forked from mjun/gnome-connection-manager
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pyAES.py
445 lines (384 loc) · 17.5 KB
/
pyAES.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#!/usr/bin/python2.5
# Copyright (c) 2007 Brandon Sterne
# Licensed under the MIT license.
# http://brandon.sternefamily.net/files/mit-license.txt
# Python AES implementation
import sys, hashlib, string, getpass
from copy import copy
from random import randint
import StringIO, base64
# The actual Rijndael specification includes variable block size, but
# AES uses a fixed block size of 16 bytes (128 bits)
# Additionally, AES allows for a variable key size, though this implementation
# of AES uses only 256-bit cipher keys (AES-256)
sbox = [
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
]
sboxInv = [
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
]
rcon = [
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb
]
# returns a copy of the word shifted n bytes (chars)
# positive values for n shift bytes left, negative values shift right
def rotate(word, n):
return word[n:]+word[0:n]
# iterate over each "virtual" row in the state table and shift the bytes
# to the LEFT by the appropriate offset
def shiftRows(state):
for i in range(4):
state[i*4:i*4+4] = rotate(state[i*4:i*4+4],i)
# iterate over each "virtual" row in the state table and shift the bytes
# to the RIGHT by the appropriate offset
def shiftRowsInv(state):
for i in range(4):
state[i*4:i*4+4] = rotate(state[i*4:i*4+4],-i)
# takes 4-byte word and iteration number
def keyScheduleCore(word, i):
# rotate word 1 byte to the left
word = rotate(word, 1)
newWord = []
# apply sbox substitution on all bytes of word
for byte in word:
newWord.append(sbox[byte])
# XOR the output of the rcon[i] transformation with the first part of the word
newWord[0] = newWord[0]^rcon[i]
return newWord
# expand 256 bit cipher key into 240 byte key from which
# each round key is derived
def expandKey(cipherKey):
cipherKeySize = len(cipherKey)
assert cipherKeySize == 32
# container for expanded key
expandedKey = []
currentSize = 0
rconIter = 1
# temporary list to store 4 bytes at a time
t = [0,0,0,0]
# copy the first 32 bytes of the cipher key to the expanded key
for i in range(cipherKeySize):
expandedKey.append(cipherKey[i])
currentSize += cipherKeySize
# generate the remaining bytes until we get a total key size
# of 240 bytes
while currentSize < 240:
# assign previous 4 bytes to the temporary storage t
for i in range(4):
t[i] = expandedKey[(currentSize - 4) + i]
# every 32 bytes apply the core schedule to t
if currentSize % cipherKeySize == 0:
t = keyScheduleCore(t, rconIter)
rconIter += 1
# since we're using a 256-bit key -> add an extra sbox transform
if currentSize % cipherKeySize == 16:
for i in range(4):
t[i] = sbox[t[i]]
# XOR t with the 4-byte block [16,24,32] bytes before the end of the
# current expanded key. These 4 bytes become the next bytes in the
# expanded key
for i in range(4):
expandedKey.append(((expandedKey[currentSize - cipherKeySize]) ^ (t[i])))
currentSize += 1
return expandedKey
# do sbox transform on each of the values in the state table
def subBytes(state):
for i in range(len(state)):
#print "state[i]:", state[i]
#print "sbox[state[i]]:", sbox[state[i]]
state[i] = sbox[state[i]]
# inverse sbox transform on each byte in state table
def subBytesInv(state):
for i in range(len(state)):
state[i] = sboxInv[state[i]]
# XOR each byte of the roundKey with the state table
def addRoundKey(state, roundKey):
for i in range(len(state)):
#print i
#print "old state value:", state[i]
#print "new state value:", state[i] ^ roundKey[i]
state[i] = state[i] ^ roundKey[i]
# Galois Multiplication
def galoisMult(a, b):
p = 0
hiBitSet = 0
for i in range(8):
if b & 1 == 1:
p ^= a
hiBitSet = a & 0x80
a <<= 1
if hiBitSet == 0x80:
a ^= 0x1b
b >>= 1
return p % 256
