-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathG0_CUB200.py
1075 lines (933 loc) · 59.6 KB
/
G0_CUB200.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
from cmath import exp
import os
from torch.utils.data import DataLoader
import numpy as np
from sklearn.cluster import KMeans
import torch
from torch.optim import SGD, lr_scheduler, Adam
from project_utils.cluster_utils import mixed_eval, AverageMeter
from model import vision_transformer as vits
from model import attribute_transformer as ats
import higher
from project_utils.general_utils import init_experiment, get_mean_lr, str2bool, get_dino_head_weights
from data.augmentations import get_transform
from data.get_datasets import get_datasets, get_class_splits
from tqdm import tqdm
import torch.nn as nn
from torch.nn import functional as F
from project_utils.cluster_and_log_utils import log_accs_from_preds
from config import exp_root, km_label_path, subset_len_path, dino_base_pretrain_path, dino_small_pretrain_path, cub_root
import time
from data.data_utils import MergedDataset
from copy import deepcopy
from torch.cuda.amp import autocast as autocast
from project_utils.k_means_utils import test_kmeans_semi_sup, test_kmeans
from project_utils.cluster_and_log_utils import Logger
from warmup_scheduler import GradualWarmupScheduler
from project_utils.contrastive_utils import extract_features, accuracy, info_nce_logits, \
ContrastiveLearningViewGenerator, SupConLoss
from project_utils.infomap_cluster_utils import cluster_by_semi_infomap, get_dist_nbr, cluster_by_infomap, generate_cluster_features
from project_utils.cluster_memory_utils import ClusterMemory
from project_utils.data_utils import IterLoader, FakeLabelDataset
from collections import defaultdict
from project_utils.sampler import RandomMultipleGallerySamplerNoCam
# TODO: Debug
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
# Function for setting the seed
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# generate new dataset and calculate cluster centers
global_seed = 2022
random_seed = False
if random_seed:
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.determinstic = False
else:
set_seed(global_seed)
torch.backends.cudnn.determinstic = True
torch.backends.cudnn.benchmark = False
def train(projectors, student, train_loaders_dict, test_loader, unlabelled_train_loader, whole_train_test_loader,
ssk_test_loader, args,
meta_learner=None):
backbone_optimizer = SGD(student.parameters(), lr=args.backbone_lr, momentum=args.momentum,
weight_decay=args.weight_decay)
head_optimizer = SGD(projectors.parameters(), lr=args.head_lr, momentum=args.momentum,
weight_decay=args.weight_decay)
if meta_learner is not None:
meta_optimizer = Adam(meta_learner.parameters(), lr=args.meta_lr, weight_decay=args.weight_decay)
backbone_lr_scheduler = lr_scheduler.CosineAnnealingLR(
backbone_optimizer,
T_max=args.epochs,
eta_min=args.backbone_lr * args.backbone_eta_min,
)
backbone_scheduler_warmup = GradualWarmupScheduler(backbone_optimizer, multiplier=1,
total_epoch=args.num_warmup_epoch,
after_scheduler=backbone_lr_scheduler)
head_lr_scheduler = lr_scheduler.CosineAnnealingLR(
head_optimizer,
T_max=args.epochs,
eta_min=args.head_lr * args.head_eta_min,
)
contrastive_cluster_weight_schedule = np.concatenate((
np.linspace(args.contrastive_cluster_weight * 0.1,
args.contrastive_cluster_weight, args.contrastive_cluster_epochs),
np.ones(args.epochs - args.contrastive_cluster_epochs) * args.contrastive_cluster_weight
))
head_scheduler_warmup = GradualWarmupScheduler(head_optimizer, multiplier=1, total_epoch=args.num_warmup_epoch,
after_scheduler=head_lr_scheduler)
best_text_acc_epoch = 0
best_test_acc_lab = 0
best_acc_lab = 0
contrastive_cluster_train_loader_predefine = None
for epoch in range(args.epochs):
# test for valudate pretrain parameter
if args.test_before_train:
if epoch == 0:
with torch.no_grad():
if 'kmeans' in args.val_ssk:
logger('Performing general K-Means: Testing on unlabeled train set...')
all_acc_test, old_acc_test, new_acc_test = test_kmeans(student, unlabelled_train_loader,
epoch=epoch, save_name='Test ACC',
device=device,
args=args, logger_class=logger)
logger('Disjoint unlabeled train set K-means Accuracies: All {:.4f} | Old {:.4f} | New {:.4f}'.format(
all_acc_test, old_acc_test,
new_acc_test))
if 'ssk' in args.val_ssk:
logger('Performing SS-K-Means: Testing on both labelled and unlabelled training data...')
