diff --git a/module/src/server/implementation/objects/TelmateFrameGrabberOpenCVImpl.cpp b/module/src/server/implementation/objects/TelmateFrameGrabberOpenCVImpl.cpp index 00716c9..fa9e979 100644 --- a/module/src/server/implementation/objects/TelmateFrameGrabberOpenCVImpl.cpp +++ b/module/src/server/implementation/objects/TelmateFrameGrabberOpenCVImpl.cpp @@ -15,7 +15,6 @@ namespace kurento { TelmateFrameGrabberOpenCVImpl::TelmateFrameGrabberOpenCVImpl() { - this->thrLoop = true; this->snapInterval = 1000; this->epName = "EP_NAME_UNINITIALIZED"; @@ -25,11 +24,15 @@ TelmateFrameGrabberOpenCVImpl::TelmateFrameGrabberOpenCVImpl() { this->lastQueueTimeStamp = 0; this->queueLength = 0; - this->frameQueue = new boost::lockfree::queue(0); + this->frameQueue = new BlockingReaderWriterQueue(QUEUE_BASE_ALLOC); this->thr = new boost::thread(boost::bind( &TelmateFrameGrabberOpenCVImpl::queueHandler, this)); this->thr->detach(); - GST_INFO("TelmateFrameGrabberOpenCVImpl::TelmateFrameGrabberOpenCVImpl()"); + + + + + GST_INFO("FrameGrabber Constructor was called for %s", this->epName.c_str()); } @@ -37,17 +40,8 @@ TelmateFrameGrabberOpenCVImpl::~TelmateFrameGrabberOpenCVImpl() { this->thrLoop = false; - while(queueLength > 0) { - boost::this_thread::sleep_for(boost::chrono::milliseconds(10)); - - } - - delete this->frameQueue; - this->frameQueue = NULL; + GST_INFO("FrameGrabber Destructor was called for %s", this->epName.c_str()); - GST_INFO("TelmateFrameGrabberOpenCVImpl::" - "~TelmateFrameGrabberOpenCVImpl() " - "called, %s ", this->epName.c_str()); } @@ -63,7 +57,7 @@ void TelmateFrameGrabberOpenCVImpl::process(cv::Mat &mat) { VideoFrame *ptrVf = new VideoFrame(); ptrVf->mat = mat.clone(); ptrVf->ts = std::to_string(this->lastQueueTimeStamp); - this->frameQueue->push(ptrVf); + this->frameQueue->enqueue(ptrVf); ++this->queueLength; ++this->framesCounter; } @@ -81,12 +75,10 @@ void TelmateFrameGrabberOpenCVImpl::queueHandler() { std::vector params; std::string image_extension; - while (this->thrLoop) { - - if (this->queueLength > 0) { + while (this->thrLoop && this->frameQueue->wait_dequeue_timed(ptrVf,std::chrono::milliseconds(5))) { params.clear(); // clear the vector since the last iteration. - this->frameQueue->pop(ptrVf); + this->lastQueueTimeStamp = this->getCurrentTimestampLong(); --this->queueLength; switch (this->outputFormat) { @@ -128,7 +120,7 @@ void TelmateFrameGrabberOpenCVImpl::queueHandler() { cv::imwrite(fullpath.c_str(), ptrVf->mat, params); } catch (...) { - GST_ERROR("TelmateFrameGrabberOpenCVImpl::queueHandler() imgwrite() failed."); + GST_ERROR("::queueHandler() imgwrite() failed."); throw KurentoException(NOT_IMPLEMENTED, "TelmateFrameGrabberOpenCVImpl::queueHandler() imgwrite() failed. \n"); } @@ -137,16 +129,23 @@ void TelmateFrameGrabberOpenCVImpl::queueHandler() { delete ptrVf; ptrVf = NULL; - } else { - boost::this_thread::sleep(boost::posix_time::seconds(1)); - } + } + while(this->frameQueue->try_dequeue(ptrVf)) { /* Empty the queue post processing if the dtor was called */ + --this->queueLength; + delete ptrVf; + ptrVf = NULL; + + } + delete this->frameQueue; + this->frameQueue = NULL; } + std::string TelmateFrameGrabberOpenCVImpl::getCurrentTimestampString() { struct timeval tp; long int ms; @@ -160,7 +159,6 @@ std::string TelmateFrameGrabberOpenCVImpl::getCurrentTimestampString() { long TelmateFrameGrabberOpenCVImpl::getCurrentTimestampLong() { struct timeval tp; - std::stringstream sstr_ts; gettimeofday(&tp, NULL); return (tp.tv_sec * 1000 + tp.tv_usec / 1000); diff --git a/module/src/server/implementation/objects/TelmateFrameGrabberOpenCVImpl.hpp b/module/src/server/implementation/objects/TelmateFrameGrabberOpenCVImpl.hpp index ef1d9c1..0e29ba7 100644 --- a/module/src/server/implementation/objects/TelmateFrameGrabberOpenCVImpl.hpp +++ b/module/src/server/implementation/objects/TelmateFrameGrabberOpenCVImpl.hpp @@ -16,7 +16,9 @@ #include #include -#include + +#include "atomicops.h" +#include "readerwriterqueue.h" #include @@ -33,6 +35,14 @@ #define FG_JPEG_QUALITY 20 #define FG_PNG_QUALITY 9 +#define MAX_IDLE_QUEUE_TIME_NS 30000 +#define QUEUE_BASE_ALLOC 1000 + +using namespace moodycamel; + + + + namespace kurento { class TelmateFrameGrabberOpenCVImpl : public virtual OpenCVProcess { @@ -73,7 +83,8 @@ class TelmateFrameGrabberOpenCVImpl : public virtual OpenCVProcess { boost::asio::io_service ioService; boost::thread_group tp; - boost::lockfree::queue *frameQueue; + + BlockingReaderWriterQueue *frameQueue; boost::thread* thr; boost::atomic thrLoop; diff --git a/module/src/server/implementation/objects/atomicops.h b/module/src/server/implementation/objects/atomicops.h new file mode 100644 index 0000000..6432af4 --- /dev/null +++ b/module/src/server/implementation/objects/atomicops.h @@ -0,0 +1,665 @@ +// ©2013-2016 Cameron Desrochers. +// Distributed under the simplified BSD license (see the license file that +// should have come with this header). +// Uses Jeff Preshing's semaphore implementation (under the terms of its +// separate zlib license, embedded below). + +#pragma once + +// Provides portable (VC++2010+, Intel ICC 13, GCC 4.7+, and anything C++11 compliant) implementation +// of low-level memory barriers, plus a few semi-portable utility macros (for inlining and alignment). +// Also has a basic atomic type (limited to hardware-supported atomics with no memory ordering guarantees). +// Uses the AE_* prefix for macros (historical reasons), and the "moodycamel" namespace for symbols. + +#include +#include +#include +#include +#include + +// Platform detection +#if defined(__INTEL_COMPILER) +#define AE_ICC +#elif defined(_MSC_VER) +#define AE_VCPP +#elif defined(__GNUC__) +#define AE_GCC +#endif + +#if defined(_M_IA64) || defined(__ia64__) +#define AE_ARCH_IA64 +#elif defined(_WIN64) || defined(__amd64__) || defined(_M_X64) || defined(__x86_64__) +#define AE_ARCH_X64 +#elif defined(_M_IX86) || defined(__i386__) +#define AE_ARCH_X86 +#elif defined(_M_PPC) || defined(__powerpc__) +#define AE_ARCH_PPC +#else +#define AE_ARCH_UNKNOWN +#endif + + +// AE_UNUSED +#define AE_UNUSED(x) ((void)x) + + +// AE_FORCEINLINE +#if defined(AE_VCPP) || defined(AE_ICC) +#define AE_FORCEINLINE __forceinline +#elif defined(AE_GCC) +//#define AE_FORCEINLINE __attribute__((always_inline)) +#define AE_FORCEINLINE inline +#else +#define AE_FORCEINLINE inline +#endif + + +// AE_ALIGN +#if defined(AE_VCPP) || defined(AE_ICC) +#define AE_ALIGN(x) __declspec(align(x)) +#elif defined(AE_GCC) +#define AE_ALIGN(x) __attribute__((aligned(x))) +#else +// Assume GCC compliant syntax... +#define AE_ALIGN(x) __attribute__((aligned(x))) +#endif + + +// Portable atomic fences implemented below: + +namespace moodycamel { + + enum memory_order { + memory_order_relaxed, + memory_order_acquire, + memory_order_release, + memory_order_acq_rel, + memory_order_seq_cst, + + // memory_order_sync: Forces a full sync: + // #LoadLoad, #LoadStore, #StoreStore, and most significantly, #StoreLoad + memory_order_sync = memory_order_seq_cst + }; + +} // end namespace moodycamel + +#if (defined(AE_VCPP) && (_MSC_VER < 1700 || defined(__cplusplus_cli))) || defined(AE_ICC) +// VS2010 and ICC13 don't support std::atomic_*_fence, implement our own fences + +#include + +#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86) +#define AeFullSync _mm_mfence +#define AeLiteSync _mm_mfence +#elif defined(AE_ARCH_IA64) +#define AeFullSync __mf +#define AeLiteSync __mf +#elif defined(AE_ARCH_PPC) +#include +#define AeFullSync __sync +#define AeLiteSync __lwsync +#endif + + +#ifdef AE_VCPP +#pragma warning(push) +#pragma warning(disable: 4365) // Disable erroneous 'conversion from long to unsigned int, signed/unsigned mismatch' error when using `assert` +#ifdef __cplusplus_cli +#pragma managed(push, off) +#endif +#endif + +namespace moodycamel { + +AE_FORCEINLINE void compiler_fence(memory_order order) +{ + switch (order) { + case memory_order_relaxed: break; + case memory_order_acquire: _ReadBarrier(); break; + case memory_order_release: _WriteBarrier(); break; + case memory_order_acq_rel: _ReadWriteBarrier(); break; + case memory_order_seq_cst: _ReadWriteBarrier(); break; + default: assert(false); + } +} + +// x86/x64 have a strong memory model -- all loads and stores have +// acquire and release semantics automatically (so only need compiler +// barriers for those). +#if defined(AE_ARCH_X86) || defined(AE_ARCH_X64) +AE_FORCEINLINE void fence(memory_order order) +{ + switch (order) { + case memory_order_relaxed: break; + case memory_order_acquire: _ReadBarrier(); break; + case memory_order_release: _WriteBarrier(); break; + case memory_order_acq_rel: _ReadWriteBarrier(); break; + case memory_order_seq_cst: + _ReadWriteBarrier(); + AeFullSync(); + _ReadWriteBarrier(); + break; + default: assert(false); + } +} +#else +AE_FORCEINLINE void fence(memory_order order) +{ + // Non-specialized arch, use heavier memory barriers everywhere just in case :-( + switch (order) { + case memory_order_relaxed: + break; + case memory_order_acquire: + _ReadBarrier(); + AeLiteSync(); + _ReadBarrier(); + break; + case memory_order_release: + _WriteBarrier(); + AeLiteSync(); + _WriteBarrier(); + break; + case memory_order_acq_rel: + _ReadWriteBarrier(); + AeLiteSync(); + _ReadWriteBarrier(); + break; + case memory_order_seq_cst: + _ReadWriteBarrier(); + AeFullSync(); + _ReadWriteBarrier(); + break; + default: assert(false); + } +} +#endif +} // end namespace moodycamel +#else +// Use standard library of atomics +#include + +namespace moodycamel { + + AE_FORCEINLINE void compiler_fence(memory_order order) + { + switch (order) { + case memory_order_relaxed: break; + case memory_order_acquire: std::atomic_signal_fence(std::memory_order_acquire); break; + case memory_order_release: std::atomic_signal_fence(std::memory_order_release); break; + case memory_order_acq_rel: std::atomic_signal_fence(std::memory_order_acq_rel); break; + case memory_order_seq_cst: std::atomic_signal_fence(std::memory_order_seq_cst); break; + default: assert(false); + } + } + + AE_FORCEINLINE void fence(memory_order order) + { + switch (order) { + case memory_order_relaxed: break; + case memory_order_acquire: std::atomic_thread_fence(std::memory_order_acquire); break; + case memory_order_release: std::atomic_thread_fence(std::memory_order_release); break; + case memory_order_acq_rel: std::atomic_thread_fence(std::memory_order_acq_rel); break; + case memory_order_seq_cst: std::atomic_thread_fence(std::memory_order_seq_cst); break; + default: assert(false); + } + } + +} // end namespace moodycamel + +#endif + + +#if !defined(AE_VCPP) || (_MSC_VER >= 1700 && !defined(__cplusplus_cli)) +#define AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC +#endif + +#ifdef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC +#include +#endif +#include + +// WARNING: *NOT* A REPLACEMENT FOR std::atomic. READ CAREFULLY: +// Provides basic support for atomic variables -- no memory ordering guarantees are provided. +// The guarantee of atomicity is only made for types that already have atomic load and store guarantees +// at the hardware level -- on most platforms this generally means aligned pointers and integers (only). +namespace moodycamel { + template + class weak_atomic + { + public: + weak_atomic() { } +#ifdef AE_VCPP + #pragma warning(push) +#pragma warning(disable: 4100) // Get rid of (erroneous) 'unreferenced formal parameter' warning +#endif + template weak_atomic(U&& x) : value(std::forward(x)) { } +#ifdef __cplusplus_cli + // Work around bug with universal reference/nullptr combination that only appears when /clr is on + weak_atomic(nullptr_t) : value(nullptr) { } +#endif + weak_atomic(weak_atomic const& other) : value(other.value) { } + weak_atomic(weak_atomic&& other) : value(std::move(other.value)) { } +#ifdef AE_VCPP +#pragma warning(pop) +#endif + + AE_FORCEINLINE operator T() const { return load(); } + + +#ifndef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC + template AE_FORCEINLINE weak_atomic const& operator=(U&& x) { value = std::forward(x); return *this; } + AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other) { value = other.value; return *this; } + + AE_FORCEINLINE T load() const { return value; } + + AE_FORCEINLINE T fetch_add_acquire(T increment) + { +#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86) + if (sizeof(T) == 4) return _InterlockedExchangeAdd((long volatile*)&value, (long)increment); +#if defined(_M_AMD64) + else if (sizeof(T) == 8) return _InterlockedExchangeAdd64((long long