# mixColumn takes a column and does stuff
def mixColumn(column):
temp = copy(column)
column[0] = galoisMult(temp[0],2) ^ galoisMult(temp[3],1) ^ \
galoisMult(temp[2],1) ^ galoisMult(temp[1],3)
column[1] = galoisMult(temp[1],2) ^ galoisMult(temp[0],1) ^ \
galoisMult(temp[3],1) ^ galoisMult(temp[2],3)
column[2] = galoisMult(temp[2],2) ^ galoisMult(temp[1],1) ^ \
galoisMult(temp[0],1) ^ galoisMult(temp[3],3)
column[3] = galoisMult(temp[3],2) ^ galoisMult(temp[2],1) ^ \
galoisMult(temp[1],1) ^ galoisMult(temp[0],3)
# mixColumnInv does stuff too
def mixColumnInv(column):
temp = copy(column)
column[0] = galoisMult(temp[0],14) ^ galoisMult(temp[3],9) ^ \
galoisMult(temp[2],13) ^ galoisMult(temp[1],11)
column[1] = galoisMult(temp[1],14) ^ galoisMult(temp[0],9) ^ \
galoisMult(temp[3],13) ^ galoisMult(temp[2],11)
column[2] = galoisMult(temp[2],14) ^ galoisMult(temp[1],9) ^ \
galoisMult(temp[0],13) ^ galoisMult(temp[3],11)
column[3] = galoisMult(temp[3],14) ^ galoisMult(temp[2],9) ^ \
galoisMult(temp[1],13) ^ galoisMult(temp[0],11)
# mixColumns is a wrapper for mixColumn - generates a "virtual" column from
# the state table and applies the weird galois math
def mixColumns(state):
for i in range(4):
column = []
# create the column by taking the same item out of each "virtual" row
for j in range(4):
column.append(state[j*4+i])
# apply mixColumn on our virtual column
mixColumn(column)
# transfer the new values back into the state table
for j in range(4):
state[j*4+i] = column[j]
# mixColumnsInv is a wrapper for mixColumnInv - generates a "virtual" column from
# the state table and applies the weird galois math
def mixColumnsInv(state):
for i in range(4):
column = []
# create the column by taking the same item out of each "virtual" row
for j in range(4):
column.append(state[j*4+i])
# apply mixColumn on our virtual column
mixColumnInv(column)
# transfer the new values back into the state table
for j in range(4):
state[j*4+i] = column[j]
# aesRound applies each of the four transformations in order
def aesRound(state, roundKey):
#print "aesRound - before subBytes:", state
subBytes(state)
#print "aesRound - before shiftRows:", state
shiftRows(state)
#print "aesRound - before mixColumns:", state
mixColumns(state)
#print "aesRound - before addRoundKey:", state
addRoundKey(state, roundKey)
#print "aesRound - after addRoundKey:", state
# aesRoundInv applies each of the four inverse transformations
def aesRoundInv(state, roundKey):
#print "aesRoundInv - before addRoundKey:", state
addRoundKey(state, roundKey)
#print "aesRoundInv - before mixColumnsInv:", state
mixColumnsInv(state)
#print "aesRoundInv - before shiftRowsInv:", state
shiftRowsInv(state)
#print "aesRoundInv - before subBytesInv:", state
subBytesInv(state)
#print "aesRoundInv - after subBytesInv:", state
# returns a 16-byte round key based on an expanded key and round number
def createRoundKey(expandedKey, n):
return expandedKey[(n*16):(n*16+16)]
# create a key from a user-supplied password using SHA-256
def passwordToKey(password):
sha256 = hashlib.sha256()
sha256.update(password)
key = []
for c in list(sha256.digest()):
key.append(ord(c))
return key
# wrapper function for 14 rounds of AES since we're using a 256-bit key
def aesMain(state, expandedKey, numRounds=14):
roundKey = createRoundKey(expandedKey, 0)
addRoundKey(state, roundKey)
for i in range(1, numRounds):
roundKey = createRoundKey(expandedKey, i)
aesRound(state, roundKey)
# final round - leave out the mixColumns transformation
roundKey = createRoundKey(expandedKey, numRounds)
subBytes(state)
shiftRows(state)
addRoundKey(state, roundKey)
# 14 rounds of AES inverse since we're using a 256-bit key
def aesMainInv(state, expandedKey, numRounds=14):
# create roundKey for "last" round since we're going in reverse
roundKey = createRoundKey(expandedKey, numRounds)
# addRoundKey is the same funtion for inverse since it uses XOR
addRoundKey(state, roundKey)
