-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
478 lines (403 loc) · 19.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import wandb
import os
import pandas as pd
import warmup_scheduler
import numpy as np
from tqdm import tqdm, trange
from timm.data.mixup import Mixup
from architect import Architect
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import all_reduce, all_gather, ReduceOp
from timm.utils import CheckpointSaver
from utils import rand_bbox
class Trainer(object):
def __init__(self, model, args):
self.model = model
self.device = args.device
self.clip_grad = args.clip_grad
self.cutmix_beta = args.cutmix_beta
self.cutmix_prob = args.cutmix_prob
self.label_smoothing = args.label_smoothing
self.w01 = args.w01
self.mu = args.mu
self.l = args.l
self.unrolled = args.unrolled
self.n_cells = args.n_cells
self.hidden_s_candidates = args.hidden_s_candidates
self.hidden_c_candidates = args.hidden_c_candidates
self.wandb = args.wandb
if self.wandb:
wandb.config.update(args, allow_val_change=True)
self.mixup_fn = Mixup(
cutmix_alpha=self.cutmix_beta,
prob=self.cutmix_prob,
label_smoothing=self.label_smoothing,
num_classes=args.num_classes,
)
# weights optimizer
if args.w_optimizer == 'SGD':
self.w_optimizer = optim.SGD(self.model.parameters(), lr=args.w_lr, momentum=args.w_momentum, weight_decay=args.w_weight_decay, nesterov=args.nesterov)
elif args.w_optimizer == 'Adam':
self.w_optimizer = optim.Adam(self.model.parameters(), lr=args.w_lr, betas=(args.w_beta1, args.w_beta2), weight_decay=args.w_weight_decay)
elif args.w_optimizer == 'Adamw':
self.w_optimizer = optim.AdamW(self.model.parameters(), lr=args.w_lr, betas=(args.w_beta1, args.w_beta2),weight_decay=args.w_weight_decay)
else:
raise ValueError(f"No such W optimizer: {args.w_optimizer}")
# alphas optimizer
if args.a_optimizer == 'Adam':
self.a_optimizer = optim.Adam(self.model.parameters(), lr=args.a_lr, betas=(args.a_beta1, args.a_beta2), weight_decay=args.a_weight_decay)
else:
raise ValueError(f"No such optimizer: {args.a_optimizer}")
# weights scheduler
if args.w_scheduler == 'step':
self.base_scheduler = optim.lr_scheduler.MultiStepLR(self.w_optimizer, milestones=[args.epochs//2, 3*args.epochs//4], gamma=args.w_gamma)
elif args.w_scheduler == 'cosine':
self.base_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.w_optimizer, T_max=args.epochs, eta_min=args.w_min_lr)
else:
raise ValueError(f"No such scheduler: {args.w_scheduler}")
if args.warmup_epochs:
self.scheduler = warmup_scheduler.GradualWarmupScheduler(self.w_optimizer, multiplier=1., total_epoch=args.warmup_epochs, after_scheduler=self.base_scheduler)
else:
self.scheduler = self.base_scheduler
# scaler
self.scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
self.epochs = args.epochs
# Architect
self.architect = Architect(self.model, args.w_momentum, args.w_weight_decay, self.a_optimizer, use_amp=args.use_amp)
self.num_steps = 0
self.epoch_loss, self.epoch_corr, self.epoch_acc = 0., 0., 0.
