-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
54 lines (45 loc) · 1.86 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import streamlit as st
import pickle
import requests
movies = pickle.load(open('movies.pkl', 'rb'))
movies_list = movies['title'].values
similarity = pickle.load(open('similarity.pkl', 'rb'))
st.title('Movie Recommmender System')
selected_movie_name = st.selectbox('Choose your movie',
movies_list)
def fetch_poster(id):
url = "https://api.themoviedb.org/3/movie/{}?language=en-US"
headers = {
"accept": "application/json",
"Authorization": "Bearer eyJhbGciOiJIUzI1NiJ9.eyJhdWQiOiI2NTg0OGY2MjU5YzhmYTkzN2VlMWVhYTI3OTRhNWE0ZSIsInN1YiI6IjY2MzIxMjVhOTlkNWMzMDEyNjU2MTgxMSIsInNjb3BlcyI6WyJhcGlfcmVhZCJdLCJ2ZXJzaW9uIjoxfQ.AKuhtOtstaEEVLQekqwAbAz9YxOJ9C9KVi6ypHjvxyY"
}
response = requests.get(url.format(id), headers=headers).json()
return "https://image.tmdb.org/t/p/w500/"+response['poster_path']
def recommend(str):
index = movies[movies['title'] == str].index[0]
distances = similarity[index]
recommended_movies = []
recommended_posters = []
movie_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6]
for i in movie_list:
recommended_movies.append(movies.iloc[i[0]].title)
recommended_posters.append(fetch_poster(movies.iloc[i[0]].id))
return recommended_movies , recommended_posters
if st.button('Recommended Movies'):
names , posters = recommend(selected_movie_name)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.image(posters[0], use_column_width=True)
st.text(names[0])
with col2:
st.image(posters[1], use_column_width=True)
st.text(names[1])
with col3:
st.image(posters[2], use_column_width=True)
st.text(names[2])
with col4:
st.image(posters[3], use_column_width=True)
st.text(names[3])
with col5:
st.image(posters[4], use_column_width=True)
st.text(names[4])