forked from JonathonLuiten/TrackEval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
head_tracking_challenge.py
459 lines (406 loc) · 24.1 KB
/
head_tracking_challenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import os
import csv
import configparser
import numpy as np
from scipy.optimize import linear_sum_assignment
from ._base_dataset import _BaseDataset
from .. import utils
from .. import _timing
from ..utils import TrackEvalException
class HeadTrackingChallenge(_BaseDataset):
"""Dataset class for Head Tracking Challenge - 2D bounding box tracking"""
@staticmethod
def get_default_dataset_config():
"""Default class config values"""
code_path = utils.get_code_path()
default_config = {
'GT_FOLDER': os.path.join(code_path, 'data/gt/mot_challenge/'), # Location of GT data
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/mot_challenge/'), # Trackers location
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER)
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder)
'CLASSES_TO_EVAL': ['pedestrian'], # Valid: ['pedestrian']
'BENCHMARK': 'HT', # Valid: 'HT'. Refers to "Head Tracking or the dataset CroHD"
'SPLIT_TO_EVAL': 'train', # Valid: 'train', 'test', 'all'
'INPUT_AS_ZIP': False, # Whether tracker input files are zipped
'PRINT_CONFIG': True, # Whether to print current config
'DO_PREPROC': True, # Whether to perform preprocessing (never done for MOT15)
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER
'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL
'SEQMAP_FOLDER': None, # Where seqmaps are found (if None, GT_FOLDER/seqmaps)
'SEQMAP_FILE': None, # Directly specify seqmap file (if none use seqmap_folder/benchmark-split_to_eval)
'SEQ_INFO': None, # If not None, directly specify sequences to eval and their number of timesteps
'GT_LOC_FORMAT': '{gt_folder}/{seq}/gt/gt.txt', # '{gt_folder}/{seq}/gt/gt.txt'
'SKIP_SPLIT_FOL': False, # If False, data is in GT_FOLDER/BENCHMARK-SPLIT_TO_EVAL/ and in
# TRACKERS_FOLDER/BENCHMARK-SPLIT_TO_EVAL/tracker/
# If True, then the middle 'benchmark-split' folder is skipped for both.
}
return default_config
def __init__(self, config=None):
"""Initialise dataset, checking that all required files are present"""
super().__init__()
# Fill non-given config values with defaults
self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name())
self.benchmark = self.config['BENCHMARK']
gt_set = self.config['BENCHMARK'] + '-' + self.config['SPLIT_TO_EVAL']
self.gt_set = gt_set
if not self.config['SKIP_SPLIT_FOL']:
split_fol = gt_set
else:
split_fol = ''
self.gt_fol = os.path.join(self.config['GT_FOLDER'], split_fol)
self.tracker_fol = os.path.join(self.config['TRACKERS_FOLDER'], split_fol)
self.should_classes_combine = False
self.use_super_categories = False
self.data_is_zipped = self.config['INPUT_AS_ZIP']
self.do_preproc = self.config['DO_PREPROC']
self.output_fol = self.config['OUTPUT_FOLDER']
if self.output_fol is None:
self.output_fol = self.tracker_fol
self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER']
self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER']
# Get classes to eval
self.valid_classes = ['pedestrian']
self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None
for cls in self.config['CLASSES_TO_EVAL']]
if not all(self.class_list):
raise TrackEvalException('Attempted to evaluate an invalid class. Only pedestrian class is valid.')
self.class_name_to_class_id = {'pedestrian': 1, 'static': 2, 'ignore': 3, 'person_on_vehicle': 4}
self.valid_class_numbers = list(self.class_name_to_class_id.values())
# Get sequences to eval and check gt files exist
self.seq_list, self.seq_lengths = self._get_seq_info()
if len(self.seq_list) < 1:
raise TrackEvalException('No sequences are selected to be evaluated.')
