-
Notifications
You must be signed in to change notification settings - Fork 0
/
datasets.py
352 lines (260 loc) · 10.6 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import torch.utils.data as data
import torch
from PIL import Image
import numpy as np
from torchvision.datasets import MNIST, CIFAR10, CIFAR100, SVHN, FashionMNIST
from torchvision.datasets.vision import VisionDataset
from torchvision.datasets.utils import download_file_from_google_drive, check_integrity
from functools import partial
from typing import Optional, Callable
from torch.utils.model_zoo import tqdm
import PIL
import tarfile
import os
import os.path
import logging
import torchvision.datasets.utils as utils
import pickle
import string
from torchvision.transforms import Compose, ToTensor, Normalize
from torch.utils.data import Dataset
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp')
def mkdirs(dirpath):
try:
os.makedirs(dirpath)
except Exception as _:
pass
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def default_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
class CIFAR10_truncated(data.Dataset):
def __init__(self, root, dataidxs=None, train=True, transform=None, target_transform=None, download=False):
self.root = root
self.dataidxs = dataidxs
self.train = train
self.transform = transform
self.target_transform = target_transform
self.download = download
self.data, self.target = self.__build_truncated_dataset__()
def __build_truncated_dataset__(self):
cifar_dataobj = CIFAR10(self.root, self.train, self.transform, self.target_transform, self.download)
data = cifar_dataobj.data
target = np.array(cifar_dataobj.targets)
if self.dataidxs is not None:
data = data[self.dataidxs]
target = target[self.dataidxs]
return data, target
def truncate_channel(self, index):
for i in range(index.shape[0]):
gs_index = index[i]
self.data[gs_index, :, :, 1] = 0.0
self.data[gs_index, :, :, 2] = 0.0
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.target[index]
# print("cifar10 img:", img)
# print("cifar10 target:", target)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.data)
class CIFAR100_truncated(data.Dataset):
def __init__(self, root, dataidxs=None, train=True, transform=None, target_transform=None, download=False):
self.root = root
self.dataidxs = dataidxs
self.train = train
self.transform = transform
self.target_transform = target_transform
self.download = download
self.data, self.target = self.__build_truncated_dataset__()
def __build_truncated_dataset__(self):
cifar_dataobj = CIFAR100(self.root, self.train, self.transform, self.target_transform, self.download)
data = cifar_dataobj.data
target = np.array(cifar_dataobj.targets)
if self.dataidxs is not None:
data = data[self.dataidxs]
target = target[self.dataidxs]
return data, target
def truncate_channel(self, index):
for i in range(index.shape[0]):
gs_index = index[i]
self.data[gs_index, :, :, 1] = 0.0
self.data[gs_index, :, :, 2] = 0.0
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.target[index]
# print("cifar10 img:", img)
# print("cifar10 target:", target)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.data)
def gen_bar_updater() -> Callable[[int, int, int], None]:
pbar = tqdm(total=None)
def bar_update(count, block_size, total_size):
if pbar.total is None and total_size:
pbar.total = total_size
progress_bytes = count * block_size
pbar.update(progress_bytes - pbar.n)
return bar_update
def download_url(url: str, root: str, filename: Optional[str] = None, md5: Optional[str] = None) -> None:
"""Download a file from a url and place it in root.
Args:
url (str): URL to download file from
root (str): Directory to place downloaded file in
filename (str, optional): Name to save the file under. If None, use the basename of the URL
md5 (str, optional): MD5 checksum of the download. If None, do not check
"""
import urllib
root = os.path.expanduser(root)
if not filename:
filename = os.path.basename(url)
fpath = os.path.join(root, filename)
os.makedirs(root, exist_ok=True)
# check if file is already present locally
if check_integrity(fpath, md5):
print('Using downloaded and verified file: ' + fpath)
else: # download the file
try:
print('Downloading ' + url + ' to ' + fpath)
urllib.request.urlretrieve(
url, fpath,
reporthook=gen_bar_updater()
)
except (urllib.error.URLError, IOError) as e: # type: ignore[attr-defined]
if url[:5] == 'https':
url = url.replace('https:', 'http:')
print('Failed download. Trying https -> http instead.'
