-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
119 lines (97 loc) · 3.37 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import numpy as np
from operations import *
from genotypes import Genotype
import os
import shutil
import torch
import torchvision.transforms as transforms
def count_params(model):
return sum(np.prod(v.shape) for name,v in model.named_parameters())/1e6
def parse_actions_index(actions_index):
steps = 4
normal = []
reduce = []
normal_concat = set(range(2,6))
reduce_concat = set(range(2,6))
for i in range(2*steps):
node1 = int(actions_index[i*5])
node2 = int(actions_index[i*5+1])
op1 = OP_NAME[actions_index[i*5+2]]
op2 = OP_NAME[actions_index[i*5+3]]
comb = COMB_NAME[actions_index[i*5+4]]
block = (node1, node2, op1, op2, comb)
if i < steps:
if node1 in normal_concat:
normal_concat.remove(node1)
if node2 in normal_concat:
normal_concat.remove(node2)
normal.append(block)
else:
if node1 in reduce_concat:
reduce_concat.remove(node1)
if node2 in reduce_concat:
reduce_concat.remove(node2)
reduce.append(block)
genotype = Genotype(normal = normal, normal_concat = normal_concat,
reduce = reduce, reduce_concat = reduce_concat)
return genotype
def accuracy(logits, target, topk=(1,)):
assert logits.shape[0]==target.shape[0]
batch_size = logits.shape[0]
result = []
maxk = max(topk)
target = target.view(-1,1)
_, pred = torch.topk(logits, maxk, 1, True, True)
for k in topk:
predk = pred[:,:k]
targetk = target.expand_as(predk)
correct = torch.eq(predk, targetk)
correct_num = torch.sum(torch.sum(correct, 1),0)
result.append(float(correct_num)/batch_size)
return result
def one_hot(index, num_classes):
v = torch.zeros((num_classes), dtype=torch.float)
v[int(index)] = 1
return v
def create_exp_dir(path, scripts_to_save=None):
if not os.path.exists(path):
os.mkdir(path)
print('Experiment dir : {}'.format(path))
if scripts_to_save is not None:
os.mkdir(os.path.join(path, 'scripts'))
for script in scripts_to_save:
dst_file = os.path.join(path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def _data_transforms_cifar10(args):
CIFAR_MEAN = [0.5]
CIFAR_STD = [0.25]
train_transform = transforms.Compose([
transforms.RandomCrop(28, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
return train_transform, valid_transform