Kruskal
算法思想及流程Prim
算法思想及流程:
就是一个求最小生成树的模板题(一般是无向图)。
- 首先各个顶点看成一个集合,每个顶点的根就是自己;
- 从整个图中边的集合中取出最小的一条(一开始对边的集合排序),判断该边的两个定点是不是同一个集合,如果不是,合并两个集合;
- 如果是同一个集合,舍弃,继续取下一条边;
- 直到集合中有
n - 1
条边为止;
时间复杂度为为O(e2), 使用并查集优化后复杂度为 O(eloge),与网中的边数有关,适用于求边稀疏的网的最小生成树
推荐写法
- 建图和上面稍有不同,
kruskal
的特性只需要用到Edge
这个类即可,对边集排序然后不断合并两个顶点即可; - 这里并查集使用的数组,和上面有点不同,但是原理都是一样的;
import java.io.BufferedInputStream;
import java.util.*;
public class Main {
static int n;
static int m;
static ArrayList<Edge> edges;
static class Edge implements Comparable<Edge> {
public int from;
public int to;
public int w;
public Edge(int from, int to, int w) {
this.from = from;
this.to = to;
this.w = w;
}
@Override
public int compareTo(Edge o) {
return w - o.w;
}
}
static class UnionSet {
private int[] parent;
private int[] rank;
public UnionSet(int n) {
parent = new int[n + 1];
rank = new int[n + 1];
for (int i = 0; i <= n; i++) {
parent[i] = i;
rank[i] = 0;
}
}
public boolean isSameSet(int x, int y) {
return find(x) == find(y);
}
public int find(int v) {
while (parent[v] != v) {
parent[v] = parent[parent[v]]; // 路径压缩优化
v = parent[v];
}
return v;
}
public void union(int a, int b) {
int aRoot = find(a);
int bRoot = find(b);
if (aRoot == bRoot)
return;
if (rank[aRoot] < rank[bRoot]) { // a更矮,所以挂到b更好
parent[aRoot] = bRoot;
} else if (rank[aRoot] > rank[bRoot]) {
parent[bRoot] = aRoot;
} else {
parent[aRoot] = bRoot;
rank[bRoot]++;
}
}
}
static int kruskal() {
Collections.sort(edges); // 对边集排序
UnionSet uset = new UnionSet(n);
int res = 0;
int count = 0;
for (int i = 0; i < edges.size(); i++) {
int from = edges.get(i).from;
int to = edges.get(i).to;
int w = edges.get(i).w;
if (!uset.isSameSet(from, to)) { //两个顶点不属于同一个集合
res += w;
count++;
if (count == n - 1)
break;
uset.union(from, to);
}
}
return count == n - 1 ? res : -1;
}
public static void main(String[] args) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
while (cin.hasNext()) {
m = cin.nextInt(); // 先输入道路条数
n = cin.nextInt();
if (m == 0)
break;
edges = new ArrayList<>();
for (int i = 0; i < m; i++) {
int from = cin.nextInt();
int to = cin.nextInt();
int w = cin.nextInt();
edges.add(new Edge(from, to, w));
edges.add(new Edge(to, from, w));
}
int res = kruskal();
System.out.println(res == -1 ? "?" : res);
}
}
}
其他写法。
import java.io.BufferedInputStream;
import java.util.*;
public class Main { //提交时改成Main
static class Node {
public int value;
ArrayList<Node> nexts;
public Node(int value) {
this.value = value;
nexts = new ArrayList<Node>();
}
}
static class Edge {
public int weight;
public Node from;
public Node to;
public Edge(Node from, Node to, int weight) {
this.from = from;
this.to = to;
this.weight = weight;
}
}
static class Graph {
public HashMap<Integer, Node> nodes;
public HashSet<Edge> edges;
public Graph() {
nodes = new HashMap<>();
edges = new HashSet<>();
}
}
//并查集结构
static class UnionSet {
public HashMap<Node, Node> faMap;
public HashMap<Node, Integer> sizeMap;
public UnionSet() {
faMap = new HashMap<>();
sizeMap = new HashMap<>();
}
//初始化