' Downloading ' + url + ' to ' + fpath)
urllib.request.urlretrieve(
url, fpath,
reporthook=gen_bar_updater()
)
else:
raise e
# check integrity of downloaded file
if not check_integrity(fpath, md5):
raise RuntimeError("File not found or corrupted.")
def _is_tarxz(filename: str) -> bool:
return filename.endswith(".tar.xz")
def _is_tar(filename: str) -> bool:
return filename.endswith(".tar")
def _is_targz(filename: str) -> bool:
return filename.endswith(".tar.gz")
def _is_tgz(filename: str) -> bool:
return filename.endswith(".tgz")
def _is_gzip(filename: str) -> bool:
return filename.endswith(".gz") and not filename.endswith(".tar.gz")
def _is_zip(filename: str) -> bool:
return filename.endswith(".zip")
def extract_archive(from_path: str, to_path: Optional[str] = None, remove_finished: bool = False) -> None:
if to_path is None:
to_path = os.path.dirname(from_path)
if _is_tar(from_path):
with tarfile.open(from_path, 'r') as tar:
tar.extractall(path=to_path)
elif _is_targz(from_path) or _is_tgz(from_path):
with tarfile.open(from_path, 'r:gz') as tar:
tar.extractall(path=to_path)
elif _is_tarxz(from_path):
with tarfile.open(from_path, 'r:xz') as tar:
tar.extractall(path=to_path)
elif _is_gzip(from_path):
to_path = os.path.join(to_path, os.path.splitext(os.path.basename(from_path))[0])
with open(to_path, "wb") as out_f, gzip.GzipFile(from_path) as zip_f:
out_f.write(zip_f.read())
elif _is_zip(from_path):
with zipfile.ZipFile(from_path, 'r') as z:
z.extractall(to_path)
else:
raise ValueError("Extraction of {} not supported".format(from_path))
if remove_finished:
os.remove(from_path)
def download_and_extract_archive(
url: str,
download_root: str,
extract_root: Optional[str] = None,
filename: Optional[str] = None,
md5: Optional[str] = None,
remove_finished: bool = False,
) -> None:
download_root = os.path.expanduser(download_root)
if extract_root is None:
extract_root = download_root
if not filename:
filename = os.path.basename(url)
download_url(url, download_root, filename, md5)
archive = os.path.join(download_root, filename)
print("Extracting {} to {}".format(archive, extract_root))
extract_archive(archive, extract_root, remove_finished)
class CharacterDataset(Dataset):
def __init__(self, file_path, chunk_len):
"""
Dataset for next character prediction, each sample represents an input sequence of characters
and a target sequence of characters representing to next sequence of the input
:param file_path: path to .txt file containing the training corpus
:param chunk_len: (int) the length of the input and target sequences
"""
self.all_characters = string.printable
# self.all_characters:
# 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
self.vocab_size = len(self.all_characters)
self.n_characters = len(self.all_characters)
self.chunk_len = chunk_len
with open(file_path, 'r') as f:
self.text = f.read()
self.tokenized_text = torch.zeros(len(self.text), dtype=torch.long)
self.inputs = torch.zeros(self.__len__(), self.chunk_len, dtype=torch.long)
self.targets = torch.zeros(self.__len__(), self.chunk_len, dtype=torch.long)
self.__build_mapping()
self.__tokenize()
self.__preprocess_data()
def __tokenize(self):
for ii, char in enumerate(self.text):
self.tokenized_text[ii] = self.char2idx[char]
def __build_mapping(self):
self.char2idx = dict()
for ii, char in enumerate(self.all_characters):
self.char2idx[char] = ii
def __preprocess_data(self):
for idx in range(self.__len__()):
self.inputs[idx] = self.tokenized_text[idx:idx+self.chunk_len]
self.targets[idx] = self.tokenized_text[idx+1:idx+self.chunk_len+1]
def __len__(self):
return max(0, len(self.text) - self.chunk_len)
def __getitem__(self, idx):
return self.inputs[idx], self.targets[idx], idx