From 41be5d43d47b85ed5875d48b00d6b1f41b7ef384 Mon Sep 17 00:00:00 2001 From: Xintao Date: Fri, 6 Aug 2021 17:18:09 +0800 Subject: [PATCH 1/2] update readme --- PaperModel.md | 74 +++++++++++++ README.md | 106 ++++++++---------- README_CN.md | 103 ------------------ train_gfpgan_v1.yml | 8 +- train_gfpgan_v1_simple.yml | 216 +++++++++++++++++++++++++++++++++++++ 5 files changed, 341 insertions(+), 166 deletions(-) create mode 100644 PaperModel.md delete mode 100644 README_CN.md create mode 100644 train_gfpgan_v1_simple.yml diff --git a/PaperModel.md b/PaperModel.md new file mode 100644 index 00000000..00f500fe --- /dev/null +++ b/PaperModel.md @@ -0,0 +1,74 @@ +# Installation + +We now provide a *clean* version of GFPGAN, which does not require customized CUDA extensions. See [here](README.md#installation) for this easier installation.
+If you want want to use the original model in our paper, please follow the instructions below. + +1. Clone repo + + ```bash + git clone https://github.com/xinntao/GFPGAN.git + cd GFPGAN + ``` + +1. Install dependent packages + + As StyleGAN2 uses customized PyTorch C++ extensions, you need to **compile them during installation** or **load them just-in-time(JIT)**. + You can refer to [BasicSR-INSTALL.md](https://github.com/xinntao/BasicSR/blob/master/INSTALL.md) for more details. + + **Option 1: Load extensions just-in-time(JIT)** (For those just want to do simple inferences, may have less issues) + + ```bash + # Install basicsr - https://github.com/xinntao/BasicSR + # We use BasicSR for both training and inference + pip install basicsr + + # Install facexlib - https://github.com/xinntao/facexlib + # We use face detection and face restoration helper in the facexlib package + pip install facexlib + + pip install -r requirements.txt + + # remember to set BASICSR_JIT=True before your running commands + ``` + + **Option 2: Compile extensions during installation** (For those need to train/inference for many times) + + ```bash + # Install basicsr - https://github.com/xinntao/BasicSR + # We use BasicSR for both training and inference + # Set BASICSR_EXT=True to compile the cuda extensions in the BasicSR - It may take several minutes to compile, please be patient + # Add -vvv for detailed log prints + BASICSR_EXT=True pip install basicsr -vvv + + # Install facexlib - https://github.com/xinntao/facexlib + # We use face detection and face restoration helper in the facexlib package + pip install facexlib + + pip install -r requirements.txt + ``` + +## :zap: Quick Inference + +Download pre-trained models: [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth) + +```bash +wget https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth -P experiments/pretrained_models +``` + +- Option 1: Load extensions just-in-time(JIT) + + ```bash + BASICSR_JIT=True python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs --save_root results --arch original --channel 1 + + # for aligned images + BASICSR_JIT=True python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs --save_root results --arch original --channel 1 --aligned + ``` + +- Option 2: Have successfully compiled extensions during installation + + ```bash + python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs --save_root results --arch original --channel 1 + + # for aligned images + python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs --save_root results --arch original --channel 1 --aligned + ``` diff --git a/README.md b/README.md index c7263bfe..03823aa5 100644 --- a/README.md +++ b/README.md @@ -5,31 +5,25 @@ [![LICENSE](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/TencentARC/GFPGAN/blob/master/LICENSE) [![python lint](https://github.com/TencentARC/GFPGAN/actions/workflows/pylint.yml/badge.svg)](https://github.com/TencentARC/GFPGAN/blob/master/.github/workflows/pylint.yml) -[**Paper**](https://arxiv.org/abs/2101.04061) **|** [**Project Page**](https://xinntao.github.io/projects/gfpgan)    [English](README.md) **|** [简体中文](README_CN.md) +[**Paper**](https://arxiv.org/abs/2101.04061) **|** [**Project Page**](https://xinntao.github.io/projects/gfpgan) -GFPGAN is a blind face restoration algorithm towards real-world face images. +1. [Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo) for GFPGAN google colab logo +1. We provide a '*clean*' version of GFPGAN, which can run without CUDA extensions. So that it can run in Windows or on CPU mode. -google colab logo -[Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo) +GFPGAN aims at developing **Practical Algorithm for Real-world Face Restoration**.
