This repository contains the code for the paper Taylor Swift: Taylor Driven Temporal Modeling for Swift Future Frame Prediction.
Setup a conda environment and install all project dependencies.
conda env create --name taylor --file environment.yml
activate taylor
pip install -e .
To train the MovingMNIST model, use
python core/main.py --cfg configs/moving_mnist/latest_config.yaml \
--set dataset.root <path_to_dataset>
All config parameters are described in configs/default_config.py
. You can specify parameters by
setting them in a yaml config file or by passing them after --set
(Format: --set <key1> <value1> <key2> <value2> ...
).
To evaluate a previously trained model checkpoint, use
python core/main.py --cfg configs/moving_mnist/latest_config.yaml \
--set dataset.root <path_to_dataset> eval_only True model.resume True model.model_state_path <path_to_checkpoint.pt>
If you use this code or our models, please cite our paper:
@inproceedings{taylor2022,
Author = {Saber Pourheydari, Emad Bahrami, Mohsen Fayyaz, Gianpiero Francesca, Mehdi Noroozi, Juergen Gall},
Title = {TaylorSwiftNet: Taylor Driven Temporal Modeling for Swift Future Frame Prediction},
Booktitle = {British Machine Vision Conference (BMVC)},
Year = {2022}
}
Saber Pourheydari |
Emad Bahrami |
Mohsen Fayyaz |
Felix helped us for refactoring and cleaning the original code.
Felix B. Müller |