volatile*)&value, (long long)increment); +#endif +#else +#error Unsupported platform +#endif + assert(false && "T must be either a 32 or 64 bit type"); + return value; + } + + AE_FORCEINLINE T fetch_add_release(T increment) + { +#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86) + if (sizeof(T) == 4) return _InterlockedExchangeAdd((long volatile*)&value, (long)increment); +#if defined(_M_AMD64) + else if (sizeof(T) == 8) return _InterlockedExchangeAdd64((long long volatile*)&value, (long long)increment); +#endif +#else +#error Unsupported platform +#endif + assert(false && "T must be either a 32 or 64 bit type"); + return value; + } +#else + template + AE_FORCEINLINE weak_atomic const& operator=(U&& x) + { + value.store(std::forward(x), std::memory_order_relaxed); + return *this; + } + + AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other) + { + value.store(other.value.load(std::memory_order_relaxed), std::memory_order_relaxed); + return *this; + } + + AE_FORCEINLINE T load() const { return value.load(std::memory_order_relaxed); } + + AE_FORCEINLINE T fetch_add_acquire(T increment) + { + return value.fetch_add(increment, std::memory_order_acquire); + } + + AE_FORCEINLINE T fetch_add_release(T increment) + { + return value.fetch_add(increment, std::memory_order_release); + } +#endif + + + private: +#ifndef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC + // No std::atomic support, but still need to circumvent compiler optimizations. + // `volatile` will make memory access slow, but is guaranteed to be reliable. + volatile T value; +#else + std::atomic value; +#endif + }; + +} // end namespace moodycamel + + + +// Portable single-producer, single-consumer semaphore below: + +#if defined(_WIN32) +// Avoid including windows.h in a header; we only need a handful of +// items, so we'll redeclare them here (this is relatively safe since +// the API generally has to remain stable between Windows versions). +// I know this is an ugly hack but it still beats polluting the global +// namespace with thousands of generic names or adding a .cpp for nothing. +extern "C" { + struct _SECURITY_ATTRIBUTES; + __declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName); + __declspec(dllimport) int __stdcall CloseHandle(void* hObject); + __declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds); + __declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount); +} +#elif defined(__MACH__) +#include +#elif defined(__unix__) +#include +#endif + +namespace moodycamel +{ + // Code in the spsc_sema namespace below is an adaptation of Jeff Preshing's + // portable + lightweight semaphore implementations, originally from + // https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h + // LICENSE: + // Copyright (c) 2015 Jeff Preshing + // + // This software is provided 'as-is', without any express or implied + // warranty. In no event will the authors be held liable for any damages + // arising from the use of this software. + // + // Permission is granted to anyone to use this software for any purpose, + // including commercial applications, and to alter it and redistribute it + // freely, subject to the following restrictions: + // + // 1. The origin of this software must not be misrepresented; you must not + // claim that you wrote the original software. If you use this software + // in a product, an acknowledgement in the product documentation would be + // appreciated but is not required. + // 2. Altered source versions must be plainly marked as such, and must not be + // misrepresented as being the original software. + // 3. This notice may not be removed or altered from any source distribution. + namespace spsc_sema + { +#if defined(_WIN32) + class Semaphore + { + private: + void* m_hSema; + + Semaphore(const Semaphore& other); + Semaphore& operator=(const Semaphore& other); + + public: + Semaphore(int initialCount = 0) + { + assert(initialCount >= 0); + const long maxLong = 0x7fffffff; + m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr); + } + + ~Semaphore() + { + CloseHandle(m_hSema); + } + + void wait() + { + const unsigned long infinite = 0xffffffff; + WaitForSingleObject(m_hSema, infinite); + } + + bool try_wait() + { + const unsigned long RC_WAIT_TIMEOUT = 0x00000102; + return WaitForSingleObject(m_hSema, 0) != RC_WAIT_TIMEOUT; + } + + bool timed_wait(std::uint64_t usecs) + { + const unsigned long RC_WAIT_TIMEOUT = 0x00000102; + return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) != RC_WAIT_TIMEOUT; + } + + void signal(int count = 1) + { + ReleaseSemaphore(m_hSema, count, nullptr); + } + }; +#elif defined(__MACH__) + //--------------------------------------------------------- + // Semaphore (Apple iOS and OSX) + // Can't use POSIX semaphores due to http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html + //--------------------------------------------------------- + class Semaphore + { + private: + semaphore_t m_sema; + + Semaphore(const Semaphore& other); + Semaphore& operator=(const Semaphore& other); + + public: + Semaphore(int initialCount = 0) + { + assert(initialCount >= 0); + semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount); + } + + ~Semaphore() + { + semaphore_destroy(mach_task_self(), m_sema); + } + + void wait() + { + semaphore_wait(m_sema); + } + + bool try_wait() + { + return timed_wait(0); + } + + bool timed_wait(std::int64_t timeout_usecs) + { + mach_timespec_t ts; + ts.tv_sec = static_cast(timeout_usecs / 1000000); + ts.tv_nsec = (timeout_usecs % 1000000) * 1000; + + // added in OSX 10.10: https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html + kern_return_t rc = semaphore_timedwait(m_sema, ts); + + return rc != KERN_OPERATION_TIMED_OUT; + } + + void signal() + { + semaphore_signal(m_sema); + } + + void signal(int count) + { + while (count-- > 0) + { + semaphore_signal(m_sema); + } + } + }; +#elif defined(__unix__) + //--------------------------------------------------------- + // Semaphore (POSIX, Linux) + //--------------------------------------------------------- + class Semaphore + { + private: + sem_t m_sema; + + Semaphore(const Semaphore& other); + Semaphore& operator=(const Semaphore& other); + + public: + Semaphore(int initialCount = 0) + { + assert(initialCount >= 0); + sem_init(&m_sema, 0, initialCount); + } + + ~Semaphore() + { + sem_destroy(&m_sema); + } + + void wait() + { + // http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error + int rc; + do + { + rc = sem_wait(&m_sema); + } + while (rc == -1 && errno == EINTR); + } + + bool try_wait() + { + int rc; + do { + rc = sem_trywait(&m_sema); + } while (rc == -1 && errno == EINTR); + return !