From 33711ff1eed6ac63fbe2267aa6cf3f6db74fbb99 Mon Sep 17 00:00:00 2001 From: Jatin <38358079+jxtin@users.noreply.github.com> Date: Wed, 13 Oct 2021 17:01:44 +0530 Subject: [PATCH 1/2] Add files via upload --- .../Projectile_considering_drag.ipynb | 301 ++++++++++++++++++ .../Projectile_without_considering_drag.ipynb | 224 +++++++++++++ 2 files changed, 525 insertions(+) create mode 100644 other/Projectile Motion/Projectile_considering_drag.ipynb create mode 100644 other/Projectile Motion/Projectile_without_considering_drag.ipynb diff --git a/other/Projectile Motion/Projectile_considering_drag.ipynb b/other/Projectile Motion/Projectile_considering_drag.ipynb new file mode 100644 index 0000000..a1cd66a --- /dev/null +++ b/other/Projectile Motion/Projectile_considering_drag.ipynb @@ -0,0 +1,301 @@ +{ + "nbformat": 4, + "nbformat_minor": 5, + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + }, + "colab": { + "name": "with drag final.ipynb", + "provenance": [], + "collapsed_sections": [] + } + }, + "cells": [ + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 596 + }, + "id": "lovely-robertson", + "outputId": "b719ef3e-7de8-4d52-f10c-a004a54f6ebd" + }, + "source": [ + "#Code for AMC Group Project\n", + "\n", + "#With Drag\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import math\n", + "\n", + "\n", + "#coef of restitution e\n", + "\n", + "e=0.8\n", + "\n", + "\n", + "#Variable list\n", + "\n", + "#D,Density,C,A (NOTE :A is projection surface area of ball not actual surface area)\n", + "\n", + "\n", + "\n", + "\n", + "#Not very sure about value of drag coeffecient , Typical values of C for balls are in the range from 0.2 to 1.0.\n", + "\n", + "C=0.13 #assuming soccerball\n", + "\n", + "massBall=0.45\n", + "\n", + "RHO=1.225\n", + "\n", + "A=0.03976\n", + "\n", + "#D is (RHO*C*A)/2\n", + "\n", + "D=(RHO*C*A)/2\n", + "\n", + "\n", + "#Rho of air at stp is 1.225 kg/m^3\n", + "\n", + "#A for the given ball (Diameter 225mm) = \n", + "#Density is P(RHO) Of air\n", + "\n", + "def projectile(xi,yi,vel_x,vel_y):\n", + " g=9.81\n", + "\n", + " # set the time interval as 0.1 s\n", + " delta_t = 0.000001\n", + " v=vel_y\n", + " fx=((-1*D*v*vel_x)/(massBall))\n", + " fy=((-1*D*v*vel_y)/(massBall))\n", + "\n", + " ax=fx\n", + " ay=g+fy\n", + "\n", + " x_traj = [xi]\n", + " y_traj = [yi]\n", + " # Calculate position at t = 0.1\n", + " while (yi>0): \n", + " v=math.sqrt((vel_x*vel_x)+(vel_y*vel_y))\n", + " xi = x_traj[-1] + vel_x*delta_t\n", + " yi = y_traj[-1] + vel_y*delta_t\n", + "\n", + " # Calculate vel_x and vel_y \n", + " vel_y = vel_y - ay*delta_t\n", + " vel_x=vel_x + ax*delta_t\n", + " # add new position to trajectory data\n", + " x_traj.append(xi)\n", + " y_traj.append(yi)\n", + " return xi ,yi, vel_y, x_traj, y_traj\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "output=projectile(0,4,1,0)\n", + "xi = output[0]\n", + "vel_y= output[2]\n", + "\n", + "vel_y= -1*vel_y*e\n", + "x_traj=output[3]\n", + "y_traj=output[4]\n", + "\n", + "if e>=0.7:\n", + "\tnumber_of_runs=12\n", + "else:\n", + "\tnumber_of_runs=6\n", + "\n", + "\n", + "for i in range(number_of_runs):\n", + " output=projectile(xi,0.000000001,1,vel_y)\n", + "\n", + " xi = output[0]\n", + " vel_y= output[2]\n", + " x_traj=x_traj+output[3]\n", + " y_traj=y_traj+output[4]\n", + " vel_y= -1*vel_y*e\n", + "\n", + "#...............................................................................\n", + "\n", + "e=0.6\n", + "\n", + "output=projectile(0,4,1,0)\n", + "xi = output[0]\n", + "vel_y= output[2]\n", + "\n", + "vel_y= -1*vel_y*e\n", + "x_traj1=output[3]\n", + "y_traj1=output[4]\n", + "\n", + "if e>=0.7:\n", + "\tnumber_of_runs=12\n", + "else:\n", + "\tnumber_of_runs=6\n", + "\n", + "\n", + "for i in range(number_of_runs):\n", + " output=projectile(xi,0.000000001,1,vel_y)\n", + "\n", + " xi = output[0]\n", + " vel_y= output[2]\n", + " x_traj1=x_traj1+output[3]\n", + " y_traj1=y_traj1+output[4]\n", + " vel_y= -1*vel_y*e\n", + "\n", + "\n", + "\n", + "#...............................................................................\n", + "\n", + "\n", + "e=0.4\n", + "\n", + "\n", + "output=projectile(0,4,1,0)\n", + "xi = output[0]\n", + "vel_y= output[2]\n", + "\n", + "vel_y= -1*vel_y*e\n", + "x_traj2=output[3]\n", + "y_traj2=output[4]\n", + "\n", + "if e>=0.7:\n", + "\tnumber_of_runs=12\n", + "else:\n", + "\tnumber_of_runs=6\n", + "\n", + "\n", + "for i in range(number_of_runs):\n", + " output=projectile(xi,0.000000001,1,vel_y)\n", + "\n", + " xi = output[0]\n", + " vel_y= output[2]\n", + " x_traj2=x_traj2+output[3]\n", + " y_traj2=y_traj2+output[4]\n", + " vel_y= -1*vel_y*e\n", + "\n", + "\n", + "\n", + "#...............................................................................\n", + "\n", + "e=0.2\n", + "\n", + "\n", + "output=projectile(0,4,1,0)\n", + "xi = output[0]\n", + "vel_y= output[2]\n", + "\n", + "vel_y= -1*vel_y*e\n", + "x_traj3=output[3]\n", + "y_traj3=output[4]\n", + "\n", + "if e>=0.7:\n", + "\tnumber_of_runs=12\n", + "else:\n", + "\tnumber_of_runs=6\n", + "\n", + "\n", + "for i in range(number_of_runs):\n", + " output=projectile(xi,0.000000001,1,vel_y)\n", + "\n", + " xi = output[0]\n", + " vel_y= output[2]\n", + " x_traj3=x_traj3+output[3]\n", + " y_traj3=y_traj3+output[4]\n", + " vel_y= -1*vel_y*e\n", + "\n", + "\n", + "\n", + "#...............................................................................\n", + "\n", + "\n", + "\n", + "e=1\n", + "\n", + "\n", + "output=projectile(0,4,1,0)\n", + "xi = output[0]\n", + "vel_y= output[2]\n", + "\n", + "vel_y= -1*vel_y*e\n", + "x_traj4=output[3]\n", + "y_traj4=output[4]\n", + "\n", + "if e>=0.7:\n", + "\tnumber_of_runs=12\n", + "else:\n", + "\tnumber_of_runs=6\n", + "\n", + "\n", + "for i in range(number_of_runs):\n", + " output=projectile(xi,0.000000001,1,vel_y)\n", + "\n", + " xi = output[0]\n", + " vel_y= output[2]\n", + " x_traj4=x_traj4+output[3]\n", + " y_traj4=y_traj4+output[4]\n", + " vel_y= -1*vel_y*e\n", + "\n", + "\n", + "#...............................................................................\n", + "\n", + "\n", + "\n", + "plt.figure(figsize=(20,10))\n", + "plt.xlim([0, x_traj[-1]+1])\n", + "plt.ylim([0, 5])\n", + "plt.plot(x_traj, y_traj, x_traj1, y_traj1,x_traj2,y_traj2,x_traj3,y_traj3)\n", + "plt.show()" + ], + "id": "lovely-robertson", + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHcAAAJDCAYAAACBlPiaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd5SmdWH3/881ZctsL7N9ly2wu9RlYelVARERFEsUSxI1lkSNSYzxl26KSUzxSaJGY0k0QTRqFEXpUqXvAgu7LGV32d57LzNz/f4An8cYkF2YmWvuuV+vcziHcjPzBtHjfLiu77coyzIAAAAA1KaGqgMAAAAAeOmMOwAAAAA1zLgDAAAAUMOMOwAAAAA1zLgDAAAAUMOMOwAAAAA1rOlQPlQUxbIkO5O0J2kry3JOV0YBAAAAcGgOadx5zivKstzUZSUAAAAAHDavZQEAAADUsEMdd8okNxVFMa8oivd1ZRAAAAAAh+5QX8s6uyzL1UVRjEpyc1EUT5RleefPfuC50ed9STJgwICTZ86c2cmpAAAAAPVr3rx5m8qybP3531+UZXlYX6goik8k2VWW5d+/0GfmzJlTzp0797AjAQAAAHh+RVHMe75Lrl70tayiKAYURTHop7+e5FVJFnR+IgAAAACH61Beyxqd5HtFUfz081eXZXlDl1YBAAAAcEhedNwpy3Jpklnd0AIAAADAYXIVOgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1DDjDgAAAEANM+4AAAAA1LBDHneKomgsiuLhoih+2JVBAAAAABy6w3ly5yNJFnVVCAAAAACH75DGnaIoJiS5NMmXuzYHAAAAgMPRdIif+8ckv5dk0KF8eMeTC3PtJcdlz4gBaZg6Nadc+dFMPnrOS44EAAAA4Pm96JM7RVG8NsmGsiznvcjn3lcUxdyiKOaWRdKyqz0zH96R4771SHa/4Z257sJj851PvD27tm/ptHgAAACAeleUZfmLP1AUf53knUnakvRLMjjJd8uyfMcL/Tlz5swp586dm727d+Tu7/5LNt12bcYv3JKR25Mtg5JVFxyd1//pVenbv6Uz/1oAAAAAeq2iKOaVZfm/Xo160XHn577I+Ul+tyzL1/6iz/103PlZBw/sz4/+6SMZ8MM7M2F9mdWjkj6/+cGc+6YPHfL3BwAAAKhXLzTuHM5tWS9Lc5++ef3HvpDzb344C94yO4N2JcP+5HP5xgfOz8ED+7srAwAAAKBXOaxxpyzL21/sqZ0X09ynb978Z1en9aqvZfG05px4+/pcd8WcrFvx9Mv5sgAAAAB1qdue3Pl5U485NZd/76HMv2hipi1ty6IrL8/C+2+qKgcAAACgJlU27iRJY1NT3vqZm/LMr1+SITuTrR/+SOb++JtVJgEAAADUlErHnZ+67Dc/na0ff1f6HEwO/t6f5cGbvlF1EgAAAEBN6BHjTpJc8Pbfy4FP/HYaO5L9f/TnXtECAAAAOAQ9ZtxJkrNf977s+th70rIv2fA7H8mKJx+qOgkAAACgR+tR406SvPJtv5u1H7g8I7Ylj33ondm9c3vVSQAAAAA9Vo8bd5Lk0t/4VJ64/JhMXdmRH73vgqpzAAAAAHqsHjnuJMkv/fV/59GTB+b4h3fnWx+/ouocAAAAgB6px447SXL5F3+cpZMaMuNHT+Qn3/9i1TkAAAAAPU6PHnf6DxicIz/1uezrkxz4u/+TrRtXV50EAAAA0KP06HEnSWbMPj/r33lRxm5KbvnQZVXnAAAAAPQoPX7cSZLLf/uf8+icwTlu/t784B8/UnUOAAAAQI9RE+NOklz8T9dk/fBkxNU3Zd2Kp6vOAQAAAOgRambcGTpibPb/2pUZuiO562NvrToHAAAAoEeomXEnSS5+959kwckDc9z8PfnR53+/6hwAAACAytXUuJMkF336u9k8OGm56prs3rm96hwAAACAStXcuDN89MRsuOKsjNmcXPsHb646BwAAAKBSNTfuJMnrPvaFLJ7ckKPuWJknH7696hwAAACAytTkuNPY1JRRv/Xx9GlLFvzFb1WdAwAAAFCZmhx3kuS0V/9yHp8zJMc8vj8//vrfVp0DAAAAUImaHXeS5Ny/+Gp29k/2ffVraW9rqzoHAAAAoNvV9Lgz9oiZWXr2xExd2ZEfffajVecAAAAAdLuaHneS5DV/ftWzV6P/9005eGB/1TkAAAAA3armx53Bw0ZlzcWzMn5j8r2/+JWqcwAAAAC6Vc2PO0lyxR9/LatbkzE3z8/e3TuqzgEAAADoNr1i3Gnu0zc7XnNWWrcl1/7Ve6rOAQAAAOg2vWLcSZLXfewLWdOajL51Qfbv3VN1DgAAAEC36DXjTmNTU7a96tSM2pp8/6/eXXUOAAAAQLfoNeNOklz+8S9m7cik9cfzPb0DAAAA1IVeNe409+mbLReenDFbkms/9d6qcwAAAAC6XK8ad5LkdX/wlawfngy59aG0t7VVnQMAAADQpXrduNPcp2/Wn3lUJmxIbvjiH1adAwAAANClet24kyQX//6/ZkdL0n7tj6pOAQAAAOhSvXLcGTpibJ45aWSOeqY99/zgS1XnAAAAAHSZXjnuJMmpv/MP2d+UrPna56pOAQAAAOgyvXbcmXrMqXn62JZMf2J/nph3a9U5AAAAAF2i1447STL5Pb+bxvbkkX/5k6pTAAAAALpErx53TnnVlVk6uSGTH9mcXdu3VJ0DAAAA0Ol69biTJO0XnJMhu5Mb/s+Hq04BAAAA6HS9fty55EOfzqYhyYC7Hq46BQAAAKDT9fpxp2//lqw+eWwmry5z13fdnAUAAAD0Lr1+3EmS0z/8tznQlKz75leqTgEAAADoVHUx7kw+ek6entE3Ry3am5VLFlSdAwAAANBp6mLcSZJhb3hb+h5M7v7Mx6pOAQAAAOg0dTPunP+W38nq1mTkQ8uqTgEAAADoNHUz7jQ2NWXTyUdk/Ibktm9+uuocAAAAgE5RN+NOkpz5wU/lQGOy8ZqvV50CAAAA0CnqatyZdNSsLDmyOVMX7cnWjaurzgEAAAB42epq3EmSPhe9KgP2Jzf/80erTgEAAAB42epu3Ln4fZ/MpiHJgPseqzoFAAAA4GWru3GnuU/frD6hNVNXdmTuj79ZdQ4AAADAy1J3406SHPee309HksVXf67qFAAAAICXpT7HndMvybJJDRm3cFPa29qqzgEAAAB4yepy3EmSXSfNSOu25MdX/XXVKQAAAAAvWd2OO+f++l/lQFOy7YZrqk4BAAAAeMnqdtwZe8TMLJ3WnMlP7snundurzgEAAAB4Sep23EmSnHVmBu1Nbvr8x6suAQAAAHhJ6nrcedWvfyo7+ye5+56qUwAAAABekroedwYMGpJlM1oydcnBrF3+RNU5AAAAAIetrsedJBn66tenT1ty5+d/v+oUAAAAgMNW9+POBe/4/Wwakgx4+KmqUwAAAAAOW92PO41NTVkzY0iOWNmRZYvmVp0DAAAAcFjqftxJktZL3pymjuT+f//LqlMAAAAADotxJ8l5b/5INg5NBsx/uuoUAAAAgMNi3MlPX80amskrOrL08QeqzgEAAAA4ZMad54x5zVvSWCYP/ptXswAAAIDaYdx5zjlv/FA2Dk0GPrqk6hQAAACAQ2bceU5jU1PWzByaI1Z2ZMlj91SdAwAAAHBIjDs/Y8ylb3v21ayv/XXVKQAAAACHxLjzM8654tezYVgy6NGlVacAAAAAHBLjzs9obGrK2unPvpq14un5VecAAAAAvCjjzs8ZecFlaSyT+776yapTAAAAAF6UcefnnPfWj2bbwKTP/EVVpwAAAAC8KOPOz2nu0zerpvXPEcvbsnXj6qpzAAAAAH4h487z6HvGOel3MLn93/+i6hQAAACAX8i48zxe+a4/zZ4+SfsD91edAgAAAPALGXeex8Ahw7N8SnMmLt2X/Xv3VJ0DAAAA8IKMOy+gY/YJGbwnufU/3ZoFAAAA9FzGnRdw1rv+KAcbkx133Fx1CgAAAMALMu68gLFHzMzyiQ0Zt3hn2tvaqs4BAAAAeF7GnV9gz7FTMnJ7cs+1X6o6BQAAAOB5GXd+gWPf/MEkyaobv1VxCQAAAMDzM+78AsedfknWtCZDn15fdQoAAADA8zLuvIiN04Zm4poyK56eX3UKAAAAwP9i3HkRw865OI1lcv9Vn6o6BQAAAOB/Me68iPPf9nvZ2T9pfHRh1SkAAAAA/4tx50X07d+SVUf0yYRlB7J/756qcwAAAAD+B+POIWg/4ZgM2pvc/o2/rzoFAAAA4H8w7hyC097+sXQUyda7bqg6BQAAAOB/MO4cgkkzTsqKcUVGLt5adQoAAADA/2DcOUTbjhqd8RuThfffVHUKAAAAwP9l3DlEEy7+pSTJgm9/tuISAAAAgP/HuHOIzrzsvdkyOOm36JmqUwAAAAD+L+POIWpsasraSf0yYWVb9u7eUXUOAAAAQBLjzmEpTjg+LQeSO7/xD1WnAAAAACQx7hyWU97yW89eiX7PLVWnAAAAACQx7hyWSTNOyqrRRYY940p0AAAAoGcw7hymrVOHZcK6Miuenl91CgAAAIBx53ANO/PCNJTJg87dAQAAAHoA485hOvfKj2ZPn6R89LGqUwAAAABefNwpiqJfURQPFEUxvyiKhUVR/Fl3hPVU/QcMzspJTRm7Yl/a29qqzgEAAADq3KE8ubM/ySvLspyV5MQkry6K4vSuzerZ9k2flOE7kgdv/nrVKQAAAECde9Fxp3zWrud+s/m5X8ourerhZlz27iTJsuuvrrgEAAAAqHeHdOZOURSNRVE8kmRDkpvLsry/a7N6ttmveGM2Dk1anl5ddQoAAABQ5w5p3CnLsr0syxOTTEhyalEUx/38Z4qieF9RFHOLopi7cePGzu7scdZNbsmkVe3ZsXVD1SkAAABAHTus27LKstyW5LYkr36eP/bFsiznlGU5p7W1tbP6eqymWbPT92BylyvRAQAAgAodym1ZrUVRDH3u1/snuSjJE10d1tOd8ku/lY4i2Tn3J1WnAAAAAHWs6RA+MzbJ14qiaMyzY9C3yrL8Yddm9XwTpx2Xm0YVGbp8a9UpAAAAQB170XGnLMtHk8zuhpaas2XykBz74LZsWL0ko8ZPqzoHAAAAqEOHdeYO/9OAk05LU0dy7zf/seoUAAAAoE4Zd16Gs9760bQ1JPseeaDqFAAAAKBOGXdehuGjJ2bV2CLDV+ysOgUAAACoU8adl2n75BEZt77MiqfnV50CAAAA1CHjzss05LRz05DkwW/9U9UpAAAAQB0y7rxM57zlo9nfnLQ/9mjVKQAAAEAdMu68TAOHDM+qcQ1pXbm76hQAAACgDhl3OsGuqaMzZnPy5MO3V50CAAAA1BnjTidoPfvVSZL53/1CxSUAAABAvTHudIKz3/Ch7O6bNCx6suoUAAAAoM4YdzpB3/4tWT2hMaNX7qs6BQAAAKgzxp1OsnfK2Izcniy47/qqUwAAAIA6YtzpJKPOevbcncd/9LWKSwAAAIB6YtzpJGe9/tezt09SPPlU1SkAAABAHTHudJK+/VuyelxDWlftrToFAAAAqCPGnU60a/KojN6SPD3/7qpTAAAAgDph3OlEw099RZLk0R98seISAAAAoF4YdzrRWW/8UPY3Je2PL6w6BQAAAKgTxp1ONHDI8Kwe15ARq3ZXnQIAAADUCeNOJ9s5aXjGbExWPD2/6hQAAACgDhh3Otmgk89OQ5J53/t81SkAAABAHTDudLIz3/ShHGxMDjz6cNUpAAAAQB0w7nSyYa3js2ZMkWGrdladAgAAANQB404X2DZpaMatL7Nh9ZKqUwAAAIBezrjTBVpmnZLGMrnv2/9cdQoAAADQyxl3usCpb/hQ2otkzyMPVJ0CAAAA9HLGnS4wZtJRWTuqyOBV26tOAQAAAHo5404X2Tp+QMatK7N7p4EHAAAA6DrGnS7SMPPo9G1L7v3e56pOAQAAAHox404XOfaSX06SbHrgtopLAAAAgN7MuNNFjj7lwmwenPRbtq7qFAAAAKAXa6o6oDfbMK5Pxq08kPa2tjQ2+VvNL1aWZZZt3pO5y7Zk6abdWb9jXw62l2luLDJqUL8cOWpgZk8amqkjB6QoiqpzAQAA6CEsDl3owJTxGfLEM3nkju/l5AveXHUOPdTKLXvyrbkrc80jq7Nyy94kSVNDkdGD+6VvU0P2HWzPxl37c7C9TJJMGt6Sy2aNzdtOOyLjh/avMh0AAIAewLjThcaceUly/b9kya3fNu7wv6zcsif/9OOn892HVqVMcs5RrXnfOVNzxrQRmTxiQJoa/99bkx0dZRZv3JUHl23JDQvW5Qt3LM2/3rE0l584Lh991QwjDwAAQB0ryrLs9C86Z86ccu7cuZ3+dWvN/r17suC0k7P06P558389VHUOPcTB9o584fYl+cyti5Mi+eXTj8i7zp5yWAPNmm178+W7nsnVDyxPknz4lUflfedOTXOjY7QAAAB6q6Io5pVlOefnf78nd7pQ3/4tWTu2ISNW7606hR5iycZd+fDVD+fxtTvy2hPG5g8vPTpjhxz+UzfjhvbPn1x2TN599uT85Q8X5e9ufDK3LFqff37r7Ewc3tIF5QAAAPRU/jV/F9s1cXhGb0pWLllQdQoVu2nhurz+s3dn3Y59+dd3npzPvu2klzTs/KwJw1ryhXeenM9cOTuL1+/Ka/75rtz19MZOKgYAAKAWGHe62MBZp6YhyUPX/GvVKVToS3cuzfv+c16mtA7IDz98di4+dkynfv3LZo3LdR85J+OH9s+7/v3B/NeDKzr16wMAANBzGXe62Klv+I20F8neBc7cqUdlWebvbnwin7xuUS49fmy+9f4zMq6LDj+eOLwl3/7AGTnzyJH5+H8/li/dubRLvg8AAAA9i3Gni40aPy1rW5PBq7ZVnUI3K8syf3XdonzutiW58tSJ+ecrZ6dfc2OXfs9B/ZrzlV+Zk0uPH5tPXrcoX77LwAMAANDbOVC5G2wdNyDTF+7O7p3bM2DQkKpz6Cafu21xvnTXM/mVM47IJy4/NkVRdMv3bW5syD++9cSUKfOXP1qUAX2bcuWpk7rlewMAAND9PLnTDYoZ09P3YHLfD5y7Uy+uum95/v6mp3LF7PH508u6b9j5qebGhvzTW2fn/Bmt+aNrFuT2Jzd06/cHAACg+xh3usGMi9+eJNl43y0Vl9AdfvL0pvzpDxbmlTNH5W/fdEIaGrp32Pmp5saGfPZtJ2XG6EH54NcfyuNrdlTSAQAAQNcy7nSDE868NFsHJX1XrKs6hS62fPPufPDqhzKtdUD++crZaW6s9r9iA/s25d9+9ZQM6tec9181N9v3HKy0BwAAgM5n3OkmG8Y0ZeQ6P1j3Zrv3t+W9/zE3RZF8+ZdPycC+PeNIqzFD+uVzbz8pa7fty0e/PT8dHWXVSQAAAHQi40432TdxVEZuT5585M6qU+gin/jBwjy9YVc+e+VJmTSipeqc/+HkI4blDy89OrcsWp8vukELAACgVzHudJOhs89Mkjx+w1UVl9AVrp2/Jt+etyofPP/InH3UyKpzntevnjk5rzl+TP7+xiezYPX2qnMAAADoJMadbnLq5e9LW0Oy/4nHqk6hk63csid/8N3HMnvS0HzkwqOqznlBRVHkr644PsMH9MlHvzU/+9vaq04CAACgExh3usnw0ROzbmQyaLUbi3qTjo4yv/vt+SmT/NNbqj9A+cUMbemTT73xhDy5fmc+ffNTVecAAADQCXr2T6K9zLaxLRm7viP79+6pOoVO8o0HV+T+Z7bkjy49useds/NCXjFzVK48dWK+eOfSPLJyW9U5AAAAvEzGnW5UTpuS/geSB274WtUpdIJ12/flb657ImdMHZG3nDKx6pzD8gevOTqjBvXNH37vsbS1d1SdAwAAwMtg3OlGR5x7eZJkzT03VFzCy1WWZf7omsdysKMjf/PG41MURdVJh2VQv+b86WXHZuGaHfmPe5dXnQMAAMDLYNzpRnMufFt290san1lRdQov040L1+eWRRvyOxdNzxEjBlSd85JcctyYnDe9Nf9w05NZt31f1TkAAAC8RMadbtTY1JS1YxoyfJ0fpGvZvoPt+eR1j2f66IF591lTqs55yYqiyJ+/7ti0dZT55HWLqs4BAADgJTLudLPd44dn9KZk7fInqk7hJfryXUuzcsvefOKyY9PUw2/HejFHjBiQ9507NdfOX5OHV2ytOgcAAICXoLZ/Mq1BLcfNTkOSedd+ueoUXoK12/fmc7ctyauPHZMzjxxZdU6neP950zJyYN988keLUpZl1TkAAAAcJuNONzvxte9Jkux89MGKS3gp/ub6J9JelvnDS4+uOqXTDOzblN+5aHrmLt+aGxeuqzoHAACAw2Tc6WaTjpqV9cOTAas2V53CYVqwenu+/8iavPecKZk4vKXqnE71S3MmZProgfmb65/IgTZXowMAANQS404FNo/pm9Hr2tPe1lZ1Cofhb298MkNbmvP+86ZVndLpmhob8vuXHJ1lm/fkO/NWVZ0DAADAYTDuVODg5PEZvCd59K7vV53CIbpv6ebc+dTG/Mb50zK4X3PVOV3i/BmtOWnS0Hz21qezv6296hwAAAAOkXGnAqNPvSBJsvj2/664hENRlmX+9oYnMmZwv/zyGZOrzukyRVHkty+anjXb9+VbD66sOgcAAIBDZNypwOmX/Vr2NyXl009XncIh+PGiDXloxbZ85MKj0q+5seqcLnX2kSNzyuRh+dxtS7LvoKd3AAAAaoFxpwL9BwzOulFFBq/bXXUKL6Isy3z65qcyZeSAvPnkCVXndLmfPr2zbse+fPOBFVXnAAAAcAiMOxXZMbolYzaU2bt7R9Up/AK3Pbkhj6/dkQ++4sg0NdbHf13OnDYyp00Zns/fscTNWQAAADWgPn5a7YmmTk3ftmTujf9ZdQkvoCzLfObWxZkwrH9ed+K4qnO61W+84sis37E/1zyyuuoUAAAAXoRxpyKTzr40SbL2/lsqLuGF3Ltkcx5esS0fOG9amuvkqZ2fOveokTl67OD86x1L0tFRVp0DAADAL1BfP7H2ICdf8Nbs6ZMUy5ZXncIL+MytizNqUN+8qQ7O2vl5RVHkA+dNzZKNu/PjJzZUnQMAAMAvYNypSHOfvlk/uiFD1+2rOoXnMW/5lty7dHPed+7UXn9D1gu59PixmTCsf75wx5KqUwAAAPgFjDsV2jl2YMZsLLNjqycjeprP3740w1qa87bTJlWdUpmmxoa895ypmbd8ax5ctqXqHAAAAF6AcadCjUfOSFNH8sAP/63qFH7Gsk278+Mn1ucdpx+Rlj5NVedU6pfmTMzQluZ85a5nqk4BAADgBRh3KjTtvCuSJJsevqviEn7Wv9/9TJoairzz9COqTqlc/z6Neespk3LT4+uyetveqnMAAAB4HsadCp1w1mXZ2T9pWu666Z5i+56D+dbcVbls1riMGtyv6pwe4R2nP/tq2lX3OfwbAACgJzLuVKixqSnrRzdk+Pr9VafwnG88uCJ7D7bnPWdPqTqlx5gwrCUXHj0633xgRfYdbK86BwAAgJ9j3KnY7rFDM3pzsmmtM02qdrC9I1+7Z1nOmDoix44bUnVOj/KrZ07O1j0H84P5a6pOAQAA4OcYdyrWd+ZxaSiTuQ5Vrtz1C9Zl7fZ9ntp5HmdMG5Hpowfma/csS1mWVecAAADwM4w7FTv6wrckSbY9en/FJfzHPctyxIiWvHLmqKpTepyiKPLLZ0zOwjU78tCKrVXnAAAA8DOMOxWbefIrs3Vg0mfl+qpT6toT63Zk7vKteftpk9LQUFSd0yNdMXt8BvZtytX3r6w6BQAAgJ9h3OkBNo5uyoj1B6rOqGtX378ifZoa8qaTJ1ad0mMN6NuUy2aNy48eW5Md+w5WnQMAAMBzjDs9wJ7xwzJqa7JyyYKqU+rS7v1t+e5Dq3Pp8WMzfECfqnN6tLeeMjH7Dnbk+484WBkAAKCnMO70AAOOmZ0kmX/dv1dcUp9+MH9Ndu1vyztOn1R1So93woQhOXrs4PzXgyuqTgEAAOA5xp0e4MRLfiVJsnPhvIpL6k9ZlrnqvuWZOWZQTpo0rOqcHq8oirz1lIlZsHpHFqzeXnUOAAAAMe70CJNmnJRNQ5L+qzZXnVJ3HrLCuysAACAASURBVF21PQvX7MjbTz8iReEg5UPx+hPHp29TQ77xgKd3AAAAegLjTg+xeVRTRmxsqzqj7nz9/uVp6dOY1584ruqUmjGkpTmvOX5sfvDImuw54J9ZAACAqhl3eoh940Zk5PZkxdPzq06pG7v3t+WHj67Na08Ym0H9mqvOqSlvOWVidu5vy40L11WdAgAAUPeMOz1Ey8wTkiSP3nRVxSX14/oF67LnQHvePMf154fr1MnDM35o/3z3odVVpwAAANQ9404PcfQr35Ik2fX4QxWX1I/vzFuZySNaMucIBykfroaGIq+fPS53L96UDTv2VZ0DAABQ14w7PcRRs87K1kFJn9Wbqk6pCys278l9S7fkTSdPcJDyS3TF7AnpKJPvP7Km6hQAAIC6ZtzpQTa2Nmb4hgNVZ9SF7zy0KkWRvOGkCVWn1KwjRw3MCROG5HsPezULAACgSsadHmTv2GFp3ZJsWL2k6pReraOjzH/PW5WzjxyZcUP7V51T066YPT6Pr92RJ9ftrDoFAACgbhl3epC+049JQ5KHr/+PqlN6tfuWbs7qbXvzppM9tfNyXTZrXBobinz34VVVpwAAANQt404PMv38NyZJtjx2f8Ulvdt35q3KoH5NufjYMVWn1LyRA/vmvOmt+f7Da9LeUVadAwAAUJeMOz3IzJNfmR0tSZ9V66pO6bX2HGjL9QvW5bUnjEu/5saqc3qFK2aPz7od+3L/M5urTgEAAKhLxp0epLGpKRtGNWTohv1Vp/RaNz++PnsPtuf1J46rOqXXuODoUenf3JgfPrq26hQAAIC6ZNzpYXaPGZzRm5Jtm/2g3BV+8MiajB3SL6dMHl51Sq/R0qcpFxw9KjcsWJe29o6qcwAAAOqOcaeHaZ42PY1lMve6r1Wd0uts3X0gdzy1MZfNGpeGhqLqnF7ltSeMzZbdB3Lf0i1VpwAAANQd404PM/Xsy5Mkmx/5ScUlvc/1C9alraPM5bO8ktXZzp8xKgP6NOaHj66pOgUAAKDuGHd6mBPOeV12900aVvghubP9YP7qTG0dkGPHDa46pdfp19yYC48ZnRsWrstBr2YBAAB0K+NOD9PY1JT1oxoydMO+qlN6lXXb9+X+Z7bk8lnjUhReyeoKlx4/Ntv2HMw9S9yaBQAA0J2MOz3QrtEDM3pTmd07t1ed0mv88NE1Kct4JasLnTu9NYP6NuWH8z11BgAA0J1edNwpimJiURS3FUXxeFEUC4ui+Eh3hNWzYsqUNLcnD97wH1Wn9Brff2RNTpgwJFNbB1ad0mv1a27MRceMzo0L1+VAm1ezAAAAusuhPLnTluSjZVkek+T0JB8siuKYrs2qbxNOvzhJsn7ebRWX9A7PbNqdx1Zv99RON7j0hLHZsa8tdy/eVHUKAABA3XjRcacsy7VlWT703K/vTLIoyfiuDqtnJ7/yLdnXnBTLV1Sd0itc99jaJMlrjh9bcUnvd/ZRIzOgT2Nuenxd1SkAAAB147DO3CmKYnKS2Unu74oYntW3f0vWtxYZvH5P1Sm9wvUL1ubEiUMzbmj/qlN6vb5NjTl/5qjc/Pj6tHeUVecAAADUhUMed4qiGJjkv5P8VlmWO57nj7+vKIq5RVHM3bhxY2c21qUdo1oyemOZgwf2V51S01Zu2ZMFq3fkkuPGVJ1SNy4+dkw27TqQh1dsrToFAACgLhzSuFMURXOeHXa+Xpbld5/vM2VZfrEsyzllWc5pbW3tzMa6VE4cn34Hk0duf96/3RyiGxY8+3rQJcd5Jau7nD+jNc2NRW56fH3VKQAAAHXhUG7LKpJ8Jcmisiw/3fVJJMnIE89Kkqy47/qKS2rbdQvW5thxgzNpREvVKXVjcL/mnDFtZG5cuC5l6dUsAACArnYoT+6cleSdSV5ZFMUjz/3ymi7uqnsnvert6SiSg88sqTqlZq3dvjcPr9jmlawKXHzs6CzfvCdPrd9VdQoAAECvdyi3Zf2kLMuiLMsTyrI88blfruuOuHo2rHV8NgxPWtZvrzqlZt3401ey3JLV7S46enSS5KaFbs0CAADoaod1Wxbda+vI5ozY2F51Rs26bsG6TB89MNNaB1adUndGDe6X2ZOGOncHAACgGxh3erAD40Zm+M5kxZMPVZ1Sczbu3J8Hl21xkHKFLj52TB5bvT2rt+2tOgUAAKBXM+70YC3Tj0uSPHrLNyouqT03Pb4uZZlccrzzdqryqmOefTXrZq9mAQAAdCnjTg824/w3JEl2PTG/4pLac+PC9ZkyckBmjB5UdUrdmto6MFNbB+THT2yoOgUAAKBXM+70YDNmn5/tLUnzGj8cH46d+w7m3iWbctExo1MURdU5de2VM0bl/qVbsnt/W9UpAAAAvZZxp4fb1NqQIRv2V51RU+56elMOtpe58Lkbm6jOK2eOyoH2jty9eFPVKQAAAL2WcaeH2z16YEZtSXZt31J1Ss245fH1GdrSnJMmDa06pe7NmTw8A/s25bYnPX0GAADQVYw7PVxxxJQ0tycP3Xx11Sk1oa29I7c+uSGvnDEqTY3+8a5an6aGnHPUyNz2xMaUZVl1DgAAQK/kp98ebsIpFyRJ1j18R8UltWHe8q3ZtudgLjzGK1k9xStmjsq6HfuyaO3OqlMAAAB6JeNODzf7grfkQGNSLltedUpNuGXR+vRpbMi501urTuE558949j8Lr2YBAAB0DeNOD9d/wOBsGFlk4MbdVafUhFsWbcjp00ZkYN+mqlN4zqhB/XLChCG51ZXoAAAAXcK4UwO2t/ZN68aOtLe5TvoXWbJxV57ZtDsXHj2q6hR+zitmjMrDK7Zm6+4DVacAAAD0OsadGnBw/OgM2ps8Me/WqlN6tFseX58kucAV6D3OK2aOSkeZ3PHUxqpTAAAAeh3jTg0YeuzJSZKn77qm4pKe7ZZF63PM2MEZP7R/1Sn8nBPGD8nIgX28mgUAANAFjDs14ISL3p4k2fvUwopLeq4tuw9k3vKtbsnqoRoaipw7vTV3Pr0x7R2uRAcAAOhMxp0aMH7KMdk0JOm3bmvVKT3WHU9tSEeZXDDTeTs91XnTW7Ntz8EsXLO96hQAAIBexbhTI7aMbMrwjQerzuixbn9yY0YM6JPjxw+pOoUXcNaRI5Mkdz29qeISAACA3sW4UyP2jhmakVuTTWufqTqlx2nvKHPnUxtz7vTWNDQUVefwAkYO7Jtjxw3OnQ5VBgAA6FTGnRrRZ9r0NCR56MavV53S4zy6alu27jmY82e0Vp3CizjnqNY8tGJrdu1vqzoFAACg1zDu1IhJp12UJNm68MGKS3qeO57amKJ4djigZzv3qJE52F7m/qWbq04BAADoNYw7NWLWOVdkX3NSrFpddUqPc/uTGzNrwtAMH9Cn6hRexMmTh6Vfc4NzdwAAADqRcadGNPfpm40jigzctLfqlB5ly+4Dmb9qm1eyakTfpsacPnVE7nzauTsAAACdxbhTQ3aM7JuRmzrS3ua8kp+66+mNKctnr9mmNpxzVGuWbtydVVv3VJ0CAADQKxh3akjb2NYM2pssfuwnVaf0GLc/uTHDWppzwoShVadwiM6b/uyV6D/xahYAAECnMO7UkIEzTkiSPHXnNRWX9AwdP3MFeqMr0GvGtNaBGTukn3N3AAAAOolxp4Ycfd4bkiS7nl5QcUnPsGDN9mzefcB5OzWmKIqcc9TI/GTxprR3lFXnAAAA1DzjTg2ZdvyZ2d6S9FnriYfk2VeyiiI51xXoNefso1qzfe/BPLpqW9UpAAAANc+4U2M2j2zI4E0Hqs7oEW5/ckNOGD8kIwb2rTqFw3TG1BFJknuXbq64BAAAoPYZd2rMrtaWjNpcZv/e+r5paMe+g3lk5bac65asmtQ6qG9mjB6Ue5cYdwAAAF4u406tmTgxfdqSh2//dtUllbp3yeZ0lMnZR46sOoWX6IxpI/Lgsi050NZRdQqHqK29I6u27sm85Vtyz+JNuX/p5izduCv729qrTgMAgLrWVHUAh6f1hDOTaxZl9YM/Ti75lapzKnP34k1p6dOY2ZOGVZ3CS3TGtBH56j3L8sjKbTl1yvCqc3gB63fsyw8eWZM7ntqYh1ZszZ4D/3vIaWwocty4wTnzyJF53YnjMnPM4ApKAQCgfhl3aszsi67Mmr/4Sg4uW1J1SqV+snhTTpsyPH2aPHxWq06fMiJF8exTWMadnufRVdvy2VsX5+ZF61OWycwxg/Kmkyfk6LGDM2ZIv/Rvbkxbe5n1O/Zl6aZdeeCZLfnSnUvz+duXZNaEIfngK47MRceMTlEUVf+lAABAr2fcqTHDWsfn0aFJvw07qk6pzJpte7N04+687dRJVafwMgxpac5x44bkniWb8pELj6o6h+es3b43f37t47l+wboM7teU3zh/Wt540oRMbR34on/ult0Hcs3Dq/Mf9y7L+/5zXo4fPyR/+frjMmvi0K4PBwCAOmbcqUFbRzRl+Ka2qjMq85PFz14Ff/ZRztupdWdMG5Gv3r0s+w62p19zY9U5da0sy1x1/4r89XWL0lGW+Z2LpuddZ03OoH7Nh/w1hg/ok3efPSW/fMYRueaRNfnbG57IFf9yd9511pT83qtnpG+T/4wBAKAreKelBu0bPTQjtiWb1j5TdUol7l68KSMHPnvbErXtjGkjcqC9I/OWb606pa7t2HcwH7z6ofzxNQsyZ/Lw3Pzb5+U3LzjqsIadn9XU2JA3nTwht3z0vLzttEn5yk+eyZu/cG9WbqnvW/4AAKCrGHdqUPPUaWlI8sgt/1V1Srfr6Chz9+JNOfvIEc7y6AVOmTw8TQ1F7lmyqeqUurVyy55c8bm7c+PC9fn9S2bmq796SiYOb+mUrz24X3P+8vXH51/feXKe2bQ7l332J4Y8AADoAsadGjTxlAuTJFsW3F9xSfd7cv3ObNp1IGe5Ar1XGNi3KbMmDs09SzZXnVKXFqzenjd8/p5s3Lk/X/+10/L+86aloaHzR9OLjx2TH3747Axr6ZO3f/m+3Pz4+k7/HgAAUM+MOzVo1jlvyP6mJCtXVZ3S7X7ytPN2epszpo7Io6u2Z9f++j1HqgqPrdqeK790X5obinzn18/M6VNHdOn3O2LEgHznA2dkxuhB+cBV83LDgrVd+v0AAKCeGHdqUN/+Ldk4osiAjfV3fsVPFm/KtNYBGTukf9UpdJIzp41Ie0eZB5/ZUnVK3Xh8zY684yv3Z0j/5nz718/M9G46v2rEwL65+r2nZ9aEIfnwNx7ObU9s6JbvCwAAvZ1xp0ZtH9knIzd3VJ3Rrfa3teeBZ7bkbK9k9SonHTEsfZoanLvTTZZt2p13fuX+tPRpzDfee3rGD+3eoXRA36Z89d2nZuaYwXn/VfPy4DKjHgAAvFzGnRrVNm5UBu9JnnzkzqpTus1Dy7dl78H2nH1Ua9UpdKJ+zY05adLQ3O/JnS63fc/BvPurD6ajLPP1Xzut0w5OPlyD+zXnP959aiYM7Z/3/+e8rNhcf08hAgBAZzLu1KiB049Pkjx15zUVl3SfuxdvSmNDkdOmDq86hU526uThWbDauTtd6UBbRz5w1bys3Lon//rOOZnaOrDSnmED+uQrv3pK2jvKvOurD2T73oOV9gAAQC0z7tSoGee+IUmy+6nHKi7pPvcs2ZQTJgzJ4H7NVafQyU6dMiIdZfKQa7K7zCd/9HjuXbo5f/OGE3LqlJ4xkE4ZOSBfeMfJWb55T3732/NTlmXVSQAAUJOMOzXqqFlnZUdL0rR2Y9Up3WL3/rY8ump7zujiG32oxuxJQ9PYUOQBr2Z1iR89ujZfu3d53nP2lLzx5AlV5/wPZ0wbkf/vkpm5+fH1+be7l1WdAwAANcm4U8M2j2jIoM0Hqs7oFnOXb01bR9nl1zVTjQF9m3Lc+CHGnS6wbNPufPy/H82JE4fm46+eWXXO83rP2VNy0TGj8zfXL8ojK7dVnQMAADXHuFPDdo3on9YtZdrbev85Jfct3ZymhiJzJg+rOoUuctqU4Xlk5bbsO9hedUqvcbC9Ix/6xkNpbCjy2bfNTp+mnvk/+UVR5O/fNCujBvXLb37j4ew50Pv/Nw0AADpTz/x/+hySjnGj0/9AsvD+66tO6XL3Ld2cWROHpqVPU9UpdJFTJg/PgfaOPLpqe9UpvcbnblucBat35FNvPCEThlVzM9ahGtLSnE//0qys2LInn7r+iapzAACgphh3atjg6bOSJM/cd0PFJV3rp+ftnO6WrF7tlOeeynrgmc0Vl/QOC1Zvz2dvXZzXnzgurz5uTNU5h+S0qSPyrrMm52v3Ls+9S/xzAAAAh8q4U8OOOe/ZG7P2Lund/5b7wWVb0u68nV5vaEufzBwzKPc7d+dlO9DWkd/99vwMG9Ann7j82KpzDsvvXTwzk0e05GPfmZ/d+72eBQAAh8K4U8MmHz0n21uS5vW9+99w37d0S5obi5x8hPN2ertTJg/PQ8u3pq29o+qUmvb525fkiXU789dXHJ+hLX2qzjks/fs05u/ePCurtu7NZ25dXHUOAADUBONOjds8oiGDNvXuG7PuW7o5syY4b6cenDpleHYfaM/ja3dUnVKzVmzek8/dvjivPWFsLjxmdNU5L8kpk4fnzSdPyJfvWprFG3ZWnQMAAD2ecafG7R757I1ZBw/srzqlS+za35bHVm/3SladOHXKs+cquRL9pSnLMp+4dmGaG4r80aXHVJ3zsnz8kplp6dOYP/n+wpRlWXUOAAD0aB6FqHHluDHp9/CSLLj3usw+74qqczrdT8/bOWNaDxh39mxJVtyXrHko2bYy2b3x2d/f3D8ZNjkZOT2Zck4yfGqlmbVs9OB+OWJESx54Zkt+7Rx/Hw/XLYs25NYnNuQPX3N0xgzpV3XOyzJyYN987NUz88fXLMi1j67N5bPGVZ0EAAA9lnGnxg2ZOTv50ZIsf+DGXjnu3Ld0c5obi5w0qaLzdtrbksevSR65Oll6e1K2J0VjMmR8MqD12c/sWJ0sviVp2/fsbw+flsx+e3LiO5JBtflaTJVOnTw8tyxan46OMg0NRdU5NWPfwfb82bULM330wPzqWZOrzukUbzt1Ur75wIr8zXWL8qpjRqdfc2PVSQAA0CMZd2rcMee/Kbv/4TvZt/SpqlO6xH1LNufEiUPTv083/1DX0Z48/J/Jnf+QbF/x7JM5Z30kOepVydhZSZ+Wn/t8R7J5cfLMHcnCa5If/3lyx98mp/xacvZvJwNGdm9/DTtlyvB8e96qLN64K9NHD6o6p2b8+93Lsmrr3lz93tPS3Ng73rhtbCjyh5cenbd96f587Z5lef9506pOAgCAHql3/ARQxyYdNSvbBiTN63vfGSU79x3MY6u354zuPm9n1bzkS69Irv1IMmhMcuU3kw8/nFz4p8kRZ/zvYSdJGhqS1unJqe9N3vWj5EPzkuPelNz3L8lnTkoevipxbsghOXXys+fuzF22teKS2rFl94H8y22Lc+HRo3LmtN41JJ45bWReMaM1n71tcf5/9u47vur63uP465yTnZzsPckOSSCEsDcyFFABRxV3W7XWVm1vq7Xe21t7tfdatUs7tW4URwWtgqKCyJ5hZgHZe+9xkjPuHwewKiPjnPM74/P8hz5szu/7DkTM+eTz+Xzbe517ebwQQgghhBCjJcUdJ9AWosa/1fne9BysaMdownbLlI0G2P40vLAEeprg2hfgu59A+jJz8WYkQlNg1Z/h3r0QkQ3v/wBev868t0dcVEKIDyG+HhyqlOLOcD279RS9g3p+dkWG0lGs4uFl4+nV6fnz53I1uhBCCCGEEOcjxR0n0Bvq45Q3Zu0ta8VDoybXFvt2+jtg7bWw9THIWgU/2AcTrgPVGHe+hKXD7R/C8qehfDv8fR7U5lsms5NSqVRMTggiv0qKO8NR2drL2r2V3DA1jlQnHWNLj9RyfV4cr+6ppLqtT+k4QgghhBBC2B0p7jgBU3QUnkNwYteHSkexqP0VbUyMDbD+vp32SnhhKVTshKueMXfseAVY7vlqtXlc6zubARW8tBxOfWq55zuhvIQgylt6ae1xroKlNTy1uQQ3tZofLU5TOopV/WhJKgB/2SbdO0IIIYQQQnydFHecQOD4yQBUHHCegkH/oIHjNZ1MTQy27kHNJWfGsBrg1g2Qd/vYu3UuJGYy3LXVvJtn3Y1w7G3rnOME8hLM3Vr5VR0KJ7FvxQ1dfHisnu/MGUeEv2NffX4pUQHerJkWxzsHa6R7RwghhBBCiK+R4o4TyFxwHQADZSUKJ7GcI9Ud6I0mpo6z4khW80l4+UrzouPvbIbEudY76yy/MPOYVvxMWH83HP+n9c90QBNiAnDXqGTvziU8u+U0fp5u3DU3SekoNnHPgmTUKpV07wghhBBCCPE1UtxxAnHJ2bT7gYcT3Zh1oKINlQry4q3UudNWBq9caf7fd3wI4eOtc875ePnDTW9DwizY8D0o+ch2ZzsIL3cNWdEB5Etx54JKGrrZeLyeO2aNI9DHQ+k4NhEV4M2N0r0jhBBCCCHEN0hxx0k4241ZByraSI/QEuDjbvmH97XB2uvAMAS3f2BeemxrHj7mK9YjJ8Lbt0P1AdtnsHN5CUEcrelgUG9UOopdembrKfw83fjunESlo9jU989078jNWUIIIYQQQnxJijtOwnxjFk5xY5beYCS/sp2p46zQtTM0AG/eBJ01sGYdhCt4dbSXP9zyLvhHmzN1VCuXxQ7lJQSh0xsprO9SOordOdnYzaYzXTtBvq7RtXNWVIA3N0yN4938Gho6B5SOI4QQQgghhF2Q4o6ziInBUw9Hd2xQOsmYFdV30ztoYIql9+2YTPDhj6BqD6z+K8TPsOzzR8MnGG56C/QDsG4N6HqUTmQ3zi5Vlr073/Ts1tP4erhe185Zd81NwmA08dLucqWjCCGEEEIIYRekuOMkAjPMN2ZVH9iqcJKx219h3h00zdI3ZeW/AkfXwfyHIftayz57LMLS4bqXoKkANv5E6TR2I8Lfi5hAb9m78zXVbX1sPFbHzTPiXa5r56z4EB+WTYjijb1VdA8MKR1HCCGEEEIIxUlxx0lkLzTfmKUrP6lwkrE7WNFGbJA3UQHelnto3RHY9BAkXwbzH7Lccy0ldTHMewiOvQlH3lA6jd3ISwjiYGUbJpNJ6Sh244Wd5WjUKr4z2zW7ds763rwkunV61u2vUjqKEEIIIYQQipPijpOIScykXQsejY7d5WAymThQ0WbZfTu6bnjndvANhWueB7XGcs+2pPkPQcIcc/dOs+MX6SwhLyGIxi4ddbJbBYD23kHeOlDNykkxRPh7KR1HURNjA5mZFMKLOytk6bYQQgghhHB5UtxxIm3Bjn9jVkVrHy09g5Yt7mx+BDqq4LoXzQUee6XWwLXPg7s3rL/TfJuXi5O9O1+1dm8l/UMG7pqbpHQUu3D3/CQaugb44Gid0lGEEEIIIYRQlBR3nEhvqC9h7aDr71M6yqgdKDfv25lqqWXKJzdD/qsw6377WKB8Kf7RcOXvof4o7Pqj0mkUlxGpxcdDI3t3gIEhA6/sqWBBehjpkVql49iFBWlhpEX48cLOchndE0IIIYQQLk2KO05EFRuDhx6O7Xhf6Sijtr+ijSAfd1LC/cb+sL42+Nd9EJ4FCx8Z+/NsJXMlZK6CL34DTUVKp1GUm0bNpLhA6dwB1ufX0tIzyN3zpGvnLJVKxe2zxlFY30V+lXyNCCGEEEII1yXFHScSkJ4LQM3hbcoGGYODFW3kJQSjUqnG/rCPf24u8Kz+G7h5jv15trT8afDUwnv3gtGgdBpFTY4PorC+i/5B1/19MJlMvLirnOwYf2YmhSgdx66smhSD1suNV3ZXKh1FCCGEEEIIxUhxx4lkzr8GAF3FKYWTjE5T9wAVrX1MS7TASFb5DvPNU7MfgKiJY3+erfmFwbInoS4fDr6odBpFTYoLxGA0caKuU+koitlT2srpph7umJVomcKnE/H1dOP6vDg2Ha+nqUsWbwshhBBCCNckxR0nEpecTacvuDe1KR1lVA5WmMcqxrxMWT9ovnEqMAHm/dQCyRSSfS0kzoOtj0Fvi9JpFJMTFwjAkaoOhZMo59U9lQT5uHPlxCilo9ilW2cmoDeaWLe/WukoQgghhBBCKEKKO06mLViNn4PemLW/vA0vdzVZ0QFje9CeZ6GlxDza5O5tmXBKUKlg2VMw2AufPap0GsWEaT2JCfTmSLVrFnfqOvr5pLCBG6bG4+WuUTqOXUoM9WV+Whiv76tkyCDXogshhBBCCNcjxR0n0xvsRWibCYNer3SUEcuvaicnNhAPtzF8WXZUwRdPwfirIW2p5cIpJTwDpt8Dh1+DmkNKp1HMpPhAly3uvLGvChNw8/R4paPYtdtnJdDUrWNzQYPSUYQQQgghhLA5Ke44GUNUGD6DcNLBlioPDBkorOticsIY9+1s+R/ABFf8n0Vy2YUFD4NfJHz8MLjodc+5cYHUdvTT3K1TOopN6fQG1u2vYlFGBHHBPkrHsWvz08KJDfLmTRnNEkIIIYQQLkiKO07GLzkLgNJ9HyucZGSO1XSiN5qYHD+G4k7tITj+Dsz8IQTEWi6c0jy1sPDnULMfij9UOo0izu3dcbHunU3H62ntHeT2WQlKR7F7GrWKb02JY+fpFqrb+pSOI4QQQgghhE1JccfJJM9YBkDP6QKFk4xMfpV5mXJufODoHmAywSe/AN8wmPMjCyazE5NugdA0+OxXYHC8kbuxyo4OQKNWcdTFijtr91aRFOrL7ORQpaM4hOvyYlGp4O2D0r0jhBBCCCFcixR3nExa7gL6PEDd0KR0lBHJr2xnXIgPoX6eo3tAySao3AULfm7udHE2GjdY/Ci0njLv33Ex3h4aMiK1LtW5c6qxm0OV7ayZFo9aLdefD0d0oDfz08J452ANBqNrjjAKIYQQQgjXJMUdJ6Nxc6MlWIVv64DSUYbNZDKRX9U++pEsBMNgFAAAIABJREFUgx4+/SWEpsPk2y0bzp6kL4e4GbDt/8w3aLmYnLhAjlZ3YHSRN+1vHajGTa1i9eQYpaM4lBumxNHQNcD2k81KRxFCCCGEEMJmpLjjhHpCPAhuc5zrgKvb+mnpGSR3tMuUj79t7mhZ9Atzh4uzUqlgya+gpxEOvqh0GpubFBdIt05PWYvzF7YG9UbWH65l8fiI0XezuahF4yMI8fXgrQMymiWEEEIIIVyHFHec0GBYEIG9UFteqHSUYTm7b2fyaPbtGIbgiychciJkXGnhZHYofgYkLYBdf4RB11oam+tCS5W3FDXS1jvIDdPilI7icDzc1FybF8tnRY0ud7uaEEIIIYRwXVLccUJe41IBKPjiXYWTDE9+VTu+HhrSI0axK+fom9BeDgsfMXe2uIL5D0NvMxx6SekkNpUU5oefpxtHqtuVjmJ1bx6oJirAi3mpYUpHcUjfmhKH3mjivcO1SkcRQgghhBDCJqS444RiJs8DoL04X+Ekw5Nf1U5OXCBumhF+OeoHYfuTEJ0LaVdYJ5w9SpgJ4+aau3eG+pVOYzMatYqJsQFO37lT19HP9lPNXJcXi0YWKY9KSrgfk+ICWS/FHSGEEEII4SKkuOOEJsy+miENUFundJRL6hvUU1TfPbplykffgI4qWOBCXTtnLXjYvHvn0CtKJ7GpSXGBFNd3MzBkUDqK1fzzUA0mk7n7RIze6twYiuq7KG7oUjqKEEIIIYQQVifFHSfk7etPSxB4O8Di2aPVnRiMJiYnjHDfjkEPO34LMXmQusQ64ezZuDmQMBt2/cHcweQiJsUFojeaKKjrVDqKVRiNJt4+WM3slBDign2UjuPQrpwYhUat4r3D9l/kFkIIIYQQYqykuOOkOoPcCWy3/+6Gs8uUc+NG2LlT+J65a2fuT1yva+esOf8B3fVwwjF2K1nCpDNLlQ9XOedo1sHKdmra+7l2cqzSURxeiJ8n89PCeP9ILUajSek4QgghhBBCWJUUd5yULkxLSCd0tNYrHeWiDle1kxTmS5Cvx/BfZDKZO1ZC0yBtmfXC2buURRCeCbufNf+euIBwfy+iA7ycdu/OhsO1eLtruDwrUukoTmF1bgz1nQPsK29TOooQQgghhBBWJcUdJ6WJS0BtgmOf229Xh8lkIr+qY+T7dkq3QsNxmHU/qF34S1ilgpk/hKYC8++Ji8iJC+R4rfONZen0BjYeq+OK7Eh8Pd2UjuMUFo+PwM/TjQ2Ha5SOIoQQQgghhFW58Dtj5xaWPROAphN7FU5yYRWtfbT1Do68uLPrj6CNgonfsk4wRzLhevPvxe5nlU5iM9kxAVS29tHZN6R0FIv6vLiZrgE9q3JjlI7iNLw9NFyRHclHxxucegm3EEIIIYQQUtxxUjkLrsEI6KsrlY5yQfmV5n07eQkjKO7UHYbyL2DG98HN00rJHIibB0z/HpR9bu5mcgETYwMAOOFkS5XfO1xLqJ8ns5NDlI7iVK7JjaFbp+ezokalowghhBBCCGE1UtxxUkFhMbQFgGeL/b4Bzq9qR+vpRmq43/BftOsZ8PSHvDuslsvh5H0bPPxg95+UTmITE2LMxZ1jNfb7tT1SnX1DbC1u4uqcaNw08teyJU1PCiHC35MPjsqtWUIIIYQQwnnJuwgn1h6swb/NfkdXDld1MCk+ELV6mLddddVB4fsw+TbwCrBuOEfiHQg5a6BgPfS2KJ3G6gJ9PIgL9uaEE+3d2XSinkGDkdUykmVxGrWKZdlRbCtppkenVzqOEEIIIYQQViHFHSfWH+JLaBvo+vuUjvIN/YMGShq7z11tPSwHXwSTEabeab1gjmrqnWAYhPxXlU5iExNjAjlW6zw3Zm04XEtymC/ZMf5KR3FKKyZGodMb2SKjWUIIIYQQwklJcceJqWKi8TDA8d3/UjrKNxTUdWIwmsiJHWZxR6+DQy9D2hUQnGjVbA4pPAPGzYWDL4HR+RfHZscEUN3WT3vvoNJRxqymvY/95W2szo1BpRpmF5sYkbz4ICL8Pdl4rF7pKEIIIYQQQliF3LfrxALSc4Fiqg9tY8qiG5WO8xVHqs1dFxPjhjleVbABepth+t1WTOXgpt0Fb98Gpz6B9GVKp7Gqf1+qPDc1TOE0Y3O24HB1joxkWYtarWL5hChe31dFj06Pn1w1bzFNXQPsr2ijrLmXuo5+BvVGVCoVYVpP4oK9yY0LIj1Si2a447dCCCGEEGJU5DtcJzZ+7kp6n1yHruKk0lG+4WhNJzGB3oRrvYb3gn1/h9A0SFpo3WCOLH2F+Vr0/c87fXEnO/rLpcqOXtzZdLyeibEBxIf4KB3Fqa2YEMVLuyrYUtTIyklSSBuL5m4dGw7XsD6/luKG7nP/PEzriZe7GoPBRHOPjiGDCYBgXw+WT4jk+rw4ckYyiiuEEEIIIYZNijtOLD41h70+4NbYpnSUbzha3UHOcLt2ag5CXT4sfxpkbOXCNG7mm7O2/S+0lkJIstKJrCbAx52EEB+OO/iNWdVtfRyt6eThZRlKR3F6k+ODiPT34sNj9VLcGaWmrgH+sq2UN/ZXMag3Mjk+kJ8vy2BmcghpEVq83DXnPtZoNFHT3s+hqja2FDXxz0M1rN1bxazkEH68JI2p44IV/EyEEEIIIZyPFHecXFuwGm2bfe0lae3RUdXWx83T44f3gn1/Bw8t5NjXaJldyrsdtj9pXj59+a+VTmNVE2ICOFzl2EuVNx03j2StmBClcBLnd3Y0a+2+SroHhtB6uSsdyWEYjCZe21PBU5tLGNAbuXZyDHfPSyIlXHvB16jVKuJDfIgP8WF1biw9Oj3r9lXx/I4yrv/bHlbnxvDI8vGEaT1t94kIIYQQQjixSy5UVqlUL6pUqiaVSnXCFoGEZfWGeBLSbsKgt58rgI+d6bYYVnt+XxsUvgeT1oDnhd9IiDO0keaRrKNvgt6+inqWNjE2gNqOftoceKnyxuP15MQGEBcsI1m2sGJiFIN6I1uKmpSO4jBq2vu4/m+7efSDQvLGBbPlP+bz5HU5Fy3snI+fpxt3zUviiwcX8sOFKWw8Vs8Vf9jO5yXyZyGEEEIIYQnDuS3rZeAKK+cQVmIID8V3ACqK9isd5Zwj1R2oVebOi0s69pb5iu/Jt1s/mLPIvQ36WuDkx0onsarsM18/x2sdczSrqrWPYzWdLJeuHZvJjQskKsCLjcfl1qzh2FbSxJXP7uRkYw+/vyGHV749lXGhvmN6preHhp9ens7G++cQpvXk2y8d4DcfF2M0miyUWgghhBDCNV2yuGMymbYD9re0RQyL97hUAE7t/UjhJF86WtNBWoQW30vdWGMyQf6rEJMHkdm2CecMUhaBNhoOv6Z0Eqs6V9ypcczRrE0nzAUGKe7Yjlqt4vKsSHacaqZ/0KB0HLu2dm8l3375AJH+Xnxw3xxW58aisuDOs9QILe/9YDZrpsXx122l3LfuMAND8mcihBBCCDFaw+ncEQ4sdtICADpPHVc2yBkmk8m8TDl2GCNZNQehqRAm32b9YM5ErYFJN8Hpz6CrTuk0VuPv5U5iqO+5MT9Hs/FYPTlxgTKSZWNLMyMYGDKy/VSz0lHskslk4vefnuS/3jvBwvRw1t87i8QxdutciJe7hv9dPYFHlmew8Xg9t72wn16d/YwQCyGEEEI4EosVd1Qq1d0qleqgSqU62Nws3zTbi+xZKxjUAPX2MYZQ3dZPe9/Q8Pbt5L8C7r6Qfa31gzmb3JvBZIQjbyidxKomxARwwgHHsqpa+zhe28mKCZFKR3E5UxOD8fdy45OCRqWj2KWnNpfwxy2nuC4vlr/fmoePh3XvXVCpVNw9L5ln1uRyqKqdb790QAo8QgghhBCjYLHijslkes5kMk0xmUxTwsLCLPVYMUae3j60BYJXa6/SUQA4cmaE5pLXoOu64cR6yL5GFimPRnASjJsLh9eC0ah0GquZGBtAXecAzd06paOMyNmdLzKSZXvuGjWLxkewtbgRvcF5/90YjT9/fpq/bCtlzbR4nrpuIu4a2zX3Xp0TzR9umMShqna+8/IBGdESQgghhBghGctyAZ1BbgR02Mc3ykerO/ByV5MWcYmCzfF/wlAv5N1hk1xOKfdWaC+Hyl1KJ7Gas3t3HK175+OCBnJiA4gNkpEsJSzNjKC9b4iDle1KR7Ebr+2t5KnNJayaFM2vV2VbdL/OcF2VE83vvpXDvvI2fvrOUVmyLIQQQggxAsO5Cn0dsAdIV6lUNSqV6rvWjyUsaSDEj5AO6O1W/g3wkeoOsqMDLv0T4fxXITzTvExZjE7m1eDp79SjWVnR/qhUjnVjVkPnAEerO1iaJSNZSpmXFoaHm1pGs87YcaqZR/9VwKKMcJ6+Pge12vaFnbNWTorh4WUZfHisnic3lyiWQwghhBDC0Qzntqw1JpMpymQyuZtMpliTyfSCLYIJy1FHR+NmhBO73lc0x5DByInazkvv22kqhrp8yL0FFPjpsdNw9zYXeIo+gME+pdNYhfbMUmVHKu58WmQuKFyeFaFwEtfl6+nGnJRQPilswGRy7e6Q0uYe7n09n9RwP/64Jhc3G45iXcj35iVxy4x4/vZFKe8drlU6jhBCCCGEQ1D+uzhhdYHpkwCoO6rseE5JQzc6vfHSxZ1jb4JKAxOut00wZzbhWzDYDSc/UjqJ1WRFB1BY16V0jGH7tLCRpFBfksP8lI7i0pZmRlDT3k9RfbfSURTTo9Nz1ysH8dCoef62Kfh5Wnd58nCpVCoevSqLaYnB/Hz9cUoaXPfPSAghhBBiuKS44wIyZl8NgK7ytKI5jp5Zppx7seKO0QjH3oGUReAXbqNkTmzcHNBGm39PnVRWtD+1Hf109A0qHeWSugaG2FPawpLMCEV2mogvLRofgUoFnxQ2KB1FESaTif/acJyK1l7+cvNk4oLta/+Tm0bNn9bk4uvpxvfXHqJ7YEjpSEIIIYQQdk2KOy4gPjWHLh9wa2pTNMfR6g6CfT2IDfK+8AdV7oSuGph4g+2COTO1BiZcC6c/hd5WpdNYRWaUP4BDdO9sK2lmyGBiqYxkKS5M60lefJDL7t1551AN7x2p40eL05ieFKJ0nPMK9/fizzflUtnWxy/fL1A6jhBCCCGEXZPijotoD1Lh267sddFHqzvJiQ24eMfC0bfAQwsZK2wXzNlNvAGMeijcoHQSq8iKNhd3ChyguPNJQQOhfp5MigtSOooAFmdGUFjfRX1nv9JRbOp0Uw+/fL+AWckh/GBhitJxLmp6kjnj+sO1fHyiXuk4QgghhBB2S4o7LqInyJPgduUWh/bq9Jxq6mZi7EVGsgb7oPA9yFxpXgYsLCMiG8LGO+1oVoifJ5H+XhTU2fdSZZ3ewLaSZpZkhqNR8DYi8aWF6ebRz20lzQonsR2D0cRP3jmKl7ua398wySG+Fu+7LIUJMQH8fP1xmroHlI4jhBBCCGGXpLjjIvThQfj3QdWpo4qcX1jfhdEEE2MDLvxBJZtgsAdybrRdMFegUsHEb0H1XmivUDqNVWRF+9t9586e0lZ6dHqWZsoV6PYiLcKPmEBvthY3KR3FZl7YWcbR6g4evTqLCH8vpeMMi7tGze9vyKF30MAj60+4/A1nQgghhBDnI8UdF+EZb269L971L0XOP1Zj7qqYEHOR4s7RNyEgDhJm2yiVC5lwnflXJ+3eyYr2p7S5h4Ehg9JRLujTwkZ8PTTMTLbP/SauSKVSsTAjjF2nW9Dp7fdrx1LKmnv47ScnWZIZwdU50UrHGZGUcC0/XZrGZ0WNbC5wzSXYQgghhBAXI8UdFxGVYy6YdJQcUeT8E7WdRPh7En6hnxT3NEHpFvP152r5srS4wHiInwkFzrl3JzM6AKMJiu30ymSj0cSnhY0sSA/Hy12jdBzxbxamh9M3aGB/ubIL563NaDTxs3eP4eWu4dersh3ytrbvzE5kfJQ/j/6rkB6dXuk4QgghhBB2Rd5Fu4gJc1ahV4Oxrk6R84/Xdl68a6fgPTAZzeNDwjoyV0FTAbScUjqJxX25VNk+9+4cq+2kqVvH4sxwpaOIr5mVHIqnm9rpR7Peza/hQEU7/7li/IWL7HbOTaPmf1dn09g9wG8/KVE6jhBCCCGEXZHijovw1QbQFgBerT02P7tHp6e0uYfsixZ31puX/oaPt10wV5N5tfnXgveUzWEFsUHe+Hu52e3ena3FTahVsCBNijv2xvvMqJwzL1Xu7B/iNx8Xk5cQxHWTY5WOMya58UHcPD2eV3ZXcKLWPou5QgghhBBKkOKOC+kM0hDQbvtW9sK6LkwXW6bcVQdVeyD7GtsGczX+0RA3w3wjmZNRqVRkRvtTaKfFnW0lTeTGBxHk66F0FHEel2WEU97SS3lLr9JRrOIPn52ktXeQX12dhdoBbse6lAcvzyDQx4PHNxbKcmUhhBBCiDOkuONC+oN9Ce4AXX+fTc89fuanqxfs3DnbSZK12kaJXFjWKmg84aSjWQEUN3RhMNrXm72m7gGO1XRyWYZ07dirs1eiO+NoVnFDF6/uqeTm6fEX7550IAHe7vx4SRp7y9r4tLBR6ThCCCGEEHZBijuuJCoSDwOc2L3RpseeW6asvcCeh4L1EDEBQlNtmssljXfe0aysaH8GhoyUNdt+9PBizo77LEgPUziJuJC4YB9Swv3YVuJcxR2TycRjHxai9XLjJ0vSlY5jUWumxpES7sf/bipiUG9UOo4QQgghhOKkuONCAtImAlBzZJtNzz1W03HhZcodVVBzALKla8cmAmIgbrpTjmZlnluqbF+jWdtKmoj09yIzyl/pKOIiLssIZ19ZG71OdAvTjlMt7DrdygOLUp1uJNBNo+Y/V4ynorWP1/ZWKh1HCCGEEEJxUtxxIakzlgHQX2G7kZwenZ6yll4mxASe/wNkJMv2Ms+OZp1WOolFJYf54eGmtqsbs4YMRnacbGFhRphDXj3tShakhzFoMLLrdIvSUSzCaDTxxEfFxAV7c9P0eKXjWMWCtDDmpobyzJZTdA0MKR1HCCGEEEJRUtxxIePGT6PXCzRNtnvzcnaZ8oTYC3QtFGyAqEkQnGSzTC4vc6X518INyuawMHeNmoxILYX19tO5c6CijW6dngXpsm/H3uUlBOHjoWGnkxR3PjhWR2F9Fz9dmo6nm0bpOFahUql46PIMOvuHeHFnudJxhBBCCCEUJcUdF6Jxc6M1SIVvm85mZx6r6QAusEy5rRzq8uWWLFsLiIHYaVD4vtJJLC4r2p+Cui67uUHn8+ImPDRq5qSEKh1FXIKnm4YZSSHsOOX4xR2d3sBTm0vIjPLnqonRSsexqgmxASzNjOCFHeV09A0qHUcIIYQQQjFS3HExPUEeBLXbbvnkidpOIv29zr9MuVBGshQz/kpoOG7eeeREMqMD6Ogboq5zQOkoAHxe0sz0pGB8Pd2UjiKGYW5qKOUtvVS32fZGQUt7c381Ne39PLwswymuPr+UHy9Jo1un5/kdZUpHEUIIIYRQjBR3XMxQWCCBPdBQZZu9O8drOy98/W7hvyB6MgQ65z4Iu5a+wvxryUfK5rCwrLNLlWuV37tT3dbH6aYeGclyIHNTzR1Wjty9MzBk4C/bTjN1XNC5z8fZjY/y58qJUby0q4LWHtt1pgohhBBC2BMp7rgY9/hxABTutP5IzpfLlM9T3OmsNY9kjb/S6jnEeYSmQGgaFG9UOolFZURqUans48asrcXma7Uvy5DijqNIDvMjKsCLnaeblY4yau8cqqGxS8cDi9Jcaon3jxanMTBk4Lnt0r0jhBBCCNckxR0XE5E9C4CWooNWP6ugtvPCy5TPFhUyrrJ6DnEBGSugYif0tyudxGJ8PNxICvWlyA6WKn9e0kRiqC+Job5KRxHDpFKpmJsays5TLRiM9rG3aSQG9Ub++vlpJscHMjslROk4NpUS7seKidGs3VtJZ5/cnCWEEEII1yPFHRczcd4qjCow1lRb/azjZ0ZjzjuWVfyhuXMkLM3qOcQFpK8AkwFOfap0EovKiPKnuKFb0QwDQwb2lrUyPy1M0Rxi5OamhtE1oD+3DN6RvJtfQ13nAPcvSnWprp2zvj8/md5BA2v3VSodRQghhBDC5qS442L8g8Jp8wfPNuu/+b3gMuW+NnPHSIaMZCkqJg/8IpxuNGt8pJaqtj56dHrFMhyqbGdgyMi8NNfYeeJMZqeEolI53t6dIYORv2w7TU5sgMsWFTOj/VmQHsaLO8sZGDIoHUcIIYQQwqakuOOCOgPV+HVY/43vsQstUz652dwxIsUdZanVkL4MTn8GeudZQpoRaR4DLFGwe2f7qWbcNSqmJ7rWaIwzCPb1IDs6gB2nHGvvzgdH66hu6+e+y1yza+es789PprV3kHcOWr87VQghhBDCnkhxxwX1BXkR3G7CoLdegadHp6e8pZeJsRcYydJGQ3Su1c4Xw5S+AgZ7oHy70kksJiNKC6Do3p0dJ1vISwiSK9Ad1NzUUPKrOugecIzdLSaTiee2l5Ea7sei8a69wHtaYjCT4wP5+/Yy9Aaj0nGEEEIIIWxGijsuyBgeis8gnD6x22pnnFum/PXOncE+OL3FvMxXLV9+ikucB+6+TjWaFRPojdbLjeIGZYo7zd06Cuu7mJvqmqMxzmBuahgGo4k9pa1KRxmWXadbKW7o5q65SS7dtQPmpdj3Lkihpr2fjcfrlY4jhBBCCGEz8u7aBXknpABQfsB6i3QvuEy5dCvo++UKdHvh7gUpi6DkIzA6x0+5VSoV4yP9Ka5XZixr12nzrpZ5UtxxWJMTAvHx0LDdQUaznttRRqifJytzo5WOYhcuywgnMdSXl3dXKB1FCCGEEMJmpLjjgqInzAGgs/SE1c4orO8iXOtJmNbzq/9H8YfgFQgJs612thih9OXQ0wANR5VOYjEZUVqKG7oxmWx/nfX2U80E+biTFe1v87OFZXi6aZieGMxuB+jcKWnoZvvJZm6fmYCnm0bpOHZBrVZx+8wEDld1cKTa8W49E0IIIYQYDSnuuKDs2SvQq8FU32C1Mwrrur755tagN3eIpF0BGnernS1GKGUxoHKqK9EzIv3p0empae+36bkmk4kdp1qYkxqGWu3a4zGObmZyCGXNvTR2DSgd5aL+saMML3c1t8xIUDqKXbluShx+nm68vKtc6ShCCCGEEDYh2z5dkLevP20B4NXaY5XnDwwZONXU883FntV7YaADMpZb5VwxSn5hEDMZTn0C8x9SOo1F/PtS5bhgH5udW9LYTXO3jrmpcgW6o5uVbP4z3FPayqrcGIXTnF9T1wDvHanlxqnxBPl6KB3Hrvh5unH9lFjW7q3kkeXjCff3UjqS4oYMRkoaujlR20ld5wBtvTrUKhXeHhrig31IDdeSExcgHWBCCCGEg5LijovqDNSg7bTObVmnGnswGE1kRX9t387JzaB2h+TLrHKuGIPUpbDtCehtBV/Hv747PUKLSgXFDd0szYq02bk7Tpr37Uhxx/GNj/LH38uN3aUtdlvceWN/FUMGE9+Zk6h0FLt0+8xxvLy7grX7qviPJWlKx1GEyWRi1+lWNhyu5dPCBroGzP/dV6kg0NsdE9CnMzB45mYxb3cNs1NCuH5KHJdlhOOukQZvIYQQwlFIccdF9Qd7E1/dw9CgDncPz0u/YAQK6szLlDOjvjaWdXIzjJsNnlqLnicsIHUJbPs/KN0CE7+ldJox8/V0IyHYx+Y3Zm0/1UxquB9RAd42PVdYnkatYkZSCHvK7HPvzpDByLr9VcxLCyMx1FfpOHZpXKgvl6WH88a+Sn6wMNmlOlJMJhMfnWjg2a2nKarvQuvlxpLMCOanhTEpLpDYIB80Z0ZHjUYT9V0DFNR2sut0Cx8XNPBZURNRAV7cd1kq10+JlSKPEEII4QDkv9YuyhQRjqceSvK3WvzZBXVd+Hm6Ef/v4zBt5dBSYt63YwM9gz3U99RT3llOS38LQ4Yhm5zrsKJywSfUPJrlJDIi/Smy4Y1ZA0MG9pe3yRXoTmRmcgjVbf1Ut/UpHeUbPitspLFLx22ya+eibp81jpaeQT4+Yb0dc/amuKGLG5/by72v5zNkMPLktRM5+F+L+d23JrFyUgwJIb7nCjtgXkAdE+jN0qxIfrUym10/u4x/3DaFyAAvHtlwnMv/sJ0DFW0KfkZCCCGEGA7p3HFRvuPSgTIqDm0le8Yyiz67sL6LzCj/ry6UPVs0SF1q0bPOqu2pZVv1NnbV7qK4rZjm/q9eYaxRaUgMSGRC6AQWxC1gZvRMvN2ku+IctdrcvXPyYzAaQO34P+HOiNKyubCBvkE9Ph7W/6vuQEUbOr2RuWkykuUszu3dKWu16e6m4Xh1TyUxgd4szAi/9Ae7sDkpocQFe7NufxUrJ9nneJ2lGI0mXtxVzm8+LsbP043/XT2BG6bGfaWQMxxuGjWLMyNYND6cLUVNPPpBAdf/bQ93zBrHz5dnuFQHlBBCCOFIpLjjohLyFgIf0VtWZNHnGowmiuq7+NaUuK/+Hyc3Q0gKhCRb7CyTycTuut2sLVrLrtpdmDAxzn8cM6NnkhSQRJBXEB4aD3oHe2nsa6SkvYTPKj9jw+kNaN21XJN6DTePv5kovyiLZXJoqUvg6DqoPQRx05ROM2YZkf6YTHCysYdJcYFWP2/nqRbcNSqmJwZb/SxhG2kRfoT4erC3tPWbf6cp6HRTN3vKWnnw8vQRv3F3NWq1ihunxvPU5hLKmntICvNTOpJVdPYP8cCbh9lW0szSzAieuHYiwWNcsq1SqVicGcHM5BCe2lzCy7srOFLdwV9unkx0oPxwRAghhLA3UtxxUeOnLqXQ7SFobLLocytae+kbNJD579eg63qgYgdMu9ti5xS0FPDbQ7/lQMMBwrzDuCfnHq5MupJ4//iLvm7IOMSBhgOsP7WetUVrWVe8jlsyb+HOCXei9XDxXUDJl4FKbe6ycoLizvgzN2YV13fZpLjtl65jAAAgAElEQVSzu7SV3Pggm3QJCdtQqVTMSA5hd2krJpMJlco+Cilr91bhoVFzw1T7KTjZs+unxPL7T0/y5oFqHlk+Xuk4Flfd1sd3Xj5AeUsvj63K5pbp8Rb9WvX1dOPRq7OYnhjMg/88xtV/2snL355GdkzApV8shBBCCJuRnTsuyt3D03wduoV3SRTWmRfYZv17cadsGxgGLTKSpTPo+N3B33HTppso7SjlkemPsPnazdw76d5LFnYA3NXuzIqexdPzn2bTNZu4IvEKXjzxIqveX8Xuut1jzufQvIMgbrq5y8oJxAX54OuhobjB+nt3OvuGOFHXyaxkx79pTHzVzKQQGroGqGi1j707vTo97x6qYfmESEL9LLsM31mFa71YPD6Cfx6qQac3KB3Hokoauln9l100dg3w6nenceuMBKsVIZdNiOK9H8zCQ6Pmxuf2sqfUPpeNCyGEEK5KijsurDPIDf8Oy36jW1DXhbtGRWr4v3XBnNoMnv4QP3NMz67squTGD2/kpYKXuCb1Gjau3siajDW4a9xH9bxov2h+PefXvLH8DXzdffnep9/jyQNPojda54p4h5C6BBqOQVe90knGTK1WkR6ppbDe+jdm7S1vxWT6ckeLcB5nC3a7S1sUTmL2r6N1dOv03DpTFimPxJrp8bT1DvJJQaPSUSymuKGLNc/vRaNWsf7e2Tb5+yclXMu7984iKsCL21/az+7T9vHvhRBCCCGkuOPSdME+hHSCrt9yP5EuqOskNVyLh9uZLy2TCU5+AskLwW308/87a3ey5sM1tPS38NfFf+WXM3+Jn4dldidMCJvA21e+zZqMNbxW+Brf/+z7dOo6LfJsh3O2u+r0Z8rmsJCMKH+K67swmUxWPWdPaSte7mqbjH8J20oM9SXC39NuuhTePlhNWoQfk+ODlI7iUOamhBIT6M2bB6qUjmIRpxq7uen5fXho1Lx590xSwm23SygqwJu3vzeTcSE+3PnqQQ5VttvsbCGEEEJcmBR3XFlEJO4GKNz7kUUeZzKZKKzr+upIVv1R6GkY0xXoG05t4AdbfkCUXxRvXvkmc2LmWCDtV3m5efHI9Ef4n1n/w6HGQ9yy6RYael3n6txzIrLBLwLKPlc6iUWMj9TSNaCnvnPAqufsKW1l6rjgL4uawmmoVCpmJYeyt6zV6kXCSznV2M3hqg6+NSXObvb/OAq1WsWaaXHsOt1KZWuv0nHGpKlrgDteOoBGrWLd3TNIDPW1eYYgXw/Wfnc64VpP7nhpPycbrT/+KoQQQoiLk3ciLkybnAVA9dHtFnleU7eO1t7Bry5TPrkZUEHKklE98/Wi1/nv3f/NjKgZvLbsNWL8rHuV7erU1Ty/9Hma+5u54+M7qO6utup5dkelgqSF5j1JRqPSacYsI8r8tVjcYL3RrOZuHSWN3cyUfTtOa2ZSCC09g5xs7FE0x9sHq3FTq1iV69xXelvLtXmxqFSwPr9W6Sij1qPT8+2XD9DeN8hLd0xVpLBzVri/F2vvnI6nm4bvvnKAtt5BxbIIIYQQQoo7Li1p6mIA+ipKLPK8gjrzKFNW9L/doHH6U4iZDH5hI37e60Wv88T+J1gUv4hnL3sWH3cfi+S8lLyIPP6x9B90D3bz7Y+/TX2P4++fGZHky6Cv1bx7x8GlR5p3PxXVW++nynvLzOM6sm/Hec1IMhfu9pcrN5o1ZDCyPr+WRePDZZHyKEUFeDM7OZT1h2sU78IaDaPRxI/ePExxQzd/vnmyXdxWFRvkw/O35dHYpeOe1w4xqHf8HwoIIYQQjkqKOy4sNWce/R6gbrTMQsSCWnN3xNkrqOlvh9pDkLxoxM/6sOzDc4Wdp+c/jYdm9Pt6RiM7NJsXLn+B3qFevvfZ92gfcKGdAkkLzL+WblUyhUX4e7kTG+RNkRWXKu8ubUXr6Ub2v3esCacSF+xNpL8X+8rbFMuwtbiJ1t5Buf58jK6ZHEN1Wz8HHXBPzF+/KOWzoiZ+sWI8C9PDlY5zTm58EE9dN5H9FW08vrFQ6ThCCCGEy5LijgvTuLnRFgje7f0WeV5hfRcJIT5ovc7cXlW2DUxGSBlZcWdn7U5+sfMXTI2cym/m/QY3tZtF8o1URnAGz1z2DLXdtfxwyw/p11vm98nuaSMgPMtp9u6kR2itug9iT2kL05OCcdPIX6fOSqVSMTUxmAMVbYp1fLxzsJpwrSfzUkfeBSm+dEV2JD4eGt49VKN0lBHZdbqF335SwlU50dw+a5zScb5h5aQY7pyTyKt7KvnouIt1uwohhBB2Qt6NuLjuQHcCOizTRl3w9WXKp7eAZwDETBn2M8o6y3jwiwdJCUrhmYXP4KlRdvxgauRUnpz3JMdbjvPo7kcdspV/VJIXQtVeGLTcTWpKSYvUUtbca5VxgbqOfipa+5gpI1lOb1piMI1dOqrabP/vRFPXAJ+XNHNtXqwUEcfIx8ONZdlRbDxWz8CQQek4w9LUPcD96w6TFObHE9dMsNtl2g9dkUFObAAPvXuMagX+PRFCCCFcnXyX6OJ0IX4Ed0Jv99iu/u4aGKKqre/LfTsmE5R+DknzQDO8zpvuwW4e2PoAHhoPnln4jMWuOh+rRQmL+GHuD9lUvolXC19VOo5tJC8EwyBU7lY6yZilR2jRG01UWOGGnLPXY89MkmXKzm56YjAA+xUYzVp/uBaD0cT1ebE2P9sZXZsXQ7dOzyeFjUpHuSSTycTD7x6nR6fnrzdPxtdTmU7W4fBwU/OnmyYDcP+bhzEYXeSHIUIIIYSdkOKOi1NHRaMxwYld74/pOUV15p0mmWduJ6LlJHTVDHvfjtFk5JGdj1DTXcPT858myi9qTHks7a4Jd7EkYQm/O/Q79tXvUzqO9cXPAo2nU4xmpUVoUWGk9uRhOPgSfPwIvH0bvHEDrFsD/7ofdvwWyrePuFNpd2krQT7uZJxZ3CycV0qYH4E+7ooUdzbk15KXEERSmH0UvB3djMQQogO8WJ9v/6NZbx2oZmtxEz+7IoPUCPv/eyYu2IfHV2VzuKqDf+woUzqOEEII4VLs90dAwiYCUiYCBdQd2w1X3Dbq5xScKe6cG8s6vcX8a/Jlw3r92sK1bKvexsPTHmZq5NRR57AWlUrF47Mf53THaX6+4+e8e/W7BHkFKR3Lejx8IH6G4y9Vbi0l7cSr7PJ8jegtZ246cvcB/xjz52g0QPV+6DuzVFzjCenLYNLNkLrEfDX8BZhMJvaUtjAzOQS12j7HJITlqNUqpo4z792xpaL6Lkoau3lsZZZNz3VmarWK1ZNj+Ou2Upq6BwjXeikd6byqWvt47MNCZiWHcIcd7tm5kKtzotl4rJ7ffnqSReMjSAmXoqQQQghhC9K54+JSZ1wBgK6qdEzPKajrItTPk3D/M98kl26BkBQISrjka4vbivlD/h9YGLeQmzJuGlMOa/Jx9+HJeU/Soevgl7t/6fz7d5Ivg6ZC6G5QOsnItZyGd++EP03Bbc+zVLmN45XQn8J9+fBIHdx3EL63Hb6/Cx4qhZ9Vwk3vwOTboGIHvHE9/G0OFL5vHjE8j8rWPuo6B2TfjguZNi6YitY+GrsGbHbme0dqcVOrWDEx2mZnuoLVuTEYTbDpmH0u/zWZTPzs3WOoVSqeuj7HoQrIKpWKx1dn4+Oh4cF/HpXxLCGEEMJGpLjj4hLSJtPrBZrm1jE9p7C+i8yzXTtDA1Cxa1gjWf36fn62/WcEegbyq1m/sttFkWdlBGfwwOQH+Lz6c945+Y7ScawreaH517JtisYYkaF+2Po4/HUmFG+CmT+E/yjklcSneKl/DoQkn78bxzsQ0pbCiqfhJyWw+jnzzqG3b4PXVpmLRV+zp0z27biaaTbeu2M0mvjgSB3z0sII9vWwyZmuIiVcS0aklg/stLiz4XAte8paeXh5BjGB3krHGbFwrRePXpXF4aoO1u6tVDqOEEII4RKkuOPizNehq/Bp1436GYN6I6ebur/ct1O1B/T9w7oC/Y/5f6Sss4zH5zzuMGNOt2beysyomTx98Glqe2qVjmM9ERPAJ9RxRrOaiuDv82H7U5C1Gh44AksfA20kaRFaKtv6hnc7jsYdcm6Ae/fC8qehNt/cxZP/6le6ePaXtxHq50lymK8VPylhT7Ki/fHx0NhsNGt/RRt1nQOsnCRdO9ZwVU40hyrbqe3oVzrKV3T0DfLrjUXkxgeyZmq80nFGbeWkaOakhPL0JyW09Iz+ewwhhBBCDI8UdwQ9ge4EjuE69NLmHoYMJsZHnVn2WLoF1O6QMPuirzvSdIQ3it5gTcYaZkXPGvX5tqZWqXl01qMAPLbnMecdz1KrIWmBuXPH3j/HI+vguYXQ3w63rIdrngO/8HP/d3qkFpMJTjf1DP+Zag1Muwt+eADip8O/7oP1d5s70zAXd6YnBtt9t5mwHDeNmryEIJt17rx/pBYfDw1LMiNscp6ruerMqNvGY3UKJ/mq33xcQkf/EL9eNcGhxrG+TqVS8ejVWQwMGXjio2Kl4wghhBBOT4o7gsFQfwK7oL15dF0oxQ3mZcrjz3bunN5qXsbreeElikOGIR7d/SgRvhE8MPmBUZ2rpGi/aB6Y/AC76nbxYdmHSsexnsR50NNovv3MHplM8Pn/wXv3QOwUuGfneTvG0s7cMlPS0D3yM7SR5oLRwv+C42/Dqyupq6uhtqP/3JiOcB3TxgVT0thNR9+gVc/R6Q1sPFbP5VmR+HjI3QfWEB/iQ05sAB8ctZ/RrMNV7azbX8V3Zo/7ctTZgaWE+/HdOUn881ANhyptf9OcEEII4UqkuCPQRMeiBk7s/NeoXl9c342HRk1iqK95+W5TwSVHsv5x4h+Udpbyixm/wNfdMcdabky/kZywHJ488CRtA076TWviXPOv5duVzXE+RgN8cD988QTk3AS3bgDt+TscxoX44KFRc7JxFMUdMHfxzH8Qrn8Z6g6jfX0FEbRJcccFTU0MxmSCgxXtVj3n8+Jmugb0rMqNseo5ru6qnGiO13ZS3tKrdBRMJhOPfVhImNaTBxanKR3HYu67LIWoAC9++a8CjLJcWQghhLAaKe4IgtNzAWgqPDCq1xc1dJMa4Ye7Rg2ln5v/4UWuQK/orOD5Y8+zLHEZ82LnjepMe6BRa3h05qP0DPbwTP4zSsexjqBE8I813yBlT4xGc2En/1WY+xNY9RfzrpwLcNOoSQrzpWS0xZ2zslbDbe/j3t/EW16/Jt1H+TeEwrYmxQXioVFbfe/O+0dqCfXzYHayLOy2puUTogD48Kjyo1mbjjeQX9XBT5em4efpPN1avp5uPHRFOidqu/jAzkbghBBCCGcixR1BxqwrARiqrRjV64vqu8iIPNM+XrYNfELMy3gv4MkDT+Kp8eShqQ+N6jx7khKUwprxa1h/aj2FrYVKx7E8lcrcvVOx01xQsQcmE2z6KRxeC/N/Bov++/w3YH1NeqSWU40j2LlzIQkzedDzv4lUdaB+9SroaR77M4XD8HLXkBMXwF4r7t3p1enZWtzEiglRuGnkP9PWFB3ozdRxQYoXHXR6A098XERGpJbr8uIUzWINK3NiyIzy56nNJej0w1hsL4QQQogRk+8aBTGJmXR7g6a5Y8SvbenR0dytMy9TNpnM4zuJ88zLeM9je812dtTu4J6cewj1Dh1rdLtwT849BHkF8cT+J5xzufK4udDXCs1FSicx2/Z/cPAFmP0ALPj5sF+WFqGltqOf7oGhMR3f1D3AB+3xbJ70J+isgTfXmK9gFy5jyrhgCmo7h3f72ihsKW5CpzeyYqLckmULV+VEc7KxZ3Q7uSzkld0VVLf1818rMtE48BLlC1GrVTyyfDw17f28tsd5rkYf1Bv54mQzv/2khNtf3M/S33/BlMc/ZeqvP2PBU59z6wv7+NUHBXxS0DDm//YIIYQQlyLFHQFAe6AKn86RX1V69pvhjEh/aD0N3XXm4s55DBmGeOrAUyT4J3BTxk1jymtP/D38uT/3fg43Heaj8o+UjmN55/bu2MFo1rG34YvfwKRbYPGvhtWxc1b6maXKJ8fYvXOg3LxrJT53EVz7PNQcNN+iZS+dTcLqpiQEoTeaOFbTaZXnbzpWT7jWkykJQVZ5vviqK7IjUangoxPKLFbu7Bvi2a2nWZgexpxU5/ihx/nMSQ1lXloYz249TWefYxc6ypp7+M8Nx5n668+4/cX9/GVbKU3dOhJDfVmSGcni8eFMiA2kq3+IdfuruPu1Q0x5/DN+9OZhWSwthBDCapxnqFuMSW+AO+F1I7/9paj+7E1ZWih6z/wPE+ef92PXFa+joquCPy/6M+4X2Y/iiFalrOKtkrf4ff7vWZSwCE+Np9KRLCcwHgITzHt3ZtyjXI6qvfD+D8ydRFf+fkSFHTCPZQGcbOwmbwxvmveXt+LtriE7JgA0V8HSx+GT/4TPfw2LfjHq5wrHkRtv/vo5VNlu8aXavTo9n5c0cePUOIe+BtuRhGu9mJIQxMcnGviRAouMn99RRveAnoeuyLD52bb28BUZLH9mB8/vKOOnl6crHWfEqtv6eOLjYjYdr8ddo2Z5diRXToxmVkrIBW+10+kN5Fd2sOl4Pe8dqeW9I3XMTQ3lwcvTmRgbaOPPQAghhDOTzh0BwGCIlqAu6GpvGtHriuq7CdN6EuLnCWVfmJfvBid94+M6dZ387djfmB09m7kxcy0V225o1Bp+MuUnNPQ28FbxW0rHsbzEeebijlGhXQk9TfD2bRAQB996Fdw8RvyImEBvvN01Yx692FfeRl5CkHmBOMDMH0DurbDjaTi5eUzPFo4h2NeDpDBfq/wE/vMS80jWsjOLfoVtXJ4VSXFDN5Wttl2S3tY7yEu7ylkxMYrxUY5/9fmlZEb7s2JCFC/vrqCjb+Q/UFKK3mDkT1tPsfh3X7C1qIl7FySz62eX8Ycbc1mcGXHBwg6Ap5uGmckhPLYqm/2PLOY/l4+noK6LlX/exa8+KKBXp7fhZyKEEMKZSXFHAKCOjEYNFO4d2VhRcUMXGZFa80hKxQ5Imn/ejoqXC16me7CbH+f9GNUIOy4cxfSo6cyMmsnzx5+nZ9ACi3vtSeI8GOiEhuO2P9togPV3mc+/4TXwGV2nhFqtIi3Cj1NNoy/udPQNUtLY/dVuDZUKlj8FkRPM41kdVaN+vnAcefFBHKpst/ierU3H6wn182TqOMt2BImLuzwrEoDNBQ02Pffv20vpGzLw48WpNj1XSfctSqFHp+fFneVKRxmW6rY+bnhuL09/cpLF4yPY8pP5PHh5BmHakXfoentouGteEl88uIBbZyTw8u4KVjyzg8K6LiskF0II4WqkuCMACEjOBqDhxJ5hv0ZvMHKqsYfMKH9oPAH97efdt9PS38LrRa+zLHEZ6cGO14Y9Eg9MfoAOXQevFL6idBTLGnem20qJK9F3/NZ8C9vypyAia0yPSovQUtIw+sLbwYp2TCa+OYrj7m3uKDKZ4J07wCA/iXV2eQlBtPcNUd5iuU6PvkHzLVnLsiOdcqmuPYsL9iEr2p+PT9iuuNPcrePV3ZWszIkmJVxrs3OVlhHpz/IJkby0q8Lud+/sLm1hxTM7KGno5o83TuLPN08mOtB7zM/VernzPyuzefOuGfQPGVj9l12sz6+xQGIhhBCuTIo7AoCUqYsBGKgqG/Zrylt6GTQYyYjSQvkX5n94nuLOc8eeY9AwyA8n/dAiWe1ZVmgWSxKW8GrBq7T2tyodx3L8oyAkxfZLlav2mW/HmnijefRpjNIjtbT06GjtGfnycID9FW14aNRMijvPnoTgJLj6j1B7CHb+boxJhb07u7fpUGW7xZ65raSZgSEjy2UkSxFXZEWSX9VBY9eATc772xelDBqMPKDAnh+l3b8olW6dnhd22W/3zjsHq7nthf1E+Hux8f45rJwUY/EzpieFsPH+uUyOD+I/3j7Kn7aecs5bN4UQQtiEFHcEAOPGT6PPA9Qtw98hUXhmmXJGpL/5CvSQVPD/6tW9tT21vHPyHVanribeP96ime3Vfbn3MWAY4MUTLyodxbLGzYXK3bbrShnsg/e+DwGxsOLpES9QPp+0Md6Yta+8jZy4ALzcNef/gKzVkH2d+UavuiOjjSkcQHKYH/5ebuRXWa64s/F4PaF+HhZf0iyG5/Js82jWJ4WNVj+rtUfH6/sqWTUphsRQX6ufZ28yIv1Zlh3JSzvL6ey3v+6dF3aW8+A/jzEjKYR/fn8WCSHW+zMK9fPkle9MY3VuDE9/cpJffVAoBR4hhBCjIsUdAYDGzY32QPBu7x/2a4obunHXqEgO9jS/6U/65i1Zfzv6NzQqDfdMVPCWJRtLDEhkeeJy3jn5Du0Dlnvjp7jEuTDYDfVHbXPe1segrRRW/hk8LTOy8O83Zo1Ur05PQW3npd94L38KfEJhwz0wZJsOAGF7arWKyQlBFuvc6R80sLWoicuzZCRLKanhfiSF+rLZBqNZr+yuQKc38v0F37yAwFX8YGEK3To96/bb156yF3aW89iHhebi07enEuBt/ds9PdzU/Pb6HO6ck8jLuyt47MMiKfAIIYQYMSnuiHO6A9zx7zQO++OL67tIDvPDo/EIDPZ8YySrtqeWD0o/4Pq064nwjbB0XLt254Q7GdAP8Frha0pHsZxze3e2W/+syt2w968w9a7zjvqNVrjWE38vN0pGUdw5XNWB3mhiWmLIxT/QJxhW/gmai2Dn70eZVPx/e/cdHlWZPXD8+04y6b33hBRKQu8dkSIdC2IFxFXsfdfV3Z/K2lddUVFXFHAFpahUASnSe01oIZV0UknvZe7vjxtQpKRNScL7eR6eJJO5955JLpmZc897TlvQJ8CZuOxSvVQe7I7LpaKmTi7JMiEhBLd19eLg+YsGneRUVlXLdwdTGNPF86bqtfNnXX0dGRLqyrf7k6iubfxrD0P6/lDK5cTOZ/f1+n0qohFoNIJ/TuzCQ4ODWLw/iY+2xhrt2JIkSVL7IJM70mVVLra4FEFFWeOmNsRklaijW5N2A+L3N//1vj3zLUIIZkXMMkC0rVuIUwijA0ezPGY5xdXtZAqGnYe69C6l8U23m6W2CtY/C04BMHquXncthKCTlz1xzRiHfjQ5H42A3gHX6LfzZ2Fj1OVZ+z6GvIRmRCq1BZf67kTqYWnWtuhsHK21DJBLskxqXIQXdTqF7edyDHaM5UdSKaqo4fFbQgx2jLZizvAQsourWBeVYepQ2H4um9fXnWFUZw+jJ3YuEULwxuRw7uvvzxc7E1l6KMXoMUiSJEltl0zuSJcJT0/MdRBzZFuD9y0sryazqFIdg560Rx0D/YcR1bnluayJX8PUkKl42XoZMuxWa073OZTWlLL83HJTh6I/gYMg7RDoDHiV9eDncDEeJn4MlnZ6332Ypz3xOaVNLnk/nlJAJy8H7K0aWaJ/27tgbg2bXlKnaEntTg9/JzQCTrRwaVZtnY7tMdmM6uyBuQneUEq/6+7niJeDFVujDbM0q7pWx6J9SQzo4ELvAGeDHKMtGR7mRmcve77ecx6dznR/J0+nF/H0skgifByZf79pEjuXCCF4+/Zu3NrZg7nrz7I3PtdksUiSJElti3wVKV1m16ELAOmnGp6IdC5TrXwId9dC2uGr+u0siV5CrVLLX7r+Rf+BthGdXTozwm8ES88tpbym3NTh6EfgEKgsgpxow+y/MBV2fwhdJkPYaIMcIszDjqKKGvJKG7/sok6nEJlaQN/AJrwZs/eEUa+pY9zPrGp6oFKrZ2tpThdvB463sHLnWEoBheU1jAm/uZavtkZCCG7t4sG++Dyqauv0vv/1Jy+QWVQpq3bqCSGYMzyY+JxSdsUZrlrqRvJKq3hkyVFcbC1Y9FBfbCzMTRLHH5lpBJ/d14swDzue/OEECTnNGwIgSZIk3Vxkcke6LKj3SADKUuIbvG9MlrrUqKvuHNRVQ4ffkzuFlYWsjF3JuKBx+Dv4GybYNuLR7o9SVFXEmoQ1pg5FPwIGqR9TDhhm/5tfVadi3faeYfYPhHqo1UDxOY1fmhWTVUxZdd3lZTiN1vdh8OkFW/4J1WVN21ZqE/oEOhOVWkhtXfOr2bZFZ2NhrmF4R3c9RiY11+guHpRV13H4fOOnRzaGoih8vSeRzl723CJ/15dN7uGDt6MVC3afN/qx63QKzy6PpLC8hm9m9sXD3sroMVyPnaU5ix7qh4WZhqd+OEFFtf6TjZIkSVL7IpM70mUde42g2hxETsMlwDGZJbjaWuCUcxSEBgIGXv7esphlVNRW8Ei3RwwZbpvQw70HPd17sjR6KXW6dvDCzCkAHHwh1QDJnYTfIGYDDP8bOBkuKRhW38C0KVdCLy27aXJyR2MG4/4NpVlwYH7TtpXahD6BzpRV1zWrSTeob/i3RWczJMQVW0vTVwxIMDjEDSuthh0x+q0kOZh4kbjsUv4ytANCyIlol2jNNDw0OIjDSfmXLxwZy8fbYjmQeJG3b+9KuI+DUY/dGL5O1nx8T09is0v41y9nTR2OJEmS1MrJ5I50mdbCknxHsCpoeAnRuaxiOnvbI1IOgHePy6Oqq+qqWBm7khF+IwhzDjN0yG3CzIiZZJRmsCttl6lDaTkhIHCw2lRZn31kdHWw9XVwDoJBT+lvv9fg6WCJvaV5k5I7x1IK8LC3xM/ZuukHDBgA4bfD/k+hOLPp20ut2qW+Kc3tuxOXXUpqfjljwm/O3mStkZXWjCEhbvx2Lluv46j/dyAZF1sLJvfw0ds+24vpff2xNNew5KDxGgjvicvli52J3NvPn7v7tt4q4xEd3XlqZAgrjqaxNtL0jaclSZKk1ksmd6QrFDuZYV904wqTOp1CbFYJXT0sIf2Y2oel3sbzG8mvzGdG+AxDh9pm3Op/K752viyJXmLqUPQjYJBaiZKvxxL6kysg5yyMegPMLfW332sQQhDiYUd8duOTO8dTCugT6Nz8q+2j54KuFna83fFfOG4AACAASURBVLztpVbLz9kaD3tLjjczubOtvnHv6C4e+gxLaqFRXTxJL6ggXk+9TtLyy/ntXDb39ffHSmuml322J862Fkzt6cOaExkUVdQY/HhF5TX87eeThHnYMXdKhMGP11IvjO5IvyBnXlt7hsyiClOHI0mSJLVSMrkjXaHSyQaXQqiprrrufZIvllFVq2OQVQrUVUHQUEBdXrA0eikdnTvS36u/sUJu9cw0ZjzY5UFO5JzgdO5pU4fTcoGD1Y+pehqJXlOhJj18ekPEHfrZZwPCPOxIyG3cm7bs4krSCyqaviTrj1w6wIDHIOoHyGoH54B0mRCCXgFORKUVNmv7bdHZ9PR3wsOh9fT6kODWzmqyTV8j0ZceSkEIwYMDA/Wyv/Zo5qAgKmrq+Pl4usGP9cb6M1wsrebj6T3bRLLN3EzDf+7uSZ2i8PdVp/VaUaZvheXVbDyVyWtrz3DPgoMMeX8Hvd7cSve5Wxj50S7u/+YQ7/16jt+is6msaQfL1SVJkloRmdyRrqB4umNZC3GRu697n5j6SVldqk4B4nK/nUOZh0goTGBG+AzZT+BP7gi7AzutHUujl5o6lJZz6wTWLurSLH049F8ouQBj31KXfRlBqIcduSVVFJU3fIX4eHP77fzZsL+ClQPseKdl+5FanR7+TiRfLKegrPET2EBNHJ5ML5JTslohL0crInwc2BGT3eJ9lVfXsuJIKuMivPB2bMbSzptEV19Hegc48f2hFIOORd90OpO1URd4+tZQuvk5Guw4+hbgasMr4zuzJy6XlUfTTB3OFRRF4UBCHk/9cIJ+7/zGU8tOsPpEOrU6hQEdXJjcw4c7evkS4eNAWVUti/cl8ciSY/R9+zde/vkkcc3sWSZJkiRdSXZvlK5gGxgGnCclchcRA8Ze8z7nMosx0wjc8o+BZ1ewVt/0Lo1eiouVCxM6TDBixG2DrdaWu8Lu4vtz3/Ni2Yt42bbh/hoajbo0Sx9NlcvzYd886Dj+cgWYMYR5qhOzEnJL6BPocsP7Hk8pwNJcQ4RPC98EWDvB4GfUKqWM4+Dbp2X7k1qNnv5OAESlFzKyU+OXV22LVhMHY2Vyp1Ua1cWTz3fEU1BWjbOtRbP3szbyAsWVtTw0JEh/wbVTswYH8dyKKPYm5DHCABPFispreH3dGbr7OfLUyFC979/QHhwQyK+ns3h74zmGd3THx8n0ycJjyfl8sCWWI0n5ONtomTEwiIndveju54TW7NrXkCtr6jiclM+Gkxf45WQmPx5LZ2y4J/+c2IVAV1sjPwJJkqT2Q1buSFfw6ar2zylNOnfd+8RmlxDqaolZ+tHLS3TOF51nb8Ze7u10LxZmzX8R3J7d0/kedIqO1fGrTR1KywUOUnvulGS1bD8Hv4CqEhj1un7iaqRQd7UBeGP67hxLKaCHnxMW5nr4czngcbXqaee7Ld+X1Gp093NCCDjZxKVZ26KzCXK1IdTDzkCRSS0xqrMHOgV2xTV/aZaiKCw5mEy4twN9W1r9dxMY39UbNztLlh5MNsj+/70lhoLyGt6/s/t1Ew+tmUYj+GBad2rqdLy9MdqksRRV1PDq6tNM++ogyXll/GtKBIf+MYrXJ4fTJ9Dlhj9fK60ZIzq68+HdPTjwyq08PzqM/Ql5jPl4Dx9vi6OmTmfERyJJktR+tL1nNsmgwgfeRq0GdFnXf9Mel13CGMcLUFMOQWoyaNm5ZVhoLJjeabqxQm1z/O39Gew7mFVxq6jRGb5hpEEF1PfdSWlB9U55PhxeAOFTwTNcP3E1kq+zNVZaTYPNUitr6jibUUSfID29KbO0h6HPq2PfUw/rZ5+SydlZmhPmYdekvjvl1bUcPH+RUV085TLWVqqbryPu9pYt6rsTmVZITFYJMwYFyt9zI1iYa5je148dMTlkFVXqdd/HUwpYdjiV2YODWuXY88byd7Hh6ZGhbDqdxZ64XJPEcCK1gHGf7GHl0VTmDA9m199uYdbgICzNm96/yNnWgudHd2THX29hQjcvPtsez7SvDpJyscwAkUuSJLVvMrkjXcHa1oF8R7AsuPaTanl1Lan55Qw0j1FvCBhMeU05G85vYFyHcbhauxox2rbnno73kFORw+606/c0ahO8u4PWtmVNlQ9+AdUlMOLv+ourkcw0ghB3uwbHoZ9MK6RWp9AnQI9X3Ps9ArbusFNOzmpPevo7cTKtsNGNTg8mXqS6Vne5ca/U+mg0gls7ebA7LpfaZlYSrDiSio2FmRx/3gTT+/qjU2DVCf01Vq6t0/HPNafxcrDi+TEd9bZfU5kzIpgObra8sf4sVbXGbUq89GAy9yw4iLmZYM2TQ/jHhC7YWLS8y4OngxWf3NuLL+7vTVJuKZPn72N/Ql7LA5YkSbqJyOSOdJViRw12hdeuLEnIKUVRoFPlKbWxrp07m5I2UVZTxt0d7zZypG3PcL/heNt6szJ2palDaRkzLfj3a37lzuWqnduNXrVzSahHw8md46lqM+Xe+lxOYWELQ1+ApD2yeqcd6envTEF5Dan55Y26/87YHGwtzOirr6owySBGdHKnpLK2WdPQSipr+OVkJlN6+GBnKVscNlaQmy2Dgl1ZeTRNb42Vlx5KISarhLlTwtvF78LS3Ix/TYkgKa+Mb/acN8oxFUXh3U3neG3dWYaGurHh6WH0qO83pk8Tu3uz8dlheDtaM3PxEZYfSdX7MSRJktormdyRrlLhZI1LIdTV1l71vdisEjTocL14AgIHoygKP8b+SJhzGD3ce5gg2rbFTGPGtI7TOJR5iJTiFFOH0zIBgyH7LFQ0YwT0oS/rq3Ze1n9cjRTmYUdGYQVlVVef55ccTy4g2N0WlxY0U72mPg+pjcj3f6Lf/Uomc7mpciOSAIqisDMmlyGhbs1axiAZz5AQNzSCZi1/WRd1gYqaOu7rH2CAyNq3e/r5k5pfzqGkiy3eV1F5DZ9uj2doqBu3RbThYQZ/MryjO+MivPhyVyK5JVUGPVZtnY6//nSKr/ecZ+agQBbO6oejjdZgx/N3seHnJwYxNNSNV1efZtG+JIMdS5IkqT2RyR3pKjp3F2yqISXuxFXfi8suoad5KpqaUggaytmLZzmXf47pHafLfgKNdGfYnZgLc36M/dHUobRMwEBAgfRjTduusggOfQVdpoBnhEFCa4xLTWwTc69dvaMoCsdTCwzTBNXCVm2uHLsJcq7fvFxqOzp62mGtNSMyteHkTkJOKRmFFYyUS7JaPUcbLb0CnNndjOTOiqOpdPF2oHsbGrfdWozr6oWDlbleRn7P3xFPUUUN/5jQpd29Tvn7+M5U1+r45Lc4gx1Dp1N4+edTrDqRzvOjw/jXlAjMNIb/OdpbaVk4qy/ju3rx1oZoo1UoSZIktWUyuSNdxSogGICEI1uu+l5sdinjHeqfYAMH82Psj1ibWzMpeJIxQ2zT3KzdGBU4irUJa6mqM+zVNoPy7QNCA2lNXFp07Fu1amfYS4aJq5FCPdSJWddbmpWYW0ZheQ19DDXhpv8c0NrA/s8Ms/+GKIo67Sz1MCTuhMQdkHVaXTInNZm5mYZuvo6NqtzZGas26L2lk/5HPUv6NzzMnVMZReSXVTd6m9PpRZzJKOb+/v7tLqFgDFZaM+7o5cuvZ7IoKm/+AIKUi2V8dzCZu/v4tekmytfTwc2WBwYEsOJoWoPLjJtDURTeWH+W1ZEZvDSmI8+P7mjU81lrpuGz+3oxsbs372w6J5doSZIkNUAmd6SreIQPAKAw/vRV34vLKmGgWQw4d6DYyo5fk35lQocJ2FnIUb5NcVfYXRRXF7MzdaepQ2k+Szu18ib9SOO3qa2Gw19Bh+Hg09NwsTVCoKsN5hpx3YlZJ1LUfjt9Al0ME4CNC/SeBad/hMKWX51ulPJ8OLoQlt8H7wfCfzrB4rGw9HZYegd8NRQ+6ACf9oS1T0LcFvV3JjVKzwAnoi8UU1174+a7O2Ny6exlj7ejtZEik1piRCd3FAX2xje+emf50VSstBqm9vI1YGTt2/R+/lTX6lgbldHsfXywORZzjYaXxnbSY2Sty7OjwrDRmvH+rzF63/e83+JZeiiFx4YH8/StoXrff2NozTR8ck9Pbunkzv+tPcP2c9kmieNaKmvqyCqqJKek8oZLvCVJkoyl7XeVk/Su6+CJpPEBuqzMK24vKq8hu7icMLvT0G0yvyT+QmVdJXd3ko2Um2qA9wC8bb1Zm7CWcR3GmTqc5vMfACdXgK4ONI3oHXL6JyjJhCmfGz62BmjNNHRws73u1c7ItAIcrbUEu9kaLohBT8HRb9TJYePfN9xx8uJhz4dwdi3UVYFzB4i4Hby6gXOQukwMoCwX8s+rS+3ObYCoH8DWAwY+Dn3/Atb6b57ZnvTwc6K6Tse5zOLrNhotqazhaHI+jw4PNnJ0UnN183XEyUbLnrg8pvZsOFlTUV3H+qgLTOzmg4OV4fqStHcRPo5083Xkx2NpzBoc1OTto9IK2Xg6k+dHh+HpYKX/AFsJVztLHr8lhA+3xHIkKZ/+HfRzQWJdVAafbY/n7j5+vDK+s0kr0LRmGr64vzf3fn2Ip5ad4KfHBtPNBMsdY7NK2Hwmi2Mp+ZzJKKLgT1VlrrYWdPKyZ2CwK6O7eLbLajFJklo3mdyRruLg7EGBA1jkF19xe1xOCR1FOla1RSgBg1kVv4oI1wgiXJvWN0VXVkZVYiI12dnoysoQ5lrMHB2xCAxA6+eH0LT/gjKN0DAlZApfn/qarLIsvGzbaJNH/wFqJUhOtJoouBFFgQPzwSMCQkcZJ74GhHnacS6z5Jrfi0wtpIe/ExpD9hZw8odud8OJJTDyVbDS84vVsovw2+sQtQzMraD3TPWfd/eGt62tUpdqHfkGtr+p/u5u/T/oM7txibybUM+A35sqXy+5sz8hj1qdwshOst9OW2GmEQwLc2dPfC6KojT4JndrdBalVbXc3dfPSBG2X3f19mXuL9HEZZfQ0dO+SdvO2xaHi60Fjwxr/4nUh4d04H8Hkpm3LY7lcwa2eH8n0wp5+edT9A9y4Z07urWKpYW2luYsfqgft3+xn8e/P84vzwzV/7CDa7hUPbZ4XxIxWSUIAZ29HBjX1QtfJ2ucbS3QKVBcUUNafjmn0ouY91scH2+Lo7OXPQ8NDuLO3n5YmLf/17aSJJmeTO5I11TkqMH2T+PQY7NK6KeJBeCcoyfxp+L5vwH/16j9VcbFUbxxE6W7d1MVc/3SYY2dHbaDBmE36lYcxo5FY2PT/AfRyk0NncqCUwtYn7ieOd3nmDqc5vHrp35MO9Jwcid+G+Seg9u/glbwQhEg1N2OzWeyqKypw0r7e8KirKqWuOwSxhpjssqAx+Hkcoj8AQY9qb/9nlkFm/6mNrAe8IQ6ft2uCT1ezC2h03j1X+ZJ2PJP2PiSGuddC8E1RH+xthM+jla421ty8gZ9d3bG5GJvZU7vAFkF1ZYMD3Pjl5MXOJdZ0uDV+NUnMvB1sqZ/kIGWdN5EJvXw4a2N51gTmcHfx3Vu9HbHU/LZHZfLq+M7t4vR5w2xtjDj8REhvLUhmkPnLzIw2LXZ+7pYWsVjS4/jZmfJfx/s3aqSEu72akzTvjrIcysi+d/s/gZr7qwoChtPZ/LephgyCivo4u3Am1MjmNDNGzc7yxtum19WzcZTF1hxNI1XVp9m/o4EXh7XiSk9fFpFokySpPar9fzFllqVcidLnIqUK26Lyy5hoHk8ip0n63KPotVob7ikSFEUSvfuJWXGTJKmTOXiwoWY2dvj9uwz+H3xOR1WryJk6xaCN24g8Ifv8XrzXziMH0/FyZNkvvIq8beMJPuDD6nNb58NXv3t/enn1Y91CetQFKXhDVoj5yB12U5aI/ruHPgM7H2g610GD6uxQj3t0SmQfLHsittPpRehU6DXdaov9MqnJwQMgiML1OVtLVVTCb88Bz8/rC6/emwPjHu3aYmdP/PuAbN+gbsWqcu2vhoGJ1e2PNZ2RghBT3+n6zZVVhSFnbE5DO/ojrmZfPptS0Z0VP//7Gmg705OcSV743O5s7evYav+bhJudpYMD3NjXWQGOl3jnyfnbYvHzc6CGYMCDRhd6/LAgADc7S1bNDlLURT++tNJ8suqWTCjD64NJDFMobufE29NjWBvfJ7BpoRlFFYwY9ERnl4WiZONlm9n92PTs0OZOSiowcQOgIutBTMGBbHhmaF8O7sfLrYWPLciipmLj5CWX26QmCVJkkAmd6TrqHN3wqEcMpKiL98Wm1VCP7N4avz6sTFpI7cG3Iqj5bWXkVTGxZH68MOkPTqHmowMPP76EmH79hK4dAnuTz6J/ahRWIWHYxEQgGVICDZ9+uA8fTreb71J6O5dBH6/FNshg8n/7jsSx4wl7+tvUKrbX2PX20NvJ7UklRM5V4+dbxOEAP/+DU/Myj4LyXthwGNgbvgy6sYKdVcbgcdnX9l359Kb857GSO6A+nMpSFarm1qiJBu+HQfH/6dW6jy8RX/j5oWAbtPgif3g0wvWzIHf5oLuxs2DbzY9/Z04n1d2zQk/0ZnF5JRUySVZbZCHgxWdvezZHXvj5M66qAvoFLhDNlLWmzt6+3GhqJLDSY270HP4/EX2JeTx+IgQbCzaf9XOJVZaM54YEcKh8/kcTLzYrH0s2pfEzthc/jmxC119jd/TprHu6RfA3X38+GJnAkeT9XsBcPOZLMZ/soeotELenBrB+qeHMrKTR7MqboQQjOzkwdqnhvCvKRFEphYy8bO9bD2bpdeYJUmSLpHJHematL4BAMQe+hVQr+YUZKXgqctmt4sXRVVF3B56+1XbKbW15C34mqS7plF1LgbPf/yDkM2/4vrII5g7N26ktBACm7598Zs3j+Bf1mMzYAC5H39M0r33UhlrmKs0pjI6YDS2WlvWxK8xdSjN5z8ACpKg9AZveo5883vPl1Yk2N0Wjbh6HHpkagFBrjY4G2E9PwCdJ4GDrzpJrLnyz6uTr3Lj4J4fYPRcMDPAGxtHP5i5Vu29s28e/DxbTtT6g0sJwaj0q6t3dtUnBoZ3dDNqTJJ+jOjkzrGU/BtOxVl1Ip2e/k4Eu8sJkvoyposnthZmrIlMb9T95/0Wh7u9JQ8OvHmqdi65f0AAHvaWzGtGRcuZjCL+vTmGseGezGwDFU9vTInAz9mGF1ZGUVJ5dTK9qRRF4aMtsTz+/XGC3GzZWF+po49lX2YawazBQWx6dhiBrrbMWXqcj7bEtt2qbUmSWi2Z3JGuyb1TXwDyYyMByC2tIrTqLADrarLxsPZgkPegK7apvXiR1IdmkztvHvajRhG8aSMuM2cgLJr/BtkyOBj/L7/A7/P51GbnkDxtGoWrVjV7f62NjdaG24JuY2vKVspr2miprn9/9eP1RqJXFMKplWrVh03r6kFhpTXD38XmiuSOoihEpRUar2oHwEwL/f4C53dCTjPG2WZHw6LboLJYXT7VZZL+Y/wjMy1Mmgdj3oLotfDjTLUBs0R3P0eE4Jp9d/bG5xLu7YCHffud3NOejQhzp6ZO4dD5a1dFRF8oJiarhLt6y6odfbK2MGNcV29+Pa32R7uRY8n5HDqfzxMjQq7oo3azsNKqvXeOJOVzrAkVLdW1Ol768SQuthZ8MK17m+gLY2dpzrx7enKhsII31p9t0b6qaut4YWUUn+9M4N5+/vz8+GACXfU/KTPA1YafnxjEPX39+XxnAi/9dJLqWuNUv9bW6cgsquDshSKiLxSTcrHMaMeWJMl4ZHJHuqbOg8YDUJOlXimLzSqhryaObK0N+y6eYVLIJMz+MDGn8tw5ku6+m4rTp/H59/v4fTIPcxf9vZG3Hz1areLp15fMf/4fWW+/g1J7/aunbcnk4MlU1FawK22XXverKArlNeXkVeRRXlNuuCtE3j1Bo73+0qyoZVBTDv0eNczxWyjMw+6K5E5mUSU5JVXGTe4A9H4IzCzhyNdN2+5iIiyZqk6wengL+PUxSHhXEQKGPAsTPoK4X2HlDFnBA9hbaQl2s+VUetEVt5dX13I8pYBhYbJqp63qE+SMlVbDvoS8a35/9Yl0tGaCSd19jBxZ+3dnb19KqmrZfi7nhvf7ancizjZa7u3vb6TIWp97+/vjZKNlwZ7zjd7mi50JxGaX8N6d3XCyaT1LpxvSJ9CZp0aGsvpEBjtjbnxuXE9VbR2PLT3O2qgL/O22Trx3ZzeDNpG2NDfj/bu68eKYjqw+kcFjS49RVauHfnt/otMpHE3O560N0Uz5fB+dXtvMoPd2MPGzfUz4bC8jPtxFp9d+ZdR/dvHq6tP8Fp1NTZ1M9khSW3fzLEaWmsTDN4QkG9DmqW9Q1ElZcWz0DqFOKWJqyNTL9y0/epS0xx5H4+BA4A8/YN1VTz0+/sTcxQX/r78m58OPyP/uO2pzcvD56EM0LagMag16e/bG08aTjUkbmRA8odn7qait4NCFQ+zJ2EP0xWgSCxOpqvu9msLSzJJgx2DCXcMZ5juMQT6DsNHqYRqZ1kptCnytpso6nToq3a+/ep9WKNTDnt1xudTW6TA301zut9MroHHLCPXG1lWtbjr1I4x5EywbsayjKF1N7Ch1MHMDuHc0fJx/1v9RNbG04QX45Vm4/b+tZhqaqXT3c+JA4pUJgMPn86mpUxgW1oLG1pJJWZqb0S/IhQMJV1fu1NbpWBt1gVs7exhvOedNZGCwK54OlqyJTGdid+9r3icuu4TfzuXw/Oiwm6rXzp/ZWJgzc2Ag83cmkJBTSqjHjZ9Loi8U88XOBO7s5cutnT2NFKX+PHNrGL+eyeL/1p5h24vDm/S7r67V8eT3J9gVm8t7d3bjvv4BBoz0d0IInh0VhoutBf+39gxPL4vkywd6o9VDo/2K6jpWHE1l0b4k0gsqsDTX0CvAiUeHBePvYo2rrdoQuriyhvSCCk6nF7Lh5AWWH0nF1daC+wcE8PCQDvLvmCS1UTfvs5/UoEJHgU2ReiU+KTOHWZpk5lqG092pO8FOwQCU7t1H+jPPoPXxIeDbxWg9DfvCQJib4/nqK2h9vMl+733Sn6rA77NP0VhbG/S4hqQRGiZ0mMDS6KUUVBbgbNW0pEJqcSrLYpaxNmEtZTVl2Gnt6OrWlemdpuNq5YqN1obK2kryKvJILExka/JWVsWvwsbchskhk3mgywN0cOzQsgfh1x+OLVIrN/7YMPn8DshPhFtebdn+DSjUw46aOoWU/HJC3O2ITC3AwlxDF+8bjzs2iD4PQdQPcHZ1w/2JKovh+2nqqPNZv4B7J6OEeE19H4ayPNj5Djj4wKjXTRdLK9DN15E1kRlkF1fi6aAuwdobn4eluYa+QUZOGkp6NTjEjX9vjiGnpPKK5XX7Ey+SV1rFHb38TBhd+2WmEUzp4cP/DiRTVF6Do432qvss2H0ea60ZswYFGT/AVmbm4CAW7DnPwr3nef+u7te9X51O4eVVJ3GyseD1yeFGjFB/LMw1vHdnN+7+6iDztsXxz4mNexx1OoXnVkSyPSaHt2/varTEzh89ODCQOp3CG+vP8vzKKObf26vZU/Z0OoWfT6TzweYY8kqr6RfkzEtjOzI23Atbyxu/3aup07E7NpeVx9KYvyOBxfuSeOKWEB4dHoyl+c23vFGS2jKZ3JGuq8xJi0eGmtwRGSc4rzUjobaYf4So/TzKDh0m/cknsQgNJWDRQr0uw2qIy6xZaGxtyXztddKffx7/zz9HaK9+sddWTAiewLdnv2Vbyjamd5reqG0uVlzky6gvWRW/CiEE44LGMSVkCn09+6I1u/7PokZXQ2R2JOsS17Emfg0/xf3EHaF38GTPJ/GwaeYUH//+cOgLyDp95bKgIwvB1h3CpzRvv0YQ4q6uqz+fW0aIux1RaYVE+DgYtCz7uvz6gXsXddrVjZI7ujpY/SjkxcGDq1pHVdTwv0FxBuz9D7iEQK8HTB2RyXT3U6fMnE4vwjNcTQDsS8ilfweXm7IPSHsyJNQVgIOJF5na8/feOhtOXsDe0pyRnWVllqFM6u7DN3uT2Bqdxd19r1x2daGwgnVRGTw4MFBWHKCOkL+7rx8/Hk3nxTEd8XC4dp+vZYdTOJNRzBf3925Ty7H+rF+QC/f1D2DRviSm9vRt1KSvdzedUyt+JnYxafPtWYODqKyp471fY/BztubV8V2avI/kvDL+9vNJjiYX0CfQmS8f6EP/Do1/Ta410zA63JPR4Z7EZZfw8dY4Ptoax+rIDD6c1oM+gfKihCS1FbLnjnRd1c52OJdAceFF3Asi2WRng5kw47ag26g4e5b0p57CIiiQwG8XGzWxc4nTtGl4zZ1L2e49XPjHP1Ha8EjmTs6dCHEMYeP5jQ3eV1EUfkn8hclrJrMqfhXTO01n27RtvDfsPQb5DLphYgdAq9HS37s/7wx9h63TtnJ/5/tZl7iO29feztqEtc3rzeM/QP34x747hWkQtxl6zwJzy6bv00hC6kvWE3NLqanTcTqjyPj9di4RQq3eyTgOmaeuf7/tb6o/2/H/hpCRRgvvhoSACf+BDsPVJVoXolq+z+pyyIuHlIPqvwtRUHYRWvmEkQgfRzQCTtVPzMoqqiQuu1T222kHInwccbAyZ/8f+u5U1dax+WwWYyI85VVuA+ru54ifszUbT2de9b1F+5JQgEeGtbAKtR15ZGgwtTod3x5Ivub3L5ZW8eGWWIaEujKhm5dxgzOAV8Z3xsXWktfXnWnwdcySg8ks2pfEQ4ODeGRYsHECvIE5w4N5YEAAC3afZ/mR1CZtu/7kBSbN30dcdikfTOvOT48NalJi5886etrz1Yw+fDu7H9W1Ou5ZcJAFuxPR6Vr+vFtUXsOvpzP5YHMMT3x/nHsWHOSOL/fz4MLDvLAyii93JXAgMU82epakFpCVO9J1aby80Sj5HNixnu5KDO/aOzLQeyB2uWUkz3kMjaMD/gsXYuZkojfCgPM906krKCD3k08wd3fH8+W/mSyWkaVW9AAAFxZJREFUlhBCMCF4AvMj55NZmom33bV7CpRWl/LGgTfYmrKVXh69mDt4LsGOzX9h4mrtyt/7/537Ot/H6wde57X9r7EzdSdvD30bewv7xu/IwRsc/esnZj2p3ha1TP3Yysaf/5mDlRYPe0sSc0qJzSqhskZn/H47f9R9Ovz2Bpz4Dib+5+rvx2yE/Z+oS6H6t7Im1WbmMO1bWDBCbbD82O6mTUjT6SBlP0SvUz/mRF/7frbuEDAIwsaqVWFWDV+lNSZrCzM6etpzKkPtWXapAe/QUFnV0daZaQSDQ9zYn3ARRVEQQrA3Lo+Sylomy0bKBiWEYGJ3bxbtTaKwvPpypUlxZQ0rjqQyubs3fs566CPXTgS52TKuqxc/HErh2VvDsLa4MvH40dZYyqvrmDs5ok1Mx2qIo7WWl2/rxMurTrH+5IUrKuv+6EBiHnPXn2V0Fw9em9Q6lqIJIfjXlAjSCyp4be0Zwjzs6Bt04+dOnU7h/c0xfL3nPH0Cnfnsvl74OumvRcHITh5sfHYYr6w6xXu/xnAyvZCPp/dscvVpda2OLWezWHk0jQOJeegUMNcIAlxtcLO1xM7SnNKqWpKSylgTmQGAvZU5Y8O9mDkokB6mutgmSW2UTO5I1+XQoQtwlpSofXS1TibLzIlnvUeR/uRTKLW1BC5davAeO43h+tgcanOyyV+8GKtOHXGcOrXhjVqh8R3GMz9yPr8m/8rDXR++6vtpxWk8s+MZkouTea73c8yOmH3FxLKWCHAIYPFti1kavZR5x+dx/8b7+fTWT5uWOPLvD6mH1M91Ooj8HoJHgLPpyp0bK8TdjsTcUiIvNVM25YsJGxcIn/p7Y2WLP4xjLUqHtU+qE8rGvW+6GG/E1g3uWQKLx8Gax+H+lQ03WK4uV5NZB7+AojTQ2kLAQPXn4NxB3afQQHWpWhGWdQqS98G59bDxJTUhNvQFcA0xzmNshG6+juyIyUFRFPbG5+JmZ0FnryYkTKVWa0ioK5vPZpGaX06gqy0bTl3AyUbLkFBZmWVok7r5sGD3ebaezWZ6P3Vp1k/H0imrruMvQ01fgdHaPDS4A5tOZ7E2KuOKnjIn0wpZcTSNvwzpQJhn+/m7dFcfP747mMz7v8YwNtzrqoRWTnElzy6PooObLZ/c2wuzZva3MQRzMw3z7+/F5Pn7eHpZJBufHYqr3bWrnitr6vjrTyfZcCqTGQMDeX1yuF6aMf+Zo7WWLx/ozcK9Sbyz6Rw5xYf5ZmbfRi19rK3TsSYyg0+3x5NeUIGvkzVP3hLKiE7u9PBzuubS94Kyao6lFLDlbBZbzmSx6kQ6Azq48Mr4zqa96CZJbYhM7kjXFdR7JAo/Y5Fxlt09zLDEjG4LdlORmIj/N19jGdw6yp+FEHi++ipVCYlkvvY6FsEhWHfrauqwmszf3p/u7t3ZeH7jVcmdk7kneWr7UyiKwoIxCxjgPUDvx9cIDbMiZhHuGs5fd/+VGZtm8OXoL+nh3qNxO/DrB2dWQfEFyI2BolQY/Ybe4zSEEA9b1kddICq1EFdbC/ycTdygu89DcGolnF0DvR5Ub6urhVWPgK4Wpi1u1Uvd8O0DY96CzX+H49+qVUbXoihwcjlsewPKciBwCIyeC50mgEUDV+AVBTJOQNT3EPmD2oi69yz1nLM2/YvA7n6O/HQ8nfSCCvYn5DE01K3ZjTKl1mVwfRJnf8JFPB2s2BadzeQePqbp03WT6errQICLDRtOZzK9nz86ncKSg8n0CXSmm1/rquBrDfoFOdPZy57vDiRzbz9/hBAoisKbG6JxtbXkudFhpg5Rr8w0gtcnhXPP14f4es/5Kx5fbZ2Op5dHUlZVy7JHB2DXQJNhU3CwUpMpd3x5gOdXRvG/2f2vSkBV1tTx6JJj7I3P49XxnZkzPNiglVdCCB4dHoyPkzUv/BjFfd8cYtmjA3G5QYIn+kIxL686yZmMYrr5OvKvKRHc0smjwWSas60FY8I9GRPuyRuTw1l5NI0Fe85zx5cHuLO3L69PCm9Sb6j47BJ2x+USmVpIYm4puSVVVNbUoTXX4GZnSZCrLb0CnBgS6kZ3X0f5HC21C/KViHRdYT2GU2UOLqX5bLGz4Zkz3lRs247HSy9iN2SIqcO7gtBq8f1kHuZubqQ/8wx1hYWmDqlZJnSYQFxBHAkFCZdvO5Z1jDlb5+Bg4cDyicsNktj5o35e/Vg2cRmOlo48uvVRDl442LgN/fqpH9OPwYml6hvszpMMF6gehbjbUVxZy2/nsunp72T6EvWAQeDWEU4s+f22vf+B1IMw6ZNWVaFyXf3nQPBI2PwPtW/OnxUkw/8mwtonwDkIZv8Kszep4+AbSuyAWg3k1wcmzYPnT6vHO7EE5veFs2v1/WiarJufWv310/F08kqrGSpHoLcbwW62eDlYsT8xj12xOZRV1zFJLskyiktLs/Yn5FFQVs2uuBxSLpYza3CQqUNrlYQQPDQ4iJisEo4k5QOwLTqb4ykFvDimI/ZWbXcQxfUMCFZ7CP13dwJZRZWXb/90ezxHkvJ5546udGzF1UoRPmoyZG98Hgv2JF7xvaraOp74/jh74/P44K7uPDYixGivVyZ29+bbh/qRlFfGAwsPU1hefdV9dDqF+dvjmfL5PrKKqph/Xy/WPz2EUV08m1wlZW+l5ZFhwez86y08cUsIv5y8wG2f7GFffN4NtyuvruW7A8mMnbebMfP28PbGc0SlFeLnbM1tXb24t38Ak7v7EOxmS/LFMj7cEsvtX+xnxEc7+Wx7PPllVz+uG1EUhaKKGtLyy0nOKyO3pIo6PfQnkqTmalTaWggxDvgUMAMWKorSStcDSPpkZm5OgSOUlJvhmqWh38ZU7MePw+Xh61yFNzFzFxd8P/uM5PvuI/O11/D97DPTv0lvotuCbuPfR/7N1pSthDqHciTzCE9tfwpvO28Wjl3Y/GlWTeRr58uS8UuYs20OT29/mq/GfEU/r3433sirG5hZQPxWiNmgVmtorz2ho7UJcVebKhdV1NAroBWs7xYCej6g9t65mAg1FbDnA+h2N3S/29TRNY5GA7f/F/47SJ3s9Zff1J48AOd+gbVPqZ9P/hR6zVTv31z2nmpz6V4Pwvpn4adZkPQw3PYuaK9ThVWSpTauzj8PpTlqRZS5Jdh7g2so+PVtUS+fzl72mGsEX+5UE7VD5ZKddkMIweBQV3bF5oICrrYWDAw2/lCBm9XEbt78d1ciW6Oz2Hg6C08HS8Z3bfsNgQ1lak9f3vs1hiUHU+gT6MyHW2IJdrNlel8/U4dmMK+M68K26Gzm74jnnTu6EZlawBc7E5jWx487e7f+x31vP3/2xecxb1scIzt50MXbgTqdwrPLI9kZm8u7d3S7vCzRmIaEuvHNzL48suQYMxcfYcWcgdhYqM/rReU1vPBjFDticpjSw4c3p0boZQKbnaU5fx/XmYndvHluRSQzFh/m5ds68/iIKyuWaup0LDmYwuc74ikoV1/LvTk1grHhXng5Xv+1aF5pFbtjc1l1Ip2Pt8WxYHcis4d04IlbQq45Ql5RFOKyS9l6NouD5y9y9kIxRRU1V9zHSqsh1MOOfkEujOzkweAQV8wbuWzuUjPwtvb+RWo9REMd5YUQZkAcMAZIB44C9ymKcp1Ol9C3b1/l2LFj+oxTMpF1E7ridLEOBPjYeBO8bh1m9q33igfAxUWLyfnwQ7zmzsX53ntMHU6Tzd48m/zKfN4f9j6zt8zG21ZN7Lhauxo9lsLKQh7a/BBZ5VksGruICLcIoP7JrSCOk7knSSxMJKc8h4q6CrRpR3EuyyegppbwMf+mV+c7sDY38RKnRsgorGDI+zsA+P4vAxjaGqYaFWfCvHAY/Cyc36kud3vqSNMaFLcGZ1bDz7PV/kGDn4Wd78CeD8GnN9z9rVq1o0+11bDjTTgwH3z7qj1/bOt/n4WpaqPvM6shL/b3bcyt1MRkTbma5AFAqH2kIu5Ue/o04+c+af5ezmQU09HTjq0vjGj5Y5NajVXH03npp5MAPDgwgLdv72biiG4eiqIw8qNd1NQpZBRW8OKYjjw7qn0tL9K3dzedY9G+JJ4bFcbH2+L47wO9Gd/t2oMb2ovX1p5h+ZFUNj47jCd+OE5ldR2bXxiOQxupVsovq2bsvD2421uy7qkh/HtzDIv2JfHG5HBmDzFtW4Rt0dk8tvQYt3b2ZMGMPmQVVzJj0WFSL5bz+uRwZgwMNEhyoqK6jr/XN8y+s7cv797RDSutGcdTCnh19anLUymfGxXWYEPqa4nPLuHT7fFsOJWJr5M1b06NYFQXtbdoTZ2OjacyWbw/iVPp6rCErr4OdPN1JNjNDicbLRohKK2qJTW/nJisYo4mF1Bdq8PLwYp7+/vz0OCgKxJeFdV17I3P5UDiRc5kFJGaX05heQ11ioKNhRk+jtaEetrRP8iFWzq5E+hqe824pZuTEOK4oih9r7q9EcmdQcBcRVFuq//6VQBFUd673jYyudN+LL+vJz0jq1CAoB++x6ZPH1OH1CBFpyPt0TmUHzuG/zdfoystoyohgdqsLHTl5WCmwdzZGa2fHxYBAVgEBWHu5YVoSeWAHq2IWcE7h98BwMvWi+/Hf4+nrekaV2eXZTNr8yzKasp4a8hbHM06yuakzeRU5ABgY26Dl60X1ubW1BSlUlBZQK65erXDysyKwT6DGRU4isE+g6msraSgsgAhBFZmVvjY+WCjNf10E51OIfgfmwA4NXds63nx9/00SNimfj59idpguK1RFFjxAMRvAb/+kHpArbCZOA/MW35V77qi16sVQ/beMPZtOLtaTeoAdBgGoaMhYDC4hf7eo0eng/KLkH1GbQ4es0H9XGsLfWapPX2KMyB5L+TGqkvLqsvUx2jjAo5+arPrgAEQMIgXfz7L6sgMZg8J4o3JEYZ7rJLRZRVVMvC97QCsmDOQgcHGT77fzD7cEsMXO9UlK0f/ORp3+1bcg6wVSMsvZ9gHOwHo4e/E2icHt/vKgJziSoZ/uJPKGnWsdqu5cNME26KzeXTJMZxstBSW17Sq55L/7U9i7i/RDO/oTnx2CaVVtSyc2ZcBBv5bqCgK83ck8PG2OHoFODE01I0vdyXi5WDF3CkRjO7i0eJz+3hKPq+uPk1cdikTunlxW4QXn26P53xuGSHutswcFMT4rl54ONy4Or2iuo7dcbksO5LKnrhc7K3MeXxECINDXFl2OJUNpzKpqKnDxsKMcG8Hgt1tcba1wEwIyqvrSMsvJyarhIzCCgB6BzjxwIBA2eNNAlqW3JkGjFMU5ZH6r2cAAxRFefp628jkTvvxv7/0Y8D+UjJHdObWBWtMHU6j1ebmkjTtbmqzsy/fpnFwQGNnC3U66vLzUWr+UEZpZoawsMB19mzcn33GBBH/Lq8ij5E/jgRg3dR1BDuZfgJIWnEaD299mKyyLMyFObf438II/xH09+qPt63370+kR76BTX+laNiLnO08hl3pu9ieup2c8pzr7lur0SIQaIQGIQQLxy6ku3t3Iz2y3wW9shGA5PcnGv3Y13VmFfz8sNqD5+HNpo6m+YovwMdd1M9veRVG/L3hCVr6kHYUlt8L5Xlqgqb/o9DvL+AU0PC2l2SdUauAzvz8e1WPRqsu3XLpAJb2gFCTQgVJcLG+X5aVI4s6fsVbRxQ+uacnt/e69lheqe269Dcj8d0JrWrqzs3gTEYRk+bvI9zbgU3PDTN1OG3CqP/sIjG3jOWPDmRQyM2RjHxnYzTf7E3ivv7+vHen8V9X6MOLK6NYHZnBrZ09+GZm31b1t2bu+rP870Aydpbm/PjYIMJ9HIx27F9PZ/LSTycpr65jSg8f3r6jq14vzFXX6vhm73k+2x5PVa2OYHdbXhnXmdFdPJvVeDkmq5iPtsTy2zn19bCVVsMdvXyZ2M2HAcEuN5x2lpxXxrbobJYfTeV8bhk+jlZsem6YXpa9SW2XwZM7Qog5wJz6L7sCZ/QRuNRmuQE37nomtXfyHJBAngeSPAckeQ5IKnkeSPIckOQ5oB+BiqJcNa2jMQ2VM4A/du3yq7/tCoqifA18DSCEOHatTJJ085DngCTPAQnkeSDJc0CS54CkkueBJM8BSZ4DhtWYBXtHgTAhRAchhAVwL7DesGFJkiRJkiRJkiRJkiRJjdFg5Y6iKLVCiKeBLaij0BcrinLW4JFJkiRJkiRJkiRJkiRJDWrMsiwURdkEbGrCfr9uXjhSOyLPAUmeAxLI80CS54AkzwFJJc8DSZ4DkjwHDKjBhsqSJEmSJEmSJEmSJElS69WYnjuSJEmSJEmSJEmSJElSK6XX5I4QYpwQIlYIkSCEeEWf+5baBiHEYiFEjhDijKljkUxDCOEvhNgphIgWQpwVQjxn6pgk4xJCWAkhjgghTtafA/8ydUySaQghzIQQkUKIDaaORTINIUSyEOK0ECJKCHHM1PFIxieEcBJC/CyEiBFCnBNCDDJ1TJJxCSE61f8NuPSvWAjxvKnjkoxLCPFC/evCM0KI5UIIK1PH1N7obVmWEMIMiAPGAOmoU7buUxQlWi8HkNoEIcRwoBRYoihKV1PHIxmfEMIb8FYU5YQQwh44Dtwu/xbcPIQQArBVFKVUCKEF9gHPKYpyyMShSUYmhHgR6As4KIoyydTxSMYnhEgG+iqKkmfqWCTTEEJ8B+xVFGVh/eRdG0VRCk0dl2Qa9e8ZM4ABiqKkmDoeyTiEEL6orwfDFUWpEEL8CGxSFOV/po2sfdFn5U5/IEFRlPOKolQDK4Cpety/1AYoirIHyDd1HJLpKIqSqSjKifrPS4BzgK9po5KMSVGV1n+prf8nG7zdZIQQfsBEYKGpY5EkyTSEEI7AcGARgKIo1TKxc9MbBSTKxM5NyRywFkKYAzbABRPH0+7oM7njC6T94et05Bs6SbqpCSGCgF7AYdNGIhlb/XKcKCAH2KYoijwHbj6fAC8DOlMHIpmUAmwVQhwXQswxdTCS0XUAcoFv65doLhRC2Jo6KMmk7gWWmzoIybgURckAPgJSgUygSFGUraaNqv2RDZUlSTIIIYQdsAp4XlGUYlPHIxmXoih1iqL0BPyA/kIIuUzzJiKEmATkKIpy3NSxSCY3VFGU3sB44Kn65dvSzcMc6A38V1GUXkAZIPty3qTql+VNAX4ydSyScQkhnFFX9XQAfABbIcSDpo2q/dFncicD8P/D1371t0mSdJOp77OyCvhBUZTVpo5HMp368vudwDhTxyIZ1RBgSn2/lRXArUKI700bkmQK9VdrURQlB1iDuoxfunmkA+l/qN78GTXZI92cxgMnFEXJNnUgktGNBpIURclVFKUGWA0MNnFM7Y4+kztHgTAhRIf6rOy9wHo97l+SpDagvpnuIuCcoigfmzoeyfiEEO5CCKf6z61RG+3HmDYqyZgURXlVURQ/RVGCUF8P7FAURV6hu8kIIWzrG+tTvxRnLCCnad5EFEXJAtKEEJ3qbxoFyAELN6/7kEuyblapwEAhhE39e4VRqH05JT0y19eOFEWpFUI8DWwBzIDFiqKc1df+pbZBCLEcuAVwE0KkA28oirLItFFJRjYEmAGcru+5AvAPRVE2mTAmybi8ge/qJ2JogB8VRZGjsCXp5uMJrFFfx2MOLFMUZbNpQ5JM4Bngh/qLv+eB2SaORzKB+gTvGOAxU8ciGZ+iKIeFED8DJ4BaIBL42rRRtT96G4UuSZIkSZIkSZIkSZIkGZ9sqCxJkiRJkiRJkiRJktSGyeSOJEmSJEmSJEmSJElSGyaTO5IkSZIkSZIkSZIkSW2YTO5IkiRJkiRJkiRJkiS1YTK5I0mSJEmSJEmSJEmS1IbJ5I4kSZIkSZIkSZIkSVIbJpM7kiRJkiRJkiRJkiRJbZhM7kiSJEmSJEmSJEmSJLVh/w8Fpq1+ysDRBgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "transparent-aspect" + }, + "source": [ + "" + ], + "id": "transparent-aspect", + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/other/Projectile Motion/Projectile_without_considering_drag.ipynb b/other/Projectile Motion/Projectile_without_considering_drag.ipynb new file mode 100644 index 0000000..6838bcd --- /dev/null +++ b/other/Projectile Motion/Projectile_without_considering_drag.ipynb @@ -0,0 +1,224 @@ +{ + "nbformat": 4, + "nbformat_minor": 5, + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + }, + "colab": { + "name": "Projectile_without_considering_drag.ipynb", + "provenance": [] + } + }, + "cells": [ + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 596 + }, + "id": "overall-conspiracy", + "outputId": "aafc5ba0-86de-4c47-91f4-b0ddbe40b8d9" + }, + "source": [ + "#Code for AMC Group Project\n", + "\n", + "#Without Drag\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import math\n", + "\n", + "#coef of restitution e\n", + "\n", + "e=0.8\n", + "\n", + "\n", + "def projectile(xi,yi,vel_x,vel_y):\n", + " g=9.81\n", + " # set the time interval as 0.1 s\n", + " delta_t = 0.000001\n", + "\n", + " x_traj = [xi]\n", + " y_traj = [yi]\n", + " # Calculate position at t = 0.1\n", + " while (yi>0): \n", + " xi = x_traj[-1] + vel_x*delta_t\n", + " yi = y_traj[-1] + vel_y*delta_t\n", + "\n", + " # Calculate vel_x and vel_y \n", + " vel_y = vel_y - g*delta_t\n", + " \n", + " # add new position to trajectory data\n", + " x_traj.append(xi)\n", + " y_traj.append(yi)\n", + " return xi ,yi, vel_y, x_traj, y_traj\n", + "\n", + "output=projectile(0,4,1,0)\n", + "xi = output[0]\n", + "vel_y= output[2]\n", + "\n", + "vel_y= -1*vel_y*e\n", + "x_traj=output[3]\n", + "y_traj=output[4]\n", + "\n", + "\n", + "if e>=0.7:\n", + " number_of_runs=12\n", + "else:\n", + " number_of_runs=6\n", + "\n", + "for i in range(number_of_runs):\n", + " output=projectile(xi,0.000000001,1,vel_y)\n", + "\n", + " xi = output[0]\n", + " vel_y= output[2]\n", + " x_traj=x_traj+output[3]\n", + " y_traj=y_traj+output[4]\n", + " vel_y= -1*vel_y*e\n", + "\n", + "\n", + "\n", + "#...............................................................................\n", + "\n", + "e=0.6\n", + "\n", + "\n", + "\n", + "output=projectile(0,4,1,0)\n", + "xi = output[0]\n", + "vel_y= output[2]\n", + "\n", + "vel_y= -1*vel_y*e\n", + "x_traj1=output[3]\n", + "y_traj1=output[4]\n", + "\n", + "\n", + "if e>=0.7:\n", + " number_of_runs=12\n", + "else:\n", + " number_of_runs=6\n", + "\n", + "for i in range(number_of_runs):\n", + " output=projectile(xi,0.000000001,1,vel_y)\n", + "\n", + " xi = output[0]\n", + " vel_y= output[2]\n", + " x_traj1=x_traj1+output[3]\n", + " y_traj1=y_traj1+output[4]\n", + " vel_y= -1*vel_y*e\n", + "\n", + "\n", + "#...............................................................................\n", + "\n", + "e=0.4\n", + "\n", + "\n", + "output=projectile(0,4,1,0)\n", + "xi = output[0]\n", + "vel_y= output[2]\n", + "\n", + "vel_y= -1*vel_y*e\n", + "x_traj2=output[3]\n", + "y_traj2=output[4]\n", + "\n", + "\n", + "if e>=0.7:\n", + " number_of_runs=12\n", + "else:\n", + " number_of_runs=6\n", + "\n", + "for i in range(number_of_runs):\n", + " output=projectile(xi,0.000000001,1,vel_y)\n", + "\n", + " xi = output[0]\n", + " vel_y= output[2]\n", + " x_traj2=x_traj2+output[3]\n", + " y_traj2=y_traj2+output[4]\n", + " vel_y= -1*vel_y*e\n", + "\n", + "\n", + "#...............................................................................\n", + "\n", + "e=0.2\n", + "\n", + "\n", + "output=projectile(0,4,1,0)\n", + "xi = output[0]\n", + "vel_y= output[2]\n", + "\n", + "vel_y= -1*vel_y*e\n", + "x_traj3=output[3]\n", + "y_traj3=output[4]\n", + "\n", + "\n", + "if e>=0.7:\n", + " number_of_runs=12\n", + "else:\n", + " number_of_runs=6\n", + "\n", + "for i in range(number_of_runs):\n", + " output=projectile(xi,0.000000001,1,vel_y)\n", + "\n", + " xi = output[0]\n", + " vel_y= output[2]\n", + " x_traj3=x_traj3+output[3]\n", + " y_traj3=y_traj3+output[4]\n", + " vel_y= -1*vel_y*e\n", + "\n", + "\n", + "#...............................................................................\n", + "\n", + "\n", + "plt.figure(figsize=(20,10))\n", + "plt.xlim([0, x_traj[-1]+1])\n", + "plt.ylim([0, 5])\n", + "plt.plot(x_traj,y_traj,x_traj1,y_traj1,x_traj2, y_traj2, x_traj3,y_traj3)\n", + "plt.show()" + ], + "id": "overall-conspiracy", + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHcAAAJDCAYAAACBlPiaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZSedWH//c81M5nJOtlXsi8QIECQyI6yC6LiCq6tWrVaF9TW5WmtVVv9VR/rWvuztlq1okURBQUVRPbVAGFJSMhCFrJNZrJvk8zM/fwB+FgFSWBmrrlnXq9zck7UOzPvSDyefM51fb9FpVIJAAAAANWppuwAAAAAAJ494w4AAABAFTPuAAAAAFQx4w4AAABAFTPuAAAAAFQx4w4AAABAFas7kA8VRbEyyY4k7UnaKpXKvK6MAgAAAODAHNC484QzKpVKc5eVAAAAAHDQvJYFAAAAUMUOdNypJLm2KIp7iqJ4R1cGAQAAAHDgDvS1rFMrlcraoijGJLmuKIrFlUrl5t//wBOjzzuSZNCgQcfNnj27k1MBAAAA+q577rmnuVKpjP7Df7+oVCoH9YWKovhEkp2VSuXzT/eZefPmVebPn3/QkQAAAAA8taIo7nmqS66e8bWsoigGFUUx5MmfJzk3yUOdnwgAAADAwTqQ17LGJvlJURRPfv77lUrll11aBQAAAMABecZxp1KprEhyTDe0AAAAAHCQXIUOAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABVzLgDAAAAUMWMOwAAAABV7IDHnaIoaouiuK8oip93ZRAAAAAAB+5gnty5JMnDXRUCAAAAwME7oHGnKIqJSS5I8p9dmwMAAADAwag7wM99KcmHkww5kA9vX7IwPzt/TnaPHJSa6dPz/Nf9daYePu9ZRwIAAADw1J7xyZ2iKF6SpKlSqdzzDJ97R1EU84uimF8pkoE72zP7vu2Z88MF2fXKN+Was4/M5Z94Q3bt2NZp8QAAAAB9XVGpVP70B4ri/yR5U5K2JP2TNCa5olKpvPHpfs28efMq8+fPz55d23PbFf+W5ht+lkMWbs6obcnmIcnas4/IhR//7zQMGNiZvxcAAACAXqsoinsqlcofvRr1jOPOH3yR05P8TaVSecmf+tyT487v27+vNVd/+ZIM+vnNmbixksfGJP3f/56c9sp3H/D3BwAAAOirnm7cOZjbsp6TfvUNefmHvp7Tr7svD100N407k2Ef+9f84J2nZ/++1u7KAAAAAOhVDmrcqVQqNz7TUzvPpF99Q17zqR9k9Pe+k2Uz+mXujRtzzSvmZcPqpc/lywIAAAD0Sd325M4fmn7E8XnZT+7N/edMyowVbXn4dS/LwruuLSsHAAAAoCqVNu4kSW1dXV771Wvz6LvOz9Adyeb3XZJ7rv9RmUkAAAAAVaXUcedJL33fF7L5Q3+e/q3Jvg9/PL+99gdlJwEAAABUhR4x7iTJ2W/6aFo/+YHUdiStH/uUV7QAAAAADkCPGXeS5NQL35Edf/OWDNybNH3wkqxecm/ZSQAAAAA9Wo8ad5LkrDd8OOv+8iUZuTV58L1vyp5d28tOAgAAAOixety4kyQveff/m8UvmZ3pqzvys7edWXYOAAAAQI/VI8edJLnosz/Jg8cNzlH37cplH31F2TkAAAAAPVKPHXeS5KXfuD4rJtfksJ8vzu1X/UfZOQAAAAA9To8edwYMasyM//PVtNYnez/3hWzZtLbsJAAAAIAepUePO0ky+7gzs+ENZ2Z8c/Lr97ys7BwAAACAHqXHjztJcuFffy0PHDckc+7fnZ99+f1l5wAAAAD0GFUx7iTJuV/6STaOSIZf+qs0rV1edg4AAABAj1A1487w0Yek9a0XZfj25Ma/vrjsHAAAAIAeoWrGnSR50ds+mYXHDspRC3bll//x92XnAAAAAJSuqsadJDnzCz9KS2NS/53Ls2fX9rJzAAAAAEpVdePOqPHTsvHCkzK+Ofnp315Udg4AAABAqapu3EmSl3/kG1k+uSaH3rgqS++/rewcAAAAgNJU5bhTW1eXEZf8Ter3J/d/6t1l5wAAAACUpirHnSQ5+YK3ZNFxjTlyYWt+84N/KTsHAAAAoBRVO+4kycmf+GZ29k92f/tbZacAAAAAlKKqx51JM+Zk+akTM2NVR372lQ+WnQMAAADQ7ap63EmSF//jpWlpTPr/+JfZv6+17BwAAACAblX1407j8DFZd86cTNxYyZWfeWvZOQAAAADdqurHnSS58GPfybrRyehf3ZvWPbvLzgEAAADoNr1i3GkYMDBbzzshY7YkV336LWXnAAAAAHSbXjHuJMnLPvTvWT8qGf2bBzy9AwAAAPQZvWbc6VffkM3nPj9jNyc/++zby84BAAAA6Ba9ZtxJkgs/+h/ZMDIZed29bs4CAAAA+oReNe70q29I89nHZlxLctU/e3oHAAAA6P161biTJC/76H+maXgy5Pr5aW9rKzsHAAAAoEv1unGnYcDArD9peiZtrORX//nxsnMAAAAAulSvG3eS5NyPfD07BiRtV11VdgoAAABAl+qV486IsZOy4nkjM2tFe26/+r/KzgEAAADoMr1y3EmS49732eyrS9Z9+ytlpwAAAAB0mV477sw65pQ8csSAzFq0N0sW3Fx2DgAAAECX6LXjTpJMesslqW9P7vvXvys7BQAAAKBL9Opx58Tz/zzLp9Rk8oLm7Nm1vewcAAAAgE7Xq8edJNl/xikZvjO55gvvLTsFAAAAoNP1+nHnxZd8KS2NyYCb55edAgAAANDpev240zBgYNY8b1ymrenI7Vf9R9k5AAAAAJ2q1487SXLC+z6bfbXJ2ku/XnYKAAAAQKfqE+PO9COOz7LDGjLj4d1Zv2px2TkAAAAAnaZPjDtJMvTlF2XAvuTmr/xN2SkAAAAAnabPjDtnvP7DWT8qGT5/RdkpAAAAAJ2mz4w7tXV1aTp2UiZtrOSWK75Wdg4AAABAp+gz406SnPhXn8n+2mT95d8uOwUAAACgU/SpcWfq4fOyfEa/TFu0M9u3NJWdAwAAAPCc9alxJ0lqzzwjg/cm1375A2WnAAAAADxnfW7cOf+vPpfNjUn/2xeUnQIAAADwnPW5cadffUPWHDUy01Z35L6bflJ2DgAAAMBz0ufGnSSZ/eYPpSbJku99sewUAAAAgOekT447c0+7MI9OLDJu4aa0t7WVnQMAAADwrPXJcSdJdhw7K2M3Jzde9oWyUwAAAACetT477pz8zk9nf23ScvWPyk4BAAAAeNb67LgzacacrJhWlymLd2bPru1l5wAAAAA8K3123EmSjpOPT+Pu5Nqv/13ZKQAAAADPSp8ed85+1//Jrv5J+y03l50CAAAA8Kz06XGncfiYPHrogExfvi9Na5eXnQMAAABw0Pr0uJMkjee+NA37kxv/7f8pOwUAAADgoPX5cefsN/99WhqT/vcuKjsFAAAA4KD1+XGntq4uaw9tzLRV7Vmz/KGycwAAAAAOSp8fd5Jk5LkXpq4jueM//6HsFAAAAICDYtxJcsbrP5yWxmTAgiVlpwAAAAAcFONOnng167DGTF3VntVL7y87BwAAAOCAGXeeMOq8Vz3+atY3P1l2CgAAAMABM+484fSLP5iWxmSgV7MAAACAKmLceUJtXV3Wzm7M1NUdWb3k3rJzAAAAAA6Icef3jD7vNanrSO781j+WnQIAAABwQIw7v+eFF70/zUOTAfc/UnYKAAAAwAEx7vye2rq6rJv1+KtZ61ctLjsHAAAA4BkZd/7AsNPPS11Hcuu3PlV2CgAAAMAzMu78gdPf8JFsH5jULXio7BQAAACAZ2Tc+QMNAwZmzfT+mfLo/mzf0lR2DgAAAMCfZNx5CnUnnJAB+5Ib3JoFAAAA9HDGnadw+lv/IXv7Jfvuuq3sFAAAAIA/ybjzFIaNHJ9VU+syafme7N/XWnYOAAAAwNMy7jyN/ccckaG7khu+/7myUwAAAACelnHnaZzw53+btppky2+uLjsFAAAA4GkZd57G5FnHZPXEmoxdtq3sFAAAAICnZdz5E3YcMTljNye3X/1fZacAAAAAPCXjzp8w+1XvTJKsvuZ7JZcAAAAAPDXjzp8w97QLs2Fk0vjIhrJTAAAAAJ6ScecZNM1ozKS1HVn76KKyUwAAAAD+iHHnGQw5+azUdSR3/vc/l50CAAAA8EeMO8/gjDd9NLsaktz/QNkpAAAAAH/EuPMMBgxqzJqp/TLx0dbs39dadg4AAADA/2LcOQD75xyWxt3JTZd9sewUAAAAgP/FuHMAjnvtB9KRpPnGn5edAgAAAPC/GHcOwIyjTs5j44uMXLa57BQAAACA/8W4c4C2zByViRsrWXLfjWWnAAAAAPyOcecAjT3r5UmSBZd9ueQSAAAAgP+fcecAveDV78vWQUn9wuVlpwAAAAD8jnHnANXW1WXd1IZMWrM/rXt2l50DAAAAkMS4c1A6jjw8g/Ymt/zoS2WnAAAAACQx7hyU573mvY9fiX7LL8tOAQAAAEhi3DkoM446OevGFhm2ornsFAAAAIAkxp2D1jJ1aCauq2T9qsVlpwAAAAAYdw7WkBNekNpKcsf3P192CgAAAIBx52C98A0fyd5+SfuCe8tOAQAAAHjmcacoiv5FUdxdFMX9RVEsLIrik90R1lMNHjoiaybWZuyqPWWnAAAAABzQkzutSc6sVCrHJJmb5LyiKE7s2qyebfdhEzN6azL/+v8pOwUAAADo455x3Kk8bucT/7LfEz8qXVrVw0077/VJkmVX/3fJJQAAAEBfd0Bn7hRFUVsUxYIkTUmuq1Qqd3VtVs827+zXp6UxGbBkddkpAAAAQB93QONOpVJpr1Qqc5NMTHJ8URRz/vAzRVG8oyiK+UVRzN+0aVNnd/YotXV1WT9lQCauacuuHdvKzgEAAAD6sIO6LatSqWxNckOS857iP/tGpVKZV6lU5o0ePbqz+nqsmqPmZOC+5NbLvlB2CgAAANCHHchtWaOLohj2xM8HJDknyeKuDuvpjnvN+9KRZMtdN5SdAgAAAPRhdQfwmfFJvlMURW0eH4N+WKlUft61WT3f1MPn5ddjksaVLWWnAAAAAH3YM447lUrlgSTHdkNL1WmZPCSz79uRLZvWZvjoQ8rOAQAAAPqggzpzh/+tYe681Lcnt132xbJTAAAAgD7KuPMcnHjRB9JeJDvn31Z2CgAAANBHGXeeg3GTZ2XtuCLDV7kOHQAAACiHcec52jJ1WA7ZUMn6VX3+AjEAAACgBMad52jwvFNSW0nu+uGXyk4BAAAA+iDjznN06ms/mH21SeuCe8tOAQAAAPog485zNGzk+Dw2oSYjV+8oOwUAAADog4w7nWD7tJE5ZFOy8uH5ZacAAAAAfYxxpxOMOPHsJMk9l3+15BIAAACgrzHudIJTX3NJ9tQnHQ89WHYKAAAA0McYdzrBoCFDs/aQ2oxes6fsFAAAAKCPMe50kl1Tx2Ts5mTp/beVnQIAAAD0IcadTjLihDOTJA9c+e8llwAAAAB9iXGnk5zyqvemtV/S/vCislMAAACAPsS400kGDRmateNrMvKxXWWnAAAAAH2IcacT7ZgyMuM2JauX3l92CgAAANBHGHc6UeNxp6YmyT1X/FvZKQAAAEAfYdzpRCe/5r3ZV5vse3BB2SkAAABAH2Hc6UTDRo7PunFFhq/ZUXYKAAAA0EcYdzrZtsnDM6Gpkg2rl5adAgAAAPQBxp1ONmju81NbSe6+4l/LTgEAAAD6AONOJzvpokvSVpPsXnB32SkAAABAH2Dc6WSjxk/LujFFhq3ZVnYKAAAA0AcYd7rA1klDMmFDJVs2rS07BQAAAOjljDtdoOHoY9OvPbn9cufuAAAAAF3LuNMFjnvle9KRZMc9t5adAgAAAPRyxp0uMGnGnGwYnQxevbnsFAAAAKCXM+50kc0TBmbCho607tlddgoAAADQixl3ukjl0FkZsC+546pvlJ0CAAAA9GLGnS4y6+yLkyQb7vhVySUAAABAb2bc6SJHn/LSbB2c1D/qOnQAAACg6xh3ukhtXV02jO+XMev3l50CAAAA9GLGnS7UOnVcRm5PFt51bdkpAAAAQC9l3OlCo44/M0ny8C++W3IJAAAA0FsZd7rQSS9/V1r7JR1LFpedAgAAAPRSxp0uNGjI0KwbW5Ph63aXnQIAAAD0UsadLrZ90tCMb6qkae3yslMAAACAXsi408UGzDk2tZXk7p9+vewUAAAAoBcy7nSxY1/2jiTJzgV3lVwCAAAA9EbGnS42edYx2TAyGbSmpewUAAAAoBcy7nSD5gkDMmF9R/bvay07BQAAAOhljDvdoDJrega2Jnf+/D/LTqEHq1QqadqxN/et3pI7V7TkzhUtWda0M7v3tZWdBgAAQA9WV3ZAXzD9rFcnVyzM2luvSV757rJz6EFadrbm5w+sz82PbMrdKzdnx94/HnKKIjls7JCcMG1ELjh6QuZNGZ6amqKEWgAAAHoi4043OPaFr878gZ9Mv5Vry06hh1i8YXv+9TfL8suHNqSto5JpowblJUePz+xxjZk4fEAG1NemUkk27WjNo827cu/qLbls/pp8545VmTRiQN5x2vS8Zt6k9O9XW/ZvBQAAgJIZd7pBbV1dNo6rzcgNztzp65q2780/Xf1wrrp/XQY31OXNJ0/Nq+dNzOxxjc/4a3e1tuW6RRvz3TtW5u+vXJh/vWFZ/u6CI/LSo8enKDzJAwAA0FcZd7rJrokjM2tFU1YvvT+TZx1Tdg7drFKp5LLfrsmnr3k4rW0dec8ZM/O206Zl2MD6A/4agxrq8vJjD8mFcyfkzhWb8+lrFuV9P7gvP/ztmnz+Ncdk3ND+Xfg7AAAAoKdyoHI3GXLUvCTJgp9/s+QSutvO1ra8738W5KNXPJg5E4bml5eclr950WEHNez8vqIoctKMkbny3afmHy88Mves2pLzv3xzfrN4YyeXAwAAUA2MO93kuJe9PR1Jdj90X9kpdKM1m3fn5V+7LVc/sC4fetFhufRtJ2T66MGd8rVra4q86aSp+dl7T824oQPyF9+Zn2/cvDyVSqVTvj4AAADVwbjTTcZPmZ2mkcmgtZvLTqGbLFq3Pa/6v7enafvefO9tJ+TdZ8zskluuZo4ZnJ/81cl58Zzx+cw1i/Oxnz6U9g4DDwAAQF/hzJ1u1DK+f6Ys25v2trbU1vmvvje7b/WW/Nk3787g/nW5/F0n59CxQ7r0+/XvV5uvvu7YTBoxMF+/aXn27u/I5159dGpdmQ4AANDreXKnG7VPm5zBe5N7fvM/ZafQhRau25Y//9bdGTG4Pj/uhmHnSTU1RT56/ux84OxD8+N7H8uHLr/fEzwAAAB9gHGnG0046dwkycqbriy5hK6yrGlH3vTNuzO4oS6Xvu2ETBg2oNsbLjl7Vj54zqG54t61+aerF3X79wcAAKB7GXe60fHnvyV76pNi2YqyU+gCLTtb85Zv/zY1RZFL335iJg4fWFrL+86albeeMi3/ddvK/Oct/rwBAAD0Zg5+6UYNAwZm/diaDNuwp+wUOllrW3ve+b170rS9NZf95UmZNmpQ2Un52AWHZ/22Pfn0NQ9n4vCBOW/OuLKTAAAA6AKe3OlmOyY0ZtymSjZvXFN2Cp2kUqnkYz95KL9duSWff80xmTtpWNlJSR4/g+eLF8/NMROH5W9+dH+Wb9pZdhIAAABdwLjTzRoOPyp1HcndV32j7BQ6yeX3PJYf3fNY3nfmzLz0mAll5/wv/fvV5t/e8LzU19Xknf99T3a1tpWdBAAAQCcz7nSzI857Y5Jk64LbSy6hMyzduCMfv3JhTpo+MpecfWjZOU9pwrAB+errjs3yTTvztz95sOwcAAAAOplxp5sdNvcFaWlM+q9uKjuF52jPvva8+/v3ZmB9bb782rmprSnKTnpap8wclQ+cfWiuXLAuVy5YW3YOAAAAnci4U4JN4/tl9Aavx1S7z/1qcR7ZuDNfuHhuxjT2LzvnGb3r9Bk5bsrw/P1PH8q6rQ71BgAA6C2MOyVonTwuI3YkC++6tuwUnqW7H92cb9++Mn920pS88NDRZecckLramnzhomPS1lHJhy6/Px0dlbKTAAAA6ATGnRKMOO60JMniX3+/5BKejT372vPhy+/PIcMG5CPnzS4756BMGTkof/+SI3LbspZ8/+7VZecAAADQCYw7JTjxwr9MW03StuThslN4Fj5/7ZKsbNmdz73q6AxqqCs756C99vmTcvKMkfnsLxenafvesnMAAAB4jow7JWgcPiYbRhcZvH5n2SkcpIXrtuW/bns0rz9hck6eOarsnGelKIp8+hVHpbWtI5/8+aKycwAAAHiOjDsl2Tquf8Zt7Mj+fa1lp3CAOjoq+fiVCzN8YH0+8qLqeh3rD00bNSjvPWNmrn5gfW5Y7OY2AACAambcKUnHlMkZuC+59zeXlZ3CAbrivrW5Z9WWfOS82Rk6sF/ZOc/ZX75wRmaOGZx/uGphWtvay84BAADgWTLulGT88WcnSVbfenXJJRyIbXv2559/8XCOnTwsrz5uYtk5naK+rib/8NIjsnrz7nz7tpVl5wAAAPAsGXdK8vzz/yytdUllxYqyUzgAX71+aVp27cs/XjgnNTVF2Tmd5rRZo3PW7DH56m+WpXmnVwQBAACqkXGnJAMGNWbDmCKNG3aVncIzWLN5d757x6q85riJmXPI0LJzOt3fXnB49u5vzxeue6TsFAAAAJ4F406Jto8blHFNlezZtb3sFP6Ef7l2SYoi+cA5h5ad0iVmjB6cN500Jf9z9+os3uDPIgAAQLUx7pSomD49DW3Jb3/x3bJTeBoPrd2Wny5Yl7eeOi3jhw4oO6fLXHLWrAxuqMvnf+XpHQAAgGpj3CnRpFNenCTZ8NvrSy7h6Xz2l4szbGC/vPOFM8pO6VLDBtbnHS+Ynl8/vDH3rd5Sdg4AAAAHwbhTouPOem121yfFylVlp/AUbl/WnFuWNuc9Z8zM0AHVf/X5M3nLKdMyclB9/uVaT+8AAABUE+NOifrVN2Tj2JoM27C37BSewpeuX5qxjQ1544lTyk7pFoMa6vKu02fk1mXNuWN5S9k5AAAAHCDjTsl2jB+ccZsq2b6lqewUfs+dK1py96Ob864Xzkj/frVl53SbN544JWMbG/L5a5ekUqmUnQMAAMABMO6UrG7mYanrSO7++bfKTuH3fPnXSzN6SENee/zkslO6Vf9+tXnPmbNyz6otud3TOwAAAFXBuFOy6S98RZKk+b5bSi7hSXc/ujl3rGjJO/vYUztPes1xEzNmSEO+dsOyslMAAAA4AMadkh19ykuzY0BSt2pt2Sk84SvXL82owQ15fR97audJ/fvV5u2nTc/ty1vcnAUAAFAFjDslq62ry8axNRmxsbXsFJLcv2Zrbl3WnHe8YFoG1Pe9p3ae9PoTJmfogH75txuXl50CAADAMzDu9AC7xg/L2Jakef2jZaf0ed+4ZUWG9K/L60/oGzdkPZ1BDXV588lTc92ijVmyYUfZOQAAAPwJxp0eoGH2nNRUkvkOVS7V6pbd+cWD6/OGE6ZkcENd2Tmle/PJUzOwvjb/90Zn7wAAAPRkxp0e4PCzL06SbL3/zpJL+rZv3fZoamuKvPnkqWWn9AjDB9XndcdPzs8eWJ/12/aUnQMAAMDTMO70ALOPOzNbBif1jzWVndJnbd29L5f9dk1edswhGTe0f9k5PcabT56aSqWS796xquwUAAAAnoZxp4doHlOb4U37ys7osy69a3X27G/P218wreyUHmXSiIF50ZHj8v27VmfPvvaycwAAAHgKxp0eYvf4YRmz2aHKZWhta8+3b1+ZFxw6OrPHNZad0+O89dRp2bZnf66477GyUwAAAHgKxp0eomHWEalJcs813yk7pc/5xYMbsmlHa/7iVE/tPJV5U4bnqEOG5lu3PpqOjkrZOQAAAPwB404PMev0VyRJtjzoUOXu9t07VmbaqEE5beaoslN6pKIo8tZTp2b5pl25ZVlz2TkAAAD8AeNOD3H4vHOyfWBSt2ZD2Sl9ykNrt+Xe1VvzxhOnpKamKDunx7rgqAkZPaQh/3Wb1wYBAAB6GuNOD1FbV5dNo2syvKm17JQ+5Xt3rkr/fjV59fMmlp3So9XX1eT1x0/OTY9syprNu8vOAQAA4ATiv10AACAASURBVPcYd3qQneMaM6Yl2dqyvuyUPmHb7v356YK1efncQzJ0YL+yc3q81x4/KUWSH9y9uuwUAAAAfo9xpwfpN2NW6jqSe37532Wn9AmX3/tY9u7vyBtPnFJ2SlUYP3RAzpw9Nj+c/1j2tXWUnQMAAMATjDs9yNRTXpok2XTfLSWX9H4dHZV8785Ved7kYZlzyNCyc6rGG06YnOadrblu0cayUwAAAHiCcacHmfvCV2R3Q1K7em3ZKb3enSta8mjzrrzpJE/tHIwXHDo6hwwbkEvvWlV2CgAAAE8w7vQgtXV12TimJkM37i07pde7bP6aDOlfl/PnjC87parU1hR53fGTcvvylqzYtLPsHAAAAGLc6XF2jB2Usc2V7NqxreyUXmvb7v35xUMb8vK5h6R/v9qyc6rORfMmpa6mcLAyAABAD2Hc6WGKadNT357ce933yk7pta66f232tXXkonmTyk6pSmMa++fsw8fminvXZn+7g5UBAADKZtzpYSadcE6SZP1vf1NySe/1w/mP5fDxjZlzSGPZKVXrNfMmpmXXvty4ZFPZKQAAAH2ecaeHed5Zr0trvyQrHVjbFRat254H127LxfMmpiiKsnOq1gsOHZ1Rgxty+T1ryk4BAADo84w7PUzDgIHZMLpIY9PuslN6pR/OX5P62ppcOPeQslOqWr/amrzi2Am5/uGmtOxsLTsHAACgTzPu9EDbxwzM2KZK9u/zl+bO1NrWnp8uWJtzjxyb4YPqy86peq86bmLaOiq56v51ZacAAAD0ac847hRFMakoihuKolhUFMXCoigu6Y6wvqwydVL670/uuf5/yk7pVX69qClbd+93kHInmT2uMUcdMjSX3/NY2SkAAAB92oE8udOW5K8rlcoRSU5M8u6iKI7o2qy+bexxZyZJ1tzxy5JLepefLlibMUMacsrMUWWn9BqvPm5iFq7bnkXrtpedAgAA0Gc947hTqVTWVyqVe5/4+Y4kDydxYEkXev55f5b9tUnHihVlp/QaW3fvy41LmvKyYyaktsZByp3lZcdMSH1tTX58r6d3AAAAynJQZ+4URTE1ybFJ7uqKGB43aMjQbBxVZMjGnWWn9BpXP7g++9srefmxdsnONHxQfc46fEyuXLA2be0dZecAAAD0SQc87hRFMTjJj5O8v1Kp/NE7GEVRvKMoivlFUczftGlTZzb2SdvGNGT0po60t7WVndIrXHnfuswcMzhHTmgsO6XXuXDuIWneuS+3L28pOwUAAKBPOqBxpyiKfnl82Lm0Uqlc8VSfqVQq36hUKvMqlcq80aNHd2Zjn9R2yLgM3pssvPtXZadUvce27M7dKzfn5XMnpCi8ktXZTj9sdIY01Lk1CwAAoCQHcltWkeSbSR6uVCpf6PokkmT4nOOTJMtv/VnJJdXvygWPjw4XzvVKVlfo3682L5ozLr96aEP27m8vOwcAAKDPOZAnd05J8qYkZxZFseCJHy/u4q4+75hz35gkaV26qOSS6lapVHLlgrWZN2V4Jo0YWHZOr/WyYyZkR2tbblzSVHYKAABAn3Mgt2XdWqlUikqlcnSlUpn