def _train_one_step(self, trn_X, trn_y, val_X, val_y, mixup_fn):
self.model.train()
self.num_steps += 1
val_X = val_X.type(torch.FloatTensor)
val_X, val_y = val_X.to(self.device), val_y.to(self.device)
trn_X = trn_X.type(torch.FloatTensor)
trn_X, trn_y = trn_X.to(self.device), trn_y.to(self.device)
trn_X, trn_y = mixup_fn(trn_X, trn_y)
w_lr = self.scheduler.get_last_lr()[0]
# phase 2. architect step (alpha)
if self.unrolled:
self.a_optimizer.zero_grad()
self.architect.unrolled_backward(trn_X, trn_y, val_X, val_y, w_lr, self.w_optimizer, self.w01)
self.a_optimizer.step()
else:
arch_loss, L01_loss, net_loss, friction = self.architect.rolled_backward(val_X, val_y, self.w01, self.l)
# phase 1. child network step (w)
self.w_optimizer.zero_grad()
if self.scaler is not None:
with torch.cuda.amp.autocast():
logits = self.model(trn_X)
loss = self.model.criterion(logits, trn_y) + self.mu * self.model.mmc()
self.scaler.scale(loss).backward()
else:
logits = self.model(trn_X)
loss = self.model.criterion(logits, trn_y) + self.mu * self.model.mmc()
loss.backward()
# gradient clipping
if self.clip_grad:
nn.utils.clip_grad_norm_(self.model.weights(), self.clip_grad)
if self.scaler is not None:
self.scaler.step(self.w_optimizer)
self.scaler.update()
else:
self.w_optimizer.step()
# update metrics
acc = logits.argmax(dim=-1).eq(trn_y.argmax(dim=-1)).sum(-1)/len(trn_X)
"""
#wandb.log({
# 'loss': loss,
# 'acc': acc
#}, step=self.num_steps)
"""
self.epoch_tr_loss += loss * len(trn_X)
self.epoch_L01_loss += L01_loss * len(trn_X)
self.epoch_friction += friction * len(trn_X)
self.epoch_tr_corr += logits.argmax(dim=-1).eq(trn_y.argmax(dim=-1)).sum(-1)
# @torch.no_grad
def _test_one_step(self, val_X, val_y, testing=False):
self.model.eval()
val_X, val_y = val_X.to(self.device), val_y.to(self.device)
if self.scaler is not None:
with torch.cuda.amp.autocast():
with torch.no_grad():
logits = self.model(val_X)
loss = self.model.criterion(logits, val_y)
else:
with torch.no_grad():
logits = self.model(val_X)
loss = self.model.criterion(logits, val_y)
if testing:
self.test_loss += loss * len(val_X)
self.test_corr += logits.argmax(dim=-1).eq(val_y).sum(-1)
else:
self.epoch_loss += loss * len(val_X)
self.epoch_corr += logits.argmax(dim=-1).eq(val_y).sum(-1)
def fit(self, train_dl, valid_dl, test_dl, args):
df = {'epoch': [], 'train_loss': [], 'L01_loss': [], 'valid_loss': [], 'train_acc': [], 'valid_acc': [], 'friction': [], 'mmc': [], 'alphas': [], 'test_loss': [], 'test_acc': []}
best_acc = 0.
for epoch in trange(1, self.epochs+1):
num_tr_imgs = 0.
self.epoch_tr_loss, self.epoch_L01_loss, self.epoch_friction, self.epoch_tr_corr, self.epoch_tr_acc = 0., 0., 0., 0., 0.
for batch_idx, ((trn_X, trn_y), (val_X, val_y)) in enumerate(zip(train_dl, valid_dl)):
self._train_one_step(trn_X, trn_y, val_X, val_y, self.mixup_fn)
num_tr_imgs += len(trn_X)
self.scheduler.step()
################################################ LOGGING #################################################
self.epoch_tr_loss /= num_tr_imgs
self.epoch_L01_loss /= num_tr_imgs
self.epoch_friction /= num_tr_imgs
self.epoch_tr_acc = self.epoch_tr_corr / num_tr_imgs
if self.wandb:
wandb.log({
'w_lr': self.scheduler.get_last_lr()[0],
'epoch_tr_loss': self.epoch_tr_loss,
'epoch_L01_loss': self.epoch_L01_loss,
'friction': self.model.friction().item(),
'mmc': self.model.mmc().item(),
'epoch_tr_acc': self.epoch_tr_acc
}, step=epoch
)
alphas = self.model.get_detached_alphas(aslist=True)
for i in range(self.n_cells):
for j in range(len(self.hidden_s_candidates)):
wandb.log({
f'a_cell{i}_Ds_{self.hidden_s_candidates[j]}': alphas[i][0][j],
}, step=epoch)
for j in range(len(self.hidden_c_candidates)):
wandb.log({
f'a_cell{i}_Dc_{self.hidden_c_candidates[j]}': alphas[i][1][j],
}, step=epoch)
df['epoch'].append(epoch)
df['train_acc'].append(self.epoch_tr_acc.item())
df['train_loss'].append(self.epoch_tr_loss.item())
df['L01_loss'].append(self.epoch_L01_loss)
df['friction'].append(self.model.friction().item())
df['mmc'].append(self.model.mmc().item())
df['alphas'].append(None)
############################################################################################################
num_imgs = 0.
self.epoch_loss, self.epoch_corr, self.epoch_acc = 0., 0., 0.
for batch_idx, (val_X, val_y) in enumerate(valid_dl):
self._test_one_step(val_X, val_y)
num_imgs += len(val_X)
################################################ LOGGING #################################################
self.epoch_loss /= num_imgs
self.epoch_acc = self.epoch_corr / num_imgs
if self.wandb:
wandb.log({
'val_loss': self.epoch_loss,
'val_acc': self.epoch_acc
}, step=epoch
)
df['valid_loss'].append(self.epoch_loss.item())
df['valid_acc'].append(self.epoch_acc.item())
############################################################################################################
if self.epoch_acc > best_acc:
num_imgs = 0.
self.test_loss, self.test_corr, self.test_acc = 0., 0., 0.
for batch_idx, (test_X, test_y) in enumerate(test_dl):
self._test_one_step(test_X, test_y, testing=True)
num_imgs += len(test_X)
self.test_loss /= num_imgs
self.test_acc = self.test_corr / num_imgs
if self.wandb:
wandb.log({
'test_loss': self.test_loss,
'test_acc': self.test_acc
}, step=epoch
)
df['test_loss'].append(self.test_loss.item())
df['test_acc'].append(self.test_acc.item())
# save model weights
path = os.path.join(args.output, args.experiment)
os.makedirs(path, exist_ok=True)
torch.save(self.model.state_dict(), os.path.join(path, 'W_test.pt'))
else:
df['test_loss'].append(None)
df['test_acc'].append(None)
# save model weights
path = os.path.join(args.output, args.experiment)
os.makedirs(path, exist_ok=True)
torch.save(self.model.state_dict(), os.path.join(path, 'W.pt'))
pd_df = pd.DataFrame.from_dict(df, orient='columns')
pd_df.to_csv(os.path.join(path, 'log.csv'), index=False, float_format='%g')
class VanillaTrainer(object):
def __init__(self, model, args):
self.device = args.device
if args.distributed:
self.model = DDP(model, device_ids=[self.device])
else:
self.model = model
self.clip_grad = args.clip_grad
self.cutmix_beta = args.cutmix_beta
self.cutmix_prob = args.cutmix_prob
print("self.cutmix_beta:", self.cutmix_beta)
print("self.cutmix_prob:", self.cutmix_prob)
self.label_smoothing = args.label_smoothing
self.optimizer = args.optimizer
self.wandb = args.wandb
if self.wandb:
wandb.config.update(args, allow_val_change=True)
if args.optimizer == 'SGD':
self.optimizer = optim.SGD(self.model.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay, nesterov=args.nesterov)
elif args.optimizer == 'Adam':
self.optimizer = optim.Adam(self.model.parameters(), lr=args.lr, betas=(args.beta1, args.beta2),
weight_decay=args.weight_decay)
elif args.optimizer == 'Adamw':
self.optimizer = optim.AdamW(self.model.parameters(), lr=args.lr, betas=(args.beta1, args.beta2),
weight_decay=args.weight_decay)
else:
raise ValueError(f"No such optimizer: {self.optimizer}")
if args.scheduler == 'step':
self.base_scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer,
milestones=[args.epochs // 2, 3 * args.epochs // 4],
gamma=args.gamma)
elif args.scheduler == 'cosine':
self.base_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, T_max=args.epochs,
eta_min=args.min_lr)
else:
raise ValueError(f"No such scheduler: {self.scheduler}")
if args.warmup_epoch:
self.scheduler = warmup_scheduler.GradualWarmupScheduler(self.optimizer, multiplier=1.,
total_epoch=args.warmup_epoch,
after_scheduler=self.base_scheduler)
else:
self.scheduler = self.base_scheduler
# scaler
self.scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
self.epochs = args.epochs
# self.criterion = nn.CrossEntropyLoss(label_smoothing=args.label_smoothing)
self.criterion = nn.CrossEntropyLoss()
self.num_steps = 0
self.epoch_loss, self.epoch_corr, self.epoch_acc = 0., 0., 0.