# Check gt files exist
for seq in self.seq_list:
if not self.data_is_zipped:
curr_file = self.config["GT_LOC_FORMAT"].format(gt_folder=self.gt_fol, seq=seq)
if not os.path.isfile(curr_file):
print('GT file not found ' + curr_file)
raise TrackEvalException('GT file not found for sequence: ' + seq)
if self.data_is_zipped:
curr_file = os.path.join(self.gt_fol, 'data.zip')
if not os.path.isfile(curr_file):
print('GT file not found ' + curr_file)
raise TrackEvalException('GT file not found: ' + os.path.basename(curr_file))
# Get trackers to eval
if self.config['TRACKERS_TO_EVAL'] is None:
self.tracker_list = os.listdir(self.tracker_fol)
else:
self.tracker_list = self.config['TRACKERS_TO_EVAL']
if self.config['TRACKER_DISPLAY_NAMES'] is None:
self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list))
elif (self.config['TRACKERS_TO_EVAL'] is not None) and (
len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)):
self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES']))
else:
raise TrackEvalException('List of tracker files and tracker display names do not match.')
for tracker in self.tracker_list:
if self.data_is_zipped:
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip')
if not os.path.isfile(curr_file):
print('Tracker file not found: ' + curr_file)
raise TrackEvalException('Tracker file not found: ' + tracker + '/' + os.path.basename(curr_file))
else:
for seq in self.seq_list:
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt')
if not os.path.isfile(curr_file):
print('Tracker file not found: ' + curr_file)
raise TrackEvalException(
'Tracker file not found: ' + tracker + '/' + self.tracker_sub_fol + '/' + os.path.basename(
curr_file))
def get_display_name(self, tracker):
return self.tracker_to_disp[tracker]
def _get_seq_info(self):
seq_list = []
seq_lengths = {}
if self.config["SEQ_INFO"]:
seq_list = list(self.config["SEQ_INFO"].keys())
seq_lengths = self.config["SEQ_INFO"]
# If sequence length is 'None' tries to read sequence length from .ini files.
for seq, seq_length in seq_lengths.items():
if seq_length is None:
ini_file = os.path.join(self.gt_fol, seq, 'seqinfo.ini')
if not os.path.isfile(ini_file):
raise TrackEvalException('ini file does not exist: ' + seq + '/' + os.path.basename(ini_file))
ini_data = configparser.ConfigParser()
ini_data.read(ini_file)
seq_lengths[seq] = int(ini_data['Sequence']['seqLength'])
else:
if self.config["SEQMAP_FILE"]:
seqmap_file = self.config["SEQMAP_FILE"]
else:
if self.config["SEQMAP_FOLDER"] is None:
seqmap_file = os.path.join(self.config['GT_FOLDER'], 'seqmaps', self.gt_set + '.txt')
else:
seqmap_file = os.path.join(self.config["SEQMAP_FOLDER"], self.gt_set + '.txt')
if not os.path.isfile(seqmap_file):
print('no seqmap found: ' + seqmap_file)
raise TrackEvalException('no seqmap found: ' + os.path.basename(seqmap_file))
with open(seqmap_file) as fp:
reader = csv.reader(fp)
for i, row in enumerate(reader):
if i == 0 or row[0] == '':
continue
seq = row[0]
seq_list.append(seq)
ini_file = os.path.join(self.gt_fol, seq, 'seqinfo.ini')
if not os.path.isfile(ini_file):
raise TrackEvalException('ini file does not exist: ' + seq + '/' + os.path.basename(ini_file))
ini_data = configparser.ConfigParser()
ini_data.read(ini_file)
seq_lengths[seq] = int(ini_data['Sequence']['seqLength'])
return seq_list, seq_lengths
def _load_raw_file(self, tracker, seq, is_gt):
"""Load a file (gt or tracker) in the MOT Challenge 2D box format
If is_gt, this returns a dict which contains the fields:
[gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det).
[gt_dets, gt_crowd_ignore_regions]: list (for each timestep) of lists of detections.
