-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
197 lines (161 loc) · 6.45 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import math
import sys
import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import pickle
import argparse
import glob
import torch.distributions.multivariate_normal as torchdist
from utils import *
from metrics import *
from model import social_stgcnn
import copy
def test(KSTEPS=20):
global loader_test, model
model.eval()
ade_bigls = []
fde_bigls = []
raw_data_dict = {}
step = 0
for batch in loader_test:
step += 1
# Get data
batch = [tensor.cuda() for tensor in batch]
obs_traj, pred_traj_gt, obs_traj_rel, pred_traj_gt_rel, obs_flow, pred_flow, \
obs_img, pred_img, non_linear_ped, loss_mask, V_obs, A_obs, V_tr, A_tr = batch
num_of_objs = obs_traj_rel.shape[1]
# Forward
# V_obs = batch,seq,node,feat
# V_obs_tmp = batch,feat,seq,node
V_obs_tmp = V_obs.permute(0, 3, 1, 2)
V_pred, _ = model(V_obs_tmp, A_obs.squeeze(), obs_flow, obs_img)
# print(V_pred.shape)
# torch.Size([1, 5, 12, 2])
# torch.Size([12, 2, 5])
V_pred = V_pred.permute(0, 2, 3, 1)
# torch.Size([1, 12, 2, 5])>>seq,node,feat
# V_pred= torch.rand_like(V_tr).cuda()
V_tr = V_tr.squeeze()
A_tr = A_tr.squeeze()
V_pred = V_pred.squeeze()
num_of_objs = obs_traj_rel.shape[1]
V_pred, V_tr = V_pred[:, :num_of_objs, :], V_tr[:, :num_of_objs, :]
# print(V_pred.shape)
# For now I have my bi-variate parameters
# normx = V_pred[:,:,0:1]
# normy = V_pred[:,:,1:2]
sx = torch.exp(V_pred[:, :, 2]) # sx
sy = torch.exp(V_pred[:, :, 3]) # sy
corr = torch.tanh(V_pred[:, :, 4]) # corr
cov = torch.zeros(V_pred.shape[0], V_pred.shape[1], 2, 2).cuda()
cov[:, :, 0, 0] = sx * sx
cov[:, :, 0, 1] = corr * sx * sy
cov[:, :, 1, 0] = corr * sx * sy
cov[:, :, 1, 1] = sy * sy
mean = V_pred[:, :, 0:2]
mvnormal = torchdist.MultivariateNormal(mean, cov)
# Now sample 20 samples
ade_ls = {}
fde_ls = {}
V_x = seq_to_nodes(obs_traj.data.cpu().numpy().copy())
V_x_rel_to_abs = nodes_rel_to_nodes_abs(V_obs.data.cpu().numpy().squeeze().copy(),
V_x[0, :, :].copy())
V_y = seq_to_nodes(pred_traj_gt.data.cpu().numpy().copy())
V_y_rel_to_abs = nodes_rel_to_nodes_abs(V_tr.data.cpu().numpy().squeeze().copy(),
V_x[-1, :, :].copy())
raw_data_dict[step] = {}
raw_data_dict[step]['obs'] = copy.deepcopy(V_x_rel_to_abs)
raw_data_dict[step]['trgt'] = copy.deepcopy(V_y_rel_to_abs)
raw_data_dict[step]['pred'] = []
for n in range(num_of_objs):
ade_ls[n] = []
fde_ls[n] = []
for k in range(KSTEPS):
V_pred = mvnormal.sample()
# V_pred = seq_to_nodes(pred_traj_gt.data.numpy().copy())
V_pred_rel_to_abs = nodes_rel_to_nodes_abs(V_pred.data.cpu().numpy().squeeze().copy(),
V_x[-1, :, :].copy())
raw_data_dict[step]['pred'].append(copy.deepcopy(V_pred_rel_to_abs))
# print(V_pred_rel_to_abs.shape) #(12, 3, 2) = seq, ped, location
for n in range(num_of_objs):
pred = []
target = []
obsrvs = []
number_of = []
pred.append(V_pred_rel_to_abs[:, n:n + 1, :])
target.append(V_y_rel_to_abs[:, n:n + 1, :])
obsrvs.append(V_x_rel_to_abs[:, n:n + 1, :])
number_of.append(1)
ade_ls[n].append(ade(pred, target, number_of))
fde_ls[n].append(fde(pred, target, number_of))
for n in range(num_of_objs):
ade_bigls.append(min(ade_ls[n]))
fde_bigls.append(min(fde_ls[n]))
with open('checkpoint/your-experiment-name/ade_ls.pickle', 'wb') as f:
pickle.dump(ade_bigls, f)
with open('checkpoint/your-experiment-name/fde_ls.pickle', 'wb') as f:
pickle.dump(fde_bigls, f)
ade_ = sum(ade_bigls) / len(ade_bigls)
fde_ = sum(fde_bigls) / len(fde_bigls)
return ade_, fde_, raw_data_dict
paths = ['./checkpoint/your-experiment-name']
KSTEPS = 20
print("*" * 50)
print('Number of samples:', KSTEPS)
print("*" * 50)
for feta in range(len(paths)):
ade_ls = []
fde_ls = []
path = paths[feta]
exps = glob.glob(path)
print('Model being tested are:', exps)
for exp_path in exps:
print("*" * 50)
print("Evaluating model:", exp_path)
model_path = exp_path + '/val_best.pth'
args_path = exp_path + '/args.pkl'
with open(args_path, 'rb') as f:
args = pickle.load(f)
stats = exp_path + '/constant_metrics.pkl'
with open(stats, 'rb') as f:
cm = pickle.load(f)
print("Stats:", cm)
# Data prep
obs_seq_len = args.obs_seq_len
pred_seq_len = args.pred_seq_len
data_set = './datasets/' + args.dataset + '/'
dset_test = TrajectoryDataset(
data_set + 'test/',
data_set + 'flow_test/',
data_set + 'image_test/',
obs_len=obs_seq_len,
pred_len=pred_seq_len,
skip=1, norm_lap_matr=True)
loader_test = DataLoader(
dset_test,
batch_size=1, # This is irrelative to the args batch size parameter
shuffle=False,
num_workers=0)
# Defining the model
model = social_stgcnn(n_stgcnn=args.n_stgcnn, n_txpcnn=args.n_txpcnn,
output_feat=args.output_size, seq_len=args.obs_seq_len,
kernel_size=args.kernel_size, pred_seq_len=args.pred_seq_len, use_image=args.use_image,
use_flow=args.use_flow).cuda()
model.load_state_dict(torch.load(model_path))
ade_ = 999999
fde_ = 999999
print("Testing ....")
ad, fd, raw_data_dic_ = test()
ade_ = min(ade_, ad)
fde_ = min(fde_, fd)
ade_ls.append(ade_)
fde_ls.append(fde_)
print("ADE:", ade_, " FDE:", fde_)
with open('checkpoint/your-experiment-name/raw_data_dic.pickle', 'wb') as f:
pickle.dump(raw_data_dic_, f)
print("*" * 50)
print("Avg ADE:", sum(ade_ls) / 5)
print("Avg FDE:", sum(fde_ls) / 5)