-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
ChineseRemainderTheorem.cs
192 lines (171 loc) · 7.6 KB
/
ChineseRemainderTheorem.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
namespace Algorithms.ModularArithmetic;
/// <summary>
/// Chinese Remainder Theorem: https://en.wikipedia.org/wiki/Chinese_remainder_theorem.
/// </summary>
public static class ChineseRemainderTheorem
{
/// <summary>
/// The Chinese Remainder Theorem is used to compute x for given set of pairs of integers (a_i, n_i) with:
/// <list type="bullet">
/// <item>x = a_0 mod n_0</item>
/// <item>x = a_1 mod n_1</item>
/// <item>...</item>
/// <item>x = a_k mod n_k</item>
/// </list>
/// for 0 <= i < k, for some positive integer k. Additional requirements are:
/// <list type="bullet">
/// <item>n_i > 1 for 0 <= i < k</item>
/// <item>n_i and n_j are coprime, for all 0 <= i < j < k</item>
/// <item>0 <= a_i < n_i, for all 0 <= i < k</item>
/// <item>0 <= x < n_0 * n_1 * ... * n_(k-1)</item>
/// </list>
/// </summary>
/// <param name="listOfAs">An ordered list of a_0, a_1, ..., a_k.</param>
/// <param name="listOfNs">An ordered list of n_0, n_1, ..., n_k.</param>
/// <returns>The value x.</returns>
/// <exception cref="ArgumentException">If any of the requirements is not fulfilled.</exception>
public static long Compute(List<long> listOfAs, List<long> listOfNs)
{
// Check the requirements for this algorithm:
CheckRequirements(listOfAs, listOfNs);
// For performance-reasons compute the product of all n_i as prodN, because we're going to need access to (prodN / n_i) for all i:
var prodN = 1L;
foreach (var n in listOfNs)
{
prodN *= n;
}
var result = 0L;
for (var i = 0; i < listOfNs.Count; i++)
{
var a_i = listOfAs[i];
var n_i = listOfNs[i];
var modulus_i = prodN / n_i;
var bezout_modulus_i = ExtendedEuclideanAlgorithm.Compute(n_i, modulus_i).BezoutB;
result += a_i * bezout_modulus_i * modulus_i;
}
// Make sure, result is in [0, prodN).
result %= prodN;
if (result < 0)
{
result += prodN;
}
return result;
}
/// <summary>
/// The Chinese Remainder Theorem is used to compute x for given set of pairs of integers (a_i, n_i) with:
/// <list type="bullet">
/// <item>x = a_0 mod n_0</item>
/// <item>x = a_1 mod n_1</item>
/// <item>...</item>
/// <item>x = a_k mod n_k</item>
/// </list>
/// for 0 <= i < k, for some positive integer k. Additional requirements are:
/// <list type="bullet">
/// <item>n_i > 1 for 0 <= i < k</item>
/// <item>n_i and n_j are coprime, for all 0 <= i < j < k</item>
/// <item>0 <= a_i < n_i, for all 0 <= i < k</item>
/// <item>0 <= x < n_0 * n_1 * ... * n_(k-1)</item>
/// </list>
/// </summary>
/// <param name="listOfAs">An ordered list of a_0, a_1, ..., a_k.</param>
/// <param name="listOfNs">An ordered list of n_0, n_1, ..., n_k.</param>
/// <returns>The value x.</returns>
/// <exception cref="ArgumentException">If any of the requirements is not fulfilled.</exception>
public static BigInteger Compute(List<BigInteger> listOfAs, List<BigInteger> listOfNs)
{
// Check the requirements for this algorithm:
CheckRequirements(listOfAs, listOfNs);
// For performance-reasons compute the product of all n_i as prodN, because we're going to need access to (prodN / n_i) for all i:
var prodN = BigInteger.One;
foreach (var n in listOfNs)
{
prodN *= n;
}
var result = BigInteger.Zero;
for (var i = 0; i < listOfNs.Count; i++)
{
var a_i = listOfAs[i];
var n_i = listOfNs[i];
var modulus_i = prodN / n_i;
var bezout_modulus_i = ExtendedEuclideanAlgorithm.Compute(n_i, modulus_i).BezoutB;
result += a_i * bezout_modulus_i * modulus_i;
}
// Make sure, result is in [0, prodN).
result %= prodN;
if (result < 0)
{
result += prodN;
}
return result;
}
/// <summary>
/// Checks the requirements for the algorithm and throws an ArgumentException if they are not being met.
/// </summary>
/// <param name="listOfAs">An ordered list of a_0, a_1, ..., a_k.</param>
/// <param name="listOfNs">An ordered list of n_0, n_1, ..., n_k.</param>
/// <exception cref="ArgumentException">If any of the requirements is not fulfilled.</exception>
private static void CheckRequirements(List<long> listOfAs, List<long> listOfNs)
{
if (listOfAs == null || listOfNs == null || listOfAs.Count != listOfNs.Count)
{
throw new ArgumentException("The parameters 'listOfAs' and 'listOfNs' must not be null and have to be of equal length!");
}
if (listOfNs.Any(x => x <= 1))
{
throw new ArgumentException($"The value {listOfNs.First(x => x <= 1)} for some n_i is smaller than or equal to 1.");
}
if (listOfAs.Any(x => x < 0))
{
throw new ArgumentException($"The value {listOfAs.First(x => x < 0)} for some a_i is smaller than 0.");
}
// Check if all pairs of (n_i, n_j) are coprime:
for (var i = 0; i < listOfNs.Count; i++)
{
for (var j = i + 1; j < listOfNs.Count; j++)
{
long gcd;
if ((gcd = ExtendedEuclideanAlgorithm.Compute(listOfNs[i], listOfNs[j]).Gcd) != 1L)
{
throw new ArgumentException($"The GCD of n_{i} = {listOfNs[i]} and n_{j} = {listOfNs[j]} equals {gcd} and thus these values aren't coprime.");
}
}
}
}
/// <summary>
/// Checks the requirements for the algorithm and throws an ArgumentException if they are not being met.
/// </summary>
/// <param name="listOfAs">An ordered list of a_0, a_1, ..., a_k.</param>
/// <param name="listOfNs">An ordered list of n_0, n_1, ..., n_k.</param>
/// <exception cref="ArgumentException">If any of the requirements is not fulfilled.</exception>
private static void CheckRequirements(List<BigInteger> listOfAs, List<BigInteger> listOfNs)
{
if (listOfAs == null || listOfNs == null || listOfAs.Count != listOfNs.Count)
{
throw new ArgumentException("The parameters 'listOfAs' and 'listOfNs' must not be null and have to be of equal length!");
}
if (listOfNs.Any(x => x <= 1))
{
throw new ArgumentException($"The value {listOfNs.First(x => x <= 1)} for some n_i is smaller than or equal to 1.");
}
if (listOfAs.Any(x => x < 0))
{
throw new ArgumentException($"The value {listOfAs.First(x => x < 0)} for some a_i is smaller than 0.");
}
// Check if all pairs of (n_i, n_j) are coprime:
for (var i = 0; i < listOfNs.Count; i++)
{
for (var j = i + 1; j < listOfNs.Count; j++)
{
BigInteger gcd;
if ((gcd = ExtendedEuclideanAlgorithm.Compute(listOfNs[i], listOfNs[j]).Gcd) != BigInteger.One)
{
throw new ArgumentException($"The GCD of n_{i} = {listOfNs[i]} and n_{j} = {listOfNs[j]} equals {gcd} and thus these values aren't coprime.");
}
}
}
}
}