self.saver = None
if not args.distributed or args.device == 0:
self.saver = CheckpointSaver(
model=model,
optimizer=self.optimizer,
args=args,
amp_scaler=self.scaler,
checkpoint_dir=args.output,
recovery_dir=args.output,
)
def _train_one_step(self, batch, mixup_fn, args):
self.model.train()
img, label = batch
self.num_steps += 1
img, label = img.to(self.device), label.to(self.device)
img, label = mixup_fn(img, label)
self.optimizer.zero_grad()
# compute output
if self.scaler is not None:
with torch.cuda.amp.autocast():
out = self.model(img)
loss = self.criterion(out, label)
self.scaler.scale(loss).backward()
else:
out = self.model(img)
loss = self.criterion(out, label)
loss.backward()
if self.clip_grad:
nn.utils.clip_grad_norm_(self.model.parameters(), self.clip_grad)
if self.scaler is not None:
self.scaler.step(self.optimizer)
self.scaler.update()
else:
self.optimizer.step()
if args.distributed:
all_reduce(loss, ReduceOp.SUM)
loss = loss / args.world_size
out_list = [torch.zeros_like(out) for _ in range(args.world_size)]
label_list = [torch.zeros_like(label) for _ in range(args.world_size)]
all_gather(out_list, out)
all_gather(label_list, label)
out = torch.cat(out_list, dim=0)
label = torch.cat(label_list, dim=0)
if not args.distributed or args.device == 0:
self.epoch_tr_loss += loss * img.size(0)
self.epoch_tr_corr += out.argmax(dim=-1).eq(label.argmax(dim=-1)).sum(-1)
# @torch.no_grad
def _test_one_step(self, batch):
self.model.eval()
img, label = batch
img, label = img.to(self.device), label.to(self.device)
if self.scaler is not None:
with torch.cuda.amp.autocast():
with torch.no_grad():
out = self.model(img)
loss = self.criterion(out, label)
else:
with torch.no_grad():
out = self.model(img)
loss = self.criterion(out, label)
self.epoch_loss += loss * img.size(0)
self.epoch_corr += out.argmax(dim=-1).eq(label).sum(-1)
def fit(self, train_dl, valid_dl, test_dl, args):
df = {'epoch': [], 'train_loss': [], 'valid_loss': [], 'train_acc': [], 'valid_acc': [], 'mmc': []}
mixup_fn = Mixup(
cutmix_alpha=self.cutmix_beta,
prob=self.cutmix_prob,
label_smoothing=self.label_smoothing,
num_classes=args.num_classes,
)
for epoch in trange(1, self.epochs + 1):
num_tr_imgs = 0.
self.epoch_tr_loss, self.epoch_tr_corr, self.epoch_tr_acc = 0., 0., 0.
if args.distributed:
train_dl.sampler.set_epoch(epoch)
for batch_idx, batch in enumerate(train_dl):
if args.verbose:
print(f"TRAIN rank: {args.device}, batch_idx: {batch_idx} ({batch_idx/(len(train_dl) * args.world_size):.02f}%)")
self._train_one_step(batch, mixup_fn, args)
num_tr_imgs += batch[0].size(0)
if self.saver is not None and args.recovery_interval and (
(batch_idx + 1) % args.recovery_interval == 0):
self.saver.save_recovery(epoch, batch_idx=batch_idx)
self.scheduler.step()
if not args.distributed or args.device == 0:
self.epoch_tr_loss /= num_tr_imgs
self.epoch_tr_acc = self.epoch_tr_corr / num_tr_imgs
df['epoch'].append(epoch)
df['train_acc'].append(self.epoch_tr_acc.item())
df['train_loss'].append(self.epoch_tr_loss.item())
df['mmc'].append(self.model.module.mmc().item())
if self.wandb:
wandb.log({
'epoch_tr_loss': self.epoch_tr_loss,
'epoch_tr_acc': self.epoch_tr_acc,
'epoch_mmc': self.model.module.mmc().item(),
}, step=epoch
)
num_imgs = 0.
self.epoch_loss, self.epoch_corr, self.epoch_acc = 0., 0., 0.
for batch_idx, batch in enumerate(test_dl):
if args.verbose:
print(f"TEST rank: {args.device}, batch_idx: {batch_idx} ({batch_idx/(len(train_dl) * args.world_size):.02f}%)")
self._test_one_step(batch)
num_imgs += batch[0].size(0)
if not args.distributed or args.device == 0:
self.epoch_loss /= num_imgs
self.epoch_acc = self.epoch_corr / num_imgs
df['valid_loss'].append(self.epoch_loss.item())
df['valid_acc'].append(self.epoch_acc.item())
if self.wandb:
wandb.log({
'val_loss': self.epoch_loss,
'val_acc': self.epoch_acc
}, step=epoch
)
if not args.distributed or args.device == 0:
# save model weights
path = os.path.join(args.output, args.experiment)
os.makedirs(path, exist_ok=True)
if args.distributed:
torch.save(self.model.module.state_dict(), os.path.join(path, 'W.pt'))
else:
torch.save(self.model.state_dict(), os.path.join(path, 'W.pt'))
pd_df = pd.DataFrame.from_dict(df, orient='columns')
pd_df.to_csv(os.path.join(path, f'log.csv'), index=False, float_format='%g')