diff --git a/benchmarks/aqua/aqua_data.py b/baselines/aqua/aqua_data.py similarity index 100% rename from benchmarks/aqua/aqua_data.py rename to baselines/aqua/aqua_data.py diff --git a/benchmarks/aqua/examples/conjugate_gaussians_2/analysis_mu.txt b/baselines/aqua/examples/conjugate_gaussians_2/analysis_mu.txt similarity index 100% rename from benchmarks/aqua/examples/conjugate_gaussians_2/analysis_mu.txt rename to baselines/aqua/examples/conjugate_gaussians_2/analysis_mu.txt diff --git a/benchmarks/aqua/examples/conjugate_gaussians_2/conjugate_gaussians_2.data.R b/baselines/aqua/examples/conjugate_gaussians_2/conjugate_gaussians_2.data.R similarity index 100% rename from benchmarks/aqua/examples/conjugate_gaussians_2/conjugate_gaussians_2.data.R rename to baselines/aqua/examples/conjugate_gaussians_2/conjugate_gaussians_2.data.R diff --git a/benchmarks/aqua/examples/conjugate_gaussians_2/conjugate_gaussians_2.stan b/baselines/aqua/examples/conjugate_gaussians_2/conjugate_gaussians_2.stan similarity index 100% rename from benchmarks/aqua/examples/conjugate_gaussians_2/conjugate_gaussians_2.stan rename to baselines/aqua/examples/conjugate_gaussians_2/conjugate_gaussians_2.stan diff --git a/benchmarks/aqua/examples/conjugate_gaussians_2/results_1200.txt b/baselines/aqua/examples/conjugate_gaussians_2/results_1200.txt similarity index 100% rename from benchmarks/aqua/examples/conjugate_gaussians_2/results_1200.txt rename to baselines/aqua/examples/conjugate_gaussians_2/results_1200.txt diff --git a/benchmarks/aqua/examples/or_5/analysis_gene1.txt b/baselines/aqua/examples/or_5/analysis_gene1.txt similarity index 100% rename from benchmarks/aqua/examples/or_5/analysis_gene1.txt rename to baselines/aqua/examples/or_5/analysis_gene1.txt diff --git a/benchmarks/aqua/examples/or_5/analysis_prior1.txt b/baselines/aqua/examples/or_5/analysis_prior1.txt similarity index 100% rename from benchmarks/aqua/examples/or_5/analysis_prior1.txt rename to baselines/aqua/examples/or_5/analysis_prior1.txt diff --git a/benchmarks/aqua/examples/or_5/analysis_prior2.txt b/baselines/aqua/examples/or_5/analysis_prior2.txt similarity index 100% rename from benchmarks/aqua/examples/or_5/analysis_prior2.txt rename to baselines/aqua/examples/or_5/analysis_prior2.txt diff --git a/benchmarks/aqua/examples/or_5/analysis_prior3.txt b/baselines/aqua/examples/or_5/analysis_prior3.txt similarity index 100% rename from benchmarks/aqua/examples/or_5/analysis_prior3.txt rename to baselines/aqua/examples/or_5/analysis_prior3.txt diff --git a/benchmarks/aqua/examples/or_5/analysis_prior4.txt b/baselines/aqua/examples/or_5/analysis_prior4.txt similarity index 100% rename from benchmarks/aqua/examples/or_5/analysis_prior4.txt rename to baselines/aqua/examples/or_5/analysis_prior4.txt diff --git a/benchmarks/aqua/examples/or_5/analysis_prior5.txt b/baselines/aqua/examples/or_5/analysis_prior5.txt similarity index 100% rename from benchmarks/aqua/examples/or_5/analysis_prior5.txt rename to baselines/aqua/examples/or_5/analysis_prior5.txt diff --git a/benchmarks/aqua/examples/or_5/or_5.data.R b/baselines/aqua/examples/or_5/or_5.data.R similarity index 100% rename from benchmarks/aqua/examples/or_5/or_5.data.R rename to baselines/aqua/examples/or_5/or_5.data.R diff --git a/benchmarks/aqua/examples/or_5/or_5.stan b/baselines/aqua/examples/or_5/or_5.stan similarity index 100% rename from benchmarks/aqua/examples/or_5/or_5.stan rename to baselines/aqua/examples/or_5/or_5.stan diff --git a/benchmarks/aqua/examples/or_5/or_5.template b/baselines/aqua/examples/or_5/or_5.template similarity index 100% rename from benchmarks/aqua/examples/or_5/or_5.template rename to baselines/aqua/examples/or_5/or_5.template diff --git a/benchmarks/aqua/examples/or_5/results_1200.txt b/baselines/aqua/examples/or_5/results_1200.txt similarity index 100% rename from benchmarks/aqua/examples/or_5/results_1200.txt rename to baselines/aqua/examples/or_5/results_1200.txt diff --git a/benchmarks/aqua/examples/yvg/analysis_mu[1].txt b/baselines/aqua/examples/yvg/analysis_mu[1].txt similarity index 100% rename from benchmarks/aqua/examples/yvg/analysis_mu[1].txt rename to baselines/aqua/examples/yvg/analysis_mu[1].txt diff --git a/benchmarks/aqua/examples/yvg/analysis_mu[2].txt b/baselines/aqua/examples/yvg/analysis_mu[2].txt similarity index 100% rename from benchmarks/aqua/examples/yvg/analysis_mu[2].txt rename to baselines/aqua/examples/yvg/analysis_mu[2].txt diff --git a/benchmarks/aqua/examples/yvg/analysis_theta.txt b/baselines/aqua/examples/yvg/analysis_theta.txt similarity index 100% rename from benchmarks/aqua/examples/yvg/analysis_theta.txt rename to baselines/aqua/examples/yvg/analysis_theta.txt diff --git a/benchmarks/aqua/examples/yvg/results.txt b/baselines/aqua/examples/yvg/results.txt similarity index 100% rename from benchmarks/aqua/examples/yvg/results.txt rename to baselines/aqua/examples/yvg/results.txt diff --git a/benchmarks/aqua/examples/yvg/results1.txt b/baselines/aqua/examples/yvg/results1.txt similarity index 100% rename from benchmarks/aqua/examples/yvg/results1.txt rename to baselines/aqua/examples/yvg/results1.txt diff --git a/benchmarks/aqua/examples/yvg/results1_1200.txt b/baselines/aqua/examples/yvg/results1_1200.txt similarity index 100% rename from benchmarks/aqua/examples/yvg/results1_1200.txt rename to baselines/aqua/examples/yvg/results1_1200.txt diff --git a/benchmarks/aqua/examples/yvg/results2.txt b/baselines/aqua/examples/yvg/results2.txt similarity index 100% rename from benchmarks/aqua/examples/yvg/results2.txt rename to baselines/aqua/examples/yvg/results2.txt diff --git a/benchmarks/aqua/examples/yvg/results2_1200.txt b/baselines/aqua/examples/yvg/results2_1200.txt similarity index 100% rename from benchmarks/aqua/examples/yvg/results2_1200.txt rename to baselines/aqua/examples/yvg/results2_1200.txt diff --git a/benchmarks/aqua/examples/yvg/results_1200.txt b/baselines/aqua/examples/yvg/results_1200.txt similarity index 100% rename from benchmarks/aqua/examples/yvg/results_1200.txt rename to baselines/aqua/examples/yvg/results_1200.txt diff --git a/benchmarks/aqua/examples/yvg/yvg.data.R b/baselines/aqua/examples/yvg/yvg.data.R similarity index 100% rename from benchmarks/aqua/examples/yvg/yvg.data.R rename to baselines/aqua/examples/yvg/yvg.data.R diff --git a/benchmarks/aqua/examples/yvg/yvg.stan b/baselines/aqua/examples/yvg/yvg.stan similarity index 100% rename from benchmarks/aqua/examples/yvg/yvg.stan rename to baselines/aqua/examples/yvg/yvg.stan diff --git a/benchmarks/aqua/new/GPA/GPA.template b/baselines/aqua/new/GPA/GPA.template similarity index 100% rename from benchmarks/aqua/new/GPA/GPA.template rename to baselines/aqua/new/GPA/GPA.template diff --git a/benchmarks/aqua/new/GPA/analysis_d1.txt b/baselines/aqua/new/GPA/analysis_d1.txt similarity index 100% rename from benchmarks/aqua/new/GPA/analysis_d1.txt rename to baselines/aqua/new/GPA/analysis_d1.txt diff --git a/benchmarks/aqua/new/GPA/analysis_d2.txt b/baselines/aqua/new/GPA/analysis_d2.txt similarity index 100% rename from benchmarks/aqua/new/GPA/analysis_d2.txt rename to baselines/aqua/new/GPA/analysis_d2.txt diff --git a/benchmarks/aqua/new/GPA/analysis_g11.txt b/baselines/aqua/new/GPA/analysis_g11.txt similarity index 100% rename from benchmarks/aqua/new/GPA/analysis_g11.txt rename to baselines/aqua/new/GPA/analysis_g11.txt diff --git a/benchmarks/aqua/new/GPA/analysis_g12.txt b/baselines/aqua/new/GPA/analysis_g12.txt similarity index 100% rename from benchmarks/aqua/new/GPA/analysis_g12.txt rename to baselines/aqua/new/GPA/analysis_g12.txt diff --git a/benchmarks/aqua/new/GPA/analysis_g21.txt b/baselines/aqua/new/GPA/analysis_g21.txt similarity index 100% rename from benchmarks/aqua/new/GPA/analysis_g21.txt rename to baselines/aqua/new/GPA/analysis_g21.txt diff --git a/benchmarks/aqua/new/GPA/analysis_g22.txt b/baselines/aqua/new/GPA/analysis_g22.txt similarity index 100% rename from benchmarks/aqua/new/GPA/analysis_g22.txt rename to baselines/aqua/new/GPA/analysis_g22.txt diff --git a/benchmarks/aqua/new/GPA/analysis_gpa1.txt b/baselines/aqua/new/GPA/analysis_gpa1.txt similarity index 100% rename from benchmarks/aqua/new/GPA/analysis_gpa1.txt rename to baselines/aqua/new/GPA/analysis_gpa1.txt diff --git a/benchmarks/aqua/new/GPA/analysis_gpa2.txt b/baselines/aqua/new/GPA/analysis_gpa2.txt similarity index 100% rename from benchmarks/aqua/new/GPA/analysis_gpa2.txt rename to baselines/aqua/new/GPA/analysis_gpa2.txt diff --git a/benchmarks/aqua/new/GPA/analysis_n.txt b/baselines/aqua/new/GPA/analysis_n.txt similarity index 100% rename from benchmarks/aqua/new/GPA/analysis_n.txt rename to baselines/aqua/new/GPA/analysis_n.txt diff --git a/benchmarks/aqua/new/GPA/results.txt b/baselines/aqua/new/GPA/results.txt similarity index 100% rename from benchmarks/aqua/new/GPA/results.txt rename to baselines/aqua/new/GPA/results.txt diff --git a/benchmarks/aqua/new/addFun_sum/addFun_sum.template b/baselines/aqua/new/addFun_sum/addFun_sum.template similarity index 100% rename from benchmarks/aqua/new/addFun_sum/addFun_sum.template rename to baselines/aqua/new/addFun_sum/addFun_sum.template diff --git a/benchmarks/aqua/new/addFun_sum/analysis_sum.txt b/baselines/aqua/new/addFun_sum/analysis_sum.txt similarity index 100% rename from benchmarks/aqua/new/addFun_sum/analysis_sum.txt rename to baselines/aqua/new/addFun_sum/analysis_sum.txt diff --git a/benchmarks/aqua/new/addFun_sum/results.txt b/baselines/aqua/new/addFun_sum/results.txt similarity index 100% rename from benchmarks/aqua/new/addFun_sum/results.txt rename to baselines/aqua/new/addFun_sum/results.txt diff --git a/benchmarks/aqua/new/clickGraph/analysis_b[1].txt b/baselines/aqua/new/clickGraph/analysis_b[1].txt similarity index 100% rename from benchmarks/aqua/new/clickGraph/analysis_b[1].txt rename to baselines/aqua/new/clickGraph/analysis_b[1].txt diff --git a/benchmarks/aqua/new/clickGraph/analysis_b[2].txt b/baselines/aqua/new/clickGraph/analysis_b[2].txt similarity index 100% rename from benchmarks/aqua/new/clickGraph/analysis_b[2].txt rename to baselines/aqua/new/clickGraph/analysis_b[2].txt diff --git a/benchmarks/aqua/new/clickGraph/analysis_x[1].txt b/baselines/aqua/new/clickGraph/analysis_x[1].txt similarity index 100% rename from benchmarks/aqua/new/clickGraph/analysis_x[1].txt rename to baselines/aqua/new/clickGraph/analysis_x[1].txt diff --git a/benchmarks/aqua/new/clickGraph/analysis_x[2].txt b/baselines/aqua/new/clickGraph/analysis_x[2].txt similarity index 100% rename from benchmarks/aqua/new/clickGraph/analysis_x[2].txt rename to baselines/aqua/new/clickGraph/analysis_x[2].txt diff --git a/benchmarks/aqua/new/clickGraph/clickGraph.template b/baselines/aqua/new/clickGraph/clickGraph.template similarity index 100% rename from benchmarks/aqua/new/clickGraph/clickGraph.template rename to baselines/aqua/new/clickGraph/clickGraph.template diff --git a/benchmarks/aqua/new/coinBias/analysis_d1.txt b/baselines/aqua/new/coinBias/analysis_d1.txt similarity index 100% rename from benchmarks/aqua/new/coinBias/analysis_d1.txt rename to baselines/aqua/new/coinBias/analysis_d1.txt diff --git a/benchmarks/aqua/new/coinBias/analysis_mu.txt b/baselines/aqua/new/coinBias/analysis_mu.txt similarity index 100% rename from benchmarks/aqua/new/coinBias/analysis_mu.txt rename to baselines/aqua/new/coinBias/analysis_mu.txt diff --git a/benchmarks/aqua/new/coinBias/coinBias.data.R b/baselines/aqua/new/coinBias/coinBias.data.R similarity index 100% rename from benchmarks/aqua/new/coinBias/coinBias.data.R rename to baselines/aqua/new/coinBias/coinBias.data.R diff --git a/benchmarks/aqua/new/coinBias/coinBias.stan b/baselines/aqua/new/coinBias/coinBias.stan similarity index 100% rename from benchmarks/aqua/new/coinBias/coinBias.stan rename to baselines/aqua/new/coinBias/coinBias.stan diff --git a/benchmarks/aqua/new/coinBias/coinBias.template b/baselines/aqua/new/coinBias/coinBias.template similarity index 100% rename from benchmarks/aqua/new/coinBias/coinBias.template rename to baselines/aqua/new/coinBias/coinBias.template diff --git a/benchmarks/aqua/new/coinBias/results.txt b/baselines/aqua/new/coinBias/results.txt similarity index 100% rename from benchmarks/aqua/new/coinBias/results.txt rename to baselines/aqua/new/coinBias/results.txt diff --git a/benchmarks/aqua/new/coinBias/results_1200.txt b/baselines/aqua/new/coinBias/results_1200.txt similarity index 100% rename from benchmarks/aqua/new/coinBias/results_1200.txt rename to baselines/aqua/new/coinBias/results_1200.txt diff --git a/benchmarks/aqua/new/conjugate_gaussians/analysis_mu.txt b/baselines/aqua/new/conjugate_gaussians/analysis_mu.txt similarity index 100% rename from benchmarks/aqua/new/conjugate_gaussians/analysis_mu.txt rename to baselines/aqua/new/conjugate_gaussians/analysis_mu.txt diff --git a/benchmarks/aqua/new/conjugate_gaussians/conjugate_gaussians.data.R b/baselines/aqua/new/conjugate_gaussians/conjugate_gaussians.data.R similarity index 100% rename from benchmarks/aqua/new/conjugate_gaussians/conjugate_gaussians.data.R rename to baselines/aqua/new/conjugate_gaussians/conjugate_gaussians.data.R diff --git a/benchmarks/aqua/new/conjugate_gaussians/conjugate_gaussians.stan b/baselines/aqua/new/conjugate_gaussians/conjugate_gaussians.stan similarity index 100% rename from benchmarks/aqua/new/conjugate_gaussians/conjugate_gaussians.stan rename to baselines/aqua/new/conjugate_gaussians/conjugate_gaussians.stan diff --git a/benchmarks/aqua/new/conjugate_gaussians/conjugate_gaussians_2.data.R b/baselines/aqua/new/conjugate_gaussians/conjugate_gaussians_2.data.R similarity index 100% rename from benchmarks/aqua/new/conjugate_gaussians/conjugate_gaussians_2.data.R rename to baselines/aqua/new/conjugate_gaussians/conjugate_gaussians_2.data.R diff --git a/benchmarks/aqua/new/conjugate_gaussians/results.txt b/baselines/aqua/new/conjugate_gaussians/results.txt similarity index 100% rename from benchmarks/aqua/new/conjugate_gaussians/results.txt rename to baselines/aqua/new/conjugate_gaussians/results.txt diff --git a/benchmarks/aqua/new/conjugate_gaussians/results_1200.txt b/baselines/aqua/new/conjugate_gaussians/results_1200.txt similarity index 100% rename from benchmarks/aqua/new/conjugate_gaussians/results_1200.txt rename to baselines/aqua/new/conjugate_gaussians/results_1200.txt diff --git a/benchmarks/aqua/new/pi/analysis_a1.txt b/baselines/aqua/new/pi/analysis_a1.txt similarity index 100% rename from benchmarks/aqua/new/pi/analysis_a1.txt rename to baselines/aqua/new/pi/analysis_a1.txt diff --git a/benchmarks/aqua/new/pi/analysis_a2.txt b/baselines/aqua/new/pi/analysis_a2.txt similarity index 100% rename from benchmarks/aqua/new/pi/analysis_a2.txt rename to baselines/aqua/new/pi/analysis_a2.txt diff --git a/benchmarks/aqua/new/pi/pi.template b/baselines/aqua/new/pi/pi.template similarity index 100% rename from benchmarks/aqua/new/pi/pi.template rename to baselines/aqua/new/pi/pi.template diff --git a/benchmarks/aqua/new/spacex/analysis_engines.txt b/baselines/aqua/new/spacex/analysis_engines.txt similarity index 100% rename from benchmarks/aqua/new/spacex/analysis_engines.txt rename to baselines/aqua/new/spacex/analysis_engines.txt diff --git a/benchmarks/aqua/new/spacex/analysis_first_stage.txt b/baselines/aqua/new/spacex/analysis_first_stage.txt similarity index 100% rename from benchmarks/aqua/new/spacex/analysis_first_stage.txt rename to baselines/aqua/new/spacex/analysis_first_stage.txt diff --git a/benchmarks/aqua/new/spacex/analysis_second_stage.txt b/baselines/aqua/new/spacex/analysis_second_stage.txt similarity index 100% rename from benchmarks/aqua/new/spacex/analysis_second_stage.txt rename to baselines/aqua/new/spacex/analysis_second_stage.txt diff --git a/benchmarks/aqua/new/spacex/spacex.template b/baselines/aqua/new/spacex/spacex.template similarity index 100% rename from benchmarks/aqua/new/spacex/spacex.template rename to baselines/aqua/new/spacex/spacex.template diff --git a/benchmarks/aqua/new/tug/analysis_alice.txt b/baselines/aqua/new/tug/analysis_alice.txt similarity index 100% rename from benchmarks/aqua/new/tug/analysis_alice.txt rename to baselines/aqua/new/tug/analysis_alice.txt diff --git a/benchmarks/aqua/new/tug/analysis_bob.txt b/baselines/aqua/new/tug/analysis_bob.txt similarity index 100% rename from benchmarks/aqua/new/tug/analysis_bob.txt rename to baselines/aqua/new/tug/analysis_bob.txt diff --git a/benchmarks/aqua/new/tug/analysis_match[1].txt b/baselines/aqua/new/tug/analysis_match[1].txt similarity index 100% rename from benchmarks/aqua/new/tug/analysis_match[1].txt rename to baselines/aqua/new/tug/analysis_match[1].txt diff --git a/benchmarks/aqua/new/tug/analysis_match[2].txt b/baselines/aqua/new/tug/analysis_match[2].txt similarity index 100% rename from benchmarks/aqua/new/tug/analysis_match[2].txt rename to baselines/aqua/new/tug/analysis_match[2].txt diff --git a/benchmarks/aqua/new/tug/tug.data.R b/baselines/aqua/new/tug/tug.data.R similarity index 100% rename from benchmarks/aqua/new/tug/tug.data.R rename to baselines/aqua/new/tug/tug.data.R diff --git a/benchmarks/aqua/new/tug/tug.stan b/baselines/aqua/new/tug/tug.stan similarity index 100% rename from benchmarks/aqua/new/tug/tug.stan rename to baselines/aqua/new/tug/tug.stan diff --git a/benchmarks/aqua/new/tug/tug.template b/baselines/aqua/new/tug/tug.template similarity index 100% rename from benchmarks/aqua/new/tug/tug.template rename to baselines/aqua/new/tug/tug.template diff --git a/benchmarks/aqua/new/weekend/analysis_hour.txt b/baselines/aqua/new/weekend/analysis_hour.txt similarity index 100% rename from benchmarks/aqua/new/weekend/analysis_hour.txt rename to baselines/aqua/new/weekend/analysis_hour.txt diff --git a/benchmarks/aqua/new/weekend/analysis_isWeekend.txt b/baselines/aqua/new/weekend/analysis_isWeekend.txt similarity index 100% rename from benchmarks/aqua/new/weekend/analysis_isWeekend.txt rename to baselines/aqua/new/weekend/analysis_isWeekend.txt diff --git a/benchmarks/aqua/new/weekend/weekend.template b/baselines/aqua/new/weekend/weekend.template similarity index 100% rename from benchmarks/aqua/new/weekend/weekend.template rename to baselines/aqua/new/weekend/weekend.template diff --git a/benchmarks/aqua/plotting.ipynb b/baselines/aqua/plotting.ipynb similarity index 100% rename from benchmarks/aqua/plotting.ipynb rename to baselines/aqua/plotting.ipynb diff --git a/benchmarks/aqua/run.sh b/baselines/aqua/run.sh similarity index 100% rename from benchmarks/aqua/run.sh rename to baselines/aqua/run.sh diff --git a/benchmarks/aqua/stan_bench/altermu2/altermu2.data.R b/baselines/aqua/stan_bench/altermu2/altermu2.data.R similarity index 100% rename from benchmarks/aqua/stan_bench/altermu2/altermu2.data.R rename to baselines/aqua/stan_bench/altermu2/altermu2.data.R diff --git a/benchmarks/aqua/stan_bench/altermu2/altermu2.stan b/baselines/aqua/stan_bench/altermu2/altermu2.stan similarity index 100% rename from benchmarks/aqua/stan_bench/altermu2/altermu2.stan rename to baselines/aqua/stan_bench/altermu2/altermu2.stan diff --git a/benchmarks/aqua/stan_bench/altermu2/analysis_mu[1].txt b/baselines/aqua/stan_bench/altermu2/analysis_mu[1].txt similarity index 100% rename from benchmarks/aqua/stan_bench/altermu2/analysis_mu[1].txt rename to baselines/aqua/stan_bench/altermu2/analysis_mu[1].txt diff --git a/benchmarks/aqua/stan_bench/altermu2/analysis_mu[2].txt b/baselines/aqua/stan_bench/altermu2/analysis_mu[2].txt similarity index 100% rename from benchmarks/aqua/stan_bench/altermu2/analysis_mu[2].txt rename to baselines/aqua/stan_bench/altermu2/analysis_mu[2].txt diff --git a/benchmarks/aqua/stan_bench/altermu2/results.txt b/baselines/aqua/stan_bench/altermu2/results.txt similarity index 100% rename from benchmarks/aqua/stan_bench/altermu2/results.txt rename to baselines/aqua/stan_bench/altermu2/results.txt diff --git a/benchmarks/aqua/stan_bench/altermu2/results_rough.txt b/baselines/aqua/stan_bench/altermu2/results_rough.txt similarity index 100% rename from benchmarks/aqua/stan_bench/altermu2/results_rough.txt rename to baselines/aqua/stan_bench/altermu2/results_rough.txt diff --git a/benchmarks/aqua/stan_bench/conjugate_gaussians_2/analysis_mu.txt b/baselines/aqua/stan_bench/conjugate_gaussians_2/analysis_mu.txt similarity index 100% rename from benchmarks/aqua/stan_bench/conjugate_gaussians_2/analysis_mu.txt rename to baselines/aqua/stan_bench/conjugate_gaussians_2/analysis_mu.txt diff --git a/benchmarks/aqua/stan_bench/conjugate_gaussians_2/conjugate_gaussians_2.data.R b/baselines/aqua/stan_bench/conjugate_gaussians_2/conjugate_gaussians_2.data.R similarity index 100% rename from benchmarks/aqua/stan_bench/conjugate_gaussians_2/conjugate_gaussians_2.data.R rename to baselines/aqua/stan_bench/conjugate_gaussians_2/conjugate_gaussians_2.data.R diff --git a/benchmarks/aqua/stan_bench/conjugate_gaussians_2/conjugate_gaussians_2.stan b/baselines/aqua/stan_bench/conjugate_gaussians_2/conjugate_gaussians_2.stan similarity index 100% rename from benchmarks/aqua/stan_bench/conjugate_gaussians_2/conjugate_gaussians_2.stan rename to baselines/aqua/stan_bench/conjugate_gaussians_2/conjugate_gaussians_2.stan diff --git a/benchmarks/aqua/stan_bench/conjugate_gaussians_2/results_1200.txt b/baselines/aqua/stan_bench/conjugate_gaussians_2/results_1200.txt similarity index 100% rename from benchmarks/aqua/stan_bench/conjugate_gaussians_2/results_1200.txt rename to baselines/aqua/stan_bench/conjugate_gaussians_2/results_1200.txt diff --git a/benchmarks/aqua/stan_bench/normal_mixture/analysis_mu[1].txt b/baselines/aqua/stan_bench/normal_mixture/analysis_mu[1].txt similarity index 100% rename from benchmarks/aqua/stan_bench/normal_mixture/analysis_mu[1].txt rename to baselines/aqua/stan_bench/normal_mixture/analysis_mu[1].txt diff --git a/benchmarks/aqua/stan_bench/normal_mixture/analysis_mu[2].txt b/baselines/aqua/stan_bench/normal_mixture/analysis_mu[2].txt similarity index 100% rename from benchmarks/aqua/stan_bench/normal_mixture/analysis_mu[2].txt rename to baselines/aqua/stan_bench/normal_mixture/analysis_mu[2].txt diff --git a/benchmarks/aqua/stan_bench/normal_mixture/analysis_theta.txt b/baselines/aqua/stan_bench/normal_mixture/analysis_theta.txt similarity index 100% rename from benchmarks/aqua/stan_bench/normal_mixture/analysis_theta.txt rename to baselines/aqua/stan_bench/normal_mixture/analysis_theta.txt diff --git a/benchmarks/aqua/stan_bench/normal_mixture/normal_mixture.data.R b/baselines/aqua/stan_bench/normal_mixture/normal_mixture.data.R similarity index 100% rename from benchmarks/aqua/stan_bench/normal_mixture/normal_mixture.data.R rename to baselines/aqua/stan_bench/normal_mixture/normal_mixture.data.R diff --git a/benchmarks/aqua/stan_bench/normal_mixture/normal_mixture.stan b/baselines/aqua/stan_bench/normal_mixture/normal_mixture.stan similarity index 100% rename from benchmarks/aqua/stan_bench/normal_mixture/normal_mixture.stan rename to baselines/aqua/stan_bench/normal_mixture/normal_mixture.stan diff --git a/benchmarks/aqua/stan_bench/normal_mixture/results.txt b/baselines/aqua/stan_bench/normal_mixture/results.txt similarity index 100% rename from benchmarks/aqua/stan_bench/normal_mixture/results.txt rename to baselines/aqua/stan_bench/normal_mixture/results.txt diff --git a/benchmarks/aqua/stan_bench/normal_mixture/results1.txt b/baselines/aqua/stan_bench/normal_mixture/results1.txt similarity index 100% rename from benchmarks/aqua/stan_bench/normal_mixture/results1.txt rename to baselines/aqua/stan_bench/normal_mixture/results1.txt diff --git a/benchmarks/aqua/stan_bench/normal_mixture/results1_1200.txt b/baselines/aqua/stan_bench/normal_mixture/results1_1200.txt similarity index 100% rename from benchmarks/aqua/stan_bench/normal_mixture/results1_1200.txt rename to baselines/aqua/stan_bench/normal_mixture/results1_1200.txt diff --git a/benchmarks/aqua/stan_bench/normal_mixture/results2.txt b/baselines/aqua/stan_bench/normal_mixture/results2.txt similarity index 100% rename from benchmarks/aqua/stan_bench/normal_mixture/results2.txt rename to baselines/aqua/stan_bench/normal_mixture/results2.txt diff --git a/benchmarks/aqua/stan_bench/normal_mixture/results2_1200.txt b/baselines/aqua/stan_bench/normal_mixture/results2_1200.txt similarity index 100% rename from benchmarks/aqua/stan_bench/normal_mixture/results2_1200.txt rename to baselines/aqua/stan_bench/normal_mixture/results2_1200.txt diff --git a/benchmarks/aqua/stan_bench/normal_mixture/results_1200.txt b/baselines/aqua/stan_bench/normal_mixture/results_1200.txt similarity index 100% rename from benchmarks/aqua/stan_bench/normal_mixture/results_1200.txt rename to baselines/aqua/stan_bench/normal_mixture/results_1200.txt diff --git a/benchmarks/aqua/stan_bench/tug/analysis_alice.txt b/baselines/aqua/stan_bench/tug/analysis_alice.txt similarity index 100% rename from benchmarks/aqua/stan_bench/tug/analysis_alice.txt rename to baselines/aqua/stan_bench/tug/analysis_alice.txt diff --git a/benchmarks/aqua/stan_bench/tug/analysis_bob.txt b/baselines/aqua/stan_bench/tug/analysis_bob.txt similarity index 100% rename from benchmarks/aqua/stan_bench/tug/analysis_bob.txt rename to baselines/aqua/stan_bench/tug/analysis_bob.txt diff --git a/benchmarks/aqua/stan_bench/tug/tug.data.R b/baselines/aqua/stan_bench/tug/tug.data.R similarity index 100% rename from benchmarks/aqua/stan_bench/tug/tug.data.R rename to baselines/aqua/stan_bench/tug/tug.data.R diff --git a/benchmarks/aqua/stan_bench/tug/tug.stan b/baselines/aqua/stan_bench/tug/tug.stan similarity index 100% rename from benchmarks/aqua/stan_bench/tug/tug.stan rename to baselines/aqua/stan_bench/tug/tug.stan diff --git a/benchmarks/aqua/stan_bench/zeroone/analysis_w1.txt b/baselines/aqua/stan_bench/zeroone/analysis_w1.txt similarity index 100% rename from benchmarks/aqua/stan_bench/zeroone/analysis_w1.txt rename to baselines/aqua/stan_bench/zeroone/analysis_w1.txt diff --git a/benchmarks/aqua/stan_bench/zeroone/analysis_w2.txt b/baselines/aqua/stan_bench/zeroone/analysis_w2.txt similarity index 100% rename from benchmarks/aqua/stan_bench/zeroone/analysis_w2.txt rename to baselines/aqua/stan_bench/zeroone/analysis_w2.txt diff --git a/benchmarks/aqua/stan_bench/zeroone/results.txt b/baselines/aqua/stan_bench/zeroone/results.txt similarity index 100% rename from benchmarks/aqua/stan_bench/zeroone/results.txt rename to baselines/aqua/stan_bench/zeroone/results.txt diff --git a/benchmarks/aqua/stan_bench/zeroone/results2.txt b/baselines/aqua/stan_bench/zeroone/results2.txt similarity index 100% rename from benchmarks/aqua/stan_bench/zeroone/results2.txt rename to baselines/aqua/stan_bench/zeroone/results2.txt diff --git a/benchmarks/aqua/stan_bench/zeroone/results2_1200.txt b/baselines/aqua/stan_bench/zeroone/results2_1200.txt similarity index 100% rename from benchmarks/aqua/stan_bench/zeroone/results2_1200.txt rename to baselines/aqua/stan_bench/zeroone/results2_1200.txt diff --git a/benchmarks/aqua/stan_bench/zeroone/results_1200.txt b/baselines/aqua/stan_bench/zeroone/results_1200.txt similarity index 100% rename from benchmarks/aqua/stan_bench/zeroone/results_1200.txt rename to baselines/aqua/stan_bench/zeroone/results_1200.txt diff --git a/benchmarks/aqua/stan_bench/zeroone/zeroone.data.R b/baselines/aqua/stan_bench/zeroone/zeroone.data.R similarity index 100% rename from benchmarks/aqua/stan_bench/zeroone/zeroone.data.R rename to baselines/aqua/stan_bench/zeroone/zeroone.data.R diff --git a/benchmarks/aqua/stan_bench/zeroone/zeroone.stan b/baselines/aqua/stan_bench/zeroone/zeroone.stan similarity index 100% rename from benchmarks/aqua/stan_bench/zeroone/zeroone.stan rename to baselines/aqua/stan_bench/zeroone/zeroone.stan diff --git a/benchmarks/aqua/storm_bench/GPA/GPA.template b/baselines/aqua/storm_bench/GPA/GPA.template similarity index 100% rename from benchmarks/aqua/storm_bench/GPA/GPA.template rename to baselines/aqua/storm_bench/GPA/GPA.template diff --git a/benchmarks/aqua/storm_bench/GPA/analysis_GPA.txt b/baselines/aqua/storm_bench/GPA/analysis_GPA.txt similarity index 100% rename from benchmarks/aqua/storm_bench/GPA/analysis_GPA.txt rename to baselines/aqua/storm_bench/GPA/analysis_GPA.txt diff --git a/benchmarks/aqua/storm_bench/GPA/analysis_Nationality.txt b/baselines/aqua/storm_bench/GPA/analysis_Nationality.txt similarity index 100% rename from benchmarks/aqua/storm_bench/GPA/analysis_Nationality.txt rename to baselines/aqua/storm_bench/GPA/analysis_Nationality.txt diff --git a/benchmarks/aqua/storm_bench/GPA/analysis_Perfect.txt b/baselines/aqua/storm_bench/GPA/analysis_Perfect.txt similarity index 100% rename from benchmarks/aqua/storm_bench/GPA/analysis_Perfect.txt rename to baselines/aqua/storm_bench/GPA/analysis_Perfect.txt diff --git a/benchmarks/psi/GPA.psi b/baselines/psi/GPA.psi similarity index 100% rename from benchmarks/psi/GPA.psi rename to baselines/psi/GPA.psi diff --git a/benchmarks/psi/altermu2.psi b/baselines/psi/altermu2.psi similarity index 100% rename from benchmarks/psi/altermu2.psi rename to baselines/psi/altermu2.psi diff --git a/benchmarks/psi/clinicalTrial1.psi b/baselines/psi/clinicalTrial1.psi similarity index 100% rename from benchmarks/psi/clinicalTrial1.psi rename to baselines/psi/clinicalTrial1.psi diff --git a/benchmarks/psi/clinicalTrial2.psi b/baselines/psi/clinicalTrial2.psi similarity index 100% rename from benchmarks/psi/clinicalTrial2.psi rename to baselines/psi/clinicalTrial2.psi diff --git a/benchmarks/psi/coinBiasEquivalent.psi b/baselines/psi/coinBiasEquivalent.psi similarity index 100% rename from benchmarks/psi/coinBiasEquivalent.psi rename to baselines/psi/coinBiasEquivalent.psi diff --git a/benchmarks/psi/coinBiasModified.psi b/baselines/psi/coinBiasModified.psi similarity index 100% rename from benchmarks/psi/coinBiasModified.psi rename to baselines/psi/coinBiasModified.psi diff --git a/benchmarks/psi/conjugate_gaussians.psi b/baselines/psi/conjugate_gaussians.psi similarity index 100% rename from benchmarks/psi/conjugate_gaussians.psi rename to baselines/psi/conjugate_gaussians.psi diff --git a/benchmarks/psi/data/ClinicalTrial/dataControlGroup.csv b/baselines/psi/data/ClinicalTrial/dataControlGroup.csv similarity index 100% rename from benchmarks/psi/data/ClinicalTrial/dataControlGroup.csv rename to baselines/psi/data/ClinicalTrial/dataControlGroup.csv diff --git a/benchmarks/psi/data/ClinicalTrial/dataTreatedGroup.csv b/baselines/psi/data/ClinicalTrial/dataTreatedGroup.csv similarity index 100% rename from benchmarks/psi/data/ClinicalTrial/dataTreatedGroup.csv rename to baselines/psi/data/ClinicalTrial/dataTreatedGroup.csv diff --git a/benchmarks/psi/data/ClinicalTrial/extractHakaru.d b/baselines/psi/data/ClinicalTrial/extractHakaru.d similarity index 100% rename from benchmarks/psi/data/ClinicalTrial/extractHakaru.d rename to baselines/psi/data/ClinicalTrial/extractHakaru.d diff --git a/benchmarks/psi/data/ClinicalTrial/hakaru.mpl b/baselines/psi/data/ClinicalTrial/hakaru.mpl similarity index 100% rename from benchmarks/psi/data/ClinicalTrial/hakaru.mpl rename to baselines/psi/data/ClinicalTrial/hakaru.mpl diff --git a/benchmarks/psi/data/CoinBias/tosses.csv b/baselines/psi/data/CoinBias/tosses.csv similarity index 100% rename from benchmarks/psi/data/CoinBias/tosses.csv rename to baselines/psi/data/CoinBias/tosses.csv diff --git a/benchmarks/psi/data/TrueSkill_Simple/games.csv b/baselines/psi/data/TrueSkill_Simple/games.csv similarity index 100% rename from benchmarks/psi/data/TrueSkill_Simple/games.csv rename to baselines/psi/data/TrueSkill_Simple/games.csv diff --git a/benchmarks/psi/data/TrueSkill_Simple/players.csv b/baselines/psi/data/TrueSkill_Simple/players.csv similarity index 100% rename from benchmarks/psi/data/TrueSkill_Simple/players.csv rename to baselines/psi/data/TrueSkill_Simple/players.csv diff --git a/benchmarks/psi/gamma2.psi b/baselines/psi/gamma2.psi similarity index 100% rename from benchmarks/psi/gamma2.psi rename to baselines/psi/gamma2.psi diff --git a/benchmarks/psi/max.psi b/baselines/psi/max.psi similarity index 100% rename from benchmarks/psi/max.psi rename to baselines/psi/max.psi diff --git a/benchmarks/psi/normal_mixture.psi b/baselines/psi/normal_mixture.psi similarity index 100% rename from benchmarks/psi/normal_mixture.psi rename to baselines/psi/normal_mixture.psi diff --git a/benchmarks/psi/or.psi b/baselines/psi/or.psi similarity index 100% rename from benchmarks/psi/or.psi rename to baselines/psi/or.psi diff --git a/benchmarks/psi/or/generate_or.py b/baselines/psi/or/generate_or.py similarity index 100% rename from benchmarks/psi/or/generate_or.py rename to baselines/psi/or/generate_or.py diff --git a/benchmarks/psi/or/or.psi b/baselines/psi/or/or.psi similarity index 100% rename from benchmarks/psi/or/or.psi rename to baselines/psi/or/or.psi diff --git a/benchmarks/psi/or/or_10.psi b/baselines/psi/or/or_10.psi similarity index 100% rename from benchmarks/psi/or/or_10.psi rename to baselines/psi/or/or_10.psi diff --git a/benchmarks/psi/or/or_100.psi b/baselines/psi/or/or_100.psi similarity index 100% rename from benchmarks/psi/or/or_100.psi rename to baselines/psi/or/or_100.psi diff --git a/benchmarks/psi/or/or_15.psi b/baselines/psi/or/or_15.psi similarity index 100% rename from benchmarks/psi/or/or_15.psi rename to baselines/psi/or/or_15.psi diff --git a/benchmarks/psi/or/or_20.psi b/baselines/psi/or/or_20.psi similarity index 100% rename from benchmarks/psi/or/or_20.psi rename to baselines/psi/or/or_20.psi diff --git a/benchmarks/psi/or/or_20.py b/baselines/psi/or/or_20.py similarity index 100% rename from benchmarks/psi/or/or_20.py rename to baselines/psi/or/or_20.py diff --git a/benchmarks/psi/or/or_25.psi b/baselines/psi/or/or_25.psi similarity index 100% rename from benchmarks/psi/or/or_25.psi rename to baselines/psi/or/or_25.psi diff --git a/benchmarks/psi/or/or_30.psi b/baselines/psi/or/or_30.psi similarity index 100% rename from benchmarks/psi/or/or_30.psi rename to baselines/psi/or/or_30.psi diff --git a/benchmarks/psi/or/or_30.py b/baselines/psi/or/or_30.py similarity index 100% rename from benchmarks/psi/or/or_30.py rename to baselines/psi/or/or_30.py diff --git a/benchmarks/psi/or/or_35.psi b/baselines/psi/or/or_35.psi similarity index 100% rename from benchmarks/psi/or/or_35.psi rename to baselines/psi/or/or_35.psi diff --git a/benchmarks/psi/or/or_40.psi b/baselines/psi/or/or_40.psi similarity index 100% rename from benchmarks/psi/or/or_40.psi rename to baselines/psi/or/or_40.psi diff --git a/benchmarks/psi/or/or_40.py b/baselines/psi/or/or_40.py similarity index 100% rename from benchmarks/psi/or/or_40.py rename to baselines/psi/or/or_40.py diff --git a/benchmarks/psi/or/or_45.psi b/baselines/psi/or/or_45.psi similarity index 100% rename from benchmarks/psi/or/or_45.psi rename to baselines/psi/or/or_45.psi diff --git a/benchmarks/psi/or/or_5.psi b/baselines/psi/or/or_5.psi similarity index 100% rename from benchmarks/psi/or/or_5.psi rename to baselines/psi/or/or_5.psi diff --git a/benchmarks/psi/or/or_50.psi b/baselines/psi/or/or_50.psi similarity index 100% rename from benchmarks/psi/or/or_50.psi rename to baselines/psi/or/or_50.psi diff --git a/benchmarks/psi/or/or_50.py b/baselines/psi/or/or_50.py similarity index 100% rename from benchmarks/psi/or/or_50.py rename to baselines/psi/or/or_50.py diff --git a/benchmarks/psi/or/or_60.psi b/baselines/psi/or/or_60.psi similarity index 100% rename from benchmarks/psi/or/or_60.psi rename to baselines/psi/or/or_60.psi diff --git a/benchmarks/psi/or/or_60.py b/baselines/psi/or/or_60.py similarity index 100% rename from benchmarks/psi/or/or_60.py rename to baselines/psi/or/or_60.py diff --git a/benchmarks/psi/or/or_70.psi b/baselines/psi/or/or_70.psi similarity index 100% rename from benchmarks/psi/or/or_70.psi rename to baselines/psi/or/or_70.psi diff --git a/benchmarks/psi/or/or_70.py b/baselines/psi/or/or_70.py similarity index 100% rename from benchmarks/psi/or/or_70.py rename to baselines/psi/or/or_70.py diff --git a/benchmarks/psi/or/or_80.psi b/baselines/psi/or/or_80.psi similarity index 100% rename from benchmarks/psi/or/or_80.psi rename to baselines/psi/or/or_80.psi diff --git a/benchmarks/psi/or/or_80.py b/baselines/psi/or/or_80.py similarity index 100% rename from benchmarks/psi/or/or_80.py rename to baselines/psi/or/or_80.py diff --git a/benchmarks/psi/or/or_90.psi b/baselines/psi/or/or_90.psi similarity index 100% rename from benchmarks/psi/or/or_90.psi rename to baselines/psi/or/or_90.psi diff --git a/benchmarks/psi/or/or_90.py b/baselines/psi/or/or_90.py similarity index 100% rename from benchmarks/psi/or/or_90.py rename to baselines/psi/or/or_90.py diff --git a/benchmarks/psi/pi.psi b/baselines/psi/pi.psi similarity index 100% rename from benchmarks/psi/pi.psi rename to baselines/psi/pi.psi diff --git a/benchmarks/psi/spacex.psi b/baselines/psi/spacex.psi similarity index 100% rename from benchmarks/psi/spacex.psi rename to baselines/psi/spacex.psi diff --git a/benchmarks/psi/trueskill.psi b/baselines/psi/trueskill.psi similarity index 100% rename from benchmarks/psi/trueskill.psi rename to baselines/psi/trueskill.psi diff --git a/benchmarks/psi/tug_of_war.psi b/baselines/psi/tug_of_war.psi similarity index 100% rename from benchmarks/psi/tug_of_war.psi rename to baselines/psi/tug_of_war.psi diff --git a/benchmarks/psi/weekend.psi b/baselines/psi/weekend.psi similarity index 100% rename from benchmarks/psi/weekend.psi rename to baselines/psi/weekend.psi diff --git a/benchmarks/psi/zeroone.psi b/baselines/psi/zeroone.psi similarity index 100% rename from benchmarks/psi/zeroone.psi rename to baselines/psi/zeroone.psi diff --git a/benchmarks/stan/GPA/GPA.stan b/baselines/stan/GPA/GPA.stan similarity index 100% rename from benchmarks/stan/GPA/GPA.stan rename to baselines/stan/GPA/GPA.stan diff --git a/benchmarks/stan/addFun_max/addFun_max b/baselines/stan/addFun_max/addFun_max similarity index 100% rename from benchmarks/stan/addFun_max/addFun_max rename to baselines/stan/addFun_max/addFun_max diff --git a/benchmarks/stan/addFun_max/addFun_max.hpp b/baselines/stan/addFun_max/addFun_max.hpp similarity index 100% rename from benchmarks/stan/addFun_max/addFun_max.hpp rename to baselines/stan/addFun_max/addFun_max.hpp diff --git a/benchmarks/stan/addFun_max/addFun_max.stan b/baselines/stan/addFun_max/addFun_max.stan similarity index 100% rename from benchmarks/stan/addFun_max/addFun_max.stan rename to baselines/stan/addFun_max/addFun_max.stan diff --git a/benchmarks/stan/addFun_max/results_1200.txt b/baselines/stan/addFun_max/results_1200.txt similarity index 100% rename from benchmarks/stan/addFun_max/results_1200.txt rename to baselines/stan/addFun_max/results_1200.txt diff --git a/benchmarks/stan/addFun_sum/addFun_sum b/baselines/stan/addFun_sum/addFun_sum similarity index 100% rename from benchmarks/stan/addFun_sum/addFun_sum rename to baselines/stan/addFun_sum/addFun_sum diff --git a/benchmarks/stan/addFun_sum/addFun_sum.hpp b/baselines/stan/addFun_sum/addFun_sum.hpp similarity index 100% rename from benchmarks/stan/addFun_sum/addFun_sum.hpp rename to baselines/stan/addFun_sum/addFun_sum.hpp diff --git a/benchmarks/stan/addFun_sum/addFun_sum.stan b/baselines/stan/addFun_sum/addFun_sum.stan similarity index 100% rename from benchmarks/stan/addFun_sum/addFun_sum.stan rename to baselines/stan/addFun_sum/addFun_sum.stan diff --git a/benchmarks/stan/addFun_sum/results.txt b/baselines/stan/addFun_sum/results.txt similarity index 100% rename from benchmarks/stan/addFun_sum/results.txt rename to baselines/stan/addFun_sum/results.txt diff --git a/benchmarks/stan/addFun_sum/results_1200.txt b/baselines/stan/addFun_sum/results_1200.txt similarity index 100% rename from benchmarks/stan/addFun_sum/results_1200.txt rename to baselines/stan/addFun_sum/results_1200.txt diff --git a/benchmarks/stan/altermu2/altermu2 b/baselines/stan/altermu2/altermu2 similarity index 100% rename from benchmarks/stan/altermu2/altermu2 rename to baselines/stan/altermu2/altermu2 diff --git a/benchmarks/stan/altermu2/altermu2.data.R b/baselines/stan/altermu2/altermu2.data.R similarity index 100% rename from benchmarks/stan/altermu2/altermu2.data.R rename to baselines/stan/altermu2/altermu2.data.R diff --git a/benchmarks/stan/altermu2/altermu2.hpp b/baselines/stan/altermu2/altermu2.hpp similarity index 100% rename from benchmarks/stan/altermu2/altermu2.hpp rename to baselines/stan/altermu2/altermu2.hpp diff --git a/benchmarks/stan/altermu2/altermu2.stan b/baselines/stan/altermu2/altermu2.stan similarity index 100% rename from benchmarks/stan/altermu2/altermu2.stan rename to baselines/stan/altermu2/altermu2.stan diff --git a/benchmarks/stan/altermu2/results.txt b/baselines/stan/altermu2/results.txt similarity index 100% rename from benchmarks/stan/altermu2/results.txt rename to baselines/stan/altermu2/results.txt diff --git a/benchmarks/stan/altermu2/results_1200.txt b/baselines/stan/altermu2/results_1200.txt similarity index 100% rename from benchmarks/stan/altermu2/results_1200.txt rename to baselines/stan/altermu2/results_1200.txt diff --git a/benchmarks/stan/anova_radon_nopred/anova_radon_nopred b/baselines/stan/anova_radon_nopred/anova_radon_nopred similarity index 100% rename from benchmarks/stan/anova_radon_nopred/anova_radon_nopred rename to baselines/stan/anova_radon_nopred/anova_radon_nopred diff --git a/benchmarks/stan/anova_radon_nopred/anova_radon_nopred.data.R b/baselines/stan/anova_radon_nopred/anova_radon_nopred.data.R similarity index 100% rename from benchmarks/stan/anova_radon_nopred/anova_radon_nopred.data.R rename to baselines/stan/anova_radon_nopred/anova_radon_nopred.data.R diff --git a/benchmarks/stan/anova_radon_nopred/anova_radon_nopred.hpp b/baselines/stan/anova_radon_nopred/anova_radon_nopred.hpp similarity index 100% rename from benchmarks/stan/anova_radon_nopred/anova_radon_nopred.hpp rename to baselines/stan/anova_radon_nopred/anova_radon_nopred.hpp diff --git a/benchmarks/stan/anova_radon_nopred/anova_radon_nopred.psi b/baselines/stan/anova_radon_nopred/anova_radon_nopred.psi similarity index 100% rename from benchmarks/stan/anova_radon_nopred/anova_radon_nopred.psi rename to baselines/stan/anova_radon_nopred/anova_radon_nopred.psi diff --git a/benchmarks/stan/anova_radon_nopred/anova_radon_nopred.stan b/baselines/stan/anova_radon_nopred/anova_radon_nopred.stan similarity index 100% rename from benchmarks/stan/anova_radon_nopred/anova_radon_nopred.stan rename to baselines/stan/anova_radon_nopred/anova_radon_nopred.stan diff --git a/benchmarks/stan/anova_radon_nopred/anova_radon_nopred1obs.data.R b/baselines/stan/anova_radon_nopred/anova_radon_nopred1obs.data.R similarity index 100% rename from benchmarks/stan/anova_radon_nopred/anova_radon_nopred1obs.data.R rename to baselines/stan/anova_radon_nopred/anova_radon_nopred1obs.data.R diff --git a/benchmarks/stan/anova_radon_nopred/results_1obs.txt b/baselines/stan/anova_radon_nopred/results_1obs.txt similarity index 100% rename from benchmarks/stan/anova_radon_nopred/results_1obs.txt rename to baselines/stan/anova_radon_nopred/results_1obs.txt diff --git a/benchmarks/stan/anova_radon_nopred/summary.txt b/baselines/stan/anova_radon_nopred/summary.txt similarity index 100% rename from benchmarks/stan/anova_radon_nopred/summary.txt rename to baselines/stan/anova_radon_nopred/summary.txt diff --git a/benchmarks/stan/clickGraph/clickGraph b/baselines/stan/clickGraph/clickGraph similarity index 100% rename from benchmarks/stan/clickGraph/clickGraph rename to baselines/stan/clickGraph/clickGraph diff --git a/benchmarks/stan/clickGraph/clickGraph.data.R b/baselines/stan/clickGraph/clickGraph.data.R similarity index 100% rename from benchmarks/stan/clickGraph/clickGraph.data.R rename to baselines/stan/clickGraph/clickGraph.data.R diff --git a/benchmarks/stan/clickGraph/clickGraph.hpp b/baselines/stan/clickGraph/clickGraph.hpp similarity index 100% rename from benchmarks/stan/clickGraph/clickGraph.hpp rename to baselines/stan/clickGraph/clickGraph.hpp diff --git a/benchmarks/stan/clickGraph/clickGraph.stan b/baselines/stan/clickGraph/clickGraph.stan similarity index 100% rename from benchmarks/stan/clickGraph/clickGraph.stan rename to baselines/stan/clickGraph/clickGraph.stan