+It leverages rich and diverse priors encapsulated in a pretrained face GAN (*e.g.*, StyleGAN2) for blind face restoration. + +:triangular_flag_on_post: **Updates** + +- :white_check_mark: We provide a *clean* version of GFPGAN, which does not require CUDA extensionts. +- :white_check_mark: We provide an updated model without colorizing faces. ### :book: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior + > [[Paper](https://arxiv.org/abs/2101.04061)]   [[Project Page](https://xinntao.github.io/projects/gfpgan)]   [Demo]
> [Xintao Wang](https://xinntao.github.io/), [Yu Li](https://yu-li.github.io/), [Honglun Zhang](https://scholar.google.com/citations?hl=en&user=KjQLROoAAAAJ), [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en)
> Applied Research Center (ARC), Tencent PCG -#### Abstract - -Blind face restoration usually relies on facial priors, such as facial geometry prior or reference prior, to restore realistic and faithful details. However, very low-quality inputs cannot offer accurate geometric prior while high-quality references are inaccessible, limiting the applicability in real-world scenarios. In this work, we propose GFP-GAN that leverages **rich and diverse priors encapsulated in a pretrained face GAN** for blind face restoration. This Generative Facial Prior (GFP) is incorporated into the face restoration process via novel channel-split spatial feature transform layers, which allow our method to achieve a good balance of realness and fidelity. Thanks to the powerful generative facial prior and delicate designs, our GFP-GAN could jointly restore facial details and enhance colors with just a single forward pass, while GAN inversion methods require expensive image-specific optimization at inference. Extensive experiments show that our method achieves superior performance to prior art on both synthetic and real-world datasets. - -#### BibTeX - - @InProceedings{wang2021gfpgan, - author = {Xintao Wang and Yu Li and Honglun Zhang and Ying Shan}, - title = {Towards Real-World Blind Face Restoration with Generative Facial Prior}, - booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, - year = {2021} - } -

@@ -40,11 +34,14 @@ Blind face restoration usually relies on facial priors, such as facial geometry - Python >= 3.7 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html)) - [PyTorch >= 1.7](https://pytorch.org/) -- NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads) -- Linux (We have not tested on Windows) +- Option: NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads) +- Option: Linux (We have not tested on Windows) ### Installation +We now provide a *clean* version of GFPGAN, which does not require customized CUDA extensions.
+If you want want to use the original model in our paper, please see [PaperModel.md](Installation.md) for installation. + 1. Clone repo ```bash @@ -54,11 +51,6 @@ Blind face restoration usually relies on facial priors, such as facial geometry 1. Install dependent packages - As StyleGAN2 uses customized PyTorch C++ extensions, you need to **compile them during installation** or **load then just-in-time(JIT)**. - You can refer to [BasicSR-INSTALL.md](https://github.com/xinntao/BasicSR/blob/master/INSTALL.md) for more details. - - **Option 1: Load extensions just-in-time(JIT)** (For those just want to do simple inferences, may have less issues) - ```bash # Install basicsr - https://github.com/xinntao/BasicSR # We use BasicSR for both training and inference @@ -69,56 +61,41 @@ Blind face restoration usually relies on facial priors, such as facial geometry pip install facexlib pip install -r requirements.txt - - # remember to set BASICSR_JIT=True before your running commands ``` - **Option 2: Compile extensions during installation** (For those need to train/inference for many times) - - ```bash - # Install basicsr - https://github.com/xinntao/BasicSR - # We use BasicSR for both training and inference - # Set BASICSR_EXT=True to compile the cuda extensions in the BasicSR - It may take several minutes to compile, please be patient - # Add -vvv for detailed log prints - BASICSR_EXT=True pip install basicsr -vvv - - # Install facexlib - https://github.com/xinntao/facexlib - # We use face detection and face restoration helper in the facexlib package - pip install facexlib +## :zap: Quick Inference - pip install -r requirements.txt - ``` +Download pre-trained models: [GFPGANCleanv1-NoCE-C2.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth) -## :zap: Quick Inference +```bash +wget https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth -P experiments/pretrained_models +``` -Download pre-trained models: [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth) +**Inference!** ```bash -wget https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth -P experiments/pretrained_models +python inference_gfpgan_full.py --upscale_factor 2 --test_path inputs/whole_imgs --save_root results ``` -- Option 1: Load extensions just-in-time(JIT) +## :european_castle: Model Zoo - ```bash - BASICSR_JIT=True python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs +- [GFPGANCleanv1-NoCE-C2.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth) +- [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth) - # for aligned images - BASICSR_JIT=True python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/cropped_faces --aligned - ``` +## :computer: Training -- Option 2: Have successfully compiled extensions during installation +We provide the training codes for GFPGAN (used in our paper).
