Skip to content

Latest commit

 

History

History

docs

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Example Outputs

Two annotations from each of the Pickle files are pasted here for convenience

Verbs Prediction Output

Format

Verb Prediction:
    ```
    List[Dict]
    Dict:
        # Both lists of length 5. Outer list denotes Events 1-5, inner list denotes Top-5 VerbID predictions
        pred_vbs_ev: List[List[str]]
        # Both lists of length 5. Outer list denotes Events 1-5, inner list denotes the scores for the Top-5 VerbID predictions
        pred_scores_ev: List[List[float]]
        #the index of the video segment used. Corresponds to the number in {valid|test}_split_file.json
        ann_idx: int
    ```

Example

[
    {
        "pred_vbs_ev": [
            [
                "speak.01",
                "walk.01",
                "gesture.01",
                "open.01",
                "stare.01"
            ],
            [
                "speak.01",
                "walk.01",
                "stare.01",
                "open.01",
                "gesture.01"
            ],
            [
                "speak.01",
                "walk.01",
                "open.01",
                "stare.01",
                "gesture.01"
            ],
            [
                "speak.01",
                "walk.01",
                "open.01",
                "stare.01",
                "gesture.01"
            ],
            [
                "speak.01",
                "walk.01",
                "open.01",
                "stare.01",
                "gesture.01"
            ]
        ],
        "pred_scores_ev": [
            [
                0.0030466204043477774,
                0.002083742758259177,
                0.0018629760015755892,
                0.001817089505493641,
                0.001718472340144217
            ],
            [
                0.0022052170243114233,
                0.0016227938467636704,
                0.0015743094263598323,
                0.0015046339249238372,
                0.0013543792301788926
            ],
            [
                0.002279863925650716,
                0.0016998160863295197,
                0.0016223834827542305,
                0.0015388673637062311,
                0.0013340790756046772
            ],
            [
                0.0023030810989439487,
                0.0017610617214813828,
                0.0016733736265450716,
                0.001517956960014999,
                0.001354981679469347
            ],
            [
                0.002461366355419159,
                0.0018218016484752297,
                0.0017280317842960358,
                0.00154727918561548,
                0.001423937501385808
            ]
        ],
        "ann_idx": 0
    },
    {
        "pred_vbs_ev": [
            [
                "speak.01",
                "walk.01",
                "open.01",
                "stare.01",
                "gesture.01"
            ],
            [
                "speak.01",
                "walk.01",
                "open.01",
                "stare.01",
                "gesture.01"
            ],
            [
                "speak.01",
                "walk.01",
                "open.01",
                "stare.01",
                "gesture.01"
            ],
            [
                "speak.01",
                "walk.01",
                "stare.01",
                "open.01",
                "gesture.01"
            ],
            [
                "speak.01",
                "walk.01",
                "stare.01",
                "open.01",
                "gesture.01"
            ]
        ],
        "pred_scores_ev": [
            [
                0.0021817495580762625,
                0.0016885860823094845,
                0.0015648703556507826,
                0.0015622647479176521,
                0.001361470902338624
            ],
            [
                0.0022408771328628063,
                0.001727297087199986,
                0.0015824941219761968,
                0.0015677119372412562,
                0.001424293965101242
            ],
            [
                0.002233398612588644,
                0.0017284195637330413,
                0.0015865974128246307,
                0.001565285143442452,
                0.00143557193223387
            ],
            [
                0.0021836988162249327,
                0.0016955292085185647,
                0.0015635901363566518,
                0.001559897093102336,
                0.0014098974643275142
            ],
            [
                0.0022019033785909414,
                0.0017219308065250516,
                0.00157328846398741,
                0.0015720903174951673,
                0.0014175721444189548
            ]
        ],
        "ann_idx": 1
    }
]