[gt_extras] : list (for each timestep) of dicts (for each extra) of 1D NDArrays (for each det).
if not is_gt, this returns a dict which contains the fields:
[tracker_ids, tracker_classes, tracker_confidences] : list (for each timestep) of 1D NDArrays (for each det).
[tracker_dets]: list (for each timestep) of lists of detections.
"""
# File location
if self.data_is_zipped:
if is_gt:
zip_file = os.path.join(self.gt_fol, 'data.zip')
else:
zip_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip')
file = seq + '.txt'
else:
zip_file = None
if is_gt:
file = self.config["GT_LOC_FORMAT"].format(gt_folder=self.gt_fol, seq=seq)
else:
file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt')
# Load raw data from text file
read_data, ignore_data = self._load_simple_text_file(file, is_zipped=self.data_is_zipped, zip_file=zip_file)
# Convert data to required format
num_timesteps = self.seq_lengths[seq]
data_keys = ['ids', 'classes', 'dets']
if is_gt:
data_keys += ['gt_crowd_ignore_regions', 'gt_extras']
else:
data_keys += ['tracker_confidences']
if self.benchmark == 'HT':
data_keys += ['visibility']
data_keys += ['gt_conf']
raw_data = {key: [None] * num_timesteps for key in data_keys}
# Check for any extra time keys
current_time_keys = [str( t+ 1) for t in range(num_timesteps)]
extra_time_keys = [x for x in read_data.keys() if x not in current_time_keys]
if len(extra_time_keys) > 0:
if is_gt:
text = 'Ground-truth'
else:
text = 'Tracking'
raise TrackEvalException(
text + ' data contains the following invalid timesteps in seq %s: ' % seq + ', '.join(
[str(x) + ', ' for x in extra_time_keys]))
for t in range(num_timesteps):
time_key = str(t+1)
if time_key in read_data.keys():
try:
time_data = np.asarray(read_data[time_key], dtype=float)
except ValueError:
if is_gt:
raise TrackEvalException(
'Cannot convert gt data for sequence %s to float. Is data corrupted?' % seq)
else:
raise TrackEvalException(
'Cannot convert tracking data from tracker %s, sequence %s to float. Is data corrupted?' % (
tracker, seq))
try:
raw_data['dets'][t] = np.atleast_2d(time_data[:, 2:6])
raw_data['ids'][t] = np.atleast_1d(time_data[:, 1]).astype(int)
except IndexError:
if is_gt:
err = 'Cannot load gt data from sequence %s, because there is not enough ' \
'columns in the data.' % seq
raise TrackEvalException(err)
else:
err = 'Cannot load tracker data from tracker %s, sequence %s, because there is not enough ' \
'columns in the data.' % (tracker, seq)
raise TrackEvalException(err)
if time_data.shape[1] >= 8:
raw_data['gt_conf'][t] = np.atleast_1d(time_data[:, 6]).astype(float)
raw_data['visibility'][t] = np.atleast_1d(time_data[:, 8]).astype(float)
raw_data['classes'][t] = np.atleast_1d(time_data[:, 7]).astype(int)
else:
if not is_gt:
raw_data['classes'][t] = np.ones_like(raw_data['ids'][t])
else:
raise TrackEvalException(
'GT data is not in a valid format, there is not enough rows in seq %s, timestep %i.' % (
seq, t))
if is_gt:
gt_extras_dict = {'zero_marked': np.atleast_1d(time_data[:, 6].astype(int))}
raw_data['gt_extras'][t] = gt_extras_dict
else:
raw_data['tracker_confidences'][t] = np.atleast_1d(time_data[:, 6])
else:
raw_data['dets'][t] = np.empty((0, 4))
raw_data['ids'][t] = np.empty(0).astype(int)
raw_data['classes'][t] = np.empty(0).astype(int)
if is_gt:
gt_extras_dict = {'zero_marked': np.empty(0)}
raw_data['gt_extras'][t] = gt_extras_dict
else:
raw_data['tracker_confidences'][t] = np.empty(0)
if is_gt:
raw_data['gt_crowd_ignore_regions'][t] = np.empty((0, 4))
if is_gt:
key_map = {'ids': 'gt_ids',
'classes': 'gt_classes',
'dets': 'gt_dets'}
else:
key_map = {'ids': 'tracker_ids',
'classes': 'tracker_classes',
'dets': 'tracker_dets'}
for k, v in key_map.items():
raw_data[v] = raw_data.pop(k)
raw_data['num_timesteps'] = num_timesteps
raw_data['seq'] = seq
return raw_data
@_timing.time
def get_preprocessed_seq_data(self, raw_data, cls):
""" Preprocess data for a single sequence for a single class ready for evaluation.