(rc == -1 && errno == EAGAIN); + } + + bool timed_wait(std::uint64_t usecs) + { + struct timespec ts; + const int usecs_in_1_sec = 1000000; + const int nsecs_in_1_sec = 1000000000; + clock_gettime(CLOCK_REALTIME, &ts); + ts.tv_sec += usecs / usecs_in_1_sec; + ts.tv_nsec += (usecs % usecs_in_1_sec) * 1000; + // sem_timedwait bombs if you have more than 1e9 in tv_nsec + // so we have to clean things up before passing it in + if (ts.tv_nsec >= nsecs_in_1_sec) { + ts.tv_nsec -= nsecs_in_1_sec; + ++ts.tv_sec; + } + + int rc; + do { + rc = sem_timedwait(&m_sema, &ts); + } while (rc == -1 && errno == EINTR); + return !(rc == -1 && errno == ETIMEDOUT); + } + + void signal() + { + sem_post(&m_sema); + } + + void signal(int count) + { + while (count-- > 0) + { + sem_post(&m_sema); + } + } + }; +#else +#error Unsupported platform! (No semaphore wrapper available) +#endif + + //--------------------------------------------------------- + // LightweightSemaphore + //--------------------------------------------------------- + class LightweightSemaphore + { + public: + typedef std::make_signed::type ssize_t; + + private: + weak_atomic m_count; + Semaphore m_sema; + + bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1) + { + ssize_t oldCount; + // Is there a better way to set the initial spin count? + // If we lower it to 1000, testBenaphore becomes 15x slower on my Core i7-5930K Windows PC, + // as threads start hitting the kernel semaphore. + int spin = 10000; + while (--spin >= 0) + { + if (m_count.load() > 0) + { + m_count.fetch_add_acquire(-1); + return true; + } + compiler_fence(memory_order_acquire); // Prevent the compiler from collapsing the loop. + } + oldCount = m_count.fetch_add_acquire(-1); + if (oldCount > 0) + return true; + if (timeout_usecs < 0) + { + m_sema.wait(); + return true; + } + if (m_sema.timed_wait(timeout_usecs)) + return true; + // At this point, we've timed out waiting for the semaphore, but the + // count is still decremented indicating we may still be waiting on + // it. So we have to re-adjust the count, but only if the semaphore + // wasn't signaled enough times for us too since then. If it was, we + // need to release the semaphore too. + while (true) + { + oldCount = m_count.fetch_add_release(1); + if (oldCount < 0) + return false; // successfully restored things to the way they were + // Oh, the producer thread just signaled the semaphore after all. Try again: + oldCount = m_count.fetch_add_acquire(-1); + if (oldCount > 0 && m_sema.try_wait()) + return true; + } + } + + public: + LightweightSemaphore(ssize_t initialCount = 0) : m_count(initialCount) + { + assert(initialCount >= 0); + } + + bool tryWait() + { + if (m_count.load() > 0) + { + m_count.fetch_add_acquire(-1); + return true; + } + return false; + } + + void wait() + { + if (!tryWait()) + waitWithPartialSpinning(); + } + + bool wait(std::int64_t timeout_usecs) + { + return tryWait() || waitWithPartialSpinning(timeout_usecs); + } + + void signal(ssize_t count = 1) + { + assert(count >= 0); + ssize_t oldCount = m_count.fetch_add_release(count); + assert(oldCount >= -1); + if (oldCount < 0) + { + m_sema.signal(1); + } + } + + ssize_t availableApprox() const + { + ssize_t count = m_count.load(); + return count > 0 ? count : 0; + } + }; + } // end namespace spsc_sema +} // end namespace moodycamel + +#if defined(AE_VCPP) && (_MSC_VER < 1700 || defined(__cplusplus_cli)) +#pragma warning(pop) +#ifdef __cplusplus_cli +#pragma managed(pop) +#endif +#endif \ No newline at end of file diff --git a/module/src/server/implementation/objects/readerwriterqueue.h b/module/src/server/implementation/objects/readerwriterqueue.h new file mode 100644 index 0000000..3199dbd --- /dev/null +++ b/module/src/server/implementation/objects/readerwriterqueue.h @@ -0,0 +1,854 @@ +// ©2013-2016 Cameron Desrochers. +// Distributed under the simplified BSD license (see the license file that +// should have come with this header). + +#pragma once + +#include "atomicops.h" +#include +#include +#include +#include +#include +#include +#include // For malloc/free/abort & size_t +#if __cplusplus > 199711L || _MSC_VER >= 1700 // C++11 or VS2012 +#include +#endif + + +// A lock-free queue for a single-consumer, single-producer architecture. +// The queue is also wait-free in the common path (except if more memory +// needs to be allocated, in which case malloc is called). +// Allocates memory sparingly (O(lg(n) times, amortized), and only once if +// the original maximum size estimate is never exceeded. +// Tested on x86/x64 processors, but semantics should be correct for all +// architectures (given the right implementations in atomicops.h), provided +// that aligned integer and pointer accesses are naturally atomic. +// Note that there should only be one consumer thread and producer thread; +// Switching roles of the threads, or using multiple consecutive threads for +// one role, is not safe unless properly synchronized. +// Using the queue exclusively from one thread is fine, though a bit silly. + +#ifndef MOODYCAMEL_CACHE_LINE_SIZE +#define MOODYCAMEL_CACHE_LINE_SIZE 64 +#endif + +#ifndef MOODYCAMEL_EXCEPTIONS_ENABLED +#if (defined(_MSC_VER) && defined(_CPPUNWIND)) || (defined(__GNUC__) && defined(__EXCEPTIONS)) || (!defined(_MSC_VER) && !defined(__GNUC__)) +#define MOODYCAMEL_EXCEPTIONS_ENABLED +#endif +#endif + +#ifdef AE_VCPP +#pragma warning(push) +#pragma warning(disable: 4324) // structure was padded due to __declspec(align()) +#pragma warning(disable: 4820) // padding was added +#pragma warning(disable: 4127) // conditional expression is constant +#endif + +namespace moodycamel { + + template + class ReaderWriterQueue + { + // Design: Based on a queue-of-queues. The low-level queues are just + // circular buffers with front and tail indices indicating where the + // next element to dequeue is and where the next element can be enqueued, + // respectively. Each