all_acc, old_acc, new_acc, kmeans, all_feature = test_kmeans_semi_sup(student, whole_train_test_loader,
epoch=epoch,
save_name='Train ACC SSK ALL',
device=device,
args=args, logger_class=logger, in_training=True)
logger('SS-K Accuracies: All {:.4f} | Old {:.4f} | New {:.4f}'.format(all_acc, old_acc,
new_acc))
else:
old_acc_test = 0.0
new_acc_test = 0.0
all_acc_test = 0.0
all_acc, old_acc, new_acc = 0.0, 0.0, 0.0
loss_record = AverageMeter()
train_acc_record = AverageMeter()
iterator_dict = {k: iter(v) for k, v in train_loaders_dict.items()}
if args.use_contrastive_cluster:
if args.contrastive_cluster_method == 'infomap' and epoch % args.epoch_per_clustering == 0:
with torch.no_grad():
print('==> Create pseudo labels for unlabeled data')
# cluster_loader = unlabelled_train_loader
cluster_loader = deepcopy(whole_train_test_loader)
features, labels, if_labeled = extract_features(student, cluster_loader, print_freq=50, args=args)
features = torch.cat(features, dim=0)
label_mark = torch.cat(labels, dim=0)
if_labeled = torch.cat(if_labeled, dim=0)
# features = torch.cat([features[f].unsqueeze(0) for f, _, _ in unlabelled_train_examples_test.data], 0)
features_array = F.normalize(features, dim=1).cpu().numpy()
feat_dists, feat_nbrs = get_dist_nbr(features=features_array, k=args.k1, knn_method='faiss-gpu', device=GPU_INDEX)
del features_array
s = time.time()
pseudo_labels = cluster_by_semi_infomap(feat_nbrs, feat_dists, min_sim=args.eps, cluster_num=args.k2, label_mark=label_mark, if_labeled=if_labeled, args=args)
pseudo_labels = pseudo_labels.astype(np.intp)
print('cluster cost time: {}'.format(time.time() - s))
num_cluster = len(set(pseudo_labels)) - (1 if -1 in pseudo_labels else 0)
cluster_features = generate_cluster_features(pseudo_labels, features)
del cluster_loader, features
# Create hybrid memory
memory = ClusterMemory(student.num_features, num_cluster, temp=args.temp,
momentum=args.memory_momentum, use_hard=args.use_hard).to(args.device)
memory.features = F.normalize(cluster_features, dim=1).to(args.device)
# trainer.memory = memory
pseudo_labeled_dataset = []
for i, (_item, label) in enumerate(zip(whole_train_test_dataset.data, pseudo_labels)):
if label != -1:
if isinstance(_item, str):
pseudo_labeled_dataset.append((_item, label.item(), _item))
elif args.dataset_name == 'imagenet_100':
pseudo_labeled_dataset.append((_item[0], label.item(), _item[1]))
else:
pseudo_labeled_dataset.append((_item[1], label.item(), _item[2]))
logger('==> Statistics for epoch {}: {} clusters'.format(epoch, num_cluster))
# train_loader = get_train_loader(args, dataset, args.height, args.width,
# args.batch_size, args.workers, args.num_instances, iters,
# trainset=pseudo_labeled_dataset, no_cam=args.no_cam)
PK_sampler = RandomMultipleGallerySamplerNoCam(pseudo_labeled_dataset, args.num_instances)
# image_dir = os.path.join(unlabelled_train_examples_test.root, unlabelled_train_examples_test.base_folder)
contrastive_cluster_train_loader = IterLoader(
DataLoader(FakeLabelDataset(pseudo_labeled_dataset, root=None, transform=train_transform),
batch_size=args.batch_size, num_workers=args.num_workers, sampler=PK_sampler,
shuffle=False, pin_memory=True, drop_last=True))
contrastive_cluster_train_loader.new_epoch()
contrastive_cluster_train_loader_predefine = contrastive_cluster_train_loader
elif args.contrastive_cluster_method == 'ssk':
if epoch % args.epoch_per_clustering == 0:
with torch.no_grad():
logger('==> Create pseudo labels for unlabeled data by ssk!')
logger('Performing SS-K-Means: Testing on both labelled and unlabelled training data...')
s = time.time()
all_acc, old_acc, new_acc, kmeans, all_feats = test_kmeans_semi_sup(student, whole_train_test_loader,
epoch=epoch,
save_name='Train ACC SSK ALL',
device=device,
args=args, logger_class=logger, in_training=True)
logger('SS-K Accuracies: All {:.4f} | Old {:.4f} | New {:.4f}'.format(all_acc, old_acc,
new_acc))
pseudo_labels = kmeans.labels_.cpu().numpy()
features = torch.from_numpy(all_feats).to(args.device)
print('cluster cost time: {}'.format(time.time() - s))
num_cluster = len(set(pseudo_labels)) - (1 if -1 in pseudo_labels else 0)
cluster_features = generate_cluster_features(pseudo_labels, features)
del features
# Create hybrid memory
memory = ClusterMemory(student.num_features, num_cluster, temp=args.temp,
momentum=args.memory_momentum, use_hard=args.use_hard).to(args.device)
memory.features = F.normalize(cluster_features, dim=1).to(args.device)
# trainer.memory = memory
pseudo_labeled_dataset = []
for i, (_item, label) in enumerate(zip(whole_train_test_dataset.data, pseudo_labels)):
if label != -1:
if isinstance(_item, str):
pseudo_labeled_dataset.append((_item, label.item(), _item))
else:
pseudo_labeled_dataset.append((_item[1], label.item(), _item[2]))
logger('==> Statistics for epoch {}: {} clusters'.format(epoch, num_cluster))
