-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathsample.py
310 lines (280 loc) · 10.8 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
"""
Reference to
https://github.com/CompVis/taming-transformers
"""
import argparse, os, sys, glob
import torch
import time
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from einops import repeat
import importlib
from src.Open_MAGVIT2.modules.transformer.gpt import sample_Open_MAGVIT2
from src.IBQ.modules.transformer.llama import sample_IBQ
import time
try:
import torch_npu
except:
pass
if hasattr(torch, "npu"):
DEVICE = torch.device("npu:0" if torch_npu.npu.is_available() else "cpu")
else:
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
rescale = lambda x: (x + 1.) / 2.
SAMPLE = {
"Open-MAGVIT2": sample_Open_MAGVIT2,
"IBQ": sample_IBQ
}
def get_obj_from_str(string, reload=False):
print(string)
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config):
if not "class_path" in config:
raise KeyError("Expected key `class_path` to instantiate.")
return get_obj_from_str(config["class_path"])(**config.get("init_args", dict()))
def chw_to_pillow(x):
return Image.fromarray((255*rescale(x.detach().cpu().numpy().transpose(1,2,0))).clip(0,255).astype(np.uint8))
@torch.no_grad()
def sample_classconditional(model, batch_size, class_label, model_type, steps=256, temperature=None, top_k=None, callback=None,
dim_z=18, h=16, w=16, verbose_time=False, top_p=None, token_factorization=False,
cfg_scale=1.0):
log = dict()
assert type(class_label) == int, f'expecting type int but type is {type(class_label)}'
assert not model.be_unconditional, 'Expecting a class-conditional Net2NetTransformer.'
c_indices = repeat(torch.tensor([class_label]), '1 -> b 1', b=batch_size).to(model.device) # class token
if token_factorization:
if cfg_scale[0] > 1.0:
cond_null = torch.ones_like(c_indices) * model.transformer.config.class_num
cond_combined = torch.concat([c_indices, cond_null], dim=0) #(2B 1)
else:
cond_combined = c_indices # B 1
else:
if cfg_scale > 1.0:
cond_null = torch.ones_like(c_indices) * model.transformer.config.class_num
cond_combined = torch.concat([c_indices, cond_null], dim=0) #(2B 1)
else:
cond_combined = c_indices # B 1
qzshape = [batch_size, dim_z, h, w]
t1 = time.time()
index_sample = SAMPLE[model_type](cond_combined, model.transformer, steps=steps,
sample_logits=True, top_k=top_k, callback=callback,
temperature=temperature, top_p=top_p, token_factorization=token_factorization,
cfg_scale=cfg_scale)
if verbose_time:
sampling_time = time.time() - t1
print(f"Full sampling takes about {sampling_time:.2f} seconds.")
x_sample = model.decode_to_img(index_sample, qzshape)
log["samples"] = x_sample
log["class_label"] = c_indices
return log
@torch.no_grad()
def run_for_evaluation(logdir, model, batch_size, temperature, top_k, model_type, dim_z, unconditional=True, num_samples=50000,
given_classes=None, top_p=None, token_factorization=False, cfg_scale=1.0, chunk_id=0):
batches = [batch_size for _ in range(num_samples//batch_size)] + [num_samples % batch_size]
assert given_classes is not None
print("Running in pure class-conditional sampling mode. I will produce "
f"{num_samples} samples for each of the {len(given_classes)} classes, "
f"i.e. {num_samples*len(given_classes)} in total.")
images_npz = []
for class_label in tqdm(given_classes, desc="Classes"):
for n, bs in tqdm(enumerate(batches), desc="Sampling Class"):
if bs == 0: break
logs = sample_classconditional(model, batch_size=bs, class_label=class_label,
temperature=temperature, top_k=top_k, top_p=top_p, token_factorization=token_factorization
,cfg_scale=cfg_scale, dim_z=dim_z, model_type=model_type)
batch_images = save_npz_from_logs(logs, logdir, base_count=n * batch_size)
images_npz.append(batch_images)
images_npz = np.vstack(images_npz)
np.savez(os.path.join(logdir, 'samples_{}.npz'.format(chunk_id)), images_npz)
def save_npz_from_logs(logs, logdir, base_count, key="samples", cond_key=None):
xx = logs[key]
xs = []
for i, x in enumerate(xx):
x = chw_to_pillow(x)
xs.append(x)
return np.stack(xs)
def get_parser():
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
nargs="?",
help="load from logdir or checkpoint in logdir",
)
parser.add_argument(
"-o",
"--outdir",
type=str,
nargs="?",
help="path where the samples will be logged to.",
default=""
)
parser.add_argument(
