forked from rogerlinndesign/linnstrument-firmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathls_switches.ino
488 lines (417 loc) · 16.1 KB
/
ls_switches.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
/********************************** ls_switches: LinnStrument Switches ****************************
Copyright 2023 Roger Linn Design (https://www.rogerlinndesign.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
***************************************************************************************************
These routines handle LinnStrument's 2 button switches and 2 foot switch inputs.
The 2 foot switch input lines are pulled up so a read of HIGH means foot switch is open or not
connected:
In order to accomodate both normally-open and normally-closed foot switches, unpressed switch state
is read on startup and saved in leftFootSwitchOffState and rightFootSwitchOffState. When switches
are read subsequently, state is compared to these OFF states to insure valid presses for both
normally-open and normally-closed switches.
**************************************************************************************************/
void initializeSwitches() {
// read initial state of each in order to determine if nornally-open or
// normally-closed (like VFP2) switches are connected, or if nothing's connected.
footSwitchOffState[SWITCH_FOOT_L] = digitalRead(FOOT_SW_LEFT);
footSwitchOffState[SWITCH_FOOT_R] = digitalRead(FOOT_SW_RIGHT);
footSwitchState[SWITCH_FOOT_L] = false;
footSwitchState[SWITCH_FOOT_R] = false;
footSwitchState[SWITCH_FOOT_B] = false;
lastSwitchPress[SWITCH_FOOT_L] = 0;
lastSwitchPress[SWITCH_FOOT_R] = 0;
lastSwitchPress[SWITCH_FOOT_B] = 0;
lastSwitchPress[SWITCH_SWITCH_2] = 0;
lastSwitchPress[SWITCH_SWITCH_1] = 0;
switchState[SWITCH_FOOT_L][LEFT] = false;
switchState[SWITCH_FOOT_R][LEFT] = false;
switchState[SWITCH_FOOT_B][LEFT] = false;
switchState[SWITCH_SWITCH_2][LEFT] = false;
switchState[SWITCH_SWITCH_1][LEFT] = false;
switchState[SWITCH_FOOT_L][RIGHT] = false;
switchState[SWITCH_FOOT_R][RIGHT] = false;
switchState[SWITCH_FOOT_B][RIGHT] = false;
switchState[SWITCH_SWITCH_2][RIGHT] = false;
switchState[SWITCH_SWITCH_1][RIGHT] = false;
for (byte i = 0; i < MAX_ASSIGNED; ++i) {
switchTargetEnabled[LEFT][i] = false;
switchTargetEnabled[RIGHT][i] = false;
}
for (byte i = 0; i < 128; ++i) {
switchCCEnabled[LEFT][i] = false;
switchCCEnabled[RIGHT][i] = false;
}
}
boolean isStatefulSwitchAssignment(byte assignment) {
return assignment == ASSIGNED_AUTO_OCTAVE ||
assignment == ASSIGNED_SUSTAIN ||
assignment == ASSIGNED_CC_65 ||
assignment == ASSIGNED_ARPEGGIATOR ||
assignment == ASSIGNED_LEGATO ||
assignment == ASSIGNED_LATCH ||
assignment == ASSIGNED_REVERSE_PITCH_X ||
assignment == ASSIGNED_STANDALONE_MIDI_CLOCK;
}
void doSwitchPressed(byte whichSwitch) {
byte assignment = Global.switchAssignment[whichSwitch];
if (!Global.splitActive || assignment == ASSIGNED_ALTSPLIT || !Global.switchBothSplits[whichSwitch]) {
doSwitchPressedForSplit(whichSwitch, assignment, Global.currentPerSplit);
}
else {
doSwitchPressedForSplit(whichSwitch, assignment, LEFT);
doSwitchPressedForSplit(whichSwitch, assignment, RIGHT);
}
}
boolean isSwitchTargetEnabled(byte whichSwitch, byte assignment, byte split) {
if (assignment == ASSIGNED_CC_65) {
return isSwitchCC65CCEnabled(whichSwitch, split);
}
else if (assignment == ASSIGNED_SUSTAIN) {
return isSwitchSustainCCEnabled(whichSwitch, split);
}
else {
return switchTargetEnabled[split][assignment];
}
}
void doSwitchPressedForSplit(byte whichSwitch, byte assignment, byte split) {
// the switches on the LinnStrument trigger immediately,