# train_loader = get_train_loader(args, dataset, args.height, args.width,
# args.batch_size, args.workers, args.num_instances, iters,
# trainset=pseudo_labeled_dataset, no_cam=args.no_cam)
PK_sampler = RandomMultipleGallerySamplerNoCam(pseudo_labeled_dataset, args.num_instances)
# image_dir = os.path.join(unlabelled_train_examples_test.root, unlabelled_train_examples_test.base_folder)
contrastive_cluster_train_loader = IterLoader(
DataLoader(FakeLabelDataset(pseudo_labeled_dataset, root=None, transform=train_transform),
batch_size=args.batch_size, num_workers=args.num_workers, sampler=PK_sampler,
shuffle=False, pin_memory=True, drop_last=True))
contrastive_cluster_train_loader.new_epoch()
contrastive_cluster_train_loader_predefine = contrastive_cluster_train_loader
# gcd learning
student.train()
projectors.train()
max_len = max([len(iterator) for iterator in iterator_dict.values()])
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
end = time.time()
# Load data from each dataloaders, the total number of dataloader is expert_num + 1 + 1
for iteration in tqdm(range(max_len)):
global_contrastive_dict, attribute_dict = {}, {}
base_total_loss = 0.0
try:
item = next(iterator_dict['global_contrastive'])
except StopIteration:
iterator_dict['global_contrastive'] = iter(iterator_dict['global_contrastive'])
item = next(iterator_dict['global_contrastive'])
# images 16 per expert * 2 view
images, class_labels, uq_idxs, label_masks, attributes = item
class_labels, uq_idxs, label_masks, attributes = class_labels.to(device), uq_idxs.to(
device), label_masks.to(device), attributes.to(device)
label_masks = label_masks[:, 0]
if isinstance(images, (list, tuple)): # concat multiview
images = torch.cat(images, dim=0).to(device) # [B*2/num_experts,3,224,224]
else:
images = images.to(device)
global_contrastive_dict['images'] = images
global_contrastive_dict['class_labels'] = class_labels
global_contrastive_dict['label_masks'] = label_masks.bool()
global_contrastive_dict['attributes'] = attributes
# Extract features of the whole train dateset
tuple_output = student(global_contrastive_dict['images'])
global_features = tuple_output[0]
attribute_features = tuple_output[1]
meta_features = tuple_output[2]
global_projector = projectors['global_contrastive']
# Pass features through projection head
global_proj_feature = global_projector(global_features)
# L2-normalize features
global_proj_feature = torch.nn.functional.normalize(global_proj_feature, dim=-1)
# Choose which instances to run the contrastive loss on
if args.contrast_unlabel_only:
# Contrastive loss only on unlabelled instances
f1, f2 = [f[~global_contrastive_dict['label_masks']] for f in global_proj_feature.chunk(2)]
con_feats = torch.cat([f1, f2], dim=0)
else:
# Contrastive loss for all examples
con_feats = global_proj_feature
contrastive_logits, contrastive_labels = info_nce_logits(features=con_feats, args=args)
contrastive_loss = torch.nn.CrossEntropyLoss()(contrastive_logits, contrastive_labels)
# Supervised contrastive loss
f1, f2 = [f[global_contrastive_dict['label_masks']] for f in global_proj_feature.chunk(2)]
sup_con_feats = torch.cat([f1.unsqueeze(1), f2.unsqueeze(1)], dim=1)
sup_con_labels = global_contrastive_dict['class_labels'][global_contrastive_dict['label_masks']]
sup_con_loss = sup_con_crit(sup_con_feats, labels=sup_con_labels)
# coarse-grained loss
global_contrastive_loss = (
1 - args.sup_con_weight) * contrastive_loss + args.sup_con_weight * sup_con_loss
# print(f'before scale global_contrastive_loss: {global_contrastive_loss.item()}')
# global_contrastive_loss = scaler.scale(global_contrastive_loss)
base_total_loss += global_contrastive_loss
if args.use_attribute:
try:
item = next(iterator_dict['attribute'])
except StopIteration:
iterator_dict['attribute'] = iter(iterator_dict['attribute'])
item = next(iterator_dict['attribute'])
# images 16 per expert * 2 view
images, class_labels, uq_idxs, label_masks, attributes = item
class_labels, uq_idxs, label_masks, attributes = class_labels.to(device), uq_idxs.to(
device), label_masks.to(device), attributes.to(device)
label_masks = label_masks[:, 0]
if isinstance(images, (list, tuple)): # concat multiview
images = torch.cat(images, dim=0).to(device) # [B*2/num_experts,3,224,224]
else:
images = images.to(device)
attribute_dict['images'] = images
attribute_dict['class_labels'] = class_labels
attribute_dict['label_masks'] = label_masks.bool()
attribute_dict['attributes'] = attributes
_, attribute_features, _ = student(attribute_dict['images'], attribute_dict['attributes'])
attribute_classifier = projectors['attributes']
# Pass features through projection head
logits_list = attribute_classifier(attribute_features)
n_attr = len(logits_list)
attribute_ce_loss = 0
acc_list = []
for attributes_id, _logit in enumerate(logits_list):
attribute_ce_loss += attribute_crit(_logit,
attribute_dict['attributes'][:, attributes_id].long())
