-
-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathbipartite.go
55 lines (47 loc) · 1.47 KB
/
bipartite.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
package coloring
// Bipartite.go
// description: Implementation of the Bipartite graph coloring algorithm
// details: A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V. The Bipartite graph coloring algorithm is used to determine if a graph is bipartite or not.
// time complexity: O(V+E) where V is the number of vertices and E is the number of edges in the graph
// space complexity: O(V) where V is the number of vertices in the graph
func (g *Graph) TryBipartiteColoring() map[int]Color {
// 0 is uncolored, 1/2 are colors
colors := make(map[int]Color)
visited := make(map[int]bool)
for i := range g.edges {
colors[i] = 0
visited[i] = false
}
var colorNode func(int)
colorNode = func(s int) {
visited[s] = true
coloring := []Color{0, 2, 1}
for n := range g.edges[s] {
if colors[n] == 0 {
colors[n] = coloring[colors[s]]
}
if !visited[n] {
colorNode(n)
}
}
}
for i := range g.edges {
if colors[i] == 0 {
colors[i] = 1
colorNode(i)
}
}
return colors
}
// basically tries to color the graph in two colors if each edge
// connects 2 differently colored nodes the graph can be considered bipartite
func BipartiteCheck(N int, edges [][]int) bool {
var graph Graph
for i := 0; i < N; i++ {
graph.AddVertex(i)
}
for _, e := range edges {
graph.AddEdge(e[0], e[1])
}
return graph.ValidateColorsOfVertex(graph.TryBipartiteColoring()) == nil
}