+You could improve it according to your own needs. - ```bash - python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs +Tips: - # for aligned images - python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/cropped_faces --aligned - ``` +1. More high quality faces can improve the restoration quality. +2. You may need to perform some pre-processing, such as beauty makeup. -## :computer: Training -We provide complete training codes for GFPGAN.
-You could improve it according to your own needs. +**Procedures**:
+ +(You can try a simple version that does not require face component landmarks.) 1. Dataset preparation: [FFHQ](https://github.com/NVlabs/ffhq-dataset) @@ -133,13 +110,18 @@ You could improve it according to your own needs. > python -m torch.distributed.launch --nproc_per_node=4 --master_port=22021 train.py -opt train_gfpgan_v1.yml --launcher pytorch -or load extensions just-in-time(JIT) +## :scroll: License and Acknowledgement -> BASICSR_JIT=True python -m torch.distributed.launch --nproc_per_node=4 --master_port=22021 train.py -opt train_gfpgan_v1.yml --launcher pytorch +GFPGAN is released under Apache License Version 2.0. -## :scroll: License and Acknowledgement +## BibTeX -GFPGAN is realeased under Apache License Version 2.0. + @InProceedings{wang2021gfpgan, + author = {Xintao Wang and Yu Li and Honglun Zhang and Ying Shan}, + title = {Towards Real-World Blind Face Restoration with Generative Facial Prior}, + booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, + year = {2021} + } ## :e-mail: Contact diff --git a/README_CN.md b/README_CN.md deleted file mode 100644 index 462fed3f..00000000 --- a/README_CN.md +++ /dev/null @@ -1,103 +0,0 @@ -# GFPGAN (CVPR 2021) - -[**Paper**](https://arxiv.org/abs/2101.04061) **|** [**Project Page**](https://xinntao.github.io/projects/gfpgan)    [English](README.md) **|** [简体中文](README_CN.md) - -GFPGAN is a blind face restoration algorithm towards real-world face images. - -google colab logo -[Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo) - -### :book: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior -> [[Paper](https://arxiv.org/abs/2101.04061)]   [[Project Page](https://xinntao.github.io/projects/gfpgan)]   [Demo]
-> [Xintao Wang](https://xinntao.github.io/), [Yu Li](https://yu-li.github.io/), [Honglun Zhang](https://scholar.google.com/citations?hl=en&user=KjQLROoAAAAJ), [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en)
-> Applied Research Center (ARC), Tencent PCG - -#### Abstract - -Blind face restoration usually relies on facial priors, such as facial geometry prior or reference prior, to restore realistic and faithful details. However, very low-quality inputs cannot offer accurate geometric prior while high-quality references are inaccessible, limiting the applicability in real-world scenarios. In this work, we propose GFP-GAN that leverages **rich and diverse priors encapsulated in a pretrained face GAN** for blind face restoration. This Generative Facial Prior (GFP) is incorporated into the face restoration process via novel channel-split spatial feature transform layers, which allow our method to achieve a good balance of realness and fidelity. Thanks to the powerful generative facial prior and delicate designs, our GFP-GAN could jointly restore facial details and enhance colors with just a single forward pass, while GAN inversion methods require expensive image-specific optimization at inference. Extensive experiments show that our method achieves superior performance to prior art on both synthetic and real-world datasets. - -#### BibTeX - - @InProceedings{wang2021gfpgan, - author = {Xintao Wang and Yu Li and Honglun Zhang and Ying Shan}, - title = {Towards Real-World Blind Face Restoration with Generative Facial Prior}, - booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, - year = {2021} - } - -