// the foot switches trigger immediately when they're stateful,
// or when there's no action for the both footswitches press,
// otherwise they trigger on release
if (whichSwitch == SWITCH_SWITCH_1 || whichSwitch == SWITCH_SWITCH_2 ||
Global.switchAssignment[SWITCH_FOOT_B] == ASSIGNED_DISABLED ||
isStatefulSwitchAssignment(assignment)) {
doSwitchTriggeredForSplit(whichSwitch, assignment, split);
}
}
void doSwitchTriggeredForSplit(byte whichSwitch, byte assignment, byte split) {
// by default, the state of this switch will be on when pressed,
// unless it's determined later to be a toggle action
boolean resultingState = true;
// perform the switch assignment on action if this hasn't been enabled
// by another switch yet
if (!isSwitchTargetEnabled(whichSwitch, assignment, split)) {
performSwitchAssignmentOn(whichSwitch, assignment, split);
}
// if the switch is enabled for the split,
// go through the assignment off logic
else {
// turn the switch state off
resultingState = false;
performSwitchAssignmentOff(whichSwitch, assignment, split);
}
// change the state of the switch and the assignment based on the previous logic
changeSwitchState(whichSwitch, assignment, split, resultingState);
// keep track of when the last press happened to be able to differentiate
// between toggle and hold
lastSwitchPress[whichSwitch] = millis();
}
void doSwitchReleased(byte whichSwitch) {
byte assignment = Global.switchAssignment[whichSwitch];
if (!Global.splitActive || assignment == ASSIGNED_ALTSPLIT || !Global.switchBothSplits[whichSwitch]) {
doSwitchReleasedForSplit(whichSwitch, assignment, Global.currentPerSplit);
}
else {
doSwitchReleasedForSplit(whichSwitch, assignment, LEFT);
doSwitchReleasedForSplit(whichSwitch, assignment, RIGHT);
}
}
void doSwitchReleasedForSplit(byte whichSwitch, byte assignment, byte split) {
// check whether this is a hold operation by comparing the release time with
// the last time the switch was pressed
boolean isHeld = (calcTimeDelta(millis(), lastSwitchPress[whichSwitch]) > SWITCH_HOLD_DELAY);
// foot switches have no hold or toggle havior based on time, but rather based on function
if (whichSwitch == SWITCH_FOOT_L || whichSwitch == SWITCH_FOOT_R || whichSwitch == SWITCH_FOOT_B) {
if (isStatefulSwitchAssignment(assignment)) {
isHeld = true;
}
else {
isHeld = false;
if (whichSwitch == SWITCH_FOOT_B) {
switchFootBothReleased = true;
}
if (whichSwitch == SWITCH_FOOT_B || !switchFootBothReleased) {
if (Global.switchAssignment[SWITCH_FOOT_B] != ASSIGNED_DISABLED) {
doSwitchTriggeredForSplit(whichSwitch, assignment, split);
}
}
if (switchFootBothReleased && !footSwitchState[SWITCH_FOOT_L] && !footSwitchState[SWITCH_FOOT_R]) {
switchFootBothReleased = false;
}
}
}
if (isHeld && isStatefulSwitchAssignment(assignment)) {
// perform the assignment off logic, but when a split is active, it's possible that the
// switch started being held on the other split, so we need to check which split is actually
// active before changing the state
if (Global.splitActive) {
if (isSwitchTargetEnabled(whichSwitch, assignment, LEFT)) {
performSwitchAssignmentHoldOff(whichSwitch, assignment, LEFT);
changeSwitchState(whichSwitch, assignment, LEFT, false);
}
if (isSwitchTargetEnabled(whichSwitch, assignment, RIGHT)) {
performSwitchAssignmentHoldOff(whichSwitch, assignment, RIGHT);
changeSwitchState(whichSwitch, assignment, RIGHT, false);
}
}
else {
if (isSwitchTargetEnabled(whichSwitch, assignment, split)) {
performSwitchAssignmentHoldOff(whichSwitch, assignment, split);
changeSwitchState(whichSwitch, assignment, split, false);
}
}
}
// this is a toggle action, however only some assignment have toggle behavior
// only proceed when the switch is on
