-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
83 lines (63 loc) · 2.21 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""import geopandas as gpd
import pandas as pd
import requests
from vt2geojson.tools import vt_bytes_to_geojson
#(15, 17275, 10768)
x = 17275
y = 10768
z = 15
url = f"https://basisvisualisierung.niedersachsen.de/services/basiskarte/v1/tiles/{z}/{x}/{y}.pbf"
r = requests.get(url)
assert r.status_code == 200, r.content
vt_content = r.content
features = vt_bytes_to_geojson(vt_content, x, y, z)
gdf = gpd.GeoDataFrame.from_features(features)
gdf = gdf.dropna(subset = ['klasse'])
# Load style catalog
url_style = "https://basisvisualisierung.niedersachsen.de/services/basiskarte/styles/vt-style-grayscale.json"
catalog_style = requests.get(url_style).json()
# Load order catalog
catalog_order = requests.get(catalog_style['sources']['basiskarte']['url']).json()
order_frame = pd.DataFrame.from_dict(catalog_order['vector_layers'])
for layer in catalog_style['layers']:
print(layer['id'])
if len(gdf[gdf['klasse'] == layer['id']]) != 0:
print(gdf[gdf['klasse'] == layer['id']])
print('-------------------------------------------------------------------------------------------------------')
print(1)"""
"""import os
from qgis.core import *
from PyQt5 import *
from PyQt5.QtSvg import *
from PyQt5.Qt import *
app = QgsApplication([], True)
app.setPrefixPath(r"/usr/bin/qgis", True)
app.initQgis()
project = QgsProject.instance()
project.read("map_base.qgs.qgz")
layer = project.mapLayersByName("myLayer")[0]
options = QgsMapSettings()
options.setLayers([layer])
options.setBackgroundColor(QColor(255, 255, 255))
options.setOutputSize(QSize(800, 600))
options.setExtent(layer.extent())
render = QgsMapRendererParallelJob(options)
image_location = os.path.join(os.getcwd(), "render.png")
def finished():
img = render.renderedImage()
img.save(image_location, "png")
print("saved")
render.finished.connect(finished)
render.start()"""
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
# Images
imgs = ['2022-04-28-track2/camera_0/1651150867.434997689.png'] # batch of images
# Inference
results = model(imgs)
# Results
results.print()
results.save() # or .show()
results.xyxy[0] # img1 predictions (tensor)
print(results.pandas().xyxy[0]) # img1 predictions (pandas)