- -

- ---- - -## :wrench: Dependencies and Installation - -- Python >= 3.7 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html)) -- [PyTorch >= 1.7](https://pytorch.org/) -- NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads) - -### Installation - -1. Clone repo - - ```bash - git clone https://github.com/xinntao/GFPGAN.git - cd GFPGAN - ``` - -1. Install dependent packages - - ```bash - # Install basicsr - https://github.com/xinntao/BasicSR - # We use BasicSR for both training and inference - # Set BASICSR_EXT=True to compile the cuda extensions in the BasicSR - It may take several minutes to compile, please be patient - BASICSR_EXT=True pip install basicsr - - # Install facexlib - https://github.com/xinntao/facexlib - # We use face detection and face restoration helper in the facexlib package - pip install facexlib - - pip install -r requirements.txt - ``` - -## :zap: Quick Inference - -Download pre-trained models: [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth) - -```bash -wget https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth -P experiments/pretrained_models -``` - -```bash -python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs - -# for aligned images -python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/cropped_faces --aligned -``` - -## :computer: Training - -We provide complete training codes for GFPGAN.
-You could improve it according to your own needs. - -1. Dataset preparation: [FFHQ](https://github.com/NVlabs/ffhq-dataset) - -1. Download pre-trained models and other data. Put them in the `experiments/pretrained_models` folder. - 1. [Pretrained StyleGAN2 model: StyleGAN2_512_Cmul1_FFHQ_B12G4_scratch_800k.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/StyleGAN2_512_Cmul1_FFHQ_B12G4_scratch_800k.pth) - 1. [Component locations of FFHQ: FFHQ_eye_mouth_landmarks_512.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/FFHQ_eye_mouth_landmarks_512.pth) - 1. [A simple ArcFace model: arcface_resnet18.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/arcface_resnet18.pth) - -1. Modify the configuration file `train_gfpgan_v1.yml` accordingly. - -1. Training - -> python -m torch.distributed.launch --nproc_per_node=4 --master_port=22021 train.py -opt train_gfpgan_v1.yml --launcher pytorch - -## :scroll: License and Acknowledgement - -GFPGAN is realeased under Apache License Version 2.0. - -## :e-mail: Contact - -If you have any question, please email `xintao.wang@outlook.com` or `xintaowang@tencent.com`. diff --git a/train_gfpgan_v1.yml b/train_gfpgan_v1.yml index 4fe6e5c1..0997d7cd 100644 --- a/train_gfpgan_v1.yml +++ b/train_gfpgan_v1.yml @@ -34,6 +34,12 @@ datasets: color_jitter_pt_prob: 0.3 gray_prob: 0.01 + # If you do not want colorization, please set + # color_jitter_prob: ~ + # color_jitter_pt_prob: ~ + # gray_prob: 0.01 + # gt_gray: True + crop_components: true component_path: experiments/pretrained_models/FFHQ_eye_mouth_landmarks_512.pth eye_enlarge_ratio: 1.4 @@ -42,7 +48,7 @@ datasets: use_shuffle: true num_worker_per_gpu: 6 batch_size_per_gpu: 3 - dataset_enlarge_ratio: 100 + dataset_enlarge_ratio: 1 prefetch_mode: ~ val: diff --git a/train_gfpgan_v1_simple.yml b/train_gfpgan_v1_simple.yml new file mode 100644 index 00000000..8bf4f089 --- /dev/null +++ b/train_gfpgan_v1_simple.yml @@ -0,0 +1,216 @@ +# general settings +name: train_GFPGANv1_512_simple +model_type: GFPGANModel +num_gpu: 4 +manual_seed: 0 + +# dataset and data loader settings +datasets: + train: + name: FFHQ + type: FFHQDegradationDataset + # dataroot_gt: datasets/ffhq/ffhq_512.lmdb + dataroot_gt: datasets/ffhq/ffhq_512 + io_backend: + # type: lmdb + type: disk + + use_hflip: true + mean: [0.5, 0.5, 0.5] + std: [0.5, 0.5, 0.5] + out_size: 512 + + blur_kernel_size: 41 + kernel_list: ['iso', 'aniso'] + kernel_prob: [0.5, 0.5] + blur_sigma: [0.1, 10] + downsample_range: [0.8, 8] + noise_range: [0, 20] + jpeg_range: [60, 100] + + # color jitter and gray + color_jitter_prob: 0.3 + color_jitter_shift: 20 + color_jitter_pt_prob: 0.3 + gray_prob: 0.01 + + # If you do not want colorization, please set + # color_jitter_prob: ~ + # color_jitter_pt_prob: ~ + # gray_prob: 0.01 + # gt_gray: True + + # crop_components: false + # component_path: experiments/pretrained_models/FFHQ_eye_mouth_landmarks_512.pth + # eye_enlarge_ratio: 1.4 + + # data loader + use_shuffle: true + num_worker_per_gpu: 6 + batch_size_per_gpu: 3 + dataset_enlarge_ratio: 1 + prefetch_mode: ~ + + val: + # Please modify accordingly to use your own validation + # Or comment the val block if do not need validation during training + name: validation + type: PairedImageDataset + dataroot_lq: datasets/faces/validation/input + dataroot_gt: datasets/faces/validation/reference + io_backend: + type: disk + mean: [0.5, 0.5, 0.5] + std: [0.5, 0.5, 0.5] + scale: 1 + +# network structures +network_g: + type: GFPGANv1 + out_size: 512 + num_style_feat: 512 + channel_multiplier: 1 + resample_kernel: [1, 3, 3, 1] + decoder_load_path: experiments/pretrained_models/StyleGAN2_512_Cmul1_FFHQ_B12G4_scratch_800k.pth + fix_decoder: true + num_mlp: 8 + lr_mlp: 0.01 + input_is_latent: true + different_w: true + narrow: 1 + sft_half: true + +network_d: + type: StyleGAN2Discriminator + out_size: 512 + channel_multiplier: 1 + resample_kernel: [1, 3, 3, 1] + +# network_d_left_eye: +# type: FacialComponentDiscriminator + +# network_d_right_eye: +# type: FacialComponentDiscriminator + +# network_d_mouth: +# type: FacialComponentDiscriminator + +network_identity: + type: ResNetArcFace + block: IRBlock + layers: [2, 2, 2, 2] + use_se: False + +# path +path: + pretrain_network_g: ~ + param_key_g: params_ema + strict_load_g: ~ + pretrain_network_d: ~ + # pretrain_network_d_left_eye: ~ + # pretrain_network_d_right_eye: ~ + # pretrain_network_d_mouth: ~ + pretrain_network_identity: experiments/pretrained_models/arcface_resnet18.pth + # resume + resume_state: ~ + ignore_resume_networks: ['network_identity'] + +# training settings +train: + optim_g: + type: Adam + lr: !!float 2e-3 + optim_d: + type: Adam + lr: !!float 2e-3 + optim_component: + type: Adam + lr: !!float 2e-3 + + scheduler: + type: MultiStepLR + milestones: [600000, 700000] + gamma: 0.5 + + total_iter: 800000 + warmup_iter: -1 # no warm up + + # losses + # pixel loss + pixel_opt: + type: L1Loss + loss_weight: !!float 1e-1 + reduction: mean + # L1 loss used in pyramid loss, component style loss and identity loss + L1_opt: + type: L1Loss + loss_weight: 1 + reduction: mean + + # image pyramid loss + pyramid_loss_weight: 1 + remove_pyramid_loss: 50000 + # perceptual loss (content and style losses) + perceptual_opt: + type: PerceptualLoss + layer_weights: + # before relu + 'conv1_2': 0.1 + 'conv2_2': 0.1 + 'conv3_4': 1 + 'conv4_4': 1 + 'conv5_4': 1 + vgg_type: vgg19 + use_input_norm: true + perceptual_weight: !!float 1 + style_weight: 50 + range_norm: true + criterion: l1 + # gan loss + gan_opt: + type: GANLoss + gan_type: wgan_softplus + loss_weight: !!float 1e-1 + # r1 regularization for discriminator + r1_reg_weight: 10 + # facial component loss + # gan_component_opt: + # type: GANLoss + # gan_type: vanilla + # real_label_val: 1.0 + # fake_label_val: 0.0 + # loss_weight: !!float 1 + # comp_style_weight: 200 + # identity loss + identity_weight: 10 + + net_d_iters: 1 + net_d_init_iters: 0 + net_d_reg_every: 16 + +# validation settings +val: + val_freq: !!float 5e3 + save_img: true + + metrics: + psnr: # metric name, can be arbitrary + type: calculate_psnr + crop_border: 0 + test_y_channel: false + +# logging settings +logger: + print_freq: 100 + save_checkpoint_freq: !!float 5e3 + use_tb_logger: true + wandb: + project: ~ + resume_id: ~ + +# dist training settings +dist_params: + backend: nccl + port: 29500 + +find_unused_parameters: true From d507febad8bf3911fb4c5afa9f5e8da60541318d Mon Sep 17 00:00:00 2001 From: Xintao Date: Fri, 6 Aug 2021 17:27:37 +0800 Subject: [PATCH 2/2] update readme --- README.md | 14 ++++++-------- 1 file changed, 6 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index 03823aa5..8dede821 100644 --- a/README.md +++ b/README.md @@ -5,10 +5,8 @@ [![LICENSE](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/TencentARC/GFPGAN/blob/master/LICENSE) [![python lint](https://github.com/TencentARC/GFPGAN/actions/workflows/pylint.yml/badge.svg)](https://github.com/TencentARC/GFPGAN/blob/master/.github/workflows/pylint.yml) -[**Paper**](https://arxiv.org/abs/2101.04061) **|** [**Project Page**](https://xinntao.github.io/projects/gfpgan) - 1. [Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo) for GFPGAN google colab logo -1. We provide a '*clean*' version of GFPGAN, which can run without CUDA extensions. So that it can run in Windows or on CPU mode. +1. We provide a *clean* version of GFPGAN, which can run without CUDA extensions. So that it can run in **Windows** or on **CPU mode**. GFPGAN aims at developing **Practical Algorithm for Real-world Face Restoration**.
It leverages rich and diverse priors encapsulated in a pretrained face GAN (*e.g.*, StyleGAN2) for blind face restoration. @@ -40,12 +38,12 @@ It leverages rich and diverse priors encapsulated in a pretrained face GAN (*e.g ### Installation We now provide a *clean* version of GFPGAN, which does not require customized CUDA extensions.
-If you want want to use the original model in our paper, please see [PaperModel.md](Installation.md) for installation. +If you want want to use the original model in our paper, please see [PaperModel.md](PaperModel.md) for installation. 1. Clone repo ```bash - git clone https://github.com/xinntao/GFPGAN.git + git clone https://github.com/TencentARC/GFPGAN.git cd GFPGAN ``` @@ -87,15 +85,15 @@ python inference_gfpgan_full.py --upscale_factor 2 --test_path inputs/whole_imgs We provide the training codes for GFPGAN (used in our paper).
You could improve it according to your own needs. -Tips: +**Tips** 1. More high quality faces can improve the restoration quality. 2. You may need to perform some pre-processing, such as beauty makeup. -**Procedures**:
+**Procedures** -(You can try a simple version that does not require face component landmarks.) +(You can try a simple version ( `train_gfpgan_v1_simple.yml`) that does not require face component landmarks.) 1. Dataset preparation: [FFHQ](https://github.com/NVlabs/ffhq-dataset)