diff --git a/benchmarks/stan/clickGraph/clickGraph.txt b/baselines/stan/clickGraph/clickGraph.txt similarity index 100% rename from benchmarks/stan/clickGraph/clickGraph.txt rename to baselines/stan/clickGraph/clickGraph.txt diff --git a/benchmarks/stan/clickGraph/results.txt b/baselines/stan/clickGraph/results.txt similarity index 100% rename from benchmarks/stan/clickGraph/results.txt rename to baselines/stan/clickGraph/results.txt diff --git a/benchmarks/stan/clickGraph/results_1200.txt b/baselines/stan/clickGraph/results_1200.txt similarity index 100% rename from benchmarks/stan/clickGraph/results_1200.txt rename to baselines/stan/clickGraph/results_1200.txt diff --git a/benchmarks/stan/clinicalTrial1/clinicalTrial1 b/baselines/stan/clinicalTrial1/clinicalTrial1 similarity index 100% rename from benchmarks/stan/clinicalTrial1/clinicalTrial1 rename to baselines/stan/clinicalTrial1/clinicalTrial1 diff --git a/benchmarks/stan/clinicalTrial1/clinicalTrial1.data.R b/baselines/stan/clinicalTrial1/clinicalTrial1.data.R similarity index 100% rename from benchmarks/stan/clinicalTrial1/clinicalTrial1.data.R rename to baselines/stan/clinicalTrial1/clinicalTrial1.data.R diff --git a/benchmarks/stan/clinicalTrial1/clinicalTrial1.hpp b/baselines/stan/clinicalTrial1/clinicalTrial1.hpp similarity index 100% rename from benchmarks/stan/clinicalTrial1/clinicalTrial1.hpp rename to baselines/stan/clinicalTrial1/clinicalTrial1.hpp diff --git a/benchmarks/stan/clinicalTrial1/clinicalTrial1.stan b/baselines/stan/clinicalTrial1/clinicalTrial1.stan similarity index 100% rename from benchmarks/stan/clinicalTrial1/clinicalTrial1.stan rename to baselines/stan/clinicalTrial1/clinicalTrial1.stan diff --git a/benchmarks/stan/clinicalTrial1/clinicalTrial1.txt b/baselines/stan/clinicalTrial1/clinicalTrial1.txt similarity index 100% rename from benchmarks/stan/clinicalTrial1/clinicalTrial1.txt rename to baselines/stan/clinicalTrial1/clinicalTrial1.txt diff --git a/benchmarks/stan/clinicalTrial1/results_1200.txt b/baselines/stan/clinicalTrial1/results_1200.txt similarity index 100% rename from benchmarks/stan/clinicalTrial1/results_1200.txt rename to baselines/stan/clinicalTrial1/results_1200.txt diff --git a/benchmarks/stan/clinicalTrial2/clinicalTrial2 b/baselines/stan/clinicalTrial2/clinicalTrial2 similarity index 100% rename from benchmarks/stan/clinicalTrial2/clinicalTrial2 rename to baselines/stan/clinicalTrial2/clinicalTrial2 diff --git a/benchmarks/stan/clinicalTrial2/clinicalTrial2.data.R b/baselines/stan/clinicalTrial2/clinicalTrial2.data.R similarity index 100% rename from benchmarks/stan/clinicalTrial2/clinicalTrial2.data.R rename to baselines/stan/clinicalTrial2/clinicalTrial2.data.R diff --git a/benchmarks/stan/clinicalTrial2/clinicalTrial2.hpp b/baselines/stan/clinicalTrial2/clinicalTrial2.hpp similarity index 100% rename from benchmarks/stan/clinicalTrial2/clinicalTrial2.hpp rename to baselines/stan/clinicalTrial2/clinicalTrial2.hpp diff --git a/benchmarks/stan/clinicalTrial2/clinicalTrial2.stan b/baselines/stan/clinicalTrial2/clinicalTrial2.stan similarity index 100% rename from benchmarks/stan/clinicalTrial2/clinicalTrial2.stan rename to baselines/stan/clinicalTrial2/clinicalTrial2.stan diff --git a/benchmarks/stan/clinicalTrial2/clinicalTrial2.txt b/baselines/stan/clinicalTrial2/clinicalTrial2.txt similarity index 100% rename from benchmarks/stan/clinicalTrial2/clinicalTrial2.txt rename to baselines/stan/clinicalTrial2/clinicalTrial2.txt diff --git a/benchmarks/stan/clinicalTrial2/results_1200.txt b/baselines/stan/clinicalTrial2/results_1200.txt similarity index 100% rename from benchmarks/stan/clinicalTrial2/results_1200.txt rename to baselines/stan/clinicalTrial2/results_1200.txt diff --git a/benchmarks/stan/coinBias/coinBias b/baselines/stan/coinBias/coinBias similarity index 100% rename from benchmarks/stan/coinBias/coinBias rename to baselines/stan/coinBias/coinBias diff --git a/benchmarks/stan/coinBias/coinBias.data.R b/baselines/stan/coinBias/coinBias.data.R similarity index 100% rename from benchmarks/stan/coinBias/coinBias.data.R rename to baselines/stan/coinBias/coinBias.data.R diff --git a/benchmarks/stan/coinBias/coinBias.hpp b/baselines/stan/coinBias/coinBias.hpp similarity index 100% rename from benchmarks/stan/coinBias/coinBias.hpp rename to baselines/stan/coinBias/coinBias.hpp diff --git a/benchmarks/stan/coinBias/coinBias.stan b/baselines/stan/coinBias/coinBias.stan similarity index 100% rename from benchmarks/stan/coinBias/coinBias.stan rename to baselines/stan/coinBias/coinBias.stan diff --git a/benchmarks/stan/coinBias/results_1200.txt b/baselines/stan/coinBias/results_1200.txt similarity index 100% rename from benchmarks/stan/coinBias/results_1200.txt rename to baselines/stan/coinBias/results_1200.txt diff --git a/benchmarks/stan/conjugate_gaussians/conjugate_gaussians b/baselines/stan/conjugate_gaussians/conjugate_gaussians similarity index 100% rename from benchmarks/stan/conjugate_gaussians/conjugate_gaussians rename to baselines/stan/conjugate_gaussians/conjugate_gaussians diff --git a/benchmarks/stan/conjugate_gaussians/conjugate_gaussians.data.R b/baselines/stan/conjugate_gaussians/conjugate_gaussians.data.R similarity index 100% rename from benchmarks/stan/conjugate_gaussians/conjugate_gaussians.data.R rename to baselines/stan/conjugate_gaussians/conjugate_gaussians.data.R diff --git a/benchmarks/stan/conjugate_gaussians/conjugate_gaussians.hpp b/baselines/stan/conjugate_gaussians/conjugate_gaussians.hpp similarity index 100% rename from benchmarks/stan/conjugate_gaussians/conjugate_gaussians.hpp rename to baselines/stan/conjugate_gaussians/conjugate_gaussians.hpp diff --git a/benchmarks/stan/conjugate_gaussians/conjugate_gaussians.stan b/baselines/stan/conjugate_gaussians/conjugate_gaussians.stan similarity index 100% rename from benchmarks/stan/conjugate_gaussians/conjugate_gaussians.stan rename to baselines/stan/conjugate_gaussians/conjugate_gaussians.stan diff --git a/benchmarks/stan/conjugate_gaussians/conjugate_gaussians_2.data.R b/baselines/stan/conjugate_gaussians/conjugate_gaussians_2.data.R similarity index 100% rename from benchmarks/stan/conjugate_gaussians/conjugate_gaussians_2.data.R rename to baselines/stan/conjugate_gaussians/conjugate_gaussians_2.data.R diff --git a/benchmarks/stan/conjugate_gaussians/results.txt b/baselines/stan/conjugate_gaussians/results.txt similarity index 100% rename from benchmarks/stan/conjugate_gaussians/results.txt rename to baselines/stan/conjugate_gaussians/results.txt diff --git a/benchmarks/stan/conjugate_gaussians/results_1200.txt b/baselines/stan/conjugate_gaussians/results_1200.txt similarity index 100% rename from benchmarks/stan/conjugate_gaussians/results_1200.txt rename to baselines/stan/conjugate_gaussians/results_1200.txt diff --git a/benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians b/baselines/stan/conjugate_gaussians_2/conjugate_gaussians similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians rename to baselines/stan/conjugate_gaussians_2/conjugate_gaussians diff --git a/benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians.data.R b/baselines/stan/conjugate_gaussians_2/conjugate_gaussians.data.R similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians.data.R rename to baselines/stan/conjugate_gaussians_2/conjugate_gaussians.data.R diff --git a/benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians.hpp b/baselines/stan/conjugate_gaussians_2/conjugate_gaussians.hpp similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians.hpp rename to baselines/stan/conjugate_gaussians_2/conjugate_gaussians.hpp diff --git a/benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians_2 b/baselines/stan/conjugate_gaussians_2/conjugate_gaussians_2 similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians_2 rename to baselines/stan/conjugate_gaussians_2/conjugate_gaussians_2 diff --git a/benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians_2.data.R b/baselines/stan/conjugate_gaussians_2/conjugate_gaussians_2.data.R similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians_2.data.R rename to baselines/stan/conjugate_gaussians_2/conjugate_gaussians_2.data.R diff --git a/benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians_2.hpp b/baselines/stan/conjugate_gaussians_2/conjugate_gaussians_2.hpp similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians_2.hpp rename to baselines/stan/conjugate_gaussians_2/conjugate_gaussians_2.hpp diff --git a/benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians_2.stan b/baselines/stan/conjugate_gaussians_2/conjugate_gaussians_2.stan similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/conjugate_gaussians_2.stan rename to baselines/stan/conjugate_gaussians_2/conjugate_gaussians_2.stan diff --git a/benchmarks/stan/conjugate_gaussians_2/results.txt b/baselines/stan/conjugate_gaussians_2/results.txt similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/results.txt rename to baselines/stan/conjugate_gaussians_2/results.txt diff --git a/benchmarks/stan/conjugate_gaussians_2/results_1.txt b/baselines/stan/conjugate_gaussians_2/results_1.txt similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/results_1.txt rename to baselines/stan/conjugate_gaussians_2/results_1.txt diff --git a/benchmarks/stan/conjugate_gaussians_2/results_1200.txt b/baselines/stan/conjugate_gaussians_2/results_1200.txt similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/results_1200.txt rename to baselines/stan/conjugate_gaussians_2/results_1200.txt diff --git a/benchmarks/stan/conjugate_gaussians_2/results_2.txt b/baselines/stan/conjugate_gaussians_2/results_2.txt similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/results_2.txt rename to baselines/stan/conjugate_gaussians_2/results_2.txt diff --git a/benchmarks/stan/conjugate_gaussians_2/results_3.txt b/baselines/stan/conjugate_gaussians_2/results_3.txt similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/results_3.txt rename to baselines/stan/conjugate_gaussians_2/results_3.txt diff --git a/benchmarks/stan/conjugate_gaussians_2/results_4.txt b/baselines/stan/conjugate_gaussians_2/results_4.txt similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/results_4.txt rename to baselines/stan/conjugate_gaussians_2/results_4.txt diff --git a/benchmarks/stan/conjugate_gaussians_2/results_5.txt b/baselines/stan/conjugate_gaussians_2/results_5.txt similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/results_5.txt rename to baselines/stan/conjugate_gaussians_2/results_5.txt diff --git a/benchmarks/stan/conjugate_gaussians_2/results_6.txt b/baselines/stan/conjugate_gaussians_2/results_6.txt similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/results_6.txt rename to baselines/stan/conjugate_gaussians_2/results_6.txt diff --git a/benchmarks/stan/conjugate_gaussians_2/results_7.txt b/baselines/stan/conjugate_gaussians_2/results_7.txt similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/results_7.txt rename to baselines/stan/conjugate_gaussians_2/results_7.txt diff --git a/benchmarks/stan/conjugate_gaussians_2/results_8.txt b/baselines/stan/conjugate_gaussians_2/results_8.txt similarity index 100% rename from benchmarks/stan/conjugate_gaussians_2/results_8.txt rename to baselines/stan/conjugate_gaussians_2/results_8.txt diff --git a/benchmarks/stan/normal_mixture/normal_mixture b/baselines/stan/normal_mixture/normal_mixture similarity index 100% rename from benchmarks/stan/normal_mixture/normal_mixture rename to baselines/stan/normal_mixture/normal_mixture diff --git a/benchmarks/stan/normal_mixture/normal_mixture.data.R b/baselines/stan/normal_mixture/normal_mixture.data.R similarity index 100% rename from benchmarks/stan/normal_mixture/normal_mixture.data.R rename to baselines/stan/normal_mixture/normal_mixture.data.R diff --git a/benchmarks/stan/normal_mixture/normal_mixture.hpp b/baselines/stan/normal_mixture/normal_mixture.hpp similarity index 100% rename from benchmarks/stan/normal_mixture/normal_mixture.hpp rename to baselines/stan/normal_mixture/normal_mixture.hpp diff --git a/benchmarks/stan/normal_mixture/normal_mixture.stan b/baselines/stan/normal_mixture/normal_mixture.stan similarity index 100% rename from benchmarks/stan/normal_mixture/normal_mixture.stan rename to baselines/stan/normal_mixture/normal_mixture.stan diff --git a/benchmarks/stan/normal_mixture/results.txt b/baselines/stan/normal_mixture/results.txt similarity index 100% rename from benchmarks/stan/normal_mixture/results.txt rename to baselines/stan/normal_mixture/results.txt diff --git a/benchmarks/stan/normal_mixture/results_1200.txt b/baselines/stan/normal_mixture/results_1200.txt similarity index 100% rename from benchmarks/stan/normal_mixture/results_1200.txt rename to baselines/stan/normal_mixture/results_1200.txt diff --git a/benchmarks/stan/or/or b/baselines/stan/or/or similarity index 100% rename from benchmarks/stan/or/or rename to baselines/stan/or/or diff --git a/benchmarks/stan/or/or.data.R b/baselines/stan/or/or.data.R similarity index 100% rename from benchmarks/stan/or/or.data.R rename to baselines/stan/or/or.data.R diff --git a/benchmarks/stan/or/or.hpp b/baselines/stan/or/or.hpp similarity index 100% rename from benchmarks/stan/or/or.hpp rename to baselines/stan/or/or.hpp diff --git a/benchmarks/stan/or/or.stan b/baselines/stan/or/or.stan similarity index 100% rename from benchmarks/stan/or/or.stan rename to baselines/stan/or/or.stan diff --git a/benchmarks/stan/or/or_4.stan b/baselines/stan/or/or_4.stan similarity index 100% rename from benchmarks/stan/or/or_4.stan rename to baselines/stan/or/or_4.stan diff --git a/benchmarks/stan/or/temp b/baselines/stan/or/temp similarity index 100% rename from benchmarks/stan/or/temp rename to baselines/stan/or/temp diff --git a/benchmarks/stan/or/temp.hpp b/baselines/stan/or/temp.hpp similarity index 100% rename from benchmarks/stan/or/temp.hpp rename to baselines/stan/or/temp.hpp diff --git a/benchmarks/stan/or/temp.stan b/baselines/stan/or/temp.stan similarity index 100% rename from benchmarks/stan/or/temp.stan rename to baselines/stan/or/temp.stan diff --git a/benchmarks/stan/pi/pi b/baselines/stan/pi/pi similarity index 100% rename from benchmarks/stan/pi/pi rename to baselines/stan/pi/pi diff --git a/benchmarks/stan/pi/pi.hpp b/baselines/stan/pi/pi.hpp similarity index 100% rename from benchmarks/stan/pi/pi.hpp rename to baselines/stan/pi/pi.hpp diff --git a/benchmarks/stan/pi/pi.stan b/baselines/stan/pi/pi.stan similarity index 100% rename from benchmarks/stan/pi/pi.stan rename to baselines/stan/pi/pi.stan diff --git a/benchmarks/stan/pi/pi2.stan b/baselines/stan/pi/pi2.stan similarity index 100% rename from benchmarks/stan/pi/pi2.stan rename to baselines/stan/pi/pi2.stan diff --git a/benchmarks/stan/pi/results.txt b/baselines/stan/pi/results.txt similarity index 100% rename from benchmarks/stan/pi/results.txt rename to baselines/stan/pi/results.txt diff --git a/benchmarks/stan/pi/results_1200.txt b/baselines/stan/pi/results_1200.txt similarity index 100% rename from benchmarks/stan/pi/results_1200.txt rename to baselines/stan/pi/results_1200.txt diff --git a/benchmarks/stan/spacex/results.txt b/baselines/stan/spacex/results.txt similarity index 100% rename from benchmarks/stan/spacex/results.txt rename to baselines/stan/spacex/results.txt diff --git a/benchmarks/stan/spacex/results_1200.txt b/baselines/stan/spacex/results_1200.txt similarity index 100% rename from benchmarks/stan/spacex/results_1200.txt rename to baselines/stan/spacex/results_1200.txt diff --git a/benchmarks/stan/spacex/spacex b/baselines/stan/spacex/spacex similarity index 100% rename from benchmarks/stan/spacex/spacex rename to baselines/stan/spacex/spacex diff --git a/benchmarks/stan/spacex/spacex.hpp b/baselines/stan/spacex/spacex.hpp similarity index 100% rename from benchmarks/stan/spacex/spacex.hpp rename to baselines/stan/spacex/spacex.hpp diff --git a/benchmarks/stan/spacex/spacex.stan b/baselines/stan/spacex/spacex.stan similarity index 100% rename from benchmarks/stan/spacex/spacex.stan rename to baselines/stan/spacex/spacex.stan diff --git a/benchmarks/stan/trueskill/results_1200.txt b/baselines/stan/trueskill/results_1200.txt similarity index 100% rename from benchmarks/stan/trueskill/results_1200.txt rename to baselines/stan/trueskill/results_1200.txt diff --git a/benchmarks/stan/trueskill/trueskill b/baselines/stan/trueskill/trueskill similarity index 100% rename from benchmarks/stan/trueskill/trueskill rename to baselines/stan/trueskill/trueskill diff --git a/benchmarks/stan/trueskill/trueskill.data.R b/baselines/stan/trueskill/trueskill.data.R similarity index 100% rename from benchmarks/stan/trueskill/trueskill.data.R rename to baselines/stan/trueskill/trueskill.data.R diff --git a/benchmarks/stan/trueskill/trueskill.hpp b/baselines/stan/trueskill/trueskill.hpp similarity index 100% rename from benchmarks/stan/trueskill/trueskill.hpp rename to baselines/stan/trueskill/trueskill.hpp diff --git a/benchmarks/stan/trueskill/trueskill.stan b/baselines/stan/trueskill/trueskill.stan similarity index 100% rename from benchmarks/stan/trueskill/trueskill.stan rename to baselines/stan/trueskill/trueskill.stan diff --git a/benchmarks/stan/tug_of_war/results_1200.txt b/baselines/stan/tug_of_war/results_1200.txt similarity index 100% rename from benchmarks/stan/tug_of_war/results_1200.txt rename to baselines/stan/tug_of_war/results_1200.txt diff --git a/benchmarks/stan/tug_of_war/tug_of_war b/baselines/stan/tug_of_war/tug_of_war similarity index 100% rename from benchmarks/stan/tug_of_war/tug_of_war rename to baselines/stan/tug_of_war/tug_of_war diff --git a/benchmarks/stan/tug_of_war/tug_of_war.data.R b/baselines/stan/tug_of_war/tug_of_war.data.R similarity index 100% rename from benchmarks/stan/tug_of_war/tug_of_war.data.R rename to baselines/stan/tug_of_war/tug_of_war.data.R diff --git a/benchmarks/stan/tug_of_war/tug_of_war.hpp b/baselines/stan/tug_of_war/tug_of_war.hpp similarity index 100% rename from benchmarks/stan/tug_of_war/tug_of_war.hpp rename to baselines/stan/tug_of_war/tug_of_war.hpp diff --git a/benchmarks/stan/tug_of_war/tug_of_war.stan b/baselines/stan/tug_of_war/tug_of_war.stan similarity index 100% rename from benchmarks/stan/tug_of_war/tug_of_war.stan rename to baselines/stan/tug_of_war/tug_of_war.stan diff --git a/benchmarks/stan/tug_of_war/tug_of_war.txt b/baselines/stan/tug_of_war/tug_of_war.txt similarity index 100% rename from benchmarks/stan/tug_of_war/tug_of_war.txt rename to baselines/stan/tug_of_war/tug_of_war.txt diff --git a/benchmarks/stan/weekend/results.txt b/baselines/stan/weekend/results.txt similarity index 100% rename from benchmarks/stan/weekend/results.txt rename to baselines/stan/weekend/results.txt diff --git a/benchmarks/stan/weekend/results_1200.txt b/baselines/stan/weekend/results_1200.txt similarity index 100% rename from benchmarks/stan/weekend/results_1200.txt rename to baselines/stan/weekend/results_1200.txt diff --git a/benchmarks/stan/weekend/weekend b/baselines/stan/weekend/weekend similarity index 100% rename from benchmarks/stan/weekend/weekend rename to baselines/stan/weekend/weekend diff --git a/benchmarks/stan/weekend/weekend.data.R b/baselines/stan/weekend/weekend.data.R similarity index 100% rename from benchmarks/stan/weekend/weekend.data.R rename to baselines/stan/weekend/weekend.data.R diff --git a/benchmarks/stan/weekend/weekend.hpp b/baselines/stan/weekend/weekend.hpp similarity index 100% rename from benchmarks/stan/weekend/weekend.hpp rename to baselines/stan/weekend/weekend.hpp diff --git a/benchmarks/stan/weekend/weekend.stan b/baselines/stan/weekend/weekend.stan similarity index 100% rename from benchmarks/stan/weekend/weekend.stan rename to baselines/stan/weekend/weekend.stan diff --git a/benchmarks/stan/weekend2/weekend.stan b/baselines/stan/weekend2/weekend.stan similarity index 100% rename from benchmarks/stan/weekend2/weekend.stan rename to baselines/stan/weekend2/weekend.stan diff --git a/benchmarks/stan/zeroone/results.txt b/baselines/stan/zeroone/results.txt similarity index 100% rename from benchmarks/stan/zeroone/results.txt rename to baselines/stan/zeroone/results.txt diff --git a/benchmarks/stan/zeroone/results_1200.txt b/baselines/stan/zeroone/results_1200.txt similarity index 100% rename from benchmarks/stan/zeroone/results_1200.txt rename to baselines/stan/zeroone/results_1200.txt diff --git a/benchmarks/stan/zeroone/zeroone b/baselines/stan/zeroone/zeroone similarity index 100% rename from benchmarks/stan/zeroone/zeroone rename to baselines/stan/zeroone/zeroone diff --git a/benchmarks/stan/zeroone/zeroone.data.R b/baselines/stan/zeroone/zeroone.data.R similarity index 100% rename from benchmarks/stan/zeroone/zeroone.data.R rename to baselines/stan/zeroone/zeroone.data.R diff --git a/benchmarks/stan/zeroone/zeroone.hpp b/baselines/stan/zeroone/zeroone.hpp similarity index 100% rename from benchmarks/stan/zeroone/zeroone.hpp rename to baselines/stan/zeroone/zeroone.hpp diff --git a/benchmarks/stan/zeroone/zeroone.stan b/baselines/stan/zeroone/zeroone.stan similarity index 100% rename from benchmarks/stan/zeroone/zeroone.stan rename to baselines/stan/zeroone/zeroone.stan diff --git a/benchmarks/webppl/GPA/GPA.wppl b/baselines/webppl/GPA/GPA.wppl similarity index 100% rename from benchmarks/webppl/GPA/GPA.wppl rename to baselines/webppl/GPA/GPA.wppl diff --git a/benchmarks/webppl/GPA/GPA2.wppl b/baselines/webppl/GPA/GPA2.wppl similarity index 100% rename from benchmarks/webppl/GPA/GPA2.wppl rename to baselines/webppl/GPA/GPA2.wppl diff --git a/benchmarks/webppl/GPA/extract.py b/baselines/webppl/GPA/extract.py similarity index 100% rename from benchmarks/webppl/GPA/extract.py rename to baselines/webppl/GPA/extract.py diff --git a/benchmarks/webppl/GPA/run.sh b/baselines/webppl/GPA/run.sh similarity index 100% rename from benchmarks/webppl/GPA/run.sh rename to baselines/webppl/GPA/run.sh diff --git a/benchmarks/webppl/addFun_max/addFun_max.wppl b/baselines/webppl/addFun_max/addFun_max.wppl similarity index 100% rename from benchmarks/webppl/addFun_max/addFun_max.wppl rename to baselines/webppl/addFun_max/addFun_max.wppl diff --git a/benchmarks/webppl/addFun_max/run.sh b/baselines/webppl/addFun_max/run.sh similarity index 100% rename from benchmarks/webppl/addFun_max/run.sh rename to baselines/webppl/addFun_max/run.sh diff --git a/benchmarks/webppl/addFun_sum/addFun_sum.wppl b/baselines/webppl/addFun_sum/addFun_sum.wppl similarity index 100% rename from benchmarks/webppl/addFun_sum/addFun_sum.wppl rename to baselines/webppl/addFun_sum/addFun_sum.wppl diff --git a/benchmarks/webppl/addFun_sum/run.sh b/baselines/webppl/addFun_sum/run.sh similarity index 100% rename from benchmarks/webppl/addFun_sum/run.sh rename to baselines/webppl/addFun_sum/run.sh diff --git a/benchmarks/webppl/altermu2/altermu2.wppl b/baselines/webppl/altermu2/altermu2.wppl similarity index 100% rename from benchmarks/webppl/altermu2/altermu2.wppl rename to baselines/webppl/altermu2/altermu2.wppl diff --git a/benchmarks/webppl/altermu2/run.sh b/baselines/webppl/altermu2/run.sh similarity index 100% rename from benchmarks/webppl/altermu2/run.sh rename to baselines/webppl/altermu2/run.sh diff --git a/benchmarks/webppl/clickGraph/clickGraph.wppl b/baselines/webppl/clickGraph/clickGraph.wppl similarity index 100% rename from benchmarks/webppl/clickGraph/clickGraph.wppl rename to baselines/webppl/clickGraph/clickGraph.wppl diff --git a/benchmarks/webppl/clickGraph/run.sh b/baselines/webppl/clickGraph/run.sh similarity index 100% rename from benchmarks/webppl/clickGraph/run.sh rename to baselines/webppl/clickGraph/run.sh diff --git a/benchmarks/webppl/clinicalTrial1/clinicalTrial1.wppl b/baselines/webppl/clinicalTrial1/clinicalTrial1.wppl similarity index 100% rename from benchmarks/webppl/clinicalTrial1/clinicalTrial1.wppl rename to baselines/webppl/clinicalTrial1/clinicalTrial1.wppl diff --git a/benchmarks/webppl/clinicalTrial1/run.sh b/baselines/webppl/clinicalTrial1/run.sh similarity index 100% rename from benchmarks/webppl/clinicalTrial1/run.sh rename to baselines/webppl/clinicalTrial1/run.sh diff --git a/benchmarks/webppl/clinicalTrial2/clinicalTrial2.wppl b/baselines/webppl/clinicalTrial2/clinicalTrial2.wppl similarity index 100% rename from benchmarks/webppl/clinicalTrial2/clinicalTrial2.wppl rename to baselines/webppl/clinicalTrial2/clinicalTrial2.wppl diff --git a/benchmarks/webppl/clinicalTrial2/run.sh b/baselines/webppl/clinicalTrial2/run.sh similarity index 100% rename from benchmarks/webppl/clinicalTrial2/run.sh rename to baselines/webppl/clinicalTrial2/run.sh diff --git a/benchmarks/webppl/coinBias/coinBias.wppl b/baselines/webppl/coinBias/coinBias.wppl similarity index 100% rename from benchmarks/webppl/coinBias/coinBias.wppl rename to baselines/webppl/coinBias/coinBias.wppl diff --git a/benchmarks/webppl/coinBias/run.sh b/baselines/webppl/coinBias/run.sh similarity index 100% rename from benchmarks/webppl/coinBias/run.sh rename to baselines/webppl/coinBias/run.sh diff --git a/benchmarks/webppl/conjugate_gaussians/conjugate_gaussians.wppl b/baselines/webppl/conjugate_gaussians/conjugate_gaussians.wppl similarity index 100% rename from benchmarks/webppl/conjugate_gaussians/conjugate_gaussians.wppl rename to baselines/webppl/conjugate_gaussians/conjugate_gaussians.wppl diff --git a/benchmarks/webppl/conjugate_gaussians/run.sh b/baselines/webppl/conjugate_gaussians/run.sh similarity index 100% rename from benchmarks/webppl/conjugate_gaussians/run.sh rename to baselines/webppl/conjugate_gaussians/run.sh diff --git a/benchmarks/webppl/conjugate_gaussians2/conjugate_gaussians.wppl b/baselines/webppl/conjugate_gaussians2/conjugate_gaussians.wppl similarity index 100% rename from benchmarks/webppl/conjugate_gaussians2/conjugate_gaussians.wppl rename to baselines/webppl/conjugate_gaussians2/conjugate_gaussians.wppl diff --git a/benchmarks/webppl/conjugate_gaussians2/run.sh b/baselines/webppl/conjugate_gaussians2/run.sh similarity index 100% rename from benchmarks/webppl/conjugate_gaussians2/run.sh rename to baselines/webppl/conjugate_gaussians2/run.sh diff --git a/benchmarks/webppl/conjugate_gaussians3/conjugate_gaussians.wppl b/baselines/webppl/conjugate_gaussians3/conjugate_gaussians.wppl similarity index 100% rename from benchmarks/webppl/conjugate_gaussians3/conjugate_gaussians.wppl rename to baselines/webppl/conjugate_gaussians3/conjugate_gaussians.wppl diff --git a/benchmarks/webppl/conjugate_gaussians3/run.sh b/baselines/webppl/conjugate_gaussians3/run.sh similarity index 100% rename from benchmarks/webppl/conjugate_gaussians3/run.sh rename to baselines/webppl/conjugate_gaussians3/run.sh diff --git a/benchmarks/webppl/multimodal/multimodal.wppl b/baselines/webppl/multimodal/multimodal.wppl similarity index 100% rename from benchmarks/webppl/multimodal/multimodal.wppl rename to baselines/webppl/multimodal/multimodal.wppl diff --git a/benchmarks/webppl/multimodal/run.sh b/baselines/webppl/multimodal/run.sh similarity index 100% rename from benchmarks/webppl/multimodal/run.sh rename to baselines/webppl/multimodal/run.sh diff --git a/benchmarks/webppl/normal_mixture/normal_mixture.wppl b/baselines/webppl/normal_mixture/normal_mixture.wppl similarity index 100% rename from benchmarks/webppl/normal_mixture/normal_mixture.wppl rename to baselines/webppl/normal_mixture/normal_mixture.wppl diff --git a/benchmarks/webppl/normal_mixture/normal_mixture2.wppl b/baselines/webppl/normal_mixture/normal_mixture2.wppl similarity index 100% rename from benchmarks/webppl/normal_mixture/normal_mixture2.wppl rename to baselines/webppl/normal_mixture/normal_mixture2.wppl diff --git a/benchmarks/webppl/normal_mixture/normal_mixture3.wppl b/baselines/webppl/normal_mixture/normal_mixture3.wppl similarity index 100% rename from benchmarks/webppl/normal_mixture/normal_mixture3.wppl rename to baselines/webppl/normal_mixture/normal_mixture3.wppl diff --git a/benchmarks/webppl/normal_mixture/run.sh b/baselines/webppl/normal_mixture/run.sh similarity index 100% rename from benchmarks/webppl/normal_mixture/run.sh rename to baselines/webppl/normal_mixture/run.sh diff --git a/benchmarks/webppl/normal_mixture/run2.sh b/baselines/webppl/normal_mixture/run2.sh similarity index 100% rename from benchmarks/webppl/normal_mixture/run2.sh rename to baselines/webppl/normal_mixture/run2.sh diff --git a/benchmarks/webppl/normal_mixture/run3.sh b/baselines/webppl/normal_mixture/run3.sh similarity index 100% rename from benchmarks/webppl/normal_mixture/run3.sh rename to baselines/webppl/normal_mixture/run3.sh diff --git a/benchmarks/webppl/or/generate_or.py b/baselines/webppl/or/generate_or.py similarity index 100% rename from benchmarks/webppl/or/generate_or.py rename to baselines/webppl/or/generate_or.py diff --git a/benchmarks/webppl/or/or.wppl b/baselines/webppl/or/or.wppl similarity index 100% rename from benchmarks/webppl/or/or.wppl rename to baselines/webppl/or/or.wppl diff --git a/benchmarks/webppl/or/or_10.wppl b/baselines/webppl/or/or_10.wppl similarity index 100% rename from benchmarks/webppl/or/or_10.wppl rename to baselines/webppl/or/or_10.wppl diff --git a/benchmarks/webppl/or/run.sh b/baselines/webppl/or/run.sh similarity index 100% rename from benchmarks/webppl/or/run.sh rename to baselines/webppl/or/run.sh diff --git a/benchmarks/webppl/or_10/generate_or.py b/baselines/webppl/or_10/generate_or.py similarity index 100% rename from benchmarks/webppl/or_10/generate_or.py rename to baselines/webppl/or_10/generate_or.py diff --git a/benchmarks/webppl/or_10/or_10.wppl b/baselines/webppl/or_10/or_10.wppl similarity index 100% rename from benchmarks/webppl/or_10/or_10.wppl rename to baselines/webppl/or_10/or_10.wppl diff --git a/benchmarks/webppl/or_10/run.sh b/baselines/webppl/or_10/run.sh similarity index 100% rename from benchmarks/webppl/or_10/run.sh rename to baselines/webppl/or_10/run.sh diff --git a/benchmarks/webppl/or_15/generate_or.py b/baselines/webppl/or_15/generate_or.py similarity index 100% rename from benchmarks/webppl/or_15/generate_or.py rename to baselines/webppl/or_15/generate_or.py diff --git a/benchmarks/webppl/or_15/or_15.wppl b/baselines/webppl/or_15/or_15.wppl similarity index 100% rename from benchmarks/webppl/or_15/or_15.wppl rename to baselines/webppl/or_15/or_15.wppl diff --git a/benchmarks/webppl/or_15/run.sh b/baselines/webppl/or_15/run.sh similarity index 100% rename from benchmarks/webppl/or_15/run.sh rename to baselines/webppl/or_15/run.sh diff --git a/benchmarks/webppl/or_20/generate_or.py b/baselines/webppl/or_20/generate_or.py similarity index 100% rename from benchmarks/webppl/or_20/generate_or.py rename to baselines/webppl/or_20/generate_or.py diff --git a/benchmarks/webppl/or_20/or_20.wppl b/baselines/webppl/or_20/or_20.wppl similarity index 100% rename from benchmarks/webppl/or_20/or_20.wppl rename to baselines/webppl/or_20/or_20.wppl diff --git a/benchmarks/webppl/or_20/run.sh b/baselines/webppl/or_20/run.sh similarity index 100% rename from benchmarks/webppl/or_20/run.sh rename to baselines/webppl/or_20/run.sh diff --git a/benchmarks/webppl/or_25/generate_or.py b/baselines/webppl/or_25/generate_or.py similarity index 100% rename from benchmarks/webppl/or_25/generate_or.py rename to baselines/webppl/or_25/generate_or.py diff --git a/benchmarks/webppl/or_25/or_25.wppl b/baselines/webppl/or_25/or_25.wppl similarity index 100% rename from benchmarks/webppl/or_25/or_25.wppl rename to baselines/webppl/or_25/or_25.wppl diff --git a/benchmarks/webppl/or_25/run.sh b/baselines/webppl/or_25/run.sh similarity index 100% rename from benchmarks/webppl/or_25/run.sh rename to baselines/webppl/or_25/run.sh diff --git a/benchmarks/webppl/or_30/generate_or.py b/baselines/webppl/or_30/generate_or.py similarity index 100% rename from benchmarks/webppl/or_30/generate_or.py rename to baselines/webppl/or_30/generate_or.py diff --git a/benchmarks/webppl/or_30/or_30.wppl b/baselines/webppl/or_30/or_30.wppl similarity index 100% rename from benchmarks/webppl/or_30/or_30.wppl rename to baselines/webppl/or_30/or_30.wppl diff --git a/benchmarks/webppl/or_30/run.sh b/baselines/webppl/or_30/run.sh similarity index 100% rename from benchmarks/webppl/or_30/run.sh rename to baselines/webppl/or_30/run.sh diff --git a/benchmarks/webppl/or_35/generate_or.py b/baselines/webppl/or_35/generate_or.py similarity index 100% rename from benchmarks/webppl/or_35/generate_or.py rename to baselines/webppl/or_35/generate_or.py diff --git a/benchmarks/webppl/or_35/or_35.wppl b/baselines/webppl/or_35/or_35.wppl similarity index 100% rename from benchmarks/webppl/or_35/or_35.wppl rename to baselines/webppl/or_35/or_35.wppl diff --git a/benchmarks/webppl/or_35/run.sh b/baselines/webppl/or_35/run.sh similarity index 100% rename from benchmarks/webppl/or_35/run.sh rename to baselines/webppl/or_35/run.sh diff --git a/benchmarks/webppl/or_40/generate_or.py b/baselines/webppl/or_40/generate_or.py similarity index 100% rename from benchmarks/webppl/or_40/generate_or.py rename to baselines/webppl/or_40/generate_or.py diff --git a/benchmarks/webppl/or_40/or_40.wppl b/baselines/webppl/or_40/or_40.wppl similarity index 100% rename from benchmarks/webppl/or_40/or_40.wppl rename to baselines/webppl/or_40/or_40.wppl diff --git a/benchmarks/webppl/or_40/run.sh b/baselines/webppl/or_40/run.sh similarity index 100% rename from benchmarks/webppl/or_40/run.sh rename to baselines/webppl/or_40/run.sh diff --git a/benchmarks/webppl/or_45/generate_or.py b/baselines/webppl/or_45/generate_or.py similarity index 100% rename from benchmarks/webppl/or_45/generate_or.py rename to baselines/webppl/or_45/generate_or.py diff --git a/benchmarks/webppl/or_45/or_45.wppl b/baselines/webppl/or_45/or_45.wppl similarity index 100% rename from benchmarks/webppl/or_45/or_45.wppl rename to baselines/webppl/or_45/or_45.wppl diff --git a/benchmarks/webppl/or_45/run.sh b/baselines/webppl/or_45/run.sh similarity index 100% rename from benchmarks/webppl/or_45/run.sh rename to baselines/webppl/or_45/run.sh diff --git a/benchmarks/webppl/or_5/generate_or.py b/baselines/webppl/or_5/generate_or.py similarity index 100% rename from benchmarks/webppl/or_5/generate_or.py rename to baselines/webppl/or_5/generate_or.py diff --git a/benchmarks/webppl/or_5/or_5.wppl b/baselines/webppl/or_5/or_5.wppl similarity index 100% rename from benchmarks/webppl/or_5/or_5.wppl rename to baselines/webppl/or_5/or_5.wppl diff --git a/benchmarks/webppl/or_5/run.sh b/baselines/webppl/or_5/run.sh similarity index 100% rename from benchmarks/webppl/or_5/run.sh rename to baselines/webppl/or_5/run.sh diff --git a/benchmarks/webppl/or_50/generate_or.py b/baselines/webppl/or_50/generate_or.py similarity index 100% rename from benchmarks/webppl/or_50/generate_or.py rename to baselines/webppl/or_50/generate_or.py diff --git a/benchmarks/webppl/or_50/or_50.wppl b/baselines/webppl/or_50/or_50.wppl similarity index 100% rename from benchmarks/webppl/or_50/or_50.wppl rename to baselines/webppl/or_50/or_50.wppl diff --git a/benchmarks/webppl/or_50/run.sh b/baselines/webppl/or_50/run.sh similarity index 100% rename from benchmarks/webppl/or_50/run.sh rename to baselines/webppl/or_50/run.sh diff --git a/benchmarks/webppl/orsmc/or_10/generate_or.py b/baselines/webppl/orsmc/or_10/generate_or.py similarity index 100% rename from benchmarks/webppl/orsmc/or_10/generate_or.py rename to baselines/webppl/orsmc/or_10/generate_or.py diff --git a/benchmarks/webppl/orsmc/or_10/or_10.wppl b/baselines/webppl/orsmc/or_10/or_10.wppl similarity index 100% rename from benchmarks/webppl/orsmc/or_10/or_10.wppl rename to baselines/webppl/orsmc/or_10/or_10.wppl diff --git a/benchmarks/webppl/orsmc/or_10/run.sh b/baselines/webppl/orsmc/or_10/run.sh similarity index 100% rename from benchmarks/webppl/orsmc/or_10/run.sh rename to baselines/webppl/orsmc/or_10/run.sh diff --git a/benchmarks/webppl/orsmc/or_15/generate_or.py b/baselines/webppl/orsmc/or_15/generate_or.py similarity index 100% rename from benchmarks/webppl/orsmc/or_15/generate_or.py rename to baselines/webppl/orsmc/or_15/generate_or.py diff --git a/benchmarks/webppl/orsmc/or_15/or_15.wppl b/baselines/webppl/orsmc/or_15/or_15.wppl similarity index 100% rename from benchmarks/webppl/orsmc/or_15/or_15.wppl rename to baselines/webppl/orsmc/or_15/or_15.wppl diff --git a/benchmarks/webppl/orsmc/or_15/run.sh b/baselines/webppl/orsmc/or_15/run.sh similarity index 100% rename from benchmarks/webppl/orsmc/or_15/run.sh rename to baselines/webppl/orsmc/or_15/run.sh diff --git a/benchmarks/webppl/orsmc/or_20/generate_or.py b/baselines/webppl/orsmc/or_20/generate_or.py similarity index 100% rename from benchmarks/webppl/orsmc/or_20/generate_or.py rename to baselines/webppl/orsmc/or_20/generate_or.py diff --git a/benchmarks/webppl/orsmc/or_20/or_20.wppl b/baselines/webppl/orsmc/or_20/or_20.wppl similarity index 100% rename from benchmarks/webppl/orsmc/or_20/or_20.wppl rename to baselines/webppl/orsmc/or_20/or_20.wppl diff --git a/benchmarks/webppl/orsmc/or_20/run.sh b/baselines/webppl/orsmc/or_20/run.sh similarity index 100% rename from benchmarks/webppl/orsmc/or_20/run.sh rename to baselines/webppl/orsmc/or_20/run.sh diff --git a/benchmarks/webppl/orsmc/or_25/generate_or.py b/baselines/webppl/orsmc/or_25/generate_or.py similarity index 100% rename from benchmarks/webppl/orsmc/or_25/generate_or.py rename to baselines/webppl/orsmc/or_25/generate_or.py diff --git a/benchmarks/webppl/orsmc/or_25/or_25.wppl b/baselines/webppl/orsmc/or_25/or_25.wppl similarity index 100% rename from benchmarks/webppl/orsmc/or_25/or_25.wppl rename to baselines/webppl/orsmc/or_25/or_25.wppl diff --git a/benchmarks/webppl/orsmc/or_25/run.sh b/baselines/webppl/orsmc/or_25/run.sh similarity index 100% rename from benchmarks/webppl/orsmc/or_25/run.sh rename to baselines/webppl/orsmc/or_25/run.sh diff --git a/benchmarks/webppl/orsmc/or_30/generate_or.py b/baselines/webppl/orsmc/or_30/generate_or.py similarity index 100% rename from benchmarks/webppl/orsmc/or_30/generate_or.py rename to baselines/webppl/orsmc/or_30/generate_or.py diff --git a/benchmarks/webppl/orsmc/or_30/or_30.wppl b/baselines/webppl/orsmc/or_30/or_30.wppl similarity index 100% rename from benchmarks/webppl/orsmc/or_30/or_30.wppl rename to baselines/webppl/orsmc/or_30/or_30.wppl diff --git a/benchmarks/webppl/orsmc/or_30/run.sh b/baselines/webppl/orsmc/or_30/run.sh similarity index 100% rename from benchmarks/webppl/orsmc/or_30/run.sh rename to baselines/webppl/orsmc/or_30/run.sh diff --git a/benchmarks/webppl/orsmc/or_35/generate_or.py b/baselines/webppl/orsmc/or_35/generate_or.py similarity index 100% rename from benchmarks/webppl/orsmc/or_35/generate_or.py rename to baselines/webppl/orsmc/or_35/generate_or.py diff --git a/benchmarks/webppl/orsmc/or_35/or_35.wppl b/baselines/webppl/orsmc/or_35/or_35.wppl similarity index 100% rename from benchmarks/webppl/orsmc/or_35/or_35.wppl rename to baselines/webppl/orsmc/or_35/or_35.wppl diff --git a/benchmarks/webppl/orsmc/or_35/run.sh b/baselines/webppl/orsmc/or_35/run.sh similarity index 100% rename from benchmarks/webppl/orsmc/or_35/run.sh rename to baselines/webppl/orsmc/or_35/run.sh diff --git a/benchmarks/webppl/orsmc/or_40/generate_or.py b/baselines/webppl/orsmc/or_40/generate_or.py similarity index 100% rename from benchmarks/webppl/orsmc/or_40/generate_or.py rename to baselines/webppl/orsmc/or_40/generate_or.py diff --git a/benchmarks/webppl/orsmc/or_40/or_40.wppl b/baselines/webppl/orsmc/or_40/or_40.wppl similarity index 100% rename from benchmarks/webppl/orsmc/or_40/or_40.wppl rename to baselines/webppl/orsmc/or_40/or_40.wppl diff --git a/benchmarks/webppl/orsmc/or_40/run.sh b/baselines/webppl/orsmc/or_40/run.sh similarity index 100% rename from benchmarks/webppl/orsmc/or_40/run.sh rename to baselines/webppl/orsmc/or_40/run.sh diff --git a/benchmarks/webppl/orsmc/or_45/generate_or.py b/baselines/webppl/orsmc/or_45/generate_or.py similarity index 100% rename from benchmarks/webppl/orsmc/or_45/generate_or.py rename to baselines/webppl/orsmc/or_45/generate_or.py diff --git a/benchmarks/webppl/orsmc/or_45/or_45.wppl b/baselines/webppl/orsmc/or_45/or_45.wppl similarity index 100% rename from benchmarks/webppl/orsmc/or_45/or_45.wppl rename to baselines/webppl/orsmc/or_45/or_45.wppl diff --git a/benchmarks/webppl/orsmc/or_45/run.sh b/baselines/webppl/orsmc/or_45/run.sh similarity index 100% rename from benchmarks/webppl/orsmc/or_45/run.sh rename to baselines/webppl/orsmc/or_45/run.sh diff --git a/benchmarks/webppl/orsmc/or_5/generate_or.py b/baselines/webppl/orsmc/or_5/generate_or.py similarity index 100% rename from benchmarks/webppl/orsmc/or_5/generate_or.py rename to baselines/webppl/orsmc/or_5/generate_or.py diff --git a/benchmarks/webppl/orsmc/or_5/or_5.wppl b/baselines/webppl/orsmc/or_5/or_5.wppl similarity index 100% rename from benchmarks/webppl/orsmc/or_5/or_5.wppl rename to baselines/webppl/orsmc/or_5/or_5.wppl diff --git a/benchmarks/webppl/orsmc/or_5/run.sh b/baselines/webppl/orsmc/or_5/run.sh similarity index 100% rename from benchmarks/webppl/orsmc/or_5/run.sh rename to baselines/webppl/orsmc/or_5/run.sh diff --git a/benchmarks/webppl/orsmc/or_50/generate_or.py b/baselines/webppl/orsmc/or_50/generate_or.py similarity index 100% rename from benchmarks/webppl/orsmc/or_50/generate_or.py rename to baselines/webppl/orsmc/or_50/generate_or.py diff --git a/benchmarks/webppl/orsmc/or_50/or_50.wppl b/baselines/webppl/orsmc/or_50/or_50.wppl similarity index 100% rename from benchmarks/webppl/orsmc/or_50/or_50.wppl rename to baselines/webppl/orsmc/or_50/or_50.wppl diff --git a/benchmarks/webppl/orsmc/or_50/run.sh b/baselines/webppl/orsmc/or_50/run.sh similarity index 100% rename from benchmarks/webppl/orsmc/or_50/run.sh rename to baselines/webppl/orsmc/or_50/run.sh diff --git a/benchmarks/webppl/output_rejection_1.txt b/baselines/webppl/output_rejection_1.txt similarity index 100% rename from benchmarks/webppl/output_rejection_1.txt rename to baselines/webppl/output_rejection_1.txt diff --git a/benchmarks/webppl/pi/analyse.sh b/baselines/webppl/pi/analyse.sh similarity index 100% rename from benchmarks/webppl/pi/analyse.sh rename to baselines/webppl/pi/analyse.sh diff --git a/benchmarks/webppl/pi/extract.py b/baselines/webppl/pi/extract.py similarity index 100% rename from benchmarks/webppl/pi/extract.py rename to baselines/webppl/pi/extract.py diff --git a/benchmarks/webppl/pi/package-lock.json b/baselines/webppl/pi/package-lock.json similarity index 100% rename from benchmarks/webppl/pi/package-lock.json rename to baselines/webppl/pi/package-lock.json diff --git a/benchmarks/webppl/pi/package.json b/baselines/webppl/pi/package.json similarity index 100% rename from benchmarks/webppl/pi/package.json rename to baselines/webppl/pi/package.json diff --git a/benchmarks/webppl/pi/pi.wppl b/baselines/webppl/pi/pi.wppl similarity index 100% rename from benchmarks/webppl/pi/pi.wppl rename to baselines/webppl/pi/pi.wppl diff --git a/benchmarks/webppl/pi/run.sh b/baselines/webppl/pi/run.sh similarity index 100% rename from benchmarks/webppl/pi/run.sh rename to baselines/webppl/pi/run.sh diff --git a/benchmarks/webppl/plotting_conjugate_gaussians/conjugate_gaussians.wppl b/baselines/webppl/plotting_conjugate_gaussians/conjugate_gaussians.wppl similarity index 100% rename from benchmarks/webppl/plotting_conjugate_gaussians/conjugate_gaussians.wppl rename to baselines/webppl/plotting_conjugate_gaussians/conjugate_gaussians.wppl diff --git a/benchmarks/webppl/plotting_conjugate_gaussians/run.sh b/baselines/webppl/plotting_conjugate_gaussians/run.sh similarity index 100% rename from benchmarks/webppl/plotting_conjugate_gaussians/run.sh rename to baselines/webppl/plotting_conjugate_gaussians/run.sh diff --git a/benchmarks/webppl/result_file.py b/baselines/webppl/result_file.py similarity index 100% rename from benchmarks/webppl/result_file.py rename to baselines/webppl/result_file.py diff --git a/benchmarks/webppl/spacex/run.sh b/baselines/webppl/spacex/run.sh similarity index 100% rename from benchmarks/webppl/spacex/run.sh rename to baselines/webppl/spacex/run.sh diff --git a/benchmarks/webppl/spacex/spacex.wppl b/baselines/webppl/spacex/spacex.wppl similarity index 100% rename