-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
294 lines (238 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import warnings
from argparse import ArgumentParser
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from ignite.contrib.handlers import ProgressBar
from ignite.contrib.handlers.tensorboard_logger import *
from ignite.engine import Events, Engine
from ignite.handlers import ModelCheckpoint, Timer
from ignite.metrics import RunningAverage, Loss, ConfusionMatrix, mIoU
from ignite.utils import convert_tensor
from torch.utils.data import DataLoader
from torchvision.transforms import Normalize
import models
from datasets.cityscapes import CityscapesDataset
from datasets.transforms import transforms
from datasets.transforms.transforms import ToTensor
from loss.boxloss import BoxLoss
from loss.multitaskloss import MultiTaskLoss
from metrics.mean_ap import MeanAveragePrecision
from utils import helper
from utils.box_coder import BoxCoder
def get_data_loaders(data_dir, batch_size, num_workers):
# new_size = (512, 1024) # (1024, 2048)
joint_transform = transforms.Compose([
# transforms.Resize(new_size),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(0.2, 0.2, 0.2),
transforms.RandomGaussionBlur(sigma=(0, 1.2)),
transforms.ToTensor()
])
normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_loader = DataLoader(CityscapesDataset(root=data_dir, split='train', joint_transform=joint_transform,
img_transform=normalize),
batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True)
val_loader = DataLoader(CityscapesDataset(root=data_dir, split='val', joint_transform=ToTensor(),
img_transform=normalize),
batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=True)
return train_loader, val_loader
def run(args):
train_loader, val_loader = get_data_loaders(args.dir, args.batch_size, args.num_workers)
if args.seed is not None:
torch.manual_seed(args.seed)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
num_classes = CityscapesDataset.num_instance_classes() + 1
model = models.box2pix(num_classes)
model.init_from_googlenet()
if torch.cuda.device_count() > 1:
print("Using %d GPU(s)" % torch.cuda.device_count())
model = nn.DataParallel(model)
model = model.to(device)
semantics_criterion = nn.CrossEntropyLoss(ignore_index=255)
offsets_criterion = nn.MSELoss()
box_criterion = BoxLoss(num_classes, gamma=2)
multitask_criterion = MultiTaskLoss().to(device)
box_coder = BoxCoder()
optimizer = optim.Adam([{'params': model.parameters()},
{'params': multitask_criterion.parameters()}], lr=args.lr)
if args.resume:
if os.path.isfile(args.resume):
print("Loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
multitask_criterion.load_state_dict(checkpoint['multitask'])
print("Loaded checkpoint '{}' (Epoch {})".format(args.resume, checkpoint['epoch']))
else:
print("No checkpoint found at '{}'".format(args.resume))
def _prepare_batch(batch, non_blocking=True):
x, instance, boxes, labels = batch
return (convert_tensor(x, device=device, non_blocking=non_blocking),
convert_tensor(instance, device=device, non_blocking=non_blocking),
convert_tensor(boxes, device=device, non_blocking=non_blocking),
convert_tensor(labels, device=device, non_blocking=non_blocking))
def _update(engine, batch):
model.train()
optimizer.zero_grad()
x, instance, boxes, labels = _prepare_batch(batch)
boxes, labels = box_coder.encode(boxes, labels)
loc_preds, conf_preds, semantics_pred, offsets_pred = model(x)
semantics_loss = semantics_criterion(semantics_pred, instance)
offsets_loss = offsets_criterion(offsets_pred, instance)
box_loss, conf_loss = box_criterion(loc_preds, boxes, conf_preds, labels)
loss = multitask_criterion(semantics_loss, offsets_loss, box_loss, conf_loss)
loss.backward()
optimizer.step()
return {
'loss': loss.item(),
'loss_semantics': semantics_loss.item(),
'loss_offsets': offsets_loss.item(),
'loss_ssdbox': box_loss.item(),
'loss_ssdclass': conf_loss.item()
}
trainer = Engine(_update)
checkpoint_handler = ModelCheckpoint(args.output_dir, 'checkpoint', save_interval=1, n_saved=10,
require_empty=False, create_dir=True, save_as_state_dict=False)
timer = Timer(average=True)
# attach running average metrics
train_metrics = ['loss', 'loss_semantics', 'loss_offsets', 'loss_ssdbox', 'loss_ssdclass']
for m in train_metrics:
transform = partial(lambda x, metric: x[metric], metric=m)
RunningAverage(output_transform=transform).attach(trainer, m)
# attach progress bar
pbar = ProgressBar(persist=True)
pbar.attach(trainer, metric_names=train_metrics)
checkpoint = {'model': model.state_dict(), 'epoch': trainer.state.epoch, 'optimizer': optimizer.state_dict(),
'multitask': multitask_criterion.state_dict()}
trainer.add_event_handler(event_name=Events.EPOCH_COMPLETED, handler=checkpoint_handler, to_save={
'checkpoint': checkpoint
})
timer.attach(trainer, start=Events.EPOCH_STARTED, resume=Events.ITERATION_STARTED,
pause=Events.ITERATION_COMPLETED, step=Events.ITERATION_COMPLETED)
def _inference(engine, batch):
model.eval()
with torch.no_grad():