"--config",
nargs="*",
metavar="config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"-n",
"--num_samples",
type=int,
nargs="?",
help="num_samples to draw",
default=50000
)
parser.add_argument(
"--batch_size",
type=int,
nargs="?",
help="the batch size",
default=25
)
parser.add_argument(
"-k",
"--top_k",
type=str,
nargs="?",
help="top-k value to sample with",
default=250,
)
parser.add_argument(
"-t",
"--temperature",
type=str,
nargs="?",
help="temperature value to sample with",
default=1.0
)
parser.add_argument(
"-p",
"--top_p",
type=str,
nargs="?",
help="top-p value to sample with",
default=1.0
)
parser.add_argument(
"--classes",
type=str,
nargs="?",
help="specify comma-separated classes to sample from. Uses 1000 classes per default.",
default="imagenet"
)
parser.add_argument(
"--token_factorization",
action="store_true",
help="whether to use token factorization"
)
parser.add_argument(
"--cfg_scale",
type=str,
default=1.0
)
parser.add_argument(
"--global_seed",
type=int,
)
parser.add_argument(
"--chunk_idx",
type=int,
default=0
)
parser.add_argument(
"--num_chunks",
type=int,
default=4
)
parser.add_argument(
"--model",
choices=["Open-MAGVIT2", "IBQ"]
)
return parser
def load_model_from_config(config, sd, gpu=True, eval_mode=True):
model = instantiate_from_config(config)
if sd is not None:
model.load_state_dict(sd, strict=False)
if gpu:
model = model.to(DEVICE)
if eval_mode:
model.eval()
return {"model": model}
def load_model(config, ckpt, gpu, eval_mode):
# load the specified checkpoint
if ckpt:
pl_sd = torch.load(ckpt, map_location="cpu")
global_step = pl_sd.get("global_step", None)
if global_step:
print(f"loaded model from global step {global_step}.")
else:
pl_sd = {"state_dict": None}
global_step = None
model = load_model_from_config(config.model, pl_sd["state_dict"], gpu=gpu, eval_mode=eval_mode)["model"]
return model, global_step
if __name__ == "__main__":
sys.path.append(os.getcwd())
parser = get_parser()
opt, unknown = parser.parse_known_args()
seed = opt.global_seed * opt.num_chunks + opt.chunk_idx
torch.manual_seed(seed)
logdir = opt.outdir
ckpt = opt.ckpt
ckpt_name = ckpt.split("/")[-1]
config = OmegaConf.load(opt.config[0]) #since only one config
model, global_step = load_model(config, ckpt, gpu=True, eval_mode=True)
## handle topk topp tempeature and cfg_scale
if opt.token_factorization:
opt.top_k = [int(topk) for topk in opt.top_k.split(",")]
opt.top_p = [float(topp) for topp in opt.top_p.split(",")]
opt.temperature = [float(temp) for temp in opt.temperature.split(",")]
opt.cfg_scale = [float(cfg_scal) for cfg_scal in opt.cfg_scale.split(",")]
else:
opt.top_k = [int(topk) for topk in opt.top_k.split(",")][0]
opt.top_p = [float(topp) for topp in opt.top_p.split(",")][0]
opt.temperature = [float(temp) for temp in opt.temperature.split(",")][0]
opt.cfg_scale = [float(cfg_scal) for cfg_scal in opt.cfg_scale.split(",")][0]
dim_z = config.model.init_args.first_stage_config.params.embed_dim
chunk_id = opt.chunk_idx
if opt.classes == "imagenet":
given_classes = [i for i in range(1000)]
chunk_classes = len(given_classes) // opt.num_chunks ## should be divided
class_chunks = given_classes[ chunk_id * chunk_classes : (chunk_id+1) * chunk_classes ]
given_classes = class_chunks
else:
cls_str = opt.classes
assert not cls_str.endswith(","), 'class string should not end with a ","'
given_classes = [int(c) for c in cls_str.split(",")]
### The ckpt should be only a name and the logdir is the version dir
if opt.token_factorization:
logdir = os.path.join(logdir, "samples", f"top_k_{opt.top_k[0]}_{opt.top_k[1]}_temp_{opt.temperature[0]:.2f}_{opt.temperature[1]:.2f}_top_p_{opt.top_p[0]}_{opt.top_p[1]}_cfg_{opt.cfg_scale[0]}_{opt.cfg_scale[1]}",
f"{ckpt_name}")
else:
logdir = os.path.join(logdir, "samples",
f"top_k_{opt.top_k}_temp_{opt.temperature:.2f}_top_p_{opt.top_p}_cfg_{opt.cfg_scale}",
f"{ckpt_name}")
print(f"Logging to {logdir}")
os.makedirs(logdir, exist_ok=True)
start_time = time.time()
run_for_evaluation(logdir, model, opt.batch_size, opt.temperature, opt.top_k, unconditional=model.be_unconditional,
given_classes=given_classes, num_samples=opt.num_samples, top_p=opt.top_p, token_factorization=opt.token_factorization,
cfg_scale=opt.cfg_scale, chunk_id=chunk_id, model_type=opt.model, dim_z=dim_z)
end_time = time.time()
print(end_time - start_time, 's')
print("done.")