forked from PDillis/stylegan3-fun
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
452 lines (386 loc) · 25.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Train a GAN using the techniques described in the paper
"Alias-Free Generative Adversarial Networks"."""
import os
import sys
import click
import re
import json
import tempfile
import torch
import os
if 'TPU_NAME' in os.environ.keys():
use_tpu = True
elif 'COLAB_TPU_ADDR' in os.environ.keys():
use_tpu = True
else:
use_tpu = False
if use_tpu:
# imports the torch_xla package
import tensorflow as tf
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
import torch_xla.distributed.parallel_loader as pl
import torch_xla.utils.utils as xu
import torch_xla.distributed.xla_multiprocessing as xmp
import torch_xla.test.test_utils as test_utils
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import dnnlib
from training import training_loop
from metrics import metric_main
from torch_utils import training_stats
from torch_utils import custom_ops
# Detect TPU hardware
#try:
# tpu = tf.distribute.cluster_resolver.TPUClusterResolver() # TPU detection
#except ValueError: # If TPU not found
# tpu = None
from common.env_stats import get_env_stats
# ----------------------------------------------------------------------------
def subprocess_fn(rank, c, temp_dir):
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
#print("Script command line:\n{}".format(" ".join(sys.argv)))
#print("Script arguments:\n{}".format(json.dumps(indent=2)))
#print("Env_stats:\n{}".format(get_env_stats(
# packages=["torch"],
# pip_packages=["torch"])))
#print("Training config:\n{}\n".format(json.dumps(c, indent=2)))
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
# Init torch.distributed.
#if c.num_gpus > 1:
if use_tpu==None and c.num_gpus > 1:
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init'))
if os.name == 'nt':
init_method = 'file:///' + init_file.replace('\\', '/')
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=c.num_gpus)
else:
init_method = f'file://{init_file}'
#torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=c.num_gpus)
torch.distributed.init_process_group(backend='nccl' if use_tpu == None else 'xla-tpu', init_method=init_method, rank=rank, world_size=c.num_gpus)
# Init torch_utils.
#sync_device = torch.device('cuda', rank) if c.num_gpus > 1 else None
#training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
if use_tpu == None:
sync_device = torch.device('cuda', rank) if c.num_gpus > 1 else None
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
else:
sync_device = None #xm.xla_device()
if rank != 0:
custom_ops.verbosity = 'none'
# Execute training loop.
training_loop.training_loop(rank=rank, **c)
# ----------------------------------------------------------------------------
def launch_training(c, desc, outdir, dry_run):
dnnlib.util.Logger(should_flush=True)
print()
print("Script command line:\n{}".format(" ".join(sys.argv)))
#print("Script arguments:\n{}".format())
print("Env_stats:\n{}".format(get_env_stats(
packages=["torch"],
pip_packages=["torch"])))
print("Training config:\n{}".format(c))
print()
# Pick output directory.
prev_run_dirs = []
if os.path.isdir(outdir):
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{desc}')
assert not os.path.exists(c.run_dir)
# Print options.
print()
print('Training options:')
print(json.dumps(c, indent=2))
print()
print(f'Output directory: {c.run_dir}')
print(f'Number of GPUs: {c.num_gpus}')
print(f'TPU present: {use_tpu}')
print(f'Batch size: {c.batch_size} images')
print(f'Training duration: {c.total_kimg} kimg')
print(f'Dataset path: {c.training_set_kwargs.path}')
print(f'Dataset size: {c.training_set_kwargs.max_size} images')
print(f'Dataset resolution: {c.training_set_kwargs.resolution}')
print(f'Dataset labels: {c.training_set_kwargs.use_labels}')
print(f'Dataset x-flips: {c.training_set_kwargs.xflip}')
print(f'Dataset y-flips: {c.training_set_kwargs.yflip}')
print()
# Dry run?
if dry_run:
print('Dry run; exiting.')
return
# Create output directory.
print('Creating output directory...')
os.makedirs(c.run_dir)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f:
json.dump(c, f, indent=2)
# Launch processes.
print('Launching processes...')
torch.multiprocessing.set_start_method('spawn')
with tempfile.TemporaryDirectory() as temp_dir:
#if c.num_gpus == 1:
if use_tpu:
xmp.spawn(subprocess_fn, args=(c, temp_dir), nprocs=c.num_gpus, start_method='fork')
elif c.num_gpus == 1:
subprocess_fn(rank=0, c=c, temp_dir=temp_dir)
else:
torch.multiprocessing.spawn(fn=subprocess_fn, args=(c, temp_dir), nprocs=c.num_gpus)
# ----------------------------------------------------------------------------
def init_dataset_kwargs(data):
try:
dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data, use_labels=True, max_size=None, xflip=False, yflip=False)
dataset_obj = dnnlib.util.construct_class_by_name(**dataset_kwargs) # Subclass of training.dataset.Dataset.
dataset_kwargs.resolution = dataset_obj.resolution # Be explicit about resolution.
dataset_kwargs.use_labels = dataset_obj.has_labels # Be explicit about labels.
dataset_kwargs.max_size = len(dataset_obj) # Be explicit about dataset size.
return dataset_kwargs, dataset_obj.name
except IOError as err:
raise click.ClickException(f'--data: {err}')
# ----------------------------------------------------------------------------
def parse_comma_separated_list(s):
if isinstance(s, list):
return s
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
# ----------------------------------------------------------------------------
@click.command()
# Required.
@click.option('--cfg', help='Base configuration', type=click.Choice(['stylegan3-t', 'stylegan3-r', 'stylegan2']), required=True)
@click.option('--data', help='Training data', metavar='[ZIP|DIR]', type=click.Path(exists=True, dir_okay=True), required=True)
@click.option('--gpus', help='Number of GPUs to use', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--batch', help='Total batch size', metavar='INT', type=click.IntRange(min=1), required=True)
# Optional features.
@click.option('--cond', help='Train conditional model', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--mirror', help='Enable dataset x-flips', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--mirror-y', help='Enable dataset y-flips', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--aug', help='Augmentation mode', type=click.Choice(['noaug', 'ada', 'fixed']), default='ada', show_default=True)
@click.option('--augpipe', help='Augmentation pipeline [default: bgc]', type=click.Choice(['blit', 'geom', 'color', 'filter', 'noise', 'cutout', 'bg', 'bgc', 'bgcf', 'bgcfn', 'bgcfnc', 'bcfc', 'bc', 'custom', 'noflip']))
@click.option('--resume', help='Resume from given network pickle', metavar='[PATH|URL]', type=str)
@click.option('--freezed', help='Freeze first layers of D', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--gm-freezed', help='Freeze first layers of G.mapping', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
# Misc hyperparameters.
@click.option('--gamma', help='R1 regularization weight', metavar='FLOAT', type=click.FloatRange(min=0), default=None)
@click.option('--p', help='Probability for --aug=fixed', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.2, show_default=True)
@click.option('--target', help='Target value for --aug=ada', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.6, show_default=True)
@click.option('--batch-gpu', help='Limit batch size per GPU', metavar='INT', type=click.IntRange(min=1))
@click.option('--cbase', help='Capacity multiplier', metavar='INT', type=click.IntRange(min=1), default=32768, show_default=True)
@click.option('--cmax', help='Max. feature maps', metavar='INT', type=click.IntRange(min=1), default=512, show_default=True)
@click.option('--glr', help='G learning rate [default: varies]', metavar='FLOAT', type=click.FloatRange(min=0))
@click.option('--dlr', help='D learning rate', metavar='FLOAT', type=click.FloatRange(min=0), default=0.002, show_default=True)
@click.option('--map-depth', help='Mapping network depth [default: varies]', metavar='INT', type=click.IntRange(min=1))
@click.option('--mbstd-group', help='Minibatch std group size', metavar='INT', type=click.IntRange(min=1), default=4, show_default=True)