from benchmarks/webppl/spacex/spacex.wppl rename to baselines/webppl/spacex/spacex.wppl diff --git a/benchmarks/webppl/trueskill/run.sh b/baselines/webppl/trueskill/run.sh similarity index 100% rename from benchmarks/webppl/trueskill/run.sh rename to baselines/webppl/trueskill/run.sh diff --git a/benchmarks/webppl/trueskill/trueskill.wppl b/baselines/webppl/trueskill/trueskill.wppl similarity index 100% rename from benchmarks/webppl/trueskill/trueskill.wppl rename to baselines/webppl/trueskill/trueskill.wppl diff --git a/benchmarks/webppl/tug_of_war/.extract.py.swp b/baselines/webppl/tug_of_war/.extract.py.swp similarity index 100% rename from benchmarks/webppl/tug_of_war/.extract.py.swp rename to baselines/webppl/tug_of_war/.extract.py.swp diff --git a/benchmarks/webppl/tug_of_war/extract.py b/baselines/webppl/tug_of_war/extract.py similarity index 100% rename from benchmarks/webppl/tug_of_war/extract.py rename to baselines/webppl/tug_of_war/extract.py diff --git a/benchmarks/webppl/tug_of_war/run.sh b/baselines/webppl/tug_of_war/run.sh similarity index 100% rename from benchmarks/webppl/tug_of_war/run.sh rename to baselines/webppl/tug_of_war/run.sh diff --git a/benchmarks/webppl/tug_of_war/tug_of_war.wppl b/baselines/webppl/tug_of_war/tug_of_war.wppl similarity index 100% rename from benchmarks/webppl/tug_of_war/tug_of_war.wppl rename to baselines/webppl/tug_of_war/tug_of_war.wppl diff --git a/benchmarks/webppl/weekend/run.sh b/baselines/webppl/weekend/run.sh similarity index 100% rename from benchmarks/webppl/weekend/run.sh rename to baselines/webppl/weekend/run.sh diff --git a/benchmarks/webppl/weekend/weekend.wppl b/baselines/webppl/weekend/weekend.wppl similarity index 100% rename from benchmarks/webppl/weekend/weekend.wppl rename to baselines/webppl/weekend/weekend.wppl diff --git a/benchmarks/webppl/yo b/baselines/webppl/yo similarity index 100% rename from benchmarks/webppl/yo rename to baselines/webppl/yo diff --git a/benchmarks/webppl/zeroone/run.sh b/baselines/webppl/zeroone/run.sh similarity index 100% rename from benchmarks/webppl/zeroone/run.sh rename to baselines/webppl/zeroone/run.sh diff --git a/benchmarks/webppl/zeroone/run2.sh b/baselines/webppl/zeroone/run2.sh similarity index 100% rename from benchmarks/webppl/zeroone/run2.sh rename to baselines/webppl/zeroone/run2.sh diff --git a/benchmarks/webppl/zeroone/zeroone.wppl b/baselines/webppl/zeroone/zeroone.wppl similarity index 100% rename from benchmarks/webppl/zeroone/zeroone.wppl rename to baselines/webppl/zeroone/zeroone.wppl diff --git a/benchmarks/webppl/zeroone/zeroone2.wppl b/baselines/webppl/zeroone/zeroone2.wppl similarity index 100% rename from benchmarks/webppl/zeroone/zeroone2.wppl rename to baselines/webppl/zeroone/zeroone2.wppl diff --git a/benchmarks/addFun_max result.png b/benchmarks/addFun_max result.png deleted file mode 100644 index a588e0ea..00000000 Binary files a/benchmarks/addFun_max result.png and /dev/null differ diff --git a/benchmarks/addFun_max result.svg b/benchmarks/addFun_max result.svg deleted file mode 100644 index f19bf432..00000000 --- a/benchmarks/addFun_max result.svg +++ /dev/null @@ -1,1080 +0,0 @@ - - - - - - - - 2023-11-16T15:07:30.118985 - image/svg+xml - - - Matplotlib v3.6.1, https://matplotlib.org/ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/benchmarks/addFun_max time.png b/benchmarks/addFun_max time.png deleted file mode 100644 index cab8af9f..00000000 Binary files a/benchmarks/addFun_max time.png and /dev/null differ diff --git a/benchmarks/addFun_max time.svg b/benchmarks/addFun_max time.svg deleted file mode 100644 index 7e1bedf6..00000000 --- a/benchmarks/addFun_max time.svg +++ /dev/null @@ -1,1064 +0,0 @@ - - - - - - - - 2023-11-16T15:07:29.883578 - image/svg+xml - - - Matplotlib v3.6.1, https://matplotlib.org/ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/benchmarks/addFun_max/accuracy.png b/benchmarks/addFun_max/accuracy.png new file mode 100644 index 00000000..7f80dab2 Binary files /dev/null and b/benchmarks/addFun_max/accuracy.png differ diff --git a/benchmarks/addFun_max/time.png b/benchmarks/addFun_max/time.png new file mode 100644 index 00000000..d08ae45a Binary files /dev/null and b/benchmarks/addFun_max/time.png differ diff --git a/benchmarks/altermu2 result.svg b/benchmarks/altermu2 result.svg deleted file mode 100644 index 396fd72a..00000000 --- a/benchmarks/altermu2 result.svg +++ /dev/null @@ -1,1261 +0,0 @@ - - - - - - - - 2023-11-16T14:55:24.276134 - image/svg+xml - - - Matplotlib v3.6.1, https://matplotlib.org/ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/benchmarks/altermu2 time.svg b/benchmarks/altermu2 time.svg deleted file mode 100644 index 5ca1cc80..00000000 --- a/benchmarks/altermu2 time.svg +++ /dev/null @@ -1,1043 +0,0 @@ - - - - - - - - 2023-11-16T14:55:23.885066 - image/svg+xml - - - Matplotlib v3.6.1, https://matplotlib.org/ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/benchmarks/altermu2/accuracy.png b/benchmarks/altermu2/accuracy.png new file mode 100644 index 00000000..7a077ff3 Binary files /dev/null and b/benchmarks/altermu2/accuracy.png differ diff --git a/benchmarks/altermu2/time.png b/benchmarks/altermu2/time.png new file mode 100644 index 00000000..26a869b3 Binary files /dev/null and b/benchmarks/altermu2/time.png differ diff --git a/benchmarks/plotting copy.ipynb b/benchmarks/plotting copy.ipynb new file mode 100644 index 00000000..21445746 --- /dev/null +++ b/benchmarks/plotting copy.ipynb @@ -0,0 +1,6172 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import math\n", + "import sys\n", + "import statistics\n", + "import csv\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ground Truth" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "gt = {}\n", + "benchmarks = [\"pi\", \"GPA\", \"tug_of_war\", \"altermu2\", \"normal_mixture\", \"spacex\", \"zeroone\", \"weekend\", \"conjugate_gaussians\"]\n", + "\n", + "gt[\"pi\"] = (5 - math.pi)/4\n", + "gt[\"GPA\"] = 0.6115107913669064\n", + "gt[\"tug_of_war\"] = 0.5\n", + "gt[\"altermu2\"] = 0.1550617483\n", + "gt[\"normal_mixture\"] = {\"theta\": 12/42, \"mu1\": -9.702359975571609, \"mu2\": 9.657948191704119}\n", + "gt[\"spacex\"] = 30.00463476991299\n", + "gt[\"zeroone\"] = {\"w1\": 0.0565823032448, \"w2\": 3.68882559517}\n", + "gt[\"weekend\"] = 0.3742061754266954\n", + "gt[\"conjugate_gaussians\"] = 1.0\n", + "gt[\"conjugate_gaussians2\"] = 17/3\n", + "gt[\"coinBias\"] = 5/12\n", + "gt[\"addFun_sum\"] = 0.0\n", + "gt[\"clickGraph\"] = 0.614154185582757\n", + "gt[\"addFun_max\"] = 1/math.sqrt(math.pi)\n", + "gt[\"clinicalTrial2\"] = 2/7\n", + "gt[\"clinicalTrial1\"] = 1 - 78460907384924307566949191554862076141244676160/94572409612368043294199619316675018741649913883\n", + "gt[\"trueskill\"] = 0.5\n", + "gt[\"laplace_scaling\"] = 0.5\n", + "gt[\"hmm\"] = 0.5\n", + "gt[\"or\"] = 0.5\n", + "\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Functions" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def stan_accuracy(benchmark_name, var_name, gt, file_name=\"results.txt\"):\n", + " # file_name = \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/\" + benchmark_name + \"/\" + file_name\n", + " file_handle = open(file_name, \"r\")\n", + " lines = file_handle.readlines()\n", + "\n", + " answer = 0\n", + " for i in lines:\n", + " current = i.split()\n", + " # print(current)\n", + " if current != []:\n", + " if current[0] == var_name:\n", + " answer = float(current[1])\n", + " handle2 = open(\"stan_results.txt\", \"a\")\n", + " handle2.writelines(benchmark_name + \",\" + var_name + \",\" + str(abs(gt - answer)) + \"\\n\")\n", + " handle2.close()\n", + " return abs(gt - answer)\n", + "\n", + "def AQUA_accuracy(benchmark_name, result_file, gt):\n", + " file_handle = open(result_file, \"r\")\n", + " lines = file_handle.readlines()\n", + "\n", + " min_error = 10000000 \n", + " for i in lines:\n", + " cur = float(i[:-1])\n", + " if abs(gt - cur) < min_error:\n", + " min_error = abs(gt - cur)\n", + " return min_error\n", + "\n", + "def Dice_accuracy(benchmark_name, result_file, gt, position, flag):\n", + " file_handle = open(result_file, \"r\")\n", + " lines = file_handle.readlines()\n", + " \n", + " min_error = 100000000\n", + " min_line = \"\"\n", + " for i in lines:\n", + " # print(i)\n", + " # print(position)\n", + " bits = float(i.split(\",\")[0])\n", + " pieces = (math.log2(float((i.split(\",\")[1]))))\n", + " if pieces < bits/2.0:\n", + " continue\n", + " btime = float(i.split(\",\")[-1])\n", + " if btime > 1200:\n", + " continue\n", + " cur = float(i.split(\",\")[position])\n", + " # if float(i.split(\",\")[1]) <= 8.0:\n", + " # continue\n", + " if (flag == None):\n", + " if abs(gt - cur) <= min_error:\n", + " min_error = abs(gt - cur)\n", + " min_line=i\n", + " elif (float(i.split(\",\")[flag[1]]) == flag[0]):\n", + " if abs(gt - cur) <= min_error:\n", + " min_error = abs(gt - cur)\n", + " min_line = i\n", + " else:\n", + " continue\n", + " print(min_line)\n", + " return min_error\n", + "\n", + "def WebPPL_accuracy(benchmark, method, gt, upperlimit, suffix=\"\", flag = True, lower_limit=2):\n", + " min_error = 1000000000\n", + " a = 0\n", + " # for number in range(16, 17):\n", + " for number in range(lower_limit,upperlimit+1):\n", + " print(number)\n", + " # for number in range(24, 25):\n", + " ans = []\n", + " \n", + " \n", + " \n", + " if not flag:\n", + " file_handle = open(\"/space/poorvagarg/webppl_benchmarks/\" + benchmark + \"/results_7200/output\" + suffix + \"_\" + method + \"_\" + str(number) + \".txt\", \"r\")\n", + " else:\n", + " print(benchmark, suffix, method, number)\n", + " file_handle = open(\"/space/poorvagarg/webppl_benchmarks/\" + benchmark + \"/output\" + suffix + \"_\" + method + \"_\" + str(number) + \".txt\", \"r\")\n", + " \n", + " lines = file_handle.readlines()\n", + " # lines = lines[0:10]\n", + " for i in lines:\n", + " # print(i)\n", + " \n", + " if i.split() == []:\n", + " continue\n", + " if i.split()[0] == \"{\":\n", + " # print(float(i.split()[2][:-1]))\n", + "\n", + " if int(i.split()[-2]) > 1200000:\n", + " continue\n", + " ans.append(abs(float(i.split()[2][:-1]) - gt))\n", + " else:\n", + " continue\n", + " if ans == []:\n", + " # print(number)\n", + " continue\n", + " \n", + " cur = statistics.mean(ans)\n", + " # print(statistics.mean(ans), statistics.stdev(ans))\n", + " # print(cur, gt)\n", + " if (cur < min_error):\n", + " a = number\n", + " print(\"yo\")\n", + " print(number)\n", + " min_error = cur\n", + " # print(number)\n", + " return min_error\n", + "\n", + "def write_csv(data):\n", + " with open(\"/space/poorvagarg/.julia/dev/Dice/benchmarks/results.csv\", \"w\") as file:\n", + " writer = csv.writer(file)\n", + " writer.writerow(data)\n", + "\n", + "def stan_iterations(filename):\n", + " f = open(filename, \"r\")\n", + " a = f.readlines()[1]\n", + " iter = a[a.find(\"(\") + 1:a.find(\")\")]\n", + " print(iter)\n", + " return int(iter)\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pi" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "8.0,0.46287536621093756,223.626791841\n", + "\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "40\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "40\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "40\n" + ] + }, + { + "data": { + "text/plain": [ + "('Not supported',\n", + " 0.0017264703916141655,\n", + " 9.122033927102535e-05,\n", + " 9.741326186318844e-05,\n", + " 0.0012900914210840497,\n", + " 4.836339744829221e-05)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aqua_res = \"Not supported\"\n", + "dice_res = Dice_accuracy(\"pi\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/pi/results2.txt\", gt[\"pi\"], 1, None)\n", + "webppl_rej_res = WebPPL_accuracy(\"pi\", \"rejection\", gt[\"pi\"], 40)\n", + "webppl_mcmc_res = WebPPL_accuracy(\"pi\", \"MCMC\", gt[\"pi\"], 40)\n", + "webppl_smc_res = WebPPL_accuracy(\"pi\", \"SMC\", gt[\"pi\"], 40)\n", + "# psi_res = \"remaining integrals\"\n", + "stan_res = stan_accuracy(\"pi\", \"answer\", 1 - gt[\"pi\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/pi/results_1200.txt\")\n", + "\n", + "# stan_res\n", + "\n", + "# write_csv([\"pi\", aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res, psi_res])\n", + "aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res, stan_res\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "GPA" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20.0,1024.0,0.6115107913669062,153.40911844\n", + "\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "19\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "22\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "40\n" + ] + }, + { + "data": { + "text/plain": [ + "(0.3615107913668967,\n", + " 2.220446049250313e-16,\n", + " 0.01702872077338129,\n", + " 0.00928972642198742,\n", + " 0.013794120953237421)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aqua_res = AQUA_accuracy(\"GPA\", \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/GPA/results.txt\", gt[\"GPA\"])\n", + "dice_res = Dice_accuracy(\"GPA\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/GPA/results.txt\", gt[\"GPA\"], 2, None)\n", + "webppl_rej_res = WebPPL_accuracy(\"GPA\", \"rejection\", gt[\"GPA\"], 19)\n", + "webppl_mcmc_res = WebPPL_accuracy(\"GPA\", \"MCMC\", gt[\"GPA\"], 22)\n", + "webppl_smc_res = WebPPL_accuracy(\"GPA\", \"SMC\", gt[\"GPA\"], 40, flag=True)\n", + "aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res\n", + "# aqua_res, dice_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Tug of War" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10.0,32.0,0.49994258591591584,31.63369172\n", + "\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "18\n", + "yo\n", + "18\n", + "19\n", + "yo\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "yo\n", + "22\n", + "23\n", + "24\n", + "yo\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n" + ] + }, + { + "data": { + "text/plain": [ + "('Not supported',\n", + " 5.741408408416193e-05,\n", + " 0.000653839111328125,\n", + " 0.0006935060024261475,\n", + " 0.00239105224609375,\n", + " 4.5069999999980404e-05)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aqua_res = \"Not supported\"\n", + "dice_res = Dice_accuracy(\"tug_of_war\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/tug_of_war/results.txt\", gt[\"tug_of_war\"], 2, None)\n", + "webppl_rej_res = WebPPL_accuracy(\"tug_of_war\", \"rejection\", gt[\"tug_of_war\"], 27)\n", + "webppl_mcmc_res = WebPPL_accuracy(\"tug_of_war\", \"MCMC\", gt[\"tug_of_war\"], 33)\n", + "webppl_smc_res = WebPPL_accuracy(\"tug_of_war\", \"SMC\", gt[\"tug_of_war\"], 40)\n", + "\n", + "stan_res = stan_accuracy(\"tug_of_war\", \"ans\", gt[\"tug_of_war\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/tug_of_war/results_1200.txt\")\n", + "aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res, stan_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Altermu2" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.0,32.0,0.1550750016337119,25.575465161\n", + "\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "yo\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "yo\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n" + ] + }, + { + "data": { + "text/plain": [ + "(3.411889291371484e-07,\n", + " 1.3253333711910065e-05,\n", + " 0.001684008299999984,\n", + " 1000000000,\n", + " 0.4144364187555497,\n", + " 0.44800833729368594)" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aqua_res = AQUA_accuracy(\"altermu2\", \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/stan_bench/altermu2/results.txt\", gt[\"altermu2\"])\n", + "dice_res = Dice_accuracy(\"altermu2\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/altermu2/results.txt\", gt[\"altermu2\"], 2, None)\n", + "webppl_rej_res = WebPPL_accuracy(\"altermu2\", \"rejection\", gt[\"altermu2\"], 40)\n", + "webppl_mcmc_res = WebPPL_accuracy(\"altermu2\", \"MCMC\", gt[\"altermu2\"], 40)\n", + "webppl_smc_res = WebPPL_accuracy(\"altermu2\", \"SMC\", gt[\"altermu2\"], 40)\n", + "stan_res = stan_accuracy(\"altermu2\", \"mu[1]\", gt[\"altermu2\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/altermu2/results_1200.txt\")\n", + "\n", + "aqua_res, dice_res, stan_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res\n", + "# dice_res, webppl_rej_res, webppl_mcmc_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Normal Mixture" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.0,1.0,0.2856593701886235,1.0,370.616781866\n", + "\n", + "3.0,16.0,-9.697157710855773,2.0,408.978756263\n", + "\n", + "3.0,32.0,9.661872543658466,0.0,434.298843638\n", + "\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "yo\n", + "18\n", + "19\n", + "yo\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "yo\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "yo\n", + "18\n", + "19\n", + "yo\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "yo\n", + "22\n", + "23\n", + "yo\n", + "23\n", + "24\n", + "25\n", + "26\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "yo\n", + "18\n", + "19\n", + "yo\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "yo\n", + "22\n", + "23\n", + "yo\n", + "23\n", + "24\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n" + ] + }, + { + "data": { + "text/plain": [ + "({'theta': 4.130437008531551e-07,\n", + " 'mu1': 7.55332333923775e-06,\n", + " 'mu2': 8.65302144426039e-06},\n", + " {'theta': 5.4915525662224685e-05,\n", + " 'mu1': 0.005202264715835625,\n", + " 'mu2': 0.003924351954347927},\n", + " {'theta': 0.4285801342857143,\n", + " 'mu1': 18.69363047557161,\n", + " 'mu2': 17.69369559170412},\n", + " {'theta': 1000000000},\n", + " {'theta': 0.0003779279259760571,\n", + " 'mu1': 0.001360104620724023,\n", + " 'mu2': 0.0007108377231679341},\n", + " {'theta': 0.005092481175763897,\n", + " 'mu1': 0.02002021631502373,\n", + " 'mu2': 0.011493329844978816})" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aqua_res = {}\n", + "aqua_res[\"theta\"] = AQUA_accuracy(\"normal_mixture\", \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/stan_bench/normal_mixture/results_1200.txt\", gt[\"normal_mixture\"][\"theta\"])\n", + "aqua_res[\"mu1\"] = AQUA_accuracy(\"normal_mixture\", \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/stan_bench/normal_mixture/results1_1200.txt\", gt[\"normal_mixture\"][\"mu1\"])\n", + "aqua_res[\"mu2\"] = AQUA_accuracy(\"normal_mixture\", \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/stan_bench/normal_mixture/results2_1200.txt\", gt[\"normal_mixture\"][\"mu2\"])\n", + "\n", + "dice_res = {}\n", + "dice_res[\"theta\"] = Dice_accuracy(\"normal_mixture\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/normal_mixture/results.txt\", gt[\"normal_mixture\"][\"theta\"], 2, (1, 3))\n", + "dice_res[\"mu1\"] = Dice_accuracy(\"normal_mixture\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/normal_mixture/results.txt\", gt[\"normal_mixture\"][\"mu1\"], 2, (2, 3))\n", + "dice_res[\"mu2\"] = Dice_accuracy(\"normal_mixture\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/normal_mixture/results.txt\", gt[\"normal_mixture\"][\"mu2\"], 2, (0, 3))\n", + "\n", + "webppl_rej_res = {}\n", + "webppl_rej_res[\"theta\"] = WebPPL_accuracy(\"normal_mixture\", \"rejection\", gt[\"normal_mixture\"][\"theta\"], 9)\n", + "# webppl_rej_res[\"mu1\"] = WebPPL_accuracy(\"normal_mixture\", \"rejection\", gt[\"normal_mixture\"][\"mu1\"], 1, \"2\")\n", + "# webppl_rej_res[\"mu2\"] = WebPPL_accuracy(\"normal_mixture\", \"rejection\", gt[\"normal_mixture\"][\"mu2\"], 1, \"3\")\n", + "\n", + "webppl_mcmc_res = {}\n", + "webppl_mcmc_res[\"theta\"] = WebPPL_accuracy(\"normal_mixture\", \"MCMC\", gt[\"normal_mixture\"][\"theta\"], 32)\n", + "webppl_mcmc_res[\"mu1\"] = WebPPL_accuracy(\"normal_mixture\", \"MCMC\", gt[\"normal_mixture\"][\"mu1\"], 26, \"2\")\n", + "webppl_mcmc_res[\"mu2\"] = WebPPL_accuracy(\"normal_mixture\", \"MCMC\", gt[\"normal_mixture\"][\"mu2\"], 24, \"3\")\n", + "\n", + "webppl_smc_res = {}\n", + "webppl_smc_res[\"theta\"] = WebPPL_accuracy(\"normal_mixture\", \"SMC\", gt[\"normal_mixture\"][\"theta\"], 40)\n", + "webppl_smc_res[\"mu1\"] = WebPPL_accuracy(\"normal_mixture\", \"SMC\", gt[\"normal_mixture\"][\"mu1\"], 40, \"2\")\n", + "webppl_smc_res[\"mu2\"] = WebPPL_accuracy(\"normal_mixture\", \"SMC\", gt[\"normal_mixture\"][\"mu2\"], 40, \"3\")\n", + "\n", + "stan_res = {}\n", + "stan_res[\"theta\"] = stan_accuracy(\"normal_mixture\", \"theta\", gt[\"normal_mixture\"][\"theta\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/normal_mixture/results_1200.txt\")\n", + "stan_res[\"mu1\"] = stan_accuracy(\"normal_mixture\", \"mu[1]\", gt[\"normal_mixture\"][\"mu1\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/normal_mixture/results_1200.txt\")\n", + "stan_res[\"mu2\"] = stan_accuracy(\"normal_mixture\", \"mu[2]\", gt[\"normal_mixture\"][\"mu2\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/normal_mixture/results_1200.txt\")\n", + "# webppl_mcmc_res = WebPPL_accuracy(\"altermu2\", \"MCMC\", gt[\"altermu2\"], 24)\n", + "# # webppl_rej_res, webppl_mcmc_res, aqua_res, \n", + "# dice_res, stan_res\n", + "\n", + "aqua_res, dice_res, stan_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Spacex" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "11.0,32.0,30.003941091592345,634.508111663\n", + "\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "40\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "40\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "40\n" + ] + }, + { + "data": { + "text/plain": [ + "(0.00011523008701175286,\n", + " 0.0006936783206441532,\n", + " 0.00011523008701175286,\n", + " 0.0008841362652106,\n", + " 0.002976714907003597,\n", + " 0.018999745163382542)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aqua_res = \"Not supported\"\n", + "dice_res = Dice_accuracy(\"spacex\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/spacex/results.txt\", gt[\"spacex\"], 2, None)\n", + "webppl_rej_res = WebPPL_accuracy(\"spacex\", \"rejection\", gt[\"spacex\"], 40)\n", + "webppl_mcmc_res = WebPPL_accuracy(\"spacex\", \"MCMC\", gt[\"spacex\"], 40)\n", + "webppl_smc_res = WebPPL_accuracy(\"spacex\", \"SMC\", gt[\"spacex\"], 40)\n", + "# aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res\n", + "\n", + "stan_res = stan_accuracy(\"spacex\", \"cr\", gt[\"spacex\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/spacex/results_1200.txt\")\n", + "stan_res, dice_res, stan_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Spacex2" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "21\n", + "20\n" + ] + }, + { + "data": { + "text/plain": [ + "('Not supported',\n", + " 0.0006936783206441532,\n", + " 0.0049240346183481165,\n", + " 0.025069748023470596)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gt[\"spacex2\"] = 38.627999128175354\n", + "aqua_res = \"Not supported\"\n", + "dice_res = Dice_accuracy(0.013794120953237421\"spacex\", \"/space/poorvagarg/.julia/dev/Dice/benchmarks/spacex/results.txt\", gt[\"spacex\"], 2, None)\n", + "webppl_rej_res = WebPPL_accuracy(\"spacex2\", \"rejection\", gt[\"spacex2\"], 21)\n", + "webppl_mcmc_res = WebPPL_accuracy(\"spacex2\", \"MCMC\", gt[\"spacex2\"], 20)\n", + "aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Weekend" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20.0,4096.0,0.3742061962639949,45.869394504\n", + "\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "27\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "37\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "40\n" + ] + }, + { + "data": { + "text/plain": [ + "(0.015051637073304624, 0.010412671164660926, 0.0109622080961437)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aqua_res = \"Not supported\"\n", + "dice_res = Dice_accuracy(\"weekend\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/weekend/results.txt\", gt[\"weekend\"], 2, None)\n", + "webppl_rej_res = WebPPL_accuracy(\"weekend\", \"rejection\", gt[\"weekend\"], 27)\n", + "webppl_mcmc_res = WebPPL_accuracy(\"weekend\", \"MCMC\", gt[\"weekend\"], 37)\n", + "webppl_smc_res = WebPPL_accuracy(\"weekend\", \"SMC\", gt[\"weekend\"], 40)\n", + "psi_res = abs(0.374206175427 - gt[\"weekend\"])\n", + "\n", + "stan_res = abs(gt[\"weekend\"] - 0.389945)\n", + "\n", + "webppl_rej_res, webppl_mcmc_res, webppl_smc_res, stan_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Zeroone" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "8.0,0.05648825544443542,1.0,90.516536048\n", + "\n", + "11.0,3.6883744493986876,2.0,111.766408192\n", + "\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n" + ] + }, + { + "data": { + "text/plain": [ + "({'w1': 0.0565823032448, 'w2': 3.68882559517},\n", + " {'w1': 9.404780036458005e-05, 'w2': 0.00045114577131233347},\n", + " {'w1': 0.17281851324480002, 'w2': 0.23793210483000005},\n", + " {'w2': 1.3973409887523216},\n", + " {'w2': 1.4274254602355954},\n", + " {'w1': 1000000000, 'w2': 1.0333615296570342})" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aqua_res = {}\n", + "aqua_res[\"w1\"] = AQUA_accuracy(\"zeroone\", \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/stan_bench/zeroone/results_1200.txt\", gt[\"zeroone\"][\"w1\"])\n", + "aqua_res[\"w2\"] = AQUA_accuracy(\"zeroone\", \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/stan_bench/zeroone/results2_1200.txt\", gt[\"zeroone\"][\"w2\"])\n", + "\n", + "dice_res = {}\n", + "dice_res[\"w1\"] = Dice_accuracy(\"zeroone\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/zeroone/results.txt\", gt[\"zeroone\"][\"w1\"], 1, (1, 2))\n", + "dice_res[\"w2\"] = Dice_accuracy(\"zeroone\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/zeroone/results.txt\", gt[\"zeroone\"][\"w2\"], 1, (2, 2))\n", + "\n", + "webppl_rej_res = {}\n", + "# webppl_rej_res[\"w1\"] = WebPPL_accuracy(\"zeroone\", \"rejection\", gt[\"zeroone\"][\"w1\"], 23)\n", + "webppl_rej_res[\"w2\"] = WebPPL_accuracy(\"zeroone\", \"rejection\", gt[\"zeroone\"][\"w2\"], 24, \"2\")\n", + "\n", + "webppl_mcmc_res = {}\n", + "# webppl_mcmc_res[\"w1\"] = WebPPL_accuracy(\"zeroone\", \"MCMC\", gt[\"zeroone\"][\"w1\"], 28)\n", + "webppl_mcmc_res[\"w2\"] = WebPPL_accuracy(\"zeroone\", \"MCMC\", gt[\"zeroone\"][\"w2\"], 24, \"2\")\n", + "\n", + "webppl_smc_res = {}\n", + "webppl_smc_res[\"w1\"] = WebPPL_accuracy(\"zeroone\", \"SMC\", gt[\"zeroone\"][\"w1\"], 22)\n", + "webppl_smc_res[\"w2\"] = WebPPL_accuracy(\"zeroone\", \"SMC\", gt[\"zeroone\"][\"w2\"], 20, \"2\")\n", + "\n", + "stan_res = {}\n", + "stan_res[\"w1\"] = stan_accuracy(\"zeroone\", \"w1\", gt[\"zeroone\"][\"w1\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/zeroone/results_1200.txt\")\n", + "stan_res[\"w2\"] = stan_accuracy(\"zeroone\", \"w2\", gt[\"zeroone\"][\"w2\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/zeroone/results_1200.txt\")\n", + "# # webppl_mcmc_res = WebPPL_accuracy(\"altermu2\", \"MCMC\", gt[\"altermu2\"], 24)\n", + "# webppl_rej_res, webppl_mcmc_res, aqua_res, dice_res, stan_res\n", + "\n", + "aqua_res, dice_res, stan_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Conjugate Gaussians" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "17.0,8.0,1.0000012301372767,1185.883949617\n", + "\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "yo\n", + "18\n", + "19\n", + "yo\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "yo\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n" + ] + }, + { + "data": { + "text/plain": [ + "(0.9999999999999633,\n", + " 1.2301372767087315e-06,\n", + " 1.77099999999486e-05,\n", + " 0.00017718382607673222,\n", + " 0.00032351330845821203,\n", + " 0.002953871289601806)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aqua_res = AQUA_accuracy(\"conjugate_gaussians\", \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/conjugate_gaussians/results_1200.txt\", gt[\"conjugate_gaussians\"])\n", + "dice_res = Dice_accuracy(\"conjugate_gaussians\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/conjugate_gaussians/results.txt\", gt[\"conjugate_gaussians\"], 2, None)\n", + "webppl_rej_res = WebPPL_accuracy(\"conjugate_gaussians\", \"rejection\", gt[\"conjugate_gaussians\"], 30)\n", + "webppl_mcmc_res = WebPPL_accuracy(\"conjugate_gaussians\", \"MCMC\", gt[\"conjugate_gaussians\"], 40)\n", + "webppl_smc_res = WebPPL_accuracy(\"conjugate_gaussians\", \"SMC\", gt[\"conjugate_gaussians\"], 40)\n", + "\n", + "stan_res = stan_accuracy(\"conjugate_gaussians\", \"mu\", gt[\"conjugate_gaussians\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/conjugate_gaussians/results_1200.txt\")\n", + "# aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res\n", + "\n", + "aqua_res, dice_res, stan_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "16.0,2048.0,1.0000025431315056,616.730090267\n", + "\n", + "2\n", + "conjugate_gaussians2 rejection 2\n", + "3\n", + "conjugate_gaussians2 rejection 3\n", + "4\n", + "conjugate_gaussians2 rejection 4\n", + "5\n", + "conjugate_gaussians2 rejection 5\n", + "6\n", + "conjugate_gaussians2 rejection 6\n", + "2\n", + "conjugate_gaussians2 MCMC 2\n", + "yo\n", + "2\n", + "3\n", + "conjugate_gaussians2 MCMC 3\n", + "yo\n", + "3\n", + "4\n", + "conjugate_gaussians2 MCMC 4\n", + "yo\n", + "4\n", + "5\n", + "conjugate_gaussians2 MCMC 5\n", + "yo\n", + "5\n", + "6\n", + "conjugate_gaussians2 MCMC 6\n", + "yo\n", + "6\n", + "7\n", + "conjugate_gaussians2 MCMC 7\n", + "yo\n", + "7\n", + "8\n", + "conjugate_gaussians2 MCMC 8\n", + "yo\n", + "8\n", + "9\n", + "conjugate_gaussians2 MCMC 9\n", + "yo\n", + "9\n", + "10\n", + "conjugate_gaussians2 MCMC 10\n", + "yo\n", + "10\n", + "11\n", + "conjugate_gaussians2 MCMC 11\n", + "yo\n", + "11\n", + "12\n", + "conjugate_gaussians2 MCMC 12\n", + "yo\n", + "12\n", + "13\n", + "conjugate_gaussians2 MCMC 13\n", + "yo\n", + "13\n", + "14\n", + "conjugate_gaussians2 MCMC 14\n", + "yo\n", + "14\n", + "15\n", + "conjugate_gaussians2 MCMC 15\n", + "yo\n", + "15\n", + "16\n", + "conjugate_gaussians2 MCMC 16\n", + "yo\n", + "16\n", + "17\n", + "conjugate_gaussians2 MCMC 17\n", + "yo\n", + "17\n", + "18\n", + "conjugate_gaussians2 MCMC 18\n", + "yo\n", + "18\n", + "19\n", + "conjugate_gaussians2 MCMC 19\n", + "yo\n", + "19\n", + "20\n", + "conjugate_gaussians2 MCMC 20\n", + "yo\n", + "20\n", + "21\n", + "conjugate_gaussians2 MCMC 21\n", + "yo\n", + "21\n", + "22\n", + "conjugate_gaussians2 MCMC 22\n", + "yo\n", + "22\n", + "23\n", + "conjugate_gaussians2 MCMC 23\n", + "yo\n", + "23\n", + "24\n", + "conjugate_gaussians2 MCMC 24\n", + "yo\n", + "24\n", + "25\n", + "conjugate_gaussians2 MCMC 25\n", + "26\n", + "conjugate_gaussians2 MCMC 26\n", + "27\n", + "conjugate_gaussians2 MCMC 27\n", + "28\n", + "conjugate_gaussians2 MCMC 28\n", + "29\n", + "conjugate_gaussians2 MCMC 29\n", + "30\n", + "conjugate_gaussians2 MCMC 30\n", + "31\n", + "conjugate_gaussians2 MCMC 31\n", + "32\n", + "conjugate_gaussians2 MCMC 32\n", + "33\n", + "conjugate_gaussians2 MCMC 33\n", + "34\n", + "conjugate_gaussians2 MCMC 34\n", + "35\n", + "conjugate_gaussians2 MCMC 35\n", + "36\n", + "conjugate_gaussians2 MCMC 36\n", + "37\n", + "conjugate_gaussians2 MCMC 37\n", + "38\n", + "conjugate_gaussians2 MCMC 38\n", + "2\n", + "conjugate_gaussians2 SMC 2\n", + "yo\n", + "2\n", + "3\n", + "conjugate_gaussians2 SMC 3\n", + "yo\n", + "3\n", + "4\n", + "conjugate_gaussians2 SMC 4\n", + "yo\n", + "4\n", + "5\n", + "conjugate_gaussians2 SMC 5\n", + "yo\n", + "5\n", + "6\n", + "conjugate_gaussians2 SMC 6\n", + "yo\n", + "6\n", + "7\n", + "conjugate_gaussians2 SMC 7\n", + "yo\n", + "7\n", + "8\n", + "conjugate_gaussians2 SMC 8\n", + "yo\n", + "8\n", + "9\n", + "conjugate_gaussians2 SMC 9\n", + "yo\n", + "9\n", + "10\n", + "conjugate_gaussians2 SMC 10\n", + "yo\n", + "10\n", + "11\n", + "conjugate_gaussians2 SMC 11\n", + "yo\n", + "11\n", + "12\n", + "conjugate_gaussians2 SMC 12\n", + "yo\n", + "12\n", + "13\n", + "conjugate_gaussians2 SMC 13\n", + "yo\n", + "13\n", + "14\n", + "conjugate_gaussians2 SMC 14\n", + "yo\n", + "14\n", + "15\n", + "conjugate_gaussians2 SMC 15\n", + "yo\n", + "15\n", + "16\n", + "conjugate_gaussians2 SMC 16\n", + "yo\n", + "16\n", + "17\n", + "conjugate_gaussians2 SMC 17\n", + "18\n", + "conjugate_gaussians2 SMC 18\n", + "19\n", + "conjugate_gaussians2 SMC 19\n", + "20\n", + "conjugate_gaussians2 SMC 20\n", + "21\n", + "conjugate_gaussians2 SMC 21\n", + "22\n", + "conjugate_gaussians2 SMC 22\n", + "23\n", + "conjugate_gaussians2 SMC 23\n", + "24\n", + "conjugate_gaussians2 SMC 24\n", + "25\n", + "conjugate_gaussians2 SMC 25\n", + "26\n", + "conjugate_gaussians2 SMC 26\n", + "27\n", + "conjugate_gaussians2 SMC 27\n", + "28\n", + "conjugate_gaussians2 SMC 28\n", + "29\n", + "conjugate_gaussians2 SMC 29\n", + "30\n", + "conjugate_gaussians2 SMC 30\n", + "31\n", + "conjugate_gaussians2 SMC 31\n", + "32\n", + "conjugate_gaussians2 SMC 32\n", + "33\n", + "conjugate_gaussians2 SMC 33\n", + "34\n", + "conjugate_gaussians2 SMC 34\n", + "35\n", + "conjugate_gaussians2 SMC 35\n", + "36\n", + "conjugate_gaussians2 SMC 36\n", + "37\n", + "conjugate_gaussians2 SMC 37\n", + "38\n", + "conjugate_gaussians2 SMC 38\n", + "39\n", + "conjugate_gaussians2 SMC 39\n", + "40\n", + "conjugate_gaussians2 SMC 40\n" + ] + }, + { + "data": { + "text/plain": [ + "(0.9999999999999633,\n", + " 2.5431315056057002e-06,\n", + " 1000000000,\n", + " 1000000000,\n", + " 0.5497986223533383,\n", + " 1.5207765737129375)" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aqua_res = AQUA_accuracy(\"conjugate_gaussians\", \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/conjugate_gaussians/results_1200.txt\", gt[\"conjugate_gaussians\"])\n", + "dice_res = Dice_accuracy(\"conjugate_gaussians2\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/conjugate_gaussians/results.txt\", gt[\"conjugate_gaussians\"], 2, None)\n", + "webppl_rej_res = WebPPL_accuracy(\"conjugate_gaussians2\", \"rejection\", gt[\"conjugate_gaussians2\"], 6)\n", + "webppl_mcmc_res = WebPPL_accuracy(\"conjugate_gaussians2\", \"MCMC\", gt[\"conjugate_gaussians2\"], 38)\n", + "webppl_smc_res = WebPPL_accuracy(\"conjugate_gaussians2\", \"SMC\", gt[\"conjugate_gaussians2\"], 40)\n", + "\n", + "# stan_res = stan_accuracy(\"conjugate_gaussians2\", \"mu\", gt[\"conjugate_gaussians2\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/conjugate_gaussians2/results_1200.txt\")\n", + "# aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res\n", + "\n", + "aqua_res, dice_res, webppl_rej_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Coin Bias" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20.0,512.0,0.41666646464564716,319.758297215\n", + "\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "yo\n", + "18\n", + "19\n", + "yo\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "23\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "19\n", + "yo\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "yo\n", + "22\n", + "23\n", + "yo\n", + "23\n", + "24\n", + "yo\n", + "24\n", + "25\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n" + ] + }, + { + "data": { + "text/plain": [ + "(0.024196077823838313,\n", + " 2.0202101952415674e-07,\n", + " 1.1756666666695725e-05,\n", + " 9.879501849108241e-06,\n", + " 7.731382700521539e-05,\n", + " 0.0011600496010979676)" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aqua_res = AQUA_accuracy(\"coinBias\", \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/coinBias/results_1200.txt\", gt[\"coinBias\"])\n", + "dice_res = Dice_accuracy(\"coinBias\", \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/coinBias/results.txt\", gt[\"coinBias\"], 2, None)\n", + "stan_res = stan_accuracy(\"coinBias\", \"b\", gt[\"coinBias\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/coinBias/results_1200.txt\")\n", + "webppl_rej_res = WebPPL_accuracy(\"coinBias\", \"rejection\", gt[\"coinBias\"], 23)\n", + "webppl_mcmc_res = WebPPL_accuracy(\"coinBias\", \"MCMC\", gt[\"coinBias\"], 25)\n", + "webppl_smc_res = WebPPL_accuracy(\"coinBias\", \"SMC\", gt[\"coinBias\"], 21)\n", + "# aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res\n", + "\n", + "aqua_res, dice_res, stan_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "addFun_sum" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18.0,2.0,-3.8145027607858474e-6,873.257779599\n", + "\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "yo\n", + "18\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "yo\n", + "22\n", + "23\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "19\n", + "yo\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "23\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n" + ] + }, + { + "data": { + "text/plain": [ + "('not supported',\n", + " 3.8145027607858474e-06,\n", + " 8.4537301e-05,\n", + " 0.0004500229078140143,\n", + " 0.0016320280040451368,\n", + " 0.0051082356835149105)" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "benchmark = \"addFun_sum\"\n", + "# aqua_res = AQUA_accuracy(benchmark, \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/\" + benchmark + \"/results.txt\", gt[benchmark])\n", + "aqua_res = \"not supported\"\n", + "dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/\" + benchmark + \"/results.txt\", gt[benchmark], 2, None)\n", + "webppl_rej_res = WebPPL_accuracy(benchmark, \"rejection\", gt[benchmark], 23)\n", + "webppl_mcmc_res = WebPPL_accuracy(benchmark, \"MCMC\", gt[benchmark], 23)\n", + "webppl_smc_res = WebPPL_accuracy(benchmark, \"SMC\", gt[benchmark], 23)\n", + "stan_res = stan_accuracy(\"addFun_sum\", \"ans\", gt[\"addFun_sum\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/addFun_sum/results_1200.txt\")\n", + "# aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res, stan_res\n", + "aqua_res, dice_res, stan_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "clickGraph" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "8.0,0.6124004865370632,1091.324200244\n", + "\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "19\n", + "20\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "yo\n", + "18\n", + "19\n", + "yo\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "yo\n", + "22\n", + "23\n", + "24\n", + "yo\n", + "24\n", + "25\n", + "26\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n" + ] + }, + { + "data": { + "text/plain": [ + "('not supported',\n", + " 0.0017536990456937795,\n", + " 0.0007136814228887345,\n", + " 0.0012156426716100621,\n", + " 0.00307042034704611,\n", + " 2.8044417243022757e-05)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "benchmark = \"clickGraph\"\n", + "# aqua_res = AQUA_accuracy(benchmark, \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/\" + benchmark + \"/results.txt\", gt[benchmark])\n", + "aqua_res = \"not supported\"\n", + "dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/\" + benchmark + \"/results.txt\", gt[benchmark], 1, None)\n", + "stan_res = stan_accuracy(\"clickGraph\", \"similarityAll\", gt[\"clickGraph\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/clickGraph/results_1200.txt\")\n", + "webppl_rej_res = WebPPL_accuracy(benchmark, \"rejection\", gt[benchmark], 20)\n", + "webppl_mcmc_res = WebPPL_accuracy(benchmark, \"MCMC\", gt[benchmark], 26)\n", + "webppl_smc_res = WebPPL_accuracy(benchmark, \"SMC\", gt[benchmark], 20)\n", + "# webppl_rej_res = \"timeout\"\n", + "# webppl_mcmc_res = \"trace not initialized\"\n", + "aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res, stan_res\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "addFun_max" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "17.0,128.0,0.5641873837576667,536.882487331\n", + "\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "yo\n", + "17\n", + "18\n", + "19\n", + "yo\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "23\n", + "24\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "13\n", + "yo\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "17\n", + "18\n", + "yo\n", + "18\n", + "19\n", + "yo\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "23\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "yo\n", + "10\n", + "11\n", + "yo\n", + "11\n", + "12\n", + "yo\n", + "12\n", + "13\n", + "14\n", + "yo\n", + "14\n", + "15\n", + "yo\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n" + ] + }, + { + "data": { + "text/plain": [ + "('not supported',\n", + " 2.1997900895298628e-06,\n", + " 0.00034863758596014315,\n", + " 0.00044219411886601276,\n", + " 0.002902336339822442,\n", + " 0.00011933354775628402)" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "benchmark = \"addFun_max\"\n", + "# aqua_res = AQUA_accuracy(benchmark, \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/\" + benchmark + \"/results.txt\", gt[benchmark])\n", + "aqua_res = \"not supported\"\n", + "dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/\" + benchmark + \"/results.txt\", gt[benchmark], 2, None)\n", + "webppl_rej_res = WebPPL_accuracy(benchmark, \"rejection\", gt[benchmark], 24)\n", + "webppl_mcmc_res = WebPPL_accuracy(benchmark, \"MCMC\", gt[benchmark], 23)\n", + "webppl_smc_res = WebPPL_accuracy(benchmark, \"SMC\", gt[benchmark], 24)\n", + "stan_res = stan_accuracy(\"addFun_max\", \"ans\", gt[\"addFun_max\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/addFun_max/results_1200.txt\")\n", + "aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res, stan_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "clinicalTrial2" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10.0,0.28571496691055076,550.84060239\n", + "\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "yo\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n" + ] + }, + { + "data": { + "text/plain": [ + "('not supported',\n", + " 6.811962650621339e-07,\n", + " 0.11358979050462617,\n", + " 0.13181095731215642,\n", + " 0.06391710944635005,\n", + " 4.5354285714283016e-05)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "benchmark = \"clinicalTrial2\"\n", + "# aqua_res = AQUA_accuracy(benchmark, \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/\" + benchmark + \"/results.txt\", gt[benchmark])\n", + "aqua_res = \"not supported\"\n", + "dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/\" + benchmark + \"/results.txt\", gt[benchmark], 1, None)\n", + "webppl_rej_res = WebPPL_accuracy(benchmark, \"rejection\", gt[benchmark], 22)\n", + "webppl_mcmc_res = WebPPL_accuracy(benchmark, \"MCMC\", gt[benchmark], 25)\n", + "webppl_smc_res = WebPPL_accuracy(benchmark, \"SMC\", gt[benchmark], 20)\n", + "\n", + "stan_res = stan_accuracy(\"clinicalTrial2\", \"probIfControl\", gt[\"clinicalTrial2\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/clinicalTrial2/results_1200.txt\")\n", + "aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res, stan_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "clinicalTrial1" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "6,0.17036154935124595,438.44236884\n", + "\n", + "2\n", + "3\n", + "yo\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "yo\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "yo\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "yo\n", + "20\n", + "21\n", + "yo\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "2\n", + "yo\n", + "2\n", + "3\n", + "4\n", + "5\n", + "yo\n", + "5\n", + "6\n", + "yo\n", + "6\n", + "7\n", + "yo\n", + "7\n", + "8\n", + "yo\n", + "8\n", + "9\n", + "10\n", + "11\n", + "12\n", + "13\n", + "14\n", + "15\n", + "16\n", + "17\n", + "18\n", + "19\n", + "20\n", + "21\n", + "22\n", + "23\n", + "24\n", + "25\n", + "26\n", + "27\n", + "28\n", + "29\n", + "30\n", + "31\n", + "32\n", + "33\n", + "34\n", + "35\n", + "36\n", + "37\n", + "38\n", + "39\n", + "40\n" + ] + }, + { + "data": { + "text/plain": [ + "('not supported',\n", + " 5.273559366969494e-16,\n", + " 0.04536154935124648,\n", + " 0.14072516629460585,\n", + " 0.12348654935124648,\n", + " 0.004533449351246555)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "benchmark = \"clinicalTrial1\"\n", + "# aqua_res = AQUA_accuracy(benchmark, \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/\" + benchmark + \"/results.txt\", gt[benchmark])\n", + "aqua_res = \"not supported\"\n", + "dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/\" + benchmark + \"/results.txt\", gt[benchmark], 1, None)\n", + "stan_res = stan_accuracy(\"clinicalTrial1\", \"isEffective\", gt[\"clinicalTrial1\"] + 1, \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/clinicalTrial1/results_1200.txt\")\n", + "webppl_rej_res = WebPPL_accuracy(benchmark, \"rejection\", gt[benchmark], 