-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathgenerate.py
409 lines (355 loc) · 15.4 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
from utils import parse, vis, cache
from utils.llm import get_full_model_name, model_names
from utils.parse import parse_input_with_negative, filter_boxes, show_boxes
from tqdm import tqdm
import os
from prompt import prompt_types, get_prompts, template_versions
import matplotlib.pyplot as plt
import models
import traceback
import bdb
import time
import diffusers
from models import sam
import argparse
import generation.sdxl_refinement as sdxl
parser = argparse.ArgumentParser()
parser.add_argument("--save-suffix", default=None, type=str)
parser.add_argument("--model", choices=model_names, required=True, help="LLM model to load the cache from")
parser.add_argument("--repeats", default=1, type=int, help="Number of samples for each prompt")
parser.add_argument("--regenerate", default=1, type=int, help="Number of regenerations. Different from repeats, regeneration happens after everything is generated")
parser.add_argument("--force_run_ind", default=None, type=int, help="If this is enabled, we use this run_ind and skips generated images. If this is not enabled, we create a new run after existing runs.")
parser.add_argument("--skip_first_prompts", default=0, type=int, help="Skip the first prompts in generation (useful for parallel generation)")
parser.add_argument("--seed_offset", default=0, type=int, help="Offset to the seed (seed starts from this number)")
parser.add_argument("--num_prompts", default=None, type=int, help="The number of prompts to generate (useful for parallel generation)")
parser.add_argument(
"--run-model",
default="lmd_plus",
choices=[
"lmd",
"lmd_plus",
"sd",
"multidiffusion",
"backward_guidance",
"boxdiff",
"gligen",
],
)
parser.add_argument("--scheduler", default=None, type=str)
parser.add_argument("--use-sdv2", action="store_true")
parser.add_argument("--ignore-bg-prompt", action="store_true", help="Ignore the background prompt (set background prompt to an empty str)")
parser.add_argument("--ignore-negative-prompt", action="store_true", help="Ignore the additional negative prompt generated by LLM")
parser.add_argument("--no-synthetic-prompt", action="store_true", help="Use the original prompt for overall generation rather than a synthetic prompt ([background prompt] with [objects])")
parser.add_argument("--no-scale-boxes-default", action="store_true", help="Do not scale the boxes to fill the scene")
parser.add_argument("--no-center-or-align", action="store_true", help="Do not perform per-box generation in the center and then align for overall generation")
parser.add_argument("--no-continue-on-error", action="store_true")
parser.add_argument("--prompt-type", choices=prompt_types, default="lmd")
parser.add_argument("--template_version", choices=template_versions, required=True)
parser.add_argument("--dry-run", action="store_true", help="skip the generation")
parser.add_argument("--sdxl", action="store_true", help="Enable sdxl.")
parser.add_argument("--sdxl-step-ratio", type=float, default=0.3, help="SDXL step ratio: the higher the stronger the refinement.")
float_args = [
"frozen_step_ratio",
"loss_threshold",
"ref_ca_loss_weight",
"fg_top_p",
"bg_top_p",
"overall_fg_top_p",
"overall_bg_top_p",
"fg_weight",
"bg_weight",
"overall_fg_weight",
"overall_bg_weight",
"overall_loss_threshold",
"fg_blending_ratio",
"mask_th_for_point",
"so_floor_padding",
]
for float_arg in float_args:
parser.add_argument("--" + float_arg, default=None, type=float)
int_args = [
"loss_scale",
"max_iter",
"max_index_step",
"overall_max_iter",
"overall_max_index_step",
"overall_loss_scale",
# Set to 0 to disable and set to 1 to enable
"horizontal_shift_only",
"so_horizontal_center_only",
# Set to 0 to disable and set to 1 to enable (default: see the default value in each generation file):
"use_autocast",
# Set to 0 to disable and set to 1 to enable
"use_ref_ca"
]
for int_arg in int_args:
parser.add_argument("--" + int_arg, default=None, type=int)
str_args = ["so_vertical_placement"]
for str_arg in str_args:
parser.add_argument("--" + str_arg, default=None, type=str)
parser.add_argument("--multidiffusion_bootstrapping", default=20, type=int)
args = parser.parse_args()
our_models = ["lmd", "lmd_plus"]
gligen_models = ["gligen", "lmd_plus"]
