-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
226 lines (184 loc) · 8.9 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from __future__ import absolute_import
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd.function import Function
from torch.autograd import Variable
class OriTripletLoss(nn.Module):
"""Triplet loss with hard positive/negative mining.
Reference:
Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.
Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py.
Args:
- margin (float): margin for triplet.
"""
def __init__(self, batch_size, margin=0.3):
super(OriTripletLoss, self).__init__()
self.margin = margin
self.ranking_loss = nn.MarginRankingLoss(margin=margin)
def forward(self, inputs, targets):
"""
Args:
- inputs: feature matrix with shape (batch_size, feat_dim)
- targets: ground truth labels with shape (num_classes)
"""
n = inputs.size(0)
# Compute pairwise distance, replace by the official when merged
dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(n, n)
dist = dist + dist.t()
dist.addmm_(1, -2, inputs, inputs.t())
dist = dist.clamp(min=1e-12).sqrt() # for numerical stability
# For each anchor, find the hardest positive and negative
mask = targets.expand(n, n).eq(targets.expand(n, n).t())
dist_ap, dist_an = [], []
for i in range(n):
dist_ap.append(dist[i][mask[i]].max().unsqueeze(0))
dist_an.append(dist[i][mask[i] == 0].min().unsqueeze(0))
dist_ap = torch.cat(dist_ap)
dist_an = torch.cat(dist_an)
# Compute ranking hinge loss
y = torch.ones_like(dist_an)
loss = self.ranking_loss(dist_an, dist_ap, y)
# compute accuracy
correct = torch.ge(dist_an, dist_ap).sum().item()
return loss, correct
# Adaptive weights
def softmax_weights(dist, mask): # softmax_weights(dist_ap, is_pos) # softmax_weights(-dist_an, is_neg)
max_v = torch.max(dist * mask, dim=1, keepdim=True)[0]
diff = dist - max_v
Z = torch.sum(torch.exp(diff) * mask, dim=1, keepdim=True) + 1e-6 # avoid division by zero
W = torch.exp(diff) * mask / Z # 对应行相除
return W
def normalize(x, axis=-1):
"""Normalizing to unit length along the specified dimension.
Args:
x: pytorch Variable
Returns:
x: pytorch Variable, same shape as input
"""
x = 1. * x / (torch.norm(x, 2, axis, keepdim=True).expand_as(x) + 1e-12)
return x
class TripletLoss_WRT(nn.Module):
"""Weighted Regularized Triplet'."""
def __init__(self):
super(TripletLoss_WRT, self).__init__()
self.ranking_loss = nn.SoftMarginLoss()
def forward(self, inputs, targets, normalize_feature=False):
if normalize_feature:
inputs = normalize(inputs, axis=-1)
dist_mat = pdist_torch(inputs, inputs) # 计算两个输入的欧氏距离,输入是两个包含32个样本的batch
N = dist_mat.size(0) # 尺寸为64*64 所以N为64
# shape [N, N] # targets 为 torch.Size([64])
# eq():逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False。
# ne():逐元素的比较,若相同位置的两个元素相同,则返回False;若不同,返回True。
# float():把true变为1.0 把false变为0.0
is_pos = targets.expand(N, N).eq(targets.expand(N, N).t()).float()
is_neg = targets.expand(N, N).ne(targets.expand(N, N).t()).float()
# `dist_ap` means distance(anchor, positive)
# both `dist_ap` and `relative_p_inds` with shape [N, 1]
dist_ap = dist_mat * is_pos # 64*64 anchor, positive 的距离
dist_an = dist_mat * is_neg # 64*64 anchor, negative 的距离
weights_ap = softmax_weights(dist_ap, is_pos)
weights_an = softmax_weights(-dist_an, is_neg)
furthest_positive = torch.sum(dist_ap * weights_ap, dim=1) # [N]
closest_negative = torch.sum(dist_an * weights_an, dim=1)
y = furthest_positive.new().resize_as_(furthest_positive).fill_(1) # 创建一个与furthest_positive相等尺寸的全1张量
loss = self.ranking_loss(closest_negative - furthest_positive, y)
# compute accuracy
correct = torch.ge(closest_negative, furthest_positive).sum().item() # closest_negative > furthest_positive 输出1 选择正确
return loss, correct
def pdist_torch(emb1, emb2):
'''
compute the euclidean(欧几里得) distance matrix between embeddings1 and embeddings2
using gpu
'''
m, n = emb1.shape[0], emb2.shape[0]
# torch.pow(emb1, 2) 是对emb1中每一个元素取2次方(平方)
emb1_pow = torch.pow(emb1, 2).sum(dim = 1, keepdim = True).expand(m, n) # sum后默认会降维,而keepdim=True会保证不降维
emb2_pow = torch.pow(emb2, 2).sum(dim = 1, keepdim = True).expand(n, m).t() # t()是求转置
dist_mtx = emb1_pow + emb2_pow
dist_mtx = dist_mtx.addmm_(1, -2, emb1, emb2.t()) # beta=1, alpha=-2,大于1.7.0的pytorch,可能需要把1 -2移到后面
# dist_mtx = dist_mtx.clamp(min = 1e-12)
dist_mtx = dist_mtx.clamp(min = 1e-12).sqrt() # clamp(min = 1e-12)代表对dist_mtx的每个元素限制最小值不能小于1e-12,比如如果为0,则变成1e-12
return dist_mtx
def pdist_np(emb1, emb2):
'''
compute the euclidean distance matrix between embeddings1 and embeddings2
using cpu
'''
m, n = emb1.shape[0], emb2.shape[0]
emb1_pow = np.square(emb1).sum(axis = 1)[..., np.newaxis]
emb2_pow = np.square(emb2).sum(axis = 1)[np.newaxis, ...]
dist_mtx = -2 * np.matmul(emb1, emb2.T) + emb1_pow + emb2_pow
# dist_mtx = np.sqrt(dist_mtx.clip(min = 1e-12))
return dist_mtx
class CrossEntropyLabelSmooth(nn.Module):
"""Cross entropy loss with label smoothing regularizer.
Reference:
Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
Equation: y = (1 - epsilon) * y + epsilon / K.
Args:
num_classes (int): number of classes.
epsilon (float): weight.
"""
def __init__(self, num_classes, epsilon=0.1, use_gpu=True):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.use_gpu = use_gpu
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
"""
Args:
inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
targets: ground truth labels with shape (num_classes)
"""
log_probs = self.logsoftmax(inputs)
targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).data.cpu(), 1)
if self.use_gpu: targets = targets.cuda()
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (- targets * log_probs).mean(0).sum()
return loss
class CenterLoss(nn.Module):
"""Center loss.
Reference:
Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
Args:
num_classes (int): number of classes.
feat_dim (int): feature dimension.
"""
def __init__(self, num_classes=187, feat_dim=2048, use_gpu=True):
super(CenterLoss, self).__init__()
self.num_classes = num_classes
self.feat_dim = feat_dim
self.use_gpu = use_gpu
if self.use_gpu:
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim).cuda())
else:
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim))
def forward(self, x, labels):
"""
Args:
x: feature matrix with shape (batch_size, feat_dim).
labels: ground truth labels with shape (num_classes).
"""
assert x.size(0) == labels.size(0), "features.size(0) is not equal to labels.size(0)"
batch_size = x.size(0)
distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \
torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t()
distmat.addmm_(1, -2, x, self.centers.t())
classes = torch.arange(self.num_classes).long()
if self.use_gpu: classes = classes.cuda()
labels = labels.unsqueeze(1).expand(batch_size, self.num_classes)
mask = labels.eq(classes.expand(batch_size, self.num_classes))
dist = distmat * mask.float()
loss = dist.clamp(min=1e-12, max=1e+12).sum() / batch_size
#dist = []
#for i in range(batch_size):
# value = distmat[i][mask[i]]
# value = value.clamp(min=1e-12, max=1e+12) # for numerical stability
# dist.append(value)
#dist = torch.cat(dist)
#loss = dist.mean()
return loss