# Misc settings.
@click.option('--outdir', help='Where to save the results', metavar='DIR', type=click.Path(file_okay=False), default=os.path.join(os.getcwd(), 'training-runs'))
@click.option('--desc', help='String to include in result dir name', metavar='STR', type=str)
@click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='none', show_default=True)
@click.option('--kimg', help='Total training duration', metavar='KIMG', type=click.IntRange(min=1), default=25000, show_default=True)
@click.option('--resume-kimg', help='Number of kimg images to resume from', metavar='RKIMG', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--tick', help='How often to print progress', metavar='KIMG', type=click.IntRange(min=1), default=4, show_default=True)
@click.option('--snap', help='How often to save model snapshots', metavar='TICKS', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--img-snap', help='How often to save image snapshots', metavar='INT', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--snap-res', help='Screen resolution to save image snapshot', type=click.Choice(['one', 'qHD', '1080p', '4k', '8k']), default='4k', show_default=True)
@click.option('--seed', help='Random seed', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--fp32', help='Disable mixed-precision', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--nobench', help='Disable cuDNN benchmarking', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--workers', help='DataLoader worker processes', metavar='INT', type=click.IntRange(min=1), default=3, show_default=True)
@click.option('-n','--dry-run', help='Print training options and exit', is_flag=True)
def main(**kwargs):
"""Train a GAN using the techniques described in the paper
"Alias-Free Generative Adversarial Networks".
If TPU(s) present, will use up to the number of TPU cores specified with --gpus via the PyTorch XLM library instead of the CUDA one.
Examples:
\b
# Train StyleGAN3-T for AFHQv2 using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=stylegan3-t --data=~/datasets/afhqv2-512x512.zip \\
--gpus=8 --batch=32 --gamma=8.2 --mirror=1
\b
# Fine-tune StyleGAN3-R for MetFaces-U using 1 GPU, starting from the pre-trained FFHQ-U pickle.
python train.py --outdir=~/training-runs --cfg=stylegan3-r --data=~/datasets/metfacesu-1024x1024.zip \\
--gpus=8 --batch=32 --gamma=6.6 --mirror=1 --kimg=5000 --snap=5 \\
--resume=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhqu-1024x1024.pkl
\b
# Train StyleGAN2 for FFHQ at 1024x1024 resolution using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=stylegan2 --data=~/datasets/ffhq-1024x1024.zip \\
--gpus=8 --batch=32 --gamma=10 --mirror=1 --aug=noaug
"""
# Initialize config.
opts = dnnlib.EasyDict(kwargs) # Command line arguments.
c = dnnlib.EasyDict() # Main config dict.
c.G_kwargs = dnnlib.EasyDict(class_name=None, z_dim=512, w_dim=512, mapping_kwargs=dnnlib.EasyDict())
c.D_kwargs = dnnlib.EasyDict(class_name='training.networks_stylegan2.Discriminator', block_kwargs=dnnlib.EasyDict(), mapping_kwargs=dnnlib.EasyDict(), epilogue_kwargs=dnnlib.EasyDict())
c.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0.99], eps=1e-8)
c.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0.99], eps=1e-8)
c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.StyleGAN2Loss')
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, prefetch_factor=2)
# Training set.
c.training_set_kwargs, dataset_name = init_dataset_kwargs(data=opts.data)
if opts.cond and not c.training_set_kwargs.use_labels:
raise click.ClickException('--cond=True requires labels specified in dataset.json')
