-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathLargest_sum_continuous_array.c
80 lines (69 loc) · 1.45 KB
/
Largest_sum_continuous_array.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
i/p:
1 -2 3 4 -5
o/p:
7 2 3(7 is the sum and 2 is staring index and 3 is ending index)
My solution
#include<stdio.h>
int sum(int a[],int start,int end,int num){
int i,sum=0;
for(i=start;i<end;i++){
sum+=a[i];
}
return sum;
}
int main(){
int max=0,start,i,end,a[50],tmp,num,i1,i2;
scanf("%d",&num);
for(i=0;i<num;i++){
scanf("%d",&a[i]);
}
start=0;
end=num-1;
for(i=0;i<num;i++){
tmp=sum(a,start,end,num);
if(tmp>max){
max=tmp;
i1=start;
i2=end;
}
}
printf("Max sub sequence start from %d to %d",i1,i2);
return 0;
}
efficient one is
#include<iostream>
#include<climits>
using namespace std;
int maxSubArraySum(int a[], int size)
{
int max_so_far = INT_MIN, max_ending_here = 0,
start =0, end = 0, s=0;
for (int i=0; i< size; i++ )
{
max_ending_here += a[i];
if (max_so_far < max_ending_here)
{
max_so_far = max_ending_here;
start = s;
end = i;
}
if (max_ending_here < 0)
{
max_ending_here = 0;
s = i+1;
}
}
cout << "Maximum contiguous sum is "
<< max_so_far << endl;
cout << "Starting index "<< start
<< endl << "Ending index "<< end << endl;
}
/*Driver program to test maxSubArraySum*/
int main()
{
int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
int n = sizeof(a)/sizeof(a[0]);
int max_sum = maxSubArraySum(a, n);
return 0;
}
//borrowed from geeks for geeks