欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
题目链接:https://leetcode-cn.com/problems/combination-sum/
给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的数字可以无限制重复被选取。
说明:
- 所有数字(包括 target)都是正整数。
- 解集不能包含重复的组合。
示例 1: 输入:candidates = [2,3,6,7], target = 7, 所求解集为: [ [7], [2,2,3] ]
示例 2: 输入:candidates = [2,3,5], target = 8, 所求解集为: [ [2,2,2,2], [2,3,3], [3,5] ]
题目中的无限制重复被选取,吓得我赶紧想想 出现0 可咋办,然后看到下面提示:1 <= candidates[i] <= 200,我就放心了。
本题和回溯算法:求组合问题!,回溯算法:求组合总和!和区别是:本题没有数量要求,可以无限重复,但是有总和的限制,所以间接的也是有个数的限制。
本题搜索的过程抽象成树形结构如下:
注意图中叶子节点的返回条件,因为本题没有组合数量要求,仅仅是总和的限制,所以递归没有层数的限制,只要选取的元素总和超过target,就返回!
而在回溯算法:求组合问题!和回溯算法:求组合总和! 中都可以知道要递归K层,因为要取k个元素的组合。
- 递归函数参数
这里依然是定义两个全局变量,二维数组result存放结果集,数组path存放符合条件的结果。(这两个变量可以作为函数参数传入)
首先是题目中给出的参数,集合candidates, 和目标值target。
此外我还定义了int型的sum变量来统计单一结果path里的总和,其实这个sum也可以不用,用target做相应的减法就可以了,最后如何target==0就说明找到符合的结果了,但为了代码逻辑清晰,我依然用了sum。
本题还需要startIndex来控制for循环的起始位置,对于组合问题,什么时候需要startIndex呢?
我举过例子,如果是一个集合来求组合的话,就需要startIndex,例如:回溯算法:求组合问题!,回溯算法:求组合总和!。
如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex,例如:回溯算法:电话号码的字母组合
注意以上我只是说求组合的情况,如果是排列问题,又是另一套分析的套路,后面我再讲解排列的时候就重点介绍。
代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex)
- 递归终止条件
在如下树形结构中:
从叶子节点可以清晰看到,终止只有两种情况,sum大于target和sum等于target。
sum等于target的时候,需要收集结果,代码如下:
if (sum > target) {
return;
}
if (sum == target) {
result.push_back(path);
return;
}
- 单层搜索的逻辑
单层for循环依然是从startIndex开始,搜索candidates集合。
注意本题和回溯算法:求组合问题!、回溯算法:求组合总和!的一个区别是:本题元素为可重复选取的。
如何重复选取呢,看代码,注释部分:
for (int i = startIndex; i < candidates.size(); i++) {
sum += candidates[i];
path.push_back(candidates[i]);
backtracking(candidates, target, sum, i); // 关键点:不用i+1了,表示可以重复读取当前的数
sum -= candidates[i]; // 回溯
path.pop_back(); // 回溯
}
按照关于回溯算法,你该了解这些!中给出的模板,不难写出如下C++完整代码:
// 版本一
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
if (sum > target) {
return;
}
if (sum == target) {
result.push_back(path);
return;
}
for (int i = startIndex; i < candidates.size(); i++) {
sum += candidates[i];
path.push_back(candidates[i]);
backtracking(candidates, target, sum, i); // 不用i+1了,表示可以重复读取当前的数
sum -= candidates[i];
path.pop_back();
}
}
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
result.clear();
path.clear();
backtracking(candidates, target, 0, 0);
return result;
}
};
在这个树形结构中:
以及上面的版本一的代码大家可以看到,对于sum已经大于target的情况,其实是依然进入了下一层递归,只是下一层递归结束判断的时候,会判断sum > target的话就返回。
其实如果已经知道下一层的sum会大于target,就没有必要进入下一层递归了。
那么可以在for循环的搜索范围上做做文章了。
对总集合排序之后,如果下一层的sum(就是本层的 sum + candidates[i])已经大于target,就可以结束本轮for循环的遍历。
如图:
for循环剪枝代码如下:
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++)
整体代码如下:(注意注释的部分)
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
if (sum == target) {
result.push_back(path);
return;
}
// 如果 sum + candidates[i] > target 就终止遍历
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
sum += candidates[i];
path.push_back(candidates[i]);
backtracking(candidates, target, sum, i);
sum -= candidates[i];
path.pop_back();
}
}
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
result.clear();
path.clear();
sort(candidates.begin(), candidates.end()); // 需要排序
backtracking(candidates, target, 0, 0);
return result;
}
};
本题和我们之前讲过的回溯算法:求组合问题!、回溯算法:求组合总和!有两点不同:
- 组合没有数量要求
- 元素可无限重复选取
针对这两个问题,我都做了详细的分析。
并且给出了对于组合问题,什么时候用startIndex,什么时候不用,并用回溯算法:电话号码的字母组合做了对比。
最后还给出了本题的剪枝优化,这个优化如果是初学者的话并不容易想到。
在求和问题中,排序之后加剪枝是常见的套路!
可以看出我写的文章都会大量引用之前的文章,就是要不断作对比,分析其差异,然后给出代码解决的方法,这样才能彻底理解题目的本质与难点。
Java:
class Solution {
List<List<Integer>> lists = new ArrayList<>();
Deque<Integer> deque = new LinkedList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
int[] arr = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9};
backTracking(arr, n, k, 0);
return lists;
}
public void backTracking(int[] arr, int n, int k, int startIndex) {
//如果 n 小于0,没必要继续本次递归,已经不符合要求了
if (n < 0) {
return;
}
if (deque.size() == k) {
if (n == 0) {
lists.add(new ArrayList(deque));
}
return;
}
for (int i = startIndex; i < arr.length - (k - deque.size()) + 1; i++) {
deque.push(arr[i]);
//减去当前元素
n -= arr[i];
backTracking(arr, n, k, i + 1);
//恢复n
n += deque.pop();
}
}
}
Python:
Go: