-
Notifications
You must be signed in to change notification settings - Fork 0
/
multirun_metrics.py
267 lines (230 loc) · 8.44 KB
/
multirun_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from typing import List, Optional
import pathlib
import pandas as pd
import numpy as np
import numba
import click
import time
import collections
import json
import wandb
import yaml
import numbers
import scipy.ndimage as sn
from diffusion_policy.common.json_logger import read_json_log, JsonLogger
import logging
@numba.jit(nopython=True)
def get_indexed_window_average(
arr: np.ndarray, idxs: np.ndarray, window_size: int):
result = np.zeros(idxs.shape, dtype=arr.dtype)
length = arr.shape[0]
for i in range(len(idxs)):
idx = idxs[i]
start = max(idx - window_size, 0)
end = min(start + window_size, length)
result[i] = np.mean(arr[start:end])
return result
def compute_metrics(log_df: pd.DataFrame, key: str,
end_step: Optional[int]=None,
k_min_loss: int=10,
k_around_max: int=10,
max_k_window: int=10,
replace_slash: int=True,
):
if key not in log_df:
return dict()
# prepare data
if end_step is not None:
log_df = log_df.iloc[:end_step]
is_key = ~pd.isnull(log_df[key])
is_key_idxs = is_key.index[is_key].to_numpy()
if len(is_key_idxs) == 0:
return dict()
key_data = log_df[key][is_key].to_numpy()
# after adding validation to workspace
# rollout happens at the last step of each epoch
# where the reported train_loss and val_loss
# are already the average for that epoch
train_loss = log_df['train_loss'][is_key].to_numpy()
val_loss = log_df['val_loss'][is_key].to_numpy()
result = dict()
log_key = key
if replace_slash:
log_key = key.replace('/', '_')
# max
max_value = np.max(key_data)
result['max/'+log_key] = max_value
# k_around_max
max_idx = np.argmax(key_data)
end = min(max_idx + k_around_max // 2, len(key_data))
start = max(end - k_around_max, 0)
k_around_max_value = np.mean(key_data[start:end])
result['k_around_max/'+log_key] = k_around_max_value
# max_k_window
k_window_value = sn.uniform_filter1d(key_data, size=max_k_window, axis=0, mode='nearest')
max_k_window_value = np.max(k_window_value)
result['max_k_window/'+log_key] = max_k_window_value
# min_train_loss
min_idx = np.argmin(train_loss)
min_train_loss_value = key_data[min_idx]
result['min_train_loss/'+log_key] = min_train_loss_value
# min_val_loss
min_idx = np.argmin(val_loss)
min_val_loss_value = key_data[min_idx]
result['min_val_loss/'+log_key] = min_val_loss_value
# k_min_train_loss
min_loss_idxs = np.argsort(train_loss)[:k_min_loss]
k_min_train_loss_value = np.mean(key_data[min_loss_idxs])
result['k_min_train_loss/'+log_key] = k_min_train_loss_value
# k_min_val_loss
min_loss_idxs = np.argsort(val_loss)[:k_min_loss]
k_min_val_loss_value = np.mean(key_data[min_loss_idxs])
result['k_min_val_loss/'+log_key] = k_min_val_loss_value
# last
result['last/'+log_key] = key_data[-1]
# global step for visualization
result['metric_global_step/'+log_key] = is_key_idxs[-1]
return result
def compute_metrics_agg(
log_dfs: List[pd.DataFrame],
key: str, end_step:int,
**kwargs):
# compute metrics
results = collections.defaultdict(list)
for log_df in log_dfs:
result = compute_metrics(log_df, key=key, end_step=end_step, **kwargs)
for k, v in result.items():
results[k].append(v)
# agg
agg_result = dict()
for k, v in results.items():
value = np.mean(v)
if k.startswith('metric_global_step'):
value = int(value)
agg_result[k] = value
return agg_result
@click.command()
@click.option('--input', '-i', required=True, help='Root logging dir, contains train_* dirs')
@click.option('--key', '-k', multiple=True, default=['test/mean_score'])
@click.option('--interval', default=10, type=float)
@click.option('--replace_slash', default=True, type=bool)
@click.option('--index_key', '-ik', default='global_step')
@click.option('--use_wandb', '-w', is_flag=True, default=False)
@click.option('--project', default=None)
@click.option('--name', default=None)
@click.option('--id', default=None)
@click.option('--group', default=None)
def main(
input,
key,
interval,
replace_slash,
index_key,
use_wandb,
# wandb args
project,
name,
id,
group):
root_dir = pathlib.Path(input)
assert root_dir.is_dir()
metrics_dir = root_dir.joinpath('metrics')
metrics_dir.mkdir(exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.FileHandler(str(metrics_dir.joinpath("metrics.log"))),
logging.StreamHandler()
]
)
train_dirs = list(root_dir.glob('train_*'))
log_files = [x.joinpath('logs.json.txt') for x in train_dirs]
logging.info("Monitor waiting for log files!")
while True:
# wait for files to show up
files_exist = True
for log_file in log_files:
if not log_file.is_file():
files_exist = False
if files_exist:
break
time.sleep(1.0)
logging.info("All log files ready!")
# init path
metric_log_path = metrics_dir.joinpath('logs.json.txt')
metric_path = metrics_dir.joinpath('metrics.json')
config_path = root_dir.joinpath('config.yaml')
# load config
config = yaml.safe_load(config_path.open('r'))
# init wandb
wandb_run = None
if use_wandb:
wandb_kwargs = config['logging']
if project is not None:
wandb_kwargs['project'] = project
if id is not None:
wandb_kwargs['id'] = id
if name is not None:
wandb_kwargs['name'] = name
if group is not None:
wandb_kwargs['group'] = group
wandb_kwargs['resume'] = True
wandb_run = wandb.init(
dir=str(metrics_dir),
config=config,
# auto-resume run, automatically load id
# as long as using the same dir.
# https://docs.wandb.ai/guides/track/advanced/resuming#resuming-guidance
**wandb_kwargs
)
wandb.config.update(
{
"output_dir": str(root_dir),
}
)
with JsonLogger(metric_log_path) as json_logger:
last_log = json_logger.get_last_log()
while True:
# read json files
log_dfs = [read_json_log(str(x), required_keys=key) for x in log_files]
# previously logged data point
last_log_idx = -1
if last_log is not None:
last_log_idx = log_dfs[0].index[log_dfs[0][index_key] <= last_log[index_key]][-1]
start_idx = last_log_idx + 1
# last idx where we have a data point from all logs
end_idx = min(*[len(x) for x in log_dfs])
# log every position
for this_idx in range(start_idx, end_idx):
# compute metrics
all_metrics = dict()
global_step = log_dfs[0]['global_step'][this_idx]
epoch = log_dfs[0]['epoch'][this_idx]
all_metrics['global_step'] = global_step
all_metrics['epoch'] = epoch
for k in key:
metrics = compute_metrics_agg(
log_dfs=log_dfs, key=k, end_step=this_idx+1,
replace_slash=replace_slash)
all_metrics.update(metrics)
# sanitize metrics
old_metrics = all_metrics
all_metrics = dict()
for k, v in old_metrics.items():
if isinstance(v, numbers.Integral):
all_metrics[k] = int(v)
elif isinstance(v, numbers.Number):
all_metrics[k] = float(v)
has_update = all_metrics != last_log
if has_update:
last_log = all_metrics
json_logger.log(all_metrics)
with metric_path.open('w') as f:
json.dump(all_metrics, f, sort_keys=True, indent=2)
if wandb_run is not None:
wandb_run.log(all_metrics, step=all_metrics[index_key])
logging.info(f"Metrics logged at step {all_metrics[index_key]}")
time.sleep(interval)
if __name__ == "__main__":
main()