acc_list.append(accuracy(_logit, attribute_dict['attributes'][:, attributes_id].long()))
attribute_ce_loss = attribute_ce_loss / n_attr
base_total_loss += attribute_ce_loss
if args.use_contrastive_cluster:
if args.momentum_update:
images, labels, indexes = contrastive_cluster_train_loader_predefine.next()
data_time.update(time.time() - end)
if isinstance(images, (list, tuple)): # concat multiview
images = torch.cat(images, dim=0).to(device) # [B*2/num_experts,3,224,224]
labels2 = labels.detach().clone()
labels = torch.cat((labels, labels2), dim=0).to(device)
else:
images = images.to(device)
labels = labels.to(device)
# forward
f_out, _, _ = student(images)
# compute loss with the hybrid memory
# loss = self.memory(f_out, indexes)
contrastive_cluster_loss = memory(f_out, labels)
base_total_loss += contrastive_cluster_weight_schedule[epoch] * contrastive_cluster_loss.to(args.device)
losses.update(contrastive_cluster_loss.item())
# print log
batch_time.update(time.time() - end)
end = time.time()
if iteration % 20 == 0:
print('Epoch: [{}][{}/{}]\t'
'Time {:.3f} ({:.3f})\t'
'Data {:.3f} ({:.3f})\t'
'Cluster Loss {:.3f} ({:.3f})'
.format(epoch, iteration, max_len,
batch_time.val, batch_time.avg,
data_time.val, data_time.avg,
losses.val, losses.avg))
# Train acc
_, pred = contrastive_logits.max(1)
acc = (pred == contrastive_labels).float().mean().item()
train_acc_record.update(acc, pred.size(0))
loss_record.update(base_total_loss.item(), global_contrastive_dict['class_labels'].size(0))
backbone_optimizer.zero_grad()
head_optimizer.zero_grad()
base_total_loss.backward()
backbone_optimizer.step()
head_optimizer.step()
if args.use_attribute:
acc_list = np.array(acc_list)
avrage_acc = sum(acc_list) / len(acc_list)
logger(f'Attribute classifier average accuracy: {float(avrage_acc)} \n')
logger([f'{float(_acc):.2f}' for _acc in acc_list])
if ((epoch % args.val_epoch_size == 0) and (epoch > 0)) or (epoch == args.epochs - 1):
with torch.no_grad():
if 'kmeans' in args.val_ssk:
logger('Performing general K-Means: Testing on unlabelled examples in the training data...')
all_acc, old_acc, new_acc = test_kmeans(student, unlabelled_train_loader,
epoch=epoch, save_name='Train ACC Unlabelled',
device=device,
args=args, logger_class=logger)
logger('Unlabelled training set K-means Accuracies: All {:.4f} | Old {:.4f} | New {:.4f}'.format(
all_acc, old_acc,
new_acc))
logger('Performing general K-Means: Testing on disjoint test set...')
all_acc_test, old_acc_test, new_acc_test = test_kmeans(student, test_loader,
epoch=epoch, save_name='Test ACC',
device=device,
args=args, logger_class=logger)
logger('Disjoint testing set K-means Accuracies: All {:.4f} | Old {:.4f} | New {:.4f}'.format(
all_acc_test, old_acc_test,
new_acc_test))
if 'ssk' in args.val_ssk:
logger('Performing SS-K-Means: Testing on dis-joint test data...')
all_acc, old_acc, new_acc, kmeans, all_feature = test_kmeans_semi_sup(student, whole_train_test_loader,
epoch=epoch, save_name='Train ACC SSK ALL',
device=device,
args=args, logger_class=logger, in_training=True)
logger('SS-K Accuracies: All {:.4f} | Old {:.4f} | New {:.4f}'.format(all_acc, old_acc,
new_acc))
logger(
'Train Epoch: {} Avg Loss: {:.4f} | Seen Class Acc: {:.4f} | backbone_lr {:.6f} | head_lr {:.6f}'.format(
epoch, loss_record.avg,
train_acc_record.avg, get_mean_lr(backbone_optimizer), get_mean_lr(head_optimizer)))
# ----------------
# LOG
# ----------------
args.writer.add_scalar('Loss', loss_record.avg, epoch)
args.writer.add_scalar('Train Acc Labelled Data', train_acc_record.avg, epoch)
args.writer.add_scalar('Backbone_LR', get_mean_lr(backbone_optimizer), epoch)
args.writer.add_scalar('Head_LR', get_mean_lr(head_optimizer), epoch)
if (epoch % args.val_epoch_size == 0 or epoch == args.epochs - 1) and (epoch > 0):
logger(
'Train Accuracies: All {:.4f} | Old {:.4f} | New {:.4f} | backbone_lr {:.6f} | head_lr {:.6f}'.format(
all_acc, old_acc,
new_acc, get_mean_lr(backbone_optimizer), get_mean_lr(head_optimizer)))
if 'ssk' not in args.val_ssk:
logger('Test Accuracies: All {:.4f} | Old {:.4f} | New {:.4f}'.format(all_acc_test, old_acc_test,
new_acc_test))
# Step schedule
# backbone_lr_scheduler.step()
backbone_scheduler_warmup.step()
# head_lr_scheduler.step()
head_scheduler_warmup.step()
torch.save(student.state_dict(), args.model_path)
logger("model saved to {}.".format(args.model_path))
for proj_idx, projector in projectors.items():
torch.save(projector.state_dict(), args.model_path[:-3] + f'_proj_head_{proj_idx}.pt')
logger("projection head saved to {}.".format(args.model_path[:-3] + f'_proj_head_{proj_idx}.pt'))
if 'ssk' in args.val_ssk:
if args.best_new == True:
if new_acc > best_acc_lab:
best_text_acc_epoch = epoch
logger(f'Best ACC on new Classes on train set: {new_acc:.4f} at epoch {epoch}')
logger('Best Train Accuracies: All {:.4f} | Old {:.4f} | New {:.4f}'.format(all_acc, old_acc,
new_acc))
torch.save(student.state_dict(), args.model_path[:-3] + f'_best.pt')
logger("model saved to {}.".format(args.model_path[:-3] + f'_best.pt'))
for proj_idx, projector in projectors.items():
torch.save(projector.state_dict(), args.model_path[:-3] + f'_proj_head_best_{proj_idx}.pt')
logger("projection head saved to {}.".format(
args.model_path[:-3] + f'_proj_head_best_{proj_idx}.pt'))
best_acc_lab = new_acc
else:
if old_acc > best_acc_lab:
best_text_acc_epoch = epoch
logger(f'Best ACC on old Classes on train set: {old_acc:.4f} at epoch {epoch}')
logger('Best Train Accuracies: All {:.4f} | Old {:.4f} | New {:.4f}'.format(all_acc, old_acc,
new_acc))
torch.save(student.state_dict(), args.model_path[:-3] + f'_best.pt')
logger("model saved to {}.".format(args.model_path[:-3] + f'_best.pt'))
for proj_idx, projector in projectors.items():
torch.save(projector.state_dict(), args.model_path[:-3] + f'_proj_head_best_{proj_idx}.pt')
logger("projection head saved to {}.".format(
args.model_path[:-3] + f'_proj_head_best_{proj_idx}.pt'))
best_acc_lab = old_acc
else:
if args.best_new == True:
if new_acc_test > best_test_acc_lab:
best_text_acc_epoch = epoch
logger(f'Best ACC on new Classes on disjoint test set: {new_acc_test:.4f} at epoch {epoch}')
logger(
'Best General kmeans Test Accuracies: All {:.4f} | Old {:.4f} | New {:.4f}'.format(all_acc_test,
old_acc_test,
new_acc_test))
torch.save(student.state_dict(), args.model_path[:-3] + f'_best.pt')
logger("model saved to {}.".format(args.model_path[:-3] + f'_best.pt'))
for proj_idx, projector in projectors.items():
torch.save(projector.state_dict(), args.model_path[:-3] + f'_proj_head_best_{proj_idx}.pt')
logger(
"projection head saved to {}.".format(
args.model_path[:-3] + f'_proj_head_best_{proj_idx}.pt'))
best_test_acc_lab = old_acc_test
else:
if old_acc_test > best_test_acc_lab:
best_text_acc_epoch = epoch
logger(f'Best ACC on old Classes on disjoint test set: {old_acc_test:.4f} at epoch {epoch}')
logger('Best General kmeans Test Accuracies: All {:.4f} | Old {:.4f} | New {:.4f}'.format(all_acc,
old_acc,
new_acc))
torch.save(student.state_dict(), args.model_path[:-3] + f'_best.pt')
logger("model saved to {}.".format(args.model_path[:-3] + f'_best.pt'))
for proj_idx, projector in projectors.items():
torch.save(projector.state_dict(), args.model_path[:-3] + f'_proj_head_best_{proj_idx}.pt')
logger(
"projection head saved to {}.".format(
args.model_path[:-3] + f'_proj_head_best_{proj_idx}.pt'))
best_test_acc_lab = old_acc_test
return args.model_path[:-3] + f'_best.pt', best_text_acc_epoch
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='cluster',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--eval_funcs', nargs='+', help='Which eval functions to use', default=['v2', 'v1'])
parser.add_argument('--warmup_model_dir', type=str, default=None)
parser.add_argument('--model_name', type=str, default='at13', help='Format is {model_name}_{pretrain}')
parser.add_argument('--dataset_name', type=str, default='cub', help='options: imagenet_100,cifar10, cifar100, scars')
parser.add_argument('--prop_train_labels', type=float, default=0.5)
parser.add_argument('--use_ssb_splits', type=str2bool, default=True)
parser.add_argument('--grad_from_block', type=int, default=11)
parser.add_argument('--backbone_lr', type=float, default=0.1)
parser.add_argument('--backbone_eta_min', type=float, default=1e-3)
parser.add_argument('--head_lr', type=float, default=0.1)
parser.add_argument('--head_eta_min', type=float, default=1e-3)
parser.add_argument('--meta_lr', type=float, default=0.1)
parser.add_argument('--save_best_thresh', type=float, default=None)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=5e-5)
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--exp_root', type=str, default=exp_root)
parser.add_argument('--transform', type=str, default='imagenet')
parser.add_argument('--seed', default=global_seed, type=int)
parser.add_argument('--base_model', type=str, default='base')
parser.add_argument('--temperature', type=float, default=1.0)
parser.add_argument('--sup_con_weight', type=float, default=0.35)
parser.add_argument('--n_views', default=2, type=int)
parser.add_argument('--contrast_unlabel_only', type=str2bool, default=False)
parser.add_argument('--val_epoch_size', type=int, default=30)
parser.add_argument('--use_best_model', type=str2bool, default=True)
parser.add_argument('--use_global_con', type=str2bool, default=True)
parser.add_argument('--global_con_weight', type=float, default=1)
# attribute branch
parser.add_argument('--use_attribute', type=str2bool, default=False)
parser.add_argument('--attribute_weight', type=float, default=0.1)
parser.add_argument('--use_expert', type=bool, default=False)
parser.add_argument('--experts_num', type=int, default=8)
parser.add_argument('--expert_weight', type=float, default=0.1)