7xI9ruiOuLxs3eVaahyb9N2wpO6WqPbx+Rx7ZuDMXOki5S508Y2RGDa73ahYAAEAJDuq2LLpXy+i6DG92oPJzceWCtamrKXLBUePLTunV6mprcsFR43P9w03ZsXd/2TkAAAB9inGnB9s7blhGbUma1i4vO6UqVSqV/PyB9Tl11qiMGFRfdk6v97K5E9La1pHrFm0sOwUAAKBPMe70YA0zD09Nkvt+dWnZKVXpgce2Ze3WPXmxp3a6xfMmD8/E4QN+d4A1AAAA3cO404NNO+WCJMmWh+4quaQ6XfPQ+tTVFDn3iLFlp/QJRVHkpcdMyK3LmrN5176ycwAAAPoM404PdtRJF2RXQ1L72PqyU6pOpVLJNQ+uzykzR2XYQK9kdZcLjhqf9o5Krlu0oewUAACAPsO404PV1tWlaXSRxk17y06pOg+t3Z41m/c4SLmbHTmhMROHD8gvHjLuAAAAdBfjTg+3c/TAjG2upHXP7rJTqsrVDz7xStaRXsnqTkVR5Pw543LbsuZs2+PWLAAAgO5g3OnhKlMmpWF/suCmy8tOqRpPvpJ1sleySnH+UeOzv72S3yx2axYAAEB3MO70cKOPOTVJsubOa0suqR4L123P6s27c8FR48pO6ZPmThyWcY39c82DXs0CAADoDsadHu55574+bTVJ28rlZadUjasfXJ/amiLnHGHcKUNNTZHz5ozLzY9syq7WtrJzAAAAej3jTg83bOT4bBqRDNy4o+yUqlCpVPKLB9fn5BkjM2KQV7LKct6ccWlt68gNS5rKTgEAAOj1jDtVYOuo+oza1F52RlV4ZOPOrGzZnfPmeGqnTM+fOiKjBte7NQsAAKAbGHeqwL4JozJ8Z7Ji0d1lp/R41y16fEw4+3C3ZJWptqbIuUeOyw2Lm7J3v2ESAACgKxl3qsCgw45Kkiy6/rKSS3q+axdtzNxJwzK2sX/ZKX3e+XPGZfe+9tz0yKayUwAAAHo1404VmH36a5IkO5bcX3JJz7Zh29488Ni2nHOEp3Z6ghOnj8yQ/nX59SJXogMAAHQl404VmHXMKdk6KKlf11x2So923cOPjwjnGnd6hH61NTn9sDH5zeKmtHdUys4BAADotYw7VaJ5dE2GbWotO6NHu27RxkwdOTAzxwwuO4UnnH34mLTs2pcFa7aWnQIAANBrGXeqxK6xjRnTkuzctrnslB5px979uWN5c845YmyKoig7hyecfuiY1NUU+fXDXs0CAADoKsadKlE7dVrqOpL5115adkqPdNMjm7K/vZJzjnAFek8ydGC/HD9thHN3AAAAupBxp0qMf97pSZKmBbeUG9JDXbdoY0YMqs9xU4aXncIfOPvwsVnatDOrWnaVnQIAANArGXeqxLFnXpy2mqSyZlXZKT3O/vaO/GZxU86aPSa1NV7J6mnOPvzxA65//XBTySUAAAC9k3GnSgwaMjRNI5OBTTvLTulx7lqxOTv2trkCvYeaPHJgDhs7xKtZAAAAXcS4U0W2jazPyJaOsjN6nOsXb0xDXU1OmzW67BSexlmHj8ndKzdn2+79ZacAAAD0OsadKtI6bkSG70hWL72/7JQe5cYlm3LSjJEZUF9bdgpP4+wjxqa9o5IbH/FqFgAAQGcz7lSRgbOOSJIsvOGHJZf0HI8278qjzbtyxmFjyk7hT5g7cVhGDa7PdV7NAgAA6HTGnSoy45SXJEm2PXxfySU9x41LHn8SxLjTs9XUFDnjsDG5+ZFNaWv3aiEAAEBnMu5UkcPnnZNdDUntug1lp/QYNyzZlOmjB2XyyIFlp/AMTj9sTLbvbcuCNVvLTgEAAOhVjDtVpLauLptGFRmyaW/ZKT3Cnn3tuXNFi6d2qsSps0altqbIjUs2lZ0CAADQqxh3qszOUQMyurmS9ra2slNKd8eK5uxr6zDuVImhA/rleZOHOVQZAACgkxl3qkz7IeMycF/y4B1Xl51SuhsWb8rA+to8f9rwslM4QKcfNiYPrd2eph2ePgMAAOgsxp0qM/yIeUmSR+/4Rckl5apUKrlhSVNOmTkqDXWuQK8WLzx0dJLk5keaSy4BAADoPYw7VWbOWRcnSVqXLy65pFzLN+3MY1v2eCWryhw5oTGjhzT87pYzAAAAnjvjTpU5ZNoR2dyY1G/YXHZKqW5Y/PihvKcfNrrkEg5GURR5wazRuWVpc9o7KmXnAAAA9ArGnSrUMrI2w1r2l51RqhuWNGX2uCGZMGxA2SkcpNMPG51te/a7Er1KtXdUsm3P/uze12agAwCAHqKu7AAO3u4xQzJt1dbs3LY5g4eOKDun2+1sbctvV27OW0+dVnYKz8Jps0alpkhuWtKU46Y4DLune2Tjjly7cEPuXb01i9Y9fhj2k5tOv9oik4YPzOHjG3PSjJE5c/YYgysAAJTAuFOFaiZPSd1dW3Pf9T/Iaa98d9k53e6uFS3Z31753eG8VJdhA+tz7OThufGRTfnguYeVncNTaG1rz5X3rcu3bns0izfsSJLMGjM4J88cmUOGDcjQAf3S3lHJ1j37s6plV+5dvSVXP7g+RZGcOnNU3nzy1Jw5e0yKoij5dwIAAH2DcacKjT/2tORH92f9fbckfXDcuWVpcwb0q/XURxU7/dDR+ZfrHknzztaMGtxQdg5PqFQquXLBuvzzLxZnw/a9OWJ8Yz514ZE5b864jBnS/0/+uhXNu3LlgnW5fP6a/MV35ufoiUPzty8+PCdOH9mNvwMAAOibnLlThY4963Vpq0k6Vq8qO6UUtyzdlOOnjXAFehU7/Ylbzm5d6kr0nmJl865c/O935v2XLcjYxob8918cn6vfd2r+7KSpf3LYSR4/KHvG6MH54DmH5qYPn5HPvuqotOzcl9d+4858+PL7s2133z4jDAAAuppxpwoNHjoim0YkA5t2lJ3S7dZt3ZPlm3bltFmjyk7hOThyQmOGDeyXW4w7PcJP71ubC75ySxZv2J5/fuVR+clfnZLTZo1+Vq9V9autycXPn5xff/CFeecLZ+TH967Ni79yS+53gDYAAHQZ406V2jqqPiNb2svO6HZPPulx2izn7VSzmpoip8wYlduWNadSceNSWdo7Kvnkzxbm/ZctyBETGvOL978grz1+cmpqnvtZOQPqa/PR82fnx+86OUny6q/fnv+5e/Vz/roAAMAfM+5UqdZxwzNie7L20UVlp3SrW5Y1Z8yQhhw6dnDZKTxHp84alQ3b92b5pp1lp/RJu/e15Z3fuyf/ddvKvPWUafnB20/MIV1w09XcScNy9ftOzUkzRuWjVzyYL173iEEPAAA6mXGnSg2YMTtJ8tD1l5Vc0n06Oiq5bVlzTp05yi08vcCpMx9/tc65O91vV2tb3vyt3+b6hzfmUxcemY+/9IjU1Xbd/x0MG1ifb/75vFw0b2K+fP3SfOynDxl4AACgExl3qtT0ky9IkmxZNL/kku6zaP32bN61L6cd6ryd3mDSiIGZMnJgbl1m3OlOu/e15S3f/m3uWb0lX3ndsfmzk6Z2y/ftV1uTz77q6LzzhTNy6V2r88mfLTLwAABAJzHuVKkjTzg/uxuS2rUbyk7pNk8evnvKTONOb3HKzFG5c8Xm7G/vKDulT9jX1pG3f3d+5q/cnC9ePDcvOXpCt37/oijykfMOy9tOnZZv374y//yLxd36/QEAoLcy7lSp2rq6NI8oMqhlT9kp3eaWpZsye9yQZ7yWmepx6sxR2dna5ialblCpVPL/XPFgblvWks+9+pi87JjuHXaeVBRF/u6Cw/OmE6fk329eke/esbKUDgAA6E2MO1Vsx8iGjGrpG6817NnXnvkrt/zunBZ6h5NnjExRxKtZ3eAr1y/Lj+99LB84+9C8+riJpbYURZFPvOzInH34mHziqoW5cUlTqT0AAFDtjDtVrG386AzZkyy9/7ayU7rc3Ss3Z197R0471BXovcmwgfU56pChDlXuYr98aH2++OtH8qrnTcz7zppZdk6SpLamyJdfe2xmj2vMe75/X5Y1uTUNAACeLeNOFRs084gkyZJbf1pySde75ZFNqa+tyfFTR5SdQic7deao3Ldma3bs3V92Sq+0snlXPvSjB3LMxKH5zCvn9Kib5gY11OWbb56X+rqavPvSe7NnX3vZSQAAUJWMO1Vs5skvSZLsXPpgySVd79ZlzTluyvAMqK8tO4VOdurMUWnvqOSuFZvLTul19u5vz7suvTc1NUW+9obnpaGu5/3vZ/zQAfnSxXPzSNOOfPzKh8rOAQCAqmTcqWKHHnt6djUktet793kVm3fty+INO3LyjJFlp9AFnjdlePr3q3HuThf4p6sX5eH12/Oli+dm4vCBZec8rRccOjrvPWNmfnTPY/nxPY+VnQMAAFXHuFPFauvq0jyyyODmvWWndKm7VrQkSU4y7vRK/fvV5vlTRxh3OtlNj2zK9+5cnbefNi1nzB5Tds4zuuTsQ3P8tBH5xFULs3Zr37kFEAAAOoNxp8rtHNmQkZsraW9rKzuly9yxoiUD62tz9MRhZafQRU6ZOSrLmnamaUfvHiq7y7bd+/ORyx/IrDGD89fnHlZ2zgGprSny+Vcfk/ZKJR+5/IF0dPSNmwABAKAzGHeqXNu4x2/MWvbQ7WWndJk7lrdk3tQRqa/zx7W3OnH6409lOXenc3ziZwuzaWdrvnDR3PTv1/PO2Xk6k0cOzN9dcHhuXdacS+9aVXYOAABUDX9brnKDZs1Jkiy99aqSS7rGph2tWdq0MydN90pWbzZnQmMGN9TljidewePZu2FJU35y39q8+4yZOWri0LJzDtrrj5+cFxw6Op+5ZrHXswAA4AAZd6rcrFMevzFrx9LeecvMnc7b6RPqamvy/KnDf/fPm2dn7/72/MOVCzNj9KC854yZZec8K0VR5NMvn5NKKvnUzxaWnQMAAFWhruwAnptZx7wg9/VP6nrpjVl3rGjJ4Ia6zJnQWHZKsm9XsuHBpHlpsrs5aduX9BuQDBmfjJqVjDkiqasvu7JqnTRjZG5YsilN2/dmTGP/snOq0tduWJbVm3fn+28/oapfY5w0YmDed9asfO6XS/KbxRtz5uyxZScBAECPZtypck/emDWkpXceRHvn8pYcP21E6mpL+ovq7s3JAz9MHr4qWX1HUul4+s/2G5RMOy2Z8+rk8Jcm/QwUB+PJc3fuWNGSC+ceUnJN9Vm+aWe+ftPyvOLYQ3LyjFFl5zxnbzt1en5y79p8/MqFOWn6qAyor56zgwAAoLsZd3qBHSP7Z9oje9Le1pbaut7zj3TDtr1Z0bwrrzt+cvd/822PJbd8IVnw/aRtz+NP5Zz6gWTi85PRs5PBY5LahmT/7mT7umTTw8nKW5NHrk0eeVsyYERy0l8lJ7wraRjc/f1V6MgJQzOkoS53rths3DlIlUoln7hqYfr3q83fvvjwsnM6RX1dTf7x5XPy2m/cmf970/J88JxDy04CAIAeq/csAX1Y2/gxGfTAqiy9/+bMPu7MsnM6zR0rmpN083k7+/cmt305ufWLSaU9Ofqi5MS/SsYe+dSfr21M+jcmY2YnR74iOb8jefSm5K6vJ7/5p+TOrycv+nRy9MVJUXTf76MK1dYUOX7aCOfuPAs3PbIptyxtzt+/5IiMHtJQdk6nOXH6yLzk6PH5xs3L8/rjJ2fcUE/DAQDAU6neQxn4nSFP3ph1289LLulcdyxvSWP/uhw+vpvO29nwUPKN05MbP5Mc+qLkPfOTC7/29MPOU6mpSWackbz+suQvfp2MmJ785C+TS1+d7NjQZem9xUkzRubR5l3ZsK13vmbYFdraO/KZax7OlP+PvfuOj6rO+jj+mZLee+8JJCQhEHpHUAERRNS197Wvrvu46+MWH7frNre5iqhrWdey9oooIL2XAGkkJCGk995n5j5/jOAqLSQzc6ec9z+8FjL3fsHAzj1zfueEeHPj9AS141jc/y5Ox2SCP31+RO0oQgghhBBC2C0p7jiBtNnLAehxso1ZO8pbmJYcgk5rg46XvS/CcxdAXytc/w5852UIGuWDctwUuG0tLPkDVG6HVXPg2DbL5HVSJ+buSPfO8L29r5qShm4eWZzu0EOUzyQu2JtbZiXy9v5qCmo71I4jhBBCCCGEXXK+JwEXlJo1ky4v0Nc3qR3FYqrbeqlq7WOmtY9kmYzw2Y/h4wchcQ7csx3SLrTc9bVamHYn3LHBfHzr5WXmQpI4rYwof/w99VLcGaaeAQN/+qKESQlBLM6KVDuO1dx3QSoBXm789tMiFEVRO44QQgghhBB2R4o7TkCn19MSrMG3ZUDtKBazo8z8cG/VeTuGQfjPTbDzafPg4+v+Az5W2jIUngF3fAkpC8yFpE1/AHlIPYV57k4IO6S4MywvbK2gqWuAny7NQOPEM50CvNz4/sI0th1tYevRZrXjCCGEEEIIYXekuOMkukM9CWtRMBoMakexiJ3lrQR5uzEm3M86NzAMmAs7xR/D4idgyROgs/J8cU9/uPZ1GH8NfPlrWPeYFHhOY0ZKCJUtvdS296kdxa519A3x3JZyLhoXQW58kNpxrO66afFEBXjy5y9KpHtHCCGEEEKIb5HijpMwRoXjPQDF+zaoHcUi9hxrZUpiMFprzNsxDpkLOyVrYOmTMP0ey9/jTHRusOIZmHy7eSvX5j/Y7t4OYnpyMCBzd87lha0VdPUbePDCNLWj2ISHXsf3FqSy/3g7m0qc5wiqEEIIIYQQliDFHSfhm5YNQNmOT1ROMnoNnf0cb+1lalKw5S+uKPDRg1DymbmwM+V2y9/jXLRauOSPkHMdfPkb2PmM7TPYsYxIfwK83KS4cxbtvYO8uLWCxZmRZEYHqB3HZq6aFEdMoJd07wghhBBCCPEtUtxxEmNnrwCg92ihyklGb3dFK4B1ijubfgd5r8K8R9Qp7Jyg1cLyv0PGMvNA5yNr1MtiZ7RaDVMSg9hzrE3tKHbr+S0VdA0YePAi1+jaOcFdr+WBhakcrO5gfVGj2nGEEEIIIYSwG1LccRJpObO+2pjl+MNGd1e04uOuY1yUv2UvfPht2Pg4TLgB5j9i2WuPhE4Pl6+G6Anwzneh3rlW2Y/GlMRgKpp7aOpyniHhltLWM8iL2ypYmh1FeqSF/444gJW5scQHe/PnddK9I4QQQgghxAlS3HEizSEa/JxgY9aeY63kJgSh11nw27OhED68H+JnwrK/gL1sFnL3hmteBw8/eP0a6G1VO5FdmPJV19beY/Ln8W0vbT9Gz6CRBxa6VtfOCW46LfddkEJBbSdbSh2/mC2EEEIIIYQlSHHHifSEeBHq4BuzOnqHONLQxZRECx7J6u+AN28wF1CuetE81Nie+EfBNf+Grnp4/17ZoAVkRQfg6aZltxR3vqF30MArO45xYUYEYyOttEnOAayYGEOEvwerNpWpHUUIIYQQQgi7IMUdJ2KMjsB7EIr2fqF2lBHbW9mKolhw3o6imDt22o7BVS+BX6RlrmtpMZPg4l+ZN3jtfFrtNKpz12uZEBfIHinufMN/9lTR1jvE3fOS1Y6iKg+9jttnJ7G9rIVD1e1qxxFCCCGEEEJ1UtxxIr6pmQBU7FqrcpKR213RiptOw4S4QMtc8OAbUPgBLHwUEmZa5prWMu1uGLsUvngMavarnUZ1UxODKaztpKt/SO0odsFgNPHclgomJQQx2ZKdbQ7q2qnx+HnqpXtHCCGEEEIIpLjjVNJmLgWgp6xI5SQjt/tYK+NjA/F0043+Yu1VsOZh85ydmQ+M/nrWptHAin+ATxi8fw8M9audSFVTkoIxKXDguHRmAHxyuI6a9j7unpeidhS74Ofpxo3TE1iTX09Fc4/acYQQQgghhFCVFHecSGr2bHo8QNfQpHaUEekbNHK4usMy83ZMJnOBRDHB5c+A1gLFIlvwCoLlf4OmYtj0hNppVJUbH4ROq5GjWYCiKKzaVE5KmA8L08PVjmM3bp2VhJtOy+rN5WpHEUIIIYQQQlVS3HEiOr2elmANPi2O2fFxoKoNg0lhmiXm7ez7JxzbAosfh6DE0V/PltIugok3wLa/QvVetdOoxsdDT2a0P7srpLizvayForpO7pqbglZrJ5ve7ECYnwdX5Mbw3oFq2nsH1Y4jhBBCCCGEaqS442S6gt0JaXXMbUu7K1rRaCA3IWh0F+qqh3W/gKR5MPFGy4SztUW/Bb8o+OA+MLruzJnJCcHkVbUzYDCqHUVVL247RoiPO8snRKsdxe7cPDOR/iETb+6pUjuKEEIIIYQQqpHijpMxRITg3wvHjzjeQN49x1pJj/QnwGuUq8o/+zEYBmDpk+Y5No7IMwCW/sl8PGvnM2qnUc3UpCAGDCbyazrVjqKaqtZe1hc3cM3UOMvMonIy6ZH+zEgO4ZUdlRiMJrXjCCGEEEIIoQop7jgZj8Q0AIq2fqhykvMzZDSxv7KdqYmj7NopXQcF78KchyA01TLh1DJ2CYxZDBufgI4atdOo4sRWKFeeu/Pqzkq0Gg03TE9QO4rdunlmIjXtfawralQ7ihBCCCGEEKqQ4o6TiZs0H4D2I3nqBjlPBbWd9A0ZmZoUMvKLGAbg0x9CSBrMftBy4dS05HegGOHzn6qdRBWhvh4kh/mwx0Xn7vQNGnljTxWLMiOICvBSO47dujAjnJhAL17aXqF2FCGEEEIIIVQhxR0nkz1zOYM6oLZW7Sjn5cTD+5TRdO7sXg1tFbDkCdB7WCiZyoISzV1IBe9B+Ua106hiSkIweyvbMJkcc5bUaHx4sIaOviFunpGodhS7ptdpuWlGAjvLWymqc90jfEIIIYQQwnVJccfJeHh50xwM3i29akc5L/sq24gP9ibc33NkF+hpgU1/gNSLIPVCy4ZT28wHIDAePv+ZecW7i5mSFExH3xAljV1qR7EpRVF4aXsl6ZF+TLXEBjknd/WUODzdtLyy45jaUYQQQgghhLA5Ke44oc5gNwJbHWe7kKIo7DvexqTRbMna9AQMdsPFv7ZcMHvh5gkLH4P6w3D4P2qnsbmpJ+buuNjRrH2VbRTVdXLzzEQ0jjoY3IYCvd1ZNj6aD/Jq6R4wqB1HCCGEEEIIm5LijhMaCA0guAPamhxjCG91Wx9NXQMjX4HeVAJ7XoBJt0B4ukWz2Y3MlRA1Adb/Cob61E5jU3HBXoT5ebD/eLvaUWzq9d1V+HnouUzWnw/btdPi6R008mGeYx1LFUIIIYQQYrSkuOOE9HEJaIGDG95SO8qw7D/eBsCk+BEWd9b/Aty8Yf6PLZjKzmi1cPGvoLMadq1SO41NaTQacuMDT36fuIKOviE+OVzL8gnReLvr1Y7jMCbGBZIe6ccbe46rHUUIIYQQQgibkuKOE4oYPwOApoJdKicZnn2Vbfi46xgb6Xf+L649AMUfw8zvgW+YIilu+QAAIABJREFU5cPZk6S5kLYItjwJva51RGlSQhCVLb00dw+oHcUmPjxYS/+QiWumxKsdxaFoNBqunRrPoeoO8ms61I4jhBBCCCGEzUhxxwllz1uJSQPGKsf49HpfZRsT4gPRaUcwV+TLx8EzEKbfY/lg9mjhozDQCTufUTuJTeV+1dW1v9I1unfe2H2ccVH+ZMX4qx3F4ayYEIOHXsvrux3j3z8hhBBCCCEsQYo7TigwJIqWAPBstv+VwD0DBorqOkd2JKtqD5SuhVkPgGeA5cPZo8hsyFhmPprlQt07WTEBuOk0LjF3J7+mg4LaTq6dGieDlEcgwNuNpeOj+CCvlh4ZrCyEEEIIIVyEFHecVHuQDv82+3+wOVjdjklhZMOUv/wNeIfC1LssH8yezXvE5bp3PN10ZEYHuETnzht7juOh17J8QozaURzWdVPj6R4w8PEhGawshBBCCCFcgxR3nFRfqA+hbdDXY9/dOyce1ifGnWdxp3IHlH8Js38AHr5WSGbHIrMgY7m5uONC3Tu58UEcrG5nyGhSO4rV9A4a+OBALUuzowjwclM7jsOalBBEargvb+2tVjuKEEIIIYQQNiHFHWcVE42bEQ5v+1DtJGe1r7KNtHBfArzP80F2y5/AJwwm32adYPZu/iMw2AU7/qF2EpuZlBDEgMFEYa19FyxHY83heroGDFw9JU7tKA5No9FwRW4seyvbONbco3YcIYQQQgghrE6KO04qKD0XgJr9m1VOcmYmk8L+4+1MOt8jWfWH4egX5iHK7t7WCWfvIjLN3Tu7n4OBLrXT2ERuQiCAU69Ef/dANQkh3kxNClY7isNbMTEajQbePVCjdhQhhBBCCCGsToo7Tipz3hUA9B8rVTnJmZU399DRN3RyE9Kwbf0LuPvB5NutE8xRzH4QBjpg38tqJ7GJqAAvogI8nXaocl1HH9vLWlgxIUYGKVtAVIAXs1NDeXd/NSaTonYcIYQQQgghrEqKO04qJmkc7T7g3mi/XQ4n5u2c1zDl1gooeBcm3wpegVZK5iBiJkHiHNj5NBgG1U5jE7kJQU47VPmDvFoUBS6fKIOULWVlbgzVbX3sOeY6s6mEEEIIIYRrkuKOE2sN1uLXar8P/fsq2wj0diM51Gf4L9rxFGj1MP1e6wVzJLO+D501kP+O2klsIjc+iJr2Puo7+tWOYlGKovDe/hpy4wNJPJ+/D+KsFmVG4uOu4939cjRLCCGEEEI4NynuOLGeEE9CWxWMBvtcib7/eBu58UFotcM8gtLdCAdehZxrwT/KuuEcReqFEJ4J2/4KJufdInVCbrxzzt0prOvkSEMXl+fGqh3FqXi761mSHcUnh+voHzKqHUcIIYQQQgirkeKOEzNFhuE1CMX7Nqgd5RQdvUOUNnaffFgflr3/BMMAzHzAesEcjUZj7t5pKjIPmXZymdEBuOu1Tnc06739NbjpNFyaLUVLS1uZG0P3gIG1BfVqRxFCCCGEEMJqpLjjxHxTMgEo3/WZyklOtb/qPOftGAZhzwuQdjGEploxmQPKWgn+MeYja07OXa9lfEyAU3XuGIwmPjhYywVjwwnycVc7jtOZnhRCTKCXHM0SQgghhBBOTYo7Tixl+hIAesoLVU5yqgOVbWg1kBM7zM6dwvehpxGm3WXdYI5I5wZTboeKzdBYrHYaq5uUEER+TScDBuc4ZrOtrIWmrgFW5sogZWvQajUsy4lm29FmWnvsdwaZEEIIIYQQo6FXO4CwnjET55PnDrq6JrWjnOJAVTtjI/3x8RjGt6CiwM5nIHQMpCywfjhHlHsLbPwd7F4Nlz6pdhqrmhgfxLOby8mv6WTS+Wxas1PvH6jB31PPBenhakdxWstyoli1qYzP8uu5blq82nGcgqIoHKruYEd5C/sr2zje2ktT1wAGk4K7XkukvydJoT5MTgxidmooyWG+akcWQgghhHBqUtxxYjq9nuZgDT6t9rVZyGRSOFjVztLx0cN7QfVeqN0Pl/zRPGNGnMonBLKvhINvwIWPgWeA2omsJjfB3O114Hibwxd3+oeMfFHYwNLsKDz0OrXjOK1xUf4kh/nw0cFaKe6MUlvPIK/urOTt/dVUtvQCkBzqQ3KYD7kJQbhpNfQPmajr7Gd3RSsfHqwFYHxsAFdPieOK3Fg83eR7XQghhBDC0s5Z3NFoNP8ELgUaFUXJsn4kYUndwe5EHx9QO8Y3HGvpobPfwIS4YRYgdq0CD3/zlixxZlPvgLx/Q95rMP0etdNYTbifJzGBXhys7lA7yqhtKmmie8DApTkySNmaNBoNy8ZH87cNpTR29hPu76l2JIfTM2Dg6Y1HeWnbMXoGjcxMCeH+BWnMGxNGmJ/HaV+jKArVbX2sLajnvQM1/PS9fP6yrpQHFqRy3bQEdMPdlCiEEEIIIc5pODN3XgIWWzmHsJLB0AACu6H+eKnaUU7Kq2oHYELcMLouOuvM83Ym3gge0tZ/VtETIXaq+WiWk69Fz4kLIK/K8Ycqf3KojiBvN2Ykh6gdxekty4lCUeCTw3VqR3E46wobuOjJTfzjyzIuSA/n8x/M5bU7pnPlpNgzFnbAXFSLC/bmu3OS+fj+2bz23Wkkhfrw6AcFXPaPrRx2ggKtEEIIIYS9OGdxR1GUzUCrDbIIK3CPSwSgcOsH6gb5Lwer2vFx15EaPoxizYF/gclgHhgszm3aXdBaDmXr1U5iVTmxgVS19tHSbV9daeejf8jIuqIGFmdFodfJbHtrSw33Iz3Sj48PSXFnuPqHjPzkvcN895W9+HrqeeeeGTx1XS5jIvzO+1oajYaZqaG8eed0/n7tRPMQ8We28dzmckwmxQrphRBCCCFcizxROLnwrOkANBftVTnJ1/Kq2smODTh3S77JCPtfgeT5EJJii2iOL2M5+ITD3hfVTmJVE+LMc3cOOfAn/18WN9I7aOTS8XIky1aW5USzr7KN6rZetaPYvZr2Pq5ctZ3Xdh3nrrnJfHz/HCYlBI/6uhqNeXvZ2gfncsHYcH7zaRF3v7qP3kGDBVILIYQQQrguixV3NBrNnRqNZq9Go9nb1GR/25lcVfbcFZg0YKqpUjsKAAMGI4V1neTEDWMFetmX0FEFk26xei6noXeHCddByWfQVa92GqvJiglAqzFvXXNUHx+uI9TXnWlJo39gFsOz7Ksh7p9I985ZFdd3svLpbVQ29/LcTZP58SUZuOst+1lQoLc7z944iUcvHce6ogauWb2Txi77Gv4vhBBCCOFILPZuTVGU1YqiTFYUZXJYWJilLitGKTAkilZ/8GjpUjsKAIW1nQwZFSYOp7iz70XwDoWxS60fzJnk3gSKEQ68qnYSq/Hx0DMmwo+DDlrc6R00sKGokcVZkXIky4biQ7zJiQ3go0O1akexW3uPtXLVqh0AvHXPDC4aF2G1e2k0Gm6fncTqGydT2tDNVat2UNfRZ7X7CSGEEEI4M3mqcAHtQVr8W4fUjgFw8mH8nJ07XfXm7pMJ15m7UcTwhaRA4pyv5hU572DlCXGBHKxuR1Ecb17HhuJG+oaMLM2OVjuKy7l0fDT5NZ0cb5GjWd924HgbN/9zN2G+Hrx77yzSI/1tct8Lx0Xw2h3TaO0e5JrVO6ltlwKPEEIIIcT5OmdxR6PRvA7sAMZqNJpqjUYjk20dTF+INyFtMDSo/vDZvKp2Ivw9iArwOscX/ts8SDn3ZtsEcza5N0PbMTi2We0kVpMTF0h77xCVDviQ/smhOsL8PJgqR7JsblFmJABrC5z32OJI5Nd0cPM/dxPi68Frd0wnJvAc/0Zb2MT4IF65fSqt3YNc99xOhx6WLoQQQgihhuFsy7pWUZQoRVHcFEWJVRTlBVsEE5ZjigjHwwBFez5XOwoHqzvIiT1H147JZB6knDgHQlNtE8zZZCwDz0Dzn6OTOvF9dLDasY5m9Q4a2FDcyJKsyHMPFRcWFx/izbgofz6T4s5JNe193PLiHnw99Lx2xzQiAzxVyTExPoiXbptCXUc/t7+8l75Boyo5hBBCCCEckRzLcgG+KeMAqNyr7nrs9t5BKpp7mBB/juJOxSZz14l07YycmyfkXANFH0FPi9pprGJMhC9ebjryHGzuzuaSJgYMJhZnRaodxWUtzopkX2UbjZ0ywLd7wMDtL+1hYMjIy7dNJTbIW9U8kxKC+es1EzhY3c6Dbx7AKGvShRBCCCGGRYo7LiBl6iIAeiqKVc1x8Ku11RPO1bmT9xp4Bpi7T8TI5d4ExkE49IbaSaxCr9OSHRPgcMWdtQUNBHq7MTVRjmSp5URh7fPCBpWTqMtkUnjwjQOUNnbz1PW5pEX4qR0JgMVZUTy6dBxrCxr42/pSteMIIYQQQjgEKe64gDET59PnDtr6ZlVz5B1vR6OB7NiAM3/RQJe52yTrCnP3iRi5iEyIzoWDr6udxGpy4gIoqO1k0OAYg6OHjCbWFzWwMD1CtmSpKC3cl+RQH5efu/P0xqOsK2rk/y4dx7wx9rXl8tZZiVyRG8vfNpTy5ZFGteMIIYQQQtg9ebpwATq9npYgDd6t6m4gOVjdTmqYL36ebmf+osIPwdAHOdfaLpgzy7kG6g9DQ4HaSawiJy6QQYOJI/VdakcZll3lrXT2G1iUab310uLcNBoNi7Ii2VHWQnvvoNpxVLGrvIUnvyjhsgnR3DQjQe04p9BoNPx6RRbpkf48+EYeVa2ONzhdCCGEEMKWpLjjIrqC3AhqV6+7QVEU8qramXCuFegHX4fgZIidYptgzi7rCtDq4aBzHs068f2UV9WmcpLh+bywHk83LXPS7KtLwhUtzozEYFJYX+R6XSEt3QM88MYBEkJ8+M3l2Wg09jnY28tdx6obcjEpCg++mSfzd4QQQgghzkKKOy5iMNSf4E5obahS5f5VrX209gySc7biTvtxOLbF3LVjpw8bDscnFFIvgsNvgcn5Ns/EBHoR6utOXlWH2lHOyWRS+LyggXljwvBy16kdx+WNjw0gKsDT5bZmKYrC/75zmLbeIZ66biK+Hnq1I51VQogPv16Rxb7KNlZtKlM7jhBCCCGE3ZLijovQx8YDcGjz+6rcP++rddVn7dw59B/zj+O/Y4NELiTnauiqM28hczIajYac2ECHWId+qKaD+s5+Lh4nW7LsgUajYVFmJJtLmugZMKgdx2bez6thXVEDP7p4LJnRZ5l/ZkeW50Rz6fgo/vxFCfk19l/IFUIIIYRQgxR3XERohvmYU3PBLlXun3e8HQ+9lrGRZ9jGoijmo0PxMyEo0abZnN6YJeARAAffVDuJVUyIC6SsqZvO/iG1o5zV5wX16LQaFmaEqx1FfGVRZiQDBhObS5rUjmITjZ39/PzDQnLjA7ltdpLacYbtxPydEF93fvBmHgMG5+tCFEIIIYQYLSnuuIisuZcBYKiuVOX+h2vayYoJwO1MG4Jq9kNLqXkAsLAsN0/IXAFFH8JAt9ppLC4nLhBFgcPV9v2J/tqCeqYlBRPo7a52FPGVKYlBBHi5sc4F5u4oisJP3sunf8jIH67KQad1rKOvgd7uPLFyPKWN3azeVK52HCGEEEIIuyPFHRcRGpVEqx+4N3fa/N5Gk0J+TSfZMWc5AnDoDdB5mIsQwvJyroGhXij+WO0kFpcTe2Kosv0ezTra2E1ZUw8Xj5MtWfZEr9Myf2wYG480Ov2w3jX59awrauChi8eQEuardpwRuSA9nKXjo/j7l0epaO5RO44QQgghhF2R4o4LaQ/S4tdm+6MrZU3d9A0Zz1zcMRqg4D0Yuxg8HWMGhMOJmw6B8XDI+Y5mBXi7kRDibdezOL4obADg4kyZt2NvFqSH09IzaNfFwdHqHTTw648LyYjy57ZZjnMc63Qeu3QcHjotP33vMIri3AU5IYQQQojzIcUdF9IT7ElIm4LRYNvhoSeOy4yPPUPhpnIr9DSZ13YL69BqzX++5Zugp1ntNBaXFRPAYTsu7nxZ3Mi4KH+iA73UjiK+Zf6YcHRaDeuLGtSOYjVPbThKbUc/v7osE/2ZjsY6iHB/Tx5eks72shY+yKtVO44QQgghhN1w7Hd54rwYI8LwGoTSg5ttet/DNR14u+tIPtNRgPx3wN0X0i62aS6Xk7kSFKN59o6TGR8TQHVbH209g2pHOUV77yB7K1tZkC6DlO1RgLcbkxOC2FDsnHN3ypu6eW5LOVfkxjI5MVjtOBZx/dR4xscG8MSaYnoHXWfTmRBCCCHE2Uhxx4X4JqcDULZrrU3ve7img8xo/9MP8DQOQdFHMPYScJOuBquKzIaQVMh/V+0kFnfiyJ89du9sKmnCpJjnhQj7dGFGBMX1XVS39aodxeJ+8VEhnm46HlmSrnYUi9FqNTx66TjqO/tZvVmGKwshhBBCgBR3XErC5IUAdJcV2OyeBqOJgtoOsmMCT/8F5Ruhrw2yVtosk8vSaMzdO5XboMu5jqBk2nFx58viRoJ93JkQd4a/A0J1J9bTO1v3ztbSZjaVNPH9hWmE+XmoHceipiQGszQ7imc3lVPX0ad2HCGEEEII1Ulxx4VkTLmYAT1Qb7sH+6NN3fQPmciO9T/9F+S/Cx4BkLLAZplcWtZKUExQ+IHaSSwqwMuNxBBvu1uHbjQpbCppYt6YMIdbPe1KksN8SQr1caqV6CaTwuNriogN8uLGGQlqx7GKR5akY1QU/vDZEbWjCCGEEEKoToo7LsTN3YOWIPButd2nnCcetk/buTPUb17NnbEM9M71qbLdCs+AsAzzdjInY49DlfOq2mjrHZIjWQ5gYXo4O8ta6B5wjhkuHx2qpaC2kx9ePBYPvU7tOFYRF+zN7bOTePdADQW19vV3XwghhBDC1qS442I6g9wIaDPa7H6HazrwcdeRHOpz6i+WrYeBTsi63GZ5BObuneM7oNO5Ns2Mjw2gpr2PVjsaqryhuBGdVsO8tDC1o4hzWJgRwaDRxNZSx98mN2Aw8oe1R8iM9md5TrTacazq7nkp+HvqefLzErWjCCGEEEKoSoo7LmYgxI+QDuhss83xg8M1HWTGBKA93ZGU/HfBKxiS5tkki/hK5kpAgYL31U5iUVl2OHdnQ3ETkxKCCPB2UzuKOIfJiUH4eeqdYiX6qzuPU93WxyNL0k//b68TCfBy4655KawvbmT/8Ta14wghhBBCqEaKOy5GFxOLVoFDm63/YD9kNFFY28n4rx66v/mLfXBkDYxbDjp58LWp0FTz5qwC59qadbK4U92uchKz2vY+iuo6ZQW6g3DTaZk3JoyNJU0oiqJ2nBHrGzTyzMYyZiSHMMdFOsZumZlIqK87f1wrs3eEEEII4bqkuONigjMmAdCQv93q9ypt6GbAYCI79jTFnbIvYagHxq2weg5xGpmXQ/Uepzqa5e/pRlKoj9107nx5xNwdJ8UdxzFvTBhNXQMU1XWpHWXEXt99nObuAR68ME3tKDbj46HnnvmpbC9rYftRxz9WJ4QQQggxElLccTGZc8zzbYaOH7P6vfJrTgxTPk1xp+gj8AyExNlWzyFOI32Z+cfiT9TNYWHZMQF2szHry+JGYgK9SAv3VTuKGKa5Y8ydLptKmlROMjL9Q0ZWbSpjenIw05JD1I5jU9dPiycqwJMnv5DZO0IIIYRwTVLccTGR8Wl0+IC+2fpHVw7VtOPnoScx5FvDlI0GKFkDYxbLkSy1hI2B0DHmIpsTyY4JoLajn+buAVVz9A8Z2Xa0hQXp4Wg0zj3zxJlE+HuSHunHZgct7ry5p4rGrgEeWOg6XTsneLrpuHteCnsr29hd0ap2HCGEEEIIm5PijgtqC9Tg2279jUKHqzvIjPE/daBn5Tboa4OMS62eQZxF+qVwbCv0Os+DkL0MVd5X2UbfkJH5Y11j5okzmTc2jL2VrQ63En3AYJ61MzUxmBku1rVzwncmxxHi484/vjyqdhQhhBBCCJuT4o4L6gnyILDNugNDBw0miuq7GB8beOovFn0Eei9IWWjVDOIcMpaBYoSSz9ROYjFZMf4A5Kt8NGtzSRNuOg3TXfQh25HNGxPGkFFhR1mL2lHOy1t7q6nv7Of7F6a5bLeYl7uO22Ynsamk6eSxYCGEEEIIVyHFHRc0FBpIQC/UVRZb7R4lDV0MGkynztsxmcxzXlIXgru31e4vhiF6IvjHQtHHaiexGD9PN5JDfTik8oPd5tJmJiUE4eOhVzWHOH+TE4LxdtexqaRR7SjDZjQpPL+lnJzYAGamuHZB8cYZCfh56HlmY5naUYQQQgghbEqKOy7IPS4BgKJt1nuoP+Mw5doD0FVr7hoR6tJoIH0plK2HwR6101hMdmyAqp/aN3b1U1TXeXI4r3As7notM1NC2eRAK9G/KGzgWEsvd85NcdmunRP8Pd24cUYCn+bXUdbUrXYcIYQQQgibkeKOCwrPmAJAy5H9VrvHoZoO/Dz1JIR8qzun+CPQ6mHMIqvdW5yHjEvB0A9H16udxGKyYwKo6+inqUudocpbS82rmOemSXHHUc0bG0ZVax/HWnrVjjIsz20pJy7Yi0WZEWpHsQu3zU7CXafluc3lakcRQgghhLAZKe64oKw5KwAw1lRZ7R6HqzvIjgn45qfIimKet5M4G7yCrHZvcR7iZ4JXMBQ7z9GsE91ianXvbCltJsTHnXFR/qrcX4zevK8Kc5uO2P/RrH2VreyrbOP2WUnodfJ/6QChvh6szI3lvQM1tPZYf3mAEEIIIYQ9kHeCLigoLIZWP3Bv6bTK9YeMJo7Ud516JKvpCLQcNW9pEvZBp4exS8xDlQ3O8RCUGROARgOHVBiqbDIpbCltZnZa6Klb4oTDiA/xJinUh00OsBJ99eZyArzcuGpynNpR7MptsxIZMJh4ffdxtaMIIYQQQtiETPt0Ue2BWnzahqxy7dKGbgaNJsZFf6tz4UR3SPpSq9xXjFD6pZD3b6jcCikL1E4zar4eepJCfCiotX1xp6i+k+buAebIkSyHN29MGG/sOU7/kBFPN53acU6rormHzwsbuHd+igzv/pa0CD/mpIXyyo5j3DEnGXe9a3+WNWgwsb2smX2VbeTXdFDX0U9b7yA6jQZvDz0Jwd6kRfgxMyWEqUnBdvs9L4QQQogzk3eDLqo32IPEI31WufaJh+rM6G917pSs/WpDU7RV7itGKHk+6D3N/32coLgDMC7anwPH221+3y1fzduZkxZq83sLy5o3JoyXth9jz7FWuy3Wvbz9GHqthptnJKodxS7dNjuJW1/cw5r8Oi6bEKN2HFWUNHTxz60VfHK4jq5+AzqthrRwX2KDvMmOCcCkQPfAEJUtvWwpbWbVpjK83XUsz4nmhukJZH27A1cIIYQQdkuKOy7KEBaM78EajhXtJTFjskWvXVDbiZebjqRQn69/sqcZqvfA/Ecsei9hAe7ekDQPjqyBxU+Yt2g5uMzoAD4+VEd77yCB3u42u++W0ibSI/2I8Pe02T2FdUxNCsZNp2Hb0Ra7LO70DBh4Z181S7KiCJfvt9OalxZGcpgPL2ytYHlOtEttEqto7uHxT4v4vLABTzctS7OjWTo+kunJIXi7n/6tX9+gkV0VLXxyqI4P8mp5Y08VF42L4IcXj2VspJ+NfwdCCCGEOF9S3HFRnnEpQA0lu9ZYvLhTWNtJRpQfuv+eOVL6BaBYdUuWoihUd1dT2lZKVVcVPUM9GBUj/u7+RPhEkBGcQZxfHFqNa7fnn9aYRVC6FppLIGys2mlGLfOrI4GFtZ3MTLVNF03voIE9FW3cPDPBJvcT1uXjoWdiXBDby5rVjnJa7+fV0DVg4KYZ8v12JlqthltnJfHo+/nsP97GpIRgtSNZ3aDBxF/Xl7B6cznuOi0PXpjGTTMSCfY5d5Hby13H/LHhzB8bzqPLxvHytmOs3lzOJX/bwl1zk3lgYZoc1xJCCCHsmBR3XFRE1nRgM+2lhyx6XZNJobCuk8snfqsFvuQz8I2EyByL3g+goKWA90rfY0v1Fmp7ar/xaxo0KCgn/3eIZwjz4+azNHkpkyMmu9QnuWc1ZhF8gvm/kzMVd+psV9zZVdHKoNHE3DH21+UhRmZWaih/WV9i8w6wc1EUhX/tqCQjyp9JCbJ58GyuyI3h958V868dlU5f3Dna2M2Dbx4gv6aTlbkxPLIknXC/kXV1+Xu6cf/CNG6YnsBvPi3i6Y1lfF7YwKobckkNly4eIYQQwh5JccdFjZ99GZWa32OqrT33F5+HqrZeugcMJx+uATAOQdkGyFwBWst0zSiKwvba7Tyd9zSHmg/hqfNkRvQMbsu6jYyQDBL8E/B180Wj0dA91E1NVw1FrUVsr93Omoo1vFP6DmODxvLd8d9lUcIiKfIExEJEtnnuzqzvq51m1EJ8PYj096Sg1job4U5nS0kzHnotUxKd+wHSlcxKDeHP62BneQuLs6LUjnPS3so2iuu7eHxltvzbdQ7e7npWTozh9d1V/N+ywWF1sDiidYUNPPDGATz0WlbfOImLMyMtct0gH3f+eFUOy3Kieeg/eSx/ahu/v3I8l46X2XlCCCGEvZHijovyDQim1R88Wrsset0TD9Pf2JR1fAcMdMKYxRa5x7GOY/x616/ZVbeLGN8YHpn6CMtSluHv7n/ar/d398c/xJ+MkAxWpq2k39DPJ+Wf8ErhK/xo0494NexVfjLtJ4wLGWeRfA5rzCLY+mfobQVvxy9QjIv2t+nGrG1Hm2XLjJPJiQvEx13H1qPNdlXceWVHJX6eei6bIA/Yw3HdtARe3lHJ2/uquHNuitpxLO6FrRX8+pNCsqIDeO6myUQGWH4G07wxYXx8/xzue20/33vtAHXt/dwxN9ni9xFCCCHEyMnwERfWEajF18Lr0AtqO9BpNYyJ+K+27ZK1oPMwD+0dBZNi4l+F/+Kqj66isKWQR6Y+wocrPuT6jOvPWNg5HU+9J1eMuYJ3l7/LL2b+guquaq7/5HqeOfgMQybrrId3CGMWg2I0d1k5gcxof8qaeugfMlo8eSO6AAAgAElEQVT9Xk1dAxxp6GJmimzJciZuOi3TkkPYfrRF7SgnNXb181l+HVdNijvjYFzxTWMj/ZicEMTru6swmZRzv8BBKIrCk1+U8KuPC7l4XARv3jXdKoWdEyIDPHntjmksHR/Fbz4t4refFqEozvPnKYQQQjg6Ke64sN5gL0LawWgwWOyaBbWdpIX7frN7oeQzSJoDHr4jvm73YDc/+PIH/H7P75kaNZX3L3uf6zOux1038hZ7nVbHyrSVfLDiAy5KvIin857mjs/voLW/dcTXdGgxueAdai7GOYHMaH+MJoXiest2p53OjnLzw//MlBCr30vY1syUEMqbe6ht71M7CgBv7a1myKhww/R4taM4lOunx1PR3HPy76qjO1HY+dv6Ur4zOZZnrp9kk2Kfh17H366ZyI3TE1i9uZzH1xRLgUcIIYSwE1LccWHG8FC8BuHo4a0Wu2ZBbec3j2Q1H4WWo5A28i1ZVV1VXP/p9Wyq3sTDUx7mqQVPEe4dboG0ZgEeAfx+7u/57ezfkt+cz7UfX8uR1iMWu77D0Oog7WI4+gUYLVfwU0tmdABg3phlbTvKmvHz1H9z1pRwCrPTzN1Y246qvzXLZFL4z94qpicHkxw28mK5K1qSFUWgtxuv7TqudhSLeHpjGX/fcJRrpsTxxMrxaLW2m72k02r45WWZJws8f11farN7CyGEEOLMpLjjwrzj0wAo3/OFRa7X2NVPU9fAyYdqwLxeG2DMxSO65tG2o9y85mZa+lt49qJnuXHcjVYbILosZRkvL34Zg2Lg1s9uJa8xzyr3sWtjFkFfG1TvUTvJqMUGeeHnqbfJ3J3tZS1MSwpBr5N/Up3N2Ag/Qn3d7aK4s6uilcqWXq6eEqd2FIfj6abjytxY1hbU09jVr3acUXl3fzV/WHuEFROi+e3l2TYt7Jyg0Wj4xfJMrsiN5S/rSvnXzkqbZxBCCCHEN8mTiAuLmTALgK6yQotc70SHxDe6F0o+g7AMCEo8/+u1FHLr2lsBeHHRi0yLmmaJmGeVGZrJv5b8iyDPIO784k721Dt+keO8pCwArd78383BaTQaxkX5W31jVnVbL5UtvXIky0lpNBpmpoSyraxF9eMnb+2tws9TzxI7Gu7sSK6dFo/BpPD2vmq1o4zY9qPNPPz2IWYkh/D7K3NUKeycoNVq+N0V2VwwNoyff1jA1lL1C6BCCCGEK5PijgvLnH4JBi2Y6ustcr1TNmX1d0Ll9hF17ZR3lHPXF3fhrffm5cUvkxaUZpGMwxHtG81Li18ixjeG+9bfx6GmQza7t+o8/SFhJpR+rnYSi8iMDqC4vhOjFYeo7ij7at5OqhR3nNWs1BCaugYobexWLUNn/xCf5texPCdaNrKNUEqYL1MSg3hnX7XqhbqRqGrt5Z5/7yc5zIdVN07CXa/+Wzi9Tsvfrp1Iapgv9/57H2VN6v0dEUIIIVyd+u8MhGq8fPxpCQTPFsu8GSus7SQ+2Bt/TzfzTxzbAiYDpF50Xtep667jzs/vRKfR8dzFzxHnb/sjCGHeYTx38XOEeIZw7/p7KW8vt3kG1aQshMZC6KxVO8moZUb70z9kotyKDxw7yloI8XFnTLjfub9YOKQTW9DUPJr1YV4t/UMmOZI1SldOiqWsqYe8qna1o5yX/iEj9/57PyZFYfWNkwnwclM70kl+nm48f/Nk3HRa7v7XPnoHHX9mmxBCCOGIpLjj4joDdPi3W+aNWEFtB+Oi/utI1tH14O4LccM/TtU92M3d6+6mZ6iHVRetIt5fvY0woV6hrL5oNXqNnju/uJPmPhdpOU+90PyjE6xEz4wxfz8W1lnnaJaiKGwva2F6SoiqxyOEdcUFe5MQ4s02FVeiv7W3ivRIP7JjAs79xeKMLsmOwtNN63BHs37+YQGHazp48jsTSAz1UTvOKeKCvfnLNRM42tTNYx8UqB1HCCGEcElS3HFxfcHeBLfD0ODAqK7T1T/EsZber+ftKAocXQeJc0A/vHXlJsXEj7f8mMrOSv56wV9JD04fVSZLiPOP45kLn6FzsJP/2fg/DBmH1I5kfRGZ4BtpLs45uJQwX9z1WqvN3alo7qG+s1/m7biAmSmh7CpvseoRvzMpru/kYHUH35kcZ7WB8q7Cz9ONJVlRfHiwlv4ho9pxhuWjg7W8saeKe+ancNG4CLXjnNGctDC+d0Eqb+2r5t39jlU8E0IIIZyBFHdcnBIRhocBivauG9V1iuq6gK87JWgth/ZKSF047Gs8nfc0G6s38vCUh5kaNXVUeSwpIySDX876JQcaD/Db3b9VO471aTTmwcrlX4LJMR5+zsRNpyU90u/rjVmDPdBYbO5KKv3C/GNjMQz2juj620/M2/nq2I5wXtOTg+kaMJwcHG9L/9lTjbtOy+UTY2x+b2d0RW4sXf0GvihsUDvKOdV39POz9/PJiQvkoYvGqB3nnL6/MI1pScH87P18qlpH9u+qEEIIIUZGr3YAoS7fpHSgnOP7v2T8zKUjvk7hVw/PJ9egn+j6SFkwrNdvrNrIs4eeZUXqCq5Nv3bEOaxlceJiiluKeSH/BcaHjufytMvVjmRdqQvh4GtQmwexk9ROM3KKwsLABgKOvo/y7MNo6g+DYjr16zRaiBwPyfMg+yqIzB7W5XeUtRAd4EliiLeFgwt7Mz3Z3J21s7yF7FjbHY0yGE18eLCWC9LDCPIZXhekOLsZKSFEB3jy9r5qluVEqx3njBRF4eF3DjFgMPLn7+Sg19n/53F6nZYnr57Aoj9v5uG3D/Hv706TI6tCCCGEjdj/OwVhVfG58wHoqSge1XUKajsJ9XUn3M/D/BNl683rz0NSzvnaxt5GHt32KOnB6fxs+s/s9tjB/RPvZ1rkNB7f/TgVHRVqx7Gu5AsAjflonSMyGaHgPXh2Lt8/ehvXKZ8wqPOFOT+EK16AWz6F29eZf1z5PMx5yDwfasfTsGo2PDsXCt4H02kKQSduYVLYXtbMjJRQu/2eFZYT4e9JcqgPO8ttO3dne1kLzd0D0rVjQTqthpW5sWwpbaK+o1/tOGf06q7jbC5p4qeXZJAc5qt2nGGLCfTiZ0sz2FHewqu7KtWOI4QQQrgMKe64uIwpFzOoBxoaR3WdgtpOxkUHmB9yDYNQscW8dekcTIqJn279Kf2Gfn4393d46DxGlcOadFodv5n9Gzx0Hvzv5v9l0DiodiTr8QmB6AnmIp2jqdwBq+bAW7fAUB+VM37F1IGn2TzzRVjwU8i+EhJnQdwU84/jr4IFP4NbP4EflsAlfzQf33rrZnOR5/iu096muL6Ltt4hmbfjQqYlB7P7WKtN5+68f6AGf08988eG2+yeruCKSbGYFHjvQI3aUU6rvqOf360pZnZqKDdMT1A7znm7ekocc8eE8finxRxvkeNZQgghhC1IccfFubl70BIIXqM4Gz9oMFHa2PX1MOWqnTDUM6x5O68UvMLOup08PPVhkgOSR5zBViJ8IvjFzF9Q1FrEUweeUjuOdaVeCNV7oc9BVgYP9sCH98OLi2GgE678J9y3i7AL7qVD819zd87GOxim3gH37TZ39PS1wj8vho8ePGUuz/Yy8/a0GVLccRnTk0Po6jdQZKXta9/WO2hgbUH9VxuedDa5p6tICvVhYnwgH+TZZ3Hnlx8XMGQ08ZvLsxyyM1Cj0fDEymx0Wg3/92E+imL7QeRCCCGEq5HijqAzUI9/+8gH55Y0dDFkVL4u7hxdD1q9eVPWWVR0VPD3A39nQdwCrky7csT3t7UF8Qu4csyVvFz4MoeaDqkdx3pSFoJihIpNaic5t4ZCWD0f9v8LZj4A9+2CrCtAq8PbXU9yqM/5bczS6swdPffthhnfg30vwXMLoLHo5JfsrmglPtib6EAvi/92hH2alvT13B1b+KKwgZ5BI5dNkCNZ1rA8J5ri+i5KG7rUjvING4ob+PRwPfcvSCUhxP7Wng9XdKAXD16YxsYjTawtsP/h1UIIIYSjk+KOYCDYh5B2GOgbWffOiU+xM6K+Ku6UrYe4aeDpf8bXmBQTP9/+czz0Hjw641GH+2TyoUkPEeYVxmPbH3Pe9eixk8HD3/5Xoh/5DJ5faO4wuukDuPhX4P7NB6Jx0QEj23Lk4QuLfgM3vgu9zfD8hVD6BSaTwu5jrUxLCrbQb0I4gsivhmfvLG+1yf0+yKslKsBTvs+sZOn4KLQa+PBgrdpRTuobNPLo+wWkhvty59xzz6yzd7fMTCQ90o9fflRA76BB7ThCCCGEU5PijoDISPQmyN/+yYheXlzfhaeblsQQH+huhPrD59yS9XbJ2+xv3M+PJv+IUC/HWyPt6+7L/834P462H+X5/OfVjmMdOjdImmsu7thrS/3ef8Ib10LoGLh7q3nb1WlkRPlR095HZ/8IC3EpC+CuLRCcDK9dTeOm1bT3DjFVHrpdzvTkEHZXtFh97k5L9wCbS5pYPiFatg1ZSbifJzNTQvnwYK3dHBtatamMmvY+fr0iC3e9479F0+u0/GpFFrUd/fx9w1G14wghhBBOzfHfOYhR80seB0DNoS0jen1RXSdjI/3RaTVQtsH8k2eZt9PQ08CT+55kWuQ0VqSuGNE97cHc2LksSVrC6kOrKW8vVzuOdaQuhM5qaC5RO8mpdvwDPv6BeTbQLZ+AX8QZvzQj0txFVlw3iuMX/lFw66eQcgGRmx7mJt3ak8d0hOuYlhxMZ7+B4nrrzt355HAdBpMiW7KsbHlONJUtvRysHsZMLiur7+hn9eZylmZHMT3Zef5tmZIYzBW5sTy/pVyGKwshhBBWJMUdQfKUCwHorSw979cqikJRXScZkX7mnyjbAN4hEJlzxtf8ad+fMJgMPDbjMYc7jvVtj0x9BC+9F4/vftxuPvm1qBMdWOUbVY1xit3PwdqfwLjL4JrXzcenzuLEkcFRP5B7+ME1r3PQZxa/dHuZuLLXRnc94XC+nrtj3aNZ7x+oIT3Sj/TIMx9vFaO3KCsSd52WD/PUP5r1x8+PYDQp/O/idLWjWNzDi8ei02r4/dpitaMIIYQQTkuKO4K0nLkMuIG2qfm8X9vYNUBb7xDpkX7mozvlGyF5PmhP/621v2E/ayrWcEvmLcT5x40qtz0I9gzmvgn3sbNuJxuqNqgdx/KCEiEwAcrtaKhy3mvw6Q9h7FK44gXQ6c/5kgh/DwK93SgaTefOVxSdG/cM3M9h35loPn0IDr016msKxxEd6EV8sDe7rDhUuaa9j/3H21mWE221ewizAC835o8N4+NDtTZdcf9t+TUdvLO/mltnJRIf4q1aDmuJ8PfkjjnJfHyojrwqB9nAOEz9Q0b2Vbbx0rYKfvtpEQ/95yA/eusgj32Qz/Nbytl4pJHuAZk3JIQQwvrO/VQknJ5Or6clEDzb+s77td8YptxcAt0NkHT6uSdGk5Endj9BhHcEt2XdNqrM9uTqsVfzdsnb/GHPH5gVPQtPvafakSwreR4UfABGw7AKKVZVsdm87jx5Plz1onku0DBoNBoyIv0tssK6sqWX2m4T+Qv+RvaRB+GDe8E/GhJnjfrawjFMTw7m88IGTCbFKvNw1hyuA2BpdpTFry1OtXxCNJ8XNrCrooWZKbafAacoCr/+pJAgb3fuvSDV5ve3lbvmpfD67uP89tMi3rxzukN37ppMCuuLG3n/QA0bihvpGzJvHPXQawnxcUcBugcMdPWbizp6rYZJCUFcNTmOS7Ij8XaXt99CCCEsTzp3BABdAXr8RrAOvbje3AmRHun/dXdH0tzTfu37R9+nqLWI/5n0P3i7Oc8nk3qtnkemPkJNdw0vFbykdhzLS5oHAx1Qd1DdHM2l8OaNEJIKV70Meo/zenl6lB9H6rswjfLT+d0V5uM4U1Ij4ZpXzd1Nb1xnzidcwvTkENp7hzhipRXanxyuY1yUP4mhjrsG25EsTI/Ax13HRyptzdp6tJmd5a18f2EaAV7DK1g7Il8PPd+/cAy7K1pZV9SodpwRMZkU3t5XzYVPbuKOV/ayq6KFKybF8OyNk9j1k4UU/2ox23+8kB0/Xsjhny/iwKMX8dp3p3Hn3GQauwb44VsHmfnEBp7ZWCbbw4QQQlicFHcEAANB3gR3wNDgwHm9rqiuk5hALwK83aBiEwTGQ3DSKV/XPdjN3w78jdzwXJYkLbFUbLsxLWoaFyVcxD/z/0lz3/kfb7NrJzqxKjaql6G/E167GrR6uO5N8Ao870tkRPrTN2SksnV0Az13VbQS7ONOSpgveAXB9W+Zc715Iwz2jOrawjFMSz4xd8fyR7Nq2/s4cLydpeOla8dWvNx1XDgugs/y6zEYTTa9t6Io/OnzEmICvbhmquMfVT6Xa6bEkRzqw58+PzLqQrut5VW1s+LpbfzwrYN4uev4+7UT2fnjhfx6RTaLMiOJ8Pc8pRspyMedmamhPLw4nQ0PzePNO6czIS6Q331WzAV/3MjagnqVfjdCCCGckRR3BABKRDjuRijau+68Xldc12Wet2MywrEtZzyS9UrhK7T2t/KjKT9y6Fbss3lg4gMMGgdZfWi12lEsyzcMwjPVm7ujKPDR96HtGHznFXOnzAicHKo8yqNZu4+1MDUx+Ovv46BEuOJ5aCqGjx6037XxwmJiAr2IC/aySnFnTb75Ye8SOZJlU0uyImnrHWJXhXUHZX/bl0cayatq53sLUvHQ62x6bzW46bQ8sDCN4vouPnOQwobBaOIv60pY+fQ26jv6+cvVE/j4/tksy4lGrxv+22iNRsO05BBeunUq79wzg2AfD+761z7ue20/nf1DVvwdCCGEcBVS3BEA+CaMAeD4gY3Dfs2AwUhZUzfpUX7mIzv9Hact7rT1t/FywctclHARWaFZlopsdxIDElmZtpK3St6iqqtK7TiWlTwPqnbBUL/t7733BSh4Fxb8bFRzbdIifNFqoKh+5Edpatv7qGrtY1py8Dd/IeUCuOCncPg/5rzC6U1JDGZfZZvFt+R9eriOjCh/kuRIlk3NGxOOl5uONfl1Nrunoig8+UUJ8cHeXDkp1mb3VduynGiSw3z467pSu+/eaeke4LrndvGXdaWsmBDD+ofmsWJizKg/pJqUEMyH35vFjxaN5bP8epb/fSuFtaOfCSeEEMK1SXFHABA7wTwnp6fiyLBfc7SxG4NJMXdEVJx53s7zh5+n39jP9yZ8zyJZ7dndOXej1+h56sBTakexrKR5YOiH6t22vW/9Yfjsx5B2Mcx6cFSX8nTTkRTqM6qhyifm7UxNCj71F+c8BKkXwtqfQtPw/x4JxzQlMZjm7kGOtYzumN9/q+voY19lG0uzIy12TTE8Xu46LkgPY21Bg80KDmsLGsiv6eSBhWm4nUcHiKPTaTV8f2EaRxq6Tnaq2aOjjV2seHobB6vb+fPVOTx59QT8PC03E8lNp+W+C1J5487p9A0ZueKZ7Ww84piziIQQQtgH13k3Ic4qY/JFDOmAxoZhv6a47r+GKVdshrB08Iv4xtfU99TzRvEbLEteRnJgsiUj26Vw73BuGHcDn1Z8SnFrsdpxLCdhJmh0tj2aZRiE9+42z7VZsQq0o//nKiPKn+L6kRd3dlW04uepN3/Pf5tWC5c9DW7e8N5dYJQ2e2c2JTEIgD3HLHeMZ81hOZKlpsVZUTR1DbDveJvV76UoCn9dX0pSqA8rJrjeyvtLx0eTGu7LX9eX2GX3zoHjbax8ejt9g0beuHM6l0+0XmfVlMRgPrp/NkmhPnz35b28u7/aavcSQgjh3KS4IwDw8PKmNQA8zmPYbFFdJx56LYkBOqjccdojWasOrkJB4d4J91oyrl27NetW/Nz9eDrvabWjWI6nP8RM+rpDyxY2/wEa8uHSv4BPiEUumRHlT1VrH10jnG+wu6KFKYnB6M60/tovApb9BWoPwJY/jSKpsHfJob4Eerux14LFnU8P15Ee6UdymK/FrimGb0F6OO567ckimzVtLGmiqK6T+y5IPa+5Lc5Cp9XwwMI0Shq67W72zoHjbdz0wm4Cvd15795ZTIwPsvo9w/08efOu6UxNCuZ//nOQt/Y62dFuIYQQNuF67yjEGXUG6PDrGP5qzuL6LsZG+qGv2weGPvNclv9S213LB0c/4MoxVxLt6zqfTPq7+3Njxo18WfUlR1qd6HhO8jyo2W/eXGVtJ4ojOddC+iUWu2x6pB8AR0Ywd6e5e4Cypp7TH8n6b+Mug/FXw6bfQ23eSGIKB6DVapicEMTeSst0edR39LO3so2l0rWjGl8PPXPTQvksv87is5S+bdXGMqICPFme4zr/3/htS7OjSAzx5tlNZVb/8x6uQ9Xt3PTCboJ93XnjzunEBXvb7N5+/9/efYdHWWUPHP/emcyk90Z6AmmEHnrvSBFRsKKADcuioq7+bLu6a1nL2tFVEFBRUFBEehWkdwgtJCGEdNJJ7zPv748JKFLSJjOTcD/PwwPJvHPfM+FNMnPm3HNsNCy8vzeDwzx4YflxVh3LNNm5JUmSpLZBJnekSypdbXErBF1twxI8cVnFhhfL53aAUEHQ5c1uF55cCAIe7PxgS4Rr0aZ2nIq9xr5tTc4KGQqKDlJ2t+x5dDXw6yxw8IKxbxt16YsTs5rSVPng9frt/NW498DOHdY8bZgkJ7VJvYLdSMotI7+0qtlrbYo1VC+Mk8kdsxrb2YfMokqOpRe12DkOp1xg/7kCHh7cHq3Vjfs0TK0SzBzSnmPpRexLMu2UsqtJKyjnwW8O4myn4YeZ/fB1sTV5DDYaNfOm9aJXsBvPLI2RPXgkSZKkRrlxn1VIV9B5umNTA4kn99R7bE5JJXml1YbeI0nbwac72Lpcuj23PJcVZ1YwqcMk2tnfeM1Bna2dmRo5lc0pm0kqTDJ3OMbh3xusbFq+787+uZBzCsa/b+i3Y0Q+zjY42Vg1qanyweQLWFup6OzrXP/Bti6GxFTmUTgop2e1VRf77hijemdzbDbtPe0J9ZJbssxpdEdvrFSiRadmfbn9LC52Gu7uHdBi52gtpkT74+GgZe6Os2aNo7C8mhlfH6BGp/DNA33Mkti5yFarZuH9vQn3duSJJUebVGkqSZIk3Zhkcke6xC6wAwDJh36r99iLzZQ7eagh49AVW7IWxS6iVqm9Iat2LpoWNQ0bKxvmnWgj1TsaGwjs17J9d4oz4fe3DdOxIicYfXkhhKGpchOSO4dTL9AtwKXh77R3ngLth8Nvr0Ox6cYrS6bT2c8ZrZWq2X13iitr2JeUz+go7/oPllqUs52GAaEebDiZ1SJbhRJzStgcm82M/sHYW1sZff3Wxkaj5oGBIfwen9usSYbNUavT8/j3R0gvqOCr6b0sIsHqYG3Fghm9sNOqeejbg+QZoTpQkiRJavtkcke6xKdLfwCKzp6s99iLT8I61Z4Efe1lI9ALKwtZGr+UscFjCXQKbJlgWwFXG1fuDL+T9efWk1qcau5wjCNkCOTEQll+y6y/8RXDtqxx74K4RtPiZuro40R8VkmjJrRUVOs4lVFEr6BGVBIJARM+AF01bHy5CZFKls7aSk13fxcOJjevcuf3+FxqdApjZHLHIozt1I6U/HISskuNvvbc7UnYaFTMGBBs9LVbq/v6BmGnVfPVDvNUub6/KYG9Sfm8PblLw7bdmoiviy3zZ/Qir7SKJ5ccRWeBU8UkSZIkyyKTO9IlUX3Hoxegz6p/ckVcVgk+zjY4ZO4FlQYC+l26bXHcYipqK3i4y8MtGW6rcH/n+1ELNYtiF5k7FOMIGmT4uyX67iT9Dqd+gcHPglt7469fJ7KdI2XVOtIuNHwy3PH0Qmr1Cj0bk9wBcO8Ag542PK7UfY2MVGoNegW7cjKjiIrqpvdW2hybjYeDlu4BLT+VR6rfqI5eAGw5nW3UdfNKq1gZk8kdPQNws9cade3WzNlOwz19All1LJPMwgqTnnvTqSy+3H6We/sGMqVny407b6qu/i68eWsX9ibl88lvZ8wdjiRJkmThZHJHusTB2Y0CJ9AW1L+/+/T5umbKKbsNI7K1hokSFbUV/BD3A8MChhHmGtbSIVs8D1sPJrSfwMrElRRWFpo7nObz7QFWtsZP7uh1sPEf4BIIA5827tp/camp8vmG9zG42FOl0ckdgIGzwaGdoXpHr2/8/SWL1jvYjVq9Qkxa076/q2v1/B6Xw8hIb9SqlqlWkxrHy8mGbv7ObI41bnLnh/2pVOv0smrnKh4YGIxeUfh+X4rJzplWUM7ffzpGV39nXp0YZbLzNtbtPf25vac/c7aeYdeZPHOHI0mSJFkwmdyRLlPkrMKh8PrTsqpr9ZzNLaWrl9ow6jn4jylZq8+upqiqiBlRM1o61FZjetR0KnWVLEtYZu5Qms9KCwF9INnIyZ3jyyD7BIx8zdDbpwWFezsiBI3q73A45QKhXg642DXh3XatPYx8FTIOw8nljb+/ZNGiA10Rgib33dmXlE9JVa3st2NhRnX05lh6ITkllUZZr0an57t9KQwJ97SIni6Wxt/VjlEdvfnxYBqVNS0/YVCvV/j7T8dAgc+nRmNtpW7xczbH65M6EerpwNNLYygoqzZ3OJIkSZKFkskd6TIVrta4Fl1/X/fZ3FJqdAr9NEmG0dh1I9D1ip7vT39PR7eO9PTuaYpwW4Uw1zAG+g7kh7gfqNa1gSdlwYMg+yRUNH9CEAA1FbD1TUNVUKfJxlnzOmy1akLc7YnLalhyR69XOJJ6gZ6Bzdgy0+0e8OkGW/5leLxSm+FspyHC25GDTZyYtTk2G1uNmkFhHkaOTGqOkR29URTYFmecUdTrT2aRU1LFA7Jq55ruHxBMQVk1q49ltvi5Fu4+x4FzBbx2SycC3Oxa/HzNZae14tN7elBUUc2rK+vvi2hOOr3C8fRC5m4/y9+XHePOL/cy4dOdjP14B1O/2sezy2JYuOscx9MLW6RpuSRJ0o1MJneky+g8XHGohNT4I9c85uKL4ojKYyDUhkoOYDB+MV8AACAASURBVHfGbs4VnWNa1DRECzXDba2md5pOXkUea5PWmjuU5gsaCCiQstc46+3/EorTYfQboDLNj6SOPk7ENXC8bFJeKYXlNfQMbkZyR6WCMW8ZHuf+L5u+jmSRegW7ciTlQqMbniqKwubYbIaEe2CjsezKgRtNRx9H/Fxs2RxrnOTON7vPEexux9BwT6Os1xb17+BOuLcD3+5NbtEX/QnZJby3MZ4xUd5MifZrsfMYW0cfJ2aPDGPN8fOsPW55ExhT88t5d0Mc/d/+jVs+283b6+PYnZgHAnycbQhws6OqVs+uM3m8viaWWz7bzaB3t/HuhjiyioxTISdJknSjk3M4pcto/YKBTBIObCIwIvqqx5w+X4LWSoVr7kHw7Q7WjgB8F/sdnraejA0ea7qAW4n+Pv0Jdw1nUewibg29tXUnv/x6gtra0Hcncnzz1iovgJ0fQfhYCBlsnPgaILKdI2tPnKe0qhaHesYRH25Ov50/CxkMoaNg9yfQ6yGwcWreepLF6B3sxvf7UonLKqaTr3OD73cio4is4kqei4poweikphBCMKqjF0sPpVFRrcNW2/Tk27G0Qo6kFvLaxChUsq/SNQkhmN4/mH/8epIjqYXN/5l7FTq9wvM/H8fR2or/TO7S6n4XPza0AxtPZfPPlSfp294NDwdrc4dE+oVyPv3tDMuPZAAwPMKLm7v6MKCDO15OV99mfb6ogt2J+aw5nsnc7WeZvzOJKdH+PDsmHC/Hlt2aLUmS1JbJyh3pMp4dewFwIfH4NY85fb6YTp4aROYRCBoAwJkLZ9h7fi/3RN6DRq0xSaytiRCC6VHTSSxMZH/WfnOH0zwaG/DvDcm7mr/W3s+gqtjQa8eEIuuaKsc3oHrnUPIFXO00tPewb/6Jh79i2M6274vmryVZjF7BhvHJhxo5En1zbDYqASMivVoiLKmZRkV5U1mjN1QfNMO3e5Kx16q53QKnMVma23r44Whjxbd7kltk/SX7UziWVsirE6MsIjHSWFZqFR/c2Y2Syhr+s/a0WWOp1emZt+Msoz7czq8xmczoH8yeF0cwf0Yvbu3hd83EDoCPsy239/Tnmwf6sP354UztE8jyI+mMeH87C3adQy/HvkuSJDWJTO5Il+k04GYAdJnp1zwmIbuE0U5poKu+NBp78enF2KhtuCP8DpPE2RqNDRmLi7ULS+OWmjuU5gseBFnHobKo6WuUF8D+udDpNvA27aSSyHaGarOE7PqTO4dTL9AzyNU47/D6RUPEBENSq7xpDXgly+PnYks7J5tLVV4NteV0Dr2C3ORYbAvVN8QdB2srfotr+tSswvJq1pw4z+Rofxxt5Bsf9bG3tuKOngGsO3HeaM2sL8opqeS9DfEMDvPglm6+Rl3blMK9HXl0SAd+OZrBvqR8s8SQfqGcKV/u5T/r4hgU6snvzw3j1YlReF8noXMtAW52/HtSZzY9M5Rewa68sSaWaQv3y61akiRJTSCTO9Jl3LwDKHQATf7Vm80WlleTXVxFH9VpQEBgP4qri1l3bh0T2k/AxcbFtAG3ItZqa24Lu41tadvIKssydzjNEzwQFD2k7mv6Gns/g+oyGPp/xourgfxcbLHTquut3CkoqyYpt4yeQW7GO/nwlw3VSns/M96aktlFB7lwNK3hyZ2sokpOny9mREdZtWOptFYqhoZ7suV0TpMrCX45kkF1rZ57+gQaObq2695+gdTqFZYfzjDqum+sOU2VTs/rkzq3uu1YfzVreCj+rrb889eT1Oj0Jj33joRcbp6zi6ScUubc04OvpvfE18W22euGeNjz9f29eXdKF46kFDL+050cbOIUQkmSpBuVTO5IVyh0FtgXXn2q08UXwx3KjkG7zmDrwpqza6ioreCOCFm1U587w+9Er+hZfqaVj8T27w1qbdO3Zv25asero3FjawCVShDm7Vhv5Y7R+u38WbvOhqlg+76EMvO86yoZX48AV9IKKsgtqWrQ8b/HGxr1Do+QyR1LNirKi9ySKo5nNL5KUVEUfjyYSjd/Z6J8ZY+thurg6UCfEDeWHkw1WmPl3Yl5rD6WyaxhoYQYY4utmdlq1fxrYifO5JSycNc5k5136cFU7v/6AO2cbFj15CAmdvM1aqJMCMFdvQNZ89QgnG013PvVflYcvXYluSRJknQ5mdyRrlDmosXlGuPQE7JL0FKDS34MBA1CURSWxS+js3tnOrl3MnGkrY+/oz+D/Qfzc8LP1OhrzB1O02lsDY2VU3Y37f5mrNq5KMLboUHJHY1a0NW/4U1yG2ToC1BTBgfmGnddyWyigwxVi0dSG1a9sy0+B19nG8K9HVoyLKmZhoV7oRLw2+nGb806klpIQnYpd8uqnUa7u3cAyfnl7EtqfuWGTq/wxppYAtxseXRoeyNEZxlGRXkzqqM3n/x2xuhb2P5KURT+93siLyw/waAwT5Y/PqBFk2QdPB1Y8bcBRAe58MzSYyzam9xi55IkSWpLZHJHukKNuzPOZZCTcfaK2+KzS+hrk4LQVULwQI7kHOFs0VnujLjTDJG2TndF3EVeRR5bU7eaO5TmCRoImTFQ1bCR4pdUXDBr1c5F4d6O5JVWk1d67UqLwykFdPJ1Nv6Yaq9IQ++d/XOhqtS4a0tm0cnXGY1acDS1sN5jq+vGAQ+P9Gr120PaOld7LT0CXdmekNvo+/54IBV7rZqJrbi/i7mM7+KDk40VPx5MbfZayw+nE5dVwgtjI43/s9zMXpnQkepaPR9vOdOi5/l8WyLvbYhnUndf5k/vhX09UyaNwcVOy7cP9mF0lDevrjxl0golSZKk1komd6QraHwDAIjds+6K2xKyShnnUJf0CRzAsvhlOGocuSn4JlOG2KoN9B2In4MfP8b9aO5Qmid4ICg6SGvk9K+DC6C6FAb/vWXiaqDIdoZtEteq3qmu1XMsvYheLTCOF4BBz0BlIRz+pmXWb4iKQsg6AemHIP0wFKZC7dW3ZErXZ6NRE+Xr3KDKnUPJBZRV6+SWrFZiaLgnx9OLrpsI/qviyhpWH8/klu6+OJjghXBbY6NRc1sPP9afzKKwvOk/k8qqanl/UzzRgS5M6OJjxAgtQ4iHPff1C2LpwTTONGBAQFN8vfsc729KYHIPPz66sztaK9O9dLC2UvP51GjGdmrH62ti+eFA85N9kiRJbZlM7khXcIvoAUB+wuHLPq8oCvHZJfQSp8GzIwVqweaUzUzsMBE7jZ05Qm2V1Co1d4TfwaHsQyQVJpk7nKYL6AsqK0huxNasmkpDtUqHkYbeM2YU3s6wHeZaTZVPZhZRXas3br+dPwvoDcGDDVvUahv+orFZKgrh8LewbDr8NxTeDYIvB8H8kTB/BHzcBf7jC1+NgE3/hIzDYKSeFzeC6EAXjqcX1tvgdFt8Dlq1igGh7iaKTGqOYRGegKGRbEOtjMmkskbP3b3llqymuqt3INW1elYcbXpj5Xk7ksgpqeKVCVFttkruqZFh2GnUvLM+zuhrrziazr9Xx3JTJ2/eu70rKpXpv4ZaKxVzpvZgWIQn//j1ZJO2SLYUvV6huLKGsqpaak3c2FqSJOlq5NtJ0hUi+o2jmPnUpF/+DklOSRWlFZWEqE5C5FRWJq6kRl8jx583waTQScw5OodfE3/l2V7PmjucptHag28PSNnT8PscXwplOTDwqZaLq4E8HaxxtdNcs3LnSEs0U/6rQc/A95MNX5fo6S13nrxE2PkBnPoFaivB0deQYPOOApcg0NgZpp+V5UB+oqGSZ98XsOdT8Igw/H91uROs5Mju64kOdOXr3cnEZ5XQ2e/afZq2xefSt70bdlr5K7g16OzrjIeDlt/jc5kc7d+g+yw9mEpHHyfj9+u6gUT5OtHN35kfD6Rx/4DgRidnckoqmbcjiQldfFr257iZudlrmTUilHfWx7HnbB4DOngYZd3DKQW88PMJ+rd359N7emClNt/7wRq1is+nRnPPV/uYteQISx/pT7cA009nzSysYOOpLA4lX+BERhHniyqo0RneAFEJ8HG2JdzbgX7t3RkR6UWYt6PJY5Qk6cYmn1lKV/ALiSLDFqzyLt9eEJ9VQmdxDo2uHCWwP8vPfEO0VzShrqGNWl9fVUX1uXPU5uaiLytDaLWonZ3RhoRg5WbEkdMWzMPWgyH+Q1h1dhVPRj+JRqUxd0hNE9AXDnxlqDyxsr7+sXo97JkD7bpCyFDTxHcdQgjCvR2vWblzNK0QPxdbvJxsWi6IDiPApxvs/gS63wcqIz95LsuDLa9BzBKwsoHuU6HHNENSrr4XShUX4PQaQ9PnlbNg+3sw9m2IGF//fW9QPQL/aKp8reROWkE5iTmlTJVNdlsNlUowJMyTrfE56PQK6nqqF+KyijmZUcxrE9tutYip3NU7kJdXnOBYehHdG/li/svfk6jW6XnupogWis5y3D8gmEV7knl/YzzLH3dv9nWXUVjBo98dxsfFhi/ui8bayvy9iuytrVh4f29u/Xw3j31/mNVPDsLDoZ7nHUag1ytsjcth/q6kSw2+/Vxs6R7gwrgu7XC316IoUFpVS2pBOSczitgWn8vb6+Po6u/Mff2CuK2HHxozJsckSbpxyOSOdFUXXAS2fxmHnpBdQm9VPAAxDi6kFKcws8vMBq1XlZhI8br1lG7fTmVcHOh0Vz3Oytsb+4EDcRw5AochQxCaVpr0aIDJYZPZlraNXem7GB443NzhNE1gf8O2oswYCOx7/WMTNkD+GZiywGKSAxHtHPnlSAaKolzxZDgmtZDugS38zqAQMOApWP4QJG6GcCP1rlIUOPETrH/B0PC6399g4NPg4NnwNWxdIXoa9LgPEn+DTa/Aj1MNyZ1b5oC9cd4dbkv8XGzxcrTmaGoh0/tf/ZhLI9AjZb+d1mRohCe/HM3gWHoh0YHXrwJZcSQDK5XgFtlIudkmdPXhX6tPseJIeqOSO9nFlXy/P4XJPfzaxOjz+tho1MwaEcorK06y40weQ8Mb8bP+LyprdDyy6BBVNXp+fKQXLnaWU7Hp4WDN3Gk9mfy/PTyx5AjfP9S3RSuK9pzN4/XVscRlleDnYsuzo8OZ2M233msqu7iStcfPs+xQGv/383HmbD3Dc2MiuMXIo+MlSZL+SqaRpasqc9bgUnT5/uH4rBIGahPBJYiV53dha2XL6KDR11xDURRKd+4kZfoMkm6eSN4XXyC0WtxnPozfRx8StGQJIStXEvzTTwR8NQ+vF17Armc0JZs3kz7rCRJHjSZv7jz0ZWUt/XDNYpDfIDxsPViRuMLcoTRdQF1CJ3Vv/cfu/gScAyHq1paNqRHCvR0praols+jyMbI5JZVkFFbQwxRl31GTwNHHsA3KGGoqDJU2v8wE9w7w2E646a3GJXb+TAgIGwWP7YIxb0LiFvhiACT9bpx42xAhBD0CXa7bVHlbfC7B7nY3xAvOtmRImCcqAdvjr993R6dXWHE0g2ERXriboKqgrXO21TA6ypvVx89TXdvwniafb0tEr1d4amRYC0ZnWe7oGYCfiy0fbU5AaUavtHfWx3Eqs5iP7upOqJflbSvq5OvM25O7sC+pgPc2xrfIOQrLq5n941GmfrWf0qpaPryzG78/P4ynRoY16Ge3t5MNDw4KYf3swSyY0QsnGw2zf4xh+sIDpOaXt0jMkiRJIJM70jVUuzviUgzFF3IufS4+q5hoEU9FQG82JG9gTNCYazZSroyPJ/WBB0mb+QjV6Wl4PvssYbt2EvzDEryefhqnceOwi+6BTUQ4tl064zB4MO4P3I/fhx8Svmc3/v/7HOsOHcj96CMSbxrLhWXLUPRtq1mdlcqKiR0msiN9B3kVeeYOp2kcPME9tP6JWRlHIG0f9Hsc1JZTMBjRzvDENeEvW7Ni6sZZN3YbQJOoNdD7YUjaBjnNbIhZlA4LRkPMYhj6Ajy40Xjj5tUaGPAkzNxmqOr5bjIcnG+ctduQ6EBXUvLLrzpZqbJGx56zeQyTU7JaHVd7Ld0CXPi9nqbKuxPzyCmpYkq0n4kia/sm9/CjoKy6wePoMwor+PFAGnf0CiDA7cYZ9qC1UvHkiFBi0gr5vZ4k5LVsPJXFN3uSeXBgCKOivI0cofFMjvbnvn6BzNuRxM4zTXus13IwuYDxn+xk3YnzPDUyjC3PDmVytH+TtlUJIRjZ0ZtVTwzi9UmdiEktZMKnO1l/4rxRY5YkSbpIJnekq1K180UFnNyzFjDsOa7MScRZX8gWJ1fKasqYFDrpivspNTXk/u9/nJtyO1Xx8Xi/8gqhGzbg8chMrNwbNhlGaDQ4jhhB4MIFBP2wBG1AAFmvvkbqAw9Sk9H0qRmW6NbQW9EpOlafXW3uUJouoB+k7rv+VKWD80FjDz3uNV1cDRBe965k/F+aKsekFWKlEtdtimtUPR8w9MTZ/2XT18iNhwVj4EIKTP0Jhr8Mqhbok9CuMzy8BcJGw9q/w4aX5UStP4mua9x6MUH4Z/uS8qms0cstWa3UsHAvjqcXkn+dkei/HEnHycaKER3l/7GxDAn3xN1ey4qj6Q06/vNtiQA8MaJx/QDbgik9/Qlws+WjLY2v3sksrOD/fj5OFz9nXhhn+X2KXhkfRaiXA8/9dIwLZdX136EBvtubzF1z96KxUvHL4wN5dnQ4Nprm/x5VqwTT+wezbvZg2ns58PjiI7y97jR6vfzdKUmSccnkjnRVzh0MY6qzTxkqMtIulNNFZ6gqWFmVgZ+DHz29e152n5qcHFKmzyDv0zk43XQT7detxW3afQht0/dr2/XoQdCSxfi8+QaVJ06QdMskSrZua/J6lqa9c3u6e3ZnReKKZpVRm1VgP6gogLwzV7+9vABO/Azd7gIby5oc42ynoZ2TzRVNlWPSCuno42SUJ3UNYu8OXe6AYz8avl6NlXkUFo4FXQ3cvxbCxxg/xj+zdoS7l0Dfx2Df57D2WUPDbIkufs5YqcRVt2btSMjD2kpF35Abo3F8WzMswhNFgZ1nrl5pWVpVy4ZTWUzs5msRDWjbCo1axcRuvmyJzaGovOa6x2YVVfLToTTu7O2Pn4utiSK0HBq1iieHh3E8vahR1TuKovDSLyeo0emZc0+PVnH92mrVfHxXdwrKqnl5xYlmPYfS6xX+s+40/1x5iuERXqx5chBdWmDSXYCbHT892p9p/YKYuyOJp348SlXt1XtQGpuiKOSVVpGQXcKZ7BLSCsrl+HZJaoNkcke6qvY9RwJQlZYEGPrt9FTFk2rrzIH8U0zqMAmV+OPyqThxguQ77qQyLg7fD97H74P3sXI1zuhRIQQut99OyKpVaIODSZ81i7wvvmi9yZC/uC3sNs4VneN43nGjr12lq6Koqoga3fWfEDdLYD/D39fqu3NkEeiqoHfDmm+bWkS7yydm6fQKx9IKTbMl68/6PQ61FYavV2PknDZskdI6wEMbwadry8T3Vyo1jH3HMM790EJY87Ss4MHQ2DTK1+mqyZ1dibn0CXEzXdJQMqoufs6422svNcX+q/UnzlNZo2/wuHSp4aZE+1Ot07O2nu0sC3YloVfg0SEdTBSZ5bkt2g9fZxu+3H62wff5+XA62xNyeWFsJMGtqB9YZz9nnh0dwfqTWaw6ltmkNfR6hReWH2fejiSm9Qti3vReONq03DAPrZWK1yd14qVxkaw5fp4Hvj5IRbXxEzyKonAyo4j/bozjji/30PHVDfR6cwtjPtrB6I92MPi9bUT8cwOjPtzOyytOsDk2u1F9rSRJskyW0/xCsijtO/XlmBZUeYYqgoTsEsaoEljbrj0K+dwSesulY0t37yZ91hNYubsT/MMSbCIjWyQmrb8fQYu/5/yrr5L7yafUZGXT7tV/ItSt+4XS6KDRvLXvLdYmraWbZ7cmr1NeU87ezL3szNjJ6YLTnCs6R0VtxaXbHTQOdHDpQGePzgz2G0zvdr3Rqo0wBcM9FOzcDX13es64/Da9Dg4ugODB4B3V/HO1gIh2juxNyqdWp8dKrSIxp5Syap3pkzvenQxfp4MLDL1tGrKlKv8sLJoEai3MWAlu7Vs+zj8TAka+BkINO983TNAa+appY7BA0YGuLDuUdumaAsP0lITsUqbIF/6tlkolGBLuyfaEXPR6BdVfRqL/ciSDYHc7olt6yt4NqLOfE6FeDvxyJJ2pfQOvekxReQ1L9qcyoYvPDdVr5680ahUPDW7PG2tiOZp6gR71THfLLq7kjTWx9A52ZVq/IBNFaTyPDGnP+pPneWNNLEPDPRs13UuvV3h5xQl+OpzOUyPDeGZUmEmmWQkheHRoBzwcrHnu52M88t0hvpreyyiJ/xqdnl+PZvDVziQSsksvbTGf2ieIQDdb3B2sEQJKK2tJv1DBqcwiVsVksmR/Km72Wu7sFcDMwSGyIbwktVIyuSNdldrKigvOYFNomCKUlplJmCqDp61c6OPRBz8HQ7PIkq1byZj9NNqQEAIXLsDKo2XHI6tsbPB991007XzIn2eYpOX79n9a9ch0R60jwwKGsTF5I8/3fh6NqnGPJakwicWnF7M6aTUVtRU4ahzp5NGJKWFTcLd1x0ZtQ3ltOTnlOSQWJrI8YTmLTy/GxdqF28JuY2rkVNrZt2v6AxCiru/OVSp3zmyColQY80bT129h4d6OVNfqSSkop4OnAzFphoqLHuZ4gdb7Ifjpfji71dDT5nrKC2Dx7YatWA+sN31i5yIhYMQ/oDwfdn5gmPzVxzKrtEylR6AL3+xJJj67hE6+htL+i1t5Boc1fUSxZH6DwzxYcTSD2PPFl/XkyiysYG9SPs+MCpejjluAEILbevjx343xpOSXEeR+ZXXJ9/tTKKvW8ehQM/0stCB39w7g09/O8OX2s8yd1uu6x/7z15NU1ep57/ZuVyQsWwO1SvDO5K5M/GwXb6+L493bG1a9qigK/159ih8PpvHE8FCTJXb+bEpPf/SKwvM/H+dvi48wb1rPJo92VxSFjaeyeHPtadIvVBDl48Rbt3VmfGcfXO2vn/Cq0enZeSaXnw6lM3fHWb7dk8zMwSH8bXiorDSVpFZGJnekaypxtsKloBYAbeYhjltrSastYWb7mwEo3bGD9KdmYxMVReC8uahdTPNiWAiB17PPoHJwIPfDD0El8H3nHYSq9e4ynNB+AptSNrEvcx+D/Qc36D7ZZdnMOTqHVWdXoVFpGN9+PBPbT6SHd4/rJogqayvZf34/vyb+yqJTi1gcu5h7Iu9hZteZOFs3cY95YF+IXwulOeDwp0aiB+aBoy9ETmjauiYQ4f3HxCxDcqcQZ1uNeUZVR0wAe0849PX1kzu6GvhphmE61ow14NUy1XINJgSMfx9Ks2Hd8+AaXH9yqg2Lrnun/Ehq4aXkzq4zuXg4aIlsZ3mjhaWGGxRqeANj55m8y5I7a48btgtN6u5rlrhuBLfWJXdWH8vkiRGXjzivrNHx9e5zDAn3vPQ9dyOzt7Ziev8gPtuWyNncUjp4Olz1uK1x2WyKzebFcZHm+Z1nJFG+Tswc3J4vt5/l1h5+9O9Q/wCPBbvO8e3eFB4eFMLfx5gvKXtHrwCqdXpeWXGSV1ed4q1bOzc6luziSl5cfpxt8blEtnPk6/t7MyzCs8HraNQqRkR6MyLSm8ScUj7eksCnWxNZeSyTdyZ3bdDXU5Iky9B6Xw1LLa7KxQ7XIiivrMC35BhrHRzQqrSMChpFRUwM6bOfxjo8jMCFC0yW2Pkzj0dm4vn0bIpXrSb7nXdadQ+ewX6DcdI6sSZpTb3HKorCsvhlTPx1IuvOrWNGpxlsvmMzbwx8gz4+feqt/LGxsmFowFA+Gv4R6yavY1zIOBbFLmLSr5PYmrq1aQ8gsL/h79R9f3yuIMlQgdLrAcMYbQsV6uWAEH9MzDqaWki3ABfzPNGz0kL3eyFhAxRfp3/Ahhfh3A6Y+KkhsWYJ1FYwZQF4d4blDxn+/5urutzQqDt1v+FP1kmoLGr+ui3M39UWDwftpYlZer3CrsQ8BoZ6tMp3xqU/eDnZEOHtyK7Ey5vVrjmeSWc/p1bVr6S18XOxJTrQhTXHr+y78/PhdPJKq3lMVu1cMmNAMFq1iq92XP1ncVWtjtdXx9Le054HB4aYODrjmz0yjEA3O/7xq6Ex9PVsOJnFW+tOM65zO14e39Hs1Xb39g3i8WEdWLI/lfk7zzXqvtsTchn/yU72JRXwjwkdWfPkIIZHejX5MYV6OfDZ1GgWP9wXlRDcO38fH29JQGeEyV6lVbVsic3mw03xPLHkCPfM28eUL/YwbcF+nlkaw+fbEtmdmEdljWmaTEtSWyQrd6RrUrw80OqK2fn7erqLOF50cGSI/xC06bmkPPoYVl6eBM6bh9rh6u8ImYL7o4+iu3CBgm8XYeXpicfM1rkdRKPWMCZ4DGuT1lJeU46d5ur9AgorC3lp10vsythFX5++vNb/NQIcA5p8Xl8HX94c9Cb3dryXV/e8yuxts7kt9DZe6fcK1upG7Lf26QZqa0Pfnai6fkxHvwehgh73NTk+U7DVqglysyMhu4SyqlpDf6lOzdim1lw9Z8Dujw1fv6H/d+Xtx340jJYf8BR0v8f08V2P1g7u+g7mDYOl0+GhTYbPNZReB0m/w+nVkLIH8uKvfpyTHwQNgPCxEDG+cecwASEE3fxdOJZuSO7EZZWQV1ott2S1EYPCPPhuXwqVNTpsNGpS88s5ll7Ei+PMXEF3A7i5qy+vr4klMaeEUC9DFZxerzB/ZxLd/J3p315WGFzk4WDNHb38WXYwnWfHhOPlaHPZ7fN3niM5v5xFD/ZBa9X63+u11ar5581RzFx0iO/3pfDANRJWcVnFPL30KN38Xfjoru4Wk3B/fkwEqfnl/Gf9aUK9HBge6XXd4xVF4cvtSby7IY4Ib0c+v7fHpe8JYxgY6sGaJwfxz19P8vGWM8SkFfL51GjsrRv30rFWp2dbfC4/Hkhle0IutXoFlQB/Vzu8HK2x0agoxxKr/AAAFW5JREFUqawlKbeMFUczAHCwtmJkRy+m9QuiZ5Cr2ZNvktSayOSOdE12gaFAEkmHthFll06Byp3xnkNJf/xvYGVF4IKW77FTHyEEXi+8QG1uHrkffoR1WBiOw4aZNaamurn9zfyc8DNb07Zyc93Wtz9LvJDIk1ufJKc8hxf7vMg9kfdcNrGsOTq6d2TJhCV8EfMFX534ioQLCXw8/OOG9+Kxsga/nn/03dHVwtHFEDoanCx/m0K4tyNxWSUcTy9Cr5ip385Fbu2h/TA4/C0M/vvljZXzEmHNsxA4wNDI2BK5hRgqeBbfDuufh0mf13+fqhI48BXsnwulWaB1NExh6zzFsMXL3h0QUFUMhamQGQNJ2+HET4YpYT2mGZpQO/u19KNrsG4BLmyNz6G4suZSlcfFLT1S6zYozIMFu85xMLmAwWGerDlhqLKb0MXHzJG1fRO6+vDG2lhWHzvPM6MNL2S3J+SSnF/OJ3d3ly8C/+LBgSF8vy+VH/anMXvUH1vZMgsr+GxrImM7tWNIeNtJOo/q6MWgUA8+3nKGW7v7XdFrpqSyhr99fwRHGw3zpve0qH4yKpXggzu7kZRXxjPLYlj71GD8XGyveqxOr/DaqpN8vy+Vm7v68P4d3VrksdhbW/HBnd3oGezKqytPcde8vSy8v/cVicKr0esV1p08z4ebE0jKLcPL0ZqHBoUwNMKT6EDXq8ZbVF7DkdQLbDiZxfqT51kZk0mPQBdeHBtJX5m4laQGkckd6Zp8u/QHNmGTepjfulrjILSEfbqOiowMgr75Gq2/ZUx9ESoVPm+9SXVyMpnPPU/wsqVYt299pdk9vHrgY+/DmqQ1VyR39p3fx9PbnsbWypavx35NV0/jj7vWqDQ8Ff0UXTy68NKul7h37b3MGzOPDi4NHCkb2Bf2zDFspTm3w/AiPfoDo8fZEiLaObLldDb7z+UD0N3fzNNuej5g6KmTuAXCbzJ8rrYKfn7AsHVrynzDNihLFTYKBj9raLAcdtMf1Vx/pdcZxqhvfRMqC6HDCBj/nuE+mnqePOr1kLLbUOF08Cs4tAD6PgZDXwBr81UTXtQ9wAVFgRPpRew8k0eYlwPtnOt/QixZvr4hbmjVKnadyTMkd46dp3uAyw09oclUvJ1s6B3sxprjmTxd1wD3mz3JeDlaM66zTK79VXtPB4aGe/L9/hQeH9bhUoXOexvi0CsKr0zoaOYIjUsIwT9vjmLcJzv4aEsCr0/qfOk2RVF46ZcTJOeXsWRmvwYlKEzNRqPmf/dGM3HOLmYtPsKyR/tfUVWl0ys8szSGVccyeXRoe164KbJFq4+EENzbNwhfZ1tmLTnCHV/uZekj/a/7++xsbikvLj/OweQLhHs78L97oxkT5V1vs2hnOw3DI70YHunFa7dE8fPhdL78/Sx3zdvHhK4+/GtiJzwdG15VnpxXxrb4HI6mFnImp5Tckioqa3Ro1AI3ey0hHvZ09XdhYKgH3QNcUFtIFZckNUfrr8OUWkzHPuPQCXAtzWWLnR1Px/hQsWMn3i+/hF2v609fMDWVrS3+n81BWFuTPusJ9GVl5g6p0VRCxfiQ8ezL3Ed+Rf6lz+9I38GsLbPwsffhhwk/tEhi58+GBw7nu3HfoaAwY8MMTuadbNgdA/qBvhYyDsPR78De64/EhIWLaOeIXjH0bQh2t6t3skSLi5xg+Pod+vqPz/32OmQdh1u/sKgKlWsa9hL49oDVT0HxlT0yyI2H+aNg3XPg0xUe3grTVkDUpPoTOwAqFYQMhslz4ckj0OUO2PMpfN7H0OvJzLr6G5q67j9XwIFzBXJLVhtip7UiOsiFnWfySMotJfZ8MRO7WX6FYlsxsasPZ3PLiMsq4WxuKdsTcrm3b1Cb2FrUEu4fGExuSRXrTxp+Dp/KLOLXmEweGhTSJhOSEe0cubdvEIv3p5JQ10sPYPH+VNYcP89zN0XQz4KrQEI87Pnv7V2JSSvkvxvjLrtNp1d4/qdjrDqWyYvjInlpXEeTbSsbHunF9w/3Jb+0mnu+2kdOceUVxyiKwje7zzHuk53EZ5Xw7pQurJ89hPFdfBo9BcxOa8X0/sH89vdhPDMqnC2x2Yz9eAe/nc6+7v0qa3T8cCCVm+fsZNj7v/Pv1bEcOFdAOydrRkd5cWevAG7u6kuolwMp+eV8tCWBKV/sYfC7W/lwUzw5JVc+rutRFIWSyhrSCspJyS8jt6TKKP2JJKmpGvTWrxBiLPAJoAbmK4ryTotGJVkEe0dnLjhBQYUVAenQZX0Szrfdhus9Ftbno47G1xe/Dz8k9f77yfrPf/B96y1zh9RoE9pPYMHJBWxM3sjUjlPZlrqNZ7c/S5hLGPNGz8PFxjQVJWGuYXw77ltmbprJzE0zWXDTAqLco65/p4A+hr9Pr4L49dB/lkU3Uv6zixOz0i9UcFsPC0icqDXQfaqhEqok27AVae/n0OtBiBhn7ugaRq2ByV/Bl4Nh5d/gvl8MU7UAYn6Atc+CxhYmz4cut/9xW1O4BsGt/4Po6bDqKfhuMgx6Boa/cu0Kp8I0yDxqaPxcnmfYSqi1M4xy94wEv2jQNr05roud4V3B+TuTqKrVMzhMbslqSwaFevD+pgQW7U1BCLkly5TGdvbhtVWnWHM8k7Iqw7vwU/sGmjssizU0zJMQD3u+3ZPMpO5+vLchHmdbDY8ObWBVbiv0zOhwfj2awX83xvPV9F6k5Jfx1trTDA7z4LEhlv+4x3Xx4b5+gczfdY6RHb3p194dRVH4x68n+eVoBs+NCecxM/z/RQe68u2DvZm+4ABT5+9n+WMDcLYzPM8rr67lpV9OsDImk5GRXrw9uQteTs2vjrLVqpk9KoxxXdox+8cYHvr2EE8MD+XZ0eGXJbZ0eoUfD6by8ZYz5JZUEeXjxD8mdOSmTu2um8QsKKtm55lclh/JYM62RObtTGJ6/2BmDQ/F2fbqz2HP5pay8VQWe8/mcyqzmIKy6stu11qpCPV0oHewK8MivRjYwUMmnyWTEfVNGBJCqIEEYDSQDhwE7lEUJfZa9+nVq5dy6NAhY8YpmcnaMZ2wKdFjUwve7kG0/+UXVHaW/U5Pzscfk//lXPw+/ACn8ePNHU6j3bbyNpy0TsyOns3MTTMJdw1n7pi5OGmdTB5LVlkW09dPp0pXxTdjvyHE2dCgUK/oOZ1/mmO5x0gqSiK/Ip8KXQXWKftwrSgiuLqGThPm0C10Alq1matgGqBGpyfslfUA/PuWTswYEGzegMAwJeqzXjD8H3BiGdRUwN/2gnUrG6V94CtDdc4tnxkSVhteggNzIWiQYXuZk5FfFFeXG6aJHfnWsM3rjm/Bpu57Jy8RYr6H2JWXT/OysgG1FqrLQKmb0iHUhqbNnacYkk9N+Lo/szSGFUcz0KgFx14bg53WgrfSSY0Sk1bIrZ/vBqBPsBvLHutv5ohuLPfO30d8VgkV1TrGdGrHR3d1N3dIFu3r3ef49+pYXhoXydvr43hlfEdmDml929cbY85vZ/hgcwLLH+/PO+vjiMsqYdMzQ/BxvnofG0tTXl3LuE92olcU1s8ewnd7U3h3Qxyzhnfg+ZvM27x979l8pi/cT88gVxY92Jfiyhru//oApzKLeW5MBI8P7dAiFUVVtTpeW3mKHw+mMbZTOz68qxt2WitOZRbxwvLjnMwopk+wG7NHhTGgg3uje3Cdyytjzm9n+DUmA3cHa/41sRPju7RDCIFOr7DhZBYLd5/jcMoFADr6ONHVz5n2nva42mtRC0FZdS1pBeXEZZVwMLmAyho9Hg7W3N07gAcGBuPu8Me2ssoaHbsT89idmM/JzCJS8su4UF6DTq9gp1Hj42JDmJcj0UGuDI/wpL2n+becS5ZDCHFYUZQrttI0JLnTH/iXoig31X38EoCiKG9f6z4yudN2LLu9C11O1qJXQfulP2HbpXP9dzIzpaaGlGnTqUpMJHDBfGpzc6lKPEtNdhZKZRWoBFZu7mj8/dEGBaINDsbKywuhsoys+pfHvuTzGEMT2mCnYBaNW4SrjavZ4kkuSmbGhhloVBpe6/8a29O3szllMwWVBQA4aBzwtvPGxsqG6gvJ5NcUU6A2NMqz19gz2G8wIwNH0senD2XVZRRWFSKEwM7KDl8HX2ysLGPfe/CLawFYOWsg3QLM3HPnovmjIf2A4d/3LYfQUeaNpyn0evj2ZsN2PZ9uholq/WbB6Ndbtm/Q0e9h9WzwiIARr8CR7yBhvSFp02EEhI6EgL7g3gFsnOti1UFZLmSdMEzrOr0K8hMNt/d+GLpNNXycsgtyE6AwBWrKDfe18wCXAPDpDkEDwb8X3+xN5V+rYwl2t+P354e33GOVTE6nV+jw8joAXp/Uien9g80b0A3mhwOpvPTLCcDCfmZbqJLKGvr+5zfKq3X4Otuw9blhFtVMuCWUVdUy9L/byCs1VFV8cEc3pvS0jF6RDXUouYA75u7F2VZDYXkNt3TztZjG4SuOpvPM0mP0DXEjp6SK80UV/O/eaEZEerfoeRVFYeHuZN5aG0u4tyMTuvgwZ2siLnYa/nFzFBO7+jT763MivYgXfznOqcxiRkR6MTnaj8+2JhKXVUKQux3T+gUxvosPvtdoeH3RxeTNDwdS2RqXg61GzcOD2zMi0oulh9JYeTSDsmodNhoVUT5OdPB0wM1ei5VaUFalI/1CBfHZxaQVVADQzd+Ze/sGcUt33zb//SvVrznJnduBsYqiPFz38TSgr6IoT1zrPjK503Ysmtad3geryLt1AIPfWWDucBqsOj2D5NtvR1dYeOlzKmdnVPZ2UKujtqAAamv/uIOVFUKjwfPJJ3F/8AEzRPyH5KJkJv46EYANUzbg52D+bUJxBXHM3DSTwqpCtCotIwNHMiRgCL29e+Nl5/XHL9JdH8OW1ygY8QonQvqyLW0b29K2XUoEXY1GpUEgUNdNhVo+cTkBTk0f795UYa+so0ankPDmOMspnz20ENY8A5E3w92LzR1N0+Ulwmc9Df8e+w70e9w05z271TCSvbrEkKDpN8swat6xgVPgFAXSDxl6+ZxeDdT9vlRbg0eYYZKX1sHw+bI8KDgLF5INx9h5EHPzWm5ddJYJXX34fGq08R+fZFbRb2ymoKyaA6+MtMjmrG3ZhbJqeryxGYDkdyaYOZrWYdaSI6w9fp73bu/Knb1M/zvWHL7ZfY5/rY6lX3s3fpjZzyKSIo319rrTzN2RRBc/Z356rL9Fvaj/ZMsZPtqSAMBPj/Wnd7Cbyc79e3wOT/5wlJLKWkZ19Oa927viZsR+ibU6Pd/sSebDzQmUV+sIcLPlhbGRjOvs06TGy2dzS/lgUzzrTmQBhq1bt3Tz5eauPgyoZ9tWan45m09ns/RgKgnZpXg5WrPmyUFG2fYmtV4tntwRQjwCPFL3YWeggV1YpTbKA8gzdxCSWclrQJLXgATyOpDkNSDJa0AykNeBJK8B4whSFOWKaR0NqYnPAP6c4vev+9xlFEWZB8wDEEIculomSbpxyGtAkteAJK8BCeR1IMlrQJLXgGQgrwNJXgMtqyF7Dw4CYUKIECGEFrgbWNWyYUmSJEmSJEmSJEmSJEkNUW/ljqIotUKIJ4CNGEahL1QU5VSLRyZJkiRJkiRJkiRJkiTVq0GjShRFWQesa8S685oWjtSGyGtAkteAJK8BCeR1IMlrQJLXgGQgrwNJXgMtqN6GypIkSZIkSZIkSZIkSZLlspB5v5IkSZIkSZIkSZIkSVJTGDW5I4QYK4SIF0IkCiFeNObaUusghFgohMgRQpw0dyySeQghAoQQ24QQsUKIU0KI2eaOSTItIYSNEOKAEOJY3TXwb3PHJJmHEEIthDgqhFhj7lgk8xBCJAshTgghYoQQh8wdj2R6QggXIcTPQog4IcRpIUR/c8ckmY4QIqLu+//in2IhxNPmjksyLSHEM3XPCU8KIX4QQtiYO6a2yGjbsoQQaiABGA2kY5iydY+iKLFGOYHUKgghhgClwCJFUTqbOx7J9IQQPoCPoihHhBCOwGHgVvmz4MYhhBCAvaIopUIIDbALmK0oyj4zhyaZmBDiWaAX4KQoys3mjkcyPSFEMtBLUZQ8c8cimYcQ4ltgp6Io8+sm79opilJo7rgk06t7vZgB9FUUJcXc8UimIYTww/BcMEpRlAohxDJgnaIo35g3srbHmJU7fYBERVGSFEWpBn4EJhlxfakVUBRlB1Bg7jgk81EU5byiKEfq/l0CnAb8zBuVZEqKQWndh5q6P7LB2w1GCOEPTADmmzsWSZLMQwjhDAwBFgAoilItEzs3tJHAWZnYuSFZAbZCCCvADsg0czxtkjGTO35A2p8+Tke+oJOkG5oQIhjoAew3bySSqdVtx4kBcoDNiqLIa+DG8zHwf4De3IFIZqUAm4QQh4UQj5g7GMnkQoBc4Ou6LZrzhRD25g5KMpu7gR/MHYRkWoqiZADvA6nAeaBIUZRN5o2qbZINlSVJahFCCAdgOfC0oijF5o5HMi1FUXSKonQH/IE+Qgi5TfMGIoS4GchRFOWwuWORzG6QoijRwDhgVt32benGYQVEA18oitIDKANkX84bUN2WvFuAn8wdi2RaQghXDDt6QgBfwF4IcZ95o2qbjJncyQAC/vSxf93nJEm6wdT1WVkOLFYU5RdzxyOZT135/TZgrLljkUxqIHBLXb+VH4ERQojvzRuSZA5179iiKEoOsALDNn7pxpEOpP+pevNnDMke6cYzDjiiKEq2uQORTG4UcE5RlFxFUWqAX4ABZo6pTTJmcucgECaECKnLzN4NrDLi+pIktQJ1zXQXAKcVRfnQ3PFIpieE8BRCuNT92xZDo/0480YlmZKiKC8piuKvKEowhucDWxVFke/S3WCEEPZ1jfWp24ozBpDTNG8giqJkAWlCiIi6T40E5ICFG9M9yC1ZN6pUoJ8Qwq7udcJIDD05JSOzMtZCiqLUCiGeADYCamChoiinjLW+1DoIIX4AhgEeQoh04DVFURaYNyrJxAYC04ATdT1XAF5WFGWdGWOSTMsH+LZuKoYKWKYoihyFLUk3Hm9gheG5PFbAEkVRNpg3JMkMngQW1735mwQ8YOZ4JBOrS+6OBh41dyyS6SmKsl8I8TNwBKgFjgLzzBtV22S0UeiSJEmSJEmSJEmSJEmS6cmGypIkSZIkSZIkSZIkSa2YTO5IkiRJkiRJkiRJkiS1YjK5I0mSJEmSJEmSJEmS1IrJ5I4kSZIkSZIkSZIkSVIrJpM7kiRJkiRJkiRJkiRJrZhM7kiSJEmSJEmSJEmSJLViMrkjSZIkSZIkSZIkSZLUisnkjiRJkiRJkiRJkiRJUiv2/9C5B+nzcO85AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "frank-homeless" + }, + "source": [ + "" + ], + "id": "frank-homeless", + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file From 8ea3d528f5c0a71b1ddaffc8eadb4b003a3a3bb9 Mon Sep 17 00:00:00 2001 From: Jatin <38358079+jxtin@users.noreply.github.com> Date: Wed, 13 Oct 2021 17:03:09 +0530 Subject: [PATCH 2/2] Create README.md --- other/Projectile Motion/README.md | 4 ++++ 1 file changed, 4 insertions(+) create mode 100644 other/Projectile Motion/README.md diff --git a/other/Projectile Motion/README.md b/other/Projectile Motion/README.md new file mode 100644 index 0000000..99ef780 --- /dev/null +++ b/other/Projectile Motion/README.md @@ -0,0 +1,4 @@ +# Script to simulate the projectile trajectory and motion of a falling particle or Ball + +The notebooks consider different cases for the ball, different coefficient of restitutions and the effect of drag on the motion. +The final output is the trajectory of different cases each plotted using matplotlib.