Inputs:
- raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data().
- cls is the class to be evaluated.
Outputs:
- data is a dict containing all of the information that metrics need to perform evaluation.
It contains the following fields:
[num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers.
[gt_ids, tracker_ids, tracker_confidences]: list (for each timestep) of 1D NDArrays (for each det).
[gt_dets, tracker_dets]: list (for each timestep) of lists of detections.
[similarity_scores]: list (for each timestep) of 2D NDArrays.
Notes:
General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps.
1) Extract only detections relevant for the class to be evaluated (including distractor detections).
2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a
distractor class, or otherwise marked as to be removed.
3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain
other criteria (e.g. are too small).
4) Remove gt dets that were only useful for preprocessing and not for actual evaluation.
After the above preprocessing steps, this function also calculates the number of gt and tracker detections
and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are
unique within each timestep.
MOT Challenge:
In MOT Challenge, the 4 preproc steps are as follow:
1) There is only one class (pedestrian) to be evaluated, but all other classes are used for preproc.
2) Predictions are matched against all gt boxes (regardless of class), those matching with distractor
objects are removed.
3) There is no crowd ignore regions.
4) All gt dets except pedestrian are removed, also removes pedestrian gt dets marked with zero_marked.
"""
# Check that input data has unique ids
self._check_unique_ids(raw_data)
# 'static': 2, 'ignore': 3, 'person_on_vehicle':
distractor_class_names = ['static', 'ignore', 'person_on_vehicle']
distractor_classes = [self.class_name_to_class_id[x] for x in distractor_class_names]
cls_id = self.class_name_to_class_id[cls]
data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'tracker_confidences',
'similarity_scores', 'gt_visibility']
data = {key: [None] * raw_data['num_timesteps'] for key in data_keys}
unique_gt_ids = []
unique_tracker_ids = []
num_gt_dets = 0
num_tracker_dets = 0
for t in range(raw_data['num_timesteps']):
# Get all data
gt_ids = raw_data['gt_ids'][t]
gt_dets = raw_data['gt_dets'][t]
gt_classes = raw_data['gt_classes'][t]
gt_visibility = raw_data['visibility'][t]
gt_conf = raw_data['gt_conf'][t]
gt_zero_marked = raw_data['gt_extras'][t]['zero_marked']
tracker_ids = raw_data['tracker_ids'][t]
tracker_dets = raw_data['tracker_dets'][t]
tracker_classes = raw_data['tracker_classes'][t]
tracker_confidences = raw_data['tracker_confidences'][t]
similarity_scores = raw_data['similarity_scores'][t]
# Evaluation is ONLY valid for pedestrian class
if len(tracker_classes) > 0 and np.max(tracker_classes) > 1:
raise TrackEvalException(
'Evaluation is only valid for pedestrian class. Non pedestrian class (%i) found in sequence %s at '
'timestep %i.' % (np.max(tracker_classes), raw_data['seq'], t))