public void init(Collection<Node> nodes) {
faMap.clear();
sizeMap.clear();
for (Node node : nodes) {
faMap.put(node, node);
sizeMap.put(node, 1);
}
}
public Node findHead(Node v) {
Node fa = faMap.get(v);
if (fa != v) {
fa = findHead(fa);
}
faMap.put(v, fa); //v的父改为根(沿途所有的)
return fa;
}
public boolean isSameSet(Node a, Node b) {
return findHead(a) == findHead(b);
}
public void union(Node a, Node b) {
if (a == null || b == null) return;
Node aF = findHead(a);
Node bF = findHead(b);
if (aF == bF) return;
int aSize = sizeMap.get(a);
int bSize = sizeMap.get(b);
if (aSize >= bSize) {
faMap.put(bF, aF); //把bF挂到aF下面
sizeMap.put(aF, aSize + bSize);
} else {
faMap.put(aF, bF); //把aF挂到bF下面
sizeMap.put(bF, aSize + bSize);
}
}
}
//在优先级队列中按照边的权值升序排列
static class EdgeComparator implements Comparator<Edge> {
@Override
public int compare(Edge o1, Edge o2) { //按照边的权重升序排列
return o1.weight - o2.weight;
}
}
static Set<Edge> kruskal(Graph graph) {
UnionSet unionSet = new UnionSet();
unionSet.init(graph.nodes.values()); //初始化
PriorityQueue<Edge> priorityQueue = new PriorityQueue<Edge>(new EdgeComparator());
for (Edge edge : graph.edges) {
priorityQueue.add(edge);
}
HashSet<Edge> set = new HashSet<Edge>(); //保存这n-1条边
int cnt = 0;
while (!priorityQueue.isEmpty()) {
Edge poll = priorityQueue.poll();
if (!unionSet.isSameSet(poll.from, poll.to)) {
set.add(poll);
cnt++;
unionSet.union(poll.from, poll.to);
}
if (cnt == graph.nodes.size() - 1) break;
}
return set;
}
public static void main(String[] args) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
while (cin.hasNext()) {
int m = cin.nextInt();
int n = cin.nextInt();
if (m == 0) break;
Graph G = new Graph();
for (int i = 1; i <= n; i++) G.nodes.put(i, new Node(i));
for (int i = 0; i < m; i++) {
int from = cin.nextInt();
int to = cin.nextInt();
int w = cin.nextInt();
G.edges.add(new Edge(G.nodes.get(from), G.nodes.get(to), w));
}
Set<Edge> set = kruskal(G);
if (set.size() != n - 1) { //没有n-1条边 不足以保持畅通
System.out.println("?");
} else {
int sum = 0;
for (Edge edge : set) {
sum += edge.weight;
}
System.out.println(sum);
}
}
}
}
- 一开始也有一个集合,和
Kruskal
算法不同的是,这个不是慢慢的合并(通过并查集)变大,而是一个一个的添加结点; - 一开始选择一个起点,有一个优先队列存放边的集合,把这个结点相连的边加入优先队列;
- 然后选择一条相连的且权值最小的边,并判断这条边的终点是否已经加入过点的集合(准确的来说是看这两个点相连的边是否已经加入过集合(但是这里是用两个端点都是否进过
vis
数组替代)),如果没有,就加入,并且把这条边加入到结果集,并且解锁和它相连的边(解锁就是把边加入到优先队列) - 如果出现过,继续从优先队列中拿出最小的边判断;
- 直到结果集达到
n-1
条边,或者图不连通;
推荐写法
import java.io.BufferedInputStream;
import java.util.*;
public class Main {
static int n;
static int m;
static boolean[] vis;
static ArrayList<Edge>[] G;
static class Edge implements Comparable<Edge> {
public int to;
public int w;
public Edge(int to, int w) {
this.to = to;
this.w = w;
}
@Override
public int compareTo(Edge o) {
return w - o.w;
}
}
private static int prim(int start) {
PriorityQueue<Edge> pq = new PriorityQueue<>();
for (int i = 0; i < G[start].size(); i++)
pq.add(G[start].get(i));
int count = 0;
int res = 0;
vis[start] = true; // 起始节点已经在集合中
while (!pq.isEmpty()) {
Edge curEdge = pq.poll();