c.training_set_kwargs.use_labels = opts.cond
c.training_set_kwargs.xflip = opts.mirror
c.training_set_kwargs.yflip = opts.mirror_y
# Hyperparameters & settings.
c.num_gpus = opts.gpus
c.batch_size = opts.batch
c.batch_gpu = opts.batch_gpu or opts.batch // opts.gpus
c.G_kwargs.channel_base = c.D_kwargs.channel_base = opts.cbase
c.G_kwargs.channel_max = c.D_kwargs.channel_max = opts.cmax
c.G_kwargs.mapping_kwargs.num_layers = (8 if opts.cfg == 'stylegan2' else 2) if opts.map_depth is None else opts.map_depth
c.G_kwargs.mapping_kwargs.freeze_layers = opts.gm_freezed
c.D_kwargs.block_kwargs.freeze_layers = opts.freezed
c.D_kwargs.epilogue_kwargs.mbstd_group_size = opts.mbstd_group
if opts.gamma is not None:
c.loss_kwargs.r1_gamma = float(opts.gamma)
else:
# Use heuristic from StyleGAN2-ADA
c.loss_kwargs.r1_gamma = 0.0002 * c.training_set_kwargs.resolution ** 2 / c.batch_size
print(f'Using heuristic, R1 gamma set at: {c.loss_kwargs.r1_gamma:.4f}')
c.G_opt_kwargs.lr = (0.002 if opts.cfg == 'stylegan2' else 0.0025) if opts.glr is None else opts.glr
c.D_opt_kwargs.lr = opts.dlr
c.metrics = opts.metrics
c.total_kimg = opts.kimg
c.resume_kimg = opts.resume_kimg
c.kimg_per_tick = opts.tick
c.network_snapshot_ticks = opts.snap
c.image_snapshot_ticks = opts.img_snap
c.snap_res = opts.snap_res
c.random_seed = c.training_set_kwargs.random_seed = opts.seed
c.data_loader_kwargs.num_workers = opts.workers
# Sanity checks.
if c.batch_size % c.num_gpus != 0:
raise click.ClickException('--batch must be a multiple of --gpus')
if c.batch_size % (c.num_gpus * c.batch_gpu) != 0:
raise click.ClickException('--batch must be a multiple of --gpus times --batch-gpu')
if c.batch_gpu < c.D_kwargs.epilogue_kwargs.mbstd_group_size:
raise click.ClickException('--batch-gpu cannot be smaller than --mbstd')
if any(not metric_main.is_valid_metric(metric) for metric in c.metrics):
raise click.ClickException('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
# Base configuration.
c.ema_kimg = c.batch_size * 10 / 32
if opts.cfg == 'stylegan2':
c.G_kwargs.class_name = 'training.networks_stylegan2.Generator'
c.loss_kwargs.style_mixing_prob = 0.9 # Enable style mixing regularization.
c.loss_kwargs.pl_weight = 2 # Enable path length regularization.
c.G_reg_interval = 4 # Enable lazy regularization for G.
c.G_kwargs.fused_modconv_default = 'inference_only' # Speed up training by using regular convolutions instead of grouped convolutions.
c.loss_kwargs.pl_no_weight_grad = True # Speed up path length regularization by skipping gradient computation wrt. conv2d weights.
else:
c.G_kwargs.class_name = 'training.networks_stylegan3.Generator'
c.G_kwargs.magnitude_ema_beta = 0.5 ** (c.batch_size / (20 * 1e3))
if opts.cfg == 'stylegan3-r':
c.G_kwargs.conv_kernel = 1 # Use 1x1 convolutions.
c.G_kwargs.channel_base *= 2 # Double the number of feature maps.
c.G_kwargs.channel_max *= 2
c.G_kwargs.use_radial_filters = True # Use radially symmetric downsampling filters.
c.loss_kwargs.blur_init_sigma = 10 # Blur the images seen by the discriminator.
c.loss_kwargs.blur_fade_kimg = c.batch_size * 200 / 32 # Fade out the blur during the first N kimg.
# Augmentation.
augpipe_specs = {
'blit': dict(xflip=1, rotate90=1, xint=1),
'geom': dict(scale=1, rotate=1, aniso=1, xfrac=1),
'color': dict(brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1),
'filter': dict(imgfilter=1),
'noise': dict(noise=1),
'cutout': dict(cutout=1),
'bg': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1),
'bgc': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1),
'bgcf': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1),
'bgcfn': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, noise=1),
'bgcfnc': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, noise=1, cutout=1),
'bcfc': dict(xflip=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, cutout=1),
'bc': dict(xflip=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1),
'custom' : dict(xflip=1, scale=1, cutout=1),
'noflip' : dict(scale=1, cutout=1)
}
if opts.aug != 'noaug':
c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', **augpipe_specs[opts.augpipe])
if opts.aug == 'ada':
c.ada_target = opts.target
if opts.aug == 'fixed':