# Match tracker and gt dets (with hungarian algorithm) and remove tracker dets which match with gt dets
# which are labeled as belonging to a distractor class.
to_remove_tracker = np.array([], int)
if self.do_preproc and self.benchmark != 'MOT15' and gt_ids.shape[0] > 0 and tracker_ids.shape[0] > 0:
# Check all classes are valid:
invalid_classes = np.setdiff1d(np.unique(gt_classes), self.valid_class_numbers)
if len(invalid_classes) > 0:
print(' '.join([str(x) for x in invalid_classes]))
raise(TrackEvalException('Attempting to evaluate using invalid gt classes. '
'This warning only triggers if preprocessing is performed, '
'e.g. not for MOT15 or where prepropressing is explicitly disabled. '
'Please either check your gt data, or disable preprocessing. '
'The following invalid classes were found in timestep ' + str(t) + ': ' +
' '.join([str(x) for x in invalid_classes])))
matching_scores = similarity_scores.copy()
matching_scores[matching_scores < 0.4 - np.finfo('float').eps] = 0
match_rows, match_cols = linear_sum_assignment(-matching_scores)
actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps
match_rows = match_rows[actually_matched_mask]
match_cols = match_cols[actually_matched_mask]
is_distractor_class = np.logical_not(np.isin(gt_classes[match_rows], cls_id))
if self.benchmark == 'HT':
is_invisible_class = gt_visibility[match_rows] < np.finfo('float').eps
low_conf_class = gt_conf[match_rows] < np.finfo('float').eps
are_distractors = np.logical_or(is_invisible_class, is_distractor_class, low_conf_class)
to_remove_tracker = match_cols[are_distractors]
else:
to_remove_tracker = match_cols[is_distractor_class]
# Apply preprocessing to remove all unwanted tracker dets.
data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0)
data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0)
data['tracker_confidences'][t] = np.delete(tracker_confidences, to_remove_tracker, axis=0)
similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1)
# Remove gt detections marked as to remove (zero marked), and also remove gt detections not in pedestrian
if self.do_preproc and self.benchmark == 'HT':
gt_to_keep_mask = (np.not_equal(gt_zero_marked, 0)) & \
(np.equal(gt_classes, cls_id)) & \
(gt_visibility > 0.) & \
(gt_conf > 0.)
else:
# There are no classes for MOT15
gt_to_keep_mask = np.not_equal(gt_zero_marked, 0)
data['gt_ids'][t] = gt_ids[gt_to_keep_mask]
data['gt_dets'][t] = gt_dets[gt_to_keep_mask, :]
data['similarity_scores'][t] = similarity_scores[gt_to_keep_mask]
data['gt_visibility'][t] = gt_visibility # No mask!
unique_gt_ids += list(np.unique(data['gt_ids'][t]))
unique_tracker_ids += list(np.unique(data['tracker_ids'][t]))
num_tracker_dets += len(data['tracker_ids'][t])
num_gt_dets += len(data['gt_ids'][t])
# Re-label IDs such that there are no empty IDs
if len(unique_gt_ids) > 0:
unique_gt_ids = np.unique(unique_gt_ids)
gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1))
gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids))
for t in range(raw_data['num_timesteps']):
if len(data['gt_ids'][t]) > 0:
data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(int)
if len(unique_tracker_ids) > 0:
unique_tracker_ids = np.unique(unique_tracker_ids)
tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1))
tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids))
for t in range(raw_data['num_timesteps']):
if len(data['tracker_ids'][t]) > 0:
data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(int)
# Record overview statistics.
data['num_tracker_dets'] = num_tracker_dets
data['num_gt_dets'] = num_gt_dets
data['num_tracker_ids'] = len(unique_tracker_ids)
data['num_gt_ids'] = len(unique_gt_ids)
data['num_timesteps'] = raw_data['num_timesteps']
data['seq'] = raw_data['seq']
# Ensure again that ids are unique per timestep after preproc.
self._check_unique_ids(data, after_preproc=True)
return data
def _calculate_similarities(self, gt_dets_t, tracker_dets_t):
similarity_scores = self._calculate_box_ious(gt_dets_t, tracker_dets_t, box_format='xywh')
return similarity_scores