x, instance, boxes, labels = _prepare_batch(batch)
loc_preds, conf_preds, semantics, offsets_pred = model(x)
boxes_preds, labels_preds, scores_preds = box_coder.decode(loc_preds, F.softmax(conf_preds, dim=1),
score_thresh=0.01)
semantics_loss = semantics_criterion(semantics, instance)
offsets_loss = offsets_criterion(offsets_pred, instance)
box_loss, conf_loss = box_criterion(loc_preds, boxes, conf_preds, labels)
semantics_pred = semantics.argmax(dim=1)
instances = helper.assign_pix2box(semantics_pred, offsets_pred, boxes_preds, labels_preds)
return {
'loss': (semantics_loss, offsets_loss, {'box_loss': box_loss, 'conf_loss': conf_loss}),
'objects': (boxes_preds, labels_preds, scores_preds, boxes, labels),
'semantics': semantics_pred,
'instances': instances
}
train_evaluator = Engine(_inference)
cm = ConfusionMatrix(num_classes=num_classes, output_transform=lambda x: x['semantics'])
mIoU(cm, ignore_index=0).attach(train_evaluator, 'mIoU')
Loss(multitask_criterion, output_transform=lambda x: x['loss']).attach(train_evaluator, 'loss')
MeanAveragePrecision(num_classes, output_transform=lambda x: x['objects']).attach(train_evaluator, 'mAP')
evaluator = Engine(_inference)
cm2 = ConfusionMatrix(num_classes=num_classes, output_transform=lambda x: x['semantics'])
mIoU(cm2, ignore_index=0).attach(train_evaluator, 'mIoU')
Loss(multitask_criterion, output_transform=lambda x: x['loss']).attach(evaluator, 'loss')
MeanAveragePrecision(num_classes, output_transform=lambda x: x['objects']).attach(evaluator, 'mAP')
tb_logger = TensorboardLogger(args.log_dir)
tb_logger.attach(trainer,
log_handler=OutputHandler(tag='training', output_transform=lambda loss: {
'loss': loss['loss'],
'loss_semantics': loss['loss_semantics'],
'loss_offsets': loss['loss_offsets'],
'loss_ssdbox': loss['loss_ssdbox'],
'loss_ssdclass': loss['loss_ssdclass']
}),
event_name=Events.ITERATION_COMPLETED)
tb_logger.attach(train_evaluator,
log_handler=OutputHandler(tag='training_eval',
metric_names=['loss', 'mAP', 'mIoU'],
output_transform=lambda loss: {
'loss': loss['loss'],
'objects': loss['objects'],
'semantics': loss['semantics']
},
another_engine=trainer),
event_name=Events.EPOCH_COMPLETED)
tb_logger.attach(evaluator,
log_handler=OutputHandler(tag='validation_eval',
metric_names=['loss', 'mAP', 'mIoU'],
output_transform=lambda loss: {
'loss': loss['loss'],
'objects': loss['objects'],
'semantics': loss['semantics']
},
another_engine=trainer),
event_name=Events.EPOCH_COMPLETED)
@trainer.on(Events.STARTED)
def initialize(engine):
if args.resume:
engine.state.epoch = args.start_epoch
@trainer.on(Events.EPOCH_COMPLETED)
def print_times(engine):
pbar.log_message("Epoch [{}/{}] done. Time per batch: {:.3f}[s]".format(engine.state.epoch,
engine.state.max_epochs, timer.value()))
timer.reset()
@trainer.on(Events.EPOCH_COMPLETED)
def log_training_results(engine):
train_evaluator.run(train_loader)
metrics = train_evaluator.state.metrics
loss = metrics['loss']
mean_ap = metrics['mAP']
iou = metrics['mIoU']
pbar.log_message('Training results - Epoch: [{}/{}]: Loss: {:.4f}, mAP(50%): {:.1f}, IoU: {:.1f}'
.format(loss, evaluator.state.epochs, evaluator.state.max_epochs, mean_ap, iou * 100.0))
@trainer.on(Events.EPOCH_COMPLETED)
def log_validation_results(engine):
evaluator.run(val_loader)
metrics = evaluator.state.metrics
loss = metrics['loss']
mean_ap = metrics['mAP']
iou = metrics['mIoU']
pbar.log_message('Validation results - Epoch: [{}/{}]: Loss: {:.4f}, mAP(50%): {:.1f}, IoU: {:.1f}'
.format(loss, evaluator.state.epochs, evaluator.state.max_epochs, mean_ap, iou * 100.0))
@trainer.on(Events.EXCEPTION_RAISED)
def handle_exception(engine, e):
if isinstance(e, KeyboardInterrupt) and (engine.state.iteration > 1):
engine.terminate()
warnings.warn("KeyboardInterrupt caught. Exiting gracefully.")
checkpoint_handler(engine, {'model_exception': model})
else:
raise e
@trainer.on(Events.COMPLETED)
def save_final_model(engine):
checkpoint_handler(engine, {'final': model})
trainer.run(train_loader, max_epochs=args.epochs)
tb_logger.close()
if __name__ == '__main__':
parser = ArgumentParser('Box2Pix with PyTorch')
parser.add_argument('--batch_size', type=int, default=8,
help='input batch size for training')
parser.add_argument('--num-workers', type=int, default=8,
help='number of workers')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train')
parser.add_argument('--lr', type=float, default=1e-4,
help='learning rate')
parser.add_argument('--seed', type=int, help='manual seed')
parser.add_argument('--output-dir', default='./checkpoints',
help='directory to save model checkpoints')
parser.add_argument('--resume', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--log-interval', type=int, default=10,
help='how many batches to wait before logging training status')
parser.add_argument("--log-dir", type=str, default="tensorboard_logs",
help="log directory for Tensorboard log output")
parser.add_argument("--dataset-dir", type=str, default="data/cityscapes",
help="location of the dataset")
run(parser.parse_args())