c.augment_p = opts.p
# Resume.
resume_specs = {
# For StyleGAN2/ADA models; --cfg=stylegan2
'stylegan2': {
# Official NVIDIA models
'ffhq256': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-256x256.pkl',
'ffhqu256': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhqu-256x256.pkl',
'ffhq512': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-512x512.pkl',
'ffhq1024': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-1024x1024.pkl',
'ffhqu1024': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhqu-1024x1024.pkl',
'celebahq256': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-celebahq-256x256.pkl',
'lsundog256': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-lsundog-256x256.pkl',
'afhqcat512': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqcat-512x512.pkl',
'afhqdog512': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqdog-512x512.pkl',
'afhqwild512': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqwild-512x512.pkl',
'afhq512': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqv2-512x512.pkl',
'brecahad512': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-brecahad-512x512.pkl',
'cifar10': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-cifar10-32x32.pkl',
'metfaces': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-metfaces-1024x1024.pkl',
'metfacesu': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-metfacesu-1024x1024.pkl',
# Community models; TODO: add the interesting ones found in https://github.com/justinpinkney/awesome-pretrained-stylegan2
},
# For StyleGAN3 config-r models (--cfg=stylegan3-r)
'stylegan3-r': {
# Official NVIDIA models
'afhq512': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl',
'ffhq1024': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhq-1024x1024.pkl',
'ffhqu1024': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhqu-1024x1024.pkl',
'ffhqu256': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhqu-256x256.pkl',
'metfaces': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-metfaces-1024x1024.pkl',
'metfacesu': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-metfacesu-1024x1024.pkl',
},
# For StyleGAN3 config-t models (--cfg=stylegan3-t)
'stylegan3-t': {
# Official NVIDIA models
'afhq512': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-afhqv2-512x512.pkl',
'ffhq1024': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhq-1024x1024.pkl',
'ffhqu1024': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhqu-1024x1024.pkl',
'ffhqu256': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhqu-256x256.pkl',
'metfaces': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-metfaces-1024x1024.pkl',
'metfacesu': 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-metfacesu-1024x1024.pkl',
# Community models, found in: https://github.com/justinpinkney/awesome-pretrained-stylegan3 by @justinpinkney
'landscapes256': 'https://drive.google.com/u/0/uc?export=download&confirm=eJHe&id=14UGDDOusZ9TMb-pOrF0PAjMGVWLSAii1', # Thanks to @justinpinkney
'wikiart1024': 'https://drive.google.com/u/0/uc?export=download&confirm=2tz5&id=18MOpwTMJsl_Z17q-wQVnaRLCUFZYSNkj', # Thanks to @justinpinkney
}
}
if opts.resume is None:
resume_desc = 'no_resume'
else:
if opts.resume in resume_specs[opts.cfg]:
c.resume_pkl = resume_specs[opts.cfg][opts.resume]
resume_desc = f'resume_{opts.resume}'
else: # A local file
c.resume_pkl = opts.resume
resume_desc = f'resume_custom'
c.ada_kimg = 100 # Make ADA react faster at the beginning.
c.ema_rampup = None # Disable EMA rampup.
c.loss_kwargs.blur_init_sigma = 0 # Disable blur rampup.
# Performance-related toggles.
if opts.fp32:
c.G_kwargs.num_fp16_res = c.D_kwargs.num_fp16_res = 0
c.G_kwargs.conv_clamp = c.D_kwargs.conv_clamp = None
#if opts.nobench:
if opts.nobench or use_tpu:
c.cudnn_benchmark = False
# Description string.
desc = f'{opts.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}-{resume_desc}'
if opts.desc is not None:
desc += f'-{opts.desc}'
# Launch.
launch_training(c=c, desc=desc, outdir=opts.outdir, dry_run=opts.dry_run)
# ----------------------------------------------------------------------------
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter
# ----------------------------------------------------------------------------