-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsweep_config.yaml
73 lines (73 loc) · 1.35 KB
/
sweep_config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
method: grid
metric:
goal: minimize
name: best_val_loss
entity: multimodal-supernovae
project: multimodal
parameters:
dropout:
values: [0.0001988]
n_out:
values: [32]
# CNN
cnn_depth:
values: [16]
cnn_dim:
values: [32]
cnn_channels:
values: [3]
cnn_kernel_size:
values: [5]
cnn_patch_size:
values: [10]
# Lightcurve transformer
transformer_depth:
values: [9]
emb:
values: [32]
heads:
values: [2]
time_norm:
values: [3371.1677601717206]
agg:
values: [mean]
# Spectral transformer
emb_spectral:
values: [32]
transformer_depth_spectral:
values: [13]
heads_spectral:
values: [2]
time_norm_spectral:
values: [17945.142213594805]
agg_spectral:
values: [mean]
# Optimiser
foldnumber:
values: [0, 1, 2, 3, 4]
lr:
values: [0.0001]
batchsize:
values: [32]
epochs:
values: [1000]
weight_decay:
values: [0]
logit_scale:
values: [20.]
seed:
values: [0]
patience: # Parameter for early stopping
values: [100]
sweep:
id: 1lst1gvx
extra_args:
combinations: [lightcurve]
regression: true
nruns: 5
max_spectral_data_len: 1024
val_fraction: 0.2 # train test split
kfolds: 5
classification: false
spectral_rescalefactor: 1 # rescaling spectral values by a fixed amout to avoid floating point issues
n_classes: 5