low-level queue is called a "block". Each block + // wastes exactly one element's worth of space to keep the design simple + // (if front == tail then the queue is empty, and can't be full). + // The high-level queue is a circular linked list of blocks; again there + // is a front and tail, but this time they are pointers to the blocks. + // The front block is where the next element to be dequeued is, provided + // the block is not empty. The back block is where elements are to be + // enqueued, provided the block is not full. + // The producer thread owns all the tail indices/pointers. The consumer + // thread owns all the front indices/pointers. Both threads read each + // other's variables, but only the owning thread updates them. E.g. After + // the consumer reads the producer's tail, the tail may change before the + // consumer is done dequeuing an object, but the consumer knows the tail + // will never go backwards, only forwards. + // If there is no room to enqueue an object, an additional block (of + // equal size to the last block) is added. Blocks are never removed. + + public: + // Constructs a queue that can hold maxSize elements without further + // allocations. If more than MAX_BLOCK_SIZE elements are requested, + // then several blocks of MAX_BLOCK_SIZE each are reserved (including + // at least one extra buffer block). + explicit ReaderWriterQueue(size_t maxSize = 15) +#ifndef NDEBUG + : enqueuing(false) + ,dequeuing(false) +#endif + { + assert(maxSize > 0); + assert(MAX_BLOCK_SIZE == ceilToPow2(MAX_BLOCK_SIZE) && "MAX_BLOCK_SIZE must be a power of 2"); + assert(MAX_BLOCK_SIZE >= 2 && "MAX_BLOCK_SIZE must be at least 2"); + + Block* firstBlock = nullptr; + + largestBlockSize = ceilToPow2(maxSize + 1); // We need a spare slot to fit maxSize elements in the block + if (largestBlockSize > MAX_BLOCK_SIZE * 2) { + // We need a spare block in case the producer is writing to a different block the consumer is reading from, and + // wants to enqueue the maximum number of elements. We also need a spare element in each block to avoid the ambiguity + // between front == tail meaning "empty" and "full". + // So the effective number of slots that are guaranteed to be usable at any time is the block size - 1 times the + // number of blocks - 1. Solving for maxSize and applying a ceiling to the division gives us (after simplifying): + size_t initialBlockCount = (maxSize + MAX_BLOCK_SIZE * 2 - 3) / (MAX_BLOCK_SIZE - 1); + largestBlockSize = MAX_BLOCK_SIZE; + Block* lastBlock = nullptr; + for (size_t i = 0; i != initialBlockCount; ++i) { + auto block = make_block(largestBlockSize); + if (block == nullptr) { +#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED + throw std::bad_alloc(); +#else + abort(); +#endif + } + if (firstBlock == nullptr) { + firstBlock = block; + } + else { + lastBlock->next = block; + } + lastBlock = block; + block->next = firstBlock; + } + } + else { + firstBlock = make_block(largestBlockSize); + if (firstBlock == nullptr) { +#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED + throw std::bad_alloc(); +#else + abort(); +#endif + } + firstBlock->next = firstBlock; + } + frontBlock = firstBlock; + tailBlock = firstBlock; + + // Make sure the reader/writer threads will have the initialized memory setup above: + fence(memory_order_sync); + } + + // Note: The queue should not be accessed concurrently while it's + // being moved. It's up to the user to synchronize this. + ReaderWriterQueue(ReaderWriterQueue&& other) + : frontBlock(other.frontBlock.load()), + tailBlock(other.tailBlock.load()), + largestBlockSize(other.largestBlockSize) +#ifndef NDEBUG + ,enqueuing(false) + ,dequeuing(false) +#endif + { + other.largestBlockSize = 32; + Block* b = other.make_block(other.largestBlockSize); + if (b == nullptr) { +#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED + throw std::bad_alloc(); +#else + abort(); +#endif + } + b->next = b; + other.frontBlock = b; + other.tailBlock = b; + } + + // Note: The queue should not be accessed concurrently while it's + // being moved. It's up to the user to synchronize this. + ReaderWriterQueue& operator=(ReaderWriterQueue&& other) + { + Block* b = frontBlock.load(); + frontBlock = other.frontBlock.load(); + other.frontBlock = b; + b = tailBlock.load(); + tailBlock = other.tailBlock.load(); + other.tailBlock = b; + std::swap(largestBlockSize, other.largestBlockSize); + return *this; + } + + // Note: The queue should not be accessed concurrently while it's + // being deleted. It's up to the user to synchronize this. + ~ReaderWriterQueue() + { + // Make sure we get the latest version of all variables from other CPUs: + fence(memory_order_sync); + + // Destroy any remaining objects in queue and free memory + Block* frontBlock_ = frontBlock; + Block* block = frontBlock_; + do { + Block* nextBlock = block->next; + size_t blockFront = block->front; + size_t blockTail = block->tail; + + for (size_t i = blockFront; i != blockTail; i = (i + 1) & block->sizeMask) { + auto element = reinterpret_cast(block->data + i * sizeof(T)); + element->~T(); + (void)element; + } + + auto rawBlock = block->rawThis; + block->~Block(); + std::free(rawBlock); + block = nextBlock; + } while (block != frontBlock_); + } + + + // Enqueues a copy of element if there is room in the queue. + // Returns true if the element was enqueued, false otherwise. + // Does not allocate memory. + AE_FORCEINLINE bool try_enqueue(T const& element) + { + return inner_enqueue(element); + } + + // Enqueues a moved copy of element if there is room in the queue. + // Returns true if the element was enqueued, false otherwise. + // Does not allocate memory. + AE_FORCEINLINE bool try_enqueue(T&& element) + { + return inner_enqueue(std::forward(element)); + } + + + // Enqueues a copy of element on the queue. + // Allocates an additional block of memory if needed. + // Only fails (returns false) if memory allocation fails. + AE_FORCEINLINE bool enqueue(T const& element) + { + return inner_enqueue(element); + } + + // Enqueues a moved copy of element on the queue. + // Allocates an additional block of memory if needed. + // Only fails (returns false) if memory allocation fails. + AE_FORCEINLINE bool enqueue(T&& element) + { + return