else if (switchState[whichSwitch][split] || assignment == ASSIGNED_ALTSPLIT) {
// non-stateful assignments don't have visible toggle behaviours, they're more
// like one shot triggers, never keep the switch on after release for these assignments
if (!isStatefulSwitchAssignment(assignment)) {
changeSwitchState(whichSwitch, assignment, split, false);
}
}
}
void changeSwitchState(byte whichSwitch, byte assignment, byte split, boolean enabled) {
// all switches are mutually exclusive, so we always reset the state of other switches with the same target assignment
for (byte sw = 0; sw < 4; ++sw) {
if (sw != whichSwitch && Global.switchAssignment[sw] == assignment) {
switchState[sw][split] = false;
lastSwitchPress[sw] = 0;
}
}
// the state of the switch target assigment always reflects the state of the last switch that interacted with it
if (assignment == ASSIGNED_CC_65) {
switchCCEnabled[split][Global.ccForSwitchCC65[whichSwitch]] = enabled;
}
else if (assignment == ASSIGNED_SUSTAIN) {
switchCCEnabled[split][Global.ccForSwitchSustain[whichSwitch]] = enabled;
}
else {
switchTargetEnabled[split][assignment] = enabled;
if (assignment == ASSIGNED_ALTSPLIT || assignment == ASSIGNED_STANDALONE_MIDI_CLOCK) {
switchTargetEnabled[otherSplit(split)][assignment] = enabled;
}
}
// set the state of the switch
switchState[whichSwitch][split] = enabled;
if (assignment == ASSIGNED_STANDALONE_MIDI_CLOCK) {
switchState[whichSwitch][otherSplit(split)] = enabled;
}
}
void switchTransposeOctave(byte split, int interval) {
Split[split].transposeOctave = constrain(Split[split].transposeOctave + interval, -60, 60);
displayModeStart = millis();
blinkMiddleRootNote = true;
updateDisplay();
}
void performSwitchAssignmentOn(byte whichSwitch, byte assignment, byte split) {
switch (assignment)
{
case ASSIGNED_AUTO_OCTAVE:
// reset the note number that is used for the interval
latestNoteNumberForAutoOctave = -1;
break;
case ASSIGNED_OCTAVE_DOWN:
switchTransposeOctave(split, -12);
break;
case ASSIGNED_OCTAVE_UP:
switchTransposeOctave(split, 12);
break;
case ASSIGNED_SUSTAIN:
preSendSwitchSustain(whichSwitch, split, 127);
break;
case ASSIGNED_CC_65:
preSendSwitchCC65(whichSwitch, split, 127);
break;
case ASSIGNED_ALTSPLIT:
performAltSplitAssignment();
break;
case ASSIGNED_ARPEGGIATOR:
performArpeggiatorToggle();
break;
case ASSIGNED_TAP_TEMPO:
if (!isSyncedToMidiClock()) {
tapTempoPress();
if (displayMode == displayGlobalWithTempo) {
updateDisplay();
}
}
break;
case ASSIGNED_PRESET_UP:
performPresetDelta(1);
break;
case ASSIGNED_PRESET_DOWN:
performPresetDelta(-1);
break;
case ASSIGNED_REVERSE_PITCH_X:
performReverseSendXToggle();
break;
case ASSIGNED_SEQUENCER_PLAY:
sequencerTogglePlay(split);
break;
case ASSIGNED_SEQUENCER_PREV:
sequencerPreviousPattern(split);
break;
case ASSIGNED_SEQUENCER_NEXT:
sequencerNextPattern(split);
break;
case ASSIGNED_STANDALONE_MIDI_CLOCK:
standaloneMidiClockStart();
break;
case ASSIGNED_SEQUENCER_MUTE:
sequencerToggleMute(split);
break;
}
}
void performPresetDelta(int delta) {
midiPreset[Global.currentPerSplit] = min(max(midiPreset[Global.currentPerSplit] + delta, 0), 127);
applyMidiPreset();
if (displayMode == displayPreset) {
updateDisplay();
}
}
void performArpeggiatorToggle() {
Split[Global.currentPerSplit].arpeggiator = !Split[Global.currentPerSplit].arpeggiator;
if (Split[Global.currentPerSplit].arpeggiator) {
temporarilyEnableArpeggiator();
}
else {
disableTemporaryArpeggiator();
}
if (displayMode == displayPerSplit) {
updateDisplay();
}
}
void performReverseSendXToggle() {
Split[Global.currentPerSplit].sendX = !Split[Global.currentPerSplit].sendX;
if (displayMode == displayPerSplit) {
updateDisplay();