parser.add_argument('--val_ssk', type=list, default=['kmeans','ssk'])
parser.add_argument('--spatial', type=str2bool, default=False)
parser.add_argument('--semi_sup', type=str2bool, default=True)
parser.add_argument('--max_kmeans_iter', type=int, default=200)
parser.add_argument('--train_max_kmeans_iter', type=int, default=200)
parser.add_argument('--k_means_init', type=int, default=100)
# parser.add_argument('--best_new', type=str2bool, default=False)
parser.add_argument('--best_new', type=bool, default=True)
parser.add_argument('--negative_mixup', default=False)
parser.add_argument('--mixup_beta', default=0.2, type=float)
parser.add_argument('--pretrain_model', type=str, default='dino')
# meta learning
parser.add_argument('--use_meta_attribute', type=bool, default=False)
parser.add_argument('--begin_meta_training', type=int, default=-1)
parser.add_argument('--test_before_train', type=bool, default=True)
parser.add_argument('--num_warmup_epoch', type=int, default=5)
parser.add_argument('--amp', type=bool, default=False)
# cluster
parser.add_argument('--use_contrastive_cluster', type=bool, default=True,
help="hyperparameter for KNN")
parser.add_argument('--contrastive_cluster_method', type=str, default='infomap',
help="hyperparameter for KNN")
parser.add_argument('--epoch_per_clustering', type=int, default=1,
help="hyperparameter for KNN")
parser.add_argument('--momentum_update', type=bool, default=True,
help="hyperparameter for KNN")
parser.add_argument('--use_l2_in_ssk', type=bool, default=True,
help="hyperparameter for KNN")
parser.add_argument('--k1', type=int, default=15,
help="hyperparameter for KNN")
parser.add_argument('--k2', type=int, default=4,
help="hyperparameter for outline")
parser.add_argument('--eps-gap', type=float, default=0.02,
help="multi-scale criterion for measuring cluster reliability")
parser.add_argument('--temp', type=float, default=0.05,
help="temperature for scaling contrastive loss")
parser.add_argument('--use-hard', default=False)
parser.add_argument('--memory_momentum', type=float, default=0.1,
help="update momentum for the hybrid memory")
# memory
parser.add_argument('--use_cluster_head', type=bool, default=False,
help="learning rate")
parser.add_argument('--num_instances', type=int, default=16)
parser.add_argument('--contrastive_cluster_weight', type=float, default=0.4)
parser.add_argument('--contrastive_cluster_epochs', type=int, default=100, help=['a-1 -> a', 'a->a'])
parser.add_argument('--max_sim', type=bool, default=True)
parser.add_argument('--eps', type=float, default=0.6,
help="max neighbor distance for adj")
# ----------------------
# INIT
# ----------------------
if 'G' or 'GPU' in os.path.basename(__file__).split('_')[0]:
GPU_INDEX = int(os.path.basename(__file__).split('_')[0][-1])
else:
GPU_INDEX = 0
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(GPU_INDEX)
os.environ["CUDA_LAUNCH_BLOCKING"] = str(1)
base_scaler = torch.cuda.amp.GradScaler()
meta_scaler = torch.cuda.amp.GradScaler()
device = torch.device('cuda:' + str(GPU_INDEX))
args = parser.parse_args()
args.device = device
# device = torch.device('cuda')
args = get_class_splits(args)
args.num_labeled_classes = len(args.train_classes)
args.num_unlabeled_classes = len(args.unlabeled_classes)
# print(args)
init_experiment(args, runner_name=['metric_learn_gcd'])
logger = Logger(os.path.join(args.log_dir, 'log_out.txt'))
logger(args)
logger(f'Executing {os.path.basename(__file__)}, log_dir = {args.log_dir}')
logger(f'Using evaluation function {args.eval_funcs[0]} to print results')
# ----------------------
# BASE MODEL PARAMS
# ----------------------
if args.base_model == 'base':
args.interpolation = 3
args.crop_pct = 0.875
if args.pretrain_model == 'dino':
pretrain_path = dino_base_pretrain_path
else:
raise NotImplementedError
# NOTE: Hardcoded image size as we do not finetune the entire ViT model
args.image_size = 224
args.feat_dim = 768
args.num_mlp_layers = 3
args.mlp_out_dim = 65536
args.feat_channal = 197 # (13+1)*(13+1) + 1 class token
args.attribute_feat_channal = 16 # (13+1)*(13+1) + 1 class token
elif args.base_model == 'small':
args.interpolation = 3
args.crop_pct = 0.875
if args.pretrain_model == 'dino':
pretrain_path = dino_small_pretrain_path
else:
raise NotImplementedError
# NOTE: Hardcoded image size as we do not finetune the entire ViT model
args.image_size = 224
args.feat_dim = 384
args.num_mlp_layers = 3
args.mlp_out_dim = 65536
args.feat_channal = 197 # (13+1)*(13+1) + 1 class token
args.attribute_feat_channal = 16 # (13+1)*(13+1) + 1 class token
else:
raise NotImplementedError
# --------------------
# CONTRASTIVE TRANSFORM
# --------------------
train_transform, test_transform = get_transform(args.transform, image_size=args.image_size, args=args)
train_transform = ContrastiveLearningViewGenerator(base_transform=train_transform, n_views=args.n_views)