19)\n", + "webppl_mcmc_res = WebPPL_accuracy(benchmark, \"MCMC\", gt[benchmark], 26)\n", + "webppl_smc_res = WebPPL_accuracy(benchmark, \"SMC\", gt[benchmark], 40)\n", + "aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res, stan_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Trueskill" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4.0,4.0,0.49815954311182076,192.821344239\n", + "\n", + "2\n", + "trueskill rejection 2\n", + "yo\n", + "2\n", + "3\n", + "trueskill rejection 3\n", + "4\n", + "trueskill rejection 4\n", + "yo\n", + "4\n", + "5\n", + "trueskill rejection 5\n", + "yo\n", + "5\n", + "6\n", + "trueskill rejection 6\n", + "yo\n", + "6\n", + "7\n", + "trueskill rejection 7\n", + "8\n", + "trueskill rejection 8\n", + "yo\n", + "8\n", + "9\n", + "trueskill rejection 9\n", + "yo\n", + "9\n", + "10\n", + "trueskill rejection 10\n", + "yo\n", + "10\n", + "11\n", + "trueskill rejection 11\n", + "yo\n", + "11\n", + "12\n", + "trueskill rejection 12\n", + "yo\n", + "12\n", + "13\n", + "trueskill rejection 13\n", + "14\n", + "trueskill rejection 14\n", + "yo\n", + "14\n", + "15\n", + "trueskill rejection 15\n", + "yo\n", + "15\n", + "16\n", + "trueskill rejection 16\n", + "yo\n", + "16\n", + "17\n", + "trueskill rejection 17\n", + "yo\n", + "17\n", + "18\n", + "trueskill rejection 18\n", + "yo\n", + "18\n", + "19\n", + "trueskill rejection 19\n", + "yo\n", + "19\n", + "20\n", + "trueskill rejection 20\n", + "yo\n", + "20\n", + "21\n", + "trueskill rejection 21\n", + "yo\n", + "21\n", + "22\n", + "trueskill rejection 22\n", + "yo\n", + "22\n", + "23\n", + "trueskill rejection 23\n", + "24\n", + "trueskill rejection 24\n", + "2\n", + "trueskill MCMC 2\n", + "yo\n", + "2\n", + "3\n", + "trueskill MCMC 3\n", + "yo\n", + "3\n", + "4\n", + "trueskill MCMC 4\n", + "5\n", + "trueskill MCMC 5\n", + "yo\n", + "5\n", + "6\n", + "trueskill MCMC 6\n", + "yo\n", + "6\n", + "7\n", + "trueskill MCMC 7\n", + "yo\n", + "7\n", + "8\n", + "trueskill MCMC 8\n", + "yo\n", + "8\n", + "9\n", + "trueskill MCMC 9\n", + "yo\n", + "9\n", + "10\n", + "trueskill MCMC 10\n", + "yo\n", + "10\n", + "11\n", + "trueskill MCMC 11\n", + "yo\n", + "11\n", + "12\n", + "trueskill MCMC 12\n", + "yo\n", + "12\n", + "13\n", + "trueskill MCMC 13\n", + "yo\n", + "13\n", + "14\n", + "trueskill MCMC 14\n", + "yo\n", + "14\n", + "15\n", + "trueskill MCMC 15\n", + "yo\n", + "15\n", + "16\n", + "trueskill MCMC 16\n", + "17\n", + "trueskill MCMC 17\n", + "yo\n", + "17\n", + "18\n", + "trueskill MCMC 18\n", + "yo\n", + "18\n", + "19\n", + "trueskill MCMC 19\n", + "20\n", + "trueskill MCMC 20\n", + "yo\n", + "20\n", + "21\n", + "trueskill MCMC 21\n", + "yo\n", + "21\n", + "22\n", + "trueskill MCMC 22\n", + "yo\n", + "22\n", + "23\n", + "trueskill MCMC 23\n", + "yo\n", + "23\n", + "24\n", + "trueskill MCMC 24\n", + "yo\n", + "24\n", + "25\n", + "trueskill MCMC 25\n", + "26\n", + "trueskill MCMC 26\n", + "2\n", + "trueskill SMC 2\n", + "yo\n", + "2\n", + "3\n", + "trueskill SMC 3\n", + "yo\n", + "3\n", + "4\n", + "trueskill SMC 4\n", + "yo\n", + "4\n", + "5\n", + "trueskill SMC 5\n", + "yo\n", + "5\n", + "6\n", + "trueskill SMC 6\n", + "yo\n", + "6\n", + "7\n", + "trueskill SMC 7\n", + "yo\n", + "7\n", + "8\n", + "trueskill SMC 8\n", + "yo\n", + "8\n", + "9\n", + "trueskill SMC 9\n", + "10\n", + "trueskill SMC 10\n", + "yo\n", + "10\n", + "11\n", + "trueskill SMC 11\n", + "yo\n", + "11\n", + "12\n", + "trueskill SMC 12\n", + "13\n", + "trueskill SMC 13\n", + "yo\n", + "13\n", + "14\n", + "trueskill SMC 14\n", + "yo\n", + "14\n", + "15\n", + "trueskill SMC 15\n", + "yo\n", + "15\n", + "16\n", + "trueskill SMC 16\n", + "yo\n", + "16\n", + "17\n", + "trueskill SMC 17\n", + "18\n", + "trueskill SMC 18\n", + "19\n", + "trueskill SMC 19\n", + "20\n", + "trueskill SMC 20\n", + "21\n", + "trueskill SMC 21\n" + ] + }, + { + "data": { + "text/plain": [ + "('not supported',\n", + " 0.0018404568881792427,\n", + " 0.00020096302032470703,\n", + " 0.0004216134548187256,\n", + " 0.0013458251953125,\n", + " 6.883000000001971e-05)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "benchmark = \"trueskill\"\n", + "# aqua_res = AQUA_accuracy(benchmark, \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/\" + benchmark + \"/results.txt\", gt[benchmark])\n", + "aqua_res = \"not supported\"\n", + "dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/\" + benchmark + \"/results.txt\", gt[benchmark], 2, None)\n", + "webppl_rej_res = WebPPL_accuracy(benchmark, \"rejection\", gt[benchmark], 24)\n", + "webppl_mcmc_res = WebPPL_accuracy(benchmark, \"MCMC\", gt[benchmark], 26)\n", + "webppl_smc_res = WebPPL_accuracy(benchmark, \"SMC\", gt[benchmark], 21)\n", + "stan_res = stan_accuracy(\"trueskill\", \"final\", gt[\"trueskill\"], \"/space/poorvagarg/cmdstan-2.28.2/benchmarks/trueskill/results_1200.txt\")\n", + "\n", + "aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res, webppl_smc_res, stan_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Laplace Scaling" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "7.0,1024.0,0.5027089146090287,293.303412437\n", + "\n", + "6.0,8.0,0.500475351251982,128.200435083\n", + "\n", + "7.0,16.0,0.5025414336158782,303.188067529\n", + "\n", + "7.0,16.0,0.5031857872599872,282.646248849\n", + "\n", + "8.0,16.0,0.5018358459665251,606.774118389\n", + "\n", + "8.0,16.0,0.5019224618514304,307.43372963\n", + "\n", + "9.0,4096.0,0.5009727644174244,679.552602543\n", + "\n", + "9.0,4096.0,0.5009755976557031,347.851488201\n", + "\n" + ] + }, + { + "data": { + "text/plain": [ + "[0.0027089146090286675,\n", + " 0.00047535125198194805,\n", + " 0.002541433615878219,\n", + " 0.003185787259987194,\n", + " 0.0018358459665250848,\n", + " 0.0019224618514304126,\n", + " 0.0009727644174244432,\n", + " 0.0009755976557030976]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "benchmark = \"laplace_scaling\"\n", + "files = [\"results_1.txt\", \"results_5.txt\", \"results_25.txt\", \"results_125.txt\", \"results_625.txt\", \"results_3125.txt\", \"results_15625.txt\", \"results_78125.txt\"]\n", + "\n", + "abs_error = []\n", + "for i in files:\n", + " stan_res = stan_accuracy(benchmark, \"prior\", gt[\"laplace_scaling\"], \"/space/poorvagarg/benchmarks_stan/laplace/\" + i)\n", + " abs_error.append(stan_res)\n", + "\n", + "abs_error\n", + "\n", + "abs_error_dice = []\n", + "files = [\"results_1000.0.txt\", \"results_500.0.txt\", \"results_250.0.txt\", \"results_125.0.txt\", \"results_62.5.txt\", \"results_31.25.txt\", \"results_15.625.txt\", \"results_7.8125.txt\"]\n", + "for i in files:\n", + " dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/\" + benchmark + \"/\" + i, gt[benchmark], 2, None)\n", + " abs_error_dice.append(dice_res)\n", + "\n", + "abs_error_dice\n", + "# abs_error\n", + "# dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/\" + benchmark + \"/results_1000.0.txt\", gt[benchmark], 2, None)\n", + "\n", + "# aqua_res = AQUA_accuracy(benchmark, \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/\" + benchmark + \"/results.txt\", gt[benchmark])\n", + "# aqua_res = \"not supported\"\n", + "# dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice/benchmarks/\" + benchmark + \"/results.txt\", gt[benchmark], 2, None)\n", + "# webppl_rej_res = WebPPL_accuracy(benchmark, \"rejection\", gt[benchmark], 24)\n", + "# webppl_mcmc_res = WebPPL_accuracy(benchmark, \"MCMC\", gt[benchmark], 26)\n", + "# aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArUAAAH6CAYAAAAZRrRlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPmUlEQVR4nOzdd3iUZdbH8e+kk5CEFiChhICARjoG6U1UFBEFRVFUwFVhwbKruzYUFeur69piV0RdRAQboigoTRDpTVQEktB7es/M8/7xMBNCemaSyWR+n+uaC/LUM5mBnNxz7nNbDMMwEBERERHxYD7uDkBERERExFlKakVERETE4ympFRERERGPp6RWRERERDyekloRERER8XhKakVERETE4ympFRERERGP5+fuAKRkNpuNQ4cOERoaisVicXc4IiIiIm5hGAbp6elERUXh41P6eKyS2lomPj6e+Ph48vLy2LNnj7vDEREREakV9u/fT8uWLUvdb9GKYrVTamoqDRo0YP/+/YSFhbk7HBERERG3SEtLo1WrVqSkpBAeHl7qcRqpraXsJQdhYWFKakVERMTrlVeOqYliIiIiIuLxlNSKiIiIiMdTUisiIiIiHk9JbS0THx9PbGwscXFx7g5FRERExGOo+0EtlZaWRnh4OKmpqZooJiIiIl6rojmRRmpFRERExOMpqRURERERj6c+tXVMfn4+VqvV3WFIDfL19cXf39/dYYiIiLiVkto6Ii0tjRMnTpCbm+vuUMQNAgMDadKkieqvRUTEaymprWXi4+OJj4+v1GhrWloaBw8epH79+jRp0gR/f/9yV92QusEwDPLz80lNTeXgwYMASmxFRMQrqftBLVWZ7gd79+7F39+fli1bKpn1UoZhcODAAfLz82nbtq27wxEREXEZdT/wEvn5+eTm5hIeHq6E1otZLBbCw8PJzc0lPz/f3eGIiEgdZ7UZ/LLnJF9tOcgve05itbl/jFTlBx7OXqagiUJifw9YrVa9H0RExGWsNoN1Cac4lp5D09AgkjPzmLloJ4dTcxzHRIYHMWNkLMM7RbotTiW1dYRGaUXvARERcbXFOw7z+MKiCWxJjqTmMOXjTbwxvofbEluVH4iIiIhIMYt3HGbKx5vKTWgB7MUHjy/c6bZSBCW1IiIiIlKE1Wbw+MKdVCY9NYDDqTmsSzhVXWGVSUltLRMfH09sbCxxcXHuDkVERES81LqEUxUaoS3JsfSqnecsJbW1zNSpU9m5cyfr1693dygeb9myZYwZM4YWLVoQEBBAw4YN6dixI9deey2vvfYaqamp7g5RRESkVnImMW0aGuTCSCpOSa3USU888QRDhw7l888/Jzw8nCuuuIJLLrmEevXq8fnnn3PnnXfy+++/O45v06aNJlqJiIicVpXE1ILZBaFXTCPXB1QB6n4gdc7GjRt57LHH8Pf3Z968eVx11VVF9h85coSPP/6YBg0auCU+ERGR2q5XTCMiw4M4kppTobpa+7DQjJGx+Pq4Z5BII7VSKbWx2fLZPv/8cwzDYOzYscUSWoDmzZtz3333ce6559Z8cCIiIh7A18fCjJGxFT6+eXiQW9t5gUZqpRJK6lVXG5otn+348eMARERElHvs8uXLGTJkiOPrM0sQoqOjSUxMBGD37t18/PHHfP/99yQkJHDq1CmaNm3K0KFDmT59Oh06dCh2bYvFQnR0NHv27OGFF17gvffeIykpiaZNm3LDDTfwxBNPEBgY6OSzFRERqR7DO0XyxvgeTP9yBycy8hzbI8ODeGTEeTQMCXQsyNArppHbRmjtlNRKhdh71Z09Llsbmi2frVWrVgAsWLCABx98kKZNm5Z6bPPmzbnllluYP38+mZmZ3HLLLY59TZo0cfz93Xff5f/+7//o1KkTcXFxBAYGsnPnTj766CO++uorVq1aRZcuXUq8xw033MC3337L4MGD6dixI6tWreL//u//OHjwIB9//LGLnrWIiIjrDe8USYCvD5NmbyCqQT3+c23XWpHAlsRiGEbt+/xYSEtLIzw8nNTUVMLCwko9Licnh4SEBGJiYggKKlrUbRgG2flWp2Ox2gyGvbiCo2m5Je63AM3Cgljyz4FOv8nr+fs6PWFr7969dOrUiezsbEJDQxk9ejT9+/enZ8+edOnSBV9f32LntGnThqSkJEr757B27VqaNWtGTExMke2zZs1i0qRJDBkyhJ9++qnIPvvzOO+88/jpp59o3rw5AAkJCfTo0YOUlBR2795Nu3btnHq+dmW9F0RERKpq3vr9/HvBNgZ1iGD2pF41fv+K5kQaqa3DsvOtxD76fbXfxwCOpOXQ+bEfnL7WzicuJTjAubdl27ZtWbhwIRMnTmT//v3Mnj2b2bNnA9CgQQPGjRvHI488QmRkxUeWe/fuXeL2iRMn8t5777F8+XJSU1MJDw8vdswrr7ziSGgBYmJiGD9+PK+99hqrVq1yWVIrIiJSHY6mmWWHzcJqd8mcktpaJj4+nvj4eKxW50dYvdlFF13E7t27WbRoET/88APr1q1j27ZtpKSk8MYbb7BgwQJWrlxJx44dK3zNjIwMFi5cyJYtWzh16hT5+fkAHD58GMMw2LNnDz169Chyjr+/f5GaXTt7De7hw4edeJYiIiLV71i6+Ults7Da/SmgktpaZurUqUydOtUx1O6Mev6+7HziUqdjWpdwigmzyl8M4oOJcU73pqvnX7w0oKoCAgK4+uqrufrqqwFISUlh7ty5PPTQQxw7doxp06axZMmSCl3rp59+4vrrr3dMQitJenp6sW3NmzcvsdwhNDQUgNzckks6REREagv7SG1TJbXiLhaLxemP8gEGtI8os1edBbOVx4D2EbWycNyuQYMGTJ48maioKEaNGsWyZcvIysoiODi4zPMyMjIYO3Ysp06d4tFHH+X6668nOjqaevXqYbFYuOGGG/jkk09KrMf18VHXPBER8WxHT4/UNg2t3eUH+okr5TqzV93ZKWttaLZcWUOHDgXAarWSkpJS7vGrVq3i5MmTjBkzhscff5zzzjuP4OBgx0SwvXv3Vme4IiIibnXMUVNbu0dqldRKhdh71TUPL/qGrg3Nls9WXkOP3bt3A2Z5gr1tV0BAAAAFBQXFjk9OTgagZcuWJV5r06ZNTsUrIiJSW9lsBscdNbW1e6RW5QdSYcM7RXJxbHPWJZyqVc2Wz/bII4+Qm5vL5MmTi3UWOHjwIHfccQcAV155pSOZjYqK4q+//uLPP//k/PPPL3KOfVLX559/zkMPPeRY1CElJYVbb73VMWFMRESkrjmVlUeBzcBigSb1ldRKHeLrY6FPu8buDqNMGRkZvPzyy7zwwgt06NCB2NhYgoKCOHDgAL/++iv5+fmcc845vPTSS45zrrzySlasWMFFF13EkCFDCAkJoUmTJjz77LNccMEFXHzxxSxZsoQOHTowePBgwFyNrEmTJowaNYqvvvrKPU9WRESkGtkniTUOCcTft3Z/wF+7oxOpgunTp/PRRx8xfvx4AgMDWbVqFfPnz2fnzp306tWL//u//2PLli20aNHCcc5dd93F9OnTqV+/PgsWLOC9995j7ty5jv1fffUVDz/8MBEREXz33Xds3LiR66+/nrVr19KgQQM3PEsREZHqdyzNMyaJgVYUq7VcsaKYeBe9F0RExNXmrtvHA59vZ0jHCGZNrPnVxKDiOZFGakVERESkRJ6y8AIoqRURERGRUnjKwgugpFZERERESnHUg2pqldTWMvHx8cTGxhIXF+fuUERERMTLHUv3jIUXQEltrTN16lR27tzJ+vXr3R2KiIiIeDl794PavvACKKkVERERkRJYbQbHMzRRTEREREQ82MnMXKynVxNrHBLg7nDKpaRWRERERIqxlx40qR+IXy1fTQyU1IqIiIhICQonidX+elpQUisiIiIiJbC382oWWvvraUFJrYiIiIiUoHDhBY3UioiIiIiHKlx4QSO1IiIiIuKhjnvQwgugpFbqKIvFgsViKfOYDz74AIvFwoQJE1x2vzMf/v7+REVFMWbMGNasWVPieYMHD8ZisZCYmOh0DCIiIq501IMWXgDwc3cAInXJLbfc4vh7eno6W7du5fPPP+eLL77g448/5oYbbqjQdSwWC9HR0Up2RUTEbRw1tR5SfqCkVsSFPvjggyJf22w2HnroIZ577jnuuusurr32Wvz9/R37P/zwQ7KysmjRokUNRyoiIlI6q83gRIZnjdSq/EAqx2aFhFWwfb75p83q7ohqNR8fH5544gn8/Pw4efIkv/32W5H9rVu35txzzy2S6IqIiLjbyYxcbAb4WKBxfSW1Utfs/Bpe6gSzr4AFt5p/vtTJ3F5HTJs2DYvFwttvv13qMR07dsTHx4e9e/dW6JoBAQGEh4cDUFBQUGTf2TW19jpfgKSkpCI1uoMHD678ExIREakCez1tRGggvj5lz1GpLZTUSsXs/Brm3Qxph4puTztsbq8jie0dd9wBwDvvvFPi/hUrVrBr1y4uuugi2rZtW6FrJiQkcPLkSfz9/TnnnHPKPPacc85x1OWGhIRwyy23OB7Dhw+vxDMRERGpOk+rpwXV1NY68fHxxMfHY7W64GN9w4D8LOevY7PCd/8GjJJuAlhg8f3QdjD4+Dp3L/9gKKdrQXXq3Lkzffv2Zc2aNWzZsoVu3boV2W9Pdm+77bZyr5WRkcGWLVv4xz/+AcCUKVNo0KBBmef079+f/v37M3v2bJo0aVKsRldERKQmHPWwJXJBSW2tM3XqVKZOnUpaWprjI+sqy8+Cp6NcE1iZDHME99lWzl/qoUMQEOL8dU4rr61XSSZPnsyaNWt45513iI+Pd2xPTk5mwYIFREREcNVVV1X4fqGhobz66qtMnTq10rGIiIi4g2PhBQ/pUQtKaqWOO7PF1tl2797N6tWri22/9tpr+cc//sH//vc/nn/+eYKDgwH4+OOPycnJYdq0aQQEBJR7v9zcXJKSkvj111954oknaNeuHZdddpmTz0hERKT6ORZeUPmB1Ar+webIp7OS1sD/rin/uBvnQ3Rf5+7lH+zc+Wcp6+P7Dz74oMSkNigoiFtuuYUXX3yRzz77zJGovvvuuwD87W9/q9T9Nm/ezKBBg7jyyivZsWMHHTt2rNyTEBERqWGetvACaKJY3WaxmB/lO/toNxTCooDSPsq3QFgL8zhn7+XGetoz3XHHHVgsFkcN7bp169i2bRsDBw6sdFLavXt37rjjDgoKCnjjjTeqI1wRERGXckwUU1IrdYqPLwx/7vQXZyedp78e/qzzk8RqkQ4dOjBkyBBWr17N77//7khub7/99ipdLyYmBoC//vrLZTGKiIhUF0dNrQeVHyiplYqJvRLGfghhkUW3h0WZ22OvdE9c1Wjy5MkAvPjii8ydO5eGDRsyZsyYKl3L3tO2fv36FTre39+/WE9bERGRmlBgtXEy015+4DlJrWpqpeJir4RzR5g1thlHoX4zs4a2Do3Qnumqq66iefPmjlrau+66i6Cgyv/j3rx5s2Mxh8svv7xC50RFRXHw4EFSUlLKbQMmIiLiSicy8jAM8PWx0Dik5InRtZGSWqkcH1+IGeDuKGqEv78/kyZN4umnnwYqVnowYcIEx9/z8vJISkpi7dq12Gw2Ro4cyU033VShe1955ZW8+uqr9OjRg759+xIUFETHjh3517/+VaXnIiIiUlH2etqI+oH4eMhqYqCkVqRMQ4cO5emnn6ZPnz6cf/755R4/e/Zsx999fHxo0KABAwcO5KabbmLChAn4+FSs4ueZZ57BMAy++uorPv30UwoKChg0aJCSWhERqXb2pNaTOh+AklqpowyjpNXPipowYUKRkdWSzJs3Dyh/lLYi9yvJ8uXLS9weEhLCq6++yquvvlql64qIiFTVsXTPW3gBNFFMpFRJSUl89NFHNGnShOuuu87d4YiIiNSIYxqpFakbnn/+ebZt28aSJUvIzs7mmWeeoV69eu4OS0REpEZ4YjsvUFIrUsyiRYtYsWIFUVFRzJgxg7vuusvdIYmIiNSYo+kaqRWpE0qrcxUREfEGx9JUUysiIiIiHu6YfaTWw8oPlNSKiIiICAD5VhsnMvIAaOph5QdKakVEREQEgOOn23n5+VhoFOw5q4mBkto6o6p9UqXu0HtAREScZV94oWmoZ60mBkpqq8WGDRu4+eabOeecc7BYLEyfPr3a7uXr6wtAfn5+td1DPIP9PWB/T4iIiFSWpy68AEpqq8Xq1atZu3Yt/fv3Jzw8vFrv5e/vT2BgIKmpqRqp82KGYZCamkpgYCD+/v7uDkdERDzUsTNGaj2NWnpVgzvvvJO7774bgDZt2lT7/Zo0acLBgwc5cOAA4eHh+Pv7Y7F41kcGUjWGYZCfn09qaioZGRm0aNHC3SGJiIgHsy+80MwDR2qV1FYDH5+aHQAPCwsD4MSJExw8eLBG7y21Q2BgIC1atHC8F0RERKriqIcukQsentRu3LiRJUuWsG7dOtatW+dI6Mr7GN6+9OncuXPZt28fjRo1Yvjw4cycOdNjR7rCwsIICwsjPz8fq9Xq7nCkBvn6+qrkQEREXMKTa2o9OqmdOXMmX331VaXOycnJYejQoaxdu5bIyEhGjRpFYmIis2bN4ptvvmHt2rW0bdu2miKufv7+/kpwREREpEqOqqbWPfr06UOXLl2Ii4sjLi6ONm3akJubW+Y5Tz75JGvXrqVPnz788MMP1K9fH4AXX3yRe++9l0mTJhVZJjUlJYUjR46Uec3g4GBat27t9PMRERERcSf7SK1qamvY/fffX6nj8/LyeO211wCIj493JLQA//znP5k9ezYrVqxg48aN9OzZE4C5c+cyZcqUMq87aNCgIomwiIiIiKfJK7BxKtNcTcwTk1qvaum1evVqUlNTadeuHd27dy+2/5prrgFg4cKFjm2TJ0/GMIwyH65IaHNzc0lLSyvyEBEREakpxzPMUVp/XwsNgz2vlNGrktqtW7cC0KNHjxL327dv27atxmKye+aZZwgPD3c8WrVqVeMxiIiIiPcqrKcN8sjWoB5dflBZ+/btA6Bly5Yl7rdvT0pKcuo+x48fZ8WKFQBkZWXxxx9/MH/+fEJCQrjssstKPOfBBx/kn//8p+PrtLQ0JbYiIiJSYxwLL3hgOy/wsqQ2IyMDMCd2lSQkJASA9PR0p+7z22+/ce211zq+XrBgAQsWLCA6OprExMQSzwkMDCQw0DPfRCIiIuL5HAsvhHpePS14WVJbUwYPHqwla0VERMSjHEv33IUXwMtqau3dDrKyskrcn5mZCUBoaGiNxSQiIiJSG9hHaj1x4QXwsqTW3kv2wIEDJe63b4+Ojq6xmM4WHx9PbGwscXFxbotBREREvI8nL7wAXpbUdu3aFYBNmzaVuN++vUuXLjUW09mmTp3Kzp07Wb9+vdtiEBEREe9zLM1zF14AL0tq+/XrR3h4OHv27GHLli3F9s+fPx+AkSNH1nBkIiIiIu5VWFOrpLbWCwgIYNq0aYA5ImqvoQVzmdxt27YxaNAgx2piIiIiIt4gt8BKclY+4LkTxTy6+8GiRYuYOXOm4+u8PHNpt969ezu2PfLII4wYMcLx9fTp01m6dClr1qyhffv2DBgwgKSkJH799VciIiJ4//33a+4JlCA+Pp74+HisVqtb4xARERHvYS89CPDzIbye560mBh6e1B4/fpxff/212PYztx0/frzIvqCgIJYtW8YzzzzDnDlz+PLLL2nUqBETJkxg5syZpS7MUFOmTp3K1KlTSUtLIzw83K2xiIiIiHewlx40DQ30yNXEACyGGqrWSvakNjU1lbCwMHeHIyIiInXYt9sP8/f/baJndEMWTOnr7nCKqGhO5FU1tSIiIiJSnH2JXE+tpwUltSIiIiJezWoz2LQvxfF3q80zP8RXUisiIiLipRbvOEz/537i662HAPj+t6P0f+4nFu847ObIKk9JbS2jFcVERESkJizecZgpH2/icGpOke1HUnOY8vEmj0tsNVGsltJEMREREakuVptB/+d+KpbQ2lmA5uFB/Hz/UHx93NsNQRPFRERERKRE6xJOlZrQAhjA4dQc1iWcqrmgnKSkVkRERMTL2PvSuuq42kBJrYiIiIiXaRoa5NLjagMltSIiIiJepldMIyLDgyitWtYCRIYH0SumUU2G5RQltbWMuh+IiIhIdfP1sTBjZGyJ++yJ7oyRsW6fJFYZ6n5QS6n7gYiIiFS3xTsO849Pt5Kdb3VsiwwPYsbIWIZ3inRjZIUqmhP51WBMIiIiIlKLDO8UyXs/J7A+MZmb+0RzWadIesU08qgRWjsltSIiIiJebN+pLABG92hJt1YN3BuME1RTKyIiIuKlsvIKOJqWC0CbxsFujsY5SmpFREREvFTSSXOUtkGwPw2CA9wcjXOU1IqIiIh4qaSTmQBENw5xcyTOU1Jby6ill4iIiNSUxNMjtZ5eegBKamudqVOnsnPnTtavX+/uUERERKSOSzyhkVoRERER8XCJp8sPYpp4+Uht27Ztadu2La+99pqr4hERERGRGmKfKFYXRmqd6lN74MABrFYr3bp1c1E4IiIiIlITcvKtHE7NAaBNHUhqnRqpbd68OQD16tVzSTAiIiIiUjPso7ShQX40DPZ3czTOcyqpvfDCCwH47bffXBKMiIiIiNSMwnraECwWz1sW92xOJbVTpkzBMAz++9//kp+f76qYRERERKSa1aUeteBkUjt06FAefPBBtm7dyhVXXMH+/ftdFZeIiIiIVKO61KMWnJwo9sQTTxAYGEjnzp1ZsmQJbdu2pV+/fnTp0oWGDRvi6+tb5vmPPvqoM7evk+Lj44mPj8dqtbo7FBEREanD6lKPWgCLYRhGVU/28fEpUoNhGEalajKUuJUuLS2N8PBwUlNTCQsLc3c4IiIiUsf0e/YnDqZks2BKH3pGN3J3OKWqaE7k1EgtmIlsWV+LiIiISO2Sk2/lUGo2UHdGap1Kam02m6viEBEREZEaciA5C8OA+oF+NA4JcHc4LqFlckVERES8TMIJ+0piwXWinRcoqRURERHxOvZ2Xm2a1I3SA1BSKyIiIuJ17Asv1JV2XuCCiWJ2p06dYtasWSxdupQdO3Zw6tQpABo1akSnTp0YNmwYEydOpFGj2ju7TkRERMQb2JfIrSuTxMBFSe1bb73FfffdR1aW+Q06swPCwYMHOXToED/88AOPPfYY//nPf7j99ttdcVsRERERqYLCkVoltQ7PPvssDz/8sCORDQ8Pp3v37jRv3hyAI0eOsHnzZlJTU8nMzGTKlCmkpKTw73//29lbi4iIiEgl5RXYOJhstvNq00TlBwDs2LGDRx55BMMwiIyM5Pnnn+faa6/F39+/yHEFBQV89tln/Otf/+LQoUNMnz6dESNGcP755zsVvIiIiIhUzv7kLGwGBAf4ElE/0N3huIxTE8Vee+01rFYrERER/PLLL9xwww3FEloAPz8/xo0bxy+//ELTpk2xWq289tprztxaRERERKrA3vkgunFInWnnBU4mtT/99BMWi4UHH3yQ1q1bl3t8q1atuP/++zEMgx9//NGZW9dZ8fHxxMbGEhcX5+5QREREpA5KPN2jti51PgAnk9qDBw8C0Ldv3wqf069fPwAOHTrkzK3rrKlTp7Jz507Wr1/v7lBERESkDkqsgz1qwcmk1tfXFzBrZivKarWaN/ZRi1wRERGRmpZ4UiO1xdhLDipTSmA/tiLlCiIiIiLiWmfW1NYlTiW1F198MYZh8MILL7B9+/Zyj9+xYwfPP/88FouFSy65xJlbi4iIiEgl5VttHLC381JSW+iee+4hMDCQjIwM+vfvzwsvvMDJkyeLHXfy5EleeOEFBgwYQHp6OoGBgdxzzz3O3FpEREREKulAcjZWm0GQvw9NQ+tOOy9wsk9tdHQ0b731FhMnTiQjI4P777+fBx54gJiYGJo2bYrFYuHo0aMkJCRgGAaGYWCxWHjrrbdUfiAiIiJSw85cSczHp+608wIXrCh2880307hxY+644w4OHTqEYRjs2bOHvXv3AkWXzI2KiuLtt9/m8ssvd/a2IiIiIlJJSSfs9bR1a5IYuCCpBRgxYgSJiYl88cUXLF26lB07dnDq1CkAGjVqRKdOnRg2bBhXXXVViYsziIiIiEj1K+x8ULfqacHJpHbfvn0A1K9fn0aNGnHttddy7bXXuiQwEREREXGtxDra+QCcnCjWpk0bYmJimDt3rqviEREREZFqkmQfqW1S98oPnEpq69WrB6AlXUVERERquQKrjf2n6m75gVNJbYsWLYDCVcJEREREpHY6lJJDgc0gwM+H5mFB7g7H5ZxKau0LKPz8888uCUZEREREqkeCvZ62UXCda+cFTia1d999N/Xq1eOFF17g4MGDropJRERERFzMvjxumyZ1r/QAnExq27dvz5w5c8jKyqJ3797MmTOHvLw8V8UmIiIiIi6SeMJeT1v3JomBky29hg4dCkBERAQJCQncdNNN3HrrrbRv356GDRvi6+tb6rkWi4Uff/zRmdvXSfHx8cTHx6tOWURERFwqqQ638wKwGGcu+VVJPj4+WCxmTUZFL2OxWBzL5SpxK11aWhrh4eGkpqYSFhbm7nBERETEw130n+XsOZ7Jx7deSP/2TdwdToVVNCdyaqR24MCBjqRWRERERGonq81g/6lsoG72qAUnk9rly5e7KAwRERERqS6HUrLJs9oI8PUhMryeu8OpFi5dJldEREREah/7SmKtGtXDtw628wItkysiIiJS5yXa23nV0UlioGVyRUREROq8xBN1u0ctaJlcERERkTov8WTd7lELWiZXREREpM6r6z1qQcvkioiIiNRpNptB0in7SK2S2hJpmVwRERGR2u1wWg55BTb8fS1ENQhydzjVRsvkioiIiNRhSacnibVqGIyfr1PjmbWa04svnLmimGEY5ObmsmPHjlLPOXOZXBERERGpXvZJYtF1eJIYaJlcERERkTrNGyaJgZbJFREREanTEk6XH8TU4R614OREMRERERGp3ZK8pPxASa2IiIhIHWW286r7S+SCkloRERGROutYei45+TZ8fSy0aFjP3eFUqwontaNHj2bMmDEcOHCgxP1ZWVmsXLmSlStXlnmdP/74g0aNGtG4cePKRSoiIiIilWKvp23ZsB7+dbidF1Qiqf3yyy/58ssvSUtLK3F/QkICgwcPdvSuLY3VaiUlJYWUlJRKBepJ5s2bx4gRI4iMjCQ8PJyBAwdqKWERERGpcfbOB3W99ACqofzAMAxXX9LjvPTSSzRp0oT4+Hg+++wzWrRowUUXXcTWrVvdHZqIiIh4EXuP2jZ1fJIYONnSS0q2cOHCIuUVw4YNo3PnzsTHx/P222+7MTIRERHxJt7SoxY0UaxanF0v7OPjQ6dOnUhISHBTRCIiIuKNHCO1Ter+SK1HJ7UbN27k2WefZfTo0bRs2RKLxVKhFc6ys7N59NFH6dChA0FBQURFRTFp0iQOHjxYLXFarVbWr1/POeecUy3XFxERETmbYRheVVPr0eUHM2fO5KuvvqrUOTk5OQwdOpS1a9cSGRnJqFGjSExMZNasWXzzzTesXbuWtm3bujTO1157jX379vH3v//dpdcVERERKc3x9Fyy8qz4WKBlw7o/UuvRSW2fPn3o0qULcXFxxMXF0aZNG3Jzc8s858knn2Tt2rX06dOHH374gfr16wPw4osvcu+99zJp0qQiy/+mpKRw5MiRMq8ZHBxM69atS9z366+/8sADDzB9+nQ6d+5cuScoIiIiUkX20oMWDesR4OfRH85XiEcntffff3+ljs/Ly+O1114DID4+3pHQAvzzn/9k9uzZrFixgo0bN9KzZ08A5s6dy5QpU8q87qBBg4okwnaJiYmMGjWKkSNHMmPGjErFKiIiIuKMRC8qPQAPr6mtrNWrV5Oamkq7du3o3r17sf3XXHMNYHYvsJs8eTKGYZT5KCmhTUlJYcSIEbRp04bZs2eXW+ubm5tLWlpakYeIiIhIVSWe8K6kttIjtdOnT6dBgwbFtp+5mMKkSZNKPd+diy7Y+8T26NGjxP327du2bXPqPnl5eYwePZqsrCx++ukn6tUrf1m6Z555hscff9yp+4qIiIjYJZ0uP4j2gh61UIWktqyJWfbRyNmzZ1c9omq0b98+AFq2bFnifvv2pKQkp+7z97//nRUrVvDOO++QkJDgaOUVGBhY4ggxwIMPPsg///lPx9dpaWm0atXKqThERETEe3lb+UGlklpPXy0sIyMDMCd2lSQkxHzR09PTnbrP0qVLsdls3HrrrUW2R0dHk5iYWOI5gYGBBAYGOnVfEREREbC38/KeHrVQiaRWCwdUXGmJq4iIiEhNOJGRR0ZuARYLtGqkpLaI6Ojo6oyjRti7HWRlZZW4PzPTHKYPDQ2tsZhEREREXM2+6EJUeD0C/XzdHE3N8KruB/ZesgcOHChxv327OxP4+Ph4YmNjiYuLc1sMIiIi4tm8aXlcO69Kart27QrApk2bStxv396lS5cai+lsU6dOZefOnaxfv95tMYiIiIhns4/URnvJJDHwsqS2X79+hIeHs2fPHrZs2VJs//z58wEYOXJkDUcmIiIi4joJp3vUxiiprZsCAgKYNm0aYI6I2mtowVwmd9u2bQwaNMixmpiIiIiIJ/K2HrXg4cvkLlq0iJkzZzq+zsvLA6B3796ObY888ggjRoxwfD19+nSWLl3KmjVraN++PQMGDCApKYlff/2ViIgI3n///Zp7AiWIj48nPj4eq9Xq1jhERETEMxmGUdijton3jNR6dFJ7/Phxfv3112Lbz9x2/PjxIvuCgoJYtmwZzzzzDHPmzOHLL7+kUaNGTJgwgZkzZ5a6MENNmTp1KlOnTiUtLY3w8HC3xiIiIiKeJzkrn/ScAgBae0k7LwCL4ekrKtRR9qQ2NTWVsLAwd4cjIiIiHmJjUjJj3lhDVHgQax68yN3hOK2iOZFX1dSKiIiI1HXe2PkAlNSKiIiI1Cne2KMWlNSKiIiI1CkaqZVaQSuKiYiIiDMcI7VeltS6rPtBamoq8+fP55dffuHIkSNkZWUxa9asIkvOHjp0iJSUFIKCgmjbtq2rbl2nqPuBiIiIOCPxhL2dl3eVH7gkqX3ttdd4+OGHycjIAMz+aBaLpcjiBgDLly9n/PjxBAUFceDAARo1auSK24uIiIgIkJKVR2p2PuBd7bzABeUHM2bM4O677yY9PZ2AgIAyV+O6/vrrad68Obm5uSxYsMDZW4uIiIjIGeylB83CAgkO8OjlCCrNqaR248aNPPnkkwCMHz+eI0eOsG7dutJv5uPDtddei2EYLFmyxJlbi4iIiMhZ7JPEvK2eFpxMal977TUMw6BPnz58+OGHFaoB7dOnDwDbt2935tYiIiIicpaEE0pqq2TlypVYLBamTZtW4XPatGkDwMGDB525dZ2l7gciIiJSVUmnyw+ivWySGDiZ1B4+fBiAjh07VvicoKAgAHJzc525dZ01depUdu7cyfr1690dioiIiHiYRJUfVE1AQAAAKSkpFT7n6NGjADRo0MCZW4uIiIjIWRwjtY01UlsprVu3BuCvv/6q8Dk//fQTULnRXREREREpW2p2Pqcy8wCN1FbaRRddhGEYvPnmmxU6/uDBg7z99ttYLBYuueQSZ24tIiIiImewdz6ICA0kJNC72nmBk0nttGnT8Pf3Z+vWrcycObPMY//880+GDx9OamoqwcHB3HHHHc7cWkRERETOULg8rveVHoCTK4q1a9eOp556in//+9889thjLFq0iNGjRzv2f/bZZ/j7+7N69Wp++OEHbDYbFouFl156iYiICKeDFxERERFT0ul2XtFeWHoALlgm97777sMwDKZPn866detYv349FosFgCeeeMJxnGEY+Pr68sILL3Drrbc6e9s6Kz4+nvj4eKxWq7tDEREREQ+ScLr8IKaJdya1Ti+TC/Cvf/2LLVu2MHHiRJo0aYJhGEUeYWFhjBs3js2bN3P33Xe74pZ1llp6iYiISFV4c+cDcMFIrd15553He++9B8C+ffs4duwYVquVxo0b07ZtW3x8XJI/i4iIiEgJvHmJXHBhUnum1q1bO9p9iYiIiEj1Ss/J50SG2c7LW0dqnRo+nTRpErfeeqtjZbGKOH78uOM8EREREXGevfSgSf0AQoP83RyNeziV1H7wwQd88MEHJCcnV/ictLQ0x3kiIiIi4jz78rje2vkAXDRRTERERETcx9sniYEbktqcnBwAAgMDa/rWIiIiInVS4gnvniQGbkhqV69eDUCzZs1q+tYiIiIidZJ9pLaNl/aohUp2PzhzMYUzvf766zRt2rTMc3Nzc9mzZw9ff/01FouFfv36VebWXkOLL4iIiEhlJTjaeXlv+YHFMAyjogf7+Pg4VgsDc5UwoMi28hiGQVBQEL/88gtdu3atRKjeJS0tjfDwcFJTUwkLC3N3OCIiIlILWW0GK3cdZ+IH5qJNm6ZfTKP6AW6OyrUqmhNVuvzgzJXCLBYLFoul2ApiJT0CAwNp06YNN954oxJaERERESct3nGY/s/95EhoAUa8uorFOyrearUuqVT5gc1mK/K1feR2x44dxMbGujQwERERESnZ4h2HmfLxJs7+uP1Iag5TPt7EG+N7MLxTpFticxenVhRr3bo1FouFgIC6NcwtIiIiUi6bFZLWQMZRqN8MovuCj2+139ZqM3h84c5iCS2AAViAxxfu5OLY5vj6VLxE1NM5ldQmJia6KAwRERERD7Lza1h8P6QdKtwWFgXDn4PYK6v11usSTnE4NafU/QZwODWHdQmn6NOucbXGUpto8QURERGRytj5Ncy7uWhCC5B22Ny+8+tqvf2x9NIT2qocV1coqRURERGpKJvVHKEt9cN/YPED5nHVpGlokEuPqyucKj9o27Ztlc+1WCzs2bPHmduLiIiI1KykNcVHaIswIO2geVzMgGoJoVdMIyLDgziSmlNiam0BmocH0SumUbXcv7aqsZpae+uvM78WERERqXVsNkg/BKcSIDmh6J8n/qzYNTKOVlt4vj4WZoyMZcrHm4rts2dXM0bGetUkMXAyqb3lllvKPSYzM5Ndu3axbds2LBYL3bt3p3Pnzs7cVkRERMQ5BbmQsq/kxDU5Eay5zl2/fjOXhFma4Z0iefzK83n069+KbG8eHsSMkbFe184LnExqZ82aVeFjf/vtN2699Va2b9/OQw89xOjRo525tbiCm1qRiIiI1IictNOJ6t7iSWvqAUquiz3Nxw/CW0GjttAoBhrGmH+Gt4Y510L6kdLP9/GHgPrV8ISKyi0w1w/oFBXGbQPb0jTULDnwthFau0otk+usjIwMunfvzuHDh9mwYQPnnntuTd3aY8THxxMfH4/VamXXrl3Vt0yuG1uRiIiIuIRhmAMzJY62JkDWybLP9w85nbC2KZq4NowxE1rfUsb+7N0PzCBKPsbHDwbcBwPuBb/q6ec/9s1fWJd4isdGxjKhX0y13KM2qOgyuTWa1AK88cYbTJ06lYkTJ/Lee+/V5K09SkVfwCpx/GM8+6U//Zvd2A+V2IqISO1gzYfU/WaiemqvOcpqT1qTEyE/q+zzg5uckbCeNeoaEgFVneNT4uBQCxj8EOz+AXZ+ZW5r1hmueh0iu1TtPqU4lZnHBU8uwWbAz/cPoWXDYJdevzapaE7kVPlBVVxwwQUA/PjjjzV9a4EKtCKxmK1Izh2hUgQRESmZq8vX8jJLH21N2Q9GGe2xLD4Q3rLoKOuZfwaGVj2ussReaf6sLOn70GM87PgcFt0LR7fDO0Ng4L/MUVtff5fc/qc/jmEz4LzIsDqd0FZGjSe19oHho0erb1aglKEWtCIREREPVpXyNcMwSwGKJa6na10zj5V9T78gs0SgpNHW8FbV9vF+uXx8S/9Z2Wk0tBkAi/4Jv38Ny5+BP76Bq96A5s5PmF+y8wgAF8dW74Q0T1LjSe33338PQHh4eE3fWqDiLUaWPQ1pt0DMIAjzvhmUIiJSgtLK1+wraY34DzRuV0Lymgh56WVfu17D0kdb6zcHHw9cL6p+hFnSt2MBfPsvOLId3h4MA/8NA/5Z5VHbnHwrK3edAOASJbUONZrUzp07l2eeeQaLxUL//v1r8tZiV9EWI/vWmA+AJh2h7WBoOwja9Icg/UIiIuJ1KrKS1qJ/lnEBizmi2zAGGrUxR1zPTF7rNXB5yLWCxQKdr4GYgfDNP8zR2uVPnzFq26nSl1y9+wTZ+VYiw4M4P6oaJpN7KKeS2kmTJpV7jM1mIzk5mU2bNnHo0CEMw8DPz48HHnjAmVtLVUX3Nf9TSTtMyf8xWSC4MXS7ARJWwuGtZqPpE3/CurfM2qWoHoVJbqsLwS+whp+EiIjUuHLL104LawHNzi8+2togGvy9a9nWIuo3hes+Pj1qex8c2WaO2g76N/T/R6VGbZf+bn7qOuy8ZlrM6gxOdT/w8fGp8DfTfpuwsDDeffddrrnmmqre1ivUTPcDKJrYltD9IOsUJK6CvStg73I4ddbSxn71oHXvwiS3eRdNMBMRqWuyU+DrafD7wvKPHfOeOTIppUs/ao5q//GN+XVkV3PUttn55Z5qsxlc+MyPHE/P5cNJvRjYIaKag3W/Gmnp1aZNm3KTWh8fH0JDQ4mJiWHQoEGMHz+eJk2aVPWWXqNak1oovRXJ8GfLbueVsh8SVhQmuWcX99draBbGtx1sPhq1rXq7FBERca+cNPj1TVjzGuSmVuycW77RROOKMAzYPt8ctc1JMRdsGHw/9PtH6f1xgU37khn9+hpCA/3Y+MjFBPh5YK1xJdXaPrVSMdWe1ILzLVkMA47/YSa3e1dA4s/FJwKEtzJHcGMGm3/Wb+rCJyAiItUiN8MsOVvzKmQnm9uanGsOZGQnU2r5WlgU3LNdn9hVRvpRs9b2z0Xm15HdTo/axpZ4+HOL/+CN5Xu4okskr93Qo+bidCMltR6uRpJaV7Pmw6HNhUnu/l/Bll/0mKax5ghuzCBo06/6+geKiEjl5WXC+ndh9cuFq3E16QCDH4DYq82PyytaviYVZxiwbR58929z1NY3AAbdD/3uKTZqO+zFFew+lsHL13djVLcWbgm3pimp9XAemdSeLS8T9v1SmOQe2VZ0v48ftOhZmOS2jHNfr0EREW+Wnw0b3oef/wuZx81tjdqZyWynMUVHXqtaviblSz8CC++BXd+ZX0d1N0dtm54HQMKJTIa8sBw/HwsbH7mY8HquWcihtlNS6+HqRFJ7tsyTkLiyMMlNTii63z/YLIGwJ7nNOnlmX0IREU+RnwObZsOqFyHDbOZPwzbmKGHnsaXXdrp6RTEpZBiw7dPTo7ap5qjt4Aeg7928s3ofT337O/3Oacz//tbb3ZHWGJcmtfv27XNpcHatW7euluvWBXUyqT1bctLpSWfLzSQ360TR/cGNzb5+9iS3UYw7ohQRqXsK8mDzR7DqP+YqkmDOgRj4L7Olo4uWchUnpB2Gb+6BXYvNr6N68I+8O/jiQCiPjYxlQj8X/kys5b+kuDSp9fV1/ROzWCwUFBS4/Lp1hVcktWey2eDYzsIkN3E15GcWPaZBtDnZzJ7khqiLhohIpVjzYcscWPk8pO43t4W1gAH3QvebVAJW2xgGbJ1rlnvkpJJr+PFSwTXc+M/nadnYRblBVZY9rmEuTWp9quEjYIvFgtVqdfl16wqvS2rPVpAHBzcWJrkH1oPtrF+CmnUuTHJb94HA+u6IVESk9rMWmB9pr3gOUpLMbfWbm8lsj5u9e1EET5B2iMMfTyby2Arz6xY9YdTr0PRc50ZZS1v2uJZN/HNpUjt79myXBmd3yy23VMt1PVl8fDzx8fFYrVZ27drlvUnt2XLTIen0pLOEFXB0R9H9Pv7mRDN7ktuipz4+ExGxWc1eqCuehVN7zW0hEdD/n3DBRPCv5974pMLu+HA9oX9+xpNB/yPImgG+gXD+KEj4GdKrMMpqs8JLncpYJa72tGjTRDEP5/UjteXJOF60Hjf1rLrvgPoQ3a8wyW0aq0UgRMR72Gzw2+fmyOyJXea24MZmi6i4WyEgxK3hSeXk5Fvp/sQSsvOtLJ50Dueuexh2Lynl6LNGWa0F5ihu2kHzkXr6z8NbIWl1+TevBYtpVDQnKn3JCpHarH6EuQxj52vMmqPkhMJVzhJWQvYp+Ot78wEQ0rRw0lnbQdBAkxRFpA6y2eCPhbDsGTj+u7mtXkPoexf0ul1lWh5q9e4TZOdbiQoPomP7DtBuLjzfzuxpW8zpscoFt8J3TcyE1nCi3DPjaNXPrWFKasXzWSzmcryN2pofp9lscHR7YZK77xdzFZwd880HmMfG2CedDYTgRu58BiIizjEM+PNbM5k9ut3cFhQOfe6EC++AIH3i58mW7DQTy2GxzbBYLObPtRIT2jNY8wrLEnz8IDTKLCcIb2FODszPgfVvl3/z+s2cC74GuTSpzc/PZ9OmTezYsYNTp04B0KhRIzp16kSPHj3w91eNo9QAHx+I7Go++t0FBbnmRDN7kntwo1lbdmovbJwFWCCyS2GS27oPBAS7+UmIiFSAYcBfP8Cyp8yPkwECQqHP36H336FeA7eGJ86z2QyW/n4MgGHnnU4wKzp6OuRhcyJgSETxulibFf78xmwdVtayx9F9qxx7TXNJUpuVlcXMmTN55513SE5OLvGYhg0bcvvttzN9+nSCg5UwSA3yC4Q2/c3H0IchJ82sI7Inucd/N38YHN4Ka14xG123urAwyY3qXnoDchERdzAM2PMjLHva/EUdwD8Eek+GPtP06VMdsuVACicycgkN9KN328bmxoqOnrbuA6HNS97n42tOKJt3M2YdbgmJ7fBn3T5JrDKcnii2b98+hg0bxp49eyjvUhaLhXPOOYcff/yRli1bOnPbOk8TxWpQ+hGzDtee5KYdKLo/MMxMiO1JbkRHTToTEfcwDHOS7LKnYf+v5jb/YOh1G/S9G0Iauzc+cbnnFv/BG8v3cEWXSF67oYe50dG5oJxR1op0LiipT21AfXN53lrQzgtqqPtBfn4+3bp14/ffzWL0c889l4kTJ3LhhRfSvLn5m8GRI0dYt24dH3zwATt37gTg/PPPZ/Pmzfj5afSrNEpq3cQwzLKEvcvMJDdhZfG6pfrNzclmMYPMP8P1C5qI1IDEn81k1j5j3S8I4v4G/e6G+k3dG5tUm2EvrmD3sQxevr4bo7q1KNzh6DELRRPbKvSYtfe6/f1rWPc2NO4Ad653RfguUSNJ7RtvvMHUqVOxWCw89NBDPPbYY6WuPmaz2Xjsscd48sknsVgsxMfHM3ny5Kreus5TUltL2KxwZFth67B9v0BBTtFjGp9zuqvCYHNEt15DNwQqInXWvrVmMptwuvG+bwBcMAn6/6P0j5alTkg4kcmQF5bj52Nh4yMXE17vrLlJJa4G1sIsG6jKKGtOKvxfW3Oxozs3QeN2zj0BF6mRpHbo0KGsWLGCq666igULFlTonDFjxvDFF18wZMgQfvzxx6reus5TUltL5efAgXWnk9zlcGgzGLbC/RYfiOxW2B+31YVqbi4iVXNgg5nM7jn9s9LHH3reYi6cEN6i7HOlTnhn5V6e+vZ3+p3TmP/9rXfJBzmzolhJZl9p/gJ16dPQZ2rVr+NCNdKndscOc1WnSZMmVficW2+9lS+++ILt27c7c2sR9/APMluAxQyEix6F7BTzI0H7QhAndsGhTebj5/+aK7607l2Y5EZ286iiexFxg0ObzdZc9j7bPn7Qfby5pK16bHsVeyuvi88rY2KYj69rF0foeJn5M+3P72pNUltRTiW1qampAERFRVX4nMjISMDMukU8Xr0GcN4V5gPMj4D2rihMctMPm39PWAE/PmH2jWwzoLBcofE5mnQmIqbD22D5s/DnIvNriy90HQcD74NGMe6NTWrcqcw8NiSZ7VGHxdZgr9gOw2HxA+bob3ayR5XUOZXUNmrUiGPHjpGQkED37t0rdE5CQoLjXJE6JywKuo0zH4YBJ/46vcrZCkhYZdYr/fGN+QCzGbZ9lbOYQRAW6c7oRcQdju6E5c+Yk3TALGPqPBYG/bvW1DRKzfvx96PYDIiNDKNlwxpshdooBiLOM9td/rUUulxbc/d2klNJbY8ePfjuu++Ij49n9OjRFTrn9ddfx2KxVDgJFvFYFgtEdDAfF95urr99eKvZWSFhhTn5I/0QbJ1jPgCadCxMctv0N0d2RaRuOv6nOTL72xeYs9ct0GkMDLrf/H9DvNrS30+XHtTkKK1dx8vMpHbXd96T1I4bN47vvvuO5cuXM2nSJF599VVCQkJKPDYrK4u77rqLn376CYvFwg033ODMrUU8j68ftOxpPgbeB/nZZmJrH8k9tAVO/Gk+1r1ljtZE9ShMcltdaC4kISKe7cRuWPEcbP8MRyum2Ktg8APQ9Dx3Ria1RE6+lZW7TgBuTGp/ftEcqbXmg69nrAjrVPcDwzAYMGAAa9aswWKxEBERwdixY7nwwgtp2rQpFouFo0eP8uuvvzJv3jyOHz+OYRj079+flStXuvJ51DnqfuCFsk6Zk87sSe7J3UX3+9U7PelssJnkNu+iSWcinuRUAqx8HrZ+Utg15dwrYPCD0LyTe2OTWuXH349y6+wNRIUHsfqBoVhqeu6FzQovdICsE3Dz1+bPHDeqkZZeAMnJyYwYMYK1a9eaFyzlG2+/TZ8+ffjmm29o2NBzCo/dQUmtkHqgcJWzhBXF1/qu17DopLNGbTXpTKQ2StlnJrNb5pj9P8GcjDP4QYjq5tbQpHZ6YME25q7fz819onlilJt+4flyKmz5GC6cApc9654YTquxpBbMhRXeeOMNXn/9dcfqYmc777zzmDp1KpMnT8bHx8fZW9Z5SmqlCMOA438UJrmJP0NeetFjwludnnA22PxTKwyJuFfqAVj1H9j0EdjyzW3nDIPBD5llSCIlsNkMej39Iycycvno1l4MaB/hnkB+XwifjocG0XD3VrcOmtRoUnumw4cPs2PHDk6dMttQNGrUiE6dOjlaeXmD2bNn8+qrr7J7927y8/Pp2LEj//73v7n++usrfA0ltVIma4HZC9ee5O7/tfCHpl3TWHMEN2YQtOkHgaHuiFTE+6QdNusRN34A1jxzW9vBZjLb+kJ3RiYeYNO+ZEa/vobQQD82PnIxAX5uGgjMzTBXF7Pmwt/XurXeu0YWXyhJZGSkVyWwJUlOTuaqq66iW7duBAUF8eWXXzJu3DiCgoK46qqr3B2e1AW+ftCql/kY9C/IyzSX8LUv53tkGxzbaT7Wvm42b2/RszDJbRkHfgHufhYidUv6UVj9Emx4v3A57ej+MOQh8xdLkQqwL7gwqGOE+xJagMD65kJDu5fAn996xCRGl4/USsn69+9PZGQkn332WYWO10itOCXzJCSuLExykxOK7vcPNpdStCe5zTqByoJEqibzhJnMrnsXCrLNba16w9CHzaRApBKGvbiC3ccyePn6bozq5ublkNe/B4v+CS17wd+WuC0Mt43Unm3hwoXMmzePEydOEBMTw9/+9jd69OhR3betdRo3bkx+fn75B4q4QkhjOP9q8wGQnFS4ytneFeaM1t1LzQdAcGPzh689ydXqRSLlyzoFa16FX9+C/ExzW4sLzGS27RBN3JRKSziRye5jGfj5WBjcsRbMi+gw3ExqD6yHjONQ3031vRXkVFK7bNkyrrvuOoKCgti2bRsNGjQosv+RRx7h6aefLrLt3Xff5b333uOmm25y5tYAbNy4kSVLlrBu3TrWrVvHwYMHgcJOC6XJzs7mmWeeYe7cuezbt49GjRoxfPhwZs6cSYsWrvutqKCggKysLL777juWLFnCggULXHZtkUppGA0Nb4YeN4PNZpYl2JPcxNWQddJsAP/bF+bxDaLNyWb2JDekiTujF6ldspPhl9dh7RuFEzYju8GQh6H9xUpmpcqWni496N22MeH1akFv2PAWENnVXDjor++h+3h3R1Qmp5Lab7/9lhMnTnD11VcXS2i3bdvG008/7UgwGzZsSHJyMgUFBdxxxx0MGDCANm3aOHN7Zs6cyVdffVWpc3Jychg6dChr164lMjKSUaNGkZiYyKxZs/jmm29Yu3Ytbdu2dSougCNHjjhqi319fXn99de57LLLnL6uiNN8fMyemM07QZ+pUJAHBzcWJrkH1kNKEmz60HwANOtcmOS27mPWWol4m5xUWPsm/BIPuanmtmadzZrZjpcpmRWn2etph51XC0Zp7TpcZia1f35Xt5Pan3/+GYvFwrBhw4rte+ONNzAMg4YNG7J06VK6d+/Ohg0bGD58OMnJybz55ps8+6xzfc/69OlDly5diIuLIy4ujjZt2pCbm1vmOU8++SRr166lT58+/PDDD9Svb/5wfvHFF7n33nuZNGkSy5cvdxyfkpLCkSNHyrxmcHAwrVu3LrKtSZMmrF+/nvT0dBYvXsy0adNo3LgxY8aMqdqTFakufgEQ3cd8DH7AnPGatKYwyT26A45uNx+/vAY+/uZEM3uS26Knx6w2I1IluelmicGaVyEnxdzWNNbsM3vuFapHF5c4lZnHhiSzc9Qwd6wiVpqOl8GKZ+GvJWav5fBW5pwMMH9WZByF+s3MbW5eEMipiWJt2rRh//79LFu2jIEDixbDt2rVikOHDjF9+nQef/xxx/bHHnuMJ554gh49erBhw4aqR16CoKAgcnNzSy0/yMvLo2nTpqSmprJp0ya6d+9eZH/Xrl3Ztm0bGzZsoGdPs4fgm2++yZQpU8q876BBg4okwiW57bbbWLFiBbt27arQc9FEMak1Mo6bCa49yU3ZV3R/QH2I7le40lnTWI1YSd2Qlwnr3oHVL0O2mWzQpKP5y1/sVUpmxaU+27Cff83fRmxkGN/ePcDd4RTa+RV8NqFwFTwwF//BUvjvAiAsCoY/B7FXujyEGpkodvz4cYBipQd79uzh4MGDWCwWrr766iL7BgwY4Dimpq1evZrU1FTatWtXLKEFuOaaa9i2bRsLFy50JLWTJ09m8uTJTt+7W7duzJo1y+nriNS4+hHQ+RrzAeZSn/ZVzvauMP9T++t78wEQ0rRw0lnbQdCgdWlXFqmd8rPNtlw//xcyzZ9zNGpnjsx2Gu320Sipm+ylBxfXplHanV/DvFuAswYLs5OLH5t2GObdDGM/rJbEtiKcSmrtI6KpqalFtq9atQqA8PBwunXrVmRf48aNAcjKynLm1lWydetWgFK7L9i3b9u2zeX3XrNmTZk1xLm5uUVKJ9LS0lweg4hLNIoxHxdMNCedHd1euAjEvl8g8xjsmG8+wFy+N8Y+6WwgBDdyZ/QipcvPgU2zzVXA7MtSN2wDg+6HzmPN/tAi1SAn38qqv04AtSiptVlh8f0US2hLZQAWWPwAnDvCLb/8OfUvtHnz5iQlJfH77787RmABvv/eHLHp1694s+nMTLPtScOGDZ25dZXs22d+bNqyZcsS99u3JyUlOXWfIUOGMGbMGM4991xycnL46quvmDNnDm+//Xap5zzzzDNFyjREPIKPjzkzNrIr9LsLCnLNiWZ7T5crHNgAp/aaj42zAAtEdilMclv3gYBgdz8L8XYFubD5I1j5H0g/ZG4Lb20ubNJ1nGrGpdqt3n2C7HwrUeFBnB9VS0oOk9ZA2qFKnmRA2kHz3JiaL6FwKqnt3bs3iYmJvPHGG4wfP57g4GD27t3LV199hcVi4eKLLy52jr2mtHnz5s7cukoyMjIAc2JXSUJCQgBIT0936j5du3bl1VdfZf/+/YSEhBAbG8vChQu54oorSj3nwQcf5J///Kfj67S0NFq1auVUHCI1zi8Q2vQ3HzwMOWmQtLpwJPf47+Ys2sNbYc0r4BsArS4sTHKjums0TGqONR+2/A9WvgCp+81tYS1g4H3QbbxW3ZMa4+h6ENsMS22Zk2D/tKKmz3WCUz89/va3vzF37ly2bdtGp06d6NGjBytXriQnJ4fg4GBuuOGGYuesXLkSgA4dOjhz61rtpZde4qWXXqrUOYGBgQQGBlZPQCLuEhRmzpzteLqdXfoRSFhZmOSmHYDEVeZj2ZMQGGYmxPYkN6KjJp2J61kLYNtcWPF/Zvs6gNBIGHCv2cvZT/8XS82x2QyW/n4MqEWlB2B2NHDHuU5wKqkdOnQod999Ny+//DKJiYkkJSU56myff/55mjQp2rDd/lG8xWIp1i2hJtjbd5VWz2svjQgNDa2xmES8Smhz6DLWfBiGWZawd9npcoWVZrukP781HwD1mxddBCLczUtGimezWWH7fLM90am95raQpjDgn9BzAvjXc2t44p22HEjhREYuoYF+XBjT2N3hFIrua3Y0SDtMxetqLeY59pZfNczpz/n++9//ctFFF/HZZ585Fhy4+eabGTp0aLFjv/76a8LCwggPD2fkyJHO3rrS7L1kDxw4UOJ++/bo6Ogai0nEa1ks0Lid+Yj7m5lwHNlWuJTvvl8g4whs+9R8ADRuX5jktul/uq2MSDlsVnO1vOXPwsm/zG3BjaH/P+CCW1XXLW5lLz0Y1DGCAL9a1CbOx9ds0TXvZsBC+Ynt6U/Vhj/rtg4hLileu+KKK8qsF7UbO3YsY8eOdcUtq6Rr164AbNq0qcT99u1dunSpsZjOFh8fT3x8PFar1W0xiLiFj69ZUxvV3Uw28nPgwLrCJPfQJjMhOfkXrH8XLD7m0qT2JLfVhRppk6JsNvj9azOZPf67ua1eQ+h3N8TdppXxpFaola287GKvNFt0Lb6/6KSxeqe72BTrU/us29p5gZOLL9Q2lVl8YfPmzcXajZW0+IK7aPEFkbNkp5yedLbcTHJP/Fl0v28gtO5dmORGdlM/UW9lGPDHIlj+jLkiHkBQOPS9E3rdYdZ6i9QCCScyGfLCcvx8LGx85GLC69XSThs2a/HVw6DGVhSrkcUXSlNQUEBystmYt2HDhvj51Y7ZzAEBAUybNo2nnnqKqVOn8sMPPzg6Hrz44ots27aNQYMGuT2hFZES1Gtg9j48d4T5ddqh05POlptJbvqhwpXPfnzCTGLaDDi9CMRgaHyOJp3VdYYBu76H5U+bHTbAnHzY++/Qe4r5HhKpRZbsPAJA77aNa29CC2ayWlKLLje07SqLy7LNnTt38uabb7J06VJ27drlGC21WCy0b9+eYcOGcccdd9CpUydX3ZJFixYxc+ZMx9d5eXmA2WrM7pFHHmHEiBGOr6dPn87SpUtZs2YN7du3Z8CAASQlJfHrr78SERHB+++/77L4RKQahUVB1+vNh2HAib8Kl/JNWAU5qfDHN+YDIDSqcJWzmEEQFunO6MWVDAN2/wjLnjLLVMBcvvnCydBnqhb8kFpr6c5a2PXAgzldfmCz2fjXv/7FK6+8gs1mK/Wjf4vFgo+PD9OmTeM///kPPi5YM/uDDz5g4sSJZR4za9YsJkyYUGRbdnY2zzzzDHPmzGH//v00atSI4cOHM3PmzFIXZqgpZ9bU7tq1S+UHIlVhLTBH6vYuMxPdfb+CNbfoMU06Fia5bfqbI7viWQzD/CVm2dNm/TWAfzD0uh363gUhtWgmuchZTmXmccGTS7AZ8PP9Q2jZUBMWS1PR8gOnk9rrr7+ezz77zJHMnn/++fTq1YtmzczfOo4ePcr69evZscOsa7JYLFxzzTV8+umnzty2zlNNrYgL5WfDvrWnR3FXwKEtFJnJa/GBqB6FSW6rC9WrtLZL/NlMZpNWm1/7BZldNPrdA/Uj3BqaSEV8tmE//5q/jdjIML69u3Z9jF/b1EhN7dy5c5k3bx4Wi4WuXbvy9ttvExcXV+Kx69evZ/LkyWzevJn58+czd+5crr/+emduLyJSMf71oN0Q8wGQdcpMiuxJ7sndcHCD+Vj1AvjVOz3pbLCZ5DbvoklntcW+tWaZQYK5kA++gXDBJOh/j9kHWcRD1OquBx7KqZHaoUOHsnz5cjp27MiGDRsck65Kk5mZyQUXXMCff/7JoEGDWLZsWVVvXedppFakBqUeKFzlLGFF8SUe6zWEmIGFK501aqtJZzVt/3pzAtien8yvffzNBRMG/NOsrxbxIDn5Vro/sYTsfCvf3NmfTi1U/lSWGhmp3bp1KxaLhfvvv7/chBYgJCSE+++/n0mTJrF161Znbi0i4jrhLaH7jebDMOD4H4VJbuLPkJ0MO78yHwDhrU5POBts/lm/qRuDr+MObjJbc/31g/m1jx90Hw8D7oMGrdwbm0gVrd59gux8K1HhQZwfpYErV3EqqbV3G6jMYgX2Y/Pz8525tYhI9bBYoOl55qP3ZHPS2aFNhUnu/l8hdT9s/th8ADSNLVzKt00/CNRS2047vM1MZu1LJlt8ods4GPgvaNjGraGJOMteejAsthkWferjMk4ltdHR0fz++++kpqZW+Jy0tDTHuVKcVhQTqWV8/aBVL/Mx6F+Ql2ku4WtPco9sh2M7zcfa182RxBY9C5PclnHgF+DuZ+E5jv5mJrO/LzS/tvhAl+vMZLZxO/fGJuICNpvB0t/Vyqs6OJXUjhkzhpkzZ7JgwQKGDBlSoXPmz5+PxWLh6quvdubWddbUqVOZOnWqo35ERGqZgBA4Z5j5AMg8CYkrC5Pc5ARzNHf/r7DiObPFVHTfwiS3WSdwQUvDOuf4n2Yy+9sXpzdYoPM1MOh+aNLeraGJuNLm/SmcyMglNNCPC2PUds6VnJoolpqaSs+ePUlKSuJ///sfY8eOLfP4+fPnM27cOKKjo9m4caOStjJoopiIh0pOOr0IxOnVzTKPF90f3NicdGZPchvFuCXMWuPEbjP53/4ZjjZr518Ngx6Apue6NTSR6vDc4j94Y/keRnaN4tVx3d0djkeosT61iYmJXHfddWzYsIGRI0cyYcIE4uLiaNq0KRaLxdGndvbs2Xz99ddccMEFzJs3T+UH5VBSK1IHGIZZlrB3+elJZ6shP7PoMQ2izclm9iQ3pIkbAnWDU3thxfOwbS4YNnPbuVfA4AehuetWnhSpbYa9uILdxzJ4+fpujOrWwt3heASXJrW+vuX3ZzQMo9xi5zOPsVgsFBQUlHtdb6WkVqQOKsiDgxsLl/M9sB5sZ/0/2KxzYZLbug8E1ndHpNUnOQlWPg9b5oBxeu5Ah8tg8AMQ1c2toYlUt4QTmQx5YTl+PhY2PnIx4fX83R2SR3BpS6+KDuZW5DgnB4ZFRDyXXwBE9zEfgx+A3AxIWlOY5B7dAUe3m49fXjN7sbaMK0xyW/QEXw/9IZh6AFa+AJs/Kkzkz7kYhjxoPi8RL7Bk5xEAerdtrIS2GlQoqZ0xY0Z1xyGnqfuBiBcJrA8dLjEfABnHzQTXnuSm7IN9a8zH8mcgoD5E9ytc6axpbO1fBCLtMPz8Imz8AKxmG0jaDoEhD5kdJUS8iFYRq15O19RK9VD5gYhwKqFwlbO9KyD7VNH9IU0LJ521HQQNWrsjypKlH4XVL8H698Caa25rM8BMZqP7ujU0EXc4mZFL3FNLsRmw+oGhtGhQz90heYwaWVFMRESqUaMY83HBRLDZzPIEe5KbtAYyj8GO+eYDzOV77Uv5xgyE4EY1H3PmCTOZXfcuFGSb21r3MZPZmIE1H49ILfHTH8ewGRAbGaaEtpq4JandvHkzH374If/973/dcXsREc/j4wORXcxHv7vMSWcH1hcmuQc2mB0FTu2FjbMAi3lszBmTzgKCqy++rFOw5hX49e3CDg8t48xktu2Q2l8mIVLNVHpQ/Wqs/ODw4cN8/PHHfPTRR/z2228Aqhstg8oPRKRSctLM0Vt7kntsZ9H9vgHQ6sLCJDequ7laWnlsVvO6GUehfjOzdMDnjI442cnwSzysfQPyMsxtUd1hyMPmAhVKZkXIybfS/YklZOdb+ebO/nRqoT79lVEryg+ys7P5/PPP+fDDD/npp5+w2cxehBVp/yUiIpUQFAYdh5sPMGtaE1YW9shNOwCJq8zHsichMAza9C9MciM6Fk9Ad34Ni++HtEOF28KiYPhzZg3v2jfNhDb39FLpzTubyWyH4UpmRc6wevcJsvOtRIUHcX6UBqqqS7UktcuWLePDDz/k888/JyPD/M3dPiAcGRnJ1VdfzZgxY6rj1iIiAhDaDLpcaz4MwyxLsCe4CSshJwX+/NZ8ANRvXnQRiIMbYd7NOFb5sks7DPNuMpf/zc8ytzU932zNde4VSmZFSmAvPRgW20yDetXIZUntH3/8wYcffsj//vc/Dhw4ABQmsi1btmTMmDFcc8019O3bVy9oGdTSS0RczmKBxu3MR9ytZknBkW1mR4W9y2HfL5BxBLZ9aj4AfPwoltBC4bb8LGjcAYY+BOeNMmt+RaQYm81g6e/HANXTVjenampPnjzJJ598wocffsjGjRuBwkS2QYMGpKSkYLFY+OSTTxg7dqxrIvYSqqkVkRqTnwMH1p0eyV1hjtKWmNCe5eavzdFdESnVxqRkxryxhtBAPzY+cjEBfvoFsLKqraY2Pz+fhQsX8uGHH7J48WLy8/MdiWxAQACXX34548ePZ8SIEdSrp5YVIiK1nn+Q2W4rZiBcBGycDQvvKv+8zOPVHpqIp7OXHgw+t6kS2mpW4aR27dq1fPjhh8ybN4/k5GSgcMJXv379GD9+PGPHjqVhw4bVFqyIiNSARm0rdlx9fZQqUp6lv6uVV02pcFJrr4W1j8p27NiR8ePHc+ONN9KmTZvqik9ERGpadF+zy0HaYUouQ7CY+7UymEiZEk5ksvtYBn4+FgZ1iHB3OHVepcsPQkNDeeWVV7jllluqIx4REXE3H1+zbde8mwELRRPb0xN9hz9btF+tiBSzZOcRAHq3bUx4PX83R1P3Vaq4wzAMMjIymDRpEj169ODFF1/k8OHD1RWbiIi4S+yVMPZDCIssuj0sytwee6V74hLxIFpFrGZVeKR2+fLlfPDBByxYsID09HS2bNnC1q1buf/++xk8eDA33XQTo0ePpn79+tUZr4iI1JTYK+HcEWWvKCYiJTqZkcvGJHMO0jAltTWiwiO1AwcO5P333+fo0aP873//49JLL8XHxwer1cpPP/3ExIkTad68OePGjePbb79Vn1URkbrAxxdiBkDna8w/ldCKVMhPfxzDZsD5UWG0aKBuUDWh0r0lgoKCGDduHN999x379+/n//7v/+jcuTOGYZCVlcW8efMYOXIkkZGR5V9MiomPjyc2Npa4uDh3hyIiIiJV5FhF7DyN0tYUpxZfONPWrVuZPXs2n3zyCUePmi+kfeWwyMhIx4piAwYMcMXt6jwtviAiIuKZcvKtdH9iCdn5Vr65sz+dWoS7OySPVtGcyGVdgLt27cqLL77IgQMH+Oabbxg7diyBgYEYhsGhQ4d47bXXGDx4MJGRkfz973/nxx9/dNWtRURERGqNn/86QXa+lRYN6nF+lAamaorLl7bw9fXl8ssvZ+7cuRw5coS33nqL/v37A2b3hKNHj/LWW29x6aWXuvrWIiIiIm5nX3Bh2HlNHZ9aS/Wr1vXawsLCuO2221i5ciV79uxhxowZtGvXDsMwcFHVg4iIiEitYbMZLP39GKCuBzWtxhYhbtOmDTNmzOCvv/5i1apV3HbbbTV1axEREZEasXl/CicycgkN9OPCmMbuDserVHpFMVfo168f/fr1c8etRURERKqNvevB4HObEuBXY2OHQg2O1IqIiIjUdfalcbWKWM1TUisiIiLiAnuPZ7DneCZ+PhYGd4xwdzheR0mtiIiIiAvYux70btuYsCB/N0fjfZTUioiIiLiAvZ5WpQfuoaRWRERExEknM3LZmJQMqJWXuyiprWXi4+OJjY0lLi7O3aGIiIhIBf30xzFsBpwfFUaLBvXcHY5XUlJby0ydOpWdO3eyfv16d4ciIiIiFaTSA/dTUisiIiLihJx8K6v+OgHAsPOU1LqLkloRERERJ/z81wmy8620aFCP86PC3B2O13LLimIiIiIins5qM1iXcIp3V+0FYOi5EVgsFjdH5b2U1IqIiIhU0uIdh3l84U4Op+Y4ti3afoR+5zRheKdIN0bmvVR+ICIiIlIJi3ccZsrHm4oktADJmXlM+XgTi3ccdlNk3k1JrYiIiEgFWW0Gjy/ciVHCPvu2xxfuxGor6QipTkpqRURERCpoXcKpYiO0ZzKAw6k5rEs4VXNBCaCkVkRERKTCjqWXntBW5ThxHSW1IiIiIhXUNDTIpceJ6yipFREREamgXjGNqB9YevMoCxAZHkSvmEY1F5QASmpFREREKuyrLQfJyC0ocZ+9Q+2MkbH4+qhfbU1TUisiIiJSAWt2n+D+BdsAuDi2GZHhRUsMmocH8cb4HupT6yZafEFERESkHH8dTeeOjzeSbzUY0SWSV6/vjoHZDeFYeg5NQ82SA43Quo+SWhEREZEyHEvPYcKs9aTnFNAzuiH/ubYrPqeT1z7tGrs5OrFT+UEtEx8fT2xsLHFxce4ORURExOtl5hZw6wcbOJiSTUyTEN65+QKC/H3dHZaUwGIYhpa8qIXS0tIIDw8nNTWVsLAwd4cjIiLidQqsNu74aCM//nGMRiEBfD6lL22ahLg7LK9T0ZxII7UiIiIiZzEMczncH/84RoCfD+/cfIES2lpOSa2IiIjIWd5dlcBHa5OwWOCl67rRM7qhu0OSciipFRERETnDt9sP89S3vwPw0GXncXlntejyBEpqRURERE7bmHSKez7dAsDNfaL524AY9wYkFaakVkRERARIPJHJbR9uJK/AxkXnNuXRK2KxWNR31lMoqRURERGvdyozjwmz1nEqM4/OLcJ59Ybu+PkqTfIkerVERETEq+XkW7ntww0knsyiRYN6vDfhAoIDtD6Vp1FSKyIiIl7LZjO4d95WNiYlExrkxwcT42gaGuTusKQKlNSKiIiI13pu8R8s2n4Yf18Lb93Uk/bNQt0dklSRkloRERHxSh+tTeKtlXsBeG5MF/q2a+LmiMQZSmpFRETE6/z0x1FmfLUDgH9e3IHRPVq6OSJxlpJaERER8SrbD6Qybc5mbAZc07Mldw49x90hiQsoqRURERGvcTAlm0mz15OVZ6X/OU14ZnRn9aKtI5TUioiIiFdIzc5n4qx1HE/PpWOzUF4f3wN/9aKtM/RKioiISJ2XV2Bjyscb2XU0g6ahgcyaGEdYkL+7wxIXUlIrIiIidZphGDz4+XbW7DlJSIAv70+II6pBPXeHJS6mpLaabd++HT8/P1q21KxKERERd3j5x79YsOkAvj4WXruxB51ahLs7JKkGSmqr2T333EPjxo3dHYaIiIhXmr/xAC8t/QuAJ0adz5COTd0ckVQXJbXV6Msvv2Tv3r1MmjTJ3aGIiIh4ndW7T/DAgm0ATB7UjhsvjHZzRFKdlNRWk7y8PO677z6effZZAgMD3R2OiIiIV/nzSDqTP9pIgc1gZNco/n1pR3eHJNXMo5PajRs38uyzzzJ69GhatmyJxWKpUK+57OxsHn30UTp06EBQUBBRUVFMmjSJgwcPuiy2l156iYiICK677jqXXVNERETKdywth0kfrCc9t4C4Ng15/pou+PioF21d5+fuAJwxc+ZMvvrqq0qdk5OTw9ChQ1m7di2RkZGMGjWKxMREZs2axTfffMPatWtp27atU3EdPXqUp556isWLFzt1HREREamczNwCJs1ez8GUbNo2CeHtmy4gyN/X3WFJDfDopLZPnz506dKFuLg44uLiaNOmDbm5uWWe8+STT7J27Vr69OnDDz/8QP369QF48cUXuffee5k0aRLLly93HJ+SksKRI0fKvGZwcDCtW7d2fP3QQw8xfPhw+vTpU/UnJyIiIpVSYLVx5yeb2XEwjcYhAcyaGEfDkAB3hyU1xGIYhuHuIFwlKCiI3NxcSntKeXl5NG3alNTUVDZt2kT37t2L7O/atSvbtm1jw4YN9OzZE4A333yTKVOmlHnfQYMGORLhHTt20LNnT9auXUtMTAwAzz77LB999BG//fYbwcHBBASU/w8sLS2N8PBwUlNTCQsLK/d4ERERb2YYBo98tYOP1+4j0M+HT27vTY/WDd0dlrhARXMij66prazVq1eTmppKu3btiiW0ANdccw0ACxcudGybPHkyhmGU+ThzZHf37t3k5eXRo0cPGjZsSMOGDXnuuec4dOgQDRs25P3336/25ykiIuJt3l65l4/X7sNigZev76aE1gt5dPlBZW3duhWAHj16lLjfvn3btm1Vvkf//v1ZtmxZkW0ffPABixYt4rPPPqNDhw4lnpebm1ukdCItLa3KMYiIiHiTRdsO88x3fwDw8OXnMbxTpJsjEnfwqqR23759AKWu7mXfnpSUVOV7NGnShMGDBxfZtnz5cgIDA4ttP9MzzzzD448/XuX7ioiIeKMNiaf4x7wtAEzo24Zb+8e4NyBxG68qP8jIyADMiV0lCQkJASA9Pb3GYrJ78MEHSU1NdTz2799f4zGIiIh4koQTmdz24QbyCmwMO68Zj1wRW6HWnlI3eVVS6y6PPfYYBw4cKPOYwMBAwsLCijxERESkZCczcpkwax3JWfl0aRnOK+O64atetF7Nq5Jae/uurKysEvdnZmYCEBoaWmMxiYiISOXk5Fu57cMNJJ3MomXDerx3SxzBAV5VUSkl8Kqk1t5LtrRRU/v26Gj3rQ0dHx9PbGwscXFxbotBRESktrLZDP7x6RY27UshLMiPDybGERGq5ejFy5Larl27ArBp06YS99u3d+nSpcZiOtvUqVPZuXMn69evd1sMIiIitdWzi//gux1H8Pe18PbNF3BOU326KiavSmr79etHeHg4e/bsYcuWLcX2z58/H4CRI0fWcGQiIiJSno9+SeTtlXsBeP6arvRu29jNEUlt4lVJbUBAANOmTQPMEVF7DS2Yy+Ru27aNQYMGOVYTExERkdph6c6jzPj6NwDuvbgDV3Vv4eaIpLbx6KrqRYsWMXPmTMfXeXl5APTu3dux7ZFHHmHEiBGOr6dPn87SpUtZs2YN7du3Z8CAASQlJfHrr78SERGhFb9ERERqme0HUrnzk83YDLjuglZMG3qOu0OSWsijk9rjx4/z66+/Ftt+5rbjx48X2RcUFMSyZct45plnmDNnDl9++SWNGjViwoQJzJw5s9SFGWpKfHw88fHxWK1Wt8YhIiJSGxxIzmLS7PVk51sZ0L4JT17dSb1opUQWwzAMdwchxaWlpREeHk5qaqp61oqIiFdKzc7nmjfW8NexDM5tHspnk/sQGuTv7rCkhlU0J/KqmloRERHxDHkFNiZ/tJG/jmXQLCyQWRPjlNBKmZTUioiISK1iGAYPLNjGL3tPEhLgy/sT4ogMr+fusKSWU1IrIiIitcp/l/7F55sP4utjIf7GHpwfFe7ukMQDKKkVERGRWmPehv288uNfADx5VScGd2zq5ojEUyiprWW0TK6IiHirn/86wUOfbwfg74PbMa5XazdHJJ5E3Q9qKXU/EBERb/LHkTSufeMX0nMLuLJrFC9d1w0fH7XuEnU/EBEREQ9xNC2HSbPWk55bQK82jXj+2i5KaKXSlNSKiIiI22TkFjBx1noOpebQNiKEt2/uSaCfr7vDEg+kpFZERETcosBq4845m9h5OI3GIQF8MKEXDYID3B2WeCgltSIiIlLjDMPg0a9/Y9mfxwny9+HdWy6gdeNgd4clHkxJbS2j7gciIuIN3lq5lzm/7sNigZev70731g3dHZJ4OHU/qKXU/UBEROqqhVsPcecnmwF49IpYJvWPcXNEUpup+4GIiIjUOusTT3HvvK0ATOzXRgmtuIySWhEREakRe49ncNuHG8iz2rgkthnTR8S6OySpQ5TUioiISLU7mZHLhFnrScnKp2urBrx8fXd81YtWXEhJrYiIiFSrnHwrf/twA/tOZdGqUT3evfkC6gWoF624lp+7AxARkdrLajNYl3CKY+k5NA0NoldMI42uSaXYbAb3zN3C5n0phNfzZ9aEXkSEBro7LKmDlNTWMvHx8cTHx2O1Wt0dioh4ucU7DvP4wp0cTs1xbIsMD2LGyFiGd4p0Y2TiSZ7+9ncW/3aEAF8f3r6pJ+c0re/ukKSOUkuvWkotvUTEnRbvOMyUjzdx9g8I+xjtG+N7KLGVcs1ek8iMr38D4OXruzGqWws3RySeqKI5kUZqRUS8jGEYWG0GBbaz/7RhtRnk5tt45MvfiiW0AAZmYvv4wp1cHNtcpQhSqiU7j/L4QjOh/delHZXQSrVTUuvFVCsn3s4wiiZ2BVZb0UTPWpjolXmczUaBtXiiWOJxjuua2/NttiJfFznurDgc26xFk9Cy72luO/s4p75vwOHUHAY89xNRDerRINifBsEBNKjnT8OQAMLr+dMwOOD0dnNfw2B/6vn7YrHo/xhvsO1ACnd9shmbAdfHteLvg9u5OyTxAkpqvZRq5cTOMAxsBkUTJGvR0bsCa/HRvJISrDKPsxlYTydcRc8tIQkrdq3SEsdSjisW2+l4zorPydyuzvGxgJ+PDwYG+dbyvzmHUnM4dMb/IeUJ8PUpkug2KJL8mn82LPJ3M0EO8tcseU+y/1QWkz7YQHa+lYEdIph5VSf9MiM1QkmtFyqtVu5Iag5TPt7ktbVyZ34kW9YonT1pKkymSh6lK/G4EpKtMo8rkmCWc9xZyV+R5LJY4lc0IZSi/Hws+PpYCv/09XF87edrwc/Hp+h+x5+nt/vat/mYf/qefayP42t/36JfFz3e54x7lnDc6X2O4876ulhsvhb8z/ravt/XYsHn9Cc1v+w5ybh31pb7fXpkxHm0aFiP5Kx8UrLyScnKIyUrn+SsPFKyza+TT2/PtxrkWW0cS8/lWHpupV6Pev6+Z40G+xNeL+B0Alx0lLhBvcKk2N9XXStrWmpWPhM/WM+JjFzObR5K/A3d9TpIjVFS62WsNoPHF+4st1ZuUIemAMWSuvyzP8Ys4WPQgrKSwTNHzkr6mLSEj2gd1yphlK5qsZWcEFqV3BVjJlwW/M9KgM5O6goTOZ8Sk62zE0A/37O3+5w+3nJGsldS4nj29c+4ZxnxFbuWb+nH+Vjw+lGlXjGNiAwP4khqTon/V1iA5uFBTOgXU6GSJcMwyMqzkpKdT3JmHqnZpxPfIolwPqnZhUlwSlY+Kdn5WG0G2flWslOtRT5Zqoj6gX5mKUSIPw3qFZZDmKPDJSXI5siwyrCqJrfAyh0fb2D3sQyahwUxa2IcoUH+7g5LvIiSWi+zLuFUmT8Y7LVy5z26uOaCquV8fYonZcVH2oqO0pU0elfsuHKTs5ITQl9fn8LRtjJG5fxKSvJKiK3E43wKR+3E+/j6WJgxMpYpH2/CAkUSW/u7YsbI2AonfxaLhZBAP0IC/WjRoF6F4zAMg/TcAlJPj/4WSXhPbyuWIGfnk5qdj2FARm4BGbkFHEzJrvA9AcKC/IqN+tpLIc4sj7DXCjeoF0BokJ9X/5sxDIMHFmxn7d5T1A/0Y9bEOCLDK/5ai7iCklovcyy9ciMdZypzpK2kj2SLjcaV/JFsySNtxZO1ItfzLfm4Ej/KLSH5K/W4M0Yk7du8fdROvNPwTpG8Mb5Hsdr75jVYe2+xWAgL8icsyJ9WjYIrfJ7VZpCek3/WqG8eyZn5xcoi7PtSMvNJzy0AIC2ngLScApIqEauPBccEufDgM2qFzy6TODNBDgkgJMAzJ8+dPdH4593H+WLzQXx9LLx+Yw/Oi1QrSql5SmprmepefKFpaFCFjnvvlgvo066xI9HTR7Ii3md4p0gujm3ucV1SfH0spxPIACCkwuflW22kZhevDy46GnxGgnx6ZDgrz4rNgOTTZRSV4e9rIbxe4SS5YrXC9gT5rFHjIH8ft/2fXNJEY7unr+7EwA4RbohKRIsv1FrVtfiC1WbQ/7mfyq2V+/n+obX+B5eISG2QW2A9XSJROApcWB9ccoKcnJVPXoGtyvcM8PNxlD40CC65i8SZtcINg/0JD/Yn0M+5ThKlTTS2e9NLJxpL9dLiC1IiV9fKiYh4u0A/X5qG+dI0rGKfhNll51mLjfqWPYHO3F5gM8grsHE0LZejaZXrJBEc4Fu8VtjeSq3eWbXCZ0ye8/f1KXOiMWhRDnE/JbVeqDbUyomIeLt6Ab7UC6hXqQlVhmGQmWctsYtEkZHh0/tSzxghthmQlWclK89aqf7CAKGBfgQF+HA8Pa/02DAnGq9LOEWfdo0rdX0RV1BS66U8tVZORMSbWSwW6gf6UT/Qj1aVOM9mM0jPKTBHhot0kbCXSxSWRaSeMZEuLcecPJeeW0BF2ws7MyFZxBlKar2Yr49Fv02LiHgBHx8L4afraqMr8d9+gdVGWk4ByVl5/PzXCWZ8/Vu551R0QrKIq2mZDxERESmRn68PjUICaBdRn/G9o4kMD6K0z/MsmMut94ppVJMhijgoqRUREZFy2ScaA8USW000ltpASa2IiIhUiH2icfPwoiUGzcODeEPtvMTNVFMrIiIiFaaJxlJbKakVERGRStFEY6mNVH4gIiIiIh5PSW0tEx8fT2xsLHFxce4ORURERMRjWAzDKG3FO3Gjiq5zLCIiIlKXVTQn0kitiIiIiHg8JbUiIiIi4vGU1IqIiIiIx1NSKyIiIiIeT0mtiIiIiHg8JbUiIiIi4vGU1IqIiIiIx1NSKyIiIiIeT0mtiIiIiHg8P3cHICWzL/SWlpbm5khERERE3MeeC5W3CK6S2loqPT0dgFatWrk5EhERERH3S09PJzw8vNT9FqO8tFfcwmazcejQIUJDQ7FYLNV2n7S0NFq1asX+/fvLXE9Z3E+vlWfQ6+Q59Fp5Br1OnqO6XivDMEhPTycqKgofn9IrZzVSW0v5+PjQsmXLGrtfWFiY/rPwEHqtPINeJ8+h18oz6HXyHNXxWpU1QmuniWIiIiIi4vGU1IqIiIiIx1NS6+UCAwOZMWMGgYGB7g5FyqHXyjPodfIceq08g14nz+Hu10oTxURERETE42mkVkREREQ8npJaEREREfF4SmpFRERExOMpqa1DNm7cyLPPPsvo0aNp2bIlFovFqYUbkpOTufvuu4mOjiYwMJDo6GjuueceUlJSXBe0F8vOzubRRx+lQ4cOBAUFERUVxaRJkzh48GClr7VkyRJGjBhBREQE/v7+NG7cmEsuuYQvvviiGiL3Lq58nQASExOZPHkyMTExBAYG0qRJE/r06cPzzz/v4si9i6tfJ7u//vqLevXqYbFYGDZsmIui9W6ueK1SUlKYM2cO48aNIyYmhoCAAEJDQ7nwwgt5+eWXyc/Pr8Zn4D1c+e+qRnIKQ+qMUaNGGUCxR1UcP37cOOeccwzAaNu2rTF27Fjj/PPPNwCjQ4cOxsmTJ10cvXfJzs42evfubQBGZGSkMXbsWKNXr14GYERERBh79uyp8LX++9//GoBhsViMvn37Gtddd53Rt29fw2KxGIDx0EMPVeMzqdtc+ToZhmF8++23RnBwsGGxWIyePXsa119/vXHxxRcbzZs3N9q1a1dNz6Luc/XrdKbBgwc7/i1ddNFFLozaO7nqtXr44Ycd/+91797duO6664yhQ4cagYGBBmD079/fyMzMrOZnU7e58t9VTeUUSmrrkGeffdZ45JFHjK+//to4fPiw4x93Vdx4440GYIwePdrIz893bL/zzjsNwLjllltcFLV3sv+H3KdPHyM9Pd2x/T//+Y8BGIMGDarQdY4dO2YEBgYa/v7+xvLly4vsW7FihREYGGhYLBanfqh7M1e9ToZhGL///rsRFBRkREREGKtXry6yz2q1GuvXr3dV2F7Hla/Tmd59910DMG6//XYltS7iqtfq6aefNv79738bSUlJRbbv2rXLaN26tQEYDz74oCtD9zqu/HdVUzmFkto6rKpJ7aFDhwwfHx8jICDAOHLkSJF9OTk5RkREhOHr62scPXrUVaF6ldzcXCM8PNwAjE2bNhXb36VLFwMwNmzYUO61Fi5caADGpZdeWuL+K6+80gCMTz/91Om4vY0rXyfDMIzLLrvMAIxFixa5OlSv5urXye7IkSNGw4YNjYsvvthYtmyZkloXqK7X6mxz5swxAKNNmzZOXcebufK1qsmcQjW1UszixYux2WwMGDCAZs2aFdkXGBjIyJEjsVqtfPvtt26K0LOtXr2a1NRU2rVrR/fu3Yvtv+aaawBYuHBhudeqaIPrxo0bVy5IcenrtH//fr7//nvatm3L5Zdf7vJYvZkrX6cz3X333WRnZ/P666+7JE6pvtfqbF27dgXg0KFDTl3Hm7nytarJnEJJrRSzdetWAHr06FHifvv2bdu21VhMdYkrv7+9evWiQYMG/PTTT6xYsaLIvpUrV/L999/Tvn17BgwY4GTU3seVr9Py5cux2Wz07duXgoIC5s2bx9133820adN48803SU5Odl3gXqY6/r/69ttv+fTTT3nooYc455xznA9SgJr72bJ3714Amjdv7tR1vJkrX6uazCn8nL6C1Dn79u0DoGXLliXut29PSkqqsZjqEld+f8PDw3nvvfe44YYbGDJkCH379qVly5YcOHCANWvW0K9fPz788EMCAgJc9wS8hCtfp507dwJQv359BgwYwNq1a4vsf/jhh5k/fz5DhgxxJmSv5Or/rzIzM/n73/9Ox44duf/++10TpAA197Pl5ZdfBmDUqFFOXcebufK1qsmcQiO1UkxGRgYAwcHBJe4PCQkBID09vcZiqktc/f0dPXo03333HY0bN2b16tV8+umnrF69mtDQUC655BJatGjhmsC9jCtfJ/tI7Lvvvssff/zBnDlzOHXqFH/++Sfjx4/n1KlTXH311U63n/JGrv73NH36dJKSknjzzTf1y6CL1cTPljfffJOlS5fSoEEDHnjggSpfx9u58rWqyZxCSa2Ih/vPf/7DsGHDGDhwINu2bSMjI4Nt27YxdOhQHn30UUaPHu3uEL2ezWYDoKCggLfeeotx48bRsGFDOnTowEcffURcXBypqamq33SzDRs28Morr3DzzTczePBgd4cjlbRq1SruvvtuLBYL77//PlFRUe4OSWqYkloppn79+gBkZWWVuD8zMxOA0NDQGoupLnHl93f58uXcd999dOvWjc8++4zOnTsTEhJC586dmT9/Pt26dWPRokV89913rnsCXsKVr5P9WvXr1+faa68ttn/ixIkAxeqipXyuep0KCgq47bbbaNCgAS+88IJrgxSgen+27Nixg1GjRpGXl8fLL7/M1VdfXfVApVr+/6uJnEI1tVJM69atAThw4ECJ++3bo6OjayymusSV39+PPvoIgKuvvhofn6K/o/r6+jJ69Gi2bNnCypUrueyyy5wJ2+u48nWyH9O6desSV/lr06YNAMeOHatKqF7NVa/TgQMH2LJlC82bNy/2i4d9xaONGzc6RnCXL19e9aC9VHX9bElISOCSSy4hOTmZxx57jDvvvNO5QMWlr1VN5hRKaqUYezuUTZs2lbjfvr1Lly41FlNd4srvr/0/g/Dw8BL327drdn3lufJ1srfEKe11OHXqFFA4oiEV5+r/r44cOcKRI0dK3JeSkqLRdCdUx8+Ww4cPc/HFF3P48GHuvvtuZsyY4Xyg4tLXqkZzCqc73Uqt5YrFF85uhqzFF5x3ZlPrzZs3F9tfmabWN998swEYN998c4n7x48fbwDGM88842zYXseVr1N+fr7RuHFjw2KxGH/88Uex/bfddpsBGJMmTXJF6F7Fla9TabT4gmu4+rU6deqU0blzZwMwJk6caNhsNhdH7L1c+VrVZE6hpLYOKy+pffXVV42OHTsaDzzwQLF99iXtxowZU2RJu7vuukvL5LqAffnBvn37GhkZGY7tpS0/WNpr9fnnnxuA4evrayxcuLDIvi+//NLw8fExfHx8SkykpHyuep0MwzCeeuopR2KUmprq2L5kyRLD39/fsFgsxq+//lptz6Uuc+XrVBIlta7jqtcqMzPT6NOnjwEYY8eONQoKCmoifK/iyn9XNZVTKKmtQ7755hvjwgsvdDwsFosBFNn2zTffOI6fMWNGqW+m48ePG+3atTMAo127dsZ1111ndOrUyQCM9u3bGydPnqzBZ1b3ZGdnGxdeeKEBGJGRkcbYsWMdX0dERBh79uwpcnxpr5XNZjOuvfZaAzAA44ILLjCuvfZa44ILLnBse+qpp2rwmdUtrnqdDMMw8vLyjGHDhhmA0axZM2PUqFFGv379DF9fX71OTnLl61QSJbWu46rX6p577nH8Qn/DDTcYt9xyS4kPqTpX/ruqqZxCSW0dMmvWLEciU9pj1qxZjuPL+4/95MmTxp133mm0atXKCAgIMFq1amXcddddRnJyco08n7ouKyvLeOSRR4x27doZAQEBRvPmzY0JEyYY+/fvL3ZsWa+VzWYz3nvvPWPgwIFGgwYNDD8/P6NJkybG5Zdfbnz33Xc18EzqNle9ToZhJrbPPfeccf755xtBQUFGWFiYMXTo0GKj7FJ5rnydzqak1rVc8Vrdcsst5f68U4Wl81z576omcgqLYRhGxStwRURERERqH/WpFRERERGPp6RWRERERDyekloRERER8XhKakVERETE4ympFRERERGPp6RWRERERDyekloRERER8XhKakVERETE4ympFRERERGPp6RWRMr12GOPYbFYsFgs7g7FJaxWKy+//DK9evUiLCzM8dyuuuoqd4dW45YvX+54/suXL3d3OF5jwoQJWCwW2rRp4+5QatzNN9+MxWJh2rRpLrvmgQMHCAwMJCAggF27drnsuuJZlNSK1IDMzEzefPNNLr/8clq0aEFQUBCBgYFEREQQFxfHpEmTeOedd9i/f7+7Q/UK48aN45577mH9+vWkp6dX6RpnJoOPPfaYawOUGnfm63n2Izg4mOjoaK666irmzJlDQUGBu8P1WOvWrePjjz8mICCABx54wGXXbdmyJRMnTiQ/P5/77rvPZdcVz+Ln7gBE6rpffvmF66+/nn379hXbd+LECU6cOMGGDRuYNWsWzZo148iRI26I0nusWbOGzz77DIARI0Zwzz330KxZMywWC2FhYW6OTmqj7Oxs9u3bx759+/jqq6946aWX+Prrr2nevLm7Q/M406dPxzAMJk2aRMuWLV167QcffJD333+fhQsXsm7dOnr16uXS60vtp6RWpBrt2rWLSy+91DEaeOWVV3LNNdfQoUMHAgICOHHiBFu3bmXJkiUsW7bMzdF6h6VLlwLg6+vLnDlzlMhKMVOmTOHvf/+74+uMjAw2bNjAf/7zHxITE1m/fj2jRo1i7dq1VS7J+eCDD/jggw9cFLFnWLduHUuWLAHg3nvvdfn1o6OjGTNmDHPnzuXJJ5/k66+/dvk9pHZTUitSjR5++GFHQjtr1iwmTJhQ7JiLL76Y++67j+PHjzNv3rwajtD7HDx4EIBmzZopoZUSNW3alE6dOhXZ1rt3b2688UZ69erF7t27WbduHd988w0jR450U5Se5+WXXwbgwgsv5JxzzqmWe9xwww3MnTuXRYsWsXfvXtq2bVst95HaSTW1ItXEarWyaNEiAC644IISE9ozRUREMHXq1BqIzLvl5uYC4O/v7+ZIxNM0bNiQBx980PH14sWL3RiNZ0lNTWXBggUA3HjjjdV2n+HDh9O4cWNsNhuzZs2qtvtI7aSkVqSaHD9+nOzsbACXjUrk5uby9ttvM2LECFq0aEFgYCAhISGcf/75/O1vf+P777/HMIxi561du5bp06czePBgmjdvTkBAAGFhYcTGxjJlyhR27tzpkvhycnJ47bXXuOiiixz3adq0KcOGDeO9995z2QSb7du3c/vtt9O+fXuCg4MJDQ3l/PPP5x//+AeJiYklnmOf9DN79mwAkpKSik0IqkmZmZl8+umn/O1vf6Nbt26Eh4fj7+9PREQEgwYN4oUXXiAjI6PMa5w9UW3p0qVceeWVREZGEhQURNu2bZk2bZpjdLqqXPn++fbbbxk/fjxt27YlJCSEoKAgYmJiGDNmDB988AFZWVmlnrtp0yYmT55Mx44dqV+/PiEhIXTs2JEpU6bU2Iz3M+s0k5KSHH8/u4uEzWbj/fffZ8iQITRr1gwfH58iv9hWtPtBVd7rAImJiY547GUOn3/+OZdffjlRUVH4+fkxePDgIufs2rWLO++8k06dOhEaGkpAQABRUVF069aNSZMm8emnnzp+Kaysr776ynHumDFjyjz20KFDPPDAA/To0cPx76JZs2Z07tyZcePG8cEHH5CWllbiuf7+/o7R87lz51YpVvFghohUi5MnTxqAARhdu3Z1+nqbN282YmJiHNcs7ZGQkFDkvFmzZpV7jq+vrxEfH1/qvWfMmOE4tjRbtmwxoqOjy7xPXFycceTIEae+D08//bTh4+NT6j0CAwON2bNnFzuvvO9BZf87XLZsmeO8GTNmVPp5DBo0qNx4YmJijN9//73Ua5x5/8cee6zU64SHhxsrV64s93ksW7as2H5XvH8MwzBOnDhhXHTRReVea9asWcXOtVqtxj/+8Q/DYrGUep6fn5/x1ltvlRlDWSr6ev7xxx+O44YPH17i+d99950xbNiwYjHecsstjuNvueUWAzCio6NLvVdV3+uGYRgJCQmO495//33jpptuKnb+oEGDHMfPmzfPCAgIKPf12b59e0W/pUVMmDDBAIxWrVqVedzKlSuNsLCwcuNYuHBhqdd48803Hcft2rWrSvGKZ1JNrUg1adSoEdHR0SQlJbF161aee+45/vWvf+HjU/kPSH7//XcGDBjgGLm7+uqruf7662nbti1Wq5Vdu3bxww8/8MUXXxQ7t6CggIYNGzJq1CgGDhxI+/btCQkJ4dChQ2zatIlXXnmFEydOMG3aNM4991yGDh1a6fh2797NoEGDSE1NJSwsjKlTp9KrVy9atWrFyZMn+frrr3nrrbccE2xWrVpVpY//X3/9dR566CHALNe4//776devH1arlaVLl/L888+TmZnJhAkTaNKkCZdffrnj3O3btwPm7OuvvvqKqKgovv/++0rH4CoFBQV07tyZK6+8kgsuuICoqCgMwyApKYkvvviCefPmkZCQwFVXXcWWLVsICgoq9VqLFi1iw4YNdOzYkX//+9906dKF1NRUPvvsM9555x1SU1O54oor2LFjB61atap0nM6+f7KyshgyZIjjNejZsye33347nTp1IjAwkP3797Ny5Uo+/fTTEmO48847ef311wEYOHAgEyZMoG3btgQHB7N161ZeeuklfvvtN+644w6aN2/OlVdeWannWBn25wAQFRVV4jH3338/27Zt48orr2TChAlER0dz9OjRUkcXS+LMe/1sL730Etu2bWPAgAFMmTKFDh06kJKS4hjpPXr0KBMnTiQvL4+mTZsybdo0evfuTZMmTcjOzmb37t2sWLGCL7/8ssLxn23VqlUAxMXFlXpMbm4u119/PWlpaYSGhjJlyhSGDBlC06ZNycvLIyEhgTVr1pT4/9yZzhxNX7FiBe3bt69y3OJh3J1Vi9RlL7zwQpHRhTZt2hh33XWXMXfuXGPv3r0Vvk6PHj0MwPDx8TE++eSTUo87ceKEkZWVVWTbgQMHjMzMzFLPSUlJMbp06WIARv/+/Us8pryR2r59+xqA0b17d+P48eMlHvPdd985Rp3efvvtUuMpzbFjx4zg4GADMKKioox9+/YVO2bTpk1GSEiIARgtWrQw8vLyih1TkRGyinB2pLa8EaQlS5Y4vl/vvvtuicec+d7q0aOHkZ6eXuyYDz/80HHMtddeW+bzKGmk1hXvn3/84x+Oe0ydOtWw2WwlHpebm1tsJP+HH35wnFva9yE7O9sYOnSo43XNz88vNd7SVOT1zM/PN3r37u047sMPPyzxfMCYPn16mfcr633oivf6mSO1gHHzzTeX+n1/7733KjQSm5WVVez/l4o4evSo4/ozZ84s9bgff/yxQiOx+fn5Rmpqapn7/f39DcCYPHlypeMVz6WkVqQaWa1WY9KkSaV+hNasWTPjuuuuM77++utSf+B8//33juPvueeeaonzyy+/dNzjxIkTxfaXldSuXLnSsW/btm1l3mfs2LEGYPTt27fSMT733HOO+8ydO7fU45588knHcfPmzSu2v7YktRVx1VVXGYBxxRVXlLj/zPfShg0bSr3OZZdd5viI/vDhw0X2lZfUVkRZ75/k5GRHgtazZ0+joKCgUte2J6tjxowp87idO3c6Yvjhhx8q/RzKej0zMjKM5cuXG4MHD3YcEx0dbeTk5JR4focOHcp9nmW9D13xXj8zqW3QoIGRlpZW6nWeeuopAzAaNmxYZsxVtXHjRkcsZZWI/O9//3McV1bSWhHNmjUzAOOSSy5x6jriWTRRTKQa+fj48N577/HDDz8wfPhw/PyKVvwcPXqUTz/9lCuvvJJevXqxZ8+eYtf45ptvHH+/5557nI4pMzOTxMREfvvtN3bs2MGOHTuKlAJs3bq1Utez94Ls2LEjnTt3LvPYgQMHArB+/fpKTxqz95dt0KABo0ePLvW4v/3tb8XO8QTHjx/nr7/+crwmO3bsICIiAij/NencuTM9e/Ysdf+kSZMAs5TA2aVwK/v++emnnxyTv+666y58fX0rfK+0tDRHvNdcc02Zx5533nk0adIEMBc8ccbjjz9eZAJh/fr1GTx4sCOWpk2b8uWXXxIYGFji+dddd12lnufZXP1eHzlyJKGhoaXuj4yMBCA5OZmvvvqqsuGW6/jx446/N2zYsNw4AKc7FzRq1AhAi9l4GdXUitSAiy++mIsvvpi0tDRWr17N+vXr2bBhAytXriQ1NRWADRs2MGDAADZu3FjkP/fNmzcD0Lp1a6Kjo6t0/xMnTvDiiy+yYMEC/vrrrxI7JJx5bGVs2LABgD///LPCHQTy8/M5deoUTZs2rfB9duzYAUCPHj3KrMdt1qwZbdq0ITEx0XFObbV69WpeeeUVli5dyqlTp0o9rrzXpKw6RShaY7h9+3auv/76SsXpzPvH/v4FGDBgQKXuu3nzZmw2G2AubTxu3LgKnVddiUxMTAzXXHMN9913X5nv3S5dujh1H1e/18uL58orr6RBgwakpKRw9dVXM3jwYEaOHMnAgQPp1q2bUwk6UOS9XVZS279/f9q2bcvevXu55557+N///sfVV1/NwIEDiYuLIyAgoML3tN8nMzOz6oGLx1FSK1KDwsLCuOyyy7jssssAc2LEnDlzuPfee0lOTubw4cM88sgjvPvuu45z7EnCmYluZWzcuJFLL72UkydPVuh4exuyijp27FhVwiqzdVNJ7D8YK5IIN2/enMTExDITRXd77LHHePzxxyt0bHmvSXnfk2bNmjn+XtnvibPvnzOT3Mq+h2vqvXW2M1cUs1gsBAUF0aRJE8LDwyt0flmJW0W4+r1eXjyNGzfm66+/Zty4cRw8eJBly5Y5VjgMCwvjoosuYtKkSVxxxRWVeBaFzpzkWNZ72d/fn4ULF3LNNdfw+++/s379etavXw9AvXr1GDhwIDfffHOFRsLt91E/au+ipFbEjQIDA5k4cSJRUVEMHz4cMHtJvv3221XqknC2vLw8xo4dy8mTJ/H39+fOO+9k1KhRdOjQgYYNGzo+Pt27dy/t2rUDKHMUriRWqxWArl278vHHH1f4vBYtWlTqPnY13U+2Ovz444+OhLZt27bcd9999O/fn9atWxMSEuIoU3n00UeZOXNmuderru9JTbx/ymJ/bwG89dZb9O3bt0LnOZtUlrSiWGU4O7Jp56rXtSLxDBgwgN27d7NgwQK+/fZbVq5cyYEDB0hLS+OLL77giy++4NJLL+Xzzz8nODi4Uve3l9FA+b9UxcbGsn37dhYuXMjChQtZuXIlu3fvJjs7m++//57vv/+eF198kW+//bbMpN9+nwYNGlQqVvFsSmpFaoFLL72UVq1asX//fpKTkzl58qTjB4G9TvDw4cOVvu5PP/3E3r17AbNF0Jk1eGdyZkSzcePGAGRkZDiVCJSnUaNGHD58mKNHj5Z7rP3jZ3tdXW3zzjvvAGbytXbt2iI/9M9U0delvO/Jmfsr8z1xxfvH/v4F8z0cExNT4fvb31sAwcHB1fr+qk3c9V4PCgrixhtvdKz4lZCQwKJFi3j11VfZtWsX33//PQ8//DD//e9/K3XdM9/fycnJ5R7v6+vLVVddxVVXXQWY75vFixcTHx/Pxo0b2bhxI3fccUeZrb3s92ndunWlYhXPpoliIrXEmT0vzxyh6dGjBwD79u0rsoJRRfz222+Ov1933XWlHmevi62K7t27A+ZoXXVOyrAnNJs2bSpzktmxY8cc36famgTZX5chQ4aUmtBCxV8X+0e0Fdlfme+JK94/9vcvwMqVKyt8b4Bu3bo5/i2sXr26Uud6stryXo+JiWHatGmsX7+eli1bAjBv3rxKX8feUxio0spvkZGRTJw4kV9++cXxfvrmm29KLWU4syfw+eefX+n7iedSUitSC2RlZTmWGg0LCysyQmVf8hGo9AjJmT8QS5swYbPZHCOHVWFvdG8YBi+//HKVr1OeYcOGAZCSksLnn39e6nHvvfee4yNw+zm1jf11KWsSy+bNm/n1118rdL3t27cXmZB1tvfffx8wR8DOXhq1InFC1d8/Q4YMISQkBIBXX321SElBeSIiIujduzcAc+bMKTKLvi6rbe/1sLAwx2TEyk4kBbOu1f46lvcLWHnXGTRoEGC+N1NSUko87sx7XHjhhVW+n3geJbUi1SQjI4MLL7yQb775xjGDuyQ2m40777yT9PR0wEwSzxypHTZsmKNd06uvvlrmeuYnT54sMnpx5ko69vXfz/bggw+yadOmCj2nklxyySWO2fXPP/98uSM59nq5ypo4caJjtOfee+/l4MGDxY7ZunUrTz/9NGDW7No/vqxt7K/Lzz//zO7du4vtP378ODfddFOlrnn77beXmHjOmTOHb7/9FoCrrrqqUpO1XPH+adCgAXfccQdgTjq75557Sq27zc/PLzY5bPr06YDZ3uuaa64pNZEBc+JlfHw8OTk5pR7jCWr6vf7999+XWd6UmprKunXrACpVPnIme+eLbdu2kZubW+Ixq1atKvHfg11eXh4rVqwAoH79+qV+ymGPNSgoyNFGULyDampFqtG6desYOXKk44dOnz59iI6OJjQ0lJSUFDZv3sz777/vWHozPDy8xIlBH330Eb169SIjI4Nx48bx2WefFVkmd/fu3fzwww/Mnz+fHTt20KZNG8Cs1W3atCnHjh1j+vTpJCYmcvXVV9OkSRN2797NO++8w48//ki/fv2c+nh3zpw59OrVi1OnTnHdddfx8ccfc91119G+fXt8fX05duwYmzdvZuHChaxdu5Z77723yAh0RURERPD8888zdepUDhw4QM+ePXnggQfo27cvBQUFjqVDMzIysFgsvP322zU283nLli2lJn1nGjp0KK1bt+bmm29m4cKFZGZmMmjQIB544AHHLy5r1qzhxRdf5MiRI/Tp06dCPVcvuOACNmzYwAUXXMD9999P586dSU1NZf78+bz11lsAhIaG8sILL1Tqebnq/TNz5kyWLFnC9u3bee211/jll1+444476Ny5MwEBARw4cIBVq1bxySef8OSTTzJhwgTHuZdffjl33303L7/8MitXruS8885j8uTJ9O/fn8aNG5OZmcnu3btZtWoVn3/+OcnJydxyyy2Vep61TU2/1z/55BNGjhzJxRdfzCWXXEKnTp1o1KgR6enp7Nixg9dee82RWE+ePLlK9xg1ahSPP/44eXl5rFq1qsSR5R9//JGZM2cyYMAARowYQZcuXYiIiCA7O5tdu3bx5ptvOn6BuvXWW4v1/T7zOmC+f+vVq1eleMVDuW/dB5G6LTs722jevHmpq4md/Wjfvn2Zq0Jt2LDBaNWqVbnXSUhIKHLe4sWLjaCgoFKPHzx4sLFjxw7H17NmzSp27/KWyTUMw/jzzz+NTp06Vei5Pv7441X9thpPPfWUY/nYkh6BgYHG7NmzSz2/OlYUq+jjiy++cJw/ceLEUo/z9fU1XnrppXK/7/Z9M2bMKHLs2Y+wsDBj+fLl5T6PklYUc8X7xzAM4/jx48bAgQPL/R6VdL7NZjMef/xxw8/Pr9zzQ0JCqrSUq7MrxFV2ZbaKvA+dea+fuaJYaa/J2bGU95g8ebJhtVrLfW6l6dmzpwEYEydOLHF/We/hMx+jRo0q9TVOSEgwLBaLARifffZZlWMVz6SkVqQaWa1WY/Xq1cbjjz9uXHbZZUbbtm2NkJAQw9fX1wgLCzPOPfdc47rrrjPmzJlj5Obmlnu9rKws45VXXjGGDh1qNG3a1PDz8zPq169vdO7c2bj99tuNH3/8scTzduzYYYwfP96Iiooy/P39jYiICGPQoEHG22+/bVit1nJ/AFYkqTUMwygoKDDmzJljjBkzxmjdurVRr149IyAgwIiMjDQGDx5sTJ8+3di4cWOFvndl2bp1q3HbbbcZ7dq1M+rVq2eEhIT8f3t3rJNYEIZh+N8Q4ZhASAwJiRglpzCBmsKGK7BFC4gxsVJjYmdsjFAI12CHAQoToLKwsbLyBiwobCgsTGykouDbanWX3YVVWZbJvs8FzJk5M8WXc/6ZUSqV0uHh4U+hftishFpJqtVqymazikQiCoVCWllZ0dbWlu7u7iSNf+/DIez6+lrr6+uKx+MKBoNKJpPa399Xt9v9o3H8Lox9dv18r91uK5fLaWlpSaFQSJ7nyfd9bWxsqNFo/HD17LCHhwcdHR0pk8loYWFBgUBAkUhE6XRahUJBFxcXI6+DHWUWQ6308bX+njl5fn5WvV7Xzs6OMpmMEomEgsGg5ufntbq6qu3tbd3e3o4d0zjn5+cyM0Wj0V/O88vLi1qtlvb29rS2tqbl5WV5nifP85RMJrW5uamrq6uRzyiXyzIzLS4uqt/vf7rPcMsXaYKHCgIApuZb7fXp6akVi8V/2xlgjF6vZ77v29PTk9Xr9dejwyZlMBhYKpWyTqdjlUrFjo+PJ9o+Zh8bxQAAwF8XDoft5OTEzMzK5fLIDbQfcXl5aZ1Ox2KxmB0cHEy0bbiBUAsAAKZid3fXfN+3+/t7azabE2tXkp2dnZmZWalUsnA4PLG24Q5OPwAAAFMxNzdn1WrVbm5uRl4s8V6Pj4+Wy+Usn8+/HiGH/w81tQDgKGpqAeAN5QcAAABwHuUHAOAofrQBwBu+1AIAAMB5hFoAAAA4j1ALAAAA5xFqAQAA4DxCLQAAAJxHqAUAAIDzCLUAAABwHqEWAAAAzvsK2KkUsplb9NcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# filehandle = open(\"/space/poorvagarg/.julia/dev/Dice/scratch/clt_results.txt\", \"r\")\n", + "# lines = filehandle.readlines()\n", + "\n", + "x = [1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125]\n", + "y = abs_error\n", + "y2 = abs_error_dice\n", + "# annot = []\n", + "# for i in range(0,11):\n", + "# # i = 1\n", + "# cur = lines[i].split(\",\")\n", + "# # x.append(float(cur[3]))\n", + "# # y.append(float(cur[2]))\n", + "# annot.append(int(float(cur[0])))\n", + "\n", + "plt.rcParams[\"figure.figsize\"] = [7.50, 5.50]\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=20)\n", + "plt.rc('legend', fontsize=15)\n", + "fig, ax = plt.subplots()\n", + "# ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_xlabel(\"Scale of Laplace Priors (s)\")\n", + "ax.set_ylabel(\"Absolute Error\")\n", + "ax.plot(x, y, marker = \"o\")\n", + "ax.plot(x, y2, marker = \"o\")\n", + "ax.invert_xaxis()\n", + "# for i in range(11):\n", + "# ax.annotate(annot[i], (x[i], y[i]))\n", + "\n", + "# filehandle = open(\"/space/poorvagarg/.julia/dev/Dice/scratch/lpa_results.txt\", \"r\")\n", + "# lines = filehandle.readlines()\n", + "\n", + "# x = []\n", + "# y = []\n", + "# annot = []\n", + "# for i in range(0,10):\n", + "# # i = 1\n", + "# cur = lines[i].split(\",\")\n", + "# x.append(float(cur[2]))\n", + "# y.append(float(cur[1]))\n", + "# # annot.append(int(float(cur[0])))\n", + "\n", + "# # fig, ax = plt.subplots()\n", + "# # ax.set_xscale(\"log\")\n", + "# # ax.set_yscale(\"log\")\n", + "# ax.plot(x, y, marker = \"o\")\n", + "# for i in range(10):\n", + "# ax.annotate(annot[i], (x[i], y[i]))\n", + "ax.legend([\"Stan\", \"HyBit\"])\n", + "fig.savefig(\"laplace.png\", bbox_inches=\"tight\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "HMM" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20.0,8192.0,0.49999952316284085,644.264364024\n", + "\n", + "20.0,4096.0,0.49999952316284085,750.81488013\n", + "\n", + "20.0,4096.0,0.49999952316284085,878.153956142\n", + "\n", + "20.0,4096.0,0.49999952316284085,888.043005909\n", + "\n", + "20.0,4096.0,0.49999952316284085,898.366308416\n", + "\n", + "20.0,4096.0,0.49999952316284085,1108.460272711\n", + "\n", + "20.0,2048.0,0.49999952316284085,1127.572445115\n", + "\n", + "20.0,1024.0,0.49999952316284085,1146.228552747\n", + "\n", + "20.0,512.0,0.49999952316284085,1137.454751725\n", + "\n", + "20.0,128.0,0.49999952316284085,1151.042291563\n", + "\n" + ] + }, + { + "data": { + "text/plain": [ + "[9347155,\n", + " 5351134,\n", + " 4650733,\n", + " 4439753,\n", + " 3944833,\n", + " 3206363,\n", + " 3006528,\n", + " 2549115,\n", + " 2244999,\n", + " 2068424]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "benchmark = \"hmm\"\n", + "files = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]\n", + "# files = [\"results_10.txt\", \"results_5.txt\", \"results_25.txt\", \"results_125.txt\", \"results_625.txt\", \"results_3125.txt\", \"results_15625.txt\", \"results_78125.txt\"]\n", + "\n", + "slicstan_time = [13, 63, 278, 802, 1809, 3429, 6120, 11010, 17189, 26560]\n", + "iterations = []\n", + "\n", + "abs_error = []\n", + "for i in files:\n", + " stan_res = stan_accuracy(\"\", \"theta1\", gt[\"hmm\"], f\"/space/poorvagarg/benchmarks_stan/hmm/results_{i}.txt\")\n", + " abs_error.append(stan_res)\n", + " stan_iter = stan_iterations(f\"/space/poorvagarg/benchmarks_stan/hmm/results_{i}.txt\")\n", + " iterations.append(stan_iter)\n", + "\n", + "abs_error\n", + "\n", + "abs_error_dice = []\n", + "# files = [\"results_1000.0.txt\", \"results_500.0.txt\", \"results_250.0.txt\", \"results_125.0.txt\", \"results_62.5.txt\", \"results_31.25.txt\", \"results_15.625.txt\", \"results_7.8125.txt\"]\n", + "for i in files:\n", + " dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/\" + benchmark + f\"/results_{i}.txt\", gt[benchmark], 2, None)\n", + " abs_error_dice.append(dice_res)\n", + "\n", + "abs_error_dice\n", + "iterations\n", + "# abs_error" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAGwCAYAAABxbMuTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACGW0lEQVR4nO3deVxU9foH8M8szAw7IrIpICruKCpKmEspXUwzqX6lRrlkWqapUVezUrMNsyyv5c2WW3avmmblEillLqmJoCBuuIDiziIgwybbzPf3BzI6Csggw2Hg83695kVzzjNznpkh5vF8v+f5yoQQAkRERERU7+RSJ0BERETUVLHQIiIiIjITFlpEREREZsJCi4iIiMhMWGgRERERmQkLLSIiIiIzYaFFREREZCZKqRNozvR6Pa5cuQJ7e3vIZDKp0yEiIqJaEEIgPz8fnp6ekMtrPmfFQktCV65cgZeXl9RpEBERUR1cvHgRbdq0qTGGhZaE7O3tAVR8UA4ODhJnQ0RERLWRl5cHLy8vw/d4TVhoSahyuNDBwYGFFhERkYWpzbQfToYnIiIiMhMWWkRERERmwkKLiIiIyEw4R4uIiKiJ0uv1KC0tlToNi6RSqe7auqE2WGgRERE1QaWlpUhNTYVer5c6FYskl8vh6+sLlUp1T8/DQouIiKiJEUIgLS0NCoUCXl5e9XJmpjmpbCielpYGb2/ve2oqzkKLiIioiSkvL0dRURE8PT1hY2MjdToWqVWrVrhy5QrKy8thZWVV5+dpFCXu8uXL0bZtW2g0GgQFBSEuLq7G+PXr16Nz587QaDTw9/fHli1bjPYLITB//nx4eHjA2toaISEhSE5ONorJyclBeHg4HBwc4OTkhEmTJqGgoKDK46WkpMDe3h5OTk4m50JERNTQdDodANzzsFdzVvneVb6XdSV5obVu3TpERERgwYIFSEhIQM+ePREaGorMzMwq4/ft24exY8di0qRJOHToEMLCwhAWFoZjx44ZYhYvXoxly5ZhxYoViI2Nha2tLUJDQ1FcXGyICQ8Px/Hjx7Ft2zZERUVh9+7dmDJlyh3HKysrw9ixYzFw4MA65UJERCQVrqNbd/X23gmJ9evXT0ybNs1wX6fTCU9PTxEZGVll/FNPPSVGjBhhtC0oKEi88MILQggh9Hq9cHd3Fx999JFhf25urlCr1eKHH34QQgiRlJQkAIgDBw4YYrZu3SpkMpm4fPmy0XPPnj1bPPPMM+K7774Tjo6OJuVyu+LiYqHVag23ixcvCgBCq9VWGU9ERJajXKcX+1KyxMZDl8S+lCxRrtNLlsv169dFUlKSuH79umQ5WLqa3kOtVlvr729Jz2iVlpYiPj4eISEhhm1yuRwhISGIiYmp8jExMTFG8QAQGhpqiE9NTUV6erpRjKOjI4KCggwxMTExcHJyQmBgoCEmJCQEcrkcsbGxhm07duzA+vXrsXz58jrlcrvIyEg4OjoablxQmoioaYg+loYBH+7A2K/3Y+baRIz9ej8GfLgD0cfSpE6NJCZpoZWVlQWdTgc3Nzej7W5ubkhPT6/yMenp6TXGV/68W4yrq6vRfqVSCWdnZ0NMdnY2JkyYgJUrV1a7DuHdcrnd3LlzodVqDbeLFy9WGUdERJYj+lgapq5KQJq22Gh7urYYU1clWHSxpdMLxJzJxqbEy4g5kw2dXkidksWRfI5WYzV58mQ8/fTTGDRoUL09p1qtNiwgzYWkiYgsn04vsPDXJFRVflRuW/hrkkUWKFKdpbt69SqmTp0Kb29vqNVquLu7IzQ0FH///TeAirlTGzduNGsO9UnSQsvFxQUKhQIZGRlG2zMyMuDu7l7lY9zd3WuMr/x5t5jbJ9uXl5cjJyfHELNjxw58/PHHUCqVUCqVmDRpErRaLZRKJb799tta5UJERE1bXGrOHWeybiUApGmLEZea03BJ1QMpz9I98cQTOHToEL7//nucPn0amzdvxgMPPIDs7GyzHdOcJC20VCoV+vTpg+3btxu26fV6bN++HcHBwVU+Jjg42CgeALZt22aI9/X1hbu7u1FMXl4eYmNjDTHBwcHIzc1FfHy8IWbHjh3Q6/UICgoCUDH/KjEx0XB75513YG9vj8TERDz22GO1yoWIiJq2zPzqi6y6xJmLEAJFpeW1uuUXl2HB5uM1nqV7e3MS8ovLavV8QtT+bF5ubi727NmDDz/8EA8++CB8fHzQr18/zJ07F48++ijatm0LAHjssccgk8kM98+cOYNRo0bBzc0NdnZ26Nu3L/7880+j527bti0++OADPPfcc7C3t4e3tze++uor099ME0nesDQiIgLjx49HYGAg+vXrh6VLl6KwsBATJ04EAIwbNw6tW7dGZGQkAGDmzJkYPHgwlixZghEjRmDt2rU4ePCg4c2SyWSYNWsW3nvvPfj5+cHX1xfz5s2Dp6cnwsLCAABdunTBsGHDMHnyZKxYsQJlZWWYPn06xowZA09PT0PMrQ4ePAi5XI7u3bsbtt0tFyIiatpc7TX1Gmcu18t06Dr/93p5LgEgPa8Y/m//Uav4pHdCYaOqXblhZ2cHOzs7bNy4Effddx/UarXR/gMHDsDV1RXfffcdhg0bBoVCAQAoKCjA8OHD8f7770OtVuO///0vRo4ciVOnTsHb29vw+CVLluDdd9/FG2+8gZ9++glTp07F4MGD0alTp9q9+DqQfI7W6NGj8fHHH2P+/PkICAhAYmIioqOjDZPML1y4gLS0m6co+/fvjzVr1uCrr75Cz5498dNPP2Hjxo1GBdDs2bPx8ssvY8qUKejbty8KCgoQHR0NjebmL/rq1avRuXNnDB06FMOHD8eAAQNMLpBqkwsRETVd/Xyd4eGoQXUdl2QAPBw16Ofr3JBpWSylUomVK1fi+++/h5OTE+6//3688cYbOHLkCICKbu0A4OTkBHd3d8P9nj174oUXXkD37t3h5+eHd999F+3bt8fmzZuNnn/48OF46aWX0KFDB8yZMwcuLi7YuXOnWV+TTJhyTo/qVV5eHhwdHaHVajkxnojIQkUfS8OLqxKq3b/imd4Y1t2jATMCiouLkZqaCl9fX2g0GgghcL2sdh3O41JzMOG7A3eNWzmxb60KSGsrhcnNP4uLi7Fnzx7s378fW7duRVxcHL755htMmDABMpkMGzZsMIxSARVntN5++2389ttvSEtLQ3l5Oa5fv45XX30VixcvBlAxdDht2jT885//NDyuZ8+eeOKJJzB//vwqc7j1PbyVKd/fkp/RIiIismTDunvg5SEdqtxnr1Gib1vpz2bJZDLYqJS1ug30a1Wrs3QD/VrV6vnq0mFdo9HgoYcewrx587Bv3z5MmDABCxYsqDb+tddew4YNG/DBBx9gz549SExMhL+/P0pLS43ibl+zUCaTQa/Xm5yfKVhoERER3SMnm4p18fq1bYF/jQnA98/1RUdXO+QXl+P1X46aNCFcagq5DAtGdgWAO4qtyvsLRnaFQt5wy/t07doVhYWFACqKpdvXH/z7778xYcIEPPbYY/D394e7uzvOnTvXYPnVhIUWERHRPUrJzAcA3NeuJUYFtMbgjq5YOqYXrBQybEvKwPqDlyTO0DTDunvgi2d6w93ReMjM3VGDL8w4FJqdnY0hQ4Zg1apVOHLkCFJTU7F+/XosXrwYo0aNAlAxBLh9+3akp6fj2rVrAAA/Pz/88ssvSExMxOHDh/H000+b/UxVbUl+1SEREZGlS84oAAB0cLM3bOvq6YBX/9EJi7aexMJfj+O+di3h3dJGqhRNNqy7Bx7q6o641Bxk5hfD1b5iUr85z2TZ2dkhKCgIn376Kc6cOYOysjJ4eXlh8uTJeOONNwBUXDkYERGBr7/+Gq1bt8a5c+fwySef4LnnnkP//v3h4uKCOXPmIC8vz2x5moKT4SXEyfBERJZPCIGAd7ZBe70MW2cORBePm3/PdXqBsV/vR1xqDvr4tMCPLwQ3yJBbTRO5qXY4GZ6IiKgRuFpQAu31MshlgK+LrdE+hVyGJU/2hJ1aifjz17DirzMSZUlSYaFFRER0D1JuDBt6O9tAY6W4Y7+Xsw3efrQbAODTbadx7LK2QfMjabHQIiIiugfJmTfmZ7naVxvzRO/WeLi7O8r1ArPWJaK4lj2tyPKx0CIiIroHKTcKLT83u2pjZDIZ3n/MH63s1UjJLMCirScbKj2SGAstIiKie5B8o7WDn2v1hRYAONuq8NH/9QAArNx3DnuSr5o9N5IeCy0iIqJ7YDijVcPQYaUHOrni2ft8AACvrT+M3KLSuzyCLB0LLSIiojrKKSxFVkFFsdTe1fYu0RXeGN4F7VxskZFXgrc2HrOorvFkOhZaREREdVR5NqtNC2vYqGrXA9xapcCnowOgkMsQdSQNmw9fMWeKJDEWWkRERHVUOT+rw13mZ92up5cTZgzxAwC8tfEYLuder/fcmjqZTIaNGzdKncZdsdAiIiKqo8qld+42Eb4q0x5sjwAvJ+QXl+O1Hw9Dr2+EQ4h6HZC6Bzj6U8VPvfnbUkyYMAEymQwymQxWVlZwc3PDQw89hG+//dZo/cK0tDQ8/PDDZs/nXrHQIiIiqiNTJsLfTqmQ49PRAbC2UiDmbDa+/Tu1vtO7N0mbgaXdge8fAX6eVPFzafeK7WY2bNgwpKWl4dy5c9i6dSsefPBBzJw5E4888gjKy8sBAO7u7lCr1WbP5V6x0CIiIqqjykKrQw09tGri62KLeY90BQAs/v0UTqXn11tu9yRpM/DjOCDvtvljeWkV281cbKnVari7u6N169bo3bs33njjDWzatAlbt27FypUrAdw5dHjp0iWMHTsWzs7OsLW1RWBgIGJjYw37N23ahN69e0Oj0aBdu3ZYuHChoWgzJxZaREREdZBXXIb0vGIAps/RutXYfl4Y0tkVpeV6zFqXiJJyMwzPCQGUFtbuVpwHbJ0NoKqhzBvboudUxNXm+erpqsohQ4agZ8+e+OWXX+7YV1BQgMGDB+Py5cvYvHkzDh8+jNmzZxuGGvfs2YNx48Zh5syZSEpKwpdffomVK1fi/fffr5fcalK7SySIiIjISOXZLHcHDRw0VnV+HplMhkVP+GPY0j04kZaHT7adxtyHu9RXmhXKioAPPOvpyUTFma5FXrULf+MKoKpd64u76dy5M44cOXLH9jVr1uDq1as4cOAAnJ2dAQAdOnQw7F+4cCFef/11jB8/HgDQrl07vPvuu5g9ezYWLFhQL7lVh2e0iIiI6qByMemalt6pLVd7DSIf9wcAfLX7LGLPZt/zczZFQgjIZLI7ticmJqJXr16GIut2hw8fxjvvvAM7OzvDbfLkyUhLS0NRUZFZc+YZLSIiojqoa2uH6oR2c8dTgW3w48FLiPjxMLbOGnhPZ8qMWNlUnFmqjfP7gNX/d/e48J8An/61O3Y9OXHiBHx9fe/Ybm1tXePjCgoKsHDhQjz++ON37NNoNPWWX1VYaBEREdVB8j1ccVid+SO7IeZsNi7mXMfCzUlY8lTP+nlimaz2w3fthwAOnhUT36ucpyWr2N9+CCBX1E9+tbBjxw4cPXoUr7zyyh37evTogW+++QY5OTlVntXq3bs3Tp06ZTSc2FA4dEhERFQHlT206uuMFgDYqZX49KkAyGXAzwmXsPVoWr09d63JFcCwD2/cuX2Y7sb9YYvMWmSVlJQgPT0dly9fRkJCAj744AOMGjUKjzzyCMaNG3dH/NixY+Hu7o6wsDD8/fffOHv2LH7++WfExMQAAObPn4///ve/WLhwIY4fP44TJ05g7dq1eOutt8z2Giqx0CIiIjJRYUm5oZt7XZqV1iSwrTOmPtAeAPDGhqPIvHFlY4Pq+ijw1H8BBw/j7Q6eFdu7PmrWw0dHR8PDwwNt27bFsGHDsHPnTixbtgybNm2CQnFngadSqfDHH3/A1dUVw4cPh7+/PxYtWmSIDQ0NRVRUFP744w/07dsX9913Hz799FP4+PiY9XUAgExwNUvJ5OXlwdHREVqtFg4ODlKnQ0REtXT0khYjP98LFzsVDr71UL0/f2m5Ho/9+28cv5KHwR1bYeXEvlVOAq9OcXExUlNT4evre29zkPS6ijlbBRmAnVvFnKwGHC6UUk3voSnf3zyjRUREZKL6ngh/O5VSjqWjA6BWyvHX6atYtf+8WY5zV3IF4DsQ8P+/ip/NpMiqTyy0iIiITGSOifC383Ozx+sPdwYAvL/lBM5cLTDbsch8WGgRERGZKLkee2jVZHxwWwzo4ILiMj0i1iWiTKe/+4OoUWGhRUREZKIUMw8dVpLLZfj4yZ5wtLbC4UtafLYjxazHo/rHQouIiMgExWU6XMip6CZuzqHDSu6OGrwX1h0AsHxnChIuXKv1Y3m9W93V13vHQouIiMgEZ68WQi8AR2sruNipGuSYI3t6YlSAJ3R6gYh1iSgsKa8xvrKtQWlpaUOk1yRVvndVtZMwRaMotJYvX462bdtCo9EgKCgIcXFxNcavX78enTt3hkajgb+/P7Zs2WK0XwiB+fPnw8PDA9bW1ggJCUFycrJRTE5ODsLDw+Hg4AAnJydMmjQJBQU3JxqeOnUKDz74INzc3KDRaNCuXTu89dZbKCsrM8SsXLkSMpnM6GbuVv5ERCStyisO/VztTGq5cK/eGdUdHo4anMsuwvtbTtQYq1QqYWNjg6tXr6KoqAjFxcW8mXArKirC1atXYWNjA6Xy3hbRkXwJnnXr1iEiIgIrVqxAUFAQli5ditDQUJw6dQqurq53xO/btw9jx45FZGQkHnnkEaxZswZhYWFISEhA9+4Vp1YXL16MZcuW4fvvv4evry/mzZuH0NBQJCUlGQqh8PBwpKWlYdu2bSgrK8PEiRMxZcoUrFmzBgBgZWWFcePGoXfv3nBycsLhw4cxefJk6PV6fPDBB4Z8HBwccOrUKcP9hvyfjoiIGl5KZsNMhL+do7UVljzZE09/E4s1sRcQ0sUVQzq7VRkrk8ng4eGB1NRUnD8vUWsICyeXy+Ht7X3P3+uSNywNCgpC37598fnnnwMA9Ho9vLy88PLLL+P111+/I3706NEoLCxEVFSUYdt9992HgIAArFixAkIIeHp64tVXX8Vrr70GANBqtXBzc8PKlSsxZswYnDhxAl27dsWBAwcQGBgIoKIL7fDhw3Hp0iV4enpWmWtERAQOHDiAPXv2AKg4ozVr1izk5ubW6bWzYSkRkeWZuioeW4+lY94jXTFpwJ0LHJvbe1FJ+GZvKlzs1Ph91kC0tFNXG6vX6zl8WEcqlQpyedUDf6Z8f0t6Rqu0tBTx8fGYO3euYZtcLkdISIhhfaLbxcTEICIiwmhbaGgoNm7cCABITU1Feno6QkJCDPsdHR0RFBSEmJgYjBkzBjExMXBycjIUWQAQEhICuVyO2NhYPPbYY3ccNyUlBdHR0Xes/F1QUAAfHx/o9Xr07t0bH3zwAbp161Zl7iUlJSgpKTHcz8vLq+adISKixupmD62GPaNV6bXQTtiTnIVTGfmY+8tRfPlsn2rPusjlck5pkZikc7SysrKg0+ng5mZ86tPNzQ3p6elVPiY9Pb3G+Mqfd4u5fVhSqVTC2dn5juP2798fGo0Gfn5+GDhwIN555x3Dvk6dOuHbb7/Fpk2bsGrVKuj1evTv3x+XLl2qMvfIyEg4Ojoabl5eXlXGERFR41Rarse5rEIADT90WEljpcCnowNgpZDhj6QMrD9Y9XcONQ6NYjJ8Y7Zu3TokJCRgzZo1+O233/Dxxx8b9gUHB2PcuHEICAjA4MGD8csvv6BVq1b48ssvq3yuuXPnQqvVGm4XL15sqJdBRET14Hx2Icr1AnZqJdwdpDtT1NXTAa/+oxMAYOGvx3Ehu0iyXKhmkhZaLi4uUCgUyMjIMNqekZEBd3f3Kh/j7u5eY3zlz7vFZGZmGu0vLy9HTk7OHcf18vJC165dMXbsWCxatAhvv/02dDpdlblZWVmhV69eSEmpuqGcWq2Gg4OD0Y2IiCxH5bBhhwa+4rAqkwe2Q7+2zigs1SHix0To9OyZ1RhJWmipVCr06dMH27dvN2zT6/XYvn07goODq3xMcHCwUTwAbNu2zRDv6+sLd3d3o5i8vDzExsYaYoKDg5Gbm4v4+HhDzI4dO6DX6xEUFFRtvnq9HmVlZdDrq14CQafT4ejRo/Dw8LjLKyciIktkWHpHovlZt1LIZVjyVE/YqZU4eP4aVvx1RuqUqAqSt3eIiIjA+PHjERgYiH79+mHp0qUoLCzExIkTAQDjxo1D69atERkZCQCYOXMmBg8ejCVLlmDEiBFYu3YtDh48iK+++gpAxSWts2bNwnvvvQc/Pz9DewdPT0+EhYUBALp06YJhw4Zh8uTJWLFiBcrKyjB9+nSMGTPGcMXh6tWrYWVlBX9/f6jVahw8eBBz587F6NGjYWVlBQB45513cN9996FDhw7Izc3FRx99hPPnz+P5559v4HeRiIgaQnIDLb1TW17ONnj70W54bf1hfLrtNAZ3bIXurR2lTotuIXmhNXr0aFy9ehXz589Heno6AgICEB0dbZjMfuHCBaPLK/v37481a9bgrbfewhtvvAE/Pz9s3LjR0EMLAGbPno3CwkJMmTIFubm5GDBgAKKjo42uvFi9ejWmT5+OoUOHQi6X44knnsCyZcsM+5VKJT788EOcPn0aQgj4+Phg+vTpeOWVVwwx165dw+TJk5Geno4WLVqgT58+2LdvH7p27WrOt4yIiCQiVQ+tmjzRuzW2n8jA1mPpmLUuEVEvD4DG6t66mVP9kbyPVnPGPlpERJajXKdH1wW/o7Rcjz2zH4SXs43UKRnkFJYidOluXM0vwcT722LByKrbDFH9MOX7m1cdEhER1cLFa9dRWq6HxkqO1k7WUqdjxNlWhY/+rwcA4Lu/z2FvcpbEGVElFlpERES1kJxxc36WXN74llt7oJMrnr3PBwDw2vrDyC1iR/jGgIUWERFRLdzsCG8vcSbVe2N4F7RzsUV6XjHmbToudToEFlpERES1knJLD63GylpV0TVeIZfh18NXsCnxstQpNXsstIiIiGqhsrVDY+ihVZOeXk6YMcQPAPDWxmO4kntd4oyaNxZaREREd6HXC4s4o1Vp2oPtEeDlhPzicry2/jD07BovGRZaREREd3E59zqKy/RQKeTwbkRtHaqjVMjx6egAWFspsO9MNr79O1XqlJotFlpERER3UTls2K6VLZQKy/jq9HWxxVuPdAEALP79FE6l50ucUfNkGb8tREREErKkYcNbPd3PG0M6u6K0XI9Z6xJRUq6TOqVmh4UWERHRXdxcTLrxtnaoikwmw6In/OFsq8KJtDx8ui1Z6pSaHRZaREREd5HcCNc4rC1Xew0iH/cHAHy5+wziUnMkzqh5YaFFRERUAyFuXnHY2Fs7VCe0mzueCmwDIYBX1iUiv7hM6pSaDRZaRERENUjPK0ZBSTmUchl8WtpKnU6dzR/ZDV7O1ricex0Lf02SOp1mg4UWERFRDSrnZ7V1sYVKablfm3ZqJT59KgByGfBT/CVEH0uTOqVmwXJ/Y4iIiBpA5fysDq0sc9jwVoFtnfHi4PYAgLm/HEVmXrHEGTV9LLSIiIhqkFK59I4FToSvyqyQjujm6YBrRWWY/fMRCMGu8ebEQouIiKgGltpDqzoqpRxLRwdArZRj16mrWBV7QeqUmjQWWkRERNUQQuC0hfbQqomfmz1ef7gzAOD935Jw9mqBxBk1XSy0iIiIqpFVUArt9TLIZRXL7zQl44PbYkAHFxSX6fHKukSU6fRSp9QksdAiIiKqRuUah97ONtBYKSTOpn7J5TJ8/GRPOFpb4fAlLT7fkSJ1Sk0SCy0iIqJq3Jyf1XSGDW/l7qjBe2HdAQCf70zBoQvXJM6o6WGhRUREVA3DGodN5IrDqozs6YlRAZ7Q6YWha3zMmWxsSryMmDPZ0Ol5VeK9UEqdABERUWNVOXTYFHpo1eSdUd0Rl5qDc9lFCPpgO4pKdYZ9Ho4aLBjZFcO6e0iYoeXiGS0iIqJqpFjwYtKmcLS2wuhALwAwKrIAIF1bjKmrEthJvo5YaBEREVXhWmEpsgpKAQDtm/gZLZ1eYN3Bi1Xuqxw4XPhrEocR64CFFhERURVSbvSWau1kDVt1055pE5eagzRt9cvxCABp2mLEpeY0XFJNBAstIiKiKjSHifCVMvNrt+ZhbePoJhZaREREVaicCO/XRJbeqYmrvaZe4+gmFlpERERVMEyEb6I9tG7Vz9cZHo4ayKrZL0PF1Yf9fJ0bMq0mgYUWERFRFSqHDjs0g6FDhVyGBSO7AsAdxVbl/QUju0Ihr64Uo+qw0CIiIrpNXnEZ0vMq5iN1aAZDhwAwrLsHvnimN9wdjYcH3Rw0+OKZ3uyjVUdN+zIKIiKiOqgcNnRzUMNBYyVxNg1nWHcPPNTVHXGp2XhpdQKuFZXhg8e6Y0gXN6lTs1iN4ozW8uXL0bZtW2g0GgQFBSEuLq7G+PXr16Nz587QaDTw9/fHli1bjPYLITB//nx4eHjA2toaISEhSE5ONorJyclBeHg4HBwc4OTkhEmTJqGgoMCw/9SpU3jwwQfh5uYGjUaDdu3a4a233kJZWZlJuRARkeVJyWg+87Nup5DLENzeBaHd3AEAe1OyJc7IskleaK1btw4RERFYsGABEhIS0LNnT4SGhiIzM7PK+H379mHs2LGYNGkSDh06hLCwMISFheHYsWOGmMWLF2PZsmVYsWIFYmNjYWtri9DQUBQX37wsNTw8HMePH8e2bdsQFRWF3bt3Y8qUKYb9VlZWGDduHP744w+cOnUKS5cuxddff40FCxaYlAsREVmeyh5azWXYsCqDOrYCAOxOvipxJhZOSKxfv35i2rRphvs6nU54enqKyMjIKuOfeuopMWLECKNtQUFB4oUXXhBCCKHX64W7u7v46KOPDPtzc3OFWq0WP/zwgxBCiKSkJAFAHDhwwBCzdetWIZPJxOXLl6vN9ZVXXhEDBgyodS63Ky4uFlqt1nC7ePGiACC0Wm21xyQiooY34dtY4TMnSqzaf07qVCSTW1gqfF+PEj5zosTla0VSp9OoaLXaWn9/S3pGq7S0FPHx8QgJCTFsk8vlCAkJQUxMTJWPiYmJMYoHgNDQUEN8amoq0tPTjWIcHR0RFBRkiImJiYGTkxMCAwMNMSEhIZDL5YiNja3yuCkpKYiOjsbgwYNrncvtIiMj4ejoaLh5eXlVGUdERNJKbkatHarjaGOFnl5OAIA9PKtVZ5IWWllZWdDpdHBzM55k5+bmhvT09Cofk56eXmN85c+7xbi6uhrtVyqVcHZ2vuO4/fv3h0ajgZ+fHwYOHIh33nmn1rncbu7cudBqtYbbxYtVrytFRETSKSotx6Vr1wE0j2alNRnkd2P48HSWxJlYLsnnaDV269atQ0JCAtasWYPffvsNH3/8cZ2fS61Ww8HBwehGRESNy5nMQgCAi50KLWxVEmcjrcp5WntTsrigdB1J2t7BxcUFCoUCGRkZRtszMjLg7u5e5WPc3d1rjK/8mZGRAQ8PD6OYgIAAQ8ztk+3Ly8uRk5Nzx3Erh/e6du0KnU6HKVOm4NVXX4VCobhrLkREZHkql95pzhPhK/Vs4wh7jRLa62U4cikXvbxbSJ2SxZH0jJZKpUKfPn2wfft2wza9Xo/t27cjODi4yscEBwcbxQPAtm3bDPG+vr5wd3c3isnLy0NsbKwhJjg4GLm5uYiPjzfE7NixA3q9HkFBQdXmq9frUVZWBr1eX6tciIjI8lTOz2KhBSgVcgzo4AKAw4d1JXnD0oiICIwfPx6BgYHo168fli5disLCQkycOBEAMG7cOLRu3RqRkZEAgJkzZ2Lw4MFYsmQJRowYgbVr1+LgwYP46quvAAAymQyzZs3Ce++9Bz8/P/j6+mLevHnw9PREWFgYAKBLly4YNmwYJk+ejBUrVqCsrAzTp0/HmDFj4OnpCQBYvXo1rKys4O/vD7VajYMHD2Lu3LkYPXo0rKysapULERFZnuRm3EOrKoM6tsLWY+nYk3wVM0P8pE7H4kheaI0ePRpXr17F/PnzkZ6ejoCAAERHRxsmmV+4cAFy+c0Tb/3798eaNWvw1ltv4Y033oCfnx82btyI7t27G2Jmz56NwsJCTJkyBbm5uRgwYACio6Oh0dxcVmD16tWYPn06hg4dCrlcjieeeALLli0z7Fcqlfjwww9x+vRpCCHg4+OD6dOn45VXXjEpFyIisiwpN4YOm/tE+EoD/SrOaB26mIu84rJm1Sm/PsiEEJzdJpG8vDw4OjpCq9VyYjwRUSNQXKZD1/nR0Asg7s2hcLXX3P1BzcCQJbtw9mohVnDNQwCmfX/zqkMiIqIbUrMKoReAo7UVWtmppU6n0TC0eUjmPC1TsdAiIiK64WajUjvIZDKJs2k8BnWsnBB/FRwIMw0LLSIiohtSMm7Mz3Lj/Kxb3deuJVQKOS5du47UrEKp07EoLLSIiIhuuNnagVcc3spGpURg24oeWns4fGgSFlpEREQ33Dp0SMYGGpbj4bqHpmChRUREBKC0XI9zN4bF2Kz0TpXztGLOZqO0XC9xNpaDhRYRERGA89mFKNcL2KoU8HBkW4fbdXF3gIudGkWlOsSfvyZ1OhaDhRYRERGAlMr5WW72vOKwCnK5zNC8dHcyhw9ri4UWEREROD+rNm5t80C1w0KLiIgILLRqY0CHignxx6/kIaugROJsLAMLLSIiIgDJ7KF1V63s1ejqUbHkzF62eagVFlpERNTslev0OHvjikM/9tCq0aCObPNgChZaRETU7F28dh2l5XporORo7WQtdTqN2iDDhPgsLsdTCyy0iIio2ascNuzgage5nFcc1qRP2xawtlIgq6AEJ9LypU6n0WOhRUREzZ5h6Z1WnJ91N2qlAsHtWwJgm4faYKFFRETNXmUPLT83zs+qjcp+WntYaN0VCy0iImr2DM1K2dqhVionxB9IvYai0nKJs2ncWGgREVGzpteLm2e0WGjVSjsXW7R2skapTo/YszlSp9OosdAiIqJm7XLudVwv00GlkMPb2UbqdCyCTCa72SWew4c1YqFFRETNWuXZrHatbKFU8Guxtgb5sZ9WbfA3ioiImrXkzJutHaj2+ndwgVwGnLlaiMu516VOp9FioUVERM1ackbl/CxecWgKR2srBHg5AQD28KxWtVhoERFRs5bMKw7rzLAcD+dpVYuFFhERNVtC3HLFIReTNlllobU3OQvlOr3E2TROLLSIiKjZysgrQUFJORRyGdq2tJU6HYvTo7UjHDRK5BWX48hlrdTpNEostIiIqNmqnAjftqUNVEp+JZpKqZBjQOUi05ynVSX+VhERUbPFifD3jm0easZCi4iImq1kzs+6ZwNvzNNKvJgL7fUyibNpfFhoERFRs5XCHlr3rLWTNdq3soVeAPtSsqROp9FhoUVERM2SEAKnOXRYL9jmoXostIiIqFnKKiiF9noZ5LKK5Xeo7m7O08qCEELibBoXkwqtsrIyKJVKHDt2rF6TWL58Odq2bQuNRoOgoCDExcXVGL9+/Xp07twZGo0G/v7+2LJli9F+IQTmz58PDw8PWFtbIyQkBMnJyUYxOTk5CA8Ph4ODA5ycnDBp0iQUFBQY9u/atQujRo2Ch4cHbG1tERAQgNWrVxs9x8qVKyGTyYxuGo3mHt8NIiJqCJVXHHo520BjpZA4G8sW1M4ZKoUcl3Ov42xWodTpNComFVpWVlbw9vaGTqertwTWrVuHiIgILFiwAAkJCejZsydCQ0ORmZlZZfy+ffswduxYTJo0CYcOHUJYWBjCwsKMir/Fixdj2bJlWLFiBWJjY2Fra4vQ0FAUFxcbYsLDw3H8+HFs27YNUVFR2L17N6ZMmWJ0nB49euDnn3/GkSNHMHHiRIwbNw5RUVFG+Tg4OCAtLc1wO3/+fL29N0REZD6GRqWcn3XPbFRK9PVtAYDL8dxBmOibb74Rw4cPF9nZ2aY+tEr9+vUT06ZNM9zX6XTC09NTREZGVhn/1FNPiREjRhhtCwoKEi+88IIQQgi9Xi/c3d3FRx99ZNifm5sr1Gq1+OGHH4QQQiQlJQkA4sCBA4aYrVu3CplMJi5fvlxtrsOHDxcTJ0403P/uu++Eo6Nj7V/sbbRarQAgtFptnZ+DiIjqZt7Go8JnTpSI3HJC6lSahC92pQifOVFi4ndxUqdidqZ8f5s8R+vzzz/H7t274enpiU6dOqF3795GN1OUlpYiPj4eISEhhm1yuRwhISGIiYmp8jExMTFG8QAQGhpqiE9NTUV6erpRjKOjI4KCggwxMTExcHJyQmBgoCEmJCQEcrkcsbGx1ear1Wrh7OxstK2goAA+Pj7w8vLCqFGjcPz48WofX1JSgry8PKMbERFJ42YPLZ7Rqg+V87RizmSjpLz+Rr4sndLUB4SFhdXbwbOysqDT6eDm5ma03c3NDSdPnqzyMenp6VXGp6enG/ZXbqspxtXV1Wi/UqmEs7OzIeZ2P/74Iw4cOIAvv/zSsK1Tp0749ttv0aNHD2i1Wnz88cfo378/jh8/jjZt2tzxHJGRkVi4cGGVz09ERA2LPbTqVxcPe7jYqZFVUIL489fQv72L1Ck1CiYXWgsWLDBHHo3azp07MXHiRHz99dfo1q2bYXtwcDCCg4MN9/v3748uXbrgyy+/xLvvvnvH88ydOxcRERGG+3l5efDy8jJv8kREdIdrhaXIKigBALRvxUKrPshkMgzyc8Evhy5j9+ksFlo31Lm9Q3x8PFatWoVVq1bh0KFDdXoOFxcXKBQKZGRkGG3PyMiAu7t7lY9xd3evMb7y591ibp9sX15ejpycnDuO+9dff2HkyJH49NNPMW7cuBpfj5WVFXr16oWUlJQq96vVajg4OBjdiIio4aVcrTib1drJGrZqk885UDUM/bQ4Id7A5EIrMzMTQ4YMQd++fTFjxgzMmDEDffr0wdChQ3H1qmlvrEqlQp8+fbB9+3bDNr1ej+3btxudKbpVcHCwUTwAbNu2zRDv6+sLd3d3o5i8vDzExsYaYoKDg5Gbm4v4+HhDzI4dO6DX6xEUFGTYtmvXLowYMQIffvih0RWJ1dHpdDh69Cg8PDxq8eqJiEgqhvlZHDasV5ULTCel5eFqfonE2TQOJhdaL7/8MvLz83H8+HHk5OQgJycHx44dQ15eHmbMmGFyAhEREfj666/x/fff48SJE5g6dSoKCwsxceJEAMC4ceMwd+5cQ/zMmTMRHR2NJUuW4OTJk3j77bdx8OBBTJ8+HUDFqctZs2bhvffew+bNm3H06FGMGzcOnp6ehvllXbp0wbBhwzB58mTExcXh77//xvTp0zFmzBh4enoCqBguHDFiBGbMmIEnnngC6enpSE9PR05OjiGXd955B3/88QfOnj2LhIQEPPPMMzh//jyef/55k98HIiJqOJU9tDpw2LBeudip0c2zYrRmbwrPagEwvb2Dg4ODiIu789LN2NjYOrc6+Oyzz4S3t7dQqVSiX79+Yv/+/YZ9gwcPFuPHjzeK//HHH0XHjh2FSqUS3bp1E7/99pvRfr1eL+bNmyfc3NyEWq0WQ4cOFadOnTKKyc7OFmPHjhV2dnbCwcFBTJw4UeTn5xv2jx8/XgC44zZ48GBDzKxZswx5u7m5ieHDh4uEhIRav262dyAiksYz3+wXPnOixNq481Kn0uQs2npC+MyJErPWHpI6FbMx5ftbJoRpvfLt7e2xZ88eBAQEGG0/dOgQBg8ezJYFJsjLy4OjoyO0Wi3naxERNaDgyO1I0xbj56n90cenhdTpNCkxZ7Ix9uv9cLFTI+6NoZDLZVKnVO9M+f42eehwyJAhmDlzJq5cuWLYdvnyZbzyyisYOnSo6dkSERE1oPziMqRpK1YK6cAeWvWuj08L2KgUyCoowYl0nnypU8PSvLw8tG3bFu3bt0f79u3h6+uLvLw8fPbZZ+bIkYiIqN5ULr3j5qCGo7WVxNk0PSqlHMHtWgKoWGS6uTP5mlYvLy8kJCTgzz//NDQV7dKlyx3d2omIiBojQ6NSV3uJM2m6BnVshe0nM7En+SqmPtBe6nQkZVKhVVZWBmtrayQmJuKhhx7CQw89ZK68iIiIzKLyjBaHDc1n4I02DwfPXUNRaTlsVM23V5lJQ4dWVlbw9vaGTsc1jIiIyDIlZ1S0dmAPLfPxdbFFmxbWKNXpsf9sttTpSMrkOVpvvvkm3njjDaN+UkRERJaCQ4fmJ5PJbukS37znaZl8Lu/zzz9HSkoKPD094ePjA1tbW6P9CQkJ9ZYcERFRfSoqLcela9cBcOjQ3Ab5uWBN7AXsTm7ejUtNLrQqu6sTERFZmjOZhQCAlrYqONuqJM6maevfwQUKuQxnrxbi0rUitGlhI3VKkjCp0CovL4dMJsNzzz2HNm3amCsnIiIis0i5emPpHZ7NMjsHjRV6eTnh4Plr2JOchbH9vKVOSRImzdFSKpX46KOPUF5ebq58iIiIzIaLSTesgX6V87Sa7/BhnTrD//XXX+bIhYiIyKw4Eb5hDepY0eZhb0oWynV6ibORhslztB5++GG8/vrrOHr0KPr06XPHZPhHH3203pIjIiKqTymGQotntBpCjzZOcLS2gvZ6GQ5f0jbLdSVNLrReeuklAMAnn3xyxz6ZTMYeW0RE1CgVl+lwPrtiMnwHDh02CIVchgEdXPDb0TTsPn21WRZaJg8d6vX6am8ssoiIqLFKzSqEXgCO1lZoZaeWOp1mo3L4sLm2eTC50CIiIrJEybcsvSOTySTOpvmonBB/+GIutEVlEmfT8GpdaA0fPhxardZwf9GiRcjNzTXcz87ORteuXes1OSIiovqSUrn0DudnNShPJ2t0cLWDXgB/n2l+XeJrXWj9/vvvKCkpMdz/4IMPjJbhKS8vx6lTp+o3OyIionqScpWLSUtlUDNu81DrQksIUeN9IiKixuxmDy22dmholfO09iRnNbv6gXO0iIioySvT6ZGaVXHFIYcOG16Qb0uolHJczr2OM1cLpU6nQdW60JLJZHdMHuRkQiIisgTnswtRrhewVSng4aiROp1mx1qlQL+2zgCa3/BhrftoCSEwYcIEqNUVl8QWFxfjxRdfNDQsvXX+FhERUWNSOWzYwc2eJwkkMqijC/amZGFP8lU8N8BX6nQaTK0LrfHjxxvdf+aZZ+6IGTdu3L1nREREVM+S2RFechVtHk5i/9kclJTroFYqpE6pQdS60Pruu+/MmQcREZHZsNCSXmd3e7jaq5GZX4KD567h/g4uUqfUIDgZnoiImrzkGz202NpBOjKZzNC8tDl1iWehRURETZpOL3DWcMUhWztIybAcz+nm07iUhRYRETVpF3OKUFquh8ZKjtYtrKVOp1kb0MEFMhlwIi0PmfnFUqfTIFhoERFRk1Y5P6t9Kzso5LziUEot7dTo7ukIANib3DzOarHQIiKiJi05k2scNiYD/SqHD5vHPK06FVr/+9//cP/998PT0xPnz58HACxduhSbNm2q1+SIiIjuVQqX3mlUBnWsmBC/JzkLen3TX47H5ELriy++QEREBIYPH47c3FzodDoAgJOTE5YuXVrf+REREd2TyqFDXnHYOPT2bgFblQLZhaVISsuTOh2zM7nQ+uyzz/D111/jzTffhEJxs9lYYGAgjh49Wq/JERER3Qu9XiCFPbQaFZVSjuD2LQE0jzYPJhdaqamp6NWr1x3b1Wo1Cgub10KRRETUuF3OvY7rZTqoFHJ4O9tInQ7dUDl82BzmaZlcaPn6+iIxMfGO7dHR0ejSpUudkli+fDnatm0LjUaDoKAgxMXF1Ri/fv16dO7cGRqNBv7+/tiyZYvRfiEE5s+fDw8PD1hbWyMkJATJyclGMTk5OQgPD4eDgwOcnJwwadIkFBQUGPbv2rULo0aNgoeHB2xtbREQEIDVq1ebnAsREUmn8myWr4stlApe/9VYDLrRuDT+/DUUlpRLnI15mfxbFxERgWnTpmHdunUQQiAuLg7vv/8+5s6di9mzZ5ucwLp16xAREYEFCxYgISEBPXv2RGhoKDIzM6uM37dvH8aOHYtJkybh0KFDCAsLQ1hYGI4dO2aIWbx4MZYtW4YVK1YgNjYWtra2CA0NRXHxzZ4d4eHhOH78OLZt24aoqCjs3r0bU6ZMMTpOjx498PPPP+PIkSOYOHEixo0bh6ioKJNyISIi6VQWWh3cOGzYmPi0tIGXszXKdAL7z2ZLnY55iTpYtWqV6NChg5DJZEImk4nWrVuLb775pi5PJfr16yemTZtmuK/T6YSnp6eIjIysMv6pp54SI0aMMNoWFBQkXnjhBSGEEHq9Xri7u4uPPvrIsD83N1eo1Wrxww8/CCGESEpKEgDEgQMHDDFbt24VMplMXL58udpchw8fLiZOnFjrXG5XXFwstFqt4Xbx4kUBQGi12mqPSUREdffP9YnCZ06U+HTbKalTodu88csR4TMnSszfeFTqVEym1Wpr/f1dp/Oo4eHhSE5ORkFBAdLT03Hp0iVMmjTJ5OcpLS1FfHw8QkJCDNvkcjlCQkIQExNT5WNiYmKM4gEgNDTUEJ+amor09HSjGEdHRwQFBRliYmJi4OTkhMDAQENMSEgI5HI5YmNjq81Xq9XC2dm51rncLjIyEo6Ojoabl5dXtcciIqJ7d3MxabZ2aGxubfPQlJlcaA0ZMgS5ubkAABsbG7i6ugIA8vLyMGTIEJOeKysrCzqdDm5ubkbb3dzckJ6eXuVj0tPTa4yv/Hm3mMq8KymVSjg7O1d73B9//BEHDhzAxIkTa53L7ebOnQutVmu4Xbx4sco4IiK6d0KIW3poceiwsQlu3xIKuQxnswpxMadI6nTMxuRCa9euXSgtLb1je3FxMfbs2VMvSTU2O3fuxMSJE/H111+jW7dudX4etVoNBwcHoxsREZlHRl4J8kvKoZDL0LalrdTp0G0cNFbo7e0EoGm3eVDWNvDIkSOG/05KSjI6a6PT6RAdHY3WrVubdHAXFxcoFApkZGQYbc/IyIC7u3uVj3F3d68xvvJnRkYGPDw8jGICAgIMMbdPti8vL0dOTs4dx/3rr78wcuRIfPrppxg3bpxJuRARkXQql95p29IGKiWvOGyMBvm1woFz17DndBbCg3ykTscsav2bFxAQgF69ekEmk2HIkCEICAgw3Pr06YP33nsP8+fPN+ngKpUKffr0wfbt2w3b9Ho9tm/fjuDg4CofExwcbBQPANu2bTPE+/r6wt3d3SgmLy8PsbGxhpjg4GDk5uYiPj7eELNjxw7o9XoEBQUZtu3atQsjRozAhx9+aHRFYm1zISIi6SRncH5WYzfwxjytv89koVynlzgb86j1Ga3U1FQIIdCuXTvExcWhVatWhn0qlQqurq5GneJrKyIiAuPHj0dgYCD69euHpUuXorCw0DAXaty4cWjdujUiIyMBADNnzsTgwYOxZMkSjBgxAmvXrsXBgwfx1VdfAQBkMhlmzZqF9957D35+fvD19cW8efPg6emJsLAwAECXLl0wbNgwTJ48GStWrEBZWRmmT5+OMWPGwNPTE0DFcOEjjzyCmTNn4oknnjCcwVOpVIYJ8XfLhYiIpMOldxo//9aOcLKxQm5RGRIv5iKwrfPdH2RpzH4NZC189tlnwtvbW6hUKtGvXz+xf/9+w77BgweL8ePHG8X/+OOPomPHjkKlUolu3bqJ3377zWi/Xq8X8+bNE25ubkKtVouhQ4eKU6eML+3Nzs4WY8eOFXZ2dsLBwUFMnDhR5OfnG/aPHz9eALjjNnjwYJNyqYkpl4cSEZFpnvxin/CZEyU2HrokdSpUg2mr44XPnCix5A/LacFhyve3TAhh0tLZ//3vf2vcf/s8JqpeXl4eHB0dodVqOTGeiKgeCSHQ691tyC0qw28zBqCbp6PUKVE1fjxwEbN/PoIALydsnHa/1OnUiinf37UeOqw0c+ZMo/tlZWUoKiqCSqWCjY0NCy0iIpJcdmEpcovKIJMB7Vtx6LAxG9jRBQBw5FIucotK4WSjkjij+mXyZRjXrl0zuhUUFODUqVMYMGAAfvjhB3PkSEREZJLKifDezjbQWJk+f5gajoejNfxc7aAXwN8pTW85nnq53tXPzw+LFi2642wXERGRFFJutHbw40R4i1DZJX736abXT6veGosolUpcuXKlvp6OiIiozm5eccjWDpbAUGglX4WJU8cbPZPnaG3evNnovhACaWlp+Pzzz3H//ZYxiY2IiJq2mz20eEbLEvRr6wyVUo40bTHOXC1oUgWyyYVWZS+qSjKZDK1atcKQIUOwZMmS+sqLiIiozthDy7JYqxQI8nXGnuQs/HU6q3kXWnp90+zcSkRETUNuUSmyCkoAAO1ZaFmMQX6tsCc5C7tPX8WkAb5Sp1NvuPgTERE1KSk3zma1drKGndrk8wkkkco2D7Gp2Sgu00mcTf2p1W9gRERErZ/wk08+qXMyRERE94rDhpapk5s93BzUyMgrwcFz1zDAz0XqlOpFrQqtQ4cO1erJZDLZPSVDRER0rzgR3jLJZDIM9GuFn+IvYXfy1eZVaO3cudPceRAREdWL5MoeWm4stCzNQD+XikLr9FW8MbyL1OnUi3uao3Xp0iVcunSpvnIhIiK6ZynsoWWxBvq1gkwGnEzPR2ZesdTp1AuTCy29Xo933nkHjo6O8PHxgY+PD5ycnPDuu+/yikQiIpJUfnEZ0rQVX9Cco2V5nG1V8G9dsQD47uQsibOpHyZfjvHmm2/iP//5DxYtWmRoULp37168/fbbKC4uxvvvv1/vSRIREdVG5dksNwc1HK2tJM6G6mKgnwuOXNJiT/JV/F+fNlKnc89MLrS+//57fPPNN3j00UcN23r06IHWrVvjpZdeYqFFRESS4RWHlm+QXyss33kGe5KzoNcLyOWWfaGdyUOHOTk56Ny58x3bO3fujJycnHpJioiIqC7OZFZeccj5WZaqt08L2KoUyCksxfEreVKnc89MLrR69uyJzz///I7tn3/+OXr27FkvSREREdUFz2hZPiuFHMHtK1o77E6+KnE2987kocPFixdjxIgR+PPPPxEcHAwAiImJwcWLF7Fly5Z6T5CIiKi2DK0dWGhZtMEdXfDniQzsPn0V0x7sIHU698TkM1qDBw/G6dOn8dhjjyE3Nxe5ubl4/PHHcerUKQwcONAcORIREd1VUWk5Ll27DgDwc+PQoSUb1LEVACD+/DUUlJRLnM29qdMiUJ6enpz0TkREjcrZq4UQAmhpq4KzrUrqdOge+LS0hbezDS7kFGH/mWyEdHWTOqU6M/mMVnR0NPbu3Wu4v3z5cgQEBODpp5/GtWvX6jU5IiKi2qocNuT8rKZhUMemMU/L5ELrn//8J/LyKq4COHr0KCIiIjB8+HCkpqaatPg0ERFRfTKsccild5qEQX4Vw4e7T1t2oWXy0GFqaiq6du0KAPj5558xcuRIfPDBB0hISMDw4cPrPUEiIqLaSGZrhyYluH1LKOUynMsuwoXsIni3tJE6pTox+YyWSqVCUVERAODPP//EP/7xDwCAs7Oz4UwXERFRQ0tha4cmxV5jhd7eLQBY9vChyYXWgAEDEBERgXfffRdxcXEYMWIEAOD06dNo08byW+UTEZHlKSnX4Xx2IQC2dmhKDPO0LHj40ORC6/PPP4dSqcRPP/2EL774Aq1btwYAbN26FcOGDav3BImIiO4mNasQegE4aJRoZa+WOh2qJwNvzNOKOZONMp1e4mzqxuQ5Wt7e3oiKirpj+6efflovCREREZnq5kR4e8hklr02Ht3UvbUjWthY4VpRGRIv5qJvW2epUzJZnfpo6XQ6bNiwASdOnAAAdOnSBWFhYVAq6/R0RERE9+TmRHgOGzYlCrkMA/xa4dfDV7D79FWLLLRMHjo8fvw4/Pz8MH78eGzYsAEbNmzAhAkT4Ofnh2PHjpkjRyIiohqlsIdWkzXQr7KfVpbEmdSNyYXW888/j+7du+PSpUtISEhAQkICLl68iB49emDKlCnmyJGIiKhGtw4dUtNS2U/ryKVcXCsslTgb05lcaCUmJiIyMhItWrQwbGvRogXef/99HDp0qF6TIyIiupsynR6pWbzisKlyd9Sgk5s9hAD2pljeWS2TC62OHTsiIyPjju2ZmZno0MH0FbaXL1+Otm3bQqPRICgoCHFxcTXGr1+/Hp07d4ZGo4G/vz+2bNlitF8Igfnz58PDwwPW1tYICQlBcnKyUUxOTg7Cw8Ph4OAAJycnTJo0CQUFBYb9xcXFmDBhAvz9/aFUKhEWFnZHHrt27YJMJrvjlp6ebvJ7QEREdXc+uxDlegFblQIejhqp0yEzqBw+3GOB/bRqVWjl5eUZbpGRkZgxYwZ++uknXLp0CZcuXcJPP/2EWbNm4cMPPzTp4OvWrUNERAQWLFiAhIQE9OzZE6GhocjMzKwyft++fRg7diwmTZqEQ4cOISwsDGFhYUZzwxYvXoxly5ZhxYoViI2Nha2tLUJDQ1FcXGyICQ8Px/Hjx7Ft2zZERUVh9+7dRsOeOp0O1tbWmDFjBkJCQmp8DadOnUJaWprh5urqatJ7QERE9+bWRqW84rBpGtSxcjmeLAghJM7GRKIWZDKZkMvlhptMJjPadut9U/Tr109MmzbNcF+n0wlPT08RGRlZZfxTTz0lRowYYbQtKChIvPDCC0IIIfR6vXB3dxcfffSRYX9ubq5Qq9Xihx9+EEIIkZSUJACIAwcOGGK2bt0qZDKZuHz58h3HHD9+vBg1atQd23fu3CkAiGvXrtX69d5Oq9UKAEKr1db5OYiImrtlf54WPnOiRMS6RKlTITO5XlouOr65RfjMiRKn0vOkTsek7+9a9WPYuXNnvRd4paWliI+Px9y5cw3b5HI5QkJCEBMTU+VjYmJi7li4OjQ0FBs3bgRQsQ5jenq60VkoR0dHBAUFISYmBmPGjEFMTAycnJwQGBhoiAkJCYFcLkdsbCwee+wxk15HQEAASkpK0L17d7z99tu4//77q40tKSlBSUmJ4T6XLCIiuneG1g5cTLrJ0lgp0M/XGXuSs7D79FV0tKCLHmpVaA0ePLhWT2ZKe4esrCzodDq4ubkZbXdzc8PJkyerfEx6enqV8ZXzoip/3i3m9uE9pVIJZ2dnk+ZXeXh4YMWKFQgMDERJSQm++eYbPPDAA4iNjUXv3r2rfExkZCQWLlxY62MQEdHdsYdW8zC4Y6uKQis5C88PbCd1OrVm8mT42+Xn5+Orr75Cv3790LNnz/rIySJ06tQJL7zwAvr06YP+/fvj22+/Rf/+/WvskD937lxotVrD7eLFiw2YMRFR06PTC5y5WlloWc5ZDjJd5Tyt2LPZKC7TSZxN7dW50Nq9ezfGjx8PDw8PfPzxxxgyZAj2799f68e7uLhAoVDccQVjRkYG3N3dq3yMu7t7jfGVP+8Wc/tk+/LycuTk5FR73Nrq168fUlJSqt2vVqvh4OBgdCMiorq7mFOE0nI9NFZytG5hLXU6ZEZ+rnZwd9CgpFyPA+dypE6n1kwqtNLT07Fo0SL4+fnhySefhIODA0pKSrBx40YsWrQIffv2rfVzqVQq9OnTB9u3bzds0+v12L59O4KDg6t8THBwsFE8AGzbts0Q7+vrC3d3d6OYvLw8xMbGGmKCg4ORm5uL+Ph4Q8yOHTug1+sRFBRU6/yrkpiYCA8Pj3t6DiIiqr3KYcP2reygkPOKw6ZMJpPd7BJ/2nLaPNR6ccKRI0di9+7dGDFiBJYuXYphw4ZBoVBgxYoVdT54REQExo8fj8DAQPTr1w9Lly5FYWEhJk6cCAAYN24cWrdujcjISADAzJkzMXjwYCxZsgQjRozA2rVrcfDgQXz11VcAKj6EWbNm4b333oOfnx98fX0xb948eHp6GnphdenSBcOGDcPkyZOxYsUKlJWVYfr06RgzZgw8PT0NuSUlJaG0tBQ5OTnIz89HYmIigIrJ7wCwdOlS+Pr6olu3biguLsY333yDHTt24I8//qjz+0FERKZJvrH0DudnNQ+DOrbC+vhL2GNBy/HUutDaunUrZsyYgalTp8LPz69eDj569GhcvXoV8+fPR3p6OgICAhAdHW2YzH7hwgXI5TdPuvXv3x9r1qzBW2+9hTfeeAN+fn7YuHEjunfvboiZPXs2CgsLMWXKFOTm5mLAgAGIjo6GRnOzid3q1asxffp0DB06FHK5HE888QSWLVtmlNvw4cNx/vx5w/1evXoBgKF/R2lpKV599VVcvnwZNjY26NGjB/788088+OCD9fLeEBHR3aVk3OyhRU3fgA4ukMmAk+n5yMgrhptD429QKxOidp2/9u/fj//85z9Yt24dunTpgmeffRZjxoyBh4cHDh8+jK5du5o71yYnLy8Pjo6O0Gq1nK9FRFQHj36+F0cuabHimT4Y1v3e5tmSZRj1+V4cvqTFR//XA08GekmSgynf37Weo3Xffffh66+/RlpaGl544QWsXbsWnp6e0Ov12LZtG/Lz8+85cSIiotrS64WhKzx7aDUflVcfWsrwoclXHdra2uK5557D3r17cfToUbz66qtYtGgRXF1d8eijj5ojRyIiojtc0V5HUakOVgoZfJxtpE6HGshAv4pCa29KFvT6xr8czz310erUqRMWL16MS5cu4YcffqivnIiIiO6q8orDdi52UCruuS0kWYhe3k6wUyuRU1iKY1e0UqdzV/Xym6lQKBAWFobNmzfXx9MRERHdlWEiPIcNmxUrhRz927cEYBnDh/wnABERWSS2dmi+Bt6Yp/WXBfTTYqFFREQW6eYah1x6p7kZfGOeVsL5a8gvLpM4m5qx0CIiIosjhGAPrWbMu6UN2ra0QbleYP/Zxr0cDwstIiKyOJn5JcgvKYdCLkNbF15x2BxVXn3Y2JfjYaFFREQWJ/nG2SyfljZQKxUSZ0NSqOyntTuZhRYREVG94kR4Cm7fEkq5DOezi3A+u1DqdKrFQouIiCwOJ8KTnVqJ3j4tAAC7G3GbBxZaRERkcSonwnPpneZtcMfGP0+LhRYREVkUIQRO3xg65BWHzdugGxPiY85ko0ynlzibqrHQIiIii5JdWIrcojLIZED7Viy0mrNung5wtlWhoKQchy7kSp1OlVhoERGRRam84tDb2QYaK15x2JzJ5TIM6OACoPEOH7LQIiIii5JSOWzIs1mEm20e9jTSNg8stIiIyKKkZHIxabppoF/FGa0jl7XIKSyVOJs7sdAiIiKLwtYOdCs3Bw06u9tDCGBvSuNr88BCi4iILMrNQotntKiCYfiwEc7TYqFFREQWI7eoFFfzSwAA7Vlo0Q2Vw4e7k69CCCFxNsZYaBERkcWonJ/V2skadmqlxNlQY9G3rTM0VnJk5JXg9I2rUhsLFlpERGQxKocN2aiUbqWxUiDItyWAxnf1IQstIiKyGJU9tDg/i25XOXz4VyObp8VCi4iILEYyl96halSuexiXmoPiMp3E2dzEQouIiCzGmUwuJk1V6+BqBw9HDUrK9YhLzZE6HQMWWkREZBHyi8twRVsMAOjQij20yJhMJrt59WEjGj5koUVEzYpOLxBzJhubEi8j5kw2dPrGdSk4Ve/M1UIAgKu9Go42VhJnQ41RZT+t3Y1oQjyvjSWiZiP6WBoW/pqEtBtnRQDAw1GDBSO7Ylh3Dwkzo9pIzqiYn8VhQ6rOgA4ukMmA0xkFSNcWw91RI3VKPKNFRM1D9LE0TF2VYFRkAUC6thhTVyUg+liaRJlRbaVw6R26CycbFXq0cQLQeM5qsdAioiZPpxdY+GsSqhokrNy28NckDiM2cuyhRbUxuJHN02KhRURNXlxqzh1nsm4lAKRpixvVlUp0p8rWDuyhRTWpnKe1NyWrUfzjiYUWETV5mfnVF1l1iaOGV1RajkvXrgMA/Nw4dEjV6+nlBHu1ErlFZTh2WSt1OtIXWsuXL0fbtm2h0WgQFBSEuLi4GuPXr1+Pzp07Q6PRwN/fH1u2bDHaL4TA/Pnz4eHhAWtra4SEhCA5OdkoJicnB+Hh4XBwcICTkxMmTZqEgoKbayMVFxdjwoQJ8Pf3h1KpRFhYWJW57Nq1C71794ZarUaHDh2wcuXKOr0H1LTxKjfpudrXbkKsq73azJlQXZ29WgghAGdbFZxtVVKnQ42YlUKO/h0qluNZvf+85H97JS201q1bh4iICCxYsAAJCQno2bMnQkNDkZmZWWX8vn37MHbsWEyaNAmHDh1CWFgYwsLCcOzYMUPM4sWLsWzZMqxYsQKxsbGwtbVFaGgoiotv/ks1PDwcx48fx7Zt2xAVFYXdu3djypQphv06nQ7W1taYMWMGQkJCqswlNTUVI0aMwIMPPojExETMmjULzz//PH7//fd6eneoKYg+loYBH+7A2K/3Y+baRIz9ej8GfLiDE68bWD9fZ7g73L3Y+mTbaSRdyWuAjMhUKZyfRSZoeaMY/zH+kuR/e2VCCMn+eR0UFIS+ffvi888/BwDo9Xp4eXnh5Zdfxuuvv35H/OjRo1FYWIioqCjDtvvuuw8BAQFYsWIFhBDw9PTEq6++itdeew0AoNVq4ebmhpUrV2LMmDE4ceIEunbtigMHDiAwMBAAEB0djeHDh+PSpUvw9PQ0OuaECROQm5uLjRs3Gm2fM2cOfvvtN6Mib8yYMcjNzUV0dHSVr7ekpAQlJSWG+3l5efDy8oJWq4WDg4MJ7xxZgsqr3G7/H0x24+cXz/RmS4EG9OKqg4g+lnHHdhkq5mhZKWQo0wnIZUB4kA8iHuqIFjxz0mh89PtJLN95BuFB3nj/MX+p06FGLPpYGl5clXDH9vr825uXlwdHR8dafX9LdkartLQU8fHxRmeM5HI5QkJCEBMTU+VjYmJi7jjDFBoaaohPTU1Fenq6UYyjoyOCgoIMMTExMXBycjIUWQAQEhICuVyO2NjYWud/t1yqEhkZCUdHR8PNy8ur1scjy8Kr3BqXbUkZhiLLydq40aW7owYrnumNXf98ECN6eEAvgP/tP48Hl+zC//af52fUSHAxaaqNyr+9VZHqb69kDUuzsrKg0+ng5uZmtN3NzQ0nT56s8jHp6elVxqenpxv2V26rKcbV1dVov1KphLOzsyGmNqrLJS8vD9evX4e1tfUdj5k7dy4iIiIM9yvPaFHTY8pVbsHtWzZcYs3Q+exCRPyYCACY0L8t5j3SFXGpOcjML4arvQb9fJ2hkFf8W3f5073xTFA2Fv56HCfT8zFv4zGsib2At0d2RVA7fk5SMvTQ4kR4qkFj/NvLzvANSK1WQ63mZNvmgFe5NQ7FZTq8uCoB+cXl6O3thDeGd4FCLqvxD2xw+5aIenkA1sRdwJI/TuNEWh5Gf7UfI3t6Yu7DneHpdOc/osi8Ssp1OJddsfwOz2hRTRrj317Jhg5dXFygUCiQkWE8ZyIjIwPu7u5VPsbd3b3G+Mqfd4u5fbJ9eXk5cnJyqj2uKbk4ODhUeTaLmpfaX+Um/fIQTZUQAm9tPIYTaXloaavC8vDeUClr9ydPqZBjXHBb7HztAYQHeUMmA349fAVDl/yFz3cko7hMZ+bs6VapWYXQC8BBo0QrXhlKNWiMf3slK7RUKhX69OmD7du3G7bp9Xps374dwcHBVT4mODjYKB4Atm3bZoj39fWFu7u7UUxeXh5iY2MNMcHBwcjNzUV8fLwhZseOHdDr9QgKCqp1/nfLhZq32lzl5uFYMWxF5rH2wEX8FH8JchmwbGwveDia/g8gZ1sV3n/MH79OH4C+bVvgepkOH/9xGg99+hd+P54OCa8lalYM87Pc7CGTye4STc1ZP19neDhqUN1viQwN/7dX0vYOERER+Prrr/H999/jxIkTmDp1KgoLCzFx4kQAwLhx4zB37lxD/MyZMxEdHY0lS5bg5MmTePvtt3Hw4EFMnz4dACCTyTBr1iy899572Lx5M44ePYpx48bB09PT0AurS5cuGDZsGCZPnoy4uDj8/fffmD59OsaMGWN0xWFSUhISExORk5MDrVaLxMREJCYmGva/+OKLOHv2LGbPno2TJ0/i3//+N3788Ue88sor5n/jqNFTyGUI6eJaY8wjPTwMc4Oofh25lIsFm44DAF79Ryfc38Hlnp6ve2tH/PhCMP41JgDuDhpczLmOF/4Xj3HfxiHlRrdyMh/D0jutOGxINVPIZVgwsisA3FFsVd5fMLJrg/7tlXSO1ujRo3H16lXMnz8f6enpCAgIQHR0tGGS+YULFyCX36wF+/fvjzVr1uCtt97CG2+8AT8/P2zcuBHdu3c3xMyePRuFhYWYMmUKcnNzMWDAAERHR0OjuXl2YfXq1Zg+fTqGDh0KuVyOJ554AsuWLTPKbfjw4Th//rzhfq9evQDA8C9YX19f/Pbbb3jllVfwr3/9C23atME333yD0NDQ+n+jyOJczS/B5sNXAAD2GiXyi8sN+2xUChSV6vDfmPMY0cMTAV5OEmXZNF0rLMXUVQko1ekR0sUNUwe3r5fnlclkGBXQGiFd3PDvXSn4encq9iRnYdjSPRjfvy1mhvjBQWN19ycik50xTIRnoUV3N6y7B754pjcW/ppkNDHe3VGDBSO7NnhbHUn7aDV3pvThIMvy8g+H8OvhK+je2gE/v9gfCRdyDVe59fFpgRf+dxA7T12Fi50am6bfj9acYF0v9HqBiSsP4K/TV+HtbINfXx4AR2vzFD/nswvxbtQJ/HmiYq6mi50Ks0M74//6tIGcZyrr1T8+/QunMwqwcmJfPNCp5jPFRJV0elHtFcb3ypTvbxZaEmKh1TTtPJmJiSsPQC4DNk8fgO6tHe+IKSgpx/99sQ8n0/PR2d0e618Mhj3Phtyzf/2ZjE//PA21Uo5fXuqPbp53vvf1bdepTLwTlYSzVyuuiuvZxhELHu2G3t4tzH7s5qBMp0fX+dEo0wn8/foQ/qOEGgWLaFhK1BQVlpTjrY0VqwU8d79vlUUWANiplfjPhL5wsVPjZHo+ZvxwCOU6fUOm2uTsOpWJpdtPAwDef8y/QYosAHigkyuiZw7Cm8O7wE6txOFLWjz+73149cfDbN9RD85nF6FMJ2CrUsDTkVfpkuVhoUVUjz7ddhqXc6+jtZM1XnmoY42xrZ2s8c34QKiVcuw8dRXv/XaigbJsei5dK8KsdYkQAhjbzxv/16dNgx5fpZRj8qB22PHaYDx549g/J1zCkI//wle7z6C0nEV0XVVebNDB1Y5XHJJFYqFFVE+OXdbi279TAQDvhXWHrfru15oEeDnh09EBAICV+87hvzHnzJhh01RSrsNLqxOQW1SGHm0cDVccScHVXoOPnuyJDS/1R08vJxSUlOODLScxbOlu7DqVefcnoDtUtnbo4MqO8GSZWGgR1YNynR6v/3IEegGM7OmJBzvXfsLucH8P/DO0EwDg7c3H+YVsooW/JuHIJS2cbKyw/One0FgppE4JvbxbYMPU/vjo/3rAxU6Fs1mFmPDdATz//QGcyyqUOj2LkswrDsnCsdAiqgcr953Dsct5cNAoMf8R08+ovPRAe/xfnzbQC2D6mkM4lc7eTLXxU/wlrIm9AJkMWDo6AF7ONlKnZCCXy/BkoBd2vPYAJg/0hVIuw58nMvGPT3djcfRJFJaU3/1J6GahxaV3yEKx0CK6RxdzirDkj4pJ2G+O6FKnJUJkMhk+eMwfQb7OKCgpx3MrD3Ai9V0kXcnDmxuOAgBmDvVrtJf9O2is8OaIroieNQgD/VxQqtPj37vOYMiSXdh46DK7y9dApxc4e7Vy6JCFFlkmFlpE96ByPb3rZTr083XGU4FedX4ulVKOFc/0ga+LLS7nXseU/8ZzTb1qaK+XYerqeJSU6zG4YyvMGOIndUp31cHVDv99rh++HhcIb2cbZOSVYNa6RDy5IgbHLmulTq9RunStCCXleqiVcrRp0XjOVhKZgoUW0T349Uga/jp9FSqFHB885n/PV0W1sFXh2wl94WhthcSLuXj1x8PQ63nG41Z6vcCrPx7G+ewitHayxtLRARbTIFQmk+Ghrm7445VB+GdoJ1hbKXDw/DWM/Hwv5v5yFNkFJVKn2KhUToRv38qOy1WRxWKhRVRH2qIyvPNrxXp60x7sUG9DG74utvjy2T6wUsjw29E0fLLtdL08b1Px5e6z+PNEBlQKOb54pjda2KqkTslkGisFpj3YATteG4xHe3pCCOCHuAt48ONdWPl3Knuq3cCJ8NQUsNAiqqPIrSeQVVCKDq52ePGBdvX63Pe1a4kPHvMHAHy+MwU/x1+q1+e3VPtSsvDR7ycBAG8/2g092jhJm9A98nC0xrKxvfDjC8Ho4uGAvOJyvP1rEkYs24t9KVlSpye55Bs9tDgRniwZCy2iOth/NhtrD1wEAEQ+7g+1sv5bCjwZ6IWXHqhYEPn1X44g9mx2vR/DkqRri/HyD4egF8ATvdtgbL+6z4drbPr5OiPq5QF4L6w7WthY4VRGPp7+JhYvrY7HpWtFUqcnmZRM9tAiy8dCi8hExWU6vHHjareng7zRt62z2Y712j86Ybi/O8p0Ai+sim+2PZhKy/V4aXU8sgtL0cXDAe+FdW9yXcIVchmeuc8HO197AOODfSCXAVuOpmPokr+w9M/Tze7CCL1eGAotDh2SJWOhRWSif+86g7NXC9HKXo05wzqb9VhyuQxLngxAzzaOyC0qw3MrD0BbVGbWYzZGH2w5gYQLubDXKPFFeG9Yq6RvSmouTjYqLBzVHb/NGIj72jmjpFyPpX8mY+iSv7D1aJqhHYROLxBzJhubEi8j5kw2dE3sookr2usoKtXBSiGDTyPqj0ZkqruvEUJEBskZ+fhiVwoA4O2R3eBobWX2Y1qrFPh6fCDCPv8bZ7MK8eKqeHz/XD+olM3j30mbD1/Byn3nAACfPBWAti620ibUQLp4OOCHyfdhy9F0vP9bEi7nXsfU1Qno374lhnZxwzd7ziJNe7PXmoejBgtGdsWw7h4SZl1/KifCt3Oxg1LRPH7XqWniby9RLen1Am9sOIoyncDQzq4Y7u/eYMd2tdfgPxP6wlalQMzZbMzbeKxZNLpMzsjH6z8fAVDRPf+hrm4SZ9SwZDIZRvTwwPZXH8CMoX5QKeXYdyYb70YlGRVZQMUctqmrEhB9LE2ibOvXmUw2KqWmgYUWUS2tPXARB85dg41KgXckmCPUxcMBnz3dC3IZsO7gRXy5+2yDHr+hFZSU48VV8Sgq1aF/+5aIeKij1ClJxlqlQMRDHfHHrEFQV3Mms7LsXvhrUpMYRry5mDQLLbJsLLSIaiEzrxiRW08AqJig3trJWpI8hnR2w7wbayl+GH2yyZy9uJ0QAnN+OoIzVwvh7qDBsrG9OHwEIE1bjJLy6ntsiRsxcak5DZeUmRhaO3AiPFk4/uUiqoWFvyYhv7gcPdo4Ynz/tpLmMqF/W4wL9oEQwKx1iThyKVfSfMzh27/P4bejaVDKZVge3hsudqavH9kU1Xb9S0tfJ1MIccti0mztQJaNhRbRXfyZlIHfjqZBIZch8nF/yZcCkclkmP9IVwzu2ArFZXo8//1BXMm9LmlO9enAuRxEbqk4e/jWiC7o49NC4owaD1d7Ta3iYs9mo7SGM1+NXWZ+CfKLy6GQy9DWhVcckmVjoUVUg8KScszfdAwA8PwAX3TzdJQ4owpKhRyfP90LndzskZlfgknfH0RhSbnUad2zzPxiTFudgHK9wKM9PSU/e9jY9PN1hoejBncr9dfEXcSwpbux81Rmg+RV3yrnZ/m0tDFLM2CihsRCi6gGS/44jSvaYng5W2NmiJ/U6Rix11jhPxMC4WKnwom0PMz44ZBFT4Iu1+nx8ppDyMwvgZ+rHSIfv/dFupsahVyGBSMr5ujd/s7IbtzGB/vAxU6Ns1mFmPjdATz//QGLa3TLpXeoKWGhRVSNwxdzsXJfKgDgvTB/2KgaX9u5Ni1s8NW4QKiVcmw/mYn3fzshdUp19tHvpxCbmgNblQJfPNMHturG9343BsO6e+CLZ3rD3dF4GNHdUYMvnumNhaO6Y8drgzF5oC+Uchn+PJGJf3y6Gx/9fhJFpZZx1pPzs6gp4V8yoiqU6fR4/Zej0AsgLMATgzu2kjqlavX2boElT/XE9DWH8O3fqfBtZYtn7/OROi2TRB9LM7Sr+OjJnryk/y6GdffAQ13dEZeag8z8Yrjaa9DP19kwf9BBY4U3R3TF6L5eWPhrEvYkZ2H5zjP4Of4y3hjRBSN7eDTqs4Up7KFFTQjPaBFV4du9qTiRlgcnGyu8daOdQmP2SA9PvPaPij5Tb28+jr9OX5U4o9o7e7UAr62vaEr6/ABfDPdvGp3NzU0hlyG4fUuMCmiN4PYtq7xIo4OrPf77XD98+WwftGlhjfS8Ysz44RBGf7UfSVfyJMi6dlhoUVPCQovoNhdzivDpn6cBAG8O72IxrQWmPdgBj/duDZ1eYPrqBJzOyJc6pbsqKi3H1FUJKCgpR9+2LTDnYfOuHdkcyWQyhHZzx58RgxHxUEdorOSIS83BI5/twbyNx5BbVCp1ikayC0qQU1gKmQxo34qFFlk+FlpEtxBC4M2Nx1Bcpkdwu5b4vz5tpE6p1mSyivYT/do6I7+kHM+tPICsghKp06qWEAJvbjiGUxn5cLFTY/nTvWHFpqRmo7FSYMZQP2x/9QGM6OEBvQD+t/88Hvh4F1btP99oLqSonJ/l1cKmSS8eTs0H/6oR3WLz4SvYffoqVEo53n+s4ZfZuVdqpQIrnu0Dn5Y2uHTtOqb89yCKy3RSp1WlVfvPY8Ohy1DIZVj+dC+4OtSuRxTdm9ZO1lj+dG+smRyETm72yC0qw1sbj2HkZ3tx4Jz0HeVvToTn2SxqGlhoEd1wrbAU7/yaBACYMaQD2lnosIWzrQrfTugLB40SCRdy8c+fjjS6BagPXbiGd6Iq3us5wzohqF1LiTNqfvq3d8FvMwbg7ZFd4aBRIiktD0+uiMGstYeQrpWus3zKjSHvDlx6h5oIFlpEN3yw5QSyC0vR0c0OUwa1lzqde9K+lR1WPNsHSrkMvx6+gk//TJY6JYPsghK8tDoBZTqBYd3cMXlgO6lTaraUCjkm3O+Lna89gLH9vCCTARsTr2DIkl34964UlJQ3/NlQtnagpoaFFhGAfSlZWB9/CTIZEPl4D6iUlv+/Rv/2Lnj/se4AgGXbk7Hx0GWJMwJ0eoGZaxORpi2Gr4stPnqyh8UNzzZFLe3UiHy8BzZPG4De3k4oKtVhcfQphH66GztOZjRoLhw6pKamUXybLF++HG3btoVGo0FQUBDi4uJqjF+/fj06d+4MjUYDf39/bNmyxWi/EALz58+Hh4cHrK2tERISguRk43/R5+TkIDw8HA4ODnBycsKkSZNQUFBgFHPkyBEMHDgQGo0GXl5eWLx4sdH+lStXQiaTGd00Gs4zsTTFZTq8ubFimZ1ngnya1Np6o/t644XBFWeMZv90RPI5OEv/PI29KVmwtlJgxTN9YK+xkjQfMubfxhE/vdgfnzzVE63s1TiXXYTnVh7EcysPILUBustri8pwNb/iAo72LLSoiZC80Fq3bh0iIiKwYMECJCQkoGfPnggNDUVmZtVrdO3btw9jx47FpEmTcOjQIYSFhSEsLAzHjh0zxCxevBjLli3DihUrEBsbC1tbW4SGhqK4+Oa8g/DwcBw/fhzbtm1DVFQUdu/ejSlTphj25+Xl4R//+Ad8fHwQHx+Pjz76CG+//Ta++uoro3wcHByQlpZmuJ0/f76e3yEyt+U7U5CaVQhXezX+OayT1OnUuzmhnRHazQ2lOj1e+F88zmdLsxzLjpMZ+GxHCgAg8nF/dHLn0FBjJJfL8HjvNtj52gN4YVA7WClk2HEyE6Gf7saH0SfNuqZmytWK+VmejhrYcWUAaiqExPr16yemTZtmuK/T6YSnp6eIjIysMv6pp54SI0aMMNoWFBQkXnjhBSGEEHq9Xri7u4uPPvrIsD83N1eo1Wrxww8/CCGESEpKEgDEgQMHDDFbt24VMplMXL58WQghxL///W/RokULUVJSYoiZM2eO6NSpk+H+d999JxwdHev4yoXQarUCgNBqtXV+Dro3J9PyRPu5vwmfOVFi69ErUqdjNoUlZeKRZXuEz5woMeTjnSK3qLRBj38+q1D4L4gWPnOixLyNRxv02HRvUjLzxbP/iRU+c6KEz5wo0e/9bWLjoUtCr9fX+7F+iD0vfOZEiWf/E1vvz01Un0z5/pb0jFZpaSni4+MREhJi2CaXyxESEoKYmJgqHxMTE2MUDwChoaGG+NTUVKSnpxvFODo6IigoyBATExMDJycnBAYGGmJCQkIgl8sRGxtriBk0aBBUKpXRcU6dOoVr164ZthUUFMDHxwdeXl4YNWoUjh8/Xu3rLSkpQV5entGNpKPXC8z95QjK9QIPdXVDaDd3qVMyGxuVEt+MD4SHowZnrhbipdXxKNPpG+TYxWU6TF0dj7zicgR4OeGtEY2/0z7d1L6VHb6f2BdfjwuEt7MNMvJKMHNtIp76MgbHr2jr9Vicn0VNkaSFVlZWFnQ6Hdzc3Iy2u7m5IT09vcrHpKen1xhf+fNuMa6urkb7lUolnJ2djWKqeo5bj9GpUyd8++232LRpE1atWgW9Xo/+/fvj0qVLVeYeGRkJR0dHw83Ly6vKOGoYq+MuIOFCLmxVCrwzqluTn5Tt5qDBN+MDYaNS4O+UbMzfdKxB2j4s2HQcx6/kwdlWhX+H924SFxo0NzKZDA91dcMfrwzCP0M7wdpKgQPnrmHkZ3vx5oajuFZYP93lWWhRU8S/ePcgODgY48aNQ0BAAAYPHoxffvkFrVq1wpdfflll/Ny5c6HVag23ixcvNnDGVCldW4zFW08CAGYP6wwPR2uJM2oY3TwdsWxML8hkwA9xF/HNnlSzHm/dgQtYd/Ai5DJg2Zhe8HRqHu9zU6WxUmDagx2w/dXBeORGd/nVsRfwwMe78L+Yc/fcXb6yh5Yfe2hREyJpoeXi4gKFQoGMDOPLhzMyMuDuXvUwjru7e43xlT/vFnP7ZPvy8nLk5OQYxVT1HLce43ZWVlbo1asXUlJSqtyvVqvh4OBgdCNpvL35OPJLKoaynrnPR+p0GlRIVzfD8N0HW0/g9+NVnz2+V8cuazFvU8VQ+qv/6IQBfi5mOQ41PE8na3z+dG+snXIfOrvbQ3u9DPM2Hccjn+1F7NnsOj1nfnEZrtxolNqhFS+UoKZD0kJLpVKhT58+2L59u2GbXq/H9u3bERwcXOVjgoODjeIBYNu2bYZ4X19fuLu7G8Xk5eUhNjbWEBMcHIzc3FzEx8cbYnbs2AG9Xo+goCBDzO7du1FWVmZ0nE6dOqFFi6ov/9fpdDh69Cg8PDxMeRuogf1xPB3Rx9OhlFesDaiQN+0hw6o8d39bhAd5Qwhg1tpEHLtcv3NtcotK8eKqeJSW6zG0syumDrbsBrBUtfvatUTUywPwzqhucLS2wom0PIz+aj9m/HAIadrrJj3XmasVV8O62qvhaMO2H9R0SD50GBERga+//hrff/89Tpw4galTp6KwsBATJ04EAIwbNw5z5841xM+cORPR0dFYsmQJTp48ibfffhsHDx7E9OnTAVTMJZg1axbee+89bN68GUePHsW4cePg6emJsLAwAECXLl0wbNgwTJ48GXFxcfj7778xffp0jBkzBp6engCAp59+GiqVCpMmTcLx48exbt06/Otf/0JERIQhl3feeQd//PEHzp49i4SEBDzzzDM4f/48nn/++QZ698hU+cVlmH/jLMvkQe3QxaN5nlWUyWR4+9FuGOjngutlOkz6/kC9Lbui1wu8si4Rl65dh7ezDT55KgDyZljMNhdKhRzjgtti52sP4Okgb8hkFWuGDvn4LyzfWfvu8skcNqSmyvwXQd7dZ599Jry9vYVKpRL9+vUT+/fvN+wbPHiwGD9+vFH8jz/+KDp27ChUKpXo1q2b+O2334z26/V6MW/ePOHm5ibUarUYOnSoOHXqlFFMdna2GDt2rLCzsxMODg5i4sSJIj8/3yjm8OHDYsCAAUKtVovWrVuLRYsWGe2fNWuWIW83NzcxfPhwkZCQUOvXzfYODW/BpmPCZ06UGLR4h7heWi51OpLTXi8VIUt2CZ85UWL4v3aLguKye37OZX+eFj5zokTHN7eIY5dz6yFLsiRHL+WKJ/79t6EdxKDFO8SfSel3bQfxwZYk4TMnSsxn+w+yAKZ8f8uEaGSrzTYjeXl5cHR0hFar5XytBnDowjU8/sU+CAGsmhTEOUM3XMwpQtjyv5FdWIqQLm748tk+dR5O3ZN8FeO+jYMQwOL/64GnAnllbXMkhMCmxCv4YMsJZN7o9P5Ap1aY/0jXahdrn7TyALafzMS7Yd3xbDObN0mWx5Tvb8mHDokaQplOj7m/HIUQwOO9W7PIuoWXsw2+GhcIlVKOP09kYNHWE3V6nsu51zHjh0MQAhjT14tFVjMmk8kQ1qs1drz2AF4c3B5WChl2nbqK0KW7Ebn1BApu6S6v0wvEnMlG4sVcAEB7F1uJsiYyD57RkhDPaDWcL3adwYfRJ9HCxgrbX30Azraquz+omdmUeBkz1yYCAD54zB9PB3nX+rEl5To89eV+HL6Yi+6tHfDTi/2hsVKYKVOyNGevFuCdqCTsOnUVQMWE97nDO0OjVOCdqCSk3TI/0NVejXdGdcOw7ryoiBovU76/WWhJiIVWwzifXYh/fLobJeV6LHmyJ57o00bqlBqtf/2ZjE//PA2FXIbvJ/ar9Zm/eRuP4X/7z8PR2gpRLw+Al7ONmTMlS7T9RAbeiUrC+eyiamMqB62/eKY3iy1qtDh0SHSDEAJvbjiGknI97u/QEo/3bi11So3ajKEdEBbgCZ1eYOrqeKRk5t/1MRsOXcL/9p+HTAYsHR3AIouqNbRLRXf5V//RsdqYyn/5L/w16Z4boBI1Biy0qEnbcOgy9qZkQa2U4/0w/ya/zM69kslkWPREDwT6tEB+cTkmrjyA7IKSauNPpudh7i9HAQAvD/HDg51dq40lAgC1UoFAH+caYwSANG0x4lJzGiYpIjNioUVNVk5hKd6NSgIAzAzxQ1tOsq0VjZUCXz7bB97ONriYcx0v/C8exWV39kLKKy7D1FUJKC7TY6CfC2YO9ZMgW7JEmfm169lW2ziixoyFFjVZ7/2WhGtFZejsbo/JA9tJnY5FaWmnxrcTAmGvUeLg+WuY8/MRlOv0iDmTjU2JlxFzJguv/ZiI1KxCtHayxr/G9GqWHfapblztNfUaR9SYKaVOgMgc/k7Jwi8JlyGTAZGP+8NKwX9TmKqDqz2+CO+D8d/FYVPiFWw/kWl0WT4AKOUy/Du8N6/iJJP083WGh6MG6dpiVDULSwbA3VGDfr41DzESWQJ++1CTU1ymwxsbKuYNjbvPB728q16bku5ugJ8LxvSt6Id1e5EFAOV6YfKadkQKuQwLRlYsbH77edDK+wtGduVZUmoSWGhRk7NsezLOZxfB3UGD10I7SZ2ORdPpBXaczKx2vwy8OozqZlh3D3zxTG+4OxoPD7o7atjagZoUDh1Sk3IiLQ9f7T4LAHhnVDfYa6wkzsiyxaXmGDWTvN2tV4cFt2/ZcIlRkzCsuwce6uqOuNQcZOYXw9W+YriQZ7KoKWGhRU2GTi8w95ejKNcLDOvmjn90c5c6JYvHq8PI3BRyGYt0atI4dEhNxqr955F4MRf2aiXefrSb1Ok0Cbw6jIjo3rDQoiYhTXsdH/1+CgAw++HOd8z7oLqpvDqsuoEcGQAPXh1GRFQtFlrUJCzYdBwFJeXo7e2E8H61XwyZasarw4iI7g0LLbJ40cfS8UdSBpRyGSIf7wE5v/TrFa8OIyKqO06GJ4uWV1yGBZuPAQBeHNwendztJc6oaeLVYUREdcNCiyzaR9GnkJFXAl8XW0wf0kHqdJo0Xh1GRGQ6Dh2SxYo/fw2rYs8DAN5/rDs0VgqJMyIiIjLGM1pNkE4vmvwQT2m5Hm/8chRCAE/2aYP+7V2kTomIiOgOLLSamOhjaVj4a5JRN28PRw0WjOzapCYtf73nLE5l5MPZVoU3hneROh0iIqIqceiwCYk+loapqxLuWDIlXVuMqasSEH0sTaLM6ldqViH+tT0ZADD/ka5oYauSOCMiIqKqsdBqInR6gYW/JqGqpX0rtzWFxX+FEHjjl6MoLddjoJ8LRgV4Sp0SERFRtVhoNRG1Xfz3x4MXUFhS3nCJ1bOf4i8h5mw2NFZyvB/mD5msac09IyKipoVztJqI2i7qO/eXY5j7yzG42qvR1sUWvi1tK3662KCtiy3atrRttFfvZReU4P0tJwAAr4R0hHdLG4kzIiIiqhkLrSaitov62muUyC8uR2Z+CTLzSxCXmnNHjKejpqLouq0Q83K2gVopXRH23m8nkFtUhq4eDpg0wFeyPIiIiGqLhVYTUbn4b7q2uMp5WjJULJmyd84QFBSXIzW7EOeyCpGaVYhzt/x3XnE5rmiLcUVbjH1nso2eQy4DPJ2s4etiC98bZ798bxRkbVpYw0pRvyPRt7apSNcWY8Ohy5DLgMjH/aGs52MRERGZAwutJqJy8d+pqxIgA4yKrdsX/3W0sUKAjRMCvJyMnkMIgZzCUpzLLkRqVlFF8XWjCDuXVYjCUh0uXbuOS9euY09yltFjlXIZ2rSwNgw/tmt1sxDzdLI2uY9XVW0qAGBwp1boeVveREREjZVMCGHZl6FZsLy8PDg6OkKr1cLBwaFentNcfbSEELhaUIJzWUVIzSowFGLnsituxWX6ah+rUsjh5WxtOAvW1sUW7W6cCXN30NyxCHRlm4rqzsxxIWMiIpKSKd/fLLQkZI5CC2j4zvB6vUBGfnHFMOSthVh2IS5kF6FUV30RplbKbxRfFZPxfZxt8PEfp5FTWFpl/K1DoE2t2z0REVkGU76/OXTYBCmgR7A8CVBkAHI3AP0BmG8Su1wug4ejNTwcrdG/vfE+nV7gSu71W+aBVRRi57KLcDGnCCXlepzKyMepjPw7nxd69JOfhCtykQknxOk7Qw850rTFiEvNsZwFjvU64Pw+oCADsHMDfPoD8sZ5ZWeN+DoaF76OxqepvBa+jnrFQqupSdoMRM8B8q7c3ObgCQz7EOj6aIOno5DL4OVcccXiQL9WRvvKdXpcunbdaB5YbGoOTqbnI1QehwVW/4Wn7OZVkVeEMxaWjcPv+n61bmchuUb2edQZX0fjwtfR+DSV18LXUe8axaVby5cvR9u2baHRaBAUFIS4uLga49evX4/OnTtDo9HA398fW7ZsMdovhMD8+fPh4eEBa2trhISEIDk52SgmJycH4eHhcHBwgJOTEyZNmoSCggKjmCNHjmDgwIHQaDTw8vLC4sWLTc6lQSVtBn4cZ/yLBQB5aRXbkzZLk1c1lAo52rrY4sFOrph4vy8WjuqOBSO7IVQehy+slsIdxq0n3JGDL6yWIlQeV+t2FpKysM+jWnwdjQtfR+PTVF4LX4dZSD5Ha926dRg3bhxWrFiBoKAgLF26FOvXr8epU6fg6up6R/y+ffswaNAgREZG4pFHHsGaNWvw4YcfIiEhAd27dwcAfPjhh4iMjMT3338PX19fzJs3D0ePHkVSUhI0moov6IcffhhpaWn48ssvUVZWhokTJ6Jv375Ys2YNgIrx144dOyIkJARz587F0aNH8dxzz2Hp0qWYMmVKrXOpSb3O0dLrgKXd7/zFMpABDh7AS7GN+hSwrrwc2YsD4CJyUNUULL0ArspawmX2ISiUjfiErF4HLO8H5Fe3vqRlfB58HY0MX0fj01ReS7N6HZ7ArKP39DosajJ8UFAQ+vbti88//xwAoNfr4eXlhZdffhmvv/76HfGjR49GYWEhoqKiDNvuu+8+BAQEYMWKFRBCwNPTE6+++ipee+01AIBWq4WbmxtWrlyJMWPG4MSJE+jatSsOHDiAwMBAAEB0dDSGDx+OS5cuwdPTE1988QXefPNNpKenQ6WqWLT49ddfx8aNG3Hy5Mla5XK7kpISlJSUGO7n5eXBy8urfgqt1D3A94/c23MQERE1B+OjAN+BdX64KYWWpEOHpaWliI+PR0hIiGGbXC5HSEgIYmJiqnxMTEyMUTwAhIaGGuJTU1ORnp5uFOPo6IigoCBDTExMDJycnAxFFgCEhIRALpcjNjbWEDNo0CBDkVV5nFOnTuHatWu1yuV2kZGRcHR0NNy8vLxqfoNMUZBRf89FRETUlDXgd6akYy9ZWVnQ6XRwc3Mz2u7m5mY4a3S79PT0KuPT09MN+yu31RRz+7CkUqmEs7OzUYyvr+8dz1G5r0WLFnfN5XZz585FRESE4X7lGa16Yed29xgACP+p4sqLxur8PmD1/909jq+jYfB1NC58HY1PU3ktze111PY7sx404kkuTY9arYZarTbPk/v0rxh3zksDqmv16eAJtB/SuMfX2w/h62hM+DoaF76OxqepvJbm9joasFiUdOjQxcUFCoUCGRnGp/AyMjLg7u5e5WPc3d1rjK/8ebeYzMxMo/3l5eXIyckxiqnqOW49xt1yaVByRcVlqwBuLroD4/vDFjXu/0EAvo7Ghq+jceHraHyaymvh6zBfSg12pCqoVCr06dMH27dvN2zT6/XYvn07goODq3xMcHCwUTwAbNu2zRDv6+sLd3d3o5i8vDzExsYaYoKDg5Gbm4v4+HhDzI4dO6DX6xEUFGSI2b17N8rKyoyO06lTJ7Ro0aJWuTS4ro8CT/234sqQWzl4Vmy3lB4ofB2NC19H48LX0fg0ldfC12EeQmJr164VarVarFy5UiQlJYkpU6YIJycnkZ6eLoQQ4tlnnxWvv/66If7vv/8WSqVSfPzxx+LEiRNiwYIFwsrKShw9etQQs2jRIuHk5CQ2bdokjhw5IkaNGiV8fX3F9evXDTHDhg0TvXr1ErGxsWLv3r3Cz89PjB071rA/NzdXuLm5iWeffVYcO3ZMrF27VtjY2Igvv/zSpFxqotVqBQCh1Wrr/P5VSVcuxNndQhxZX/FTV16/z99Q+DoaF76OxoWvo/FpKq+Fr+OuTPn+lrzQEkKIzz77THh7ewuVSiX69esn9u/fb9g3ePBgMX78eKP4H3/8UXTs2FGoVCrRrVs38dtvvxnt1+v1Yt68ecLNzU2o1WoxdOhQcerUKaOY7OxsMXbsWGFnZyccHBzExIkTRX5+vlHM4cOHxYABA4RarRatW7cWixYtuiP3u+VSE7MVWkRERGQ2pnx/S95Hqzkz16LSREREZD4W00eLiIiIqCljoUVERERkJiy0iIiIiMyEhRYRERGRmbDQIiIiIjITFlpEREREZsJCi4iIiMhMWGgRERERmYlS6gSas8pesXl5eRJnQkRERLVV+b1dm57vLLQklJ+fDwDw8vKSOBMiIiIyVX5+PhwdHWuM4RI8EtLr9bhy5Qrs7e0hk8mkTqdRysvLg5eXFy5evMhlihoBfh6NCz+PxoefSeNirs9DCIH8/Hx4enpCLq95FhbPaElILpejTZs2UqdhERwcHPhHqxHh59G48PNofPiZNC7m+DzudiarEifDExEREZkJCy0iIiIiM2GhRY2aWq3GggULoFarpU6FwM+jseHn0fjwM2lcGsPnwcnwRERERGbCM1pEREREZsJCi4iIiMhMWGgRERERmQkLLSIiIiIzYaFFkouMjETfvn1hb28PV1dXhIWF4dSpU0YxxcXFmDZtGlq2bAk7Ozs88cQTyMjIkCjj5mXRokWQyWSYNWuWYRs/j4Z3+fJlPPPMM2jZsiWsra3h7++PgwcPGvYLITB//nx4eHjA2toaISEhSE5OljDjpkun02HevHnw9fWFtbU12rdvj3fffddo3Tt+Huaze/dujBw5Ep6enpDJZNi4caPR/tq89zk5OQgPD4eDgwOcnJwwadIkFBQUmCVfFlokub/++gvTpk3D/v37sW3bNpSVleEf//gHCgsLDTGvvPIKfv31V6xfvx5//fUXrly5gscff1zCrJuHAwcO4Msvv0SPHj2MtvPzaFjXrl3D/fffDysrK2zduhVJSUlYsmQJWrRoYYhZvHgxli1bhhUrViA2Nha2trYIDQ1FcXGxhJk3TR9++CG++OILfP755zhx4gQ+/PBDLF68GJ999pkhhp+H+RQWFqJnz55Yvnx5lftr896Hh4fj+PHj2LZtG6KiorB7925MmTLFPAkLokYmMzNTABB//fWXEEKI3NxcYWVlJdavX2+IOXHihAAgYmJipEqzycvPzxd+fn5i27ZtYvDgwWLmzJlCCH4eUpgzZ44YMGBAtfv1er1wd3cXH330kWFbbm6uUKvV4ocffmiIFJuVESNGiOeee85o2+OPPy7Cw8OFEPw8GhIAsWHDBsP92rz3SUlJAoA4cOCAIWbr1q1CJpOJy5cv13uOPKNFjY5WqwUAODs7AwDi4+NRVlaGkJAQQ0znzp3h7e2NmJgYSXJsDqZNm4YRI0YYve8APw8pbN68GYGBgXjyySfh6uqKXr164euvvzbsT01NRXp6utFn4ujoiKCgIH4mZtC/f39s374dp0+fBgAcPnwYe/fuxcMPPwyAn4eUavPex8TEwMnJCYGBgYaYkJAQyOVyxMbG1ntOXFSaGhW9Xo9Zs2bh/vvvR/fu3QEA6enpUKlUcHJyMop1c3NDenq6BFk2fWvXrkVCQgIOHDhwxz5+Hg3v7Nmz+OKLLxAREYE33ngDBw4cwIwZM6BSqTB+/HjD++7m5mb0OH4m5vH6668jLy8PnTt3hkKhgE6nw/vvv4/w8HAA4Ochodq89+np6XB1dTXar1Qq4ezsbJbPh4UWNSrTpk3DsWPHsHfvXqlTabYuXryImTNnYtu2bdBoNFKnQ6j4B0hgYCA++OADAECvXr1w7NgxrFixAuPHj5c4u+bnxx9/xOrVq7FmzRp069YNiYmJmDVrFjw9Pfl50B04dEiNxvTp0xEVFYWdO3eiTZs2hu3u7u4oLS1Fbm6uUXxGRgbc3d0bOMumLz4+HpmZmejduzeUSiWUSiX++usvLFu2DEqlEm5ubvw8GpiHhwe6du1qtK1Lly64cOECABje99uv/ORnYh7//Oc/8frrr2PMmDHw9/fHs88+i1deeQWRkZEA+HlIqTbvvbu7OzIzM432l5eXIycnxyyfDwstkpwQAtOnT8eGDRuwY8cO+Pr6Gu3v06cPrKyssH37dsO2U6dO4cKFCwgODm7odJu8oUOH4ujRo0hMTDTcAgMDER4ebvhvfh4N6/7777+j5cnp06fh4+MDAPD19YW7u7vRZ5KXl4fY2Fh+JmZQVFQEudz461OhUECv1wPg5yGl2rz3wcHByM3NRXx8vCFmx44d0Ov1CAoKqv+k6n16PZGJpk6dKhwdHcWuXbtEWlqa4VZUVGSIefHFF4W3t7fYsWOHOHjwoAgODhbBwcESZt283HrVoRD8PBpaXFycUCqV4v333xfJycli9erVwsbGRqxatcoQs2jRIuHk5CQ2bdokjhw5IkaNGiV8fX3F9evXJcy8aRo/frxo3bq1iIqKEqmpqeKXX34RLi4uYvbs2YYYfh7mk5+fLw4dOiQOHTokAIhPPvlEHDp0SJw/f14IUbv3ftiwYaJXr14iNjZW7N27V/j5+YmxY8eaJV8WWiQ5AFXevvvuO0PM9evXxUsvvSRatGghbGxsxGOPPSbS0tKkS7qZub3Q4ufR8H799VfRvXt3oVarRefOncVXX31ltF+v14t58+YJNzc3oVarxdChQ8WpU6ckyrZpy8vLEzNnzhTe3t5Co9GIdu3aiTfffFOUlJQYYvh5mM/OnTur/M4YP368EKJ27312drYYO3assLOzEw4ODmLixIkiPz/fLPnKhLillS0RERER1RvO0SIiIiIyExZaRERERGbCQouIiIjITFhoEREREZkJCy0iIiIiM2GhRURERGQmLLSIiIiIzISFFhEREZGZsNAiIjLB22+/jYCAAKnTICILwUKLiCQ1YcIEhIWF3bF9165dkMlkyM3NNbrfokULFBcXG8UeOHAAMpkMMpnsjsfXNr4qMpkMGzduNNr22muvGS1Y2xicO3cOMpkMiYmJUqdCRLdhoUVEFsXe3h4bNmww2vaf//wH3t7e9RJ/N3Z2dmjZsmWdHktEzQ8LLSKyKOPHj8e3335ruH/9+nWsXbsW48ePr5f4Sm3btgUAPPbYY5DJZIb7tw8dVp6R++CDD+Dm5gYnJye88847KC8vxz//+U84OzujTZs2+O6774ye/+LFi3jqqafg5OQEZ2dnjBo1CufOnas2n2vXriE8PBytWrWCtbU1/Pz8DM/p6+sLAOjVqxdkMhkeeOABw+O++eYbdOnSBRqNBp07d8a///1vw77KM2Fr165F//79odFo0L17d/z111+1Oi4R3R0LLSKyKM8++yz27NmDCxcuAAB+/vlntG3bFr17966X+EoHDhwAAHz33XdIS0sz3K/Kjh07cOXKFezevRuffPIJFixYgEceeQQtWrRAbGwsXnzxRbzwwgu4dOkSAKCsrAyhoaGwt7fHnj178Pfff8POzg7Dhg1DaWlplceYN28ekpKSsHXrVpw4cQJffPEFXFxcAABxcXEAgD///BNpaWn45ZdfAACrV6/G/Pnz8f777+PEiRP44IMPMG/ePHz//fdGz/3Pf/4Tr776Kg4dOoTg4GCMHDkS2dnZdz0uEdWCICKS0Pjx44VCoRC2trZGN41GIwCIa9euCSGE2Llzp+F+WFiYWLhwoRBCiAcffFD861//Ehs2bBC3/kkzNb4qAMSGDRuMti1YsED07NnTKH8fHx+h0+kM2zp16iQGDhxouF9eXi5sbW3FDz/8IIQQ4n//+5/o1KmT0Ov1hpiSkhJhbW0tfv/99ypzGTlypJg4cWKV+1JTUwUAcejQIaPt7du3F2vWrDHa9u6774rg4GCjxy1atMiwv6ysTLRp00Z8+OGHdz0uEd0dz2gRkeQefPBBJCYmGt2++eabauOfe+45rFy5EmfPnkVMTAzCw8NrfH5T403VrVs3yOU3/5y6ubnB39/fcF+hUKBly5bIzMwEABw+fBgpKSmwt7eHnZ0d7Ozs4OzsjOLiYpw5c6bKY0ydOhVr165FQEAAZs+ejX379tWYU2FhIc6cOYNJkyYZjmFnZ4f33nvvjmMEBwcb/lupVCIwMBAnTpyo03GJyJhS6gSIiGxtbdGhQwejbZXDbFV5+OGHMWXKFEyaNAkjR4686+R0U+NNZWVlZXRfJpNVuU2v1wMACgoK0KdPH6xevfqO52rVqlWVx3j44Ydx/vx5bNmyBdu2bcPQoUMxbdo0fPzxx1XGFxQUAAC+/vprBAUFGe1TKBS1e2F1OC4RGeMZLSKyOEqlEuPGjcOuXbvw3HPP1Xt8JSsrK+h0untJtUq9e/dGcnIyXF1d0aFDB6Obo6NjtY9r1aoVxo8fj1WrVmHp0qX46quvAAAqlQoAjHJ1c3ODp6cnzp49e8cxKifPV9q/f7/hv8vLyxEfH48uXbrc9bhEdHcstIjIIr377ru4evUqQkNDzRIPVFx5uH37dqSnp+PatWt1TfUO4eHhcHFxwahRo7Bnzx6kpqZi165dmDFjRrVn8ubPn49NmzYhJSUFx48fR1RUlKEYcnV1hbW1NaKjo5GRkQGtVgsAWLhwISIjI7Fs2TKcPn0aR48exXfffYdPPvnE6LmXL1+ODRs24OTJk5g2bRquXbtmKEhrOi4R3R0LLSKySCqVCi4uLndtOlrXeABYsmQJtm3bBi8vL/Tq1auuqd7BxsYGu3fvhre3Nx5//HF06dIFkyZNQnFxMRwcHKp8jEqlwty5c9GjRw8MGjQICoUCa9euBVBxxm7ZsmX48ssv4enpiVGjRgEAnn/+eXzzzTf47rvv4O/vj8GDB2PlypV3nNFatGgRFi1ahJ49e2Lv3r3YvHmz4crCmo5LRHcnE0IIqZMgIqKGd+7cOfj6+uLQoUNcVojITHhGi4iIiMhMWGgRERERmQmHDomIiIjMhGe0iIiIiMyEhRYRERGRmbDQIiIiIjITFlpEREREZsJCi4iIiMhMWGgRERERmQkLLSIiIiIzYaFFREREZCb/Dz98DpMhw57MAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "x = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]\n", + "y = abs_error\n", + "y2 = abs_error_dice\n", + "\n", + "fig, ax = plt.subplots()\n", + "# ax.set_xscale(\"log\")\n", + "# ax.set_yscale(\"log\")\n", + "ax.set_xlabel(\"HMM time steps\")\n", + "ax.set_ylabel(\"Absolute Error\")\n", + "ax.plot(x, y, marker = \"o\")\n", + "ax.plot(x, y2, marker = \"o\")\n", + "\n", + "ax.legend([\"Stan\", \"Dice\"])\n", + "fig.savefig(\"hmm_error.png\", bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGwCAYAAAC0HlECAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcaklEQVR4nO3deVxU5eIG8GdmYAaQfR1QQMRSEcQFRbRskUQzy/RWmqmpZXmxUsqtUjNvonYrs0Vv9cssNdNyN72XcC1xQ1FxX1BQWRSEYV9m3t8fyOQI6gzOcFie7+fDR+acd2aemTHn6SzvkQkhBIiIiIjoruRSByAiIiJqCFiaiIiIiIzA0kRERERkBJYmIiIiIiOwNBEREREZgaWJiIiIyAgsTURERERGsJI6QGOh0+lw9epVODg4QCaTSR2HiIiIjCCEQH5+Pnx8fCCX331bEkuTmVy9ehW+vr5SxyAiIqJaSEtLQ4sWLe46hqXJTBwcHABUvumOjo4SpyEiIiJjaDQa+Pr66r/H74alyUyqdsk5OjqyNBERETUwxhxawwPBiYiIiIzA0kRERERkBJYmIiIiIiPwmKY6ptVqUV5eLnWMBsfa2hoKhULqGERE1ISxNNURIQQyMjKQm5srdZQGy9nZGWq1mvNgERGRJFia6khVYfL09ISdnR2/+E0ghEBRURGysrIAAN7e3hInIiKipoilqQ5otVp9YXJzc5M6ToNka2sLAMjKyoKnpyd31RERUZ3jgeB1oOoYJjs7O4mTNGxV7x+PCSMiIimwNNUh7pK7P3z/iIhIStw9R0RERPWaViewPyUHWfkl8HSwQbcAVyjkdf8/0ixNREREVG9tTU7HrI0nkJ5Xol/m7WSDmQOC0De4bk8M4u65BkarE0g4n431SVeQcD4bWp2QOhIREZFFbE1Ox7hlhwwKEwBk5JVg3LJD2JqcXqd5WJoakK3J6Xho3jYM/XYv3lqZhKHf7sVD87ZZ9C/NtWvXMG7cOPj5+UGlUkGtViMqKgp//fUXgMrjjNatW2ex5ycioqZJqxOYtfEEato0ULVs1sYTdbrxgKWpgZCqbQ8ePBiHDx/G0qVLcebMGWzYsAGPPvoosrOzLfJ8REREALA/Jafad96tBID0vBLsT8mps0w8pkkiQggUl2uNGqvVCczccPyObVsG4IMNJ9Cztfs9D4yztVYYfRZabm4udu/ejR07duCRRx4BAPj7+6Nbt24AgJYtWwIAnn32Wf26ixcv4vz584iJicHevXtRWFiIdu3aITY2FpGRkfrHbtmyJcaOHYtz585h9erVcHFxwfvvv4+xY8calY2IiBq3rPw7F6bajDMHliaJFJdrETTjv2Z5LAEgQ1OCkA/+d8+xJz6Mgp3SuI/d3t4e9vb2WLduHbp37w6VSmWw/sCBA/D09MSSJUvQt29f/YSTBQUFePLJJ/HRRx9BpVLhxx9/xIABA3D69Gn4+fnp7//JJ59g9uzZePfdd/Hrr79i3LhxeOSRR9CmTRvjXzwRETVKng42Zh1nDtw9R3dkZWWFH374AUuXLoWzszN69uyJd999F0ePHgUAeHh4APj7mnBVt0NDQ/Haa68hODgYDzzwAGbPno3AwEBs2LDB4PGffPJJ/POf/0Tr1q0xZcoUuLu7Y/v27XX7IomIqF7qFuAKb6c7FyIZKs+i6xbgWmeZuKVJIrbWCpz4MMqosftTcvDykgP3HPfDqK73/Mtja23a5UcGDx6M/v37Y/fu3di7dy+2bNmC+fPn47vvvsPLL79c430KCgrwwQcfYPPmzUhPT0dFRQWKi4uRmppqMK5Dhw7632UyGdRqtf76ckRE1LQp5DK8/cSDeOfXo9XWVR1kMnNAUJ3O18TSJBGZTGb0brKHH/CAt5MNMvJKajyuSQZA7WSDhx/wsMhfHhsbGzzxxBN44oknMH36dLzyyiuYOXPmHUvTO++8g7i4OPz73/9G69atYWtri3/84x8oKyszGGdtbW34OmQy6HQ6s+cnIqKGKbuw8nvDSi5DxS1nyaklmqeJpakBUMhlmDkgCOOWHYIMMChOUrTtoKAg/TQD1tbW0GoND2j/66+/8PLLL+sPEC8oKMDFixfrJBsRETUOWp3AT3svAQD+9Www/F2bcUZwMk7fYG8seqlztVlRLdm2s7Oz8dxzz2H06NHo0KEDHBwccPDgQcyfPx/PPPMMgMqz4OLj49GzZ0+oVCq4uLjggQcewJo1azBgwADIZDJMnz6dW5CIiMgk209l4fKNYjjbWWNgx+awMfHwEktgaWpA+gZ744kgdZ1df8fe3h7h4eH47LPPcP78eZSXl8PX1xevvvoq3n33XQCVZ8DFxMTg22+/RfPmzXHx4kV8+umnGD16NHr06AF3d3dMmTIFGo3GIhmJiKhxWppwEQDwQlffelGYAEAmhOB1OMxAo9HAyckJeXl5cHR0NFhXUlKClJQUBAQEwMam7k6NbGz4PhIRNQ3nrxWg9yc7IZMBuyY9Bl9XO4s9192+v2/HKQeIiIioXvkpofJYpt5tvSxamEzF0kRERET1RkFpBX5NvAwAGNnDX+I0hliaiIiIqN5Ye+gyCkor0MqjGXoGuksdxwBLUx3i4WP3h+8fEVHjJoTA0pu75kZGtIRcgmkF7oalqQ5UTeJYVFQkcZKGrer9u31STCIiahwSzmfjXFYBmikVGNS5udRxquGUA3VAoVDA2dlZf4kQOzs7yGT1qz3XZ0IIFBUVISsrC87OzvoLAxMRUeNSNc3A4C4t4GBT//4HmaWpjqjVagDgtdXuQ9WFgYmIqPG5fKMIcScyAQAjIurXAeBVJC1NsbGxWLNmDU6dOgVbW1v06NED8+bNQ5s2bfRjHn30UezcudPgfq+99hoWL16sv52amopx48Zh+/btsLe3x8iRIxEbGwsrq79f3o4dOxATE4Pjx4/D19cX77//frVrp3311Vf4+OOPkZGRgdDQUHzxxRfo1q2bWV6rTCaDt7c3PD09UV5ebpbHbEqsra25hYmIqBFbvi8VOgH0bO2G1p4OUsepkaSlaefOnYiOjkbXrl1RUVGBd999F3369MGJEyfQrFkz/bhXX30VH374of62nd3fczZotVr0798farUae/bsQXp6OkaMGAFra2vMmTMHAJCSkoL+/fvj9ddfx/LlyxEfH49XXnkF3t7eiIqKAgD88ssviImJweLFixEeHo4FCxYgKioKp0+fhqenp9les0Kh4Jc/ERHRLUrKtVi5PxUAMCKipbRh7qJezQh+7do1eHp6YufOnejVqxeAyi1NHTt2xIIFC2q8z5YtW/DUU0/h6tWr8PLyAgAsXrwYU6ZMwbVr16BUKjFlyhRs3rwZycnJ+vsNGTIEubm52Lp1KwAgPDwcXbt2xZdffgkA0Ol08PX1xRtvvIGpU6feM7spM4oSERHR335NvIx3Vh9Bc2db7Jz0KKwUdXeeWoOdETwvLw8A4OrqarB8+fLlcHd3R3BwMKZNm2ZwFlpCQgJCQkL0hQkAoqKioNFocPz4cf2YyMhIg8eMiopCQkICAKCsrAyJiYkGY+RyOSIjI/VjbldaWgqNRmPwQ0RERKYRQmDpnosAgJe6+9dpYTJVvTkQXKfTYcKECejZsyeCg4P1y1988UX4+/vDx8cHR48exZQpU3D69GmsWbMGAJCRkWFQmADob2dkZNx1jEajQXFxMW7cuAGtVlvjmFOnTtWYNzY2FrNmzbq/F01ERNTEJaXl4tiVPCit5Hihq6/Uce6q3pSm6OhoJCcn488//zRYPnbsWP3vISEh8Pb2Ru/evXH+/HkEBgbWdUy9adOmISYmRn9bo9HA17d+f9hERET1zY83J7N8OtQHrs2UEqe5u3pRmsaPH49NmzZh165daNGixV3HhoeHAwDOnTuHwMBAqNVq7N+/32BMZmblKYtVp6er1Wr9slvHODo6wtbWVn9wdk1j7nSKu0qlgkqlMv5FEhERkYFr+aXYdPQqgMoZwOs7SXccCiEwfvx4rF27Ftu2bUNAQMA975OUlAQA8Pb2BgBERETg2LFjBvMfxcXFwdHREUFBQfox8fHxBo8TFxeHiIgIAIBSqUSXLl0Mxuh0OsTHx+vHEBERkXmt3J+Kcq1AJz9nhLRwkjrOPUm6pSk6OhorVqzA+vXr4eDgoD8GycnJCba2tjh//jxWrFiBJ598Em5ubjh69CgmTpyIXr16oUOHDgCAPn36ICgoCMOHD8f8+fORkZGB999/H9HR0fotQa+//jq+/PJLTJ48GaNHj8a2bduwatUqbN68WZ8lJiYGI0eORFhYGLp164YFCxagsLAQo0aNqvs3hoiIqJEr1+qwfF/lNAMNYSsTAEBICECNP0uWLBFCCJGamip69eolXF1dhUqlEq1btxaTJk0SeXl5Bo9z8eJF0a9fP2Frayvc3d3F22+/LcrLyw3GbN++XXTs2FEolUrRqlUr/XPc6osvvhB+fn5CqVSKbt26ib179xr9WvLy8gSAatmIiIious1Hrwr/KZtEl9n/EyXlFZLlMOX7u17N09SQcZ4mIiIi473wnwTsS8nBm4+3RkyfNve+g4U02HmaiIiIqPE7laHBvpQcKOQyvBheP68zVxOWJiIiIqpTVdMM9G2vhtrJRuI0xmNpIiIiojqTV1SOtYeuAABGRDScrUwASxMRERHVodWJaSgu16Kt2gHdAlzvfYd6hKWJiIiI6oROJ/DT3spdcyMiWkImk0mcyDQsTURERFQndp69hkvZRXC0scLATj5SxzEZSxMRERHViR/3XAQAPB/mCztlvbiSm0lYmoiIiMjiLl4vxI4z1yCTAS91b1gHgFdhaSIiIiKLW7b3EoQAHn3QAy3dm0kdp1ZYmoiIiMiiisoqsOpgGgBgRI+W0oa5DyxNREREZFHrDl+FpqQC/m52eOQBD6nj1BpLExEREVmMEAI/JlwEAAzv7g+5vGFNM3ArliYiIiKymP0pOTiVkQ9bawWeC/OVOs59YWkiIiIii6m6ztyznZvDydZa4jT3h6WJiIiILCIjrwRbj2cAaHjXmasJSxMRERFZxIp9l6DVCYQHuKKt2lHqOPeNpYmIiIjMrrRCixX7UwEAIxvwNAO3YmkiIiIis9tyLAPXC8qgdrTBE0FeUscxC5YmIiIiMrulN6cZGBbuB2tF46gbjeNVEBERUb1x9HIuDqfmQqmQY0g3P6njmA1LExEREZlV1TQD/Tt4w8NBJXEa82FpIiIiIrPJKSzDhiNXATSOaQZuxdJEREREZvPLgTSUVejQoYUTOvo6Sx3HrFiaiIiIyCy0OoFleyt3zY2IaAmZrOFeZ64mLE1ERERkFn+czMSV3GK42FnjqQ7eUscxO5YmIiIiMosfb04zMKSbH2ysFdKGsQCWJiIiIrpv57Ly8de5bMhllXMzNUYsTURERHTfqqYZeCLICy1c7CROYxksTURERHRf8kvK8VviZQDAyIiW0oaxIJYmIiIiui9rDl1BYZkWrT3tERHoJnUci2FpIiIioloTQuivMzcywr/RTTNwK5YmIiIiqrU/z13HhWuFsFdZ4dnOLaSOY1EsTURERFRrS/dUHgD+jy4tYK+ykjiNZbE0ERERUa2k5RQh/lQmAGB4I7vOXE1YmoiIiKhWlu27BCGAhx9wR6CHvdRxLI6liYiIiExWUq7FLwfSADTuaQZuxdJEREREJttw5Cpyi8rRwsUWj7X1lDpOnWBpIiIiIpMIIbB0z0UAwPDu/lDIG+80A7diaSIiIiKTHEq9geNXNVBZyfF8mK/UceoMSxMRERGZpGqagWc6+sClmVLiNHWHpYmIiIiMlqUpwe/H0gEAI5rIAeBVWJqIiIjIaD/vT0OFTiDM3wXBzZ2kjlOnWJqIiIjIKOVaHZbvq9w1N6JHS2nDSICliYiIiIzy3+MZyMovhYeDCn3bq6WOU+dYmoiIiMgoP948APzFbn5QWjW9CtH0XjERERGZ7MRVDfZfzIGVXIYXw/2kjiMJliYiIiK6px8TLgIA+gar4eVoI20YibA0ERER0V3lFpVhXdIVAMDIJngAeBWWJiIiIrqr1Qcvo6Rch3bejgjzd5E6jmRYmoiIiOiOtDqBn/ZWHgD+cg9/yGRN4zpzNWFpIiIiojvaeSYLqTlFcLK1xtOhzaWOIymWJiIiIrqjquvMvdDVF7ZKhcRppCVpaYqNjUXXrl3h4OAAT09PDBw4EKdPnzYYU1JSgujoaLi5ucHe3h6DBw9GZmamwZjU1FT0798fdnZ28PT0xKRJk1BRUWEwZseOHejcuTNUKhVat26NH374oVqer776Ci1btoSNjQ3Cw8Oxf/9+s79mIiKihuLCtQLsPHMNMhnwUri/1HEkJ2lp2rlzJ6Kjo7F3717ExcWhvLwcffr0QWFhoX7MxIkTsXHjRqxevRo7d+7E1atXMWjQIP16rVaL/v37o6ysDHv27MHSpUvxww8/YMaMGfoxKSkp6N+/Px577DEkJSVhwoQJeOWVV/Df//5XP+aXX35BTEwMZs6ciUOHDiE0NBRRUVHIysqqmzeDiIionqk6lunxNp7wc7OTOE09IOqRrKwsAUDs3LlTCCFEbm6usLa2FqtXr9aPOXnypAAgEhIShBBC/P7770Iul4uMjAz9mEWLFglHR0dRWloqhBBi8uTJon379gbP9cILL4ioqCj97W7duono6Gj9ba1WK3x8fERsbKxR2fPy8gQAkZeXZ+KrJiIiqn8KSspF8Iytwn/KJrHjdJbUcSzGlO/venVMU15eHgDA1dUVAJCYmIjy8nJERkbqx7Rt2xZ+fn5ISEgAACQkJCAkJAReXl76MVFRUdBoNDh+/Lh+zK2PUTWm6jHKysqQmJhoMEYulyMyMlI/5nalpaXQaDQGP0RERI3F2sNXkF9agQD3Zni4tbvUceqFelOadDodJkyYgJ49eyI4OBgAkJGRAaVSCWdnZ4OxXl5eyMjI0I+5tTBVra9ad7cxGo0GxcXFuH79OrRabY1jqh7jdrGxsXByctL/+Pr61u6FExER1TNCCP0M4CMi/CGXN91pBm5Vb0pTdHQ0kpOTsXLlSqmjGGXatGnIy8vT/6SlpUkdiYiIyCz2XsjBmcwC2CkVGNylhdRx6g0rqQMAwPjx47Fp0ybs2rULLVr8/eGo1WqUlZUhNzfXYGtTZmYm1Gq1fsztZ7lVnV1365jbz7jLzMyEo6MjbG1toVAooFAoahxT9Ri3U6lUUKlUtXvBRERE9VjVVqZBnZvD0cZa2jD1iKRbmoQQGD9+PNauXYtt27YhICDAYH2XLl1gbW2N+Ph4/bLTp08jNTUVERERAICIiAgcO3bM4Cy3uLg4ODo6IigoSD/m1seoGlP1GEqlEl26dDEYo9PpEB8frx9DRETUFFzNLcb/TlRuRBgR0VLaMPWMpFuaoqOjsWLFCqxfvx4ODg7644ecnJxga2sLJycnjBkzBjExMXB1dYWjoyPeeOMNREREoHv37gCAPn36ICgoCMOHD8f8+fORkZGB999/H9HR0fotQa+//jq+/PJLTJ48GaNHj8a2bduwatUqbN68WZ8lJiYGI0eORFhYGLp164YFCxagsLAQo0aNqvs3hoiISCLL912CVicQ0coND3o5SB2nfrH4uXx3AaDGnyVLlujHFBcXi3/+85/CxcVF2NnZiWeffVakp6cbPM7FixdFv379hK2trXB3dxdvv/22KC8vNxizfft20bFjR6FUKkWrVq0MnqPKF198Ifz8/IRSqRTdunUTe/fuNfq1cMoBIiJq6IrLKkSnD/8n/KdsEluOXZU6Tp0w5ftbJoQQ0lW2xkOj0cDJyQl5eXlwdHSUOg4REZHJ1hy6jJhVR+DjZINdkx+DlaLenC9mMaZ8fzf+d4OIiIiMsjShcgbwYd39m0RhMhXfESIiIkJSWi6OpOVCqZBjSFfOPVgTliYiIiLSTzPwVKg33Ow5pU5NWJqIiIiauOsFpdh0JB0AMJLTDNwRSxMREVET98uBNJRpdQj1dUaor7PUceqtWpWmn376CT179oSPjw8uXao8aGzBggVYv369WcMRERGRZVVodVi2t/K7fGSEv8Rp6jeTS9OiRYsQExODJ598Erm5udBqtQAAZ2dnLFiwwNz5iIiIyIL+OJmJ9LwSuDVTon8Hb6nj1Gsml6YvvvgC3377Ld577z0oFAr98rCwMBw7dsys4YiIiMiylu6p3Mo0tJsfVFaKe4xu2kwuTSkpKejUqVO15SqVCoWFhWYJRURERJZ3JjMfCReyoZDL8GK4n9Rx6j2TS1NAQACSkpKqLd+6dSvatWtnjkxERERUB6qmGegT5AUfZ1tpwzQAJl+wNyYmBtHR0SgpKYEQAvv378fPP/+M2NhYfPfdd5bISERERGamKSnHmkNXAAAjOM2AUUwuTa+88gpsbW3x/vvvo6ioCC+++CJ8fHzw+eefY8iQIZbISERERGb268HLKCrT4kEve3Rv5Sp1nAbB5NIEAMOGDcOwYcNQVFSEgoICeHp6mjsXERERWYhOJ/DTzWkGRkS0hEwmkzhRw1Cr0lTFzs4OdnZ25spCREREdWD3uetIuV4IBxsrPNupudRxGgyTS1N2djZmzJiB7du3IysrCzqdzmB9Tk6O2cIRERGR+f245yIA4Lkuvmimuq/tJ02Kye/U8OHDce7cOYwZMwZeXl7cpEdERNSApGYXYdvpLADAcM4AbhKTS9Pu3bvx559/IjQ01BJ5iIiIyIKW7bsEIYBHHvRAgHszqeM0KCbP09S2bVsUFxdbIgsRERFZUHGZFr8cSAMAjOzBrUymMrk0ff3113jvvfewc+dOZGdnQ6PRGPwQERFR/bQ+6Qryisvh52qHRx7kme+mMnn3nLOzMzQaDR5//HGD5UIIyGQy/QV8iYiIqP4QQmBpQuU0A8O7+0Mh5zHJpjK5NA0bNgzW1tZYsWIFDwQnIiJqIA5euoGT6RrYWMvxXFgLqeM0SCaXpuTkZBw+fBht2rSxRB4iIiKygKU3pxl4tlNzONsppQ3TQJl8TFNYWBjS0tIskYWIiIgsIFNTgq3JGQCA4d1bShumATN5S9Mbb7yBt956C5MmTUJISAisra0N1nfo0MFs4YiIiOj+rdiXigqdQLeWrgjycZQ6ToNlcml64YUXAACjR4/WL5PJZDwQnIiIqJ7R6gT2nLuO7/9KAQC81N1P4kQNm8mlKSUlxRI5iIiIyIy2Jqdj1sYTSM8r0S+b8/spKK3k6BvsLWGyhksmhBBSh2gMNBoNnJyckJeXB0dHbvokIiLpbE1Ox7hlh3D7F3zV+e6LXurM4nSTKd/fRm1p2rBhA/r16wdra2ts2LDhrmOffvpp45MSERGRWWl1ArM2nqhWmABAoLI4zdp4Ak8EqTlXk4mMKk0DBw5ERkYGPD09MXDgwDuO4zFNRERE0tqfkmOwS+52AkB6Xgn2p+QgItCt7oI1AkaVJp1OV+PvREREVL9k5d+5MNVmHP3N5HmafvzxR5SWllZbXlZWhh9//NEsoYiIiKh2PB1szDqO/mZyaRo1ahTy8vKqLc/Pz8eoUaPMEoqIiIhqp1uAK2yt7/z1LgPg7WSDbgGudReqkTC5NFXNx3S7y5cvw8nJySyhiIiIqHb+PHcdxeU1H0pT9e09c0AQDwKvBaPnaerUqRNkMhlkMhl69+4NK6u/76rVapGSkoK+fftaJCQRERHdW2FpBd5dcwwA0LutJ06kawwOClc72WDmgCBON1BLRpemqrPmkpKSEBUVBXt7e/06pVKJli1bYvDgwWYPSERERMb55H9ncCW3GC1cbPHFi52gslJgf0oOsvJL4OlQuUuOW5hqz+jSNHPmTABAy5Yt8cILL8DGhgeQERER1ReHU29gyZ7Kq3Z89GwI7JSVX/GcVsB8TL6MysiRIy2Rg4iIiGqprEKHaWuOQQhgUKfmeORBD6kjNUomHwhORERE9cs3u87jVEY+XJsp8f5TQVLHabRYmoiIiBqwc1kFWBh/DkDlWXGuzZQSJ2q8WJqIiIgaKJ1O4N01x1Cm1eHRNh54OtRH6kiNWq1LU1lZGU6fPo2Kigpz5iEiIiIj/XwgFfsv5sBOqcC/BgbXOI8imY/JpamoqAhjxoyBnZ0d2rdvj9TUVADAG2+8gblz55o9IBEREVWXkVeCub+fAgBMimqDFi52Eidq/EwuTdOmTcORI0ewY8cOg2kHIiMj8csvv5g1HBEREVUnhMD09cnIL61AR19njIhoKXWkJsHkKQfWrVuHX375Bd27dzfYDNi+fXucP3/erOGIiIiouq3JGYg7kQkruQzzBnfghJV1xOQtTdeuXYOnp2e15YWFhdyXSkREZGF5ReWYseE4AOCfjwaijdpB4kRNh8mlKSwsDJs3b9bfripK3333HSIiIsyXjIiIiKqJ3XIS1/JLEejRDNGPt5Y6TpNi8u65OXPmoF+/fjhx4gQqKirw+eef48SJE9izZw927txpiYxEREQEYM/561h5IA0AMHdwB6isFBInalpM3tL00EMPISkpCRUVFQgJCcH//vc/eHp6IiEhAV26dLFERiIioiavpFyLd9ccAwC81N0PXVu6Spyo6TF5SxMABAYG4ttvvzV3FiIiIrqDz+PP4mJ2EdSONpjct63UcZoko0qTRqMx+gEdHR1rHYaIiIiqO341D9/sugAAmD0wGI421hInapqMKk3Ozs73PDNOCAGZTAatVmuWYERERARUaHWY+tsxaHUC/UO88USQl9SRmiyjStP27dstnYOIiIhqsOSvizh2JQ+ONlaY+XSQ1HGaNKNK0yOPPGLpHERERHSb1OwifBJ3GgDwfv8geDrY3OMeZElGnT139OhR6HQ6/e93+zHFrl27MGDAAPj4+EAmk2HdunUG619++WXIZDKDn759+xqMycnJwbBhw+Do6AhnZ2eMGTMGBQUF1fI//PDDsLGxga+vL+bPn18ty+rVq9G2bVvY2NggJCQEv//+u0mvhYiIyJyEEHh37TGUlOvQI9ANz4W1kDpSk2fUlqaOHTsiIyMDnp6e6NixI2QyGYQQ1caZekxTYWEhQkNDMXr0aAwaNKjGMX379sWSJUv0t1UqlcH6YcOGIT09HXFxcSgvL8eoUaMwduxYrFixAkDlQex9+vRBZGQkFi9ejGPHjmH06NFwdnbG2LFjAQB79uzB0KFDERsbi6eeegorVqzAwIEDcejQIQQHBxv9eoiIiMzlt0NX8Oe561BZyTHn2RBedaMekIma2s9tLl26BD8/P8hkMly6dOmuY/39/WsXRCbD2rVrMXDgQP2yl19+Gbm5udW2QFU5efIkgoKCcODAAYSFhQEAtm7diieffBKXL1+Gj48PFi1ahPfeew8ZGRlQKpUAgKlTp2LdunU4dary6tAvvPACCgsLsWnTJv1jd+/eHR07dsTixYtrfO7S0lKUlpbqb2s0Gvj6+iIvL49nEBIR0X25ll+KyE93Iq+4HFP7tcXrjwRKHanR0mg0cHJyMur726jdc/7+/vqG6+/vf9cfc9uxYwc8PT3Rpk0bjBs3DtnZ2fp1CQkJcHZ21hcmAIiMjIRcLse+ffv0Y3r16qUvTAAQFRWF06dP48aNG/oxkZGRBs8bFRWFhISEO+aKjY2Fk5OT/sfX19csr5eIiOjDTSeQV1yO9j6OeOWhAKnj0E0mzwgOAKdPn8b48ePRu3dv9O7dG+PHj8fp06fNnQ19+/bFjz/+iPj4eMybNw87d+5Ev3799LsAq3YZ3srKygqurq7IyMjQj/HyMjw9s+r2vcZUra/JtGnTkJeXp/9JS0u7vxdLREQEIP5kJjYeuQqFXIZ5gzvASlGrr2qyAJNnBP/tt98wZMgQhIWF6S/Qu3fvXgQHB2PlypUYPHiw2cINGTJE/3tISAg6dOiAwMBA7NixA7179zbb89SGSqWqdnwVERHR/SgorcD765IBAK88FIDg5k4SJ6JbmVyaJk+ejGnTpuHDDz80WD5z5kxMnjzZrKXpdq1atYK7uzvOnTuH3r17Q61WIysry2BMRUUFcnJyoFarAQBqtRqZmZkGY6pu32tM1XoiIqK68PHWU0jPK4Gfqx0mRD4odRy6jcnb/NLT0zFixIhqy1966SWkp6ebJdSdXL58GdnZ2fD29gYAREREIDc3F4mJifox27Ztg06nQ3h4uH7Mrl27UF5erh8TFxeHNm3awMXFRT8mPj7e4Lni4uL0W9KIiIgsLfFSDn7cW3myVeygENgqFRInotuZXJoeffRR7N69u9ryP//8Ew8//LBJj1VQUICkpCQkJSUBAFJSUpCUlITU1FQUFBRg0qRJ2Lt3Ly5evIj4+Hg888wzaN26NaKiogAA7dq1Q9++ffHqq69i//79+OuvvzB+/HgMGTIEPj4+AIAXX3wRSqUSY8aMwfHjx/HLL7/g888/R0xMjD7HW2+9ha1bt+KTTz7BqVOn8MEHH+DgwYMYP368qW8PERGRyUortJjy2zEIATzXpQV6tnaXOhLVRJho0aJFwsPDQ0RHR4uffvpJ/PTTTyI6Olp4enqKRYsWifXr1+t/7mX79u0CQLWfkSNHiqKiItGnTx/h4eEhrK2thb+/v3j11VdFRkaGwWNkZ2eLoUOHCnt7e+Ho6ChGjRol8vPzDcYcOXJEPPTQQ0KlUonmzZuLuXPnVsuyatUq8eCDDwqlUinat28vNm/ebNL7kpeXJwCIvLw8k+5HRET0Wdxp4T9lk+gy+3/iRmGp1HGaFFO+v42ap+lWcrlxG6ea2sV7TZnngYiIqMrZzHw8uXA3yrUCX77YCU918JE6UpNiyve3yQeCV11OhYiIiO6PTicw5bejKNcKRLbzRP8Qb6kj0V1w8gciIiKJLNt3CYdSc2GvssLsgcG8VEo9Z/KWJgA4cOAAtm/fjqysrGpbnj799FOzBCMiImrMruYWY96Wyst5TenbBt5OthInonsxuTTNmTMH77//Ptq0aQMvLy+DVsyGTEREdG9CCExfl4zCMi26+LtgWLj5L0NG5mdyafr888/x/fff4+WXX7ZAHCIiosZv09F0xJ/KglIhx9xBIZDLudGhITD5mCa5XI6ePXtaIgsREVGjd6OwDB9sOA4AiH6sNR7wcpA4ERnL5NI0ceJEfPXVV5bIQkRE1Oh99PtJZBeW4UEve4x7NFDqOGQCk3fPvfPOO+jfvz8CAwMRFBQEa2trg/Vr1qwxWzgiIqLG5M+z1/Fr4mXIZEDsoA5QWvEk9obE5NL05ptvYvv27Xjsscfg5ubGg7+JiIiMUFymxbS1RwEAIyNaoou/i8SJyFQml6alS5fit99+Q//+/S2Rh4iIqFH67I8zSMspho+TDd6JaiN1HKoFk7cLurq6IjCQ+2CJiIiMdexyHr7bfQEA8K9ng2GvqtU0iSQxk0vTBx98gJkzZ6KoqMgSeYiIiBqVcq0OU347Cp0Ang71weNtvaSORLVkctVduHAhzp8/Dy8vL7Rs2bLageCHDh0yWzgiIqKG7rvdKTiRroGznTVmDAiSOg7dB5NL08CBAy0Qg4iIqPFJuV6IBX+cAQBM7x8Ed3uVxInofphcmmbOnGmJHERERI2KEALT1hxFaYUODz/gjkGdm0sdie5TrY9ES0xMxMmTJwEA7du3R6dOncwWioiIqKFbdTANey/kwNZagTnPhnCKnkbA5NKUlZWFIUOGYMeOHXB2dgYA5Obm4rHHHsPKlSvh4eFh7oxEREQNSpamBB9trtyw8HafB+HraidxIjIHk8+ee+ONN5Cfn4/jx48jJycHOTk5SE5OhkajwZtvvmmJjERERA3KBxuPQ1NSgQ4tnPByj5ZSxyEzMXlL09atW/HHH3+gXbt2+mVBQUH46quv0KdPH7OGIyIiamj+ezwDvx/LgEIuw9xBHWCl4KVSGguTP0mdTldtmgEAsLa2hk6nM0soIiKihkhTUo4Z65MBAK/1aoUgH0eJE5E5mVyaHn/8cbz11lu4evWqftmVK1cwceJE9O7d26zhiIiIGpJ5W04hU1OKAPdmeLP3A1LHITMzuTR9+eWX0Gg0aNmyJQIDAxEYGIiAgABoNBp88cUXlshIRERU7+1PycHyfakAgNhBIbCxVkiciMzN5GOafH19cejQIfzxxx84deoUAKBdu3aIjIw0ezgiIqKGoKRci6lrjgIAhnbzRfdWbhInIkuo1TxNMpkMTzzxBJ544glz5yEiImpwvtp+DheuFcLDQYWp/drd+w7UIJm8e+7NN9/EwoULqy3/8ssvMWHCBHNkIiIiajBOZWiwaMd5AMDsZ9rDybb6yVLUOJhcmn777Tf07Nmz2vIePXrg119/NUsoIiKihkCrE5jy2zFU6ASi2nuhb7C31JHIgkwuTdnZ2XBycqq23NHREdevXzdLKCIiooZg6Z6LOJKWCweVFT58JljqOGRhJpem1q1bY+vWrdWWb9myBa1atTJLKCIiovouLacI//7faQDAtCfbwcvRRuJEZGkmHwgeExOD8ePH49q1a3j88ccBAPHx8fjkk0+wYMECc+cjIiKqd4QQeG9dMorKtOgW4IohXX2ljkR1wOTSNHr0aJSWluKjjz7C7NmzAQAtW7bEokWLMGLECLMHJCIiqm/WJ13FrjPXoLSSI3ZQCORymdSRqA7IhBCitne+du0abG1tYW9vb85MDZJGo4GTkxPy8vLg6Mhp84mIGqvsglJEfroTN4rKMSmqDaIfay11JLoPpnx/12qepioeHh73c3ciIqIG51+bT+JGUTnaqh0wtheP5W1KeOllIiIiI+04nYW1h69ALgPmDu4AawW/RpsSftpERERGKCytwHtrkwEAo3oGoKOvs7SBqM6xNBERERnhk/+dwZXcYrRwscXbfR6UOg5JgKWJiIjoHg6n3sCSPSkAgI+eDYGd8r4OCaYGqlafenx8POLj45GVlQWdTmew7vvvvzdLMCIiovqgrEKHaWuOQQhgUKfmeORBngTVVJlcmmbNmoUPP/wQYWFh8Pb2hkzGuSmIiKjx+mbXeZzKyIdrMyXefypI6jgkIZNL0+LFi/HDDz9g+PDhlshDREQkKa1OYH9KDrLyS1CuFfj8j7MAgJkDguDaTClxOpKSyaWprKwMPXr0sEQWIiIiSW1NTsesjSeQnldisLy9jyOeDvWRKBXVFyYfCP7KK69gxYoVlshCREQkma3J6Ri37FC1wgQAx69q8N/jGRKkovrE5C1NJSUl+Oabb/DHH3+gQ4cOsLa2Nlj/6aefmi0cERFRXdDqBGZtPIE7XVdMBmDWxhN4IkgNBa8z12SZXJqOHj2Kjh07AgCSk5MN1vGgcCIiaoj2p+TUuIWpigCQnleC/Sk5iAh0q7tgVK+YXJq2b99uiRxERESSycq/c2GqzThqnDi5JRERNXmeDjZmHUeNU60mtzx48CBWrVqF1NRUlJWVGaxbs2aNWYIRERHVlW4BrnBrpkR2YVmN62UA1E426BbgWrfBqF4xeUvTypUr0aNHD5w8eRJr165FeXk5jh8/jm3btsHJyckSGYmIiCwqu6AUFbdd4aJK1dG6MwcE8SDwJs7k0jRnzhx89tln2LhxI5RKJT7//HOcOnUKzz//PPz8/CyRkYiIyGJKK7R4fVki8ooroHa0gZejymC92skGi17qjL7B3hIlpPrC5N1z58+fR//+/QEASqUShYWFkMlkmDhxIh5//HHMmjXL7CGJiIgsQQiBmeuP41BqLhxtrPDz2O7wc7XTzwju6VC5S45bmAioRWlycXFBfn4+AKB58+ZITk5GSEgIcnNzUVRUZPaARERElrJs7yWsPJAGuQxYOLQTAtybAQCnFaAamVyaevXqhbi4OISEhOC5557DW2+9hW3btiEuLg69e/e2REYiIiKz23shG7M2ngAATO7bFo+28ZQ4EdV3JpemL7/8EiUllfNUvPfee7C2tsaePXswePBgvP/++2YPSEREZG6XbxThn8sPoUIn8HSoD17r1UrqSNQAmHwguKurK3x8Ki9aKJfLMXXqVGzYsAGffPIJXFxcTHqsXbt2YcCAAfDx8YFMJsO6desM1gshMGPGDHh7e8PW1haRkZE4e/aswZicnBwMGzYMjo6OcHZ2xpgxY1BQUGAw5ujRo3j44YdhY2MDX19fzJ8/v1qW1atXo23btrCxsUFISAh+//13k14LERE1DMVlWrz2UyJyCsvQ3scR8wZ34BUtyCgmlyaFQoGsrKxqy7Ozs6FQKEx6rMLCQoSGhuKrr76qcf38+fOxcOFCLF68GPv27UOzZs0QFRWl39IFAMOGDcPx48cRFxeHTZs2YdeuXRg7dqx+vUajQZ8+feDv74/ExER8/PHH+OCDD/DNN9/ox+zZswdDhw7FmDFjcPjwYQwcOBADBw6sdpkYIiJq2IQQmPzbURy/qoFbMyW+GREGW6Vp313UhAkTyWQykZmZWW35lStXhI2NjakPpwdArF27Vn9bp9MJtVotPv74Y/2y3NxcoVKpxM8//yyEEOLEiRMCgDhw4IB+zJYtW4RMJhNXrlwRQgjx9ddfCxcXF1FaWqofM2XKFNGmTRv97eeff17079/fIE94eLh47bXXjM6fl5cnAIi8vDyj70NERHVr0Y5zwn/KJhE4bbPYe/661HGoHjDl+9voY5oWLlwIoPKivN999x3s7e3167RaLXbt2oW2bduarcylpKQgIyMDkZGR+mVOTk4IDw9HQkIChgwZgoSEBDg7OyMsLEw/JjIyEnK5HPv27cOzzz6LhIQE9OrVC0qlUj8mKioK8+bNw40bN+Di4oKEhATExMQYPH9UVFS13YW3Ki0tRWlpqf62RqMxw6smIiJL2X46C/O2ngIAzHy6PcJb8Qw5Mo3Rpemzzz4DULlpc/HixQa74pRKJVq2bInFixebLVhGRgYAwMvLy2C5l5eXfl1GRgY8PQ3PdrCysoKrq6vBmICAgGqPUbXOxcUFGRkZd32emsTGxnJOKiKiBuLCtQK8+fNhCAEM7eaLl8I5GTOZzujSlJKSAgB47LHHsGbNGpMP+m5spk2bZrB1SqPRwNfXV8JERERUk/yScoz9KRH5JRXo4u+CWU8H88BvqhWTpxzYvn27we2KigqUlJQY7K4zB7VaDQDIzMyEt/ffU9dnZmaiY8eO+jG3H5ReUVGBnJwc/f3VajUyMzMNxlTdvteYqvU1UalUUKlUd1xPRETS0+kEJv6ShHNZBVA7Vl4ORWll8jlQRABMOHtu48aN+OGHHwyWffTRR7C3t4ezszP69OmDGzdumC1YQEAA1Go14uPj9cs0Gg327duHiIgIAEBERARyc3ORmJioH7Nt2zbodDqEh4frx+zatQvl5eX6MXFxcWjTpo1+a1lERITB81SNqXoeIiJqmD774wz+OJkFpZUc/xneBZ4ONlJHogbM6NL06aeforCwUH97z549mDFjBqZPn45Vq1YhLS0Ns2fPNunJCwoKkJSUhKSkJACVuwCTkpKQmpoKmUyGCRMm4F//+hc2bNiAY8eOYcSIEfDx8cHAgQMBAO3atUPfvn3x6quvYv/+/fjrr78wfvx4DBkyRD+X1IsvvgilUokxY8bg+PHj+OWXX/D5558b7Fp76623sHXrVnzyySc4deoUPvjgAxw8eBDjx4836fUQEVH9seVYOr7Ydg4AMHdQCEJ9naUNRA2fsafkeXh4iEOHDulvT5w4UURFRelvb968WbRu3dqk0/y2b98uAFT7GTlypBCictqB6dOnCy8vL6FSqUTv3r3F6dOnDR4jOztbDB06VNjb2wtHR0cxatQokZ+fbzDmyJEj4qGHHhIqlUo0b95czJ07t1qWVatWiQcffFAolUrRvn17sXnzZpNeC6ccICKqP06m54l207cI/ymbxIcbj0sdh+oxU76/ZUIIYUy5srW1xenTp+HnV3nGQbdu3fDcc89h0qRJAIBLly4hKCjIYGtUU6LRaODk5IS8vDw4OjpKHYeIqMm6UViGp7/6E2k5xXiotTt+GNUVVgoex0Q1M+X72+i/Rc2bN8fJkycBVO5WO3LkCHr06KFfn52dDTs7u1pGJiIiun8VWh2iVxxCWk4x/Fzt8MXQTixMZDZG/0167rnnMGHCBPz000949dVXoVar0b17d/36gwcPok2bNhYJSUREZIw5v5/CnvPZsFMq8O2IMLg0U977TkRGMnrKgRkzZuDKlSt48803oVarsWzZMoMJLn/++WcMGDDAIiGJiIju5bfEy/j+r8o5BT99PhRt1A4SJ6LGxuhjmujueEwTEZF0ktJy8fx/ElBWocObj7dGTB/u+SDjWOSYpiopKSk4e/ZsteVnz57FxYsXTX04IiKi+5KlKcFrPx1EWYUOke28MCHyQakjUSNlcml6+eWXsWfPnmrL9+3bh5dfftkcmYiIiIxSWqHF68sSkakpRWtPe3z2Qijkcl4ihSzD5NJ0+PBh9OzZs9ry7t276yepJCIisjQhBGauP45DqblwtLHCtyPC4GBjLXUsasRMLk0ymQz5+fnVlufl5UGr1ZolFBER0b0s23sJKw+kQS4DFg7thAD3ZlJHokbO5NLUq1cvxMbGGhQkrVaL2NhYPPTQQ2YNR0REVJO9F7Ixa+MJAMDkvm3xaBtPiRNRU2D0lANV5s2bh169eqFNmzZ4+OGHAQC7d++GRqPBtm3bzB6QiIjoVpdvFOGfyw+hQifwdKgPXuvVSupI1ESYvKUpKCgIR48exfPPP4+srCzk5+djxIgROHXqFIKDgy2RkYiICABQXKbFaz8lIqewDO19HDFvcAfIZDzwm+qGyVuaAMDHxwdz5swxdxYiIqI7EkJg8m9HcfyqBm7NlPhmRBhslYp735HITIwqTUePHkVwcDDkcjmOHj1617EdOnQwSzAiIqJb/WfXBWw8chVWchm+HtYZzZ1tpY5ETYxRpaljx47IyMiAp6cnOnbsCJlMhpomEpfJZDyDjoiIzG776SzM23oKADDz6fYIb+UmcSJqiowqTSkpKfDw8ND/TkREVFcuXCvAmz8fhhDA0G6+eCncT+pI1EQZVZr8/f1r/J2IiMiS8kvKMfanROSXVKCLvwtmPR3MA79JMkaVpg0bNhj9gE8//XStwxAREVXR6QQm/pKEc1kFUDvaYNFLnaG0MvmkbyKzMao0DRw40KgH4zFNRERkLp/9cQZ/nMyC0kqO/wzvAk8HG6kjURNnVGnS6XSWzkFERKS35Vg6vth2DgAwd1AIQn2dpQ1EhFpMbklERGRJpzI0eHv1EQDAmIcCMKhzC4kTEVUyujQlJCRg06ZNBst+/PFHBAQEwNPTE2PHjkVpaanZAxIRUdNxo7AMr/54EEVlWjzU2h3T+rWVOhKRntGl6cMPP8Tx48f1t48dO4YxY8YgMjISU6dOxcaNGxEbG2uRkERE1PhVaHWIXnEIaTnF8HW1xRdDO8FKwR0iVH8Y/bcxKSkJvXv31t9euXIlwsPD8e233yImJgYLFy7EqlWrLBKSiIgavzm/n8Ke89mwUyrw7YgwuDRTSh2JyIDRpenGjRvw8vLS3965cyf69eunv921a1ekpaWZNx0RETUJvyVexvd/VU6e/OnzoWirdpQ4EVF1RpcmLy8v/WzgZWVlOHToELp3765fn5+fD2tra/MnJCKiRi0pLRfT1h4DALz5eGv0DfaWOBFRzYwuTU8++SSmTp2K3bt3Y9q0abCzs8PDDz+sX3/06FEEBgZaJCQRETVOWZoSvPbTQZRV6BDZzgsTIh+UOhLRHRk1TxMAzJ49G4MGDcIjjzwCe3t7LF26FErl3/ubv//+e/Tp08ciIYmIqPEprdDi9WWJyNSUorWnPT57IRRyOS+RQvWX0aXJ3d0du3btQl5eHuzt7aFQKAzWr169Gvb29mYPSEREjY8QAjPXH8eh1Fw42ljh2xFhcLDhIR5Uvxldmqo4OTnVuNzV1fW+wxARUdOwbO8lrDyQBrkMWDi0EwLcm0kdieieOAEGERHVqb0XsjFr4wkAwOS+bfFoG0+JExEZh6WJiIjqzOUbRfjn8kOo0Ak8HeqD13q1kjoSkdFYmoiIqE4Ul2nx2k+JyCksQ3sfR8wb3AEyGQ/8poaDpYmIiCxOCIHJvx3F8asauDVT4psRYbBVKu59R6J6hKWJiIgs7j+7LmDjkauwksvw9bDOaO5sK3UkIpOxNBERkUVtP52FeVtPAQBmPt0e4a3cJE5EVDssTUREZDEXrhXgzZ8PQwhgaDdfvBTuJ3UkolpjaSIiIovILynH2J8SkV9SgS7+Lpj1dDAP/KYGzeTJLYmIiGqi1QnsT8lBVn4JPOxV+L8/L+BcVgHUjjZY9FJnKK34/+nUsLE0ERHRfduanI5ZG08gPa/EYLmVXIb/DO8CTwcbiZIRmQ9rPxER3ZetyekYt+xQtcIEABU6gfS8YglSEZkfSxMREdWaVicwa+MJiDuslwGYtfEEtLo7jSBqOFiaiIio1van5NS4hamKAJCeV4L9KTl1F4rIQliaiIio1rLy71yYajOOqD5jaSIioloRQuBker5RY3kgODUGPHuOiIhMlpVfgnfXJOOPk5l3HScDoHayQbcA17oJRmRB3NJEREQm2Xw0HVGf7cIfJzNhrZBhYEcfyFBZkG5VdXvmgCAo5JzUkho+bmkiIiKj3Cgsw4wNx7HxyFUAQJC3Iz55PhTtvB3RN1hdbZ4mtZMNZg4IQt9gb6kiE5kVSxMREd3TtlOZmPLbMVzLL4VCLkP0o4EY//gD+lm++wZ744kgtX5GcE+Hyl1y3MJEjQlLExER3VF+STlmbzqBVQcvAwACPZrh0+c7ItTXudpYhVyGiEC3Ok5IVHdYmoiIqEZ7zl3HpF+P4kpuMWQyYEzPALwT1QY21gqpoxFJgqWJiIgMFJVVYN6WU1iacAkA4Odqh38/F8oz4KjJY2kiIiK9xEs5eHvVEVzMLgIADAv3w7tPtkMzFb8uiOr1lAMffPABZDKZwU/btm3160tKShAdHQ03NzfY29tj8ODByMw0nDMkNTUV/fv3h52dHTw9PTFp0iRUVFQYjNmxYwc6d+4MlUqF1q1b44cffqiLl0dEVG+UVmgxd8spPLc4ARezi6B2tMHS0d3w0bMhLExEN9X7/xLat2+PP/74Q3/byurvyBMnTsTmzZuxevVqODk5Yfz48Rg0aBD++usvAIBWq0X//v2hVquxZ88epKenY8SIEbC2tsacOXMAACkpKejfvz9ef/11LF++HPHx8XjllVfg7e2NqKioun2xREQSSL6Sh5hVSTiTWQAAGNS5OWYOaA8nW2uJkxHVLzIhRL299PQHH3yAdevWISkpqdq6vLw8eHh4YMWKFfjHP/4BADh16hTatWuHhIQEdO/eHVu2bMFTTz2Fq1evwsvLCwCwePFiTJkyBdeuXYNSqcSUKVOwefNmJCcn6x97yJAhyM3NxdatW43OqtFo4OTkhLy8PDg6Ot7fCyciqgPlWh2+3n4eX2w7iwqdgLu9Eh89G4Ko9mqpoxHVGVO+v+v17jkAOHv2LHx8fNCqVSsMGzYMqampAIDExESUl5cjMjJSP7Zt27bw8/NDQkICACAhIQEhISH6wgQAUVFR0Gg0OH78uH7MrY9RNabqMe6ktLQUGo3G4IeIqKE4m5mPQV/vwWd/nEGFTqBfsBr/ndCLhYnoLur17rnw8HD88MMPaNOmDdLT0zFr1iw8/PDDSE5ORkZGBpRKJZydnQ3u4+XlhYyMDABARkaGQWGqWl+17m5jNBoNiouLYWtrW2O22NhYzJo1yxwvk4iozmh1Av/35wX8+39nUFahg5OtNT58pj2eDvWBTMaJKInupl6Xpn79+ul/79ChA8LDw+Hv749Vq1bdsczUlWnTpiEmJkZ/W6PRwNfXV8JERER3d/F6Id5ZfQQHL90AADzWxgNzB3eAl6ONxMmIGoZ6XZpu5+zsjAcffBDnzp3DE088gbKyMuTm5hpsbcrMzIRaXbl5Wa1WY//+/QaPUXV23a1jbj/jLjMzE46OjnctZiqVCiqVyhwvi4jIonQ6geX7LmHO76dQXK6FvcoK059qh+fDfLl1icgE9f6YplsVFBTg/Pnz8Pb2RpcuXWBtbY34+Hj9+tOnTyM1NRUREREAgIiICBw7dgxZWVn6MXFxcXB0dERQUJB+zK2PUTWm6jGIiBqyK7nFGPH9fkxffxzF5VpEtHLDlrcexgtd/ViYiExUr7c0vfPOOxgwYAD8/f1x9epVzJw5EwqFAkOHDoWTkxPGjBmDmJgYuLq6wtHREW+88QYiIiLQvXt3AECfPn0QFBSE4cOHY/78+cjIyMD777+P6Oho/Vai119/HV9++SUmT56M0aNHY9u2bVi1ahU2b94s5UsnIrovQgj8mngZH248gfzSCthYyzG1b1uMiGgJOS+iS1Qr9bo0Xb58GUOHDkV2djY8PDzw0EMPYe/evfDw8AAAfPbZZ5DL5Rg8eDBKS0sRFRWFr7/+Wn9/hUKBTZs2Ydy4cYiIiECzZs0wcuRIfPjhh/oxAQEB2Lx5MyZOnIjPP/8cLVq0wHfffcc5moiowcrKL8G7a47hj5OVW9k7+Tnjk+dC0crDXuJkRA1bvZ6nqSHhPE1EVB9sOnoV769LRm5ROZQKOSY+8SDG9moFBbcuEdXIlO/ver2liYiIjHOjsAzT1ydj09F0AEB7H0d88nwo2qr5P3FE5sLSRETUwMWfzMTUNcdwLb8UCrkM0Y+1xvjHWkNp1aDO9SGq91iaiIgaKE1JOf616QRWHbwMAGjtaY9Pnw9FhxbO0gYjaqRYmoiIGqC/zl3H5F+P4kpuMWQy4NWHWyHmiQdhY62QOhpRo8XSRETUgBSVVWDellNYmnAJAODnaodPng9F15auEicjavxYmoiIGojESzl4e9URXMwuAgAM7+6Pqf3aopmK/5QT1QX+l0ZEVM+VlGvx2R9n8M2uCxAC8Haywfx/dMDDD3hIHY2oSWFpIiKqx45dzsPbq5NwJrMAAPCPLi0w/akgONlaS5yMqOlhaSIikphWJ7A/JQdZ+SXwdLBBtwBX6ITAV9vP4ctt51ChE3C3VyF2UAieCPKSOi5Rk8XSREQkoa3J6Zi18QTS80r0y9ztlbBVKpCWUwwA6B/ijdkDg+HaTClVTCICSxMRkWS2Jqdj3LJDuP1aVtcLygAAdkoF5g3ugAGhPnUfjoiq4XSxREQS0OoEZm08Ua0w3crBxgpPhnjXWSYiujuWJiIiCexPyTHYJVeTTE0p9qfk1FEiIroXliYiojp2+UYRlvyVYtTYrPy7Fysiqjs8pomIqA5odQK7zlzDsr2XsP10FnR32y93C08HG8sGIyKjsTQREVnQ9YJS/HIgDT/vT8XlG8X65RGtXHEyIx95ReU1HtckA6B2qpx+gIjqB5YmIiIzE6Jy3qVl+1KxNTkd5drKWuRka41/dGmBF8P9EOhhrz97TgYYFCfZzT9nDgiCQi67/eGJSCIsTUREZqIpKceaxMtYvi8VZ7MK9MtDfZ3xUrgfBoT6wMZaoV/eN9gbi17qXG2eJrWTDWYOCELfYJ45R1SfsDQREd2n5Ct5WLb3EtYnXUVxuRYAYGutwMBOPhgW7o/g5k53vG/fYG88EaSuNiM4tzAR1T8sTUREtVBcpsXGo1exfO8lHLmcp1/+gKc9Xuruj2c7N4ejjXHXh1PIZYgIdLNUVCIyE5YmIiITnMsqwIp9qfg1MQ2akgoAgLVChn7B3nipuz+6tnSBTMatRESNEUsTEdE9lGt1+N/xTCzbewkJF7L1y1u42OLFcD88H+YLd3uVhAmJqC6wNBER3cGV3GL8vC8VvxxMw7X8UgCAXAY83tYTw7r745EHPCDnsUdETQZLExHRLbQ6gV1nr2H53kvYdurvSSg9HFQY0tUXQ7r5obmzrbQhiUgSLE1ERKichHLVwTSs2Hf7JJRueKm7P/q094K1gleeImrKWJqIqMmqmoRy+b5UbLllEkpHGyv8o4svXgz3Q2tPe4lTElF9wdJERE2OpqQcaw9dwfJ9l3Am03ASymHhfhjQwQe2SsVdHoGImiKWJiJqMu40CeUzHSsnoQxpcedJKImIWJqIqMHS6sQ9Z9IuLtNi09GrWLYvFUfScvXLazMJJRE1bSxNRNQgbU1Or3bNNu9brtl2/loBlu+tPgll32BvvBTuh24BrpyEkohMwtJERA3O1uR0jFt2COK25Rl5JXh92SG08bLH6VuOVeIklERkDixNRNSgaHUCszaeqFaYAOiXVRWm3m098VJ3f/R60IMXwCWi+8bSREQNyv6UHINdcneycGhHPB3avA4SEVFTwdJERPVehVaH5KsaJJzPxvqkK0bdR9S0KYqI6D6wNBFRvaPTCZxI12DvhWwknM/G/pQc5JdWmPQYng42FkpHRE0VSxMRSU6nEziTlY+E85UlaV9KDvKKyw3GONpYIbyVG8IDXLF453lkF5TVeFyTDIDaqXL6ASIic2JpIqI6J4TA+WuFSLiQjb3ns5FwIRs5hWUGY+xVVuja0gURgW6IaOWOIB9H/cHcLVxsMW7ZIcgAg+JUdaj3zAFBPPCbiMyOpYmILE4IgUvZRUi4ubtt74VsZOWXGoyxtVYgTF+S3BDS3AlWd7hAbt9gbyx6qXO1eZrUt8zTRERkbixNRGQRl28UVe5uu7k16eptZ7wpreTo4nezJAW6IbSFM5RWNZekmvQN9sYTQep7zghORGQuLE1EZBYZeSVIuHBdX5TScooN1lsrZOjk64LuN7ckdfJzho31/V0UVyGXISLQ7b4eg4jIWCxNRFQr1/JLK89uu7kl6cL1QoP1CrkMHVo4IaJV5ZakMH9X2CrvryQREUmJpYmoCTLmQre3u1FYpi9JCeezcTarwGC9XAa093FCj0A3dA90Q9eWrrBX8Z8YImo8+C8aURNzrwvdVskrLsf+lBwknM/GnvPXcSojv9pjtfN21G9J6hbgCidb6zp5DUREUmBpImpC7nah23HLDuGfjwWiXCuQcD4bx6/mQXfbwAe97PUlKTzADS7NlHWWnYhIaixNRE2EMRe6/Wr7eYPlrdyb6Q/c7t7KDR4OKovnJCKqr1iaiBqpCq0O6XklSMspQmpO5en/xlzo9rEHPfBMp+bo3soNaideioSIqApLE1EDlldUjtSbpSjtxs0/b96+cqMYFbfvXzPCwM7N8UzH5hZIS0TUsLE0EdVjZRU6XM0t1heiW0tRanYRNCV3v4itUiFHC1db+LnawVouR9zJzHs+Jy90S0RUM5YmIhPU5lT9uxFC4MatW4tulqGq2+l5xdUOxr6dh4MKvi6VxcjP1Q6+N//0c7ODl4MN5DfzaXUCD83bhoy8El7oloioFliaiIxk7Kn6tyut0OLyjeJqpSjtRjHScopQUHr3rUUqK3n1QnSzFLVwsYWd0rj/jBVyGWYOCOKFbomIakkmhDD9oAeqRqPRwMnJCXl5eXB0dJQ6Tr1j7i00de1Op+pXvYK5g0PQ2tP+ZjEqNthylKEpwb3+K1M72ty2lchWf9vDXgWZzHzvVW3LHxFRY2TK9zdLk5lYqjQ19LIBNLwv6XKtDgUlFSgorUB+SQU0xeUYtzwRN4rKa/2YzZSKaluJfF3t4OtSubXofq/BZqrG8PeKiMgcWJruw1dffYWPP/4YGRkZCA0NxRdffIFu3brd836WKE0NrWzU5F5baBa91Nksr0UIgeJyLQpKKpBfWoHC0gr971UFqKoEFZSWG5SiwrIKg9ulFbpaZXBvpsQDXg4Gu86qSpJrM6VZtxYREZF5mPL9zWOabvHLL78gJiYGixcvRnh4OBYsWICoqCicPn0anp6edZrlXjM3m6tsWNK9JlOUAZi18QS6BbjpC09BafnNYmNYZApuFiGDEqRfX46C0op7HjBtKltrBextrCADkJVfes/x0wcE8VR9IqJGjFuabhEeHo6uXbviyy+/BADodDr4+vrijTfewNSpU+96X3Nuaao6y+luExG626vwfyPDKscLAa2u8kenE9AKgYqq33UCupu3q37X6gCd7uYy8fc47c3btz7Orcur7vP3OkCr01U+nrjl/trKP7PzS3EoLfe+3gtTyWWAvcoKDjbWaKZSwF5lBXsbaziorG7+bnVzffXbzW6OcVBV3tdKIQcAJJzPxtBv997zuX9+tTsiAt0s/RKJiMiMuKWpFsrKypCYmIhp06bpl8nlckRGRiIhIaHa+NLSUpSW/r31QaPRmC3L/pSce87cfL2gFM989ZfZnlNqSit5ZbGpKjPVio017G8pQbevr7qvrbXC7LvBugW4wtvJhqfqExE1cSxNN12/fh1arRZeXl4Gy728vHDq1Klq42NjYzFr1iyLZMnKv/elLgDAybayPCjkMijkMshluPmnDFYKGRQyGeTyyj+rxujXyw3XyeU3l8lkUMjx9/i7PMatt/8eBygUcihkMlzMLsA3u1Lu+Tp+HN0VvR6s292fpuCp+kREBLA01dq0adMQExOjv63RaODr62uWxzZ2RubFL3Wp17uDtDqBjUfS77mFpmdrj7qOZrK+wd5Y9FLnagfmqxvYgflERFR7LE03ubu7Q6FQIDPT8DITmZmZUKvV1carVCqoVJa54ntj2R3U2LbQ9A32xhNBap6qT0TURMmlDlBfKJVKdOnSBfHx8fplOp0O8fHxiIiIqNMsVWUD+LtcVGloZaNqC43ayXDrmdrJpkGcAXg7hVyGiEA3PNOxOSIC3RrEZ0BERObBLU23iImJwciRIxEWFoZu3bphwYIFKCwsxKhRo+o8S2PaHcQtNERE1BiwNN3ihRdewLVr1zBjxgxkZGSgY8eO2Lp1a7WDw+tKYyobVVtoiIiIGirO02QmvPYcERFRw2PK9zePaSIiIiIyAksTERERkRFYmoiIiIiMwNJEREREZASWJiIiIiIjsDQRERERGYGliYiIiMgILE1ERERERmBpIiIiIjICL6NiJlUTq2s0GomTEBERkbGqvreNuUAKS5OZ5OfnAwB8fX0lTkJERESmys/Ph5OT013H8NpzZqLT6XD16lU4ODhAJmt4F9StCxqNBr6+vkhLS+P1+eoBfh71Cz+P+oWfR/1jqc9ECIH8/Hz4+PhALr/7UUvc0mQmcrkcLVq0kDpGg+Do6Mh/hOoRfh71Cz+P+oWfR/1jic/kXluYqvBAcCIiIiIjsDQRERERGYGlieqMSqXCzJkzoVKppI5C4OdR3/DzqF/4edQ/9eEz4YHgREREREbgliYiIiIiI7A0ERERERmBpYmIiIjICCxNREREREZgaSKzio2NRdeuXeHg4ABPT08MHDgQp0+fNhhTUlKC6OhouLm5wd7eHoMHD0ZmZqZEiZuWuXPnQiaTYcKECfpl/Dzq1pUrV/DSSy/Bzc0Ntra2CAkJwcGDB/XrhRCYMWMGvL29YWtri8jISJw9e1bCxI2bVqvF9OnTERAQAFtbWwQGBmL27NkG1yHjZ2I5u3btwoABA+Dj4wOZTIZ169YZrDfmvc/JycGwYcPg6OgIZ2dnjBkzBgUFBRbJy9JEZrVz505ER0dj7969iIuLQ3l5Ofr06YPCwkL9mIkTJ2Ljxo1YvXo1du7ciatXr2LQoEESpm4aDhw4gP/85z/o0KGDwXJ+HnXnxo0b6NmzJ6ytrbFlyxacOHECn3zyCVxcXPRj5s+fj4ULF2Lx4sXYt28fmjVrhqioKJSUlEiYvPGaN28eFi1ahC+//BInT57EvHnzMH/+fHzxxRf6MfxMLKewsBChoaH46quvalxvzHs/bNgwHD9+HHFxcdi0aRN27dqFsWPHWiawILKgrKwsAUDs3LlTCCFEbm6usLa2FqtXr9aPOXnypAAgEhISpIrZ6OXn54sHHnhAxMXFiUceeUS89dZbQgh+HnVtypQp4qGHHrrjep1OJ9Rqtfj444/1y3Jzc4VKpRI///xzXURscvr37y9Gjx5tsGzQoEFi2LBhQgh+JnUJgFi7dq3+tjHv/YkTJwQAceDAAf2YLVu2CJlMJq5cuWL2jNzSRBaVl5cHAHB1dQUAJCYmory8HJGRkfoxbdu2hZ+fHxISEiTJ2BRER0ejf//+Bu87wM+jrm3YsAFhYWF47rnn4OnpiU6dOuHbb7/Vr09JSUFGRobB5+Hk5ITw8HB+HhbSo0cPxMfH48yZMwCAI0eO4M8//0S/fv0A8DORkjHvfUJCApydnREWFqYfExkZCblcjn379pk9Ey/YSxaj0+kwYcIE9OzZE8HBwQCAjIwMKJVKODs7G4z18vJCRkaGBCkbv5UrV+LQoUM4cOBAtXX8POrWhQsXsGjRIsTExODdd9/FgQMH8Oabb0KpVGLkyJH699zLy8vgfvw8LGfq1KnQaDRo27YtFAoFtFotPvroIwwbNgwA+JlIyJj3PiMjA56engbrrays4OrqapHPh6WJLCY6OhrJycn4888/pY7SZKWlpeGtt95CXFwcbGxspI7T5Ol0OoSFhWHOnDkAgE6dOiE5ORmLFy/GyJEjJU7XNK1atQrLly/HihUr0L59eyQlJWHChAnw8fHhZ0LVcPccWcT48eOxadMmbN++HS1atNAvV6vVKCsrQ25ursH4zMxMqNXqOk7Z+CUmJiIrKwudO3eGlZUVrKyssHPnTixcuBBWVlbw8vLi51GHvL29ERQUZLCsXbt2SE1NBQD9e3772Yv8PCxn0qRJmDp1KoYMGYKQkBAMHz4cEydORGxsLAB+JlIy5r1Xq9XIysoyWF9RUYGcnByLfD4sTWRWQgiMHz8ea9euxbZt2xAQEGCwvkuXLrC2tkZ8fLx+2enTp5GamoqIiIi6jtvo9e7dG8eOHUNSUpL+JywsDMOGDdP/zs+j7vTs2bPaFBxnzpyBv78/ACAgIABqtdrg89BoNNi3bx8/DwspKiqCXG74VahQKKDT6QDwM5GSMe99REQEcnNzkZiYqB+zbds26HQ6hIeHmz+U2Q8tpyZt3LhxwsnJSezYsUOkp6frf4qKivRjXn/9deHn5ye2bdsmDh48KCIiIkRERISEqZuWW8+eE4KfR13av3+/sLKyEh999JE4e/asWL58ubCzsxPLli3Tj5k7d65wdnYW69evF0ePHhXPPPOMCAgIEMXFxRImb7xGjhwpmjdvLjZt2iRSUlLEmjVrhLu7u5g8ebJ+DD8Ty8nPzxeHDx8Whw8fFgDEp59+Kg4fPiwuXbokhDDuve/bt6/o1KmT2Ldvn/jzzz/FAw88IIYOHWqRvCxNZFYAavxZsmSJfkxxcbH45z//KVxcXISdnZ149tlnRXp6unShm5jbSxM/j7q1ceNGERwcLFQqlWjbtq345ptvDNbrdDoxffp04eXlJVQqlejdu7c4ffq0RGkbP41GI9566y3h5+cnbGxsRKtWrcR7770nSktL9WP4mVjO9u3ba/zOGDlypBDCuPc+OztbDB06VNjb2wtHR0cxatQokZ+fb5G8MiFumfaUiIiIiGrEY5qIiIiIjMDSRERERGQEliYiIiIiI7A0ERERERmBpYmIiIjICCxNREREREZgaSIiIiIyAksTERERkRFYmoioyfrggw/QsWNHqWMQUQPB0kREZvPyyy9j4MCB1Zbv2LEDMpkMubm5BrddXFxQUlJiMPbAgQOQyWSQyWTV7m/s+JrIZDKsW7fOYNk777xjcDHQ+uDixYuQyWRISkqSOgoR3YaliYgk4+DggLVr1xos+7//+z/4+fmZZfy92Nvbw83NrVb3JaKmh6WJiCQzcuRIfP/99/rbxcXFWLlyJUaOHGmW8VVatmwJAHj22Wchk8n0t2/fPVe1pWzOnDnw8vKCs7MzPvzwQ1RUVGDSpElwdXVFixYtsGTJEoPHT0tLw/PPPw9nZ2e4urrimWeewcWLF++Y58aNGxg2bBg8PDxga2uLBx54QP+YAQEBAIBOnTpBJpPh0Ucf1d/vu+++Q7t27WBjY4O2bdvi66+/1q+r2kK1cuVK9OjRAzY2NggODsbOnTuNel4iujeWJiKSzPDhw7F7926kpqYCAH777Te0bNkSnTt3Nsv4KgcOHAAALFmyBOnp6frbNdm2bRuuXr2KXbt24dNPP8XMmTPx1FNPwcXFBfv27cPrr7+O1157DZcvXwYAlJeXIyoqCg4ODti9ezf++usv2Nvbo2/fvigrK6vxOaZPn44TJ05gy5YtOHnyJBYtWgR3d3cAwP79+wEAf/zxB9LT07FmzRoAwPLlyzFjxgx89NFHOHnyJObMmYPp06dj6dKlBo89adIkvP322zh8+DAiIiIwYMAAZGdn3/N5icgIgojITEaOHCkUCoVo1qyZwY+NjY0AIG7cuCGEEGL79u362wMHDhSzZs0SQgjx2GOPic8//1ysXbtW3PrPk6njawJArF271mDZzJkzRWhoqEF+f39/odVq9cvatGkjHn74Yf3tiooK0axZM/Hzzz8LIYT46aefRJs2bYROp9OPKS0tFba2tuK///1vjVkGDBggRo0aVeO6lJQUAUAcPnzYYHlgYKBYsWKFwbLZs2eLiIgIg/vNnTtXv768vFy0aNFCzJs3757PS0T3xi1NRGRWjz32GJKSkgx+vvvuuzuOHz16NH744QdcuHABCQkJGDZs2F0f39Txpmrfvj3k8r//afTy8kJISIj+tkKhgJubG7KysgAAR44cwblz5+Dg4AB7e3vY29vD1dUVJSUlOH/+fI3PMW7cOKxcuRIdO3bE5MmTsWfPnrtmKiwsxPnz5zFmzBj9c9jb2+Nf//pXteeIiIjQ/25lZYWwsDCcPHmyVs9LRIaspA5ARI1Ls2bN0Lp1a4NlVbuyatKvXz+MHTsWY8aMwYABA+55YLap401lbW1tcFsmk9W4TKfTAQAKCgrQpUsXLF++vNpjeXh41Pgc/fr1w6VLl/D7778jLi4OvXv3RnR0NP7973/XOL6goAAA8O233yI8PNxgnUKhMO6F1eJ5icgQtzQRkaSsrKwwYsQI7NixA6NHjzb7+CrW1tbQarX3E7VGnTt3xtmzZ+Hp6YnWrVsb/Dg5Od3xfh4eHhg5ciSWLVuGBQsW4JtvvgEAKJVKADDI6uXlBR8fH1y4cKHac1QdOF5l7969+t8rKiqQmJiIdu3a3fN5iejeWJqISHKzZ8/GtWvXEBUVZZHxQOUZdPHx8cjIyMCNGzdqG7WaYcOGwd3dHc888wx2796NlJQU7NixA2+++eYdt7DNmDED69evx7lz53D8+HFs2rRJX2w8PT1ha2uLrVu3IjMzE3l5eQCAWbNmITY2FgsXLsSZM2dw7NgxLFmyBJ9++qnBY3/11VdYu3YtTp06hejoaNy4cUNfLu/2vER0byxNRCQ5pVIJd3f3e05QWdvxAPDJJ58gLi4Ovr6+6NSpU22jVmNnZ4ddu3bBz88PgwYNQrt27TBmzBiUlJTA0dGxxvsolUpMmzYNHTp0QK9evaBQKLBy5UoAlVvSFi5ciP/85z/w8fHBM888AwB45ZVX8N1332HJkiUICQnBI488gh9++KHalqa5c+di7ty5CA0NxZ9//okNGzboz5C72/MS0b3JhBBC6hBERHR/Ll68iICAABw+fJiXhiGyEG5pIiIiIjICSxMRERGREbh7joiIiMgI3NJEREREZASWJiIiIiIjsDQRERERGYGliYiIiMgILE1ERERERmBpIiIiIjICSxMRERGREViaiIiIiIzw/2wn+QxlwLi/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "# ax.set_xscale(\"log\")\n", + "# ax.set_yscale(\"log\")\n", + "ax.set_xlabel(\"HMM