# MultiDiffusion will load its own model instead of using the model loaded with `load_sd`.
custom_models = ["multidiffusion"]
if args.use_sdv2:
assert args.run_model not in gligen_models, "gligen only supports SDv1.4"
# We abbreviate v2.1 as v2
models.sd_key = "stabilityai/stable-diffusion-2-1-base"
models.sd_version = "sdv2"
else:
if args.run_model in gligen_models:
models.sd_key = "gligen/diffusers-generation-text-box"
models.sd_version = "sdv1.4"
else:
models.sd_key = "runwayml/stable-diffusion-v1-5"
models.sd_version = "sdv1.5"
print(f"Using SD: {models.sd_key}")
if args.run_model not in custom_models:
models.model_dict = models.load_sd(
key=models.sd_key,
use_fp16=False,
scheduler_cls=diffusers.schedulers.__dict__[args.scheduler] if args.scheduler else None,
)
if args.run_model in our_models:
sam_model_dict = sam.load_sam()
models.model_dict.update(sam_model_dict)
if not args.dry_run:
if args.run_model == "lmd":
import generation.lmd as generation
elif args.run_model == "lmd_plus":
import generation.lmd_plus as generation
elif args.run_model == "sd":
if not args.ignore_negative_prompt:
print(
"**You are running SD without `ignore_negative_prompt`. This means that it still uses part of the LLM output and is not a real SD baseline that takes only the prompt."
)
import generation.stable_diffusion_generate as generation
elif args.run_model == "multidiffusion":
import generation.multidiffusion as generation
elif args.run_model == "backward_guidance":
import generation.backward_guidance as generation
elif args.run_model == "boxdiff":
import generation.boxdiff as generation
elif args.run_model == "gligen":
import generation.gligen as generation
else:
raise ValueError(f"Unknown model type: {args.run_model}")
# Sanity check: the version in the imported module should match the `run_model`
version = generation.version
assert version == args.run_model, f"{version} != {args.run_model}"
run = generation.run
if args.use_sdv2:
version = f"{version}_sdv2"
else:
version = "dry_run"
run = None
generation = argparse.Namespace()
# set visualizations to no-op in batch generation
for k in vis.__dict__.keys():
if k.startswith("visualize"):
vis.__dict__[k] = lambda *args, **kwargs: None
# clear the figure when plt.show is called
plt.show = plt.clf
prompt_type = args.prompt_type
template_version = args.template_version
# Use cache
model = get_full_model_name(model=args.model)
cache.cache_format = "json"
cache.cache_path = f'cache/cache_{args.prompt_type.replace("lmd_", "")}{"_" + template_version if template_version != "v5" else ""}_{model}.json'
print(f"Loading LLM responses from cache {cache.cache_path}")
cache.init_cache(allow_nonexist=False)
prompts = get_prompts(prompt_type, model=model)
save_suffix = ("_" + args.save_suffix) if args.save_suffix else ""
repeats = args.repeats
seed_offset = args.seed_offset
base_save_dir = f"img_generations/img_generations_template{args.template_version}_{version}_{prompt_type}{save_suffix}"
if args.sdxl:
base_save_dir += f"_sdxl_{args.sdxl_step_ratio}"
run_kwargs = {}
argnames = float_args + int_args + str_args
for argname in argnames:
argvalue = getattr(args, argname)
if argvalue is not None:
run_kwargs[argname] = argvalue
print(f"**Setting {argname} to {argvalue}**")
if args.no_center_or_align:
run_kwargs["align_with_overall_bboxes"] = False
run_kwargs["so_center_box"] = False
scale_boxes_default = not args.no_scale_boxes_default
is_notebook = False
if args.force_run_ind is not None:
run_ind = args.force_run_ind
save_dir = f"{base_save_dir}/run{run_ind}"
else:
run_ind = 0
while True:
save_dir = f"{base_save_dir}/run{run_ind}"
if not os.path.exists(save_dir):
break
run_ind += 1
print(f"Save dir: {save_dir}")
if args.sdxl:
# Offload model saves GPU memory.
sdxl.init(offload_model=True)
LARGE_CONSTANT = 123456789
LARGE_CONSTANT2 = 56789
LARGE_CONSTANT3 = 6789
LARGE_CONSTANT4 = 7890
ind = 0
if args.regenerate > 1:
# Need to fix the ind
assert args.skip_first_prompts == 0
for regenerate_ind in range(args.regenerate):
print("regenerate_ind:", regenerate_ind)
cache.reset_cache_access()
for prompt_ind, prompt in enumerate(tqdm(prompts, desc=f"Run: {save_dir}")):
# For `save_as_display`:
save_ind = 0
if prompt_ind < args.skip_first_prompts:
ind += 1
continue
if args.num_prompts is not None and prompt_ind >= (
args.skip_first_prompts + args.num_prompts
):
ind += 1
continue
# get prompt from prompts, if prompt is a list, then prompt includes both the prompt and kwargs
if isinstance(prompt, list):
prompt, kwargs = prompt
else:
kwargs = {}
prompt = prompt.strip().rstrip(".")
ind_override = kwargs.get("seed", None)
scale_boxes = kwargs.get("scale_boxes", scale_boxes_default)
# Load from cache
resp = cache.get_cache(prompt)
if resp is None:
print(f"Cache miss, skipping prompt: {prompt}")
ind += 1
continue
print(f"***run: {run_ind}, scale_boxes: {scale_boxes}***")
print(f"prompt: {prompt}, resp: {resp}")
parse.img_dir = f"{save_dir}/{ind}"
# Skip if image is already generared
if not (
os.path.exists(parse.img_dir)
and len([img for img in os.listdir(parse.img_dir) if img.startswith("img")]) >= repeats
):
os.makedirs(parse.img_dir, exist_ok=True)
vis.reset_save_ind()
try:
gen_boxes, bg_prompt, neg_prompt = parse_input_with_negative(
resp, no_input=True
)
if args.ignore_bg_prompt:
bg_prompt = ""
if args.ignore_negative_prompt:
neg_prompt = ""
gen_boxes = filter_boxes(gen_boxes, scale_boxes=scale_boxes)
spec = {
"prompt": prompt,
"gen_boxes": gen_boxes,
"bg_prompt": bg_prompt,
"extra_neg_prompt": neg_prompt,
}
print("spec:", spec)
if args.dry_run:
# Skip generation
ind += 1
continue
show_boxes(
gen_boxes,
bg_prompt=bg_prompt,
neg_prompt=neg_prompt,
show=is_notebook,
)
if not is_notebook:
plt.clf()
original_ind_base = (
ind_override + regenerate_ind * LARGE_CONSTANT2
if ind_override is not None
else ind
)
for repeat_ind in range(repeats):
# This ensures different repeats have different seeds.
ind_offset = repeat_ind * LARGE_CONSTANT3 + seed_offset
if args.run_model in our_models:
# Our models load `extra_neg_prompt` from the spec
if args.no_synthetic_prompt:
# This is useful when the object relationships cannot be expressed only by bounding boxes.
output = run(
spec=spec,
bg_seed=original_ind_base + ind_offset,
fg_seed_start=ind + ind_offset + LARGE_CONSTANT,
overall_prompt_override=prompt,
**run_kwargs,
)
else:
# Uses synthetic prompt (handles negation and additional languages better)
output = run(
spec=spec,
bg_seed=original_ind_base + ind_offset,
fg_seed_start=ind + ind_offset + LARGE_CONSTANT,
**run_kwargs,
)
elif args.run_model == "sd":
output = run(
prompt=prompt,
seed=original_ind_base + ind_offset,
extra_neg_prompt=neg_prompt,
**run_kwargs,
)
elif args.run_model == "multidiffusion":
output = run(
gen_boxes=gen_boxes,
bg_prompt=bg_prompt,
original_ind_base=original_ind_base + ind_offset,
bootstrapping=args.multidiffusion_bootstrapping,
extra_neg_prompt=neg_prompt,
**run_kwargs,
)
elif args.run_model == "backward_guidance":
output = run(
spec=spec,
bg_seed=original_ind_base + ind_offset,
**run_kwargs,
)
elif args.run_model == "boxdiff":
output = run(
spec=spec,
bg_seed=original_ind_base + ind_offset,
**run_kwargs,
)
elif args.run_model == "gligen":
output = run(
spec=spec,
bg_seed=original_ind_base + ind_offset,
**run_kwargs,
)
output = output.image
if args.sdxl:
output = sdxl.refine(image=output, spec=spec, refine_seed=original_ind_base + ind_offset + LARGE_CONSTANT4, refinement_step_ratio=args.sdxl_step_ratio)
vis.display(output, "img", repeat_ind, save_ind_in_filename=False)
except (KeyboardInterrupt, bdb.BdbQuit) as e:
print(e)
exit()
except RuntimeError:
print(
"***RuntimeError: might run out of memory, skipping the current one***"
)
print(traceback.format_exc())
time.sleep(10)
except Exception as e:
print(f"***Error: {e}***")
print(traceback.format_exc())
if args.no_continue_on_error:
raise e
else:
print(f"Image exists at {parse.img_dir}, skipping")
ind += 1
if cache.values_accessed() != len(prompts):
print(
f"**Cache is hit {cache.values_accessed()} time(s) but we have {len(prompts)} prompts. There may be cache misses or inconsistencies between the prompts and the cache such as extra items in the cache.**"
)