# 16 batch => [16 v1 batch, 16 v2 batch] 32 batch
# --------------------
# DATASETS
# --------------------
train_dataset, test_dataset, unlabelled_train_examples_test, unlabelled_train_examples_train, datasets, labelled_train_examples, \
labelled_train_examples_attribute = get_datasets(args.dataset_name,
train_transform,
test_transform,
args)
whole_train_test_dataset = MergedDataset(deepcopy(labelled_train_examples),
deepcopy(unlabelled_train_examples_test))
ssk_test_dataset = MergedDataset(deepcopy(labelled_train_examples),
deepcopy(test_dataset))
labelled_train_examples_attribute_dataset = MergedDataset(deepcopy(labelled_train_examples), None)
# --------------------
# SAMPLER
# Sampler which balances labelled and unlabelled examples in each batch
# --------------------
label_len = len(train_dataset.labelled_dataset)
unlabelled_len = len(train_dataset.unlabelled_dataset)
sample_weights = [1 if i < label_len else label_len / unlabelled_len for i in range(len(train_dataset))]
sample_weights = torch.DoubleTensor(sample_weights)
sampler = torch.utils.data.WeightedRandomSampler(sample_weights, num_samples=len(train_dataset))
# --------------------
# DATALOADERS
# --------------------
# train_loader: len(imgs)=2 for gloabel expert train
#
train_loader = DataLoader(train_dataset, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=False,
sampler=sampler, drop_last=True)
if args.dataset_name == 'imagenet_100':
test_loader_unlabelled = DataLoader(unlabelled_train_examples_test, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=True)
else:
test_loader_unlabelled = DataLoader(unlabelled_train_examples_test, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=False)
train_loader_labelled = DataLoader(labelled_train_examples, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=False)
labelled_train_examples_attribute_loader = DataLoader(labelled_train_examples_attribute_dataset,
num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=False)
whole_train_test_loader = DataLoader(whole_train_test_dataset, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=False)
ssk_test_loader = DataLoader(ssk_test_dataset, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=False)
# ----------------------
# init model
# ----------------------
if hasattr(labelled_train_examples, 'dict_attribute'):
num_attribute = len(labelled_train_examples.dict_attribute.keys())
else:
num_attribute = 28
logger(f"num_attribute => {num_attribute}!")
if args.base_model == 'base':
if args.model_name == 'at':
student = ats.__dict__['at_base'](pretrain_path)
elif args.model_name == 'at2':
student = ats.__dict__['at2_base'](pretrain_path, num_attribute=num_attribute,
feat_channal=args.feat_channal, grad_from_block=args.grad_from_block)
elif args.model_name == 'at3':
student = ats.__dict__['at3_base'](pretrain_path, num_attribute=num_attribute,
feat_channal=args.feat_channal, grad_from_block=args.grad_from_block)
elif args.model_name == 'at4':
student = ats.__dict__['at4_base'](pretrain_path, num_attribute=num_attribute,
feat_channal=args.feat_channal, grad_from_block=args.grad_from_block)
elif args.model_name == 'at5':
student = ats.__dict__['at5_base'](pretrain_path, num_attribute=num_attribute,
feat_channal=args.feat_channal, grad_from_block=args.grad_from_block)
elif args.model_name == 'at6':
student = ats.__dict__['at6_base'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
elif args.model_name == 'at7':
student = ats.__dict__['at7_base'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
elif args.model_name == 'at8':
student = ats.__dict__['at8_base'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
elif args.model_name == 'at9':
student = ats.__dict__['at9_base'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
elif args.model_name == 'at10':
student = ats.__dict__['at10_base'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
if args.use_meta_attribute:
meta_learner = ats.__dict__['meta1_base'](pretrain_path, labelled_train_examples.dict_attribute,
grad_from_block=args.grad_from_block)
logger(meta_learner)
meta_learner.to(device)
else:
meta_learner = None
elif args.model_name == 'at11':
student = ats.__dict__['at11_base'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
if args.use_meta_attribute:
meta_learner = ats.__dict__['meta2_base'](pretrain_path, labelled_train_examples.dict_attribute,
grad_from_block=args.grad_from_block)
logger(meta_learner)
meta_learner.to(device)
else:
meta_learner = None
elif args.model_name == 'at12':
student = ats.__dict__['at12_base'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
if args.use_meta_attribute:
meta_learner = ats.__dict__['meta2_base'](pretrain_path, labelled_train_examples.dict_attribute,
grad_from_block=args.grad_from_block)
logger(meta_learner)
meta_learner.to(device)
else:
meta_learner = None
elif args.model_name == 'at13':
student = ats.__dict__['at13_base'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