shiftRowsInv(state)
subBytesInv(state)
for i in range(numRounds-1,0,-1):
roundKey = createRoundKey(expandedKey, i)
aesRoundInv(state, roundKey)
# last round - leave out the mixColumns transformation
roundKey = createRoundKey(expandedKey, 0)
addRoundKey(state, roundKey)
# aesEncrypt - encrypt a single block of plaintext
def aesEncrypt(plaintext, key):
block = copy(plaintext)
expandedKey = expandKey(key)
aesMain(block, expandedKey)
return block
# aesDecrypt - decrypte a single block of ciphertext
def aesDecrypt(ciphertext, key):
block = copy(ciphertext)
expandedKey = expandKey(key)
aesMainInv(block, expandedKey)
return block
# return 16-byte block from an open file
# pad to 16 bytes with null chars if needed
def getBlock(fp):
raw = fp.read(16)
# reached end of file
if len(raw) == 0:
return ""
# container for list of bytes
block = []
for c in list(raw):
block.append(ord(c))
# if the block is less than 16 bytes, pad the block
# with the string representing the number of missing bytes
if len(block) < 16:
padChar = 16-len(block)
while len(block) < 16:
block.append(padChar)
return block
# encrypt - wrapper function to allow encryption of arbitray length
# plaintext using Output Feedback (OFB) mode
def encrypt(text, password):
block = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # plaintext
ciphertext = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # ciphertext
# Initialization Vector
IV = []
for i in range(16):
IV.append(randint(0, 255))
#PADDING
numpads = 16 - (len(text)%16)
text = text + numpads*chr(numpads)
# convert password to AES 256-bit key
aesKey = passwordToKey(password)
fp = StringIO.StringIO(text)
outfile = StringIO.StringIO()
# write IV to outfile
for byte in IV:
outfile.write(chr(byte))
# get the file size (bytes)
# if the file size is a multiple of the block size, we'll need
# to add a block of padding at the end of the message
fp.seek(0,2)
filesize = fp.tell()
# put the file pointer back at the beginning of the file
fp.seek(0)
# begin reading in blocks of input to encrypt
firstRound = True
block = getBlock(fp)
while block != "":
if firstRound:
blockKey = aesEncrypt(IV, aesKey)
firstRound = False
else:
blockKey = aesEncrypt(blockKey, aesKey)
for i in range(16):
ciphertext[i] = block[i] ^ blockKey[i]
# write ciphertext to outfile
for c in ciphertext:
outfile.write(chr(c))
# grab next block from input file
block = getBlock(fp)
# close file pointers
fp.close()
s = base64.b64encode(outfile.getvalue())
outfile.close()
return s
# decrypt - wrapper function to allow decryption of arbitray length
# ciphertext using Output Feedback (OFB) mode
def decrypt(text, password):
block = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # ciphertext
plaintext = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # plaintext container
# convert password to AES 256-bit key
aesKey = passwordToKey(password)
fp = StringIO.StringIO(base64.b64decode(text))
outfile = StringIO.StringIO()
# recover Initialization Vector, the first block in file
IV = getBlock(fp)
# get the file size (bytes) in order to handle the
# padding at the end of the file
fp.seek(0,2)
filesize = fp.tell()
# put the file pointer back at the first block of ciphertext
fp.seek(16)
# begin reading in blocks of input to decrypt
firstRound = True
block = getBlock(fp)
while block != "":
if firstRound:
blockKey = aesEncrypt(IV, aesKey)
firstRound = False
else:
blockKey = aesEncrypt(blockKey, aesKey)
for i in range(16):
plaintext[i] = block[i] ^ blockKey[i]
# if we're in the last block of text -> throw out the
# number of bytes represented by the last byte in the block
if fp.tell() == filesize:
plaintext = plaintext[0:-(plaintext[-1])]
# write ciphertext to outfile
for c in plaintext:
outfile.write(chr(c))
# grab next block from input file
block = getBlock(fp)
# close file pointers
fp.close()
s = outfile.getvalue()
outfile.close()
return s