int to = curEdge.to;
if (!vis[to]) {
vis[to] = true;
count++;
res += curEdge.w;
if (count == n - 1)
break;
for (int i = 0; i < G[to].size(); i++) {
int nxtNode = G[to].get(i).to;
if (!vis[nxtNode]) // to -> nxtNode 没有加入过
pq.add(G[to].get(i)); // 将to-> nxtNode的边加入优先队列
}
}
}
if (count != n - 1)
return -1;
return res;
}
public static void main(String[] args) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
while (cin.hasNext()) {
m = cin.nextInt(); // 先输入道路条数
n = cin.nextInt();
if (m == 0)
break;
G = new ArrayList[n + 1]; // 1~n
vis = new boolean[n + 1];
for (int i = 0; i <= n; i++) {
G[i] = new ArrayList<>();
}
for (int i = 0; i < m; i++) {
int from = cin.nextInt();
int to = cin.nextInt();
int w = cin.nextInt();
G[from].add(new Edge(to, w));
G[to].add(new Edge(from, w));
}
int res = prim(1);
System.out.println(res == -1 ? "?" : res);
}
}
}
其他写法。
import java.io.BufferedInputStream;
import java.util.*;
public class Main {
static class Node {
public int value;
ArrayList<Edge> edges; //以这个点作为起点出发的边
public Node(int value) {
this.value = value;
edges = new ArrayList<>();
}
}
static class Edge {
public int weight;
public Node from;
public Node to;
public Edge(Node from, Node to, int weight) {
this.from = from;
this.to = to;
this.weight = weight;
}
}
static class Graph {
public HashMap<Integer, Node> nodes;
public HashSet<Edge> edges;
public Graph() {
nodes = new HashMap<>();
edges = new HashSet<>();
}
}
static class EdgeComparator implements Comparator<Edge> {
@Override
public int compare(Edge o1, Edge o2) { //按照边的权重升序排列
return o1.weight - o2.weight;
}
}
static Set<Edge> prim(Graph graph) {
PriorityQueue<Edge> priorityQueue = new PriorityQueue<>(new EdgeComparator());
HashSet<Edge> res = new HashSet<>();
HashSet<Node> set = new HashSet<>();
Node start = graph.nodes.get(1); //从第一个点开始
set.add(start);
for (Edge edge : start.edges) {
priorityQueue.add(edge);
}
while (!priorityQueue.isEmpty()) {
Edge poll = priorityQueue.poll();
Node toNode = poll.to; //这条边的to点
if (!set.contains(toNode)) {
set.add(toNode);
res.add(poll); //注意这个不能放在if的上面
if (res.size() == graph.nodes.size() - 1) break;
for (Edge nextEdge : toNode.edges) {
priorityQueue.add(nextEdge);
}
}
}
return res;
}
static Graph createGraph(Scanner in, int n, int m) {
Graph G = new Graph();
for (int i = 1; i <= n; i++) G.nodes.put(i, new Node(i));
for (int i = 0; i < m; i++) {
int a = in.nextInt();
int b = in.nextInt();
int w = in.nextInt();
Node from = G.nodes.get(a);
Node to = G.nodes.get(b);
Edge newEdge = new Edge(from, to, w);
G.edges.add(newEdge);
from.edges.add(newEdge); //记得添加这条边
}
return G;
}
public static void main(String[] args) {
Scanner in = new Scanner(new BufferedInputStream(System.in));
while (in.hasNext()) {
int m = in.nextInt();
int n = in.nextInt();
if (m == 0) break;
Graph G = createGraph(in, n, m);
Set<Edge> set = prim(G);
if (set.size() != n - 1) { //没有n-1条边 不足以保持畅通
System.out.println("?");
} else {
int sum = 0;
for (Edge edge : set) {
sum += edge.weight;
}
System.out.println(sum);
}
}
}
}