-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
169 lines (138 loc) · 6.04 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from torch import nn
import torch
from torch.cuda.amp import GradScaler, autocast
def get_optimizer(name, parameters, lr, weight_decay=0):
if name == 'sgd':
return torch.optim.SGD(parameters, lr=lr, weight_decay=weight_decay)
elif name == 'rmsprop':
return torch.optim.RMSprop(parameters, lr=lr, weight_decay=weight_decay)
elif name == 'adagrad':
return torch.optim.Adagrad(parameters, lr=lr, weight_decay=weight_decay)
elif name == 'adam':
return torch.optim.Adam(parameters, lr=lr, weight_decay=weight_decay)
elif name == 'adamax':
return torch.optim.Adamax(parameters, lr=lr, weight_decay=weight_decay)
else:
raise Exception("Unsupported optimizer: {}".format(name))
class Trainer(object):
def __init__(self, opt, model):
self.opt = opt
self.model = model
self.criterion = nn.CrossEntropyLoss()
if opt['decay_policy'] == [-1]:
self.parameters = [p for p in self.model.parameters() if p.requires_grad]
else:
to_apply = lambda n: any([n.startswith(f'layers.{i}') for i in opt['decay_policy']])
self.param0 = [p for n, p in self.model.named_parameters() if p.requires_grad and to_apply(n)]
self.param1 = [p for n, p in self.model.named_parameters() if p.requires_grad and not to_apply(n)]
self.parameters = [{'params': self.param0}, {'params': self.param1, 'weight_decay':0}]
if torch.cuda.is_available():
self.criterion.cuda()
self.optimizer = get_optimizer(self.opt['optimizer'], self.parameters, self.opt['lr'], self.opt['decay'])
def reset(self):
self.model.reset_parameters()
self.optimizer = get_optimizer(self.opt['optimizer'], self.parameters, self.opt['lr'], self.opt['decay'])
def update(self, inputs, target, idx):
self.model.train()
self.optimizer.zero_grad() #we need to set the gradients to zero before starting to do backpropagation because PyTorch accumulates the gradients on subsequent backward passes
logits = self.model(inputs)
loss = self.criterion(logits[idx], target[idx])
loss.backward()
self.optimizer.step()
return loss.item()
def update_soft(self, inputs, target_binarized, idx):
self.model.train()
self.optimizer.zero_grad()
logits = self.model(inputs)
logits = torch.log_softmax(logits, dim=-1)
loss = -torch.mean(torch.sum(target_binarized[idx]* logits[idx], dim=-1))
loss.backward()
self.optimizer.step()
return loss.item()
def evaluate(self, inputs, target, idx):
self.model.eval()
logits = self.model(inputs)
loss = self.criterion(logits[idx], target[idx])
preds = torch.max(logits[idx], dim=1)[1]
correct = preds.eq(target[idx]).double()
accuracy = correct.sum() / idx.size(0)
return loss.item(), correct, preds, accuracy.item()
def predict(self, inputs, tau=1):
self.model.eval()
logits = self.model(inputs) / tau
logits = torch.softmax(logits, dim=-1).detach()
return logits
def save(self, filename):
params = {
'model': self.model.state_dict(),
'optim': self.optimizer.state_dict()
}
try:
torch.save(params, filename)
except BaseException:
print("[Warning: Saving failed... continuing anyway.]")
def load(self, filename):
try:
checkpoint = torch.load(filename)
except BaseException:
print("Cannot load model from {}".format(filename))
exit()
self.model.load_state_dict(checkpoint['model'])
self.optimizer.load_state_dict(checkpoint['optim'])
class GMNN_Trainer(object):
def __init__(self, opt, model):
self.opt = opt
self.model = model
self.trainer_q = Trainer(opt, model.GNNq)
self.trainer_p = Trainer(opt, model.GNNp)
def reset(self):
self.model.reset_parameters()
self.trainer_p.reset_parameters()
self.trainer_q.reset_parameters()
def update(self, inputs, target, idx):
self.model.train()
self.optimizer.zero_grad() #we need to set the gradients to zero before starting to do backpropagation because PyTorch accumulates the gradients on subsequent backward passes
logits = self.model(inputs)
loss = self.criterion(logits[idx], target[idx])
loss.backward()
self.optimizer.step()
return loss.item()
def update_soft(self, inputs, target_binarized, idx):
self.model.train()
self.optimizer.zero_grad()
logits = self.model(inputs)
logits = torch.log_softmax(logits, dim=-1)
loss = -torch.mean(torch.sum(target_binarized[idx]* logits[idx], dim=-1))
loss.backward()
self.optimizer.step()
return loss.item()
def evaluate(self, inputs, target, idx):
self.model.eval()
logits = self.model(inputs)
loss = self.criterion(logits[idx], target[idx])
preds = torch.max(logits[idx], dim=1)[1]
correct = preds.eq(target[idx]).double()
accuracy = correct.sum() / idx.size(0)
return loss.item(), correct, preds, accuracy.item()
def predict(self, inputs, tau=1):
self.model.eval()
logits = self.model(inputs) / tau
logits = torch.softmax(logits, dim=-1).detach()
return logits
def save(self, filename):
params = {
'model': self.model.state_dict(),
'optim': self.optimizer.state_dict()
}
try:
torch.save(params, filename)
except BaseException:
print("[Warning: Saving failed... continuing anyway.]")
def load(self, filename):
try:
checkpoint = torch.load(filename)
except BaseException:
print("Cannot load model from {}".format(filename))
exit()
self.model.load_state_dict(checkpoint['model'])
self.optimizer.load_state_dict(checkpoint['optim'])