Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

tatus message gets stuck on the Build script connected #45

Open
aero-oli opened this issue Feb 17, 2023 · 1 comment
Open

tatus message gets stuck on the Build script connected #45

aero-oli opened this issue Feb 17, 2023 · 1 comment

Comments

@aero-oli
Copy link

aero-oli commented Feb 17, 2023

when building a model, the status message gets stuck on the Build script connected, it's a custom model, on M1 mac. see log bellow

23:46:35.123 INFO starting TorchStudio 0.9.14 on "macOS 13.2"
23:46:35.809 INFO python check: "Checking Python version...\n\nChecking required packages...\n\nLoading PyTorch...\n\nListing devices...\n\n" "Ready (macOS-13.2.1-arm64-arm-64bit, Python 3.10.9, PyTorch 1.12.0, Devices: cpu "CPU" (FP32), mps "Metal" (FP32))\n"
23:46:35.831 WARNING QIODevice::read (QFile, "/Users/oliververity/Library/Application Support/JetBrains/PyCharm2022.3/options/file.template.settings.xml"): device not open
23:46:36.045 INFO checking notifications...
23:46:36.095 INFO inference: "Loading PyTorch...\n\n" ""
23:46:38.159 INFO inference: "Training script connected\n\n" ""
23:46:38.159 INFO inference: "Setting device...\n\n" ""
23:46:38.159 INFO inference: "Setting mode...\n\n" ""
23:47:15.925 INFO opening "/Users/oliververity/Documents/pedestrian-intent-prediction/ped-test.tsz"
23:47:15.986 INFO datasetload: "Loading PyTorch...\n\n" ""
23:47:16.470 INFO datasetload: "Dataset script connected\n\n" ""
23:47:16.472 INFO datasetload: "Loading dataset...\n\n" ""
23:47:17.708 INFO datasetload: "Processing...\n" ""
23:47:33.984 INFO datasetload: "Done!\n" ""
23:47:34.037 INFO datasetload: "" "Loading complete\n"
23:48:27.010 INFO build: "Model 1" "Loading PyTorch...\n\n" ""
23:48:27.737 INFO build: "Model 1" "Build script connected\n\n" ""
23:48:28.349 INFO build end: "Model 1" "" ""
23:50:43.374 INFO build: "Model 1" "Loading PyTorch...\n\n" ""
23:50:44.022 INFO build: "Model 1" "Build script connected\n\n" ""
23:50:44.575 INFO build end: "Model 1" "" ""
23:51:22.645 INFO build: "Model 1" "Loading PyTorch...\n\n" ""
23:51:23.089 INFO build: "Model 1" "Build script connected\n\n" ""
23:51:23.487 INFO build end: "Model 1" "" ""

@aero-oli
Copy link
Author

aero-oli commented Feb 24, 2023

for context here is the model

`
import torch
import torch.nn as nn
import torch.nn.functional as F

from torch_geometric.nn import GCNConv
from torch_geometric_temporal.nn.recurrent import GCLSTM, GConvLSTM

filters = 32

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class social_stgcn(torch.nn.Module):
def __init__(self, input_feat=2, Conv_outputs=[5], LSTM_output=[5],
             K=1, linear_output=3):
    super(social_stgcn, self).__init__()

    self.input_feat = input_feat
    self.Conv_outputs = Conv_outputs
    self.LSTM_output = LSTM_output
    self.linear_output = linear_output
    self.K = K

  
    self.gcn1 = GCNConv(in_channels=self.input_feat,
                        out_channels=self.input_feat,
                        improved=True)
    self.gcn2 = GCNConv(in_channels=self.input_feat,
                        out_channels=self.input_feat,
                        improved=True)


    self.gclstm1 = GCLSTM(in_channels=self.input_feat,
                          out_channels=self.input_feat,
                          K=K, normalization="sym", bias=True)
    self.gclstm2 = GCLSTM(in_channels=self.input_feat,
                          out_channels=self.input_feat,
                          K=K, normalization="sym", bias=True)
  
    self.no_lstm = 5

    self.linear = nn.Linear(in_features=self.input_feat,
                            out_features=self.linear_output)


def forward(self, data, device):
    
    x, edge_index = data.x.cuda(), data.edge_index.cuda()

    # Zero padding the input to fit the input features
    x = torch.cat([x, torch.zeros(size=(self.input_feat - x.size()[0], x.size()[1]), device=device)], 0)
    x = torch.cat([x, torch.zeros(size=(x.size()[0], self.input_feat - x.size()[1]), device=device)], 1)

    # Initializing the training variables
    h = [None for i in range(self.no_lstm)]
    c = [None for i in range(self.no_lstm)]

    x = self.gcn1(x=x, edge_index=edge_index)
    x = F.relu(x)
    x = self.gcn2(x=x, edge_index=edge_index)
    x = F.relu(x)
    h[0], c[0] = self.gclstm1(x, edge_index, H=h[0], C=c[0])
    h[1], c[1] = self.gclstm2(h[0], edge_index, H=h[1], C=c[1])
   
    x = F.relu(h[1])
    
    return self.linear(x)

`

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant