forked from smj007/VisionTransformer_CIFAR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
engine.py
51 lines (43 loc) · 1.58 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import torch.nn as nn
from tqdm import tqdm
def loss_fn(target, output):
return nn.CrossEntropyLoss()(output, target)
def accuracy_fn(target, output):
output = torch.softmax(output, dim=-1)
output = output.argmax(dim=-1)
return ((target==output)*1.0).mean()
def train_fn(model, dataloader, optimizer, scheduler, device):
running_loss = 0
running_acc = 0
model.train()
for num_steps, data in tqdm(enumerate(dataloader), total=len(dataloader)):
for p in model.parameters():
p.grad = None
patches = data['patches'].to(device)
label = data['label'].to(device)
output = model(patches)
loss = loss_fn(label, output)
running_loss += loss.item()
running_acc += accuracy_fn(label, output).item()
loss.backward()
optimizer.step()
scheduler.step()
epoch_acc = running_acc/len(dataloader)
epoch_loss = running_loss/len(dataloader)
return epoch_acc, epoch_loss
def eval_fn(model, dataloader, device):
running_loss = 0
running_acc = 0
model.eval()
with torch.no_grad():
for num_steps, data in tqdm(enumerate(dataloader), total=len(dataloader)):
patches = data['patches'].to(device)
label = data['label'].to(device)
output = model(patches)
loss = loss_fn(label, output)
running_loss += loss.item()
running_acc += accuracy_fn(label, output).item()
epoch_loss = running_loss/len(dataloader)
epoch_acc = running_acc/len(dataloader)
return epoch_acc, epoch_loss