Semantic Roles Output

Format

Semantic Role Labeling Prediction List[Dict] Dict: # same as above ann_idx: int # The main output used for evaluation. Outer Dict is for Events 1-5. vb_output: Dict[Dict] # The inner dict has the following keys: # VerbID of the event vb_id: str ArgX: str ArgY: str ... Note that ArgX, ArgY depend on the specific VerbID

Example Output

[
    {
        "ann_idx": 0,
        "vb_output": {
            "Ev1": {
                "vb_id": "drive.01",
                "Arg1": "man in a white",
                "AScn": "in a home"
            },
            "Ev2": {
                "vb_id": "drive.01",
                "Arg1": "man in a white",
                "AScn": "in a home"
            },
            "Ev3": {
                "vb_id": "drive.01",
                "Arg0": "woman in a white the woman in a white",
                "Arg1": "the woman in a white",
                "AScn": "in a white"
            },
            "Ev4": {
                "vb_id": "look.01",
                "Arg0": "man in a white the bed",
                "Arg1": "the bed",
                "AScn": "in a white"
            },
            "Ev5": {
                "vb_id": "hold.01",
                "Arg0": "man in a white",
                "Arg1": "the woman in a white",
                "AMnr": "the bed",
                "AScn": "in a white"
            }
        }
    },
    {
        "ann_idx": 1,
        "vb_output": {
            "Ev1": {
                "vb_id": "collapse.01",
                "Arg1": "man in a white"
            },
            "Ev2": {
                "vb_id": "agonize.01",
                "Arg1": "man in a white"
            },
            "Ev3": {
                "vb_id": "wave.01",
                "Arg1": "man in a white"
            },
            "Ev4": {
                "vb_id": "approach.01",
                "Arg1": "man in a white",
                "AMnr": "",
                "AScn": "in a white"
            },
            "Ev5": {
                "vb_id": "walk.01",
                "Arg0": "man in a white"
            }
        }
    }
]

Event Relations Output

Format

Event Relation Prediction List[Dict] Dict: # same as above ann_idx: int # Ouuter list of length 4 and denotes Event Relation {1-3, 2-3, 3-4, 4-5}. Inner list denotes three Event Relations for given Verb+Semantic Role Inputs pred_evrels_ev: List[List[str]] # Scores for the above pred_scores_ev: List[List[float]]

Example Output

[
    {
        "pred_evrels_ev": [
            [
                "NoRel",
                "NoRel",
                "NoRel"
            ],
            [
                "Causes",
                "Causes",
                "Causes"
            ],
            [
                "Causes",
                "Causes",
                "Causes"
            ],
            [
                "Causes",
                "Causes",
                "Causes"
            ]
        ],
        "pred_scores_ev": [
            [
                0.5378286242485046,
                0.5378297567367554,
                0.5378293991088867
            ],
            [
                0.9600680470466614,
                0.9600679278373718,
                0.9600680470466614
            ],
            [
                0.9526531100273132,
                0.9526529908180237,
                0.9526529908180237
            ],
            [
                0.868851900100708,
                0.8688518404960632,
                0.868851900100708
            ]
        ],
        "ann_idx": 0
    },
    {
        "pred_evrels_ev": [
            [
                "Enables",
                "Enables",
                "Enables"
            ],
            [
                "Causes",
                "Causes",
                "Causes"
            ],
            [
                "NoRel",
                "NoRel",
                "NoRel"
            ],
            [
                "NoRel",
                "NoRel",
                "NoRel"
            ]
        ],
        "pred_scores_ev": [
            [
                0.6660529375076294,
                0.6660532355308533,
                0.6660540699958801
            ],
            [
                0.5226033926010132,
                0.5226028561592102,
                0.5226027965545654
            ],
            [
                0.4319555163383484,
                0.43195492029190063,
                0.4319511651992798
            ],
            [
                0.45402148365974426,
                0.45402079820632935,
                0.4540177583694458
            ]
        ],
        "ann_idx": 1
    }
]