if args.use_meta_attribute:
meta_learner = ats.__dict__['meta2_base'](pretrain_path, labelled_train_examples.dict_attribute,
grad_from_block=args.grad_from_block)
logger(meta_learner)
meta_learner.to(device)
else:
meta_learner = None
elif args.model_name == 'at14':
student = ats.__dict__['at14_base'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block, device=device)
if args.use_meta_attribute:
meta_learner = ats.__dict__['meta2_base'](pretrain_path, labelled_train_examples.dict_attribute,
grad_from_block=args.grad_from_block)
logger(meta_learner)
meta_learner.to(device)
else:
meta_learner = None
else:
raise NotImplementedError
# student = vits.__dict__['vit_base']()
# student = torch.hub.load('facebookresearch/dino:main', 'dino_vitb16')
elif args.base_model == 'small':
if args.model_name == 'at':
student = ats.__dict__['at_small'](pretrain_path)
elif args.model_name == 'at2':
student = ats.__dict__['at2_small'](pretrain_path, num_attribute=num_attribute,
feat_channal=args.feat_channal, grad_from_block=args.grad_from_block)
elif args.model_name == 'at3':
student = ats.__dict__['at3_small'](pretrain_path, num_attribute=num_attribute,
feat_channal=args.feat_channal, grad_from_block=args.grad_from_block)
elif args.model_name == 'at4':
student = ats.__dict__['at4_small'](pretrain_path, num_attribute=num_attribute,
feat_channal=args.feat_channal, grad_from_block=args.grad_from_block)
elif args.model_name == 'at5':
student = ats.__dict__['at5_small'](pretrain_path, num_attribute=num_attribute,
feat_channal=args.feat_channal, grad_from_block=args.grad_from_block)
elif args.model_name == 'at6':
student = ats.__dict__['at6_small'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
elif args.model_name == 'at7':
student = ats.__dict__['at7_small'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
elif args.model_name == 'at8':
student = ats.__dict__['at8_small'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
elif args.model_name == 'at9':
student = ats.__dict__['at9_small'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
elif args.model_name == 'at10':
student = ats.__dict__['at10_small'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
if args.use_meta_attribute:
meta_learner = ats.__dict__['meta1_small'](pretrain_path, labelled_train_examples.dict_attribute,
grad_from_block=args.grad_from_block)
logger(meta_learner)
meta_learner.to(device)
else:
meta_learner = None
elif args.model_name == 'at11':
student = ats.__dict__['at11_small'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
if args.use_meta_attribute:
meta_learner = ats.__dict__['meta2_small'](pretrain_path, labelled_train_examples.dict_attribute,
grad_from_block=args.grad_from_block)
logger(meta_learner)
meta_learner.to(device)
else:
meta_learner = None
elif args.model_name == 'at12':
student = ats.__dict__['at12_small'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
if args.use_meta_attribute:
meta_learner = ats.__dict__['meta2_small'](pretrain_path, labelled_train_examples.dict_attribute,
grad_from_block=args.grad_from_block)
logger(meta_learner)
meta_learner.to(device)
else:
meta_learner = None
elif args.model_name == 'at13':
student = ats.__dict__['at13_small'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block)
if args.use_meta_attribute:
meta_learner = ats.__dict__['meta2_small'](pretrain_path, labelled_train_examples.dict_attribute,
grad_from_block=args.grad_from_block)
logger(meta_learner)
meta_learner.to(device)
else:
meta_learner = None
elif args.model_name == 'at14':
student = ats.__dict__['at14_small'](pretrain_path, num_attribute=num_attribute,
attribute_feat_channal=args.attribute_feat_channal,
grad_from_block=args.grad_from_block, device=device)
if args.use_meta_attribute:
meta_learner = ats.__dict__['meta2_small'](pretrain_path, labelled_train_examples.dict_attribute,
grad_from_block=args.grad_from_block)
logger(meta_learner)
meta_learner.to(device)
else:
meta_learner = None
else:
raise NotImplementedError
else:
raise NotImplementedError
if args.warmup_model_dir is not None:
logger(f'Loading weights from {args.warmup_model_dir}')
student.load_state_dict(torch.load(args.warmup_model_dir, map_location='cpu'))
logger(student)
student.to(device)
# ----------------------
# projectors modulelist
# ----------------------
projectors = nn.ModuleDict()
if args.use_expert:
for expert_id in range(args.experts_num):
projectors[f'expert_{expert_id + 1}'] = vits.__dict__['DINOHead'](in_dim=args.feat_dim,
out_dim=args.mlp_out_dim,
nlayers=args.num_mlp_layers).to(device)
if args.use_global_con:
projectors['global_contrastive'] = vits.__dict__['DINOHead'](in_dim=args.feat_dim,
out_dim=args.mlp_out_dim,
nlayers=args.num_mlp_layers).to(device)
if args.use_attribute:
projectors['attributes'] = vits.__dict__['Attribute_Classifier8ind'](labelled_train_examples.dict_attribute,
in_dim=args.feat_dim,