inner_enqueue(std::forward(element)); + } + + + // Attempts to dequeue an element; if the queue is empty, + // returns false instead. If the queue has at least one element, + // moves front to result using operator=, then returns true. + template + bool try_dequeue(U& result) + { +#ifndef NDEBUG + ReentrantGuard guard(this->dequeuing); +#endif + + // High-level pseudocode: + // Remember where the tail block is + // If the front block has an element in it, dequeue it + // Else + // If front block was the tail block when we entered the function, return false + // Else advance to next block and dequeue the item there + + // Note that we have to use the value of the tail block from before we check if the front + // block is full or not, in case the front block is empty and then, before we check if the + // tail block is at the front block or not, the producer fills up the front block *and + // moves on*, which would make us skip a filled block. Seems unlikely, but was consistently + // reproducible in practice. + // In order to avoid overhead in the common case, though, we do a double-checked pattern + // where we have the fast path if the front block is not empty, then read the tail block, + // then re-read the front block and check if it's not empty again, then check if the tail + // block has advanced. + + Block* frontBlock_ = frontBlock.load(); + size_t blockTail = frontBlock_->localTail; + size_t blockFront = frontBlock_->front.load(); + + if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) { + fence(memory_order_acquire); + + non_empty_front_block: + // Front block not empty, dequeue from here + auto element = reinterpret_cast(frontBlock_->data + blockFront * sizeof(T)); + result = std::move(*element); + element->~T(); + + blockFront = (blockFront + 1) & frontBlock_->sizeMask; + + fence(memory_order_release); + frontBlock_->front = blockFront; + } + else if (frontBlock_ != tailBlock.load()) { + fence(memory_order_acquire); + + frontBlock_ = frontBlock.load(); + blockTail = frontBlock_->localTail = frontBlock_->tail.load(); + blockFront = frontBlock_->front.load(); + fence(memory_order_acquire); + + if (blockFront != blockTail) { + // Oh look, the front block isn't empty after all + goto non_empty_front_block; + } + + // Front block is empty but there's another block ahead, advance to it + Block* nextBlock = frontBlock_->next; + // Don't need an acquire fence here since next can only ever be set on the tailBlock, + // and we're not the tailBlock, and we did an acquire earlier after reading tailBlock which + // ensures next is up-to-date on this CPU in case we recently were at tailBlock. + + size_t nextBlockFront = nextBlock->front.load(); + size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load(); + fence(memory_order_acquire); + + // Since the tailBlock is only ever advanced after being written to, + // we know there's for sure an element to dequeue on it + assert(nextBlockFront != nextBlockTail); + AE_UNUSED(nextBlockTail); + + // We're done with this block, let the producer use it if it needs + fence(memory_order_release); // Expose possibly pending changes to frontBlock->front from last dequeue + frontBlock = frontBlock_ = nextBlock; + + compiler_fence(memory_order_release); // Not strictly needed + + auto element = reinterpret_cast(frontBlock_->data + nextBlockFront * sizeof(T)); + + result = std::move(*element); + element->~T(); + + nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask; + + fence(memory_order_release); + frontBlock_->front = nextBlockFront; + } + else { + // No elements in current block and no other block to advance to + return false; + } + + return true; + } + + + // Returns a pointer to the front element in the queue (the one that + // would be removed next by a call to `try_dequeue` or `pop`). If the + // queue appears empty at the time the method is called, nullptr is + // returned instead. + // Must be called only from the consumer thread. + T* peek() + { +#ifndef NDEBUG + ReentrantGuard guard(this->dequeuing); +#endif + // See try_dequeue() for reasoning + + Block* frontBlock_ = frontBlock.load(); + size_t blockTail = frontBlock_->localTail; + size_t blockFront = frontBlock_->front.load(); + + if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) { + fence(memory_order_acquire); + non_empty_front_block: + return reinterpret_cast(frontBlock_->data + blockFront * sizeof(T)); + } + else if (frontBlock_ != tailBlock.load()) { + fence(memory_order_acquire); + frontBlock_ = frontBlock.load(); + blockTail = frontBlock_->localTail = frontBlock_->tail.load(); + blockFront = frontBlock_->front.load(); + fence(memory_order_acquire); + + if (blockFront != blockTail) { + goto non_empty_front_block; + } + + Block* nextBlock = frontBlock_->next; + + size_t nextBlockFront = nextBlock->front.load(); + fence(memory_order_acquire); + + assert(nextBlockFront != nextBlock->tail.load()); + return reinterpret_cast(nextBlock->data + nextBlockFront * sizeof(T)); + } + + return nullptr; + } + + // Removes the front element from the queue, if any, without returning it. + // Returns true on success, or false if the queue appeared empty at the time + // `pop` was called. + bool pop() + { +#ifndef NDEBUG + ReentrantGuard guard(this->dequeuing); +#endif + // See try_dequeue() for reasoning + + Block* frontBlock_ = frontBlock.load(); + size_t blockTail = frontBlock_->localTail; + size_t blockFront = frontBlock_->front.load(); + + if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) { + fence(memory_order_acquire); + + non_empty_front_block: + auto element = reinterpret_cast(frontBlock_->data + blockFront * sizeof(T)); + element->~T(); + + blockFront = (blockFront + 1) & frontBlock_->sizeMask; + + fence(memory_order_release); + frontBlock_->front = blockFront; + } + else if (frontBlock_ != tailBlock.load()) { + fence(memory_order_acquire); + frontBlock_ = frontBlock.load(); + blockTail = frontBlock_->localTail = frontBlock_->tail.load(); + blockFront = frontBlock_->front.load(); + fence(memory_order_acquire); + + if (blockFront != blockTail) { + goto non_empty_front_block; + } + + // Front block is empty but there's another block ahead, advance to it + Block* nextBlock = frontBlock_->next; + + size_t nextBlockFront = nextBlock->front.load(); + size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load(); + fence(memory_order_acquire); + + assert(nextBlockFront != nextBlockTail); + AE_UNUSED(nextBlockTail); + + fence(memory_order_release); + frontBlock = frontBlock_ = nextBlock; + + compiler_fence(memory_order_release); + + auto element = reinterpret_cast(frontBlock_->data + nextBlockFront * sizeof(T)); + element->~T(); + + nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask; + + fence(memory_order_release); + frontBlock_->front = nextBlockFront; + } + else { + // No elements in current block and no other block to advance to + return false; + } + + return true; + } + + // Returns the approximate number of items currently in the queue. + // Safe to call from both the producer and consumer threads. + inline size_t size_approx() const + { + size_t result = 0; + Block* frontBlock_ = frontBlock.load(); + Block* block = frontBlock_; + do { + fence(memory_order_acquire); + size_t blockFront = block->front.load(); + size_t blockTail = block->tail.load(); + result += (blockTail - blockFront) & block->sizeMask; + block = block->next.load(); + } while (block != frontBlock_); + return result; + } + + + private: + enum AllocationMode { CanAlloc, CannotAlloc }; + + template + bool inner_enqueue(U&& element) + { +#ifndef NDEBUG + ReentrantGuard guard(this->enqueuing); +#endif + + // High-level pseudocode (assuming we're allowed to alloc a new block): + // If room in tail block, add to tail + // Else check next block + // If next block is not the head block, enqueue on next block + // Else create a new block and enqueue there + // Advance tail to the block we just enqueued to + + Block* tailBlock_ = tailBlock.load(); + size_t blockFront = tailBlock_->localFront; + size_t blockTail = tailBlock_->tail.load(); + + size_t nextBlockTail = (blockTail + 1) & tailBlock_->sizeMask; + if (nextBlockTail != blockFront || nextBlockTail != (tailBlock_->localFront = tailBlock_->front.load())) { + fence(memory_order_acquire); + // This block has room for at least one more element + char* location = tailBlock_->data + blockTail * sizeof(T); + new (location) T(std::forward(element)); + + fence(memory_order_release); + tailBlock_->tail = nextBlockTail; + } + else { + fence(memory_order_acquire); + if (tailBlock_->next.load() != frontBlock) { + // Note that the reason we can't advance to the frontBlock and start adding new entries there + // is because if we did, then dequeue would stay in that block, eventually reading the new values, + // instead of advancing to the next full block (whose values were enqueued first and so should be + // consumed first). + + fence(memory_order_acquire); // Ensure we get latest writes if we got the latest frontBlock + + // tailBlock is full, but there's a free block ahead, use it + Block* tailBlockNext = tailBlock_->next.load(); + size_t nextBlockFront = tailBlockNext->localFront = tailBlockNext->front.load(); + nextBlockTail = tailBlockNext->tail.load(); + fence(memory_order_acquire); + + // This block must be empty since it's not the head block and we + // go through the blocks in a circle + assert(nextBlockFront == nextBlockTail); + tailBlockNext->localFront = nextBlockFront; + + char* location = tailBlockNext->data + nextBlockTail * sizeof(T); + new (location) T(std::forward(element)); + + tailBlockNext->tail = (nextBlockTail + 1) & tailBlockNext->sizeMask; + + fence(memory_order_release); + tailBlock = tailBlockNext; + } + else if (canAlloc == CanAlloc) { + // tailBlock is full and there's no free block ahead; create a new block + auto newBlockSize = largestBlockSize >= MAX_BLOCK_SIZE ? largestBlockSize : largestBlockSize * 2; + auto newBlock = make_block(newBlockSize); + if (newBlock == nullptr) { + // Could not allocate a block! + return false; + } + largestBlockSize = newBlockSize; + + new (newBlock->data) T(std::forward(element)); + + assert(newBlock->front == 0); + newBlock->tail = newBlock->localTail = 1; + + newBlock->next = tailBlock_->next.load(); + tailBlock_->next = newBlock; + + // Might be possible for the dequeue thread to see the new tailBlock->next + // *without* seeing the new tailBlock value, but this is OK since it can't + // advance to the next block until tailBlock is set anyway (because the only + // case where it could try to read the next is if it's already at the tailBlock, + // and it won't advance past tailBlock in any circumstance). + + fence(memory_order_release); + tailBlock = newBlock; + } + else if (canAlloc == CannotAlloc) { + // Would have had to allocate a new block to enqueue, but not allowed + return false; + } + else { + assert(false && "Should be unreachable code"); + return false; + } + } + + return true; + } + + + // Disable copying + ReaderWriterQueue(ReaderWriterQueue const&) { } + + // Disable assignment + ReaderWriterQueue& operator=(ReaderWriterQueue const&) { } + + + + AE_FORCEINLINE static size_t ceilToPow2(size_t x) + { + // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 + --x; + x |= x >> 1; + x |= x >> 2; + x |= x >> 4; + for (size_t i = 1; i < sizeof(size_t); i <<= 1) { + x |= x >> (i << 3); + } + ++x; + return x; + } + + template + static AE_FORCEINLINE char* align_for(char* ptr) + { + const std::size_t alignment = std::alignment_of::value; + return ptr + (alignment - (reinterpret_cast(ptr) % alignment)) % alignment; + } + private: +#ifndef NDEBUG + struct ReentrantGuard + { + ReentrantGuard(bool& _inSection) + : inSection(_inSection) + { + assert(!inSection && "ReaderWriterQueue does not support enqueuing or dequeuing elements from other elements' ctors and dtors"); + inSection = true; + } + + ~ReentrantGuard() { inSection = false; } + + private: + ReentrantGuard& operator=(ReentrantGuard const&); + + private: + bool& inSection; + }; +#endif + + struct Block + { + // Avoid false-sharing by putting highly contended variables on their own cache lines + weak_atomic front; // (Atomic) Elements are read from here + size_t localTail; // An uncontended shadow copy of tail, owned by the consumer + + char cachelineFiller0[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic) - sizeof(size_t)]; + weak_atomic tail; // (Atomic) Elements are enqueued here + size_t localFront; + + char cachelineFiller1[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic) - sizeof(size_t)]; // next