forked from MCG-NJU/EMA-VFI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Trainer.py
165 lines (138 loc) · 6.25 KB
/
Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import AdamW
from model.loss import *
from model.warplayer import warp
from config import *
class Model:
def __init__(self, local_rank):
backbonetype, multiscaletype = MODEL_CONFIG['MODEL_TYPE']
backbonecfg, multiscalecfg = MODEL_CONFIG['MODEL_ARCH']
self.net = multiscaletype(backbonetype(**backbonecfg), **multiscalecfg)
self.name = MODEL_CONFIG['LOGNAME']
self.device()
# train
self.optimG = AdamW(self.net.parameters(), lr=2e-4, weight_decay=1e-4)
self.lap = LapLoss()
if local_rank != -1:
self.net = DDP(self.net, device_ids=[local_rank], output_device=local_rank)
def train(self):
self.net.train()
def eval(self):
self.net.eval()
def device(self):
self.net.to(torch.device("cuda"))
def load_model(self, name=None, rank=0):
def convert(param):
return {
k.replace("module.", ""): v
for k, v in param.items()
if "module." in k and 'attn_mask' not in k and 'HW' not in k
}
if rank <= 0 :
if name is None:
name = self.name
self.net.load_state_dict(convert(torch.load(f'ckpt/{name}.pkl')))
def save_model(self, rank=0):
if rank == 0:
torch.save(self.net.state_dict(),f'ckpt/{self.name}.pkl')
@torch.no_grad()
def hr_inference(self, img0, img1, TTA = False, down_scale = 1.0, timestep = 0.5, fast_TTA = False):
'''
Infer with down_scale flow
Noting: return BxCxHxW
'''
def infer(imgs):
img0, img1 = imgs[:, :3], imgs[:, 3:6]
imgs_down = F.interpolate(imgs, scale_factor=down_scale, mode="bilinear", align_corners=False)
flow, mask = self.net.calculate_flow(imgs_down, timestep)
flow = F.interpolate(flow, scale_factor = 1/down_scale, mode="bilinear", align_corners=False) * (1/down_scale)
mask = F.interpolate(mask, scale_factor = 1/down_scale, mode="bilinear", align_corners=False)
af, _ = self.net.feature_bone(img0, img1)
pred = self.net.coraseWarp_and_Refine(imgs, af, flow, mask)
return pred
imgs = torch.cat((img0, img1), 1)
if fast_TTA:
imgs_ = imgs.flip(2).flip(3)
input = torch.cat((imgs, imgs_), 0)
preds = infer(input)
return (preds[0] + preds[1].flip(1).flip(2)).unsqueeze(0) / 2.
if TTA == False:
return infer(imgs)
else:
return (infer(imgs) + infer(imgs.flip(2).flip(3)).flip(2).flip(3)) / 2
@torch.no_grad()
def inference(self, img0, img1, TTA = False, timestep = 0.5, fast_TTA = False):
imgs = torch.cat((img0, img1), 1)
'''
Noting: return BxCxHxW
'''
if fast_TTA:
imgs_ = imgs.flip(2).flip(3)
input = torch.cat((imgs, imgs_), 0)
_, _, _, preds = self.net(input, timestep=timestep)
return (preds[0] + preds[1].flip(1).flip(2)).unsqueeze(0) / 2.
_, _, _, pred = self.net(imgs, timestep=timestep)
if TTA == False:
return pred
else:
_, _, _, pred2 = self.net(imgs.flip(2).flip(3), timestep=timestep)
return (pred + pred2.flip(2).flip(3)) / 2
@torch.no_grad()
def multi_inference(self, img0, img1, TTA = False, down_scale = 1.0, time_list=[], fast_TTA = False):
'''
Run backbone once, get multi frames at different timesteps
Noting: return a list of [CxHxW]
'''
assert len(time_list) > 0, 'Time_list should not be empty!'
def infer(imgs):
img0, img1 = imgs[:, :3], imgs[:, 3:6]
af, mf = self.net.feature_bone(img0, img1)
imgs_down = None
if down_scale != 1.0:
imgs_down = F.interpolate(imgs, scale_factor=down_scale, mode="bilinear", align_corners=False)
afd, mfd = self.net.feature_bone(imgs_down[:, :3], imgs_down[:, 3:6])
pred_list = []
for timestep in time_list:
if imgs_down is None:
flow, mask = self.net.calculate_flow(imgs, timestep, af, mf)
else:
flow, mask = self.net.calculate_flow(imgs_down, timestep, afd, mfd)
flow = F.interpolate(flow, scale_factor = 1/down_scale, mode="bilinear", align_corners=False) * (1/down_scale)
mask = F.interpolate(mask, scale_factor = 1/down_scale, mode="bilinear", align_corners=False)
pred = self.net.coraseWarp_and_Refine(imgs, af, flow, mask)
pred_list.append(pred)
return pred_list
imgs = torch.cat((img0, img1), 1)
if fast_TTA:
imgs_ = imgs.flip(2).flip(3)
input = torch.cat((imgs, imgs_), 0)
preds_lst = infer(input)
return [(preds_lst[i][0] + preds_lst[i][1].flip(1).flip(2))/2 for i in range(len(time_list))]
preds = infer(imgs)
if TTA is False:
return [preds[i][0] for i in range(len(time_list))]
else:
flip_pred = infer(imgs.flip(2).flip(3))
return [(preds[i][0] + flip_pred[i][0].flip(1).flip(2))/2 for i in range(len(time_list))]
def update(self, imgs, gt, learning_rate=0, training=True):
for param_group in self.optimG.param_groups:
param_group['lr'] = learning_rate
if training:
self.train()
else:
self.eval()
if training:
flow, mask, merged, pred = self.net(imgs)
loss_l1 = (self.lap(pred, gt)).mean()
for merge in merged:
loss_l1 += (self.lap(merge, gt)).mean() * 0.5
self.optimG.zero_grad()
loss_l1.backward()
self.optimG.step()
return pred, loss_l1
else:
with torch.no_grad():
flow, mask, merged, pred = self.net(imgs)
return pred, 0