return model
def eval_model(args, model, test_loader):
model.eval()
args.eps = 8/255
keys, values = [], []
keys.append('Model')
values.append(args.model_path)
# Natural
_, acc, name = natural_attack(args, model, test_loader)
keys.append(name)
values.append(acc)
# FGSM
args.num_steps = 1
args.step_size = args.eps
args.random_restarts = 0
_, acc, name = adv_attack(args, model, test_loader)
keys.append('FGSM')
values.append(acc)
# PGD-20
args.num_steps = 20
args.step_size = args.eps / 4
args.random_restarts = 1
_, acc, name = adv_attack(args, model, test_loader)
keys.append(name)
values.append(acc)
# PGD-100
args.num_steps = 100
args.step_size = args.eps / 4
args.random_restarts = 1
_, acc, name = adv_attack(args, model, test_loader)
keys.append(name)
values.append(acc)
# CW-100
from attacks.cw import cw_attack
args.num_steps = 100
args.step_size = args.eps / 4
args.random_restarts = 1
_, acc, name = cw_attack(args, model, test_loader)
keys.append(name)
values.append(acc)
# AutoAttack
from autoattack import AutoAttack
adversary = AutoAttack(model, norm=args.constraint, eps=args.eps, version='standard')
x_test = torch.cat([x for (x, y) in test_loader])
y_test = torch.cat([y for (x, y) in test_loader])
x_adv = adversary.run_standard_evaluation(x_test, y_test, bs=args.batch_size)
auto_acc = adversary.clean_accuracy(x_adv, y_test, bs=args.batch_size) * 100
keys.append('AotuAttack')
values.append(auto_acc)
# Save results
import csv
csv_fn = '{}.csv'.format(args.model_path)
with open(csv_fn, 'w') as f:
write = csv.writer(f)
write.writerow(keys)
write.writerow(values)
print('=> csv file is saved at [{}]'.format(csv_fn))