isn't very contended, but we don't want it on the same cache line as tail (which is) + weak_atomic next; // (Atomic) + + char* data; // Contents (on heap) are aligned to T's alignment + + const size_t sizeMask; + + + // size must be a power of two (and greater than 0) + Block(size_t const& _size, char* _rawThis, char* _data) + : front(0), localTail(0), tail(0), localFront(0), next(nullptr), data(_data), sizeMask(_size - 1), rawThis(_rawThis) + { + } + + private: + // C4512 - Assignment operator could not be generated + Block& operator=(Block const&); + + public: + char* rawThis; + }; + + + static Block* make_block(size_t capacity) + { + // Allocate enough memory for the block itself, as well as all the elements it will contain + auto size = sizeof(Block) + std::alignment_of::value - 1; + size += sizeof(T) * capacity + std::alignment_of::value - 1; + auto newBlockRaw = static_cast(std::malloc(size)); + if (newBlockRaw == nullptr) { + return nullptr; + } + + auto newBlockAligned = align_for(newBlockRaw); + auto newBlockData = align_for(newBlockAligned + sizeof(Block)); + return new (newBlockAligned) Block(capacity, newBlockRaw, newBlockData); + } + + private: + weak_atomic frontBlock; // (Atomic) Elements are enqueued to this block + + char cachelineFiller[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic)]; + weak_atomic tailBlock; // (Atomic) Elements are dequeued from this block + + size_t largestBlockSize; + +#ifndef NDEBUG + bool enqueuing; + bool dequeuing; +#endif + }; + +// Like ReaderWriterQueue, but also providees blocking operations + template + class BlockingReaderWriterQueue + { + private: + typedef ::moodycamel::ReaderWriterQueue ReaderWriterQueue; + + public: + explicit BlockingReaderWriterQueue(size_t maxSize = 15) + : inner(maxSize) + { } + + + // Enqueues a copy of element if there is room in the queue. + // Returns true if the element was enqueued, false otherwise. + // Does not allocate memory. + AE_FORCEINLINE bool try_enqueue(T const& element) + { + if (inner.try_enqueue(element)) { + sema.signal(); + return true; + } + return false; + } + + // Enqueues a moved copy of element if there is room in the queue. + // Returns true if the element was enqueued, false otherwise. + // Does not allocate memory. + AE_FORCEINLINE bool try_enqueue(T&& element) + { + if (inner.try_enqueue(std::forward(element))) { + sema.signal(); + return true; + } + return false; + } + + + // Enqueues a copy of element on the queue. + // Allocates an additional block of memory if needed. + // Only fails (returns false) if memory allocation fails. + AE_FORCEINLINE bool enqueue(T const& element) + { + if (inner.enqueue(element)) { + sema.signal(); + return true; + } + return false; + } + + // Enqueues a moved copy of element on the queue. + // Allocates an additional block of memory if needed. + // Only fails (returns false) if memory allocation fails. + AE_FORCEINLINE bool enqueue(T&& element) + { + if (inner.enqueue(std::forward(element))) { + sema.signal(); + return true; + } + return false; + } + + + // Attempts to dequeue an element; if the queue is empty, + // returns false instead. If the queue has at least one element, + // moves front to result using operator=, then returns true. + template + bool try_dequeue(U& result) + { + if (sema.tryWait()) { + bool success = inner.try_dequeue(result); + assert(success); + AE_UNUSED(success); + return true; + } + return false; + } + + + // Attempts to dequeue an element; if the queue is empty, + // waits until an element is available, then dequeues it. + template + void wait_dequeue(U& result) + { + sema.wait(); + bool success = inner.try_dequeue(result); + AE_UNUSED(result); + assert(success); + AE_UNUSED(success); + } + + + // Attempts to dequeue an element; if the queue is empty, + // waits until an element is available up to the specified timeout, + // then dequeues it and returns true, or returns false if the timeout + // expires before an element can be dequeued. + // Using a negative timeout indicates an indefinite timeout, + // and is thus functionally equivalent to calling wait_dequeue. + template + bool wait_dequeue_timed(U& result, std::int64_t timeout_usecs) + { + if (!sema.wait(timeout_usecs)) { + return false; + } + bool success = inner.try_dequeue(result); + AE_UNUSED(result); + assert(success); + AE_UNUSED(success); + return true; + } + + +#if __cplusplus > 199711L || _MSC_VER >= 1700 + // Attempts to dequeue an element; if the queue is empty, + // waits until an element is available up to the specified timeout, + // then dequeues it and returns true, or returns false if the timeout + // expires before an element can be dequeued. + // Using a negative timeout indicates an indefinite timeout, + // and is thus functionally equivalent to calling wait_dequeue. + template + inline bool wait_dequeue_timed(U& result, std::chrono::duration const& timeout) + { + return wait_dequeue_timed(result, std::chrono::duration_cast(timeout).count()); + } +#endif + + + // Returns a pointer to the front element in the queue (the one that + // would be removed next by a call to `try_dequeue` or `pop`). If the + // queue appears empty at the time the method is called, nullptr is + // returned instead. + // Must be called only from the consumer thread. + AE_FORCEINLINE T* peek() + { + return inner.peek(); + } + + // Removes the front element from the queue, if any, without returning it. + // Returns true on success, or false if the queue appeared empty at the time + // `pop` was called. + AE_FORCEINLINE bool pop() + { + if (sema.tryWait()) { + bool result = inner.pop(); + assert(result); + AE_UNUSED(result); + return true; + } + return false; + } + + // Returns the approximate number of items currently in the queue. + // Safe to call from both the producer and consumer threads. + AE_FORCEINLINE size_t size_approx() const + { + return sema.availableApprox(); + } + + + private: + // Disable copying & assignment + BlockingReaderWriterQueue(ReaderWriterQueue const&) { } + BlockingReaderWriterQueue& operator=(ReaderWriterQueue const&) { } + + private: + ReaderWriterQueue inner; + spsc_sema::LightweightSemaphore sema; + }; + +} // end namespace moodycamel + +#ifdef AE_VCPP +#pragma warning(pop) +#endif \ No newline at end of file