}
}
void performAltSplitAssignment() {
resetAllTouches();
Global.currentPerSplit = otherSplit(Global.currentPerSplit);
updateDisplay();
}
void performSwitchAssignmentHoldOff(byte whichSwitch, byte assignment, byte split) {
switch (assignment)
{
case ASSIGNED_OCTAVE_DOWN:
switchTransposeOctave(split, 12);
break;
case ASSIGNED_OCTAVE_UP:
switchTransposeOctave(split, -12);
break;
case ASSIGNED_SUSTAIN:
case ASSIGNED_CC_65:
case ASSIGNED_ARPEGGIATOR:
case ASSIGNED_LEGATO:
case ASSIGNED_LATCH:
case ASSIGNED_REVERSE_PITCH_X:
case ASSIGNED_STANDALONE_MIDI_CLOCK:
performSwitchAssignmentOff(whichSwitch, assignment, split);
break;
case ASSIGNED_ALTSPLIT:
performAltSplitAssignment();
break;
}
}
void performSwitchAssignmentOff(byte whichSwitch, byte assignment, byte split) {
switch (assignment)
{
case ASSIGNED_SUSTAIN:
preSendSwitchSustain(whichSwitch, split, 0);
break;
case ASSIGNED_CC_65:
preSendSwitchCC65(whichSwitch, split, 0);
break;
case ASSIGNED_ARPEGGIATOR:
performArpeggiatorToggle();
break;
case ASSIGNED_LEGATO:
case ASSIGNED_LATCH:
noteTouchMapping[split].releaseLatched();
break;
case ASSIGNED_REVERSE_PITCH_X:
performReverseSendXToggle();
break;
case ASSIGNED_STANDALONE_MIDI_CLOCK:
standaloneMidiClockStop();
break;
}
}
void handleFootSwitchState(byte whichSwitch, boolean state) {
if (footSwitchState[whichSwitch] != state) { // if state if changed since last read...
DEBUGPRINT((2,"handleFootSwitchState"));
DEBUGPRINT((2," pedal="));DEBUGPRINT((2,(int)whichSwitch));
DEBUGPRINT((2," state="));DEBUGPRINT((2,(int)state));
DEBUGPRINT((2,"\n"));
footSwitchState[whichSwitch] = state;
// merely light leds in test mode
if (operatingMode == modeManufacturingTest) {
switchState[whichSwitch][Global.currentPerSplit] = state;
if (state) {
setLed(NUMCOLS - 1, 5 + whichSwitch, COLOR_GREEN, cellOn);
}
else {
clearLed(NUMCOLS - 1, 5 + whichSwitch);
}
}
// handle the foot switch assignments in regular mode
else {
// if the switch is pressed...
if (state) {
doSwitchPressed(whichSwitch);
}
// if the switch is released...
else {
doSwitchReleased(whichSwitch);
}
}
updateSwitchLeds();
}
}
void resetSwitchStates(byte whichSwitch) {
for (byte sp = 0; sp < NUMSPLITS; ++ sp) {
if (switchState[whichSwitch][sp]) {
byte assignment = Global.switchAssignment[whichSwitch];
changeSwitchState(whichSwitch, assignment, sp, false);
}
}
}
// checkFootSwitches:
// Once every 20 ms, this is called to read foot switch inputs and take action if state changed
void checkFootSwitches() {
bool state_left = digitalRead(FOOT_SW_LEFT);
bool state_right = digitalRead(FOOT_SW_RIGHT);
// If a normally-open switch (or no switch) is connected, invert state of switch read
if (footSwitchOffState[SWITCH_FOOT_L] == HIGH) state_left = !state_left;
if (footSwitchOffState[SWITCH_FOOT_R] == HIGH) state_right = !state_right;
handleFootSwitchState(SWITCH_FOOT_B, state_left &
state_right); // check the combined input state
handleFootSwitchState(SWITCH_FOOT_L, state_left); // check left input state
handleFootSwitchState(SWITCH_FOOT_R, state_right); // check right input state
}
inline boolean isSwitchAutoOctavePressed(byte split) {
return switchTargetEnabled[split][ASSIGNED_AUTO_OCTAVE];
}
inline boolean isSwitchLegatoPressed(byte split) {
return switchTargetEnabled[split][ASSIGNED_LEGATO];
}
inline boolean isSwitchLatchPressed(byte split) {
return switchTargetEnabled[split][ASSIGNED_LATCH];
}
inline boolean isSwitchCC65CCEnabled(byte whichSwitch, byte split) {
return switchCCEnabled[split][Global.ccForSwitchCC65[whichSwitch]];
}
inline boolean isSwitchSustainCCEnabled(byte whichSwitch, byte split) {
return switchCCEnabled[split][Global.ccForSwitchSustain[whichSwitch]];
}