You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I run train.py file reported an error, and then modified the drop in the dataloader_ Last is true Running again is the same error. Do not know why? Thank you for your answers.(python=3.8 pytorch=1.4.0 cudatoolkit=10.2)
give the result as follows
epochs: 0%| | 0/10 [00:01<?, ?it/s]
Traceback (most recent call last):
File "train.py", line 203, in
main()
File "train.py", line 157, in main
train_model(
File "/home/ubuntu/zdq/CaDDN/tools/train_utils/train_utils.py", line 86, in train_model
accumulated_iter = train_one_epoch(
File "/home/ubuntu/zdq/CaDDN/tools/train_utils/train_utils.py", line 38, in train_one_epoch
loss, tb_dict, disp_dict = model_func(model, batch)
File "/home/ubuntu/zdq/CaDDN/pcdet/models/init.py", line 39, in model_func
ret_dict, tb_dict, disp_dict = model(batch_dict)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/zdq/CaDDN/pcdet/models/detectors/caddn.py", line 11, in forward
batch_dict = cur_module(batch_dict)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/zdq/CaDDN/pcdet/models/backbones_3d/ffe/depth_ffe.py", line 51, in forward
ddn_result = self.ddn(images)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/zdq/CaDDN/pcdet/models/backbones_3d/ffe/ddn/ddn_template.py", line 114, in forward
x = self.model.classifier(x)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/container.py", line 100, in forward
input = module(input)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torchvision/models/segmentation/deeplabv3.py", line 92, in forward
res.append(conv(x))
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torchvision/models/segmentation/deeplabv3.py", line 61, in forward
x = mod(x)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/batchnorm.py", line 104, in forward
return F.batch_norm(
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/functional.py", line 1666, in batch_norm
raise ValueError('Expected more than 1 value per channel when training, got input size {}'.format(size))
ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 256, 1, 1])
The text was updated successfully, but these errors were encountered:
When I run train.py file reported an error, and then modified the drop in the dataloader_ Last is true Running again is the same error. Do not know why? Thank you for your answers.(python=3.8 pytorch=1.4.0 cudatoolkit=10.2)
give the result as follows
epochs: 0%| | 0/10 [00:01<?, ?it/s]
Traceback (most recent call last):
File "train.py", line 203, in
main()
File "train.py", line 157, in main
train_model(
File "/home/ubuntu/zdq/CaDDN/tools/train_utils/train_utils.py", line 86, in train_model
accumulated_iter = train_one_epoch(
File "/home/ubuntu/zdq/CaDDN/tools/train_utils/train_utils.py", line 38, in train_one_epoch
loss, tb_dict, disp_dict = model_func(model, batch)
File "/home/ubuntu/zdq/CaDDN/pcdet/models/init.py", line 39, in model_func
ret_dict, tb_dict, disp_dict = model(batch_dict)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/zdq/CaDDN/pcdet/models/detectors/caddn.py", line 11, in forward
batch_dict = cur_module(batch_dict)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/zdq/CaDDN/pcdet/models/backbones_3d/ffe/depth_ffe.py", line 51, in forward
ddn_result = self.ddn(images)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/zdq/CaDDN/pcdet/models/backbones_3d/ffe/ddn/ddn_template.py", line 114, in forward
x = self.model.classifier(x)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/container.py", line 100, in forward
input = module(input)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torchvision/models/segmentation/deeplabv3.py", line 92, in forward
res.append(conv(x))
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torchvision/models/segmentation/deeplabv3.py", line 61, in forward
x = mod(x)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/modules/batchnorm.py", line 104, in forward
return F.batch_norm(
File "/home/ubuntu/anaconda3/envs/caddn/lib/python3.8/site-packages/torch/nn/functional.py", line 1666, in batch_norm
raise ValueError('Expected more than 1 value per channel when training, got input size {}'.format(size))
ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 256, 1, 1])
The text was updated successfully, but these errors were encountered: