forked from DataXujing/wenet_trt8
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfix_encoder.py
executable file
·140 lines (124 loc) · 5.73 KB
/
fix_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import onnx
import onnx_graphsurgeon as gs
from collections import OrderedDict
def get_quant_nodes(graph):
quant_nodes = []
exclude_nodes = [] # ["MatMul_178", "MatMul_141", "MatMul_119", "MatMul_125",
# "MatMul_131", "Transpose_173", "Reshape_177"]
for node in graph.nodes:
if node.op in ["Conv"]:
if node.attrs['group']==1:
quant_nodes.append(node.name)
if node.op == "MatMul" and \
isinstance(node.inputs[1], gs.Constant):
quant_nodes.append(node.name)
for node in graph.nodes:
if node.op in ["Softmax", ]:
print("encoder_quant_exclude_nodes: ", node.name)
exclude_nodes.append(node.name)
if node.op == "Add" and \
"norm" in node.inputs[1].name:
print("encoder_quant_exclude_nodes: ", node.name, " ", node.inputs[1].name)
exclude_nodes.append(node.name)
if node.op == "Mul" and \
"norm" in node.inputs[1].name:
print("encoder_quant_exclude_nodes: ", node.name, " ", node.inputs[1].name)
exclude_nodes.append(node.name)
with open("encoder_quant_nodes.txt", "w+") as f:
f.write('\n'.join(quant_nodes))
with open("encoder_quant_exclude_nodes.txt", "w+") as f:
f.write('\n'.join(exclude_nodes))
def wenet_encoder():
encoder = onnx.load("model/encoder.onnx")
graph = gs.import_onnx(encoder)
Not_30 = Relu_38 = Transpose_51 = Reshape_60 = Slice_74 = Slice_79 = Slice_84 = None
for node in graph.nodes:
if node.op == 'Not' and node.name == 'Not_30':
Not_30 = node
if node.op == 'Relu' and node.name == 'Relu_38':
Relu_38 = node
if node.op == 'Transpose' and node.name == 'Transpose_51':
Transpose_51 = node
if node.op == 'Reshape' and node.name == 'Reshape_60':
Reshape_60 = node
if node.op == 'Slice' and node.name == "Slice_74":
Slice_74 = node
if node.op == 'Slice' and node.name == "Slice_79":
Slice_79 = node
if node.op == 'Slice' and node.name == "Slice_84":
Slice_84 = node
Slice_79.inputs[2] = gs.Constant(name=Slice_79.inputs[2].name, values=np.array([-6], dtype=np.int64))
Slice_79.inputs[4] = gs.Constant(name=Slice_79.inputs[4].name, values=np.array([4], dtype=np.int64))
Cast0_input = Not_30.outputs[0]
Cast0_output = gs.Variable(name="Cast0_output", dtype=np.dtype(np.int32), shape=None)
Cast0 = gs.Node(name='Add_Cast0', op='Cast',
inputs=[Cast0_input],
outputs=[Cast0_output],
attrs=OrderedDict(to=6))
graph.nodes.append(Cast0)
Slice_79.inputs[0] = Cast0_output
Cast1_input = Slice_79.outputs[0]
Cast1_output = Slice_84.outputs[0]
Slice_84.outputs.clear()
Cast1 = gs.Node(name='Add_Cast1', op='Cast',
inputs=[Cast1_input],
outputs=[Cast1_output],
attrs=OrderedDict(to=9))
graph.nodes.append(Cast1)
table5000x256 = Slice_74.inputs[0].inputs[0].attrs['value'].values
t4Tensor = Slice_74.inputs[2]
j = 0
for i in range(1, 24, 2):
trashNode = Slice_74.o(i).o().o()
factor256x256 = Slice_74.o(i).inputs[1].values
newTable = table5000x256 @ factor256x256
newTable = newTable.transpose().reshape(1, 4, 64, 5000)
constantData = gs.Constant(f'Data-{j}', np.ascontiguousarray(newTable))
sliceV = gs.Variable(f'sliceData-{j}', np.dtype(np.float32), [1, 4, 64, 't4'])
zero = gs.Constant(name=f'Constant-0-{j}', values=np.array([0]))
one = gs.Constant(name=f'Constant-1-{j}', values=np.array([1]))
three = gs.Constant(name=f'Constant-3-{j}', values=np.array([3]))
sliceN = gs.Node('Slice', f'SliceN-{j}',
inputs=[constantData, zero, t4Tensor, three, one],
outputs=[sliceV])
j += 1
graph.nodes.append(sliceN)
Slice_74.o(i).o().o().o().inputs[1] = sliceV
trashNode.outputs.clear()
get_quant_nodes(graph)
# Unsqueeze_29 = None
# for node in graph.nodes:
# if node.op == 'Unsqueeze' and node.name == "Unsqueeze_29":
# Unsqueeze_29 = node
# if node.op == 'Not' and node.name == 'Not_30':
# Not_30 = node
# if node.op == 'Slice' and node.name == "Slice_79":
# Slice_79 = node
# if node.op == 'Slice' and node.name == "Slice_84":
# Slice_84 = node
# start_node = Unsqueeze_29.outputs[0]
# Unsqueeze_29_Cast_output = gs.Variable(name="Unsqueeze_29_Cast_output", dtype=None, shape=None)
# attrs_dict = {}
# attrs_dict['to'] = 6
# newNode = gs.Node(name="Slice_79_Cast", op="Cast", inputs=[start_node],
# outputs=[Unsqueeze_29_Cast_output], attrs=attrs_dict)
# graph.nodes.append(newNode) # 记得把新节点加入计算图中
# Slice_79.inputs[0] = Unsqueeze_29_Cast_output
# Slice_84_outputs = Not_30.outputs[0]
# end_node = Slice_84.outputs[0]
# Not_30.outputs[0] = end_node
# Slice_84.outputs[0] = Slice_84_outputs
# Not_30.inputs[0] = Slice_84.outputs[0]
# Slice_84_Cast_output = gs.Variable(name="Slice_84_Cast_output", dtype=None, shape=None)
# attrs_dict = {}
# attrs_dict['to'] = 9
# newNode = gs.Node(name="Slice_84_Cast", op="Cast", inputs=[Slice_84_outputs ],
# outputs=[Slice_84_Cast_output], attrs=attrs_dict)
# graph.nodes.append(newNode) # 记得把新节点加入计算图中
# Not_30.inputs[0] = Slice_84_Cast_output
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "encoder_new.onnx")
pass
if __name__ == '__main__':
wenet_encoder()