time steps\")\n", + "ax.set_ylabel(\"SlicStan compile time\")\n", + "ax.plot(x, slicstan_time, marker = \"o\")\n", + "\n", + "ax.legend([\"Stan\", \"Dice\"])\n", + "fig.savefig(\"hmm_slicstan.png\", bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHACAYAAACMB0PKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTDUlEQVR4nO3deVzUdf4H8Nd3Bhju4b6US8ADEQNPPDBXTc3MtNpqtcyjwyzTssPdn5kdoq5a69bS7ZGWu21qaptHlgrmfSukXAIKCHLMcA4w8/39AYwhqAzO8J2B1/PxmEfync98ecNU8/JzCqIoiiAiIiIyQzKpCyAiIiK6FQYVIiIiMlsMKkRERGS2GFSIiIjIbDGoEBERkdliUCEiIiKzxaBCREREZotBhYiIiMwWgwoRERGZLQYVIiIiMlvtJqgcOHAA48ePh5+fHwRBwNatWw2+hyiKWLFiBbp27QqFQoFOnTrh/fffN36xRERE1CJWUhdgLOXl5ejduzemT5+OSZMmteoeL7/8Mnbv3o0VK1agV69eKCoqQlFRkZErJSIiopYS2uOhhIIgYMuWLXjooYf01zQaDf72t7/h22+/RUlJCSIiIrBs2TLce++9AIDk5GRERkbi/Pnz6NatmzSFExERUSPtZujnTl588UUcOnQImzZtwtmzZ/Hoo49izJgxSElJAQBs374dXbp0wY4dOxAcHIygoCDMnDmTPSpEREQS6hBBJSsrC2vWrMF3332HoUOHIiQkBPPnz8eQIUOwZs0aAEB6ejoyMzPx3XffYf369Vi7di1OnDiBRx55ROLqiYiIOq52M0flds6dOwetVouuXbs2uq7RaODu7g4A0Ol00Gg0WL9+vb7dl19+iT59+uDixYscDiIiIpJAhwgqZWVlkMvlOHHiBORyeaPnHB0dAQC+vr6wsrJqFGZ69OgBoK5HhkGFiIio7XWIoBIVFQWtVov8/HwMHTq02TaDBw9GbW0t0tLSEBISAgC4dOkSACAwMLDNaiUiIqIb2s2qn7KyMqSmpgKoCyarVq3C8OHD4ebmhoCAAEyZMgUHDx7EypUrERUVhYKCAuzduxeRkZEYN24cdDod+vXrB0dHR3z44YfQ6XSYPXs2nJ2dsXv3bol/OiIioo6p3QSVffv2Yfjw4U2uT506FWvXrkVNTQ3ee+89rF+/HlevXoWHhwcGDhyIxYsXo1evXgCAnJwcvPTSS9i9ezccHBwwduxYrFy5Em5ubm394xARERHaUVAhIiKi9qdDLE8mIiIiy8SgQkRERGbLolf96HQ65OTkwMnJCYIgSF0OERERtYAoiigtLYWfnx9kstv3mVh0UMnJyYG/v7/UZRAREVErZGdno3PnzrdtY9FBxcnJCUDdD+rs7CxxNURERNQSarUa/v7++s/x27HooNIw3OPs7MygQkREZGFaMm2Dk2mJiIjIbDGoEBERkdliUCEiIiKzZdFzVIiIiExJp9Ohurpa6jIsjrW1NeRyuVHuxaBCRETUjOrqamRkZECn00ldikVycXGBj4/PXe9zxqBCRER0E1EUkZubC7lcDn9//ztuSkY3iKKIiooK5OfnAwB8fX3v6n4MKkRERDepra1FRUUF/Pz8YG9vL3U5FsfOzg4AkJ+fDy8vr7saBmJEJCIiuolWqwUA2NjYSFyJ5WoIeDU1NXd1HwYVIiKiW+A5cq1nrN8dh36aodWJOJpRhPzSKng52aJ/sBvkMv7LSkRE1NYYVG6y83wuFm9PQq6qSn/NV2mLRePDMSbi7iYEERERkWE49PMHO8/nYtaGk41CCgDkqaowa8NJ7DyfK1FlRERkibQ6EYfSCvHD6as4lFYIrU40+fcsKCjArFmzEBAQAIVCAR8fH4wePRoHDx4EUDcks3XrVpPXYSzsUamn1YlYvD0Jzf0rJAIQACzenoRR4T4cBiIiojuSqof+4YcfRnV1NdatW4cuXbrg2rVr2Lt3LwoLC032PU2JPSr1jmYUNelJ+SMRQK6qCkczitquKCIiskhS9dCXlJQgISEBy5Ytw/DhwxEYGIj+/ftjwYIFePDBBxEUFAQAmDhxIgRB0H+dlpaGCRMmwNvbG46OjujXrx9+/vnnRvcOCgrCkiVLMH36dDg5OSEgIACfffaZSX6OP2JQqZdfeuuQ0pp2RETUfoiiiIrq2hY9SqtqsGjbhVv20APA29uSUFpV06L7iWLLh4scHR3h6OiIrVu3QqPRNHn+2LFjAIA1a9YgNzdX/3VZWRnuv/9+7N27F6dOncKYMWMwfvx4ZGVlNXr9ypUr0bdvX5w6dQovvPACZs2ahYsXL7a4vtbg0E89Lydbo7YjIqL2o7JGi/C3dhnlXiKAPHUVer29u0Xtk94ZDXubln1cW1lZYe3atXjmmWfwySefIDo6GsOGDcPjjz+OyMhIeHp6ArixvX2D3r17o3fv3vqv3333XWzZsgXbtm3Diy++qL9+//3344UXXgAAvPHGG/jggw/w66+/olu3bi2qrzXYo1Kvf7AbfJW2uNXsEwF1Y4v9g93asiwiIiKDPPzww8jJycG2bdswZswY7Nu3D9HR0Vi7du0tX1NWVob58+ejR48ecHFxgaOjI5KTk5v0qERGRur/LAgCfHx89Fvlmwp7VOrJZQIWjQ/HrA0nIQCNuuwawsui8eGcSEtE1AHZWcuR9M7oFrU9mlGEp9ccu2O7tdP6tegvv3bWhm8/b2tri1GjRmHUqFFYuHAhZs6ciUWLFuHpp59utv38+fOxZ88erFixAqGhobCzs8MjjzzS5ORoa2vrRl8LgmDyQxsZVP5gTIQv4qdEN5ml7e1si7cf5D4qREQdlSAILR5+GRrmCV+lLfJUVc3OUxEA+ChtMTTMs83+8hseHq5fkmxtba0/IqDBwYMH8fTTT2PixIkA6npYLl++3Ca13QmHfm4yJsIXiW/8Cd8+MwBuDnXJ8f2HIhhSiIioRRp66AE0mU5g6h76wsJC/OlPf8KGDRtw9uxZZGRk4LvvvsPy5csxYcIEAHWrd/bu3Yu8vDwUFxcDAMLCwrB582acPn0aZ86cwV/+8heT95S0FINKM+QyATEhHhjdsy6cJKZdl7giIiKyJA099D7KxgswfJS2iJ8SbbK//Do6OmLAgAH44IMPEBsbi4iICCxcuBDPPPMMPvroIwB1K3f27NkDf39/REVFAQBWrVoFV1dXDBo0COPHj8fo0aMRHR1tkhoNJYiGrHsyM2q1GkqlEiqVCs7Ozka//0/ncjFr40mEeTlizyvDjH5/IiIyT1VVVcjIyEBwcDBsbVu/2rMjnx13u9+hIZ/fnKNyG4NCPCATgJT8MuSqKuGrtJO6JCIisiB1PfTuUpdh0Tj0cxtKe2tEdnYBACSkcPiHiIiorTGo3EFsmAcAIJFBhYiIqM1JGlRKS0sxd+5cBAYGws7ODoMGDdJv52suhoTV7eKXmHodujY49ZKIiIhukDSozJw5E3v27MHXX3+Nc+fO4b777sPIkSNx9epVKctqJCrABQ42chSVVyMpVy11OURE1IYseL2J5Iz1u5MsqFRWVuL777/H8uXLERsbi9DQULz99tsIDQ1FfHy8VGU1YS2X6SdCcZ4KEVHHIJfX7QZ7886s1HIVFRUAmu5mayjJVv3U1tZCq9U2WbJkZ2eHxMREiapq3tAwT/ycnI/E1ALMujdE6nKIiMjErKysYG9vj4KCAlhbW0Mm45TOlhJFERUVFcjPz4eLi4s+9LWWZEHFyckJMTExePfdd9GjRw94e3vj22+/xaFDhxAaGtrsazQaTaNjq9XqthmKGVI/ofZYRjEqq7Wws7m7XzoREZk3QRDg6+uLjIwMZGZmSl2ORbr5hObWknQfla+//hrTp09Hp06dIJfLER0djSeeeAInTpxotn1cXBwWL17cxlUCXTwc0MnFDldLKnH0chGGdfVs8xqIiKht2djYICwsjMM/rWBtbX3XPSkNzGJn2vLycqjVavj6+uKxxx5DWVkZfvzxxybtmutR8ff3N9nOtH/0xn/P4t/HszFzSDD+74Fwk34vIiKi9syQnWnNYtDNwcEBvr6+KC4uxq5du/QHJ91MoVDA2dm50aOtDO1av59KKifUEhERtRVJh3527doFURTRrVs3pKam4rXXXkP37t0xbdo0Kctq1uAQDwgC8HteKfLVVfBybv3ZD0RERNQykvaoqFQqzJ49G927d8dTTz2FIUOGYNeuXXe9lMkUXB1s0KuTEgB7VYiIiNqKpD0qf/7zn/HnP/9ZyhIMMiTUA2evqJCQch2TojtLXQ4REVG7ZxZzVCzF0Prt9BNSrnO3QiIiojbAoGKA6EAX2FnLcb1Mg9/zSqUuh4iIqN1jUDGAwkqOgV3cAPA0ZSIiorbAoGKghtOUD6QUSFwJERFR+8egYqDY+u30j2YUoapGK3E1RERE7RuDioFCvRzh7ayAplaH45eLpS6HiIioXWNQMZAgCH9Y/cPhHyIiIlNiUGmFofXDPwmcUEtERGRSDCqtMDi0Lqgk5apRUKq5Q2siIiJqLQaVVvBwVKCnX92BiL+lsVeFiIjIVBhUWmlI/fDPgUsMKkRERKbCoNJKsfUTahNTC7idPhERkYkwqLRSn0BXKKxkuKbWICW/TOpyiIiI2iUGlVaytZZjQBd3AFz9Q0REZCoMKndhaGjDMmXup0JERGQKDCp3YWjXuqByJL0Imlpup09ERGRsDCp3oZu3EzydFKis0eJEJrfTJyIiMjYGlbsgCIJ++CeR81SIiIiMjkHlLg3hdvpEREQmw6Byl4bU96icz1GhqLxa4mqIiIjaFwaVu+TlbIvuPk4QReBgKntViIiIjIlBxQhunKbMZcpERETGxKBiBEMattNPuc7t9ImIiIyIQcUI+ge5wcZKhhxVFdIKyqUuh4iIqN1gUDECOxs5+gW5AgASOfxDRERkNAwqRjK0fviHy5SJiIiMh0HFSBom1B5OL0R1rU7iaoiIiNoHBhUj6eHjDHcHG5RXa3Eqi9vpExERGQODipHIZIJ+l9pE7qdCRERkFAwqRtSwS+0BzlMhIiIyCgYVI2qYUHvuSglKKridPhER0d1iUDEiH6UtwrwcoROB39IKpS6HiIjI4jGoGBmXKRMRERkPg4qRNSxTPnCpgNvpExER3SUGFSMb0MUN1nIBV0sqcbmwQupyiIiILBqDipHZ21ihTyC30yciIjIGSYOKVqvFwoULERwcDDs7O4SEhODdd9+1+CGThnkqXKZMRER0d6yk/ObLli1DfHw81q1bh549e+L48eOYNm0alEol5syZI2Vpd2VomAf+vusiDqcVokarg7WcHVdEREStIWlQ+e233zBhwgSMGzcOABAUFIRvv/0WR48elbKsu9bTTwlXe2sUV9TgTHYJ+ga5SV0SERGRRZL0r/qDBg3C3r17cenSJQDAmTNnkJiYiLFjxzbbXqPRQK1WN3qYI7lMwKD6XWq5TJmIiKj1JA0qb775Jh5//HF0794d1tbWiIqKwty5czF58uRm28fFxUGpVOof/v7+bVxxy8WGNQQVTqglIiJqLUmDyn/+8x9s3LgR33zzDU6ePIl169ZhxYoVWLduXbPtFyxYAJVKpX9kZ2e3ccUtN6R+Qu2ZKyqoKmskroaIiMgySTpH5bXXXtP3qgBAr169kJmZibi4OEydOrVJe4VCAYVC0dZltkonFzt08XRAekE5DqUVYkyEj9QlERERWRxJe1QqKiogkzUuQS6XQ6fTSVSRcQ2tn6eSmMrhHyIiotaQNKiMHz8e77//Pn788UdcvnwZW7ZswapVqzBx4kQpyzIanvtDRER0dyQd+vnnP/+JhQsX4oUXXkB+fj78/Pzw3HPP4a233pKyLKMZGOIOK5mAzMIKZBVWIMDdXuqSiIiILIogWvA2sGq1GkqlEiqVCs7OzlKX06w/f3IIRy8X4f2JEZg8IFDqcoiIiCRnyOc3t0w1sYbTlBM5/ENERGQwBhUTG1IfVA6mXodWZ7GdV0RERJJgUDGxyM4ucLa1grqqFmevlEhdDhERkUVhUDExuUzAYG6nT0RE1CoMKm3gxjJl7qdCRERkCAaVNtAwofZUVglKq7idPhERUUsxqLQBfzd7BLnbo1Yn4nB6kdTlEBERWQwGlTYyRL9MmcM/RERELcWg0ka4nT4REZHhGFTaSEyIO+QyAenXy3GluELqcoiIiCwCg0obcba1xj3+LgC4Sy0REVFLMai0oSEN+6mkMqgQERG1BINKG4rtyu30iYiIDMGg0oZ6d3aBk8IKJRU1uJCjkrocIiIis8eg0oas5DLEhLgD4OofIiKilmBQaWMNu9RyO30iIqI7Y1BpYw37qZzILEa5plbiaoiIiMwbg0obC3S3h7+bHWq0Io5mcDt9IiKi22FQaWOCIGBIaF2vygEO/xAREd0Wg4oEYvXzVDihloiI6HYYVCQwKMQDMgFIzS9DrqpS6nKIiIjMFoOKBJT21ojs7AKAvSpERES3w6AikYZlyjz3h4iI6NYYVCTSsEw5MfU6dNxOn4iIqFkMKhKJCnCBg40cReXVSMpVS10OERGRWWJQkYg1t9MnIiK6IwYVCQ0JrZ+nksr9VIiIiJrDoCKhoV3r5qkcyyhGZbVW4mqIiIjMD4OKhLp4OMBPaYtqrQ5HL3M7fSIiopsxqEhIEAT96p+ESxz+ISIiuhmDisSGNOynksoJtURERDdjUJHY4FAPCALwe14p8tVVUpdDRERkVhhUJObmYIMIPyUA9qoQERHdzOCgsm7dOvz444/6r19//XW4uLhg0KBByMzMNGpxHcVQnqZMRETULIODypIlS2BnZwcAOHToED7++GMsX74cHh4emDdvntEL7AiG/CGoiCK30yciImpgcFDJzs5GaGgoAGDr1q14+OGH8eyzzyIuLg4JCQkG3SsoKAiCIDR5zJ4929CyLFqfQFfYWctxvUyD3/NKpS6HiIjIbBgcVBwdHVFYWAgA2L17N0aNGgUAsLW1RWVlpUH3OnbsGHJzc/WPPXv2AAAeffRRQ8uyaAorOQZ2cQMAJKRwmTIREVEDg4PKqFGjMHPmTMycOROXLl3C/fffDwC4cOECgoKCDLqXp6cnfHx89I8dO3YgJCQEw4YNM7QsizekYT8VzlMhIiLSMziofPzxx4iJiUFBQQG+//57uLvXHax34sQJPPHEE60upLq6Ghs2bMD06dMhCEKzbTQaDdRqdaNHexFbP0/laEYRqmq4nT4REREACKKZzN78z3/+g7/85S/IysqCn59fs23efvttLF68uMl1lUoFZ2dnU5doUqIoYmDcXlxTa7BhxgD9BFsiIqL2Rq1WQ6lUtujzu1X7qCQkJGDKlCkYNGgQrl69CgD4+uuvkZiY2JrbAQC+/PJLjB079pYhBQAWLFgAlUqlf2RnZ7f6+5mbRtvpc54KERERgFYEle+//x6jR4+GnZ0dTp48CY1GA6CuV2PJkiWtKiIzMxM///wzZs6cedt2CoUCzs7OjR7tCfdTISIiaszgoPLee+/hk08+weeffw5ra2v99cGDB+PkyZOtKmLNmjXw8vLCuHHjWvX69mJwaF1QScpVo6BUI3E1RERE0jM4qFy8eBGxsbFNriuVSpSUlBhcgE6nw5o1azB16lRYWVkZ/Pr2xMNRgXDful6i39LYq0JERGRwUPHx8UFqamqT64mJiejSpYvBBfz888/IysrC9OnTDX5tezS0a12vyoFLDCpEREQGB5VnnnkGL7/8Mo4cOQJBEJCTk4ONGzdi/vz5mDVrlsEF3HfffRBFEV27djX4te3R0NC6CbWJqQXcTp+IiDo8g8da3nzzTeh0OowYMQIVFRWIjY2FQqHA/Pnz8dJLL5mixg6lb5ArFFYyXFNrkJJfhq7eTlKXREREJBmDe1QEQcDf/vY3FBUV4fz58zh8+DAKCgrw7rvvmqK+DsfWWo7+wQ3b6XP4h4iIOrZW7aMCADY2NggPD0f//v3h6OhozJo6vFjup0JERASghUM/kyZNavENN2/e3OpiqE7DrrRH0ougqdVCYSWXuCIiIiJptCioKJVKU9dBf9DdxwkejgpcL9PgRGYxBoVwO30iIuqYWhRU1qxZY+o66A/qttP3wJZTV5GQcp1BhYiIOqxWz1HJz89HQkICEhISkJ+fb8yaCDe200/khFoiIurADA4qarUaTz75JDp16oRhw4Zh2LBh6NSpE6ZMmQKVSmWKGjukIfXb6Z/PUaGovFriaoiIiKTRqg3fjhw5gh07dqCkpAQlJSXYsWMHjh8/jueee84UNXZIXs626O7jBFEEDqayV4WIiDomg4PKjh078NVXX2H06NH6E4xHjx6Nzz//HNu3bzdFjR3WjdOUuUyZiIg6JoODiru7e7OrgJRKJVxdXY1SFNUZUr+fSmLKdW6nT0REHZLBQeX//u//8MorryAvL09/LS8vD6+99hoWLlxo1OI6uv5BbrCxkiFHVYW0gnKpyyEiImpzBp/1Ex8fj9TUVAQEBCAgIAAAkJWVBYVCgYKCAnz66af6tidPnjRepR2QnY0c/YJccTC1EIkpBQj14g7ARETUsRgcVB566CETlEG3MjTMEwdTC5GQch1PDw6WuhwiIqI2ZXBQWbRokSnqoFtoWKZ8OL0Q1bU62Fi1eusbIiIii3NXn3plZWVQq9WNHmRc4b7OcHewQXm1FqeyiqUuh4iIqE0ZHFQyMjIwbtw4ODg46Ff6uLq6wsXFhat+TEAmEzC4vlclkfupEBFRB2Pw0M+UKVMgiiK++uoreHt7QxAEU9RFfzA0zAPbzuTgQMp1vHpfN6nLISIiajMGB5UzZ87gxIkT6NaNH5htZWj9firnrpSgpKIaLvY2EldERETUNgwe+unXrx+ys7NNUQvdgo/SFmFejtCJwG9phVKXQ0RE1GYM7lH54osv8Pzzz+Pq1auIiIiAtbV1o+cjIyONVhzdMCTMAyn5ZUhIuY77e/lKXQ4REVGbMDioFBQUIC0tDdOmTdNfEwQBoihCEARotVqjFkh1YsM8sebgZRy4VKD/XRMREbV3BgeV6dOnIyoqCt9++y0n07ahAV3cYC0XcLWkEpcLKxDs4SB1SURERCZncFDJzMzEtm3bEBoaaop66BbsbazQJ9AVh9OLkJhSwKBCREQdgsGTaf/0pz/hzJkzpqiF7qBh9c+BFO6nQkREHYPBPSrjx4/HvHnzcO7cOfTq1avJZNoHH3zQaMVRY0PDPPD3XRdxOK0QNVodrOXcTp+IiNo3QRRF0ZAXyGS3/nBs68m0arUaSqUSKpUKzs7ObfZ9paLViejz3h6UVNTgv8/HoG+Qm9QlERERGcyQz2+D/0qu0+lu+eCKH9OS/2E7/QQO/xARUQfAsQMLExvWEFQKJK6EiIjI9AyeowIA5eXl2L9/P7KyslBdXd3ouTlz5hilMGrekPoJtWeuqKCqrIHSzvoOryAiIrJcBgeVU6dO4f7770dFRQXKy8vh5uaG69evw97eHl5eXgwqJtbJxQ5dPB2QXlCOQ2mFGBPhI3VJREREJmPw0M+8efMwfvx4FBcXw87ODocPH0ZmZib69OmDFStWmKJGusnQ+nkqiakc/iEiovbN4KBy+vRpvPrqq5DJZJDL5dBoNPD398fy5cvx17/+1RQ10k0a9lPhhFoiImrvDA4q1tbW+iXKXl5eyMrKAgAolUqeqtxGBoa4w0omILOwAlmFFVKXQ0REZDIGB5WoqCgcO3YMADBs2DC89dZb2LhxI+bOnYuIiAijF0hNOSqsEB3gCgBI4PAPERG1YwYHlSVLlsDX1xcA8P7778PV1RWzZs1CQUEBPvvsM4MLuHr1KqZMmQJ3d3fY2dmhV69eOH78uMH36WiG1C9TTuTwDxERtWMGr/rp27ev/s9eXl7YuXNnq795cXExBg8ejOHDh+Onn36Cp6cnUlJS4Orq2up7dhRDwzywas8lHEy9jlqtDlbcTp+IiNohg4NKZWUlRFGEvb09gLrTlLds2YLw8HDcd999Bt1r2bJl8Pf3x5o1a/TXgoODDS2pQ4rs7AJnWyuoq2px9qpKPxRERETUnhj81/AJEyZg/fr1AICSkhL0798fK1euxIQJExAfH2/QvbZt24a+ffvi0UcfhZeXF6KiovD555/fsr1Go4FarW706Kj+uJ0+h3+IiKi9MjionDx5EkOHDgUA/Pe//4WPjw8yMzOxfv16rF692qB7paenIz4+HmFhYdi1axdmzZqFOXPmYN26dc22j4uLg1Kp1D/8/f0NLb9dGcLt9ImIqJ0zOKhUVFTAyckJALB7925MmjQJMpkMAwcORGZmpkH30ul0iI6OxpIlSxAVFYVnn30WzzzzDD755JNm2y9YsAAqlUr/6OjLoWPr91M5lVWC0qoaiashIiIyPoODSmhoKLZu3Yrs7Gzs2rVLPy8lPz//jkc138zX1xfh4eGNrvXo0UO/N8vNFAoFnJ2dGz06Mn83ewS626NWJ+JwepHU5RARERmdwUHlrbfewvz58xEUFIQBAwYgJiYGQF3vSlRUlEH3Gjx4MC5evNjo2qVLlxAYGGhoWR3WUP0yZQ7/EBFR+2NwUHnkkUeQlZWF48ePN1qaPGLECHzwwQcG3WvevHk4fPgwlixZgtTUVHzzzTf47LPPMHv2bEPL6rCGhHI7fSIiar8EURRFKQvYsWMHFixYgJSUFAQHB+OVV17BM88806LXqtVqKJVKqFSqDjsMpKqsQfS7e6DViUh8Yzg6u9pLXRIREdFtGfL5bfA+Ksb2wAMP4IEHHpC6DIultLNG785KnMwqQWLKdTzeP0DqkoiIiIyG25m2A/rTlFM5/ENERO0Lg0o7ENu1bkLtwdTr0OokHckjIiIyqhYFlejoaBQXFwMA3nnnHVRUVJi0KDJM784ucFJYoaSiBhdyVFKXQ0REZDQtCirJyckoLy8HACxevBhlZWUmLYoMYyWXISbEHQBX/xARUfvSosm099xzD6ZNm4YhQ4ZAFEWsWLECjo6OzbZ96623jFogtczQMA/sTrqGhJQCzB4eKnU5RERERtGioLJ27VosWrQIO3bsgCAI+Omnn2Bl1fSlgiAwqEikYULticxilGtq4aCQfEEXERHRXWvRp1m3bt2wadMmAIBMJsPevXvh5eVl0sLIMIHu9ujsaocrxZU4mlGE4d35/hARkeUzeNWPTqdjSDFDgiDoe1UOcDt9IiJqJ1q1PDktLQ0vvfQSRo4ciZEjR2LOnDlIS0szdm1koIZzfzihloiI2guDg8quXbsQHh6Oo0ePIjIyEpGRkThy5Ah69uyJPXv2mKJGaqFBIe6QCUBqfhlyVZVSl0NERHTXDJ5x+eabb2LevHlYunRpk+tvvPEGRo0aZbTiyDAu9jbo1dkFZ7JLkJByHX/u6y91SURERHfF4B6V5ORkzJgxo8n16dOnIykpyShFUevF1g//JHL4h4iI2gGDg4qnpydOnz7d5Prp06c5ydYMDAmtDyqp16HjdvpERGThDB76eeaZZ/Dss88iPT0dgwYNAgAcPHgQy5YtwyuvvGL0AskwUQGucLCRo6i8Gkm5akR0UkpdEhERUasZHFQWLlwIJycnrFy5EgsWLAAA+Pn54e2338acOXOMXiAZxsZKhoFd3LH393wkpFxnUCEiIotm8NCPIAiYN28erly5ApVKBZVKhStXruDll1+GIAimqJEM1LBMOTGV+6kQEZFlu6t91p2cnIxVBxnRkPqN345lFKOyWgs7G7nEFREREbVOqzZ8I/MW4ukAP6UtqrU6HL1cJHU5RERErcag0g4JgoAh9cM//z6ahR9OX8WhtEJouQqIiIgsDI/YbaecbK0BAP87n4f/nc8DAPgqbbFofDjGRPhKWRoREVGLGdSjUlNTgxEjRiAlJcVU9ZAR7Dyfi68SM5pcz1NVYdaGk9h5PleCqoiIiAxnUFCxtrbG2bNnTVULGYFWJ2Lx9iQ0N8jTcG3x9iQOAxERkUUweI7KlClT8OWXX5qiFjKCoxlFyFVV3fJ5EUCuqgpHMzjJloiIzJ/Bc1Rqa2vx1Vdf4eeff0afPn3g4ODQ6PlVq1YZrTgyXH7prUNKa9oRERFJyeCgcv78eURHRwMALl261Og5bvgmPS8nW6O2IyIikpLBQeXXX381RR1kJP2D3eCrtEWeqqrZeSoAYCUTYM9N4IiIyAK0eh+V1NRU7Nq1C5WVlQAAUeTkTHMglwlYND4cAHCr/q1anYhJ8b9h6U+/o6pG23bFERERGcjgoFJYWIgRI0aga9euuP/++5GbW7fUdcaMGXj11VeNXiAZbkyEL+KnRMNH2Xh4x1dpi2UPR2JcpC+0OhGf7E/D2H8k4HB6oUSVEhER3Z4gGtgV8tRTTyE/Px9ffPEFevTogTNnzqBLly7YtWsXXnnlFVy4cMFUtTahVquhVCqhUqng7OzcZt/XUmh1Io5mFCG/tApeTrboH+wGuayun2X3hTws/OE8rqk1AIC/DAjAm2O7w7l+ozgiIiJTMeTz2+A5Krt378auXbvQuXPnRtfDwsKQmZlp6O3IhOQyATEh7s0+d19PHwwMcUfc/37Ht0ez8M2RLOxNvob3HuqFUeHebVwpERFR8wwe+ikvL4e9vX2T60VFRVAoFEYpitqGs6014ib1wqZnByLI3R7X1Bo8s/44Zn9zEgWlGqnLIyIiMjyoDB06FOvXr9d/LQgCdDodli9fjuHDhxu1OGobA7u4Y+fcWDw/LARymYAfz+Zi1Af78f2JK5wkTUREkjJ4jsr58+cxYsQIREdH45dffsGDDz6ICxcuoKioCAcPHkRISIipam2Cc1SM7/xVFV7/71kk5aoBAEPDPLBkYi/4uzXtRSMiImoNQz6/DQ4qAKBSqfDRRx/hzJkzKCsrQ3R0NGbPng1f37Y9lZdBxTRqtDp8npCOD39OQXWtDvY2csy/rxumDgrST8YlIiJqLZMHFXPBoGJa6QVleHPzOf25QFEBLlj2cCS6ejtJXBkREVkyQz6/W7XhW3FxMVasWIEZM2ZgxowZWLlyJYqKDD/k7u2334YgCI0e3bt3b01JZAJdPB2x6ZmBeO+hCDgqrHAqqwTjVifgw58vobpWJ3V5RETUARgcVA4cOICgoCCsXr0axcXFKC4uxurVqxEcHIwDBw4YXEDPnj2Rm5urfyQmJhp8DzIdmUzAlIGB2PNKLEb28EKNVsSHP6fggX8m4GRWsdTlERFRO2fwPiqzZ8/GY489hvj4eMjldefFaLVavPDCC5g9ezbOnTtnWAFWVvDx8TG0DGpjvko7fP5UX+w4m4u3t13ApWtleDj+Nzw9KAjz7+sGB4XB/yoRERHdkcE9KqmpqXj11Vf1IQUA5HI5XnnlFaSmphpcQEpKCvz8/NClSxdMnjwZWVlZBt+D2oYgCBjf2w8/vzIMk6I6QRSBNQcvY/SHB3DgUoHU5RERUTtkcFCJjo5GcnJyk+vJycno3bu3QfcaMGAA1q5di507dyI+Ph4ZGRkYOnQoSktLm22v0WigVqsbPajtuTrYYNVj92DttH7o5GKHK8WVeOqro3j1P2dQUlEtdXlERNSOtGjVz9mzZ/V/Tk5Oxuuvv46XXnoJAwcOBAAcPnwYH3/8MZYuXYrHHnus1cWUlJQgMDAQq1atwowZM5o8//bbb2Px4sVNrnPVj3TKNbX4+66LWHfoMkQR8HC0weIHI3B/Lx8IApcyExFRU0ZfniyTySAIwh13KRUEAVqt1rBqb9KvXz+MHDkScXFxTZ7TaDTQaG5s7a5Wq+Hv78+gYgZOZBbjje/PIjW/DAAwKtwb706IaHKCMxERkdEPJczIyDBKYXdSVlaGtLQ0PPnkk80+r1AoeJ6QmeoT6Iof5wzBx7+mIX5fKvYkXcPhtEIsuL8HHu/nDxk3iiMiolaQdMO3+fPnY/z48QgMDEROTg4WLVqE06dPIykpCZ6ennd8PTd8M08X80rx+vdncSa7BAAwINgNSx+ORLCHg7SFERGRWTB6j8rNcnJykJiYiPz8fOh0jTf+mjNnTovvc+XKFTzxxBMoLCyEp6cnhgwZgsOHD7copJD56ubjhM2zBmHtb5exYtdFHMkowpgPD2DeqK6YOSQYVvJW7TNIREQdkME9KmvXrsVzzz0HGxsbuLu7N5owKQgC0tPTjV7krbBHxfxlF1VgweZzSEy9DgCI6OSMZQ9HoqefUuLKiIhIKiY968ff3x/PP/88FixYAJlM2r8ZM6hYBlEU8d8TV/Dej8lQVdZALhPwbGwXvDwiDLbW8jvfgIiI2hWTnvVTUVGBxx9/XPKQQpZDEAQ82tcfe16JxbhevtDqRMTvS8P9/0jAkfRCqcsjIiIzZnDamDFjBr777jtT1ELtnJeTLT6eHI1Pn+wDLycF0q+X47HPDuNvW86htKpG6vKIiMgMGTz0o9Vq8cADD6CyshK9evWCtbV1o+dXrVpl1AJvh0M/lktVWYOlPyXj26PZAAAfZ1u891AERoZ7S1wZERGZmklX/cTFxWHXrl3o1q0bADSZTEvUEko7a8RNisT43n5YsPkcMgsrMHP9cYzv7YdF48Ph4cj9coiIqBU9Kq6urvjggw/w9NNPm6iklmOPSvtQWa3Fhz9fwucJ6dCJgIu9Nd56IBwTozrV7XasE3E0owj5pVXwcrJF/2A3yLmBHBGRxTLpqh8fHx8kJCQgLCzsroo0BgaV9uXcFRVe//4sknPrDpuM7eqJ0eHe+OjXVOSqqvTtfJW2WDQ+HGMifKUqlYiI7oJJg0pcXBxyc3OxevXquyrSGBhU2p8arQ6fHUjHP/amoLpW12ybhr6U+CnRDCtERBbIpEFl4sSJ+OWXX+Du7o6ePXs2mUy7efNmwytuJQaV9uvStVKMW52AGm3z/3oKAHyUtkh8408cBiIisjAmnUzr4uKCSZMmtbo4opYoLKu+ZUgBABFArqoKaxIz8GhffyjtrW/ZloiILJekhxLeLfaotF8/nL6KlzedbnF7fzc7RPgp0dPPGT07KRHhp4SnE1cOERGZI5MfSkhkal5Oti1q5+lkg4LSamQXVSK7qBI/nc/TP+ftrEBPPyUiGsJLJyX8lLZcRk9EZEEMDirBwcG3/R99Wx5KSO1X/2A3+CptkaeqQnNdfn+co1JWVYsLOSpcyFHjfI4K56+qkH69HNfUGlxT5+OX3/P1r3Oxt67reenkrO+BCXJ3gIzzXIiIzJLBQWXu3LmNvq6pqcGpU6ewc+dOvPbaa8aqizo4uUzAovHhmLXhJASgUVhpiBSLxodDLhOgtLfGoFAPDAr10Lcp19QiOVddF16uqnA+R42Ua6UoqahBYup1/WnOAOCosEK4rzN6dnKu64Hp5IxQT0dYyXmeFRGR1Iw2R+Xjjz/G8ePHsWbNGmPcrkU4R6X923k+F4u3JxllH5WqGi1SrpXpe13O56jxe64ammaWQSusZOju61w3bFQfXrp6O93Vac/cuI6IqI5JlyffSnp6Ou655x6o1Wpj3K5FGFQ6BlN+wNdqdUgrKK8PLnXDR0k5apRpapu0tZIJCPN2Qk+/ugAT0UmJHr7OcFDcuWPSmIGLiMjSSRJUli9fjn/961+4fPmyMW7XIgwqZAo6nYjMogqcv1oXXC7U98AUVzQ94VkQgGAPB0TU97rUzXtRNlouvfN8LmZtONlkrg03riOijsqkq36ioqIaTaYVRRF5eXkoKCjAv/71L8OrJTIzMpmAYA8HBHs4YHxvPwB1/57nqKpuhJf6Hphrag3SC8qRXlCObWdy9Pfo7Fq3XDrczwlrDl5udkKwiLqwsnh7EkaF+3AYiIioGQYHlYceeqjR1zKZDJ6enrj33nvRvXt3Y9VFZFYEQUAnFzt0crHD6J4++usFpZobK47qw0t2USWuFNc9dl7Iu81db2xcdzSjCDEh7ib+KYiILI/BQWXRokWmqIPIInk6KXBvNy/c281Lf01VUYMLuSpcuKrGzgu5OJFZcsf75JdW3bENEVFHxPWXREamtLfGoBAPPBPbBfPva1kvY0V108m7RERkQFCRyWSQy+W3fVhZcaNboj9q2LjuTrNPFmw+jylfHMGBSwWw4FMtiIiMrsXJYsuWLbd87tChQ1i9ejV0uqb7URB1ZHfauE4E0CfQBaeySvQb0fXwdcazscF4INIP1tx0jog6uLtannzx4kW8+eab2L59OyZPnox33nkHgYGBxqzvtrg8mSzFnfZRyS6qwJeJGfj3sWxU1mj1z08fHIzH+/vDyZanQxNR+2HyfVRycnKwaNEirFu3DqNHj0ZcXBwiIiJaXXBrMaiQJWnJxnUlFdXYcDgTa3/LxPUyDQDASWGFvwwMwLRBwfBRtuywRiIic2ayoKJSqbBkyRL885//xD333INly5Zh6NChd11wazGoUHtVVaPF1lNX8VlCOtILygEA1nIBD/buhGdju6Cbj5PEFRIRtZ5Jgsry5cuxbNky+Pj4YMmSJZgwYYJRir0bDCrU3ul0In75PR+fHUjH0ctF+uv3dvPEs7FdENPF/banmRMRmSOTBBWZTAY7OzuMHDkScvmtD2bbvHmzYdXeBQYV6khOZRXjswPp2HkhDw3/1UZ0csazsSG4P8KHpz0TkcUwSVB5+umnW/Q3N56eTGRal6+X48vEDHx3IhtVNXUr7Tq52GHGkGA81s+/RYckEhFJSZJDCaXAoEIdWVF5NdYfuoz1hzJRVF4NAFDaWWPKwABMHRQELydOvCUi88SgQtSBVFZr8f3JK/giIR2XCysAADZyGSZGdcIzsV0Q6uUocYVERI0xqBB1QFqdiD1Jefj0QDpOZZXor4/s4YVnY0PQL8iVE2+JyCwwqBB1cMcvF+HTA+n4OfmafuJtb38XPBfbBaN7+jTZv4WIqC0xqBARACCtoAxfJGTg+5NXUF1bN/E20N0eM4cE45E+/rCzufUKPiIiU2FQIaJGCko1WH/oMr4+nImSihoAgKu9NZ6MCcLUmEC4OyokrpCIOhJDPr/NZuOFpUuXQhAEzJ07V+pSiNodTycFXr2vG357809Y/GBP+LvZobiiBqv3pmDQ0l/wty3nkHG9XOoyiYiaMIugcuzYMXz66aeIjIyUuhSids3exgpTBwXh11fvxUd/iUJkZyU0tTpsPJKFP63ch+e+Po4TmcVSl0lEpCd5UCkrK8PkyZPx+eefw9XVVepyiDoEK7kMD0T64YfZg7Hp2YH4U3cviCKw68I1PBz/Gx6J/w27LuRBp2s6MqzViTiUVogfTl/FobRCaJtpQ0RkLJJvYTl79myMGzcOI0eOxHvvvSd1OUQdiiAIGNjFHQO7uCPlWik+T0jH1lM5OJ5ZjONfn0AXDwfMHNoFk6I7wdZajp3nc7F4exJyVVX6e/gqbbFofDjGRPhK+JMQUXsl6WTaTZs24f3338exY8dga2uLe++9F/fccw8+/PDDZttrNBpoNBr912q1Gv7+/pxMS2RE+eoqrPntMjYczkRpVS0AwMPRBjFd3LHjbC5u/h9Gw0Ln+CnRDCtE1CIWMZk2OzsbL7/8MjZu3Ahb25Zt9R0XFwelUql/+Pv7m7hKoo7Hy9kWb4zpjkMLRmDhA+Ho5GKH62XV2N5MSAGgv7Z4exKHgYjI6CTrUdm6dSsmTpzY6CRmrVYLQRAgk8mg0WianNLMHhWitlej1eEfP1/CR7+m3bHtt88MREyIextURUSWzJAeFcnmqIwYMQLnzp1rdG3atGno3r073njjjSYhBQAUCgUUCu73QNSWrOUyhHk7tahtfmnVnRsRERlAsqDi5OSEiIiIRtccHBzg7u7e5DoRSaulJzHzxGYiMjbJlycTkfnrH+wGX6UtbndCkEwAKjS1bVYTEXUM3EKfiFpk5/lczNpwEgCanVTb4PF+/vjbuB5wsrVum8KIyOJYxKofIrIsYyJ8ET8lGj7KxsM7vkpbrH78HswYEgxBADYdy8aYDxPwW9p1iSolovaEPSpEZBCtTsTRjCLkl1bBy8kW/YPdIJfVDQodTi/E/O/O4EpxJQBg2uAgvD66O09pJqJGeHoyEUmmTFOL939MxrdHswAAXTwcsOLPvREdwCMyiKgOh36ISDKOCivETeqFtdP6wdtZgfTr5Xgk/jcs3/k7NLVaqcsjIgvDoEJEJnFvNy/snjsME6M6QScC/9qXhgkfHURSjlrq0ojIgjCoEJHJKO2t8cFj9+CTKdFwd7DB73mlmPBxIj76JQW1Wp3U5RGRBWBQISKTGxPhi13zYnFfuDdqtCJW7L6Eh+N/Q2p+mdSlEZGZY1Ahojbh4ajAp0/2wQeP9YaTrRXOXFFh3OoEfJGQDh0PMySiW2BQIaI2IwgCJkZ1xu55sYjt6glNrQ7v/ZiMxz8/jOyiCqnLIyIzxKBCRG3OV2mHddP6YcnEXrC3keNoRhFGf3gA3xzJggXvmEBEJsCgQkSSEAQBfxkQgJ0vx6J/kBsqqrX465ZzmLrmGPJUPIWZiOowqBCRpALc7bHp2YH4v3E9YGMlw4FLBbjvg/3YcuoKe1eIiEGFiKQnkwmYObQL/jdnCHp3VkJdVYt5/z6DWRtO4nqZRuryiEhCDCpEZDZCvZzw/axBeHVUV1jJBOy8kIfRHxzAzvO5UpdGRBJhUCEis2Ill+GlEWH44cXB6O7jhMLyajy/4STm/fs0VBU1UpdHRG2MQYWIzFJPPyV+eHEwXrg3BDIB2HLqKu77cD/2XcyXujQiakMMKkRkthRWcrw+pjv+O2sQung44Jpag6fXHMNft5xDmaZW6vKIqA0wqBCR2YsOcMWPc4bi6UFBAIBvjmRh7D8O4HB6obSFEZHJMagQkUWws5Hj7Qd74ptnBqCTix2yiyrxxOeH8e6OJFTVaKUuj4hMhEGFiCzKoBAP7Jw7FI/19YcoAl8mZuD+1Qk4nV0idWlEZAIMKkRkcZxsrbHskUh89XRfeDkpkF5Qjofjf8PK3RdRXauTujwiMiIGFSKyWH/q7o3d82LxYG8/aHUi/vlLKiZ8fBDJuWqpSyMiI2FQISKL5mJvg9VPROHjv0TD1d4ayblqPPhRIj7+NRW1WvauEFk6BhUiahfGRfpi97xhGNnDGzVaEX/fdRGPfHIIaQVlUpdGRHeBQYWI2g1PJwU+f6oPVjzaG04KK5zOLsG41Qn4KjEDOh0POCSyRAwqRNSuCIKAR/p0xq55sRgS6oGqGh3e2ZGEv3xxGNlFFfp2Wp2IQ2mF+OH0VRxKK4SWQYbILAmiBZ+jrlaroVQqoVKp4OzsLHU5RGRmRFHEhiNZWPJjMiprtHCwkWPhA+FQ2lnjnR1JyFVV6dv6Km2xaHw4xkT4SlgxUcdgyOc3gwoRtXuXr5dj/ndncDyz+JZthPp/xk+JZlghMjFDPr859ENE7V6QhwP+/VwM3hzb7ZZtGv7Gtnh7EoeBiMwIgwoRdQhymYDenV1v20YEkKuqwtGMorYpiojuyErqAoiI2kp+adWdGwF4/8ckDO/uhR6+zujh64xAN3vIZMKdX0hERsegQkQdhpeTbYvanc9R43zOjd1t7W3k6ObjhPD64NLD1xndfZzgoOD/QolMjf+VEVGH0T/YDb5KW+SpqtDcLBQBgJuDDV4YHoKLeaVIzi3FxWulqKjW4lRWCU5lldxoKwCBbvb64BLu64wefs7wU9pCENj7QmQsXPVDRB3KzvO5mLXhJAA0Ciu3WvVTq9Uh43o5knLVSM4tRXKuGkm5ahSUapq9v9LOGt19nPThJdzPGaFejrC1lpvoJyKyPFyeTER0GzvP52Lx9rvbR+V6mQbJuer6R12ASc0vQ20zK4bkMgEhng763peGEOPppDDaz0RkSSwmqMTHxyM+Ph6XL18GAPTs2RNvvfUWxo4d26LXM6gQUWtpdSKOZhQhv7QKXk626B/sBvldTpjV1GqRcq2sUXhJzlOjpKKm2fYejgr08G0896WLpwOs5S1fkGmKn4PI1CwmqGzfvh1yuRxhYWEQRRHr1q3D3//+d5w6dQo9e/a84+sZVIjI3ImiiDx1lT68JOXU9cJkFJajuf/72ljJ0NXbET18Gve+KO2tm7Q1Rs8QkRQsJqg0x83NDX//+98xY8aMO7ZlUCEiS1VRXaufsNswhPR7XinKNLXNtvdT2iLc70Z4KSjV4O1tF5pMCuYOu2QJDPn8NptVP1qtFt999x3Ky8sRExMjdTlERCZlb2OFqABXRAXc2IROpxORXVxRP2H3RoC5UlyJHFUVclRV+Dk5/7b3FVEXVhZvT8KocB8OA5HFkzyonDt3DjExMaiqqoKjoyO2bNmC8PDwZttqNBpoNDdm2qvV6mbbERFZIplMQKC7AwLdHRr1hqiravB7bimSclRIzi3FsctFSL9efsv7/HGH3ZgQ9zaonMh0JN9Cv1u3bjh9+jSOHDmCWbNmYerUqUhKSmq2bVxcHJRKpf7h7+/fxtUSEbU9Z1tr9A92w9ODg7HskUi8PDKsRa/bk5SHWq3OxNURmZbZzVEZOXIkQkJC8OmnnzZ5rrkeFX9/f85RIaIO5VBaIZ74/HCL2voqbfGX/gF4vH8Al0OT2bDIOSoNdDpdozDyRwqFAgoF/0Mjoo7tTjvsAoCjwgo2cgG5qiqs3HMJq39JwbhevnhqUBCi/F24ey5ZDEmDyoIFCzB27FgEBASgtLQU33zzDfbt24ddu3ZJWRYRkVmTywQsGh+OWRtOQkDzO+yueDQSw7t74adzeVh36DJOZZVg6+kcbD2dg16dlHgqJhDje/txx1wye5IO/cyYMQN79+5Fbm4ulEolIiMj8cYbb2DUqFEtej2XJxNRR2bIPipnr5Rg/aFMbDuTg+raunkrrvbWeKxfACYPCIC/m32b1k4dm0Xvo2IIBhUi6ugM3Zm2qLwa/z6WjQ2HM3G1pBIAIBOAET28MTUmCIND3TksRCbHoEJERLel1YnYm3wN6w9lIjH1uv56F08HPDUwEA/36Qwn26a74RIZA4MKERG1WGp+Kb4+lInvT17V74zrYCPHpOjOeComEGHeThJXSO0NgwoRERmsTFOLLSevYN2hTKTml+mvDwpxx1MxQRjZwwtWBhyYSHQrDCpERNRqoijiUFoh1h26jD1J16Cr/5TwU9pi8sBAPNbPHx6O3CqCWo9BhYiIjOJqSSU2Hs7EpmPZKCqvBgDYyGV4ILJuT5Z7/F2kLZAsEoMKEREZVVWNFj+ezcX6w5k4k12iv967sxJPxQRhXKQv92ShFmNQISIikzmdXYL1hy5jx5lcVNefJeTmYIPH+/lj8sBAdHKxk7hCMncMKkREZHKFZRpsOpaNjYczkVO/6ZxMAEb28MbUQUEYFMI9Wah5DCpERNRmarU6/Jycj/WHLuO3tEL99VAvRzwVE4hJ0Z3hqDC7o+VIQgwqREQkiZRrpfj6cCa+P3EF5dVaAHUHJD4c3QlPxgQh1MtR4grJHDCoEBGRpEqrarD55FWsO3QZ6QXl+utDQj3wVEwgRvTwbrTVv6FHAZBlY1AhIiKzIIoiDqbW7cmyN/nGniydXOwweWAAHu8XgKMZhS0+XJHaBwYVIiIyO9lFFdh4JAv/PpaF4ooaAICVTECtrunHUENfSvyUaIaVdohBhYiIzFZVjRY7zuZi7cEMnM9R37KdAMBHaYvEN/7EYaB2xpDPbx7aQEREbcrWWo5H+nTG38b1uG07EUCuqgpH0gtv247aN64XIyIiSeSXalrU7pmvj2NkD28M6+qJoWGe8HTiOUMdCYMKERFJwsvJtkXtyjVa/HA6Bz+czgEA9PRzxrCunhjW1RPRga6w5onO7RqDChERSaJ/sBt8lbbIU1WhucmSDXNUPvjzPUhILcD+SwU4f1WNCzl1j3/tS4OjwgqDQtwxrJsnYsM84e9m39Y/BpkYJ9MSEZFkdp7PxawNJwGgUVi51aqfglINElMLsP9iAQ6kXNef6NwgxNMBsfW9LQO7uPOgRDPFVT9ERGQxdp7PbdU+KjqdiAs5auy/lI/9lwpwMqsE2j8sdVZYydA/2A3Dunri3m6eCPF05NlDZoJBhYiILIoxdqZVVdbgUNp17L9U1+OS84fgA9RtMlfX2+KBQaEecLa1NuaPQAZgUCEiog5NFEWk5pfVhZZLBTiSUYTqWp3+eblMQJ8AV/3clp5+zpBxr5Y2w6BCRET0B5XVWhzOKMSB+uDyx/OHAMDdwUY/t2VImAc8HLkE2pQYVIiIiG4ju6gC+y8V4MClAhxMva4/6blBr05KDOvqidiunogKcOESaCNjUCEiImqh6lodTmYV63tbLty0rb+TwgqDQz3qhom6eqKTi91t78eToO+MQYWIiKiV8kurkHDpOg6k1PW4NByg2CDUy1G/4Vz/YLdGS6Bbu4Kpo2FQISIiMgKtTsT5qyr9MNHJrGL88bBnW2sZBgS7Y1hXT8hkwOJtSU02r+NJ0E0xqBAREZmAqqIGB9Ou1284V9Co5+R2eBJ0YwwqREREJiaKIlLyy7D/YgG2nbmKc1fVd3zNq6O6YlykLwLc7GHVgSfoMqgQERG1oR9OX8XLm063uL2NXIYung4I8XJEmJcjwrycEOrliCAPeyis2v+2/4Z8fvNQQiIiorvU0pOggzzskaeqQlWNDr/nleL3vNJGz8tlAgLd7BHq5Ygwb8e6f3o5IcTTEXY27T/ANIdBhYiI6C619CTova/cCwHA1ZJKpOaXISW/tP6fZUi9VoZSTS3Sr5cj/Xo5diddu/F6oe4IgDAvR4R5OyHU0xGh9UGmvR8FwKEfIiIiIzD0JOibiaKI/FINUq7dFGDyy5qcEv1H3s4K/dBRaP1QUqiXI9zvcnddU+4HwzkqREREEjDVPiqFZRqk5pchtaAMKdfqwktqfhny1LdedeTmYNMovDSEGW9nxR1PkTb1fjAMKkRERBJpy51p1VU1+tCSml+GlGulSC0oQ3ZR5S1f46Swqhs28qybB9MQYDq52EEmE/Q9Q6bcD4ZBhYiIqAOrqK5FekG5fh5MyrW63pjMwgpodc1/7NtayxDi6YC0gnJU1eiabWOs/WAsZtVPXFwcNm/ejN9//x12dnYYNGgQli1bhm7duklZFhERkUWzt7FCRCclIjopG13X1GqRWVjRaB5Man4Z0uvDyYWc0lvcsY4IIFdVhaMZRYgJcTfhT3CDpEFl//79mD17Nvr164fa2lr89a9/xX333YekpCQ4ODhIWRoREVG7o7CSo6u3E7p6OwG4MXxTq9Uhu7gSGw9n4ovEjDveJ7+0ZTvyGoOkQWXnzp2Nvl67di28vLxw4sQJxMbGSlQVERFRx2IllyHYwwEjeni3KKi0dN8YYzCrfVRUKhUAwM3NrdnnNRoNNBqN/mu1+s7bFRMREVHLtHQ/mP7BzX9Om4LZHDSg0+kwd+5cDB48GBEREc22iYuLg1Kp1D/8/f3buEoiIqL2Sy4TsGh8OIAbq3waNHy9aHx4mx6saDarfmbNmoWffvoJiYmJ6Ny5c7NtmutR8ff356ofIiIiIzKnfVTMYujnxRdfxI4dO3DgwIFbhhQAUCgUUCjubqc9IiIiur0xEb4YFe7TZvvB3I6kQUUURbz00kvYsmUL9u3bh+DgYCnLISIionpymdBmS5BvR9KgMnv2bHzzzTf44Ycf4OTkhLy8PACAUqmEnZ2dlKURERGRGZB0jsqtzhpYs2YNnn766Tu+njvTEhERWR6LmaNiJvN4iYiIyEyZzfJkIiIiopsxqBAREZHZYlAhIiIis8WgQkRERGaLQYWIiIjMFoMKERERmS2z2EK/tRqWN/MUZSIiIsvR8Lndkm1KLDqolJaWAgBPUSYiIrJApaWlUCqVt21jNqcnt4ZOp0NOTg6cnJxuucttR9dwwnR2djZ37zUDfD/MC98P88L3w/yY6j0RRRGlpaXw8/ODTHb7WSgW3aMik8lue9oy3eDs7Mz/8M0I3w/zwvfDvPD9MD+meE/u1JPSgJNpiYiIyGwxqBAREZHZYlBp5xQKBRYtWgSFQiF1KQS+H+aG74d54fthfszhPbHoybRERETUvrFHhYiIiMwWgwoRERGZLQYVIiIiMlsMKu1AXFwc+vXrBycnJ3h5eeGhhx7CxYsXG7WpqqrC7Nmz4e7uDkdHRzz88MO4du2aRBV3LEuXLoUgCJg7d67+Gt+PtnX16lVMmTIF7u7usLOzQ69evXD8+HH986Io4q233oKvry/s7OwwcuRIpKSkSFhx+6bVarFw4UIEBwfDzs4OISEhePfddxttp873xHQOHDiA8ePHw8/PD4IgYOvWrY2eb8nvvqioCJMnT4azszNcXFwwY8YMlJWVmaReBpV2YP/+/Zg9ezYOHz6MPXv2oKamBvfddx/Ky8v1bebNm4ft27fju+++w/79+5GTk4NJkyZJWHXHcOzYMXz66aeIjIxsdJ3vR9spLi7G4MGDYW1tjZ9++glJSUlYuXIlXF1d9W2WL1+O1atX45NPPsGRI0fg4OCA0aNHo6qqSsLK269ly5YhPj4eH330EZKTk7Fs2TIsX74c//znP/Vt+J6YTnl5OXr37o2PP/642edb8rufPHkyLly4gD179mDHjh04cOAAnn32WdMULFK7k5+fLwIQ9+/fL4qiKJaUlIjW1tbid999p2+TnJwsAhAPHTokVZntXmlpqRgWFibu2bNHHDZsmPjyyy+Losj3o6298cYb4pAhQ275vE6nE318fMS///3v+mslJSWiQqEQv/3227YoscMZN26cOH369EbXJk2aJE6ePFkURb4nbQmAuGXLFv3XLfndJyUliQDEY8eO6dv89NNPoiAI4tWrV41eI3tU2iGVSgUAcHNzAwCcOHECNTU1GDlypL5N9+7dERAQgEOHDklSY0cwe/ZsjBs3rtHvHeD70da2bduGvn374tFHH4WXlxeioqLw+eef65/PyMhAXl5eo/dDqVRiwIABfD9MZNCgQdi7dy8uXboEADhz5gwSExMxduxYAHxPpNSS3/2hQ4fg4uKCvn376tuMHDkSMpkMR44cMXpNFn3WDzWl0+kwd+5cDB48GBEREQCAvLw82NjYwMXFpVFbb29v5OXlSVBl+7dp0yacPHkSx44da/Ic34+2lZ6ejvj4eLzyyiv461//imPHjmHOnDmwsbHB1KlT9b9zb2/vRq/j+2E6b775JtRqNbp37w65XA6tVov3338fkydPBgC+JxJqye8+Ly8PXl5ejZ63srKCm5ubSd4fBpV2Zvbs2Th//jwSExOlLqXDys7Oxssvv4w9e/bA1tZW6nI6PJ1Oh759+2LJkiUAgKioKJw/fx6ffPIJpk6dKnF1HdN//vMfbNy4Ed988w169uyJ06dPY+7cufDz8+N7Qk1w6KcdefHFF7Fjxw78+uuvjU6V9vHxQXV1NUpKShq1v3btGnx8fNq4yvbvxIkTyM/PR3R0NKysrGBlZYX9+/dj9erVsLKygre3N9+PNuTr64vw8PBG13r06IGsrCwA0P/Ob151xffDdF577TW8+eabePzxx9GrVy88+eSTmDdvHuLi4gDwPZFSS373Pj4+yM/Pb/R8bW0tioqKTPL+MKi0A6Io4sUXX8SWLVvwyy+/IDg4uNHzffr0gbW1Nfbu3au/dvHiRWRlZSEmJqaty233RowYgXPnzuH06dP6R9++fTF58mT9n/l+tJ3Bgwc3Wa5/6dIlBAYGAgCCg4Ph4+PT6P1Qq9U4cuQI3w8TqaiogEzW+ONHLpdDp9MB4HsipZb87mNiYlBSUoITJ07o2/zyyy/Q6XQYMGCA8Ysy+vRcanOzZs0SlUqluG/fPjE3N1f/qKio0Ld5/vnnxYCAAPGXX34Rjx8/LsbExIgxMTESVt2x/HHVjyjy/WhLR48eFa2srMT3339fTElJETdu3Cja29uLGzZs0LdZunSp6OLiIv7www/i2bNnxQkTJojBwcFiZWWlhJW3X1OnThU7deok7tixQ8zIyBA3b94senh4iK+//rq+Dd8T0yktLRVPnTolnjp1SgQgrlq1Sjx16pSYmZkpimLLfvdjxowRo6KixCNHjoiJiYliWFiY+MQTT5ikXgaVdgBAs481a9bo21RWVoovvPCC6OrqKtrb24sTJ04Uc3NzpSu6g7k5qPD9aFvbt28XIyIiRIVCIXbv3l387LPPGj2v0+nEhQsXit7e3qJCoRBHjBghXrx4UaJq2z+1Wi2+/PLLYkBAgGhrayt26dJF/Nvf/iZqNBp9G74npvPrr782+5kxdepUURRb9rsvLCwUn3jiCdHR0VF0dnYWp02bJpaWlpqkXp6eTERERGaLc1SIiIjIbDGoEBERkdliUCEiIiKzxaBCREREZotBhYiIiMwWgwoRERGZLQYVIiIiMlsMKkRERGS2GFSIqE29/fbbuOeee6Qug4gsBIMKkYV7+umn8dBDDzW5vm/fPgiCoD+lueFrV1dXVFVVNWp77NgxCIIAQRCavL6l7ZsjCAK2bt3a6Nr8+fMbHXhmDi5fvgxBEHD69GmpSyGimzCoEHUwTk5O2LJlS6NrX375JQICAozS/k4cHR3h7u7eqtcSUcfDoELUwUydOhVfffWV/uvKykps2rQJU6dONUr7BkFBQQCAiRMnQhAE/dc3D/009AgtWbIE3t7ecHFxwTvvvIPa2lq89tprcHNzQ+fOnbFmzZpG98/Ozsaf//xnuLi4wM3NDRMmTMDly5dvWU9xcTEmT54MT09P2NnZISwsTH/P4OBgAEBUVBQEQcC9996rf90XX3yBHj16wNbWFt27d8e//vUv/XMNPTGbNm3CoEGDYGtri4iICOzfv79F35eI7oxBhaiDefLJJ5GQkICsrCwAwPfff4+goCBER0cbpX2DY8eOAQDWrFmD3Nxc/dfN+eWXX5CTk4MDBw5g1apVWLRoER544AG4urriyJEjeP755/Hcc8/hypUrAICamhqMHj0aTk5OSEhIwMGDB+Ho6IgxY8agurq62e+xcOFCJCUl4aeffkJycjLi4+Ph4eEBADh69CgA4Oeff0Zubi42b94MANi4cSPeeustvP/++0hOTsaSJUuwcOFCrFu3rtG9X3vtNbz66qs4deoUYmJiMH78eBQWFt7x+xJRC5jkTGYiajNTp04V5XK56ODg0Ohha2srAhCLi4tFUbxxtHtxcbH40EMPiYsXLxZFURSHDx8u/uMf/xC3bNki/vF/CYa2bw4AccuWLY2uLVq0SOzdu3ej+gMDA0WtVqu/1q1bN3Ho0KH6r2tra0UHBwfx22+/FUVRFL/++muxW7duok6n07fRaDSinZ2duGvXrmZrGT9+vDht2rRmn8vIyBABiKdOnWp0PSQkRPzmm28aXXv33XfFmJiYRq9bunSp/vmamhqxc+fO4rJly+74fYnoztijQtQODB8+HKdPn270+OKLL27Zfvr06Vi7di3S09Nx6NAhTJ48+bb3N7S9oXr27AmZ7Mb/jry9vdGrVy/913K5HO7u7sjPzwcAnDlzBqmpqXBycoKjoyMcHR3h5uaGqqoqpKWlNfs9Zs2ahU2bNuGee+7B66+/jt9+++22NZWXlyMtLQ0zZszQfw9HR0e89957Tb5HTEyM/s9WVlbo27cvkpOTW/V9iagxK6kLIKK75+DggNDQ0EbXGoZJmjN27Fg8++yzmDFjBsaPH3/Hya2GtjeUtbV1o68FQWj2mk6nAwCUlZWhT58+2LhxY5N7eXp6Nvs9xo4di8zMTPzvf//Dnj17MGLECMyePRsrVqxotn1ZWRkA4PPPP8eAAQMaPSeXy1v2g7Xi+xJRY+xRIeqArKys8NRTT2Hfvn2YPn260ds3sLa2hlarvZtSmxUdHY2UlBR4eXkhNDS00UOpVN7ydZ6enpg6dSo2bNiADz/8EJ999hkAwMbGBgAa1ert7Q0/Pz+kp6c3+R4Nk28bHD58WP/n2tpanDhxAj169Ljj9yWiO2NQIeqg3n33XRQUFGD06NEmaQ/UrfzZu3cv8vLyUFxc3NpSm5g8eTI8PDwwYcIEJCQkICMjA/v27cOcOXNu2ZP01ltv4YcffkBqaiouXLiAHTt26MOEl5cX7OzssHPnTly7dg0qlQoAsHjxYsTFxWH16tW4dOkSzp07hzVr1mDVqlWN7v3xxx9jy5Yt+P333zF79mwUFxfrA93tvi8R3RmDClEHZWNjAw8Pjztu2tba9gCwcuVK7NmzB/7+/oiKimptqU3Y29vjwIEDCAgIwKRJk9CjRw/MmDEDVVVVcHZ2bvY1NjY2WLBgASIjIxEbGwu5XI5NmzYBqOsxWr16NT799FP4+flhwoQJAICZM2fiiy++wJo1a9CrVy8MGzYMa9eubdKjsnTpUixduhS9e/dGYmIitm3bpl/Zc7vvS0R3JoiiKEpdBBGRJbp8+TKCg4Nx6tQpHgtAZCLsUSEiIiKzxaBCREREZotDP0RERGS22KNCREREZotBhYiIiMwWgwoRERGZLQYVIiIiMlsMKkRERGS2GFSIiIjIbDGoEBERkdliUCEiIiKzxaBCREREZuv/AazeSBmKN+AoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "# ax.set_xscale(\"log\")\n", + "# ax.set_yscale(\"log\")\n", + "ax.set_xlabel(\"HMM time steps\")\n", + "ax.set_ylabel(\"Number of samples\")\n", + "ax.plot(x, iterations, marker = \"o\")\n", + "\n", + "ax.legend([\"Stan\", \"Dice\"])\n", + "fig.savefig(\"hmm_samples.png\", bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4\n", + "8\n", + "12\n", + "16\n", + "20\n", + "24\n", + "28\n", + "32\n", + "36\n", + "40\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV4ElEQVR4nO3deXxM5/4H8M+ZSTLZ92SyCAkREokIKo2lqChRKdVf695qKbqpllZ1cW9RXVC37VWt0lbR3hbd0FI7tbVKLUGIkAhBVmSPbDPn90dkmGadmJkzy+f9es1Lcs5zZr7nHjWfe57nPI8giqIIIiIiIgshk7oAIiIiIn1iuCEiIiKLwnBDREREFoXhhoiIiCwKww0RERFZFIYbIiIisigMN0RERGRRGG6IiIjIojDcEBERkUVhuCEiIiKLYtXhZu/evUhMTERAQAAEQcD69et1Ov7NN9+EIAj1Xk5OToYpmIiIiJpl1eGmrKwM0dHRWLx4cauOnz59OrKzs7VeERERePjhh/VcKREREbWUVYebhIQEvPPOO3jwwQcb3F9ZWYnp06cjMDAQTk5OiI2Nxe7duzX7nZ2d4efnp3nl5ubi9OnTmDhxopHOgIiIiP7OqsNNc55//nkcOHAAa9aswYkTJ/Dwww9j6NChOHfuXIPtly1bhrCwMPTr18/IlRIREVEdhptGZGZmYsWKFfjhhx/Qr18/dOjQAdOnT0ffvn2xYsWKeu0rKirw7bff8q4NERGRxGykLsBUnTx5EiqVCmFhYVrbKysr4eXlVa/9unXrUFJSgnHjxhmrRCIiImoAw00jSktLIZfLceTIEcjlcq19zs7O9dovW7YMw4cPh1KpNFaJRERE1ACGm0bExMRApVIhLy+v2TE0GRkZ+O233/DLL78YqToiIiJqjFWHm9LSUqSlpWl+z8jIQFJSEjw9PREWFoYxY8Zg7Nix+OCDDxATE4P8/Hzs3LkTXbt2xf333685bvny5fD390dCQoIUp0FERES3EURRFKUuQiq7d+/GwIED620fN24cVq5cierqarzzzjv4+uuvceXKFXh7e+Puu+/GnDlzEBUVBQBQq9Vo164dxo4di3fffdfYp0BERER/Y9XhhoiIiCwPHwUnIiIii8JwQ0RERBbF6gYUq9VqZGVlwcXFBYIgSF0OERERtYAoiigpKUFAQABksqbvzVhduMnKykJQUJDUZRAREVErXLp0CW3atGmyjdWFGxcXFwC1/+O4urpKXA0RERG1RHFxMYKCgjTf402xunBT1xXl6urKcENERGRmWjKkhAOKiYiIyKIw3BAREZFFYbghIiIii8JwQ0RERBaF4YaIiIgsCsMNERERWRSGGyIiIrIoDDdERERkURhuiIiIyKJY3QzFhqJSiziUcR15JRXwdbFHrxBPyGVcmJOIiMjYGG70YEtyNuZsOI3sogrNNn83e8xOjMDQSH8JKyMiIrI+7Ja6Q1uSszHpm6NawQYAcooqMOmbo9iSnC1RZURERNaJ4eYOqNQi5mw4DbGBfXXb5mw4DZW6oRZERERkCAw3d+BQxvV6d2xuJwLILqrAoYzrxiuKiIjIykkabvbu3YvExEQEBARAEASsX7++2WMqKyvx73//G+3atYNCoUBwcDCWL19u+GIbkFfSeLBpTTsiIiK6c5IOKC4rK0N0dDQmTJiAUaNGteiYRx55BLm5ufjyyy8RGhqK7OxsqNVqA1faMF8Xe722IyIiojsnabhJSEhAQkJCi9tv2bIFe/bswfnz5+Hp6QkACA4ONlB1zesV4gl/N3vkFFU0OO5GAODnVvtYOBERERmHWY25+eWXX9CzZ08sWLAAgYGBCAsLw/Tp03Hjxg1J6pHLBMxOjABQG2QaMjsxgvPdEBERGZFZzXNz/vx57N+/H/b29li3bh2uXr2K5557DteuXcOKFSsaPKayshKVlZWa34uLi/Va09BIfyx5rHu9eW6cFHJ88HA057khIiIyMrMKN2q1GoIg4Ntvv4WbmxsA4MMPP8T//d//4dNPP4WDg0O9Y+bNm4c5c+YYtK6hkf4YHOGHQxnXsf10Dpb/fgHuDrYY0sXPoJ9LRERE9ZlVt5S/vz8CAwM1wQYAwsPDIYoiLl++3OAxM2bMQFFRkeZ16dIlg9QmlwmI6+CFV4Z0hoOtHFcKK5B8Rb93iYiIiKh5ZhVu+vTpg6ysLJSWlmq2nT17FjKZDG3atGnwGIVCAVdXV62XITnYyTGwsw8AYDNnJyYiIjI6ScNNaWkpkpKSkJSUBADIyMhAUlISMjMzAdTedRk7dqym/aOPPgovLy+MHz8ep0+fxt69e/HKK69gwoQJDXZJSSXh5jibTSezIYqcnZiIiMiYJA03hw8fRkxMDGJiYgAA06ZNQ0xMDGbNmgUAyM7O1gQdAHB2dsb27dtRWFiInj17YsyYMUhMTMSiRYskqb8xAzv7QmEjw4Vr5TiTUyJ1OURERFZFEK3s1kJxcTHc3NxQVFRk0C6qp78+jG2nczHl3lBMu6+TwT6HiIjIGujy/W1WY27MybCom11TyTkSV0JERGRdGG4M5N5wX9jKBaTlleJcLrumiIiIjIXhxkBc7W3Rr2PtU1ObTvLuDRERkbEw3BhQQmTtJH58JJyIiMh4GG4MaHCEEjYyAWdySpCeX9r8AURERHTHGG4MyN3RDr1DvQEAWziwmIiIyCgYbgxsGLumiIiIjIrhxsDu6+IHuUxA8pViZF4rl7ocIiIii8dwY2CeTna4u70nAN69ISIiMgaGGyPQrDXFcTdEREQGx3BjBEO6+EEQgOOXCnG5gF1TREREhsRwYwQ+Lgr0Cq7tmuJTU0RERIbFcGMktyb0Y7ghIiIyJIYbIxl6c9zNkYsFyCmqkLgaIiIiy8VwYyR+bvbo0c4DALCFT00REREZDMONEdV1TfGpKSIiIsNhuDGihKjarqm/LlxHfkmlxNUQERFZJoYbIwp0d0B0kDtEEdh6indviIiIDIHhxsi41hQREZFhMdwYWd1sxX+ev45rpeyaIiIi0jeGGyNr6+WIyEBXqNQitp/OlbocIiIii8NwIwGuNUVERGQ4DDcSqHsk/I+0qygsr5K4GiIiIsvCcCOB9j7O6Oznghp2TREREekdw41E6rqmuNYUERGRfjHcSGRYVG3X1L5z+SiuqJa4GiIiIsvBcCORjkoXhPo6o1olYldKntTlEBERWQyGGwnVTei36SQn9CMiItIXhhsJ1a01tftsPkoraySuhoiIyDIw3Eios58LQrydUFWjxm9n2DVFRESkDww3EhIEQTPnDdeaIiIi0g+GG4kNu9k19duZfJRXsWuKiIjoTjHcSKxLgCvaeDjgRrUKe1LzpS6HiIjI7DHcSEwQBM3dG641RUREdOcYbkxA3bibXSm5qKhWSVwNERGReZM03OzduxeJiYkICAiAIAhYv359i4/9/fffYWNjg27duhmsPmPpFuSOADd7lFWpsO/cVanLISIiMmuShpuysjJER0dj8eLFOh1XWFiIsWPHYtCgQQaqzLgEQcDQurWmOKEfERHRHbGR8sMTEhKQkJCg83HPPvssHn30Ucjlcp3u9piyYVF+WP57Bran5KKyRgWFjVzqkoiIiMyS2Y25WbFiBc6fP4/Zs2dLXYpedW/rAV8XBUoqavBH2jWpyyEiIjJbZhVuzp07h9dffx3ffPMNbGxadtOpsrISxcXFWi9TJJPdmtCPa00RERG1ntmEG5VKhUcffRRz5sxBWFhYi4+bN28e3NzcNK+goCADVnln6taa2nY6F9UqtcTVEBERmSdBFEVR6iKA2kG169atw8iRIxvcX1hYCA8PD8jlt8aiqNVqiKIIuVyObdu24d577613XGVlJSorKzW/FxcXIygoCEVFRXB1ddX7edwJlVpE7NwduFpaha8n9MI9YT5Sl0RERGQSiouL4ebm1qLvb0kHFOvC1dUVJ0+e1Nr26aefYteuXfjxxx8REhLS4HEKhQIKhcIYJd4xuUzAfV38sOpgJjYnZzPcEBERtYKk4aa0tBRpaWma3zMyMpCUlARPT0+0bdsWM2bMwJUrV/D1119DJpMhMjJS63hfX1/Y29vX227OhkX6Y9XBTGw9lYu3R6hhIzebnkMiIiKTIOk35+HDhxETE4OYmBgAwLRp0xATE4NZs2YBALKzs5GZmSlliUYX294THo62uF5WhUMZ16Uuh4iIyOyYzJgbY9Glz04qr/14At8dvoTH726Ht0dazl0pIiKi1tLl+5t9HiYoIar2kfAtp3KgUltV9iQiIrpjDDcmqHcHb7ja2yC/pBJHLhZIXQ4REZFZYbgxQXY2MgyO4IR+RERErcFwY6KG1XVNJedAza4pIiKiFmO4MVF9O3rDWWGDnOIKHLtUKHU5REREZoPhxkQpbOSID/cFAGxm1xQREVGLMdyYsKGRtWtNbU7OgZU9sU9ERNRqDDcmbEAnHzjayXGl8AZOXC6SuhwiIiKzwHBjwuxt5RjYubZralMyu6aIiIhaguHGxA272TW1hV1TRERELcJwY+IGdPKBva0MF6+V43R2sdTlEBERmTyGGxPnpLDBgLC6p6ZyJK6GiIjI9DHcmIG6taY2ncxm1xQREVEzGG7MwL2dfWFnI8P5q2U4m1sqdTlEREQmjeHGDLjY2+Kejj4AuNYUERFRcxhuzETdWlOb+Ug4ERFRkxhuzMSgcCVs5QLO5pYiLa9E6nKIiIhMFsONmXBzsEWfUG8AfGqKiIioKQw3ZqRuQr9NyQw3REREjWG4MSODI5SQywSkZBfjwtUyqcshIiIySQw3ZsTDyQ69O3gBqF0pnIiIiOpjuDEzCTe7pvjUFBERUcMYbszMfV2UkAnAictFuHS9XOpyiIiITA7DjZnxdlYgNqS2a2oLu6aIiIjqYbgxQ3UT+m1i1xQREVE9DDdmaEgXPwgCcCyzEFmFN6Quh4iIyKQw3JghX1d79GznAYBdU0RERH/HcGOm+NQUERFRwxhuzNTQyNpxN4cvFiCvuELiaoiIiEwHw42ZCnB3QExbd4gisPUUu6aIiIjqMNyYMc1aU1xIk4iISIPhxozVdU0dzLiGq6WVEldDRERkGhhuzFiQpyO6tnGDWgS2ncqVuhwiIiKTwHBj5vjUFBERkTaGGzOXcLNr6o/0aygoq5K4GiIiIulJGm727t2LxMREBAQEQBAErF+/vsn2a9euxeDBg+Hj4wNXV1fExcVh69atxinWRAV7OyHC3xUqtYjtp9k1RUREJGm4KSsrQ3R0NBYvXtyi9nv37sXgwYOxadMmHDlyBAMHDkRiYiKOHTtm4EpNW93dG641RUREBAiiKIpSFwEAgiBg3bp1GDlypE7HdenSBaNHj8asWbNa1L64uBhubm4oKiqCq6trKyo1PWl5pYj/cA9s5QIOvzEYbg62UpdERESkV7p8f5v1mBu1Wo2SkhJ4eno22qayshLFxcVaL0sT6uuMMKUzqlUidqawa4qIiKybWYeb999/H6WlpXjkkUcabTNv3jy4ublpXkFBQUas0HgSOKEfERERADMON6tWrcKcOXPw/fffw9fXt9F2M2bMQFFRkeZ16dIlI1ZpPMOiasPN3nP5KKmolrgaIiIi6ZhluFmzZg2efPJJfP/994iPj2+yrUKhgKurq9bLEoUpndHexwlVNWrsOpMndTlERESSMbtws3r1aowfPx6rV6/G/fffL3U5JkMQBM1aU5vZNUVERFZM0nBTWlqKpKQkJCUlAQAyMjKQlJSEzMxMALVdSmPHjtW0X7VqFcaOHYsPPvgAsbGxyMnJQU5ODoqKiqQo3+QkRNU+Ev5bah7KKmskroaIiEgakoabw4cPIyYmBjExMQCAadOmISYmRvNYd3Z2tiboAMDnn3+OmpoaTJ48Gf7+/prX1KlTJanf1ET4u6KdlyMqa9TYnZovdTlERESS0Hmem6+++gre3t6aLqFXX30Vn3/+OSIiIrB69Wq0a9fOIIXqiyXOc3O7+ZvPYOmedNzf1R+LH+0udTlERER6YdB5bubOnQsHBwcAwIEDB7B48WIsWLAA3t7eeOmll1pXMenNsLquqTN5uFGlkrgaIiIi47PR9YBLly4hNDQUALB+/Xo89NBDePrpp9GnTx8MGDBA3/WRjqIC3RDo7oArhTew52w+ht5cmoGIiMha6HznxtnZGdeuXQMAbNu2DYMHDwYA2Nvb48aNG/qtjnQmCIJmraktXGuKiIiskM7hZvDgwXjyySfx5JNP4uzZsxg2bBgA4NSpUwgODtZ3fdQKCTcn9NuRkofKGnZNERGRddE53CxevBhxcXHIz8/HTz/9BC8vLwDAkSNH8M9//lPvBZLuYoLc4edqj9LKGuw/d1XqcoiIiIzKZFYFNxZLf1qqzpu/nMLKPy7goe5t8MEj0VKXQ0REdEcMvir4vn378Nhjj6F37964cuUKAOB///sf9u/f35q3IwOoW2tq++kcVNWoJa6GiIjIeHQONz/99BOGDBkCBwcHHD16FJWVlQCAoqIizJ07V+8FUuv0aOcBHxcFiitq8Ec6u6aIiMh66Bxu3nnnHSxduhRffPEFbG1tNdv79OmDo0eP6rU4aj25TMDQLrVPTXGtKSIisiY6h5vU1FTcc8899ba7ubmhsLBQHzWRntStNbX1dA6qVeyaIiIi66BzuPHz80NaWlq97fv370f79u31UhTpR69gT3g52aGwvBoHz1+XuhwiIiKj0DncPPXUU5g6dSoOHjwIQRCQlZWFb7/9FtOnT8ekSZMMUSO1ko1chvu6KAEAmzihHxERWQmdl194/fXXoVarMWjQIJSXl+Oee+6BQqHA9OnT8cILLxiiRroDCZH+WH3oEradysHbIyIhlwlSl0RERGRQrZ7npqqqCmlpaSgtLUVERAScnZ31XZtBWMs8N3WqVWr0fGcHim5UY83Td+Pu9l5Sl0RERKQzg89zAwB2dnaIiIhAr169zCbYWCNbuQz3RdR2TW0+ya4pIiKyfC3qlho1alSL33Dt2rWtLoYMY1iUP344chmbk3MwO7ELZOyaIiIiC9aicOPm5mboOsiAeod6wcXeBnkllTiaWYCewZ5Sl0RERGQwLQo3K1asMHQdZEAKGzkGhyux9tgVbDqZw3BDREQWrdVjbvLy8rBv3z7s27cPeXl5+qyJDCDh5lpTm5OzoVZb1VqpRERkZXQON8XFxXj88ccRGBiI/v37o3///ggMDMRjjz2GoqIiQ9RIetCvozec7OTILqrA8cuFUpdDRERkMK2axO/gwYPYuHEjCgsLUVhYiI0bN+Lw4cN45plnDFEj6YG9rRyDwm8+NZXMtaaIiMhy6RxuNm7ciOXLl2PIkCFwdXWFq6srhgwZgi+++AIbNmwwRI2kJwmRtWtNbTqZjVZOb0RERGTydA43Xl5eDT495ebmBg8PD70URYYxoJMvHGzluFxwA6eyiqUuh4iIyCB0DjdvvPEGpk2bhpycW10bOTk5eOWVVzBz5ky9Fkf65WAnx8DOPgBq794QERFZIp2XX4iJiUFaWhoqKyvRtm1bAEBmZiYUCgU6duyo1fbo0aP6q1RPrG35hb/bcDwLL6w+hmAvR/w2fQAEgRP6ERGR6dPl+1vnhTNHjhzZ2rrIBAzs7AuFjQwXrpXjTE4Jwv2tL+AREZFl0znczJ492xB1kJE4K2zQP8wH207nYvPJbIYbIiKyOK2exA8ASktLUVxcrPUi0zfs5oR+m/hIOBERWSCdw01GRgbuv/9+ODk5aZ6Q8vDwgLu7O5+WMhP3hvvCTi5DWl4pzuWWSF0OERGRXuncLfXYY49BFEUsX74cSqWSA1LNkKu9Lfp19MbOM3nYdDIHU5UuUpdERESkNzqHm+PHj+PIkSPo1KmTIeohI0mI8sfOM3nYnJyNqfEdmz+AiIjITOjcLXXXXXfh0qVLhqiFjGhwuBI2MgFnckpwPr9U6nKIiIj0Ruc7N8uWLcOzzz6LK1euIDIyEra2tlr7u3btqrfiyHDcHG3RO9Qbe8/mY3NyDiYPDJW6JCIiIr3QOdzk5+cjPT0d48eP12wTBAGiKEIQBKhUKr0WSIYzLNLvZrjJZrghIiKLoXO4mTBhAmJiYrB69WoOKDZz93Xxw7/XJyP5SjEyr5WjrZej1CURERHdMZ3H3Fy8eBHvvfceYmNjERwcjHbt2mm9dLF3714kJiYiICAAgiBg/fr1zR6ze/dudO/eHQqFAqGhoVi5cqWup0A3eTrZ4e72ngCAzclca4qIiCyDzuHm3nvvxfHjx/Xy4WVlZYiOjsbixYtb1L5ujp2BAwciKSkJL774Ip588kls3bpVL/VYo4RITuhHRESWReduqcTERLz00ks4efIkoqKi6g0ofuCBB1r8XgkJCUhISGhx+6VLlyIkJAQffPABACA8PBz79+/Hf//7XwwZMqTF70O3DOnih5k/J+P4pUJcLihHGw92TRERkXnTOdw8++yzAIC33nqr3j5DDyg+cOAA4uPjtbYNGTIEL774YqPHVFZWorKyUvM7l4jQ5uOiQK9gTxzMuI4tyTl4sl97qUsiIiK6Izp3S6nV6kZfhn5SKicnB0qlUmubUqlEcXExbty40eAx8+bNg5ubm+YVFBRk0BrNUd1aU5vZNUVERBbgjhbONAczZsxAUVGR5sUJCOsbGukHADhysQA5RRUSV0NERHRndO6WAmoHAu/ZsweZmZmoqqrS2jdlyhS9FNYQPz8/5Obmam3Lzc2Fq6srHBwcGjxGoVBAoVAYrCZLoHS1R492HjhysQBbT+VgXO9gqUsiIiJqNZ3DzbFjxzBs2DCUl5ejrKwMnp6euHr1KhwdHeHr62vQcBMXF4dNmzZpbdu+fTvi4uIM9pnWIiHSD0cuFmDTyWyGGyIiMms6d0u99NJLSExMREFBARwcHPDnn3/i4sWL6NGjB95//32d3qu0tBRJSUlISkoCUPuod1JSEjIzMwHUdimNHTtW0/7ZZ5/F+fPn8eqrr+LMmTP49NNP8f333+Oll17S9TTobxJujrs5dOE68ksqm2lNRERkunQON0lJSXj55Zchk8kgl8tRWVmJoKAgLFiwAP/61790eq/Dhw8jJiYGMTExAIBp06YhJiYGs2bNAgBkZ2drgg4AhISE4Ndff8X27dsRHR2NDz74AMuWLeNj4HoQ6O6A6CB3iCKw9RQHFhMRkfnSuVvK1tYWMlltJvL19UVmZibCw8Ph5uam82DdAQMGQBTFRvc3NPvwgAEDcOzYMZ0+h1pmWKQfjl8qxJpDmXCxt4Gviz16hXhCLuMSG0REZD50DjcxMTH466+/0LFjR/Tv3x+zZs3C1atX8b///Q+RkZGGqJGMxNGu9q9DclYxpq5JAgD4u9ljdmIEht6cyZiIiMjU6dwtNXfuXPj7137Rvfvuu/Dw8MCkSZOQn5+Pzz//XO8FknFsSc7GrJ+T623PKarApG+OYgvXniIiIjMhiE31C1mg4uJiuLm5oaioCK6urlKXYxJUahF939uF7EbmuBEA+LnZY/9r97KLioiIJKHL97fOd25u3LiB8vJyze8XL17EwoULsW3bNt0rJZNwKON6o8EGAEQA2UUVOJRx3XhFERERtZLO4WbEiBH4+uuvAQCFhYXo1asXPvjgA4wYMQJLlizRe4FkeHklLZuVuKXtiIiIpKRzuDl69Cj69esHAPjxxx/h5+eHixcv4uuvv8aiRYv0XiAZnq+LvV7bERERSUnncFNeXg4XFxcAwLZt2zBq1CjIZDLcfffduHjxot4LJMPrFeIJfzd7NDaaRkDtU1O9QjyNWRYREVGr6BxuQkNDsX79ely6dAlbt27FfffdBwDIy8vjAF0zJZcJmJ0YAQANBhwRwOzECA4mJiIis6BzuJk1axamT5+O4OBgxMbGatZ12rZtm2amYTI/QyP9seSx7vBzq9/1JJcBHZUuElRFRESku1Y9Cp6Tk4Ps7GxER0drZis+dOgQXF1d0blzZ70XqU98FLxpKrWIQxnXkVdSAV8XBT7fex6/peajT6gXvpkYC0Hg3RsiIjI+Xb6/Oc8NNSnzWjkG/3cPKmvU+PifMUiMDpC6JCIiskIGneeGrEtbL0dMHhgKAHh742mUVFRLXBEREVHTGG6oWU/f0x4h3k7IK6nEwh3npC6HiIioSQw31Cx7WznmPNAFALDyjws4nVUscUVERESNa1G46d69OwoKCgAAb731ltbyC2Qd7gnzwf1R/lCpRcz8ORlqtVUN1SIiIjPSonCTkpKCsrIyAMCcOXNQWlpq0KLINM0cHgEnOzmOXCzAj0cvS10OERFRg2xa0qhbt24YP348+vbtC1EU8f7778PZ2bnBtrNmzdJrgWQ6/Nzs8WJ8GN7dlIL5m8/gvggl3B3tpC6LiIhIS4seBU9NTcXs2bORnp6Oo0ePIiIiAjY29XORIAg4evSoQQrVFz4KfmeqVWoMX7QfqbkleDS2LeY+GCV1SUREZAUMOs+NTCZDTk4OfH1976hIqTDc3Lm/LlzHw0sPQBCAtZN6I6ath9QlERGRhTPoPDdqtdpsgw3px13BnnioexuIIjDz52SoOLiYiIhMSKseBU9PT8cLL7yA+Ph4xMfHY8qUKUhPT9d3bWTCZgzrDFd7GyRfKca3B7kaPBERmQ6dw83WrVsRERGBQ4cOoWvXrujatSsOHjyILl26YPv27YaokUyQt7MCrwytXUfsP1tTkV9SKXFFREREtXQecxMTE4MhQ4Zg/vz5Wttff/11bNu2jQOKrYhKLeLBT3/HictFGBUTiA9Hd5O6JCIislAGHXOTkpKCiRMn1ts+YcIEnD59Wte3IzMmlwl4Z2Rk7cDiY1fw5/lrUpdERESke7jx8fFBUlJSve1JSUkcaGyFurZxx5jYtgCAmeuTUa1SS1wRERFZuxZN4ne7p556Ck8//TTOnz+P3r17AwB+//13vPfee5g2bZreCyTT98p9nbH5ZA7O5ZVi+f4MPNO/g9QlERGRFdN5zI0oili4cCE++OADZGVlAQACAgLwyiuvYMqUKRAEwSCF6gvH3BjGj0cuY/oPx+FgK8fOl/sjwN1B6pKIiMiCGHQSv9uVlJQAAFxcXFr7FkbHcGMYoihi9Gd/4tCF60iI9MOSx3pIXRIREVkQgw4ovp2Li4tZBRsyHEEQ8NbILpDLBGxOzsHu1DypSyIiIit1R+GG6Had/VwxoU8wAGD2L6dQUa2StiAiIrJKDDekV1Pjw6B0VeDitXIs3cNZq4mIyPgYbkivnBU2mDW8CwDg093puHitTOKKiIjI2ugUbqqrqzFo0CCcO3fOUPWQBRgW5Yd+Hb1RVaPGrJ9P4Q7GrBMREelMp3Bja2uLEydOGKoWshCCIOCtEZGwk8uw52w+tp7KkbokIiKyIjp3Sz322GP48ssvDVELWZAQbyc82789AOCtDadRVlkjcUVERGQtdA43NTU1WLJkCXr27IlnnnkG06ZN03q1xuLFixEcHAx7e3vExsbi0KFDTbZfuHAhOnXqBAcHBwQFBeGll15CRUVFqz6bDOe5gaEI8nRAVlEFFu1iVyYRERmHzssvJCcno3v37gCAs2fPau1rzezE3333HaZNm4alS5ciNjYWCxcuxJAhQ5CamtrgWlWrVq3C66+/juXLl6N37944e/YsnnjiCQiCgA8//FDnzyfDsbeV483ELpj41WF8uS8DD3VvgzAl50UiIiLDuqMZivUhNjYWd911Fz755BMAgFqtRlBQEF544QW8/vrr9do///zzSElJwc6dOzXbXn75ZRw8eBD79+9v9vM4Q7HxPfX1YWw/nYvYEE+sefpuk1+ig4iITI9RZihOS0vD1q1bcePGDQBo1RMxVVVVOHLkCOLj428VJJMhPj4eBw4caPCY3r1748iRI5quq/Pnz2PTpk0YNmxYg+0rKytRXFys9SLjmp0YAXtbGQ5mXMf6pCtSl0NERBZO53Bz7do1DBo0CGFhYRg2bBiys7MBABMnTsTLL7+s03tdvXoVKpUKSqVSa7tSqUROTsNP2Dz66KN466230LdvX9ja2qJDhw4YMGAA/vWvfzXYft68eXBzc9O8goKCdKqR7lwbD0dMGdQRAPDur2dQdKNa4oqIiMiS6RxuXnrpJdja2iIzMxOOjo6a7aNHj8aWLVv0WlxDdu/ejblz5+LTTz/F0aNHsXbtWvz66694++23G2w/Y8YMFBUVaV6XLl0yeI1U35N926ODjxOullbiw22pUpdDREQWTOcBxdu2bcPWrVvRpk0bre0dO3bExYsXdXovb29vyOVy5Obmam3Pzc2Fn59fg8fMnDkTjz/+OJ588kkAQFRUFMrKyvD000/j3//+N2Qy7bymUCigUCh0qov0z85GhrdHROLRZQfxvz8v4uGeQYgMdJO6LCIiskA637kpKyvTumNT5/r16zqHCDs7O/To0UNrcLBarcbOnTsRFxfX4DHl5eX1AoxcLgfQunE/ZDy9Q73xQHQA1CLw7/XJUKt5vYiISP90Djf9+vXD119/rfldEASo1WosWLAAAwcO1LmAadOm4YsvvsBXX32FlJQUTJo0CWVlZRg/fjwAYOzYsZgxY4amfWJiIpYsWYI1a9YgIyMD27dvx8yZM5GYmKgJOWS63rg/HM4KGxy/VIg1f7GLkIiI9E/nbqkFCxZg0KBBOHz4MKqqqvDqq6/i1KlTuH79On7//XedCxg9ejTy8/Mxa9Ys5OTkoFu3btiyZYtmkHFmZqbWnZo33ngDgiDgjTfewJUrV+Dj44PExES8++67On82GZ+vqz1evi8MczacxntbzmBIFyW8nNltSERE+tOqeW6KiorwySef4Pjx4ygtLUX37t0xefJk+Pv7G6JGveI8N9KrUanxwCe/43R2MR7p2QYL/i9a6pKIiMjE6fL9LfkkfsbGcGMajlwswENL/gAA/DQpDj3aeUpcERERmTJdvr917pYCgIKCAnz55ZdISUkBAERERGD8+PHw9OQXFLVMj3YeGN0zCN8dvoR/r0vGxhf6wkbe6jkliYiINHT+Ntm7dy+Cg4OxaNEiFBQUoKCgAIsWLUJISAj27t1riBrJQr2W0BnujrY4k1OCrw7oNo0AERFRY3TuloqKikJcXByWLFmieTpJpVLhueeewx9//IGTJ08apFB9YbeUaVl9KBMz1p6Es8IGO1/uD6WrvdQlERGRCTLo2lJpaWl4+eWXtR67lsvlmDZtGtLS0nSvlqza6J5B6BbkjtLKGrzza4rU5RARkQXQOdx0795dM9bmdikpKYiO5lMvpBuZTMA7IyMhE4ANx7Pwe9pVqUsiIiIz16IBxSdOnND8PGXKFEydOhVpaWm4++67AQB//vknFi9ejPnz5xumSrJokYFuGBsXjJV/XMDMn5OxeWo/KGw4ISMREbVOi8bcyGQyCILQ7PIGgiBApVLprThD4Jgb01RcUY1739+Dq6WVeGVIJ0weGCp1SUREZEL0/ih4RkaGXgojaoyrvS3euD8cL36XhI93ncMD0QEI8qy/hhkREVFzWhRu2rVrZ+g6iDCiWwDW/JWJP89fx5wNp7FsXE+pSyIiIjPUqkn8srKysH//fuTl5UGtVmvtmzJlil4KI+sjCALeHhGJhI/2YUdKLnaczkV8hFLqsoiIyMzoHG5WrlyJZ555BnZ2dvDy8oIgCJp9giAw3NAd6ah0wZP92mPpnnS8ueEU+oR6w8GOg4uJiKjldH4UfObMmZg1axaKiopw4cIFZGRkaF7nz583RI1kZaYMCkWAmz0uF9zAp7s5dxIREelG53BTXl6Of/zjH5DJuA4QGYajnQ1mJXYBAHy25zzS80slroiIiMyJzgll4sSJ+OGHHwxRC5HGkC5KDOzkgyqVGrN/PtXsNARERER1dF5bSqVSYfjw4bhx4waioqJga2urtf/DDz/Ua4H6xnluzMfFa2UY/N+9qKpR45NHYzC8a4DUJRERkUT0Ps/N7ebNm4etW7eiU6dOAFBvQDGRvrTzcsLkAaH4746zeHvjaQzo5AtnRase8CMiIiui850bDw8P/Pe//8UTTzxhoJIMi3duzEtFtQpDFu7FxWvleLJvCN4YHiF1SUREJAGDrgquUCjQp0+fVhdHpAt7WznmPFA7uHjFHxeQkl0scUVERGTqdA43U6dOxccff2yIWogaNKCTL4ZF+UGlFjFzfTLUag4uJiKixuk8gOHQoUPYtWsXNm7ciC5dutQbULx27Vq9FUdUZ+bwCOxOzcfhiwX46ehlPNwzSOqSiIjIROkcbtzd3TFq1ChD1ELUKH83B7wY3xFzN53BvM1nMDhCCXdHO6nLIiIiE6TzgGJzxwHF5qtapcb9i/bhbG4pxsS2xbsPRkldEhERGYlBBxQTScVWLsPbIyIBAKsOZeL4pUJpCyIiIpOkc7dUSEhIk/PZcH0pMqTY9l4Y1T0Qa49ewRvrk7F+ch/IZZxfiYiIbtE53Lz44otav1dXV+PYsWPYsmULXnnlFX3VRdSoGQnh2H46FyevFGHVwYt4PC5Y6pKIiMiE6Bxupk6d2uD2xYsX4/Dhw3dcEFFzfFwUeHVIJ8z8+RQWbE3F0Eh/+LgopC6LiIhMhN7G3CQkJOCnn37S19sRNenR2HaICnRDSUUN5m1OkbocIiIyIXoLNz/++CM8PT319XZETZLLBLw9MhKCAKw9egUHz1+TuiQiIjIROndLxcTEaA0oFkUROTk5yM/Px6effqrX4oia0i3IHf/s1RarDmZi5s/J+HVKP9jK+QAgEZG10zncjBw5Uut3mUwGHx8fDBgwAJ07d9ZXXUQt8uqQTtiSnIOzuaVY8XsGnr6ng9QlERGRxDiJH5m9Hw5fwis/noCjnRw7X+4PfzcHqUsiIiI94yR+ZFUe6t4GPdt5oLxKhbc3npa6HCIikliLw41MJoNcLm/yZWOjcy8X0R2T3RxcLJcJ2HQyB3vO5ktdEhERSajFaWTdunWN7jtw4AAWLVoEtVqtl6KIdBXu74onegfjy/0ZmP1zMra8eA/sbeVSl0VERBJo8Z2bESNG1Ht17twZK1euxPvvv4+HH34YqamprSpi8eLFCA4Ohr29PWJjY3Ho0KEm2xcWFmLy5Mnw9/eHQqFAWFgYNm3a1KrPJsvxYnxHKF0VuHCtHEt2p+NA+jX8nHQFB9KvQaW2qqFlRERWrVX9SFlZWZg9eza++uorDBkyBElJSYiMjGxVAd999x2mTZuGpUuXIjY2FgsXLsSQIUOQmpoKX1/feu2rqqowePBg+Pr64scff0RgYCAuXrwId3f3Vn0+WQ4Xe1u8cX8EXlh9DB/tPIePdp7T7PN3s8fsxAgMjfSXsEIiIjIGnQYUFxUV4bXXXkNoaChOnTqFnTt3YsOGDa0ONgDw4Ycf4qmnnsL48eMRERGBpUuXwtHREcuXL2+w/fLly3H9+nWsX78effr0QXBwMPr374/o6OhW10CWw6aRRTRziiow6Zuj2JKcbeSKiIjI2FocbhYsWID27dtj48aNWL16Nf744w/069fvjj68qqoKR44cQXx8/K2CZDLEx8fjwIEDDR7zyy+/IC4uDpMnT4ZSqURkZCTmzp0LlUrVYPvKykoUFxdrvcgyqdQi3mrkaam6Tqk5G06zi4qIyMK1uFvq9ddfh4ODA0JDQ/HVV1/hq6++arDd2rVrW/zhV69ehUqlglKp1NquVCpx5syZBo85f/48du3ahTFjxmDTpk1IS0vDc889h+rqasyePbte+3nz5mHOnDktronM16GM68guqmh0vwggu6gChzKuI66Dl/EKIyIio2pxuBk7dqzWsgtSUavV8PX1xeeffw65XI4ePXrgypUr+M9//tNguJkxYwamTZum+b24uBhBQUHGLJmMJK+k8WDTmnZERGSeWhxuVq5cqfcP9/b2hlwuR25urtb23Nxc+Pn5NXiMv78/bG1tIZffesw3PDwcOTk5qKqqgp2dnVZ7hUIBhUKh99rJ9Pi62Ou1HRERmSdJZyi2s7NDjx49sHPnTs02tVqNnTt3Ii4ursFj+vTpg7S0NK05dc6ePQt/f/96wYasS68QT/i72aOp+4s2MgGeTvx7QkRkySRffmHatGn44osv8NVXXyElJQWTJk1CWVkZxo8fD6C2O2zGjBma9pMmTcL169cxdepUnD17Fr/++ivmzp2LyZMnS3UKZCLkMgGzEyMAoNGAU6MWMXLx7/jh8CVY2bJqRERWQ/L1EkaPHo38/HzMmjULOTk56NatG7Zs2aIZZJyZmQmZ7FYGCwoKwtatW/HSSy+ha9euCAwMxNSpU/Haa69JdQpkQoZG+mPJY90xZ8NprcHF/m72eDG+I345noXf067hlR9P4I/0a3h7ZCScFZL/Z0BERHrEVcHJIqnUIg5lXEdeSQV8XezRK8QTcpkAlVrEkt1p+HD7WahFIMTbCZ88GoMuAW5Sl0xERE3Q5fub4Yas0l8XrmPK6mPILqqAnVyGf98fjrFx7UziiUAiIqpPl+9vycfcEEnhrmBPbJrSD/HhSlSp1Jj9yyk8+80RFJVXS10aERHdIYYbsloeTnb4YmwPzBoeAVu5gK2ncjFs0T4cuVggdWlERHQHGG7IqgmCgAl9Q7B2Uh+083LElcIbeOSzA/h0dxrUXKaBiMgsMdwQAYhq44aNL/TFA9EBUKlFLNiSinErDiG/pFLq0oiISEcMN0Q3udjb4qN/dMN7D0XB3laGfeeuYtiiffg97arUpRERkQ4YbohuIwgCRt/VFr883xdhSmfkl1TisS8P4v2tqahRqZt/AyIikhzDDVEDwpQu+HlyX/yzVxBEEfjktzT884s/kV10Q+rSiIioGQw3RI1wsJNj3qiuWPTPGDgrbPDXhQIkfLQPO07nNn8wERFJhuGGqBkPRAdg4wt9ERXohsLyajz59WG8teE0KmtUUpdGREQNYLghaoFgbyf8NKk3JvYNAQAs/z0D/7fkAC5eK5O4MiIi+juGG6IWsrORYebwCCwb2xPujrY4eaUI9y/aj1+OZ0ldGhER3YbhhkhH8RFKbJrSD3cFe6C0sgZTVh/D6z+dwI0qdlMREZkChhuiVghwd8Dqp+7GC/eGQhCANX9dwojF+3E2t0Tq0oiIrB7DDVEr2chlePm+TvhmYix8XBQ4m1uKBz7ZjzWHMiGKXLqBiEgqDDdEd6hPqDc2TemHfh29UVGtxutrT2LKmiSUVHCFcSIiKTDcEOmBj4sCX43vhdeGdoZcJmDD8SwM/3g/Tl4ukro0IiKrw3BDpCcymYBJAzrg+2fiEOjugIvXyjFqye/4cn8Gu6mIiIyI4YZIz3q088CmKf0wpIsS1SoRb288jae+PoyCsiqpSyMisgoMN0QG4OZoi6WP9cBbI7rATi7DjpQ8DFu0D39duC51aUREFo/hhshABEHA2LhgrH2uN0K8nZBdVIF/fP4nPtl1Dio1u6mIiAyF4YbIwCID3bDhhb4YFRMIlVrE+9vOYuzyg8grqZC6NCIii8RwQ2QEzgobfDi6G95/OBoOtnL8nnYNwz7ah71n86UujYjI4jDcEBnR//Vogw0v9EFnPxdcLa3C2OWH8N6WM6hWqaUujYjIYjDcEBlZqK8L1k/ug8fubgsAWLI7HaM/O4DLBeUSV0ZEZBkYbogkYG8rxzsjo/DpmO5wUdjgaGYhhn20D1tP5UhdGhGR2WO4IZLQsCh/bJraD9FB7iiuqMEz/zuC2T8no6K6doVxlVrEgfRr+DnpCg6kX+NTVkRELSCIVjZ1anFxMdzc3FBUVARXV1epyyECAFTVqPH+tlR8vvc8ACDC3xWP3NUGn+05j+yiW09V+bvZY3ZiBIZG+ktVKhGRJHT5/ma4ITIhv6Xm4eXvj+N6I7MZCzf/XPJYdwYcIrIqunx/s1uKyIQM7OSLDc/3hZ1caHB/3f8TmbPhNLuoiIgawXBDZGIyr5ejStV4cBEBZBdV4FAGl3IgImoIww2RiWnpzMXncksMXAkRkXliuCEyMb4u9i1qN+uXU3h46R/46o8LyCvmUg5ERHU4oJjIxKjUIvq+tws5RRVo7D9OW7mA6tu6rgQB6BXsieHRARjaxQ8+LgrjFEtEZCR8WqoJDDdkDrYkZ2PSN0cBQCvg3P60VHSQOzadzMHGE1k4llmoaSMTgLvbe2F41wAMjfSDp5Od0eomIjIUs3taavHixQgODoa9vT1iY2Nx6NChFh23Zs0aCIKAkSNHGrZAIiMbGumPJY91h5+bdheVn5u95jFwfzcHTOwbgnXP9cH+1wbiX8M6I7qNG9Qi8Ef6Nfxr3Unc9e4OPP7lQXz3VyYKyxt+vJyIyNJIfufmu+++w9ixY7F06VLExsZi4cKF+OGHH5CamgpfX99Gj7tw4QL69u2L9u3bw9PTE+vXr2/R5/HODZkTlVrEoYzryCupgK+LPXqFeEIua/gx8TqXrpdj44ls/HoyC8lXijXbbWQC+nb0xv1R/rivix/cHGwNXT4Rkd6YVbdUbGws7rrrLnzyyScAALVajaCgILzwwgt4/fXXGzxGpVLhnnvuwYQJE7Bv3z4UFhYy3BA1IONqGTadzMbGE9lIyb4VdGzlAu7p6IPh0f6ID1fCxZ5Bh4hMmy7f3zZGqqlBVVVVOHLkCGbMmKHZJpPJEB8fjwMHDjR63FtvvQVfX19MnDgR+/bta/IzKisrUVlZqfm9uLi4idZEliXE2wmTB4Zi8sBQpOWVYtPJbPx6IhupuSXYeSYPO8/kwc5Ghv5hPhje1R+DwpVwVkj6zwIR0R2T9F+xq1evQqVSQalUam1XKpU4c+ZMg8fs378fX375JZKSklr0GfPmzcOcOXPutFQisxfq64wpgzpiyqCOOJtbgl9PZGPjiSyk55dh++lcbD+dC4WNDPd29sX9Xf1xb2dfONox6BCR+TGrf7lKSkrw+OOP44svvoC3t3eLjpkxYwamTZum+b24uBhBQUGGKpHILIQpXRA22AUvxndEqiboZCPjahk2J+dgc3IOHGzluDfcF8Oj/DGwsy/sbeVSl01E1CKShhtvb2/I5XLk5uZqbc/NzYWfn1+99unp6bhw4QISExM129RqNQDAxsYGqamp6NChg9YxCoUCCgXn/CBqiCAI6Oznis5+rpg2OAyns4trByOfyEbm9XL8evNnRzs54sOVuL+rP/qH+TDoEJFJM4kBxb169cLHH38MoDastG3bFs8//3y9AcUVFRVIS0vT2vbGG2+gpKQEH330EcLCwmBn1/ScHhxQTNQ8URSRfKUYG09kYeOJbFwpvKHZ56ywweAIJe6P8ke/MG8obBh0iMjwzGZAMQBMmzYN48aNQ8+ePdGrVy8sXLgQZWVlGD9+PABg7NixCAwMxLx582Bvb4/IyEit493d3QGg3nYiaj1BEBDVxg1RbdzwekJnHL9chI3Hs/DryWxkF1Vg3bErWHfsClzsbXBfhB+GR/ujTwdv2Nk0PHVWax5pJyJqLcnDzejRo5Gfn49Zs2YhJycH3bp1w5YtWzSDjDMzMyGTmcRcg0RWSRAEdAtyR7cgd/xrWDiOXSrAxhPZ2HQyG7nFlfjp6GX8dPQy3BxsMbSLH+7v6o+4Dl6wldf+d7slORtzNpxGdtGt9a/83ewxOzECQyP9pTotIrJgkndLGRu7pYj0Q60WcfhiAX49kYVNyTnIL7k15YKHoy2GRvpD6aLARzvP1Vsj6/ZlJBhwiKglzGoSP2NjuCHSv7pup19PZmHzyRxcK2t+qQcBtctJ7H/tXnZREVGzzG5tKSIyb3KZgLgOXnhnZBQO/msQvn0yFvd2bnz5FKB2QdDsogocSL9qnCKJyGpIPuaGiCyLjVyGPqHeuFpaiV1n8ppt/8SKvxAR4IpwP1eE+7sg3N8Vnf1dufYVEbUaww0RGYSvi33zjQDUqEWcuFyEE5eLtLYHujtowk7dq52nI2TswiKiZjDcEJFB9ArxhL+bPXKKKuoNKAZujbn538RYnM0tQUp28c1XCa4U3tC8dqTcuvvjaCdHJ79bgSfC3wWd/Fy5HhYRaeGAYiIymC3J2Zj0zVEA0Ao4zT0tVVRejZScYq3Ak5pbgqoadYOf087L8Wa31q2urTYeDhAE3uUhshR8WqoJDDdExqWveW5qVGpcuFaG09m33+UpRm5xZYPtXexttMbxhPu7opOfyx0tHcHJCImkw3DTBIYbIuMzZCi4VlqJMzm1gef0zbs8aXklqFbV/6dNJgAh3k63dWvV/ql0VTR7l4eTERJJi+GmCQw3RJavqkaN9PxSrW6tlOziRuff8XC01Rq4HO7vglBfZ826WXXda5yMkEg6DDdNYLghsk6iKCK/pFJzd6cu+Jy/WgaVuv4/gzYyAaG+zujs54KdZ/JQUlHT4PtyMkIi4zCrhTOJiIxBEAT4utrD19UeAzrdmmCwolqFc7mlt3Vr1b6KK2pwJqcEZ3JKmnzfuskID2VcR1wHLwOfBRG1BMMNEVk1e1u5ZgX0OqIoIquoAilZxVh79DI2Jec0+z6Z18sYbohMBMMNEdHfCIKAQHcHBLo7wElh06Jw8+91yfjtTD4SowMwKNz3jp7KIqI7w3BDRNSE5iYjBGrX1qpRi9hyKgdbTuXAyU6O+7r4ITHaH/06+sBWzmX8iIyJA4qJiJrR3GSEn47pjnZeTvjleBY2HM/ClcIbmjbujrZIiPRHYrQ/YkO8OOiYqJX4tFQTGG6IqDVaOs+NKIo4mlmIDcezsPFENq6W3ppk0NdFgeFdA5AY7Y9uQe6cQZlIBww3TWC4IaLW0nUywhqVGgczruOXpCxsTs5G8W2Pk7f1dERitD8eiA5EJz8XY5RPZNYYbprAcENEUqisUWHf2av45XgWtp/OxY1qlWZfmNIZD0QHIDE6AO28nCSsksh0Mdw0geGGiKRWXlWDnSl5+OV4Fvak5qNKdWtB0Og2bki8GXSUrvYSVklkWhhumsBwQ0SmpOhGNbYm52DDiSz8nnYVdZMlCwIQG+KJxOgADIv0h4eTnbSFEkmM4aYJDDdEZKrySyqx6WQ2NhzPwuGLBZrtNjIB/Tp6IzE6APd18YOzgrN4kPVhuGkCww0RmYPLBeXYeKI26JzKKtZsV9jIMCjcF4ldAzCwMycLJOvBcNMEhhsiMjdpeaXYcHMOnfNXyzTbnRU2uK+LEonRAegb6s3JAsmiMdw0geGGiMyVKIo4lVWsCTpZt8254+lkh4RIPyRGB6BXsCdknCyQLAzDTRMYbojIEqjVIo5mFuCX41n49UQ2rpVVafb5udpjeFd/PNAtAFGBbg1OFqjrnD1EUmO4aQLDDRFZmhqVGgfOX8MvSVnYcioHJbdNFhjs5YjE6AA8EB2AjsrayQJbOtsykSlhuGkCww0RWbLKGhV2p+Zjw/Es7EjJRUX1rTl0Ovu5oJOfC35Oyqp3XN09myWPdWfAIZPEcNMEhhsishZllTXYkZKLDcezsOdsPqpVTf9zLwDwc7PH/tfuZRcVmRxdvr85tJ6IyEI5KWwwolsglo27C3/9Ox5P9Qtpsr0IILuoAgt3nEVqTgmqatRNticyVZwJiojICrg72iEy0K1FbT/elYaPd6XBRiagvY8TwpQu6KR0QZhf7Z9Bno68s6NnHOCtXww3RERWwtelZWtVhSmdkV1UgZKKGpzNLcXZ3FJsRLZmv72tDB19XWpDj5/zzT9d4Odq3+CTWdQ0DvDWP465ISKyEiq1iL7v7UJOUQUa+of/9jE3MgHIKa5Aak5J7Su3BGdzS3AutxSVjXRXudjbaN3h6eRXG4A8uS5Wo7YkZ2PSN0frXQ8O8K6PA4qbwHBDRNas7ssUgNYXaku/TFVqEZnXy5GaUxt2UnNLcDanBOevlkGlbvjrxMdFURt6brvT01Hpopc1ssy5O6essgYD39+NvJLKBvdzgLc2hpsmMNwQkbUzRDdIZY0KGVfLboWenFKczS1B5vXyRo9p4+GgdacnTOmCDr5OUNi0bL0sU+nOqaxRoai8GgXl1Sgsr0JBeTWKblSh8Oa2ohtVKCirRuHNbYXltT/f/ph+U1Y/dTfiOngZ+CxMH8NNExhuiIiMd8ejrLIGaXmlmjs8qbm13VyN3a2QywQEezlqurTqwk87T0fY3LZ2liG6c6pq1Ci8UaUVVApv3PzztqCi+flmkLlRrdLpc3TVs50HnugTjP5hPnCxtzXoZ5kysws3ixcvxn/+8x/k5OQgOjoaH3/8MXr16tVg2y+++AJff/01kpOTAQA9evTA3LlzG23/dww3RETSKyirwtnc27u2agNQ0Y3qBtvb2cgQ6uOMTn4uCPV1xrJ951FQ3nBbAYCvqwJfT4hFSUX1zTBShaIbt36+PbQU3gwyZVWtDykyofaJNHdHW7g72N72sx08HG3h7mgLN8ebPzvU7juXW4IJXx1u8WfYygXc3d4L8eFKDAr3RRsPx1bXa47MKtx89913GDt2LJYuXYrY2FgsXLgQP/zwA1JTU+Hr61uv/ZgxY9CnTx/07t0b9vb2eO+997Bu3TqcOnUKgYGBzX4eww0RkWkSRRF5JZW3dW2V3AxApQa/O1JHEAA3B1t4ONrd/LM2qNRtc78ZVNwd7eBe187RFi4KG50XK23JAG9PJzuM6h6InWfycD6/TGt/Zz8XDI5QYlC4El0D3Sx+sVSzCjexsbG466678MknnwAA1Go1goKC8MILL+D1119v9niVSgUPDw988sknGDt2bLPtGW6IiMyLWi3icsENzRNbO1NycTSzsNnjHGzl8HVVaN1JqQstmp9v/lkXVFzsdQ8pd0KXAd7n80uxMyUP21NycfjCddw+ftvHRYH4cF8M6qxEn1BvONi1bNySOTGbcFNVVQVHR0f8+OOPGDlypGb7uHHjUFhYiJ9//rnZ9ygpKYGvry9++OEHDB8+vN7+yspKVFbe6tstLi5GUFAQww0RkZk6kH4N//ziz2bbmctA3NYMjC4oq8Lus3nYcToPe87mo7Ty1mKp9rYy9A31weAIXwzs7Nvi+Y1MnS7hRtJJ/K5evQqVSgWlUqm1XalU4syZMy16j9deew0BAQGIj49vcP+8efMwZ86cO66ViIhMQ68QT/i72Tc7X0+vEE9jl9YqQyP9MTjCT6cB3h5Odngwpg0ejGmDqho1DmZcw47TudiRkocrhTewIyUXO1JyAQDdgtwxOEKJ+HAlwpTOVjHRolnPUDx//nysWbMGu3fvhr19w8l0xowZmDZtmub3ujs3RERknuQyAbMTIzDpm6MQ0HB3zuzECLOaG0YuE1p9l8nORoZ+HX3Qr6MP3nxAREp2bdfdjpRcHL9chKRLhUi6VIj/bE1FGw8HxIcrMThCiV4hnrCVW+YSk5KGG29vb8jlcuTm5mptz83NhZ+fX5PHvv/++5g/fz527NiBrl27NtpOoVBAoVDopV4iIjINQyP9seSx7vW6c/ysfNkCQRAQEeCKiABXvDCoI3KLK7AzJQ87UnLxe9pVXC64gZV/XMDKPy7Axd4G/cN8MDhCiQFhvnBztJzHzE1iQHGvXr3w8ccfA6gdUNy2bVs8//zzjQ4oXrBgAd59911s3boVd999t06fxwHFRESWw5xnKDa28qoa7D93FTtScrHrTB6ullZp9sllAnoFe2JQuC8GRyjRzstJwkobZjYDioHaR8HHjRuHzz77DL169cLChQvx/fff48yZM1AqlRg7diwCAwMxb948AMB7772HWbNmYdWqVejTp4/mfZydneHs7Nzs5zHcEBGRtVOrRSRdLrw5TicXZ3NLtfZ39HVGfIQS8eG+6BbkYRKB0azCDQB88sknmkn8unXrhkWLFiE2NhYAMGDAAAQHB2PlypUAgODgYFy8eLHee8yePRtvvvlms5/FcENERKQt81q5ZhDywYzrWuuEeTnZ4d7OvoiPUKJfR2842jU+osWQd9LMLtwYE8MNERFR44rKq7H7bB52puTht9Q8lFTceszczkaGPh28EB+hxKDOSvi53XqYx9BrfTHcNIHhhoiIqGWqVWr8lXEd22/e1bl0/YbW/qhAN8SHK+FgJ8O8TWf0utbX3zHcNIHhhoiISHeiKOJcXim23xynk3SpEC1JEHXzDu1/7d476qIym0n8iIiIyDwIgoAwZe1q7ZMHhiK/pBK/ncnDd4cv4cjFgkaPEwFkF1XgUMZ1o80YzXBDREREOvNxUeCRu4KgsJU1GW7q5JVUNNtGXyxzakIiIiIyipauXWXMNa4YboiIiKjV6tb6amw0jYDap6aMudYXww0RERG1Wt1aXwDqBRyp1vpiuCEiIqI7UrfW1+3z3gC1T0np4zFwXXFAMREREd2xoZH+GBzhZxJrfTHcEBERkV7IZYLRHvduCruliIiIyKIw3BAREZFFYbghIiIii8JwQ0RERBaF4YaIiIgsCsMNERERWRSGGyIiIrIoDDdERERkURhuiIiIyKJY3QzFoigCAIqLiyWuhIiIiFqq7nu77nu8KVYXbkpKSgAAQUFBEldCREREuiopKYGbm1uTbQSxJRHIgqjVamRlZcHFxQWCYPzFvG5XXFyMoKAgXLp0Ca6urpLWYmw8d+s7d2s9b4Dnbo3nbq3nDRju3EVRRElJCQICAiCTNT2qxuru3MhkMrRp00bqMrS4urpa3V/+Ojx36zt3az1vgOdujedurecNGObcm7tjU4cDiomIiMiiMNwQERGRRWG4kZBCocDs2bOhUCikLsXoeO7Wd+7Wet4Az90az91azxswjXO3ugHFREREZNl454aIiIgsCsMNERERWRSGGyIiIrIoDDcSePPNNyEIgtarc+fOUpdlEHv37kViYiICAgIgCALWr1+vtV8URcyaNQv+/v5wcHBAfHw8zp07J02xetTceT/xxBP1/g4MHTpUmmL1bN68ebjrrrvg4uICX19fjBw5EqmpqVptKioqMHnyZHh5ecHZ2RkPPfQQcnNzJapYP1py3gMGDKh33Z999lmJKtafJUuWoGvXrpp5TeLi4rB582bNfku83nWaO3dLveZ/N3/+fAiCgBdffFGzTcrrznAjkS5duiA7O1vz2r9/v9QlGURZWRmio6OxePHiBvcvWLAAixYtwtKlS3Hw4EE4OTlhyJAhqKioMHKl+tXceQPA0KFDtf4OrF692ogVGs6ePXswefJk/Pnnn9i+fTuqq6tx3333oaysTNPmpZdewoYNG/DDDz9gz549yMrKwqhRoySs+s615LwB4KmnntK67gsWLJCoYv1p06YN5s+fjyNHjuDw4cO49957MWLECJw6dQqAZV7vOs2dO2CZ1/x2f/31Fz777DN07dpVa7uk110ko5s9e7YYHR0tdRlGB0Bct26d5ne1Wi36+fmJ//nPfzTbCgsLRYVCIa5evVqCCg3j7+ctiqI4btw4ccSIEZLUY2x5eXkiAHHPnj2iKNZeY1tbW/GHH37QtElJSREBiAcOHJCqTL37+3mLoij2799fnDp1qnRFGZGHh4e4bNkyq7net6s7d1G0/GteUlIiduzYUdy+fbvWuUp93XnnRiLnzp1DQEAA2rdvjzFjxiAzM1PqkowuIyMDOTk5iI+P12xzc3NDbGwsDhw4IGFlxrF79274+vqiU6dOmDRpEq5duyZ1SQZRVFQEAPD09AQAHDlyBNXV1VrXvXPnzmjbtq1FXfe/n3edb7/9Ft7e3oiMjMSMGTNQXl4uRXkGo1KpsGbNGpSVlSEuLs5qrjdQ/9zrWPI1nzx5Mu6//36t6wtI/9+51a0tZQpiY2OxcuVKdOrUCdnZ2ZgzZw769euH5ORkuLi4SF2e0eTk5AAAlEql1nalUqnZZ6mGDh2KUaNGISQkBOnp6fjXv/6FhIQEHDhwAHK5XOry9EatVuPFF19Enz59EBkZCaD2utvZ2cHd3V2rrSVd94bOGwAeffRRtGvXDgEBAThx4gRee+01pKamYu3atRJWqx8nT55EXFwcKioq4OzsjHXr1iEiIgJJSUkWf70bO3fAsq/5mjVrcPToUfz111/19kn93znDjQQSEhI0P3ft2hWxsbFo164dvv/+e0ycOFHCyshY/vGPf2h+joqKQteuXdGhQwfs3r0bgwYNkrAy/Zo8eTKSk5MtdkxZYxo776efflrzc1RUFPz9/TFo0CCkp6ejQ4cOxi5Trzp16oSkpCQUFRXhxx9/xLhx47Bnzx6pyzKKxs49IiLCYq/5pUuXMHXqVGzfvh329vZSl1MPu6VMgLu7O8LCwpCWliZ1KUbl5+cHAPVGz+fm5mr2WYv27dvD29vbov4OPP/889i4cSN+++03tGnTRrPdz88PVVVVKCws1GpvKde9sfNuSGxsLABYxHW3s7NDaGgoevTogXnz5iE6OhofffSRxV9voPFzb4ilXPMjR44gLy8P3bt3h42NDWxsbLBnzx4sWrQINjY2UCqVkl53hhsTUFpaivT0dPj7+0tdilGFhITAz88PO3fu1GwrLi7GwYMHtfqrrcHly5dx7do1i/g7IIoinn/+eaxbtw67du1CSEiI1v4ePXrA1tZW67qnpqYiMzPTrK97c+fdkKSkJACwiOv+d2q1GpWVlRZ7vZtSd+4NsZRrPmjQIJw8eRJJSUmaV8+ePTFmzBjNz1Jed3ZLSWD69OlITExEu3btkJWVhdmzZ0Mul+Of//yn1KXpXWlpqdb/Q8nIyEBSUhI8PT3Rtm1bvPjii3jnnXfQsWNHhISEYObMmQgICMDIkSOlK1oPmjpvT09PzJkzBw899BD8/PyQnp6OV199FaGhoRgyZIiEVevH5MmTsWrVKvz8889wcXHR9K+7ubnBwcEBbm5umDhxIqZNmwZPT0+4urrihRdeQFxcHO6++26Jq2+95s47PT0dq1atwrBhw+Dl5YUTJ07gpZdewj333FPvEVpzM2PGDCQkJKBt27YoKSnBqlWrsHv3bmzdutVir3edps7dkq+5i4uL1ngyAHBycoKXl5dmu6TX3eDPY1E9o0ePFv39/UU7OzsxMDBQHD16tJiWliZ1WQbx22+/iQDqvcaNGyeKYu3j4DNnzhSVSqWoUCjEQYMGiampqdIWrQdNnXd5ebl43333iT4+PqKtra3Yrl078amnnhJzcnKkLlsvGjpvAOKKFSs0bW7cuCE+99xzooeHh+jo6Cg++OCDYnZ2tnRF60Fz552ZmSnec889oqenp6hQKMTQ0FDxlVdeEYuKiqQtXA8mTJggtmvXTrSzsxN9fHzEQYMGidu2bdPst8TrXaepc7fka96Qvz/2LuV156rgREREZFE45oaIiIgsCsMNERERWRSGGyIiIrIoDDdERERkURhuiIiIyKIw3BAREZFFYbghIiIii8JwQ0RERBaF4YaIzMKbb76Jbt26SV0GEZkBhhsiK/XEE080uIbX7t27IQiCZjXfut89PDxQUVGh1favv/6CIAgQBKHe8S1t3xBBELB+/XqtbdOnT9dahM8UXLhwAYIgaBZDJCLTwHBDRC3i4uKCdevWaW378ssv0bZtW720b46zszO8vLxadSwRWReGGyJqkXHjxmH58uWa32/cuIE1a9Zg3LhxemlfJzg4GADw4IMPQhAEze9/75aqu/M0d+5cKJVKuLu746233kJNTQ1eeeUVeHp6ok2bNlixYoXW+1+6dAmPPPII3N3d4enpiREjRuDChQuN1lNQUIAxY8bAx8cHDg4O6Nixo+Y9Q0JCAAAxMTEQBAEDBgzQHLds2TKEh4fD3t4enTt3xqeffqrZV3fHZ82aNejduzfs7e0RGRmJPXv2tOhziahpDDdE1CKPP/449u3bh8zMTADATz/9hODgYHTv3l0v7ev89ddfAIAVK1YgOztb83tDdu3ahaysLOzduxcffvghZs+ejeHDh8PDwwMHDx7Es88+i2eeeQaXL18GAFRXV2PIkCFwcXHBvn378Pvvv8PZ2RlDhw5FVVVVg58xc+ZMnD59Gps3b0ZKSgqWLFkCb29vAMChQ4cAADt27EB2djbWrl0LAPj2228xa9YsvPvuu0hJScHcuXMxc+ZMfPXVV1rv/corr+Dll1/GsWPHEBcXh8TERFy7dq3ZzyWiZhhl7XEiMjnjxo0T5XK56OTkpPWyt7cXAYgFBQWiKIrib7/9pvl95MiR4pw5c0RRFMWBAweKH330kbhu3Trx9n9KdG3fEADiunXrtLbNnj1bjI6O1qq/Xbt2okql0mzr1KmT2K9fP83vNTU1opOTk7h69WpRFEXxf//7n9ipUydRrVZr2lRWVooODg7i1q1bG6wlMTFRHD9+fIP7MjIyRADisWPHtLZ36NBBXLVqlda2t99+W4yLi9M6bv78+Zr91dXVYps2bcT33nuv2c8loqbxzg2RFRs4cCCSkpK0XsuWLWu0/YQJE7By5UqcP38eBw4cwJgxY5p8f13b66pLly6QyW79M6ZUKhEVFaX5XS6Xw8vLC3l5eQCA48ePIy0tDS4uLnB2doazszM8PT1RUVGB9PT0Bj9j0qRJWLNmDbp164ZXX30Vf/zxR5M1lZWVIT09HRMnTtR8hrOzM9555516nxEXF6f52cbGBj179kRKSkqrPpeIbrGRugAiko6TkxNCQ0O1ttV14TQkISEBTz/9NCZOnIjExMRmB/jq2l5Xtra2Wr8LgtDgNrVaDQAoLS1Fjx498O2339Z7Lx8fnwY/IyEhARcvXsSmTZuwfft2DBo0CJMnT8b777/fYPvS0lIAwBdffIHY2FitfXK5vGUn1orPJaJbeOeGiFrMxsYGY8eOxe7duzFhwgS9t69ja2sLlUp1J6U2qHv37jh37hx8fX0RGhqq9XJzc2v0OB8fH4wbNw7ffPMNFi5ciM8//xwAYGdnBwBatSqVSgQEBOD8+fP1PqNuAHKdP//8U/NzTU0Njhw5gvDw8GY/l4iaxnBDRDp5++23kZ+fjyFDhhikPVD7xNTOnTuRk5ODgoKC1pZaz5gxY+Dt7Y0RI0Zg3759yMjIwO7duzFlypRG71jNmjULP//8M9LS0nDq1Cls3LhRE0B8fX3h4OCALVu2IDc3F0VFRQCAOXPmYN68eVi0aBHOnj2LkydPYsWKFfjwww+13nvx4sVYt24dzpw5g8mTJ6OgoEATApv6XCJqGsMNEenEzs4O3t7ezU7E19r2APDBBx9g+/btCAoKQkxMTGtLrcfR0RF79+5F27ZtMWrUKISHh2PixImoqKiAq6trg8fY2dlhxowZ6Nq1K+655x7I5XKsWbMGQO2dqUWLFuGzzz5DQEAARowYAQB48sknsWzZMqxYsQJRUVHo378/Vq5cWe/Ozfz58zF//nxER0dj//79+OWXXzRPRDX1uUTUNEEURVHqIoiIrMmFCxcQEhKCY8eOcUkJIgPgnRsiIiKyKAw3REREZFHYLUVEREQWhXduiIiIyKIw3BAREZFFYbghIiIii8JwQ0RERBaF4YaIiIgsCsMNERERWRSGGyIiIrIoDDdERERkURhuiIiIyKL8P+MzvwlVSQFvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "ax.set_xlabel(\"HMM time steps\")\n", + "ax.set_ylabel(\"Number of samples\")\n", + "\n", + "files = [4, 8, 12, 16, 20, 24, 28, 32, 36, 40]\n", + "iterations = []\n", + "\n", + "abs_error = []\n", + "for i in files:\n", + " # stan_res = stan_accuracy(\"\", \"theta1\", gt[\"hmm\"], f\"/space/poorvagarg/benchmarks_stan/hmm/results_{i}.txt\")\n", + " # abs_error.append(stan_res)\n", + " print(i)\n", + " stan_iter = stan_iterations(f\"/space/poorvagarg/benchmarks_stan/hmm_slicstan/results_{i}.txit\")\n", + " iterations.append(stan_iter)\n", + "ax.plot(files, iterations, marker = \"o\")\n", + "# ax.legend([\"Stan\", \"Dice\"])\n", + "fig.savefig(\"hmm__slicstan_samples.png\", bbox_inches=\"tight\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Gamma" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAGwCAYAAACXRQDXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZNklEQVR4nO3deVyUdeIH8M/McMoxyg1yeoPIIYrhkYaYYpGum1mZoLa5FeZBl9YvXdvNcy1MWeywNM2kTNxsE1O80jW5REUUFPFIOUR0OJRrnuf3B8lKHAIy8zDD5/16+drmme88z2dYdT4+32e+j0wURRFEREREpBVyqQMQERERdSYsX0RERERaxPJFREREpEUsX0RERERaxPJFREREpEUsX0RERERaxPJFREREpEUGUgeg+gRBwPXr12FhYQGZTCZ1HCIiImoBURRRWloKJycnyOXNn9ti+epgrl+/DhcXF6ljEBERURtcvXoVzs7OzY5h+epgLCwsANT+n2dpaSlxGiIiImqJkpISuLi41H2ON4flq4O5N9VoaWnJ8kVERKRjWnLJEC+4JyIiItIili8iIiIiLWL5IiIiItIili8iIiIiLWL5IiIiItIili8iIiIiLWL5IiIiItIili8iIiIiLWL5IiIiItIirnBPREREnYJaEJGUW4zC0grYWZgg0MMKCvmDV6RvbyxfREREpPcSMvKwZFcm8lQVddsclSZYHOaFcd6OWs3CaUciIiLSawkZeXhlS1q94gUA+aoKvLIlDQkZeVrNw/JFREREekstiFiyKxNiI8/d27ZkVybUQmMjNIPli4iIiPRWUm5xgzNe9xMB5KkqkJRbrLVMLF9ERESktwpLmy5ebRnXHli+iIiISG917WLYonF2FiYaTvI//LYjERER6SXVnWqsS7zQ7BgZAAdl7bIT2sLyRURERHrn+u27mP5lErILymBiIEdFjQAZUO/C+3srfC0O89Lqel+cdiQiIiK9kpVfikn/+i+yC8pgb2mM+MhhWP/CQDgo608tOihNEPvCQK2v88UzX0RERKQ3jl+8iZe+SkFJRQ162Zlj08xAdO9qCk9HS4zxcuAK90RERETtZffpPMyNS0dVjYAAt27YEDEIXbsY1T2vkMsQ1NNawoS1WL6IiIhI52367yX8bdcZiCLwuJc9Pn7OHyaGCqljNYrli4iIiHSWKIpYtScL/zqYAwCYOsQV70/wlmQ6saVYvoiIiEgnVasFLPj+NL5P+w0A8PqYPpgd3AsyWcctXgDLFxEREemg8soavPp1Gg5l34BCLsPSP3ljymBXqWO1CMsXERER6ZSiskrM3JiMU7+pYGIox7+mDkRwP3upY7UYyxcRERHpjMs3yxH+RRIu37yDbl0M8cX0wfB37SZ1rFZh+SIiIiKdcOq325jxZTJullfBuZspvpoZiB625lLHajWWLyIiIurwDmXfwCtbUnGnSo3+Tpb4csZgrd4Muz2xfBEREVGH9n3qb3j7+1OoEUQM72WD2BcGwsLEUOpYbcbyRURERB2SKIqIPZSDlQlZAIAJfk5Y9bQvjAx0+9bULF9ERETU4agFEe/vOoNNxy4DAGY92gMLxvWDvAMvntpSLF9ERETUoVRUqxH1bTp+Op0PAHjvSS+8ONxD4lTth+WLiIiIOgzV3Wq89FUKknKLYaSQY/UzvgjzdZI6Vrti+SIiIqIOIU91F9O/SEZWQSksjA3wSXgAhva0kTpWu2P5IiIiIsllF5Qi4osk5KkqYGdhjI0zAuHlZCl1LI1g+SIiIiJJJV8qxosbk1FSUYMetmb4amYgnLt1kTqWxrB8ERERkWQSMvIwZ1s6qmoEDHTtig0Rg9HNzEjqWBrF8kVEREQapxZEJOUWo7C0AnYWJgj0sMLW45ex6IczEEUgxNMea5/zh6mRQuqoGsfyRURERBqVkJGHJbsykaeqqNtmZqxAeaUaAPBcoCv+PqE/DBS6vXhqS7F8ERERkcYkZOThlS1pEP+w/V7xetLHEUv/5A2ZTPcXT22pzlExJXL16lWMGjUKXl5e8PHxwXfffSd1JCIiIq1RCyKW7MpsULzul3r5FoTmBughli8NMjAwQHR0NDIzM/Hzzz9j3rx5KC8vlzoWERGRViTlFtebamxMnqoCSbnFWkrUMXDaUYMcHR3h6OgIAHBwcICNjQ2Ki4thZmYmcTIiIiLNKyxtvni1dpy+kPzMV2xsLHx8fGBpaQlLS0sEBQVh9+7dTY5Xq9V477334OHhAVNTU/Ts2RN///vfIYrte87y8OHDCAsLg5OTE2QyGXbu3NnouJiYGLi7u8PExARDhgxBUlJSo+NSU1OhVqvh4uLSrjmJiIg6KjsLk3Ydpy8kL1/Ozs5Yvnw5UlNTkZKSguDgYEyYMAFnzpxpdPyKFSsQGxuLdevW4ezZs1ixYgVWrlyJtWvXNnmMo0ePorq6usH2zMxMFBQUNPqa8vJy+Pr6IiYmpsn9xsXFISoqCosXL0ZaWhp8fX0xduxYFBYW1htXXFyM8PBwfPrpp03ui4iISN8EeljBQdl0sZIBcFTWLjvRmcjE9j5l1A6srKywatUqvPjiiw2ee/LJJ2Fvb48NGzbUbfvzn/8MU1NTbNmypcF4QRAwcOBA9O7dG9u2bYNCUbt+SFZWFkaOHImoqCi89dZbzeaRyWSIj4/HxIkT620fMmQIBg8ejHXr1tUdy8XFBa+99hoWLFgAAKisrMSYMWPw0ksvYdq0aU0eIyYmBjExMVCr1cjOzoZKpYKlpX7eVoGIiDqPBd+fwrbkqw223/tuY+wLAzHO21G7oTSgpKQESqWyRZ/fkp/5up9arca2bdtQXl6OoKCgRscMHToUiYmJyM7OBgCcPHkSR44cQWhoaKPj5XI5fvrpJ5w4cQLh4eEQBAE5OTkIDg7GxIkTH1i8mlJVVYXU1FSEhITUO1ZISAiOHTsGABBFEdOnT0dwcHCzxQsAIiMjkZmZieTk5DblISIi6mhyi8rx7/TrAABLk/qXmTsoTfSmeLVWh7jg/vTp0wgKCkJFRQXMzc0RHx8PLy+vRscuWLAAJSUl6NevHxQKBdRqNT744ANMnTq1yf07OTlh//79GDFiBJ5//nkcO3YMISEhiI2NbXPmoqIiqNVq2Nvb19tub2+Pc+fOAaid7oyLi4OPj0/dNWObN2/GgAED2nxcIiIiXaAWRLz+bTruVqsR1MMaX80MRMrlW/VWuFfIO8/aXvfrEOWrb9++SE9Ph0qlwvbt2xEREYFDhw41WsC+/fZbfP3119i6dSv69++P9PR0zJs3D05OToiIiGjyGK6urti8eTNGjhyJHj16YMOGDRpf0G348OEQBEGjxyAiIuqIPjmcg7Qrt2FubIBVk31gaCBHUE9rqWN1CB1i2tHIyAi9evVCQEAAli1bBl9fX6xZs6bRsW+++SYWLFiAZ599FgMGDMC0adMwf/58LFu2rNljFBQUYNasWQgLC8OdO3cwf/78h8psY2MDhULR4IL9goICODg4PNS+iYiIdNnZvBJ8tLf28qDFYV5w7tZF4kQdS4coX38kCAIqKysbfe7OnTuQy+vHVigUzZ5hKioqwujRo+Hp6YkdO3YgMTERcXFxeOONN9qc0cjICAEBAUhMTKyXOzExscnr1YiIiPRdVY2AqG9PolotIsTTHk8HOEsdqcORfNpx4cKFCA0NhaurK0pLS7F161YcPHgQe/bsAQCsW7cO8fHxdSUnLCwMH3zwAVxdXdG/f3+cOHECH374IWbOnNno/gVBQGhoKNzc3BAXFwcDAwN4eXlh7969CA4ORvfu3Rs9C1ZWVoYLFy7UPc7NzUV6ejqsrKzg6uoKAIiKikJERAQGDRqEwMBAREdHo7y8HDNmzGjvHxMREZFOWJOYjbN5JbAyM8KySQM61T0bW0ry8lVYWIjw8HDk5eVBqVTCx8cHe/bswZgxYwDUnrXKycmpG7927Vq89957ePXVV1FYWAgnJyf89a9/xaJFixrdv1wux9KlSzFixAgYGRnVbff19cW+fftga2vb6OtSUlLw2GOP1T2OiooCAERERGDjxo0AgClTpuDGjRtYtGgR8vPz4efnh4SEhAYX4RMREXUGaVduIfZg7Wf2BxO9YWthLHGijqlDrvPVmbVmnRAiIqKO4m6VGk98/AsuFpVjop8Top/1lzqSVunsOl9ERESkm1YknMPFonI4WJpgyVPeUsfp0Fi+iIiI6KEcvVCEjf+9BABY8bQPlF0MpQ3UwbF8ERERUZuVVFTjze9OAgCmDnHFyD6NX0tN/8PyRURERG225IdMXFdVwM26C94Z7yl1HJ3A8kVERERt8vOZfHyf9htkMmD1ZF+YGUu+iIJOYPkiIiKiVrtZVol34k8DAGY92gOD3K0kTqQ7WL6IiIioVURRxLvxGSgqq0JfewtEjekjdSSdwvJFRERErbIz/RoSzuTDQC7D6md8YWygkDqSTmH5IiIiohbLU93Fon+fAQDMHd0b3t2VEifSPSxfRERE1CKiKOKt7adQWlEDX5eueGVUT6kj6SSWLyIiImqRLb9exi/ni2BsIMfqyb4wULBGtAV/akRERPRAl4rKsfSncwCABaH90MvOXOJEuovli4iIiJqlFkS8/t1J3K1WI6iHNSKC3KWOpNNYvoiIiKhZnx6+iNTLt2BubIBVk30gl8ukjqTTWL6IiIioSefyS/DR3mwAwKIwLzh36yJxIt3H8kVERESNqqoRMD/uJKrUAkI87TA5wFnqSHqB5YuIiIga9XHieZzNK0G3LoZYOmkAZDJON7YHli8iIiJqIO3KLfzr4AUAwAd/GgA7CxOJE+kPli8iIiKq526VGm98exKCCEz0c8L4AY5SR9IrLF9ERERUz4qEc7hYVA4HSxMsecpb6jh6h+WLiIiI6hy9UISN/70EAFjxtA+UXQylDaSHWL6IiIgIAFBSUY03vzsJAJg6xBUj+9hKnEg/sXwRERERAOD9XZm4rqqAq1UXvDPeU+o4eovli4iIiLA3swDbU3+DTAasfsYXZsYGUkfSWyxfREREndzNskos3HEKADBrRA8MdreSOJF+Y/kiIiLqxERRxLvxGSgqq0Ife3PMH9NH6kh6j+WLiIioE9uZfg0JZ/JhIJfhw2f8YGKokDqS3mP5IiIi6qTyVHex6N9nAABzR/eGd3elxIk6B5YvIiKiTkgURby1/RRKK2rg69IVr4zqKXWkToPli4iIqBPacvwKfjlfBGMDOVZP9oWBgpVAW/g9UiIiok5ALYhIyi1GYWkFBEHEBz9mAgDeHtcPvezMJU7XubB8ERER6bmEjDws2ZWJPFVFve197M0xfai7NKE6MZ5jJCIi0mMJGXl4ZUtag+IFANkFZfg5M1+CVJ0byxcREZGeUgsiluzKhNjE8zIAS3ZlQi00NYI0geWLiIhID1XWqLH1+OVGz3jdIwLIU1UgKbdYe8GI13wRERHpOlEU8dutuzhx9TZOXLmF9Ku3ceZaCarUQoteX1jadEGj9sfyRUREpGPKKmtw6urt38vWbaRfvYWisqoG48yNFSirVD9wf3YWJpqISU1g+SIiItKC+5d6sLMwQaCHFRRyWYtel3OjDCeu3Pq9aN1GVkEpxD9cpmUgl6G/kyX8XLrC37Ub/Fy6wrmbKUasPIB8VUWj133JADgoa7OQ9rB8ERERaVhjSz04Kk2wOMwL47wd640tKqtE+u8l68TVWzh5VYWyypoG++ze1RR+rl3h79IV/q5d0d9J2eh9GReHeeGVLWmQAfUKmOy+51tSAqn9yETxj92ZpFRSUgKlUgmVSgVLS0up4xAR0UO6t9TDHz9s79WdN8f2hamRou6s1pXiOw320cVIAR9nJfxcusH/98JlZ9nyqcLWlD9qm9Z8frN8dTAsX0RE+kMtiBi+Yn+z3zhsTG8787rpQ3/XruhtZ/7Qt/9p67QntUxrPr857UhERKQhSbnFLSpe/i5dEdzPDn6uXeHj3BVKU8N2z6KQyxDU07rd90utx/JFRESkIS1dwmH6MHdM8Ouu4TTUUXCRVSIiIg1p6RIOXOqhc2H5IiIi0pB+jhYwaOa6KhlqL3znUg+dC8sXERGRBlRUq/HXzamoaeK+iVzqofNi+SIiImpnNWoBs7eeQFJuMSyMDfDO+H5wVNafWnRQmiD2hYFc6qET4gX3RERE7UgURSzYcRr7zhbAyECOzyIG4ZEe1nhxeA8u9UAAWL6IiIja1bLd57A99TfIZcC65/zxSI/a5R241APdw2lHIiKidrL+UA4+PXwRALD8zz54vL+DxImoI2L5IiIiagffJl/F8t3nAAALQ/vhmUEuEieijorli4iI6CHtOZOPBTtOAQD++mgP/HVkT4kTUUfG8kVERPQQjuXcxGvfnIAgApMDnLEgtJ/UkaiDY/kiIiJqo4xrKrz0VQqqagSM8bLHskkDIJPxG4zUPJYvIiKiNsgtKsf0L5NQVlmDQA8rrH3OHwYKfqzSg/F3CRERUSsVlFRg2objKCqrgpejJT6PGAQTQ4XUsUhHsHwRERG1gupONcI3JOG3W3fhZt0Fm2YGwtLEUOpYpENYvoiIiFrobpUaL25KRlZBKWwtjLF55hDYWhhLHYt0DMuXBl29ehWjRo2Cl5cXfHx88N1330kdiYiI2qhaLeDVr1ORcvkWLEwM8NXMQLhad5E6Fukg3l5IgwwMDBAdHQ0/Pz/k5+cjICAA48ePh5mZmdTRiIioFQRBxFvbT+FA1g2YGMrxxfTB8HS0lDoW6SiWLw1ydHSEo2Pt3eodHBxgY2OD4uJili8iIh0iiiL+8Z+ziD9xDQq5DP+aOhCD3a2kjkU6TPJpx9jYWPj4+MDS0hKWlpYICgrC7t27H/i6a9eu4YUXXoC1tTVMTU0xYMAApKSktGu2w4cPIywsDE5OTpDJZNi5c2eDMTExMXB3d4eJiQmGDBmCpKSkRveVmpoKtVoNFxfeboKISJf862AOvjiaCwD452QfBPezlzgR6TrJy5ezszOWL1+O1NRUpKSkIDg4GBMmTMCZM2eafM2tW7cwbNgwGBoaYvfu3cjMzMTq1avRrVu3RscfPXoU1dXVDbZnZmaioKCgyeOUl5fD19cXMTExjT4fFxeHqKgoLF68GGlpafD19cXYsWNRWFhYb1xxcTHCw8Px6aefNnksIiLqeLYev4JVe7IAAO896YU/+TtLnIj0gtgBdevWTfz888+bfP7tt98Whw8f3qJ9qdVq0dfXV3z66afFmpqauu3nzp0T7e3txRUrVrRoPwDE+Pj4etsCAwPFyMjIesdycnISly1bVretoqJCHDFihPjVV181u/9169aJnp6eYp8+fUQAokqlalEuIiLSjJ9OXRc9Fvwour39o7gy4azUcaiDU6lULf78lvzM1/3UajW2bduG8vJyBAUFNTnuhx9+wKBBgzB58mTY2dnB398fn332WaNj5XI5fvrpJ5w4cQLh4eEQBAE5OTkIDg7GxIkT8dZbb7Upa1VVFVJTUxESElLvWCEhITh27BiA2usEpk+fjuDgYEybNq3Z/UVGRiIzMxPJycltykNERO3n6IUizN2WDkEEngt0xRuP95U6EumRDlG+Tp8+DXNzcxgbG+Pll19GfHw8vLy8mhx/8eJFxMbGonfv3tizZw9eeeUVzJkzB5s2bWp0vJOTE/bv348jR47g+eefR3BwMEJCQhAbG9vmzEVFRVCr1bC3rz/3b29vj/z8fAC1051xcXHYuXMn/Pz84Ofnh9OnT7f5mEREpHmnfruNWV+loEotINTbAf+Y6M37NVK76hDfduzbty/S09OhUqmwfft2RERE4NChQ00WMEEQMGjQICxduhQA4O/vj4yMDKxfvx4RERGNvsbV1RWbN2/GyJEj0aNHD2zYsEHjf5iGDx8OQRA0egwiImo/FwrLMP3LZJRXqTG0pzWin/WDQs7iRe2rQ5z5MjIyQq9evRAQEIBly5bB19cXa9asaXK8o6Njg2Lm6emJK1euNPmagoICzJo1C2FhYbhz5w7mz5//UJltbGygUCgaXLBfUFAABweHh9o3ERFpX57qLsI3HEdxeRUGdFfi0/BBMDbg/Rqp/XWI8vVHgiCgsrKyyeeHDRuGrKysetuys7Ph5ubW6PiioiKMHj0anp6e2LFjBxITExEXF4c33nijzRmNjIwQEBCAxMTEerkTExObvV6NiIg6nlvlVZi2IQnXVRXoYWOGjTMGw9y4Q0wOkR6S/HfWwoULERoaCldXV5SWlmLr1q04ePAg9uzZAwBYt24d4uPj65Wc+fPnY+jQoVi6dCmeeeYZJCUl4dNPP210KQdBEBAaGgo3NzfExcXBwMAAXl5e2Lt3L4KDg9G9e/cmz4KVlZXhwoULdY9zc3ORnp4OKysruLq6IioqChERERg0aBACAwMRHR2N8vJyzJgxo51/SkREpCnllTWYsTEZFwrL4GBpgq9eDIS1Oe/XSJojefkqLCxEeHg48vLyoFQq4ePjgz179mDMmDEAas9a5eTk1HvN4MGDER8fj4ULF+L999+Hh4cHoqOjMXXq1Ab7l8vlWLp0KUaMGAEjI6O67b6+vti3bx9sbW2bzJaSkoLHHnus7nFUVBQAICIiAhs3bsSUKVNw48YNLFq0CPn5+fDz80NCQkKDi/CJiKhjqqoR8PKWVKRfvQ2lqSG+ejEQzt14v0bSLJkoiqLUIeh/SkpKoFQqoVKpYGnJ+4YREWmKIIiYG5eOXSevw9RQga9fGoKBro0v1k30IK35/Jb8zBcREZE2qAURSbnFKCytgJ2FMf5zOg+7Tl6HgVyG2BcGsniR1rB8ERGR3kvIyMOSXZnIU1U0eG71M74Y1ddOglTUWbF8ERGRXkvIyMMrW9LQ1DU2xgYd8ov/pMf4O46IiPSWWhCxZFdmk8VLBmDJrkyoBV7+TNrD8kVERHorKbe40anGe0QAeaoKJOUWay8UdXosX0REpLcKS5suXm0ZR9QeWL6IiEhv2VmYtOs4ovbA8kVERHrLz6UrjBRN3xhbBsBRaYJADyvthaJOj+WLiIj0kiiKWPTvDFSpG7+Y/l4lWxzmBYW86YJG1N5YvoiISC+tP3QR36X+BrkMiHysJxyV9acWHZQmiH1hIMZ5O0qUkDorrvNFRER6JyEjDysSzgEAFj3phenDPBA1pu99K9zXTjXyjBdJgeWLiIj0yunfVJgXlw4ACA9yw/RhHgAAhVyGoJ7WEiYjqsVpRyIi0ht5qrt4cVMyKqoFPNrHFoue9JI6ElEDLF9ERKQXyitr8OLGFBSWVqK3nTnWPe8PAwU/5qjjadW0oyAIOHToEH755RdcvnwZd+7cga2tLfz9/RESEgIXFxdN5SQiImqSWhAxLy4dmXklsDYzwhfTB8PSxFDqWESNatE/Ce7evYt//OMfcHFxwfjx47F7927cvn0bCoUCFy5cwOLFi+Hh4YHx48fj119/1XRmIiKielYknMPezAIYGcjxaXgAXKy6SB2JqEktOvPVp08fBAUF4bPPPsOYMWNgaNjwXxOXL1/G1q1b8eyzz+Ldd9/FSy+91O5hiYiI/mhb0hV8evgiAGDV0z4IcOOCqdSxyURRfOCt3M+ePQtPT88W7bC6uhpXrlxBz549HzpcZ1RSUgKlUgmVSgVLS0up4xARdWj/vVCE8C+SUCOImDu6N+aP6SN1JOqkWvP53aJpx5YWLwAwNDRk8SIiIo3LuVGGl7ekokYQ8ZSvE+aF9JY6ElGLtPprIAkJCThy5Ejd45iYGPj5+eH555/HrVu32jUcERFRY26VV2HmxmSUVNTA37UrVj7tA5mMC6aSbmh1+XrzzTdRUlICADh9+jRef/11jB8/Hrm5uYiKimr3gERERPerrFHjr1tScfnmHXTvaopPpw2CiaFC6lhELdbqFe5zc3Ph5VW7aN3333+PJ598EkuXLkVaWhrGjx/f7gGJiIjuEUUR7+zIQFJuMcyNDfDF9MGwtTCWOhZRq7T6zJeRkRHu3LkDANi3bx8ef/xxAICVlVXdGTEiIiJNiD2Ug+/Tam+Wve55f/R1sJA6ElGrtfrM1/DhwxEVFYVhw4YhKSkJcXFxAIDs7Gw4Ozu3e0AiIiIA2H06DysTsgAAi8P6Y1RfO4kTEbVNq898rVu3DgYGBti+fTtiY2PRvXt3AMDu3bsxbty4dg9IRER06rfbmP9tOgAgIsgNEUPdJc1D9DBatM4XaQ/X+SIiqi9PdRcT1h1FYWklRvW1xefhg3jPRupwWvP53eppx3sKCwtRWFgIQRDqbffx8WnrLomIiOq5/2bZfezNsfY53iybdF+ry1dqaioiIiJw9uxZ3DtpJpPJIIoiZDIZ1Gp1u4ckIqLORy2ImLvtBDLzSmBjboQNEYNhwZtlkx5odfmaOXMm+vTpgw0bNsDe3p6L2hERkUYs330W+84WwshAjk+mDeLNsklvtLp8Xbx4Ed9//z169eqliTxERET4JukKPvslFwDwz8m+CHDrJnEiovbT6onz0aNH4+TJk5rIQkREhKMXivDezgwAwPyQPnjK10niRETtq9Vnvj7//HNEREQgIyMD3t7eMDSsP//+1FNPtVs4IiLqXC4U/u9m2RP8nDBnNGdZSP+0unwdO3YMR48exe7duxs8xwvuiYiorYrLq/DipmSUVtQgwK0bVvyZN8sm/dTqacfXXnsNL7zwAvLy8iAIQr1fLF5ERNQWlTVqvLy59mbZzt1M8cm0AN4sm/RWq8vXzZs3MX/+fNjb22siDxERdTKiKGLhjtNIulQMi99vlm1jzptlk/5qdfmaNGkSDhw4oIksRETUCf3rYA52pF2DQi7DuqkD0ceeN8sm/dbqa7769OmDhQsX4siRIxgwYECDC+7nzJnTbuGIiEi//XQ6D6v21N4s+29hXhjZx1biRESa1+p7O3p4eDS9M5kMFy9efOhQnRnv7UhEncXJq7fxzCfHUFkjYPpQd/ztqf5SRyJqM43e2zE3N7fNwYiIqPNSCyKScotRWFoBuUyGJbvOoLJGwKi+tvi/JzyljkekNW2+sTYREVFLJWTkYcmuTOSpKuptd1Ka8GbZ1OnwdzsREWlUQkYeXtmS1qB4AcB1VQWOXiiSIBWRdFi+iIhIY9SCiCW7MtHUxcUyAEt2ZUIttOryYyKdxvJFREQak5Rb3OgZr3tEAHmqCiTlFmsvFJHEWL6IiEhjCkubLl5tGUekD9p0wf3t27eRlJSEwsJCCIJQ77nw8PB2CUZERLpNFEWcvV7SorF2FiYaTkPUcbS6fO3atQtTp05FWVkZLC0t6930VCaTsXwRERFKKqrxbnwGdp283uw4GQAHpQkCPay0E4yoA2j1tOPrr7+OmTNnoqysDLdv38atW7fqfhUXc86eiKizS7tyC+PX/IJdJ69DIZdhgp8TZKgtWve793hxmBcU8j8+S6S/Wn3m69q1a5gzZw66dOmiiTxERKSj1IKI9Ydy8OHebKgFES5WpljzrD8GunZDqLdDg3W+HJQmWBzmhXHejhKmJtK+VpevsWPHIiUlBT169NBEHiIi0kH5qgrMj0vHsYs3AQBP+TrhH3/yhqVJ7f1/x3k7YoyXQ90K93YWtVONPONFnVGry9cTTzyBN998E5mZmY3eWPupp55qt3BERNTx7csswJvbT+LWnWp0MVLg/Qne+PPA7vWuCQYAhVyGoJ7WEqUk6jhafWNtubzpy8RkMhnUavVDh+rMeGNtItIVFdVqLPvpLDYduwwA8O5uiY+f9UcPW3OJkxFpn0ZvrP3HpSWIiKjzOV9Qite+OYFz+aUAgJdGeOCNsX1hbKCQOBlRx8cbaxMRUYuJooitSVfw/q5MVNYIsDE3wj8n+2JUXzupoxHpjBaVr48//hizZs2CiYkJPv7442bHzpkzp12CERFRx3L7ThUWfH8aCWfyAQCP9rHF6sm+sLUwljgZkW5p0TVfHh4eSElJgbW1NTw8PJremUyGixcvtmvAzobXfBFRR3T84k3Mi0tHnqoChgoZ3hrbDy8O94Cc31YkAqCBa75yc3Mb/W8iItJvNWoBa/dfwNr95yGIgLt1F6x9biAGOCuljkaks3jNFxERNeq3W3cwb1s6Ui7fAgD8eaAzlkzoD3NjfnQQPYwW3V5o+fLluHv3bot2ePz4cfznP/95qFBERCStn07nYfyaX5By+RbMjQ2w5lk/rH7Gl8WLqB206E9RZmYmXF1dMXnyZISFhWHQoEGwtbUFANTU1CAzMxNHjhzBli1bcP36dXz11VcaDU1ERJpxt0qN9388g2+SrgIAfF26Yu2z/nC15i3liNpLi8rXV199hZMnT2LdunV4/vnnUVJSAoVCAWNjY9y5cwcA4O/vj7/85S+YPn06TExMNBqaiIjaX+b1EszZdgIXCssgkwGvjOyJ+WP6wFDRokkSImqhVq9wLwgCTp06hcuXL+Pu3buwsbGBn58fbGxsNJWxU+G3HYlI20RRxKb/XsLS3edQVSPAzsIY0VP8MLQX/14naimNrnAvl8vh5+cHPz+/tuYjIiItUwtioze1Li6vwlvbT2Lf2UIAwOh+dlg12RdWZkYSJybSX7xykohIzyVk5GHJrkzkqSrqtjkqTTBlkAu2Jl1BYWkljAzkeHe8J8KD3BrcEJuI2hcn8jXo6tWrGDVqFLy8vODj44PvvvtO6khEJBG1IOJYzk38O/0ajuXchFpo1RUfbZaQkYdXtqTVK14AkKeqQHTieRSWVqKnrRl2vjoMEUPdWbyItIBnvjTIwMAA0dHR8PPzQ35+PgICAjB+/HiYmZlJHY2ItKipM0+Lw7wwzttRY8dVCyKW7MpEczWvi5EC/44cDnMTfhwQaQv/tGmQo6MjHB1r/2J1cHCAjY0NiouLWb6IOpF7Z57+WIDyVRV4ZUsaYl8Y+MACVqMWcLdajYpqARXVatytVuNu1e//W61GZd22e+Nqf+UUljU44/VHd6rUOH1NhaCe1g/5Tomopdpcvi5cuICcnBw8+uijMDU1hSiKbTpdHRsbi9jYWFy6dAkA0L9/fyxatAihoaEtev3y5cuxcOFCzJ07F9HR0a0+fnMOHz6MVatWITU1FXl5eYiPj8fEiRPrjYmJicGqVauQn58PX19frF27FoGBgQ32lZqaCrVaDRcXl3bNSEQdV3Nnnu5tmxeXjkeSrqCiRsDdagEVv5eqeyWrolqNarVmpygLS5svaETUvlpdvm7evIkpU6Zg//79kMlkOH/+PHr06IEXX3wR3bp1w+rVq1u1P2dnZyxfvhy9e/eu/brzpk2YMGECTpw4gf79+zf72uTkZHzyySfw8fFpdtzRo0cRGBgIQ0PDetszMzNhbW0Ne3v7Rl9XXl4OX19fzJw5E5MmTWrwfFxcHKKiorB+/XoMGTIE0dHRGDt2LLKysmBnZ1c3rri4GOHh4fjss8+azUlE+iUpt/iBZ54qqgUczC5q8T5NDRUwNVLA1FABE0M5TAwVddvq/vv354rvVGHXybwH7tPOgmszEmlTq8vX/PnzYWBggCtXrsDT07Nu+5QpUxAVFdXq8hUWFlbv8QcffIDY2Fj8+uuvzZavsrIyTJ06FZ999hn+8Y9/NDlOEARERkaid+/e2LZtGxQKBQAgKysLwcHBiIqKwltvvdXoa0NDQ5s9A/fhhx/ipZdewowZMwAA69evx3/+8x988cUXWLBgAQCgsrISEydOxIIFCzB06NAm9xUTE4OYmBio1eomxxCRbmnpGaXnAl0wtKfNfSWqfqmqLVMKGBvIWzXDoBZEpFy6hXxVRaNn32QAHJS1y04Qkfa0+tuOP//8M1asWAFnZ+d623v37o3Lly8/VBi1Wo1t27ahvLwcQUFBzY6NjIzEE088gZCQkGbHyeVy/PTTTzhx4gTCw8MhCAJycnIQHByMiRMnNlm8HqSqqgqpqan1ji+XyxESEoJjx44BqF24cPr06QgODsa0adMe+H4yMzORnJzcpjxE1PG09IzSU77dEebrhBAvewzrZYMANyv0d1Kih605HJWm6NrFCCaGilZf2qGQy7A4zAtAbdG6373Hi8O8oJDzG45E2tTq8lVeXo4uXRre46u4uBjGxsZtCnH69GmYm5vD2NgYL7/8MuLj4+Hl5dXk+G3btiEtLQ3Lli1r0f6dnJywf/9+HDlyBM8//zyCg4MREhKC2NjYNuUFgKKiIqjV6gZTlvb29sjPzwdQO90ZFxeHnTt31i1Me/r06TYfk4h0S6CHFewsmv57UYbabz1q8szTOG9HxL4wEA7K+kXQQWnSoov9iaj9tXraccSIEfjqq6/w97//HQAgk8kgCAJWrlyJxx57rE0h+vbti/T0dKhUKmzfvh0RERE4dOhQowXs6tWrmDt3Lvbu3duqe0i6urpi8+bNGDlyJHr06IENGzZofD2b4cOHQxAEjR6DiDouuQxwsDRGYWllg+e0eeZpnLcjxng5NLrCPRFpX6vL18qVKzF69GikpKSgqqoKb731Fs6cOYPi4mIcPXq0TSGMjIzQq1cvAEBAQACSk5OxZs0afPLJJw3GpqamorCwEAMHDqzbplarcfjwYaxbtw6VlZV113Xdr6CgALNmzUJYWBiSk5Mxf/58rF27tk15AcDGxgYKhQIFBQUNjuPg4NDm/RKR/vjh5HWculYChRzo1sUIRWVVdc85aGGdr/sp5DIuJ0HUQbS6fHl7eyM7Oxvr1q2DhYUFysrKMGnSJERGRtatafWwBEFAZWXDfykCwOjRoxtM3c2YMQP9+vXD22+/3WjxKioqwujRo+Hp6YnvvvsO2dnZGDVqFIyNjfHPf/6zTRmNjIwQEBCAxMTEuuUnBEFAYmIiZs+e3aZ9EpH+uFFaicU/nAEAzBvdB68+1otnnogIQBvX+VIqlXj33XfbJcDChQsRGhoKV1dXlJaWYuvWrTh48CD27NkDAFi3bh3i4+ORmJgIALCwsIC3t3e9fZiZmcHa2rrBdqC2EIWGhsLNzQ1xcXEwMDCAl5cX9u7di+DgYHTv3h3z589vNFtZWRkuXLhQ9zg3Nxfp6emwsrKCq6sroqKiEBERgUGDBiEwMBDR0dEoLy+v+/YjEXVei/6dgdt3quHlaImXR/XkmSciqtOm8lVRUYFTp06hsLCwwTVNTz31VKv2VVhYiPDwcOTl5UGpVMLHxwd79uzBmDFjANSetcrJyWlLTAC130BcunQpRowYASMjo7rtvr6+2LdvH2xtbZt8bUpKSr3r2KKiogAAERER2LhxI6ZMmYIbN25g0aJFyM/Ph5+fHxISEppcN4yIOof/nMrD7ox8GMhlWDXZB4YK3kaXiP5HJopiq5ZOTkhIQHh4OIqKGi4KKJPJuE7VQyopKYFSqYRKpYKlpaXUcYiolW6WVeLxjw7jZnkV5gT3QtTjfaWORERa0JrP71b/c+y1117D5MmTkZeXB0EQ6v1i8SKizm7JrkzcLK9CX3sLzA7uLXUcIuqAWl2+CgoKEBUVxak1IqI/+PlMPn44eR1yGbDyaR8YGXC6kYgaavXfDE8//TQOHjyogShERLrr9p0qvLszAwAw69Ge8HXpKm0gIuqwWn3B/bp16zB58mT88ssvGDBgQIObVc+ZM6fdwhER6Yr3f8zEjdJK9LQ1w7wQTjcSUdNaXb6++eYb/PzzzzAxMcHBgwfrrRIvk8lYvoio09l/rgA70q5BJgNWPu0LE8OG6w0SEd3T6vL17rvvYsmSJViwYAHkcl7PQESdW0lFNd7ZUTvd+OIwDwS4dZM4ERF1dK1uT1VVVZgyZQqLFxERgKX/OYv8kgq4W3fB61xWgohaoNUNKiIiAnFxcZrIQkSkU345fwPbkq8CAFb82QemRpxuJKIHa/W0o1qtxsqVK7Fnzx74+Pg0uOD+ww8/bLdwREQdVVllDRZ8X3uf2YggNwzpwVsHEVHLtLp8nT59Gv7+/gCAjIyMes/df/E9EZE+W7H7HK7dvgsXK1O8Na6f1HGISIe0unwdOHBAEzmIiHTGsZyb2PzrZQDA8kk+MDNu021yiaiT4lXzREStcKeqBm9/fwoA8FygK4b1spE4ERHpmhb9c23SpEnYuHEjLC0tMWnSpGbH7tixo12CERF1RKv2ZOFK8R04KU3wznhONxJR67WofCmVyrrruZRKpUYDERF1VCmXirHxv5cAAMv+7AMLE8PmX0BE1AiZKIpiSwa+//77eOONN9ClSxdNZ+rUSkpKoFQqoVKpYGlpKXUcIvpdRbUa49f8gotF5Zgc4IxVk32ljkREHUhrPr9bfM3XkiVLUFZW9tDhiIh00Ud7s3GxqBx2Fsb4vye9pI5DRDqsxeWrhSfIiIj0zokrt/DZLxcBAEv/NABKU043ElHbterbjlzHi4g6m8oaNd7afgqCCEz0c0KIl73UkYhIx7VqcZo+ffo8sIAVFxc/VCAioo7k48TzOF9YBhtzYywO6y91HCLSA60qX0uWLOG3HYmo08i4psL6Q7XTjf+Y2B/dzIwkTkRE+qBV5evZZ5+FnZ2dprIQEXUYVTUC3vjuJNSCiCd8HDHO21HqSESkJ1p8zRev9yKizuRfBy/gXH4prMyMsOQpTjcSUfvhtx2JiP7gbF4J1u2/AAD421P9YWNuLHEiItInLZ52FARBkzmIiDqEGrWAN7efRI0g4nEve4T5cLqRiNoXb6xNRHSfTw5fRMa1EihNDfGPP3nzkgsiancsX0REvztfUIo1+84DABaHecHOwkTiRESkj1i+iIgAqAURb24/hSq1gMf62uJP/t2ljkREeorli4gIwIYjF5F+9TYsjA2wdNIATjcSkcawfBFRp3fxRhlW/5wNAPi/Jz3hqDSVOBER6TOWLyLq1ARBxNvfn0JljYARvW3wzCAXqSMRkZ5j+SKiTm3TsUtIvnQLZkYKLON0IxFpAcsXEXVal2+WY2VCFgBgwXhPOHfrInEiIuoMWL6IqFO6N914t1qNR3pYYWqgq9SRiKiTYPkiok5pa9IV/HqxGKaGCqz8sy/kck43EpF2tPj2QkREukwtiEjKLUZhaQVkMmDpfzIBAG+N6wtXa043EpH2sHwRkd5LyMjDkl2ZyFNV1Nve09YMEUHu0oQiok6L045EpNcSMvLwypa0BsULAHJulOPnzHwJUhFRZ8byRUR6Sy2IWLIrE2ITz8sALNmVCbXQ1AgiovbH8kVEeispt7jRM173iADyVBVIyi3WXigi6vRYvohIbxWWNl282jKOiKg9sHwRkd6yszBp13FERO2B33YkIr0kiiIyrquaHSMD4KA0QaCHlXZCERGB5YuI9NCdqhos+P40fjh5vW6bDKh34f29JVUXh3lBwQVWiUiLWL6ISK/kFpXj5c2pyCoohYFchnef8ISDpQne/7H+Ol8OShMsDvPCOG9HCdMSUWfE8kVEemNfZgHmf5uO0ooa2FoY419TB2Kwe+2U4uP9HepWuLezqJ1q5BkvIpICyxcR6Ty1ICJ6XzbW7r8AABjk1g3/mjoQdpb/u5BeIZchqKe1VBGJiOqwfBGRTrt9pwpzt6XjUPYNAMD0oe54Z7wnjAz4ZW4i6phYvohIZ2VcU+GVr1NxtfguTAzlWDZpAP7k7yx1LCKiZrF8EZFO+j71N7wTfxqVNQJcrbpg/QsB8HKylDoWEdEDsXwRkU6pqhHw9x8zsfnXywCAx/raInqKP5RdDCVORkTUMixfRKQz8lUVePXrVKRduQ2ZDJg7ujfmBPeGnN9aJCIdwvJFRDrh14s3MXtrGorKqmBpYoDoZ/0Q3M9e6lhERK3G8kVEHZooithwJBfLdp+DWhDRz8ECn0wLgJu1mdTRiIjahOWLiDqs8soavP39Kfx4Kg8AMNHPCcsm+cDUSCFxMiKitmP5IqIOKbeoHH/dnILsgjIYyGX4vyc8ETHUHTIZr+8iIt3G8kVEHc7ezAJExaWjtLLhbYKIiHQdyxcRdRhqQcRHe7Ox7kDtbYIGu3dDzPP1bxNERKTrWL6IqEO4VV6FuXHpOHzfbYLefcIThgreJoiI9AvLFxFJLuOaCi9vScVvt2pvE7R8kg8m+neXOhYRkUawfBGRpL5LuYr/25mByhoBbta1twnydORtgohIf7F8EZFWqAURSbnFKCytgJ2FCXxdlPjgP2fx9fErAIDgfnb46Bk/3iaIiPQeyxcRaVxCRh6W7MpEnqqibpuhQoZqtQiZDJg3ug9eC+7F2wQRUafA8kVEGpWQkYdXtqRB/MP2anXtlldH9cTckN7aD0ZEJBF+jYiINEYtiFiyK7NB8brfjrRrUAvNjSAi0i8sX0SkEaIo4ruUq/WmGhuTp6pAUm6xllIREUmP045E1G5KKqpx9HwRDmbdwMHsQhSUVLbodYWlzRc0IiJ9wvJFRG0miiKyCkpx4NwNHMwqROrlW6i5bwrRSCFHlVp44H7sLLiCPRF1HixfGnT16lVMmzYNhYWFMDAwwHvvvYfJkydLHYvooZRWVOPohZs4lF2Ig1k3Gkwr9rA1w6g+dnisny0GunZDyIeHkK+qaPS6LxkAB6UJAj1430Yi6jxYvjTIwMAA0dHR8PPzQ35+PgICAjB+/HiYmZlJHY2oxURRRHZBGQ5m1Zat5EvF9c5umRjKMbSnDUb1tcWoPnZwte5S7/WLw7zwypY0yIB6BUx23/MKLjFBRJ0Iy5cGOTo6wtHREQDg4OAAGxsbFBcXs3yRJP64yGmgh1WTpae8sgZHLxThQNYNHMoqxPU/nN3ysDHDyD62eKyfHYZ4WMHEUNHkccd5OyL2hYEN1vlyUJpgcZgXxnk7ts8bJCLSEZKXr9jYWMTGxuLSpUsAgP79+2PRokUIDQ1tdPyyZcuwY8cOnDt3Dqamphg6dChWrFiBvn37tmuuw4cPY9WqVUhNTUVeXh7i4+MxceLEBuNiYmKwatUq5Ofnw9fXF2vXrkVgYGCDcampqVCr1XBxcWnXnEQt0dgip473lR9RFHGhsKzuQvmk3OK6dbgAwNhAjqCe1hjVxxaj+trB3aZ1/4AY5+2IMV4OLS5/RET6TPLy5ezsjOXLl6N3794QRRGbNm3ChAkTcOLECfTv37/B+EOHDiEyMhKDBw9GTU0N3nnnHTz++OPIzMxs8ozS0aNHERgYCEPD+rctyczMhLW1Nezt7Ru8pry8HL6+vpg5cyYmTZrU6H7j4uIQFRWF9evXY8iQIYiOjsbYsWORlZUFOzu7unHFxcUIDw/HZ5991pofDVG7aGqR03xVBV7ekoYRvW1w8UY5rt2+W+95N+sueKyvHUb2tUVQD+tmz261hEIuQ1BP64faBxGRPpCJotjhVje0srLCqlWr8OKLLz5w7I0bN2BnZ4dDhw7h0UcfbfC8IAgYOHAgevfujW3btkGhqP0AycrKwsiRIxEVFYW33nqr2WPIZLJGz3wNGTIEgwcPxrp16+qO5eLigtdeew0LFiwAAFRWVmLMmDF46aWXMG3atCaPERMTg5iYGKjVamRnZ0OlUsHSkjcXpoejFkQMX7H/gWttAYCRgRyP9Kg9u/VYPzt4tPLsFhFRZ1ZSUgKlUtmiz+8OtciqWq3Gtm3bUF5ejqCgoBa9RqVSAagtbI2Ry+X46aefcOLECYSHh0MQBOTk5CA4OBgTJ058YPFqSlVVFVJTUxESElLvWCEhITh27BiA2guVp0+fjuDg4GaLFwBERkYiMzMTycnJbcpD1Jik3OIWFa+3xvbByUWP46uZgZg53IPFi4hIgzpE+Tp9+jTMzc1hbGyMl19+GfHx8fDy8nrg6wRBwLx58zBs2DB4e3s3Oc7JyQn79+/HkSNH8PzzzyM4OBghISGIjY1tc+aioiKo1eoGU5b29vbIz88HUDvdGRcXh507d8LPzw9+fn44ffp0m49J1FotXby0e7cuMDV6uGlFIiJqGcmv+QKAvn37Ij09HSqVCtu3b0dERAQOHTr0wAIWGRmJjIwMHDly5IHHcHV1xebNmzFy5Ej06NEDGzZsgEym2Yt9hw8fDkF48AKTRJpia27conFc5JSISHs6xJkvIyMj9OrVCwEBAVi2bBl8fX2xZs2aZl8ze/Zs/Pjjjzhw4ACcnZ0feIyCggLMmjULYWFhuHPnDubPn/9QmW1sbKBQKFBQUNDgOA4ODg+1b6L2IAgidqZfa3aMDLXfeuQip0RE2tMhytcfCYKAysrG7wkniiJmz56N+Ph47N+/Hx4eHg/cX1FREUaPHg1PT0/s2LEDiYmJiIuLwxtvvNHmjEZGRggICEBiYmK93ImJiS2+Xo1IU2rUAt747iS+TfmtbjHTP57n5SKnRETSkHzaceHChQgNDYWrqytKS0uxdetWHDx4EHv27AEArFu3DvHx8XUlJzIyElu3bsW///1vWFhY1F1fpVQqYWpq2mD/giAgNDQUbm5uiIuLg4GBAby8vLB3714EBweje/fujZ4FKysrw4ULF+oe5+bmIj09HVZWVnB1dQUAREVFISIiAoMGDUJgYCCio6NRXl6OGTNmtPvPiailqtUC5sel48dTeVDIZYie4gdDhYyLnBIRdRCSl6/CwkKEh4cjLy8PSqUSPj4+2LNnD8aMGQOg9qxVTk5O3fh7F8mPGjWq3n6+/PJLTJ8+vcH+5XI5li5dihEjRsDIyKhuu6+vL/bt2wdbW9tGc6WkpOCxxx6rexwVFQUAiIiIwMaNGwEAU6ZMwY0bN7Bo0SLk5+fDz88PCQkJja4bRqQNVTUCXvsmDXvOFMBQIcPa5wZinHftNDgXOSUi6hg65DpfnVlr1gkhul9FtRqvfp2G/ecKYWQgx/oXBiK4H/8hQESkDa35/Jb8zBcRPby7VWrM2pyCX84XwcRQjs/CB2FE78bP6hIRkbRYvoh0XHllDV7clIxfLxaji5ECGyIG8zY+REQdGMsXkQ4rqajGjC+TkXr5FiyMDbBx5mAEuHHZCCKijozli0hHqe5UI/yL4zj5mwqWJgbY/OIQ+Lp0lToWERE9AMsXkQ4qLq/CtA3HceZ6Cbp1McTmF4fAu7tS6lhERNQCLF9EOuZGaSVe+Pw4sgpKYWNuhK//8gj6OlhIHYuIiFqI5YtIh+SrKvD857/i4o1y2FkYY+tLj6CXnbnUsYiIqBVYvoh0xLXbd/H8Z7/i8s07cFKaYOtLj8DdxkzqWERE1EosX0Q64GrxHTz32a/47dZduFiZYutfHoGLVRepYxERURuwfBF1cBdvlGHq58eRp6qAh40Zvv7LEDh1bXgfUyIi0g0sX0Qd2PmCUjz/+XHcKK1ELztzbP3LENhZmkgdi4iIHgLLF1EHdTavBC98fhw3y6vQz8ECW/4yBDbmxlLHIiKih8TyRdQBnf5NhWlfHMftO9Xw7m6JzTOHoJuZkdSxiIioHbB8EXUwaVduIeKLJJRW1MDPpSs2zQyE0tRQ6lhERNROWL6IOpCk3GLM+DIJ5VVqDHbvhi9nBMLcmH9MiYj0Cf9WJ+og/nuhCC9uSsHdajWG9rTG5xGD0MWIf0SJiPQN/2Yn6gAOZd/ArK9SUFkjYGQfW3wyLQAmhgqpYxERkQawfBFJbF9mAV79Og1VagEhnnaImToQxgYsXkRE+orli0hCu0/n4bVvTqBGEBHq7YA1z/rDyEAudSwiItIgli8iLVALIpJyi1FYWgE7CxMEeljhx1PXEfXtSagFERP8nLB6si8MFCxeRET6juWLSMMSMvKwZFcm8lQVdduUpoZQ3a0GADwd4IwVf/aBQi6TKiIREWkRyxeRBiVk5OGVLWkQ/7D9XvEa3ssGK//sAzmLFxFRp8E5DiINUQsiluzKbFC87pdzo6zZ54mISP+wfBFpSFJucb2pxsbkqSqQlFuspURERNQRcNqRqB2VVlTjxJXbSLlUjJ8y8lr0msLS5gsaERHpF5YvoodQWFKB5Eu3kHypGMmXinE2rwRCK+cR7SxMNBOOiIg6JJYvohYSRRE5N8qRcqkYSZeKkXLpFq4U32kwzsXKFIPdrDDQrRui92XjZllVo9d1yQA4KGuXnSAios6D5Ys6hcbW2XrQ0g5VNQLOXFch5dItJF0qRurlWygur6o3RiYDPB0sMdi9Gwa5W2GwuxUclP87k2VjboRXtqRBBtQrYPeOvDjMi0tMEBF1MixfpPcaW2fLUWmCxWFeGOftWLft/uu1ki4VI/3qbVRUC/X2ZWwgh59LVwx2t8JgDyv4u3aFpYlhk8ce5+2I2BcGNji+QyPHJyKizkEmiiK/6d6BlJSUQKlUQqVSwdLSUuo4Oq+pdbbunYl6aYQHqtVik9drde1iiEFuVgj0qD2z5e2kbNPtf9py5o2IiHRHaz6/eeaL9FZz62zd2/bZL7n1trtYmdae1XK3wmD3buhhY94uC6Aq5DIE9bR+6P0QEZHuY/kivdWSdbYAYGx/e4T5OmGQW/3rtYiIiDSB5Yv01qWbZS0aN36AI570cdJwGiIiolosX6R3yiprsOGXXKw/dKFF47nOFhERaRPLF+mNimo1vjp2CbEHc3DrTu2Nqw3kMtQ0seop19kiIiIpsHyRzquqERCXfAVr919AYWklAKCHjRnmj+kDhUyGyK1pALjOFhERdQwsX6SzatQCdpy4hjX7zuPa7bsAAOduppg7ujf+5N8dBoraJSFi5Vxni4iIOg6WL9I5giDiP6fz8NG+bFy8UQ4AsLMwxmvBvTBlsGuDdbjGeTtijJcD19kiIqIOgeWLdIYoith3thCrf87CufxSAEC3LoZ4dVQvvPCIG0yNFE2+lutsERFRR8HyRR2eKIo4euEm/vlzFtKv3gYAWBgb4KVHe2DmcA+YG/O3MRER6Q5+alGHlnKpGKv2ZOF4bjEAwNRQgenD3PHXR3ugaxcjidMRERG1HssXdUgZ11T4589ZOJh1AwBgpJBj6iOueHVUL9haGEucjoiIqO1YvqhDOV9Qig/3ZmN3Rj6A2mu1nhnkjNeCe8Opq6nE6YiIiB4eyxdphVoQm/224eWb5Yjedx47069BFAGZDJjg64R5IX3gbmMmYXIiIqL2xfJFGpeQkddgnS3H39fZ8nXpio8TL+C7lKt1K9GP6++AqMf7oI+9hVSRiYiINIblizQqISMPr2xJwx9v8JOnqsDLW9Lq3f5nZB9bvPF4XwxwVmo/KBERkZawfJHGqAURS3ZlNihe96sRRAS6d8Ob4/phsDvvsUhERPpP/uAhRG2TlFtcb6qxKfPH9GHxIiKiToPlizSmsPTBxat2XKWGkxAREXUcLF+kERXVaiRfKm7RWDsLEw2nISIi6jh4zRe1q8oaNbYlXUXMgQsPPKMlA+CgrF12goiIqLNg+aJ2UVUjYHvqb1i3/zyu/36dV/eupgjuZ4stv14BgHoX3t9b4WtxmFe99b6IiIj0HcsXPZQatYAdJ67h48Tz+O3WXQCAg6UJIoN7YcogFxgZyDGsl02Ddb4cfl/na5y3o1TRiYiIJMHyRW2iFkTsOnkdaxLPI7eoHABgY26MyMd64rlAV5gYKurGjvN2xBgvh2ZXuCciIuosWL6oVQRBxE8ZeYjedx4XCssAAFZmRnh5ZA9Me8QdpkaKRl+nkMsQ1NNam1GJiIg6JJYvahFRFPFzZgE+2puNc/mlAAClqSFmPdoDEUPdYW7M30pEREQtwU9MapYoijiQVYgP92Yj41oJAMDC2AAvjvDAzOEesDQxlDghERGRbmH5okaJoogjF4qw+udspF+9DQAwM1JgxjAPvDSiB5RdWLqIiIjaguWLGjiWcxMf7c1G0u+LpJoYyhER5I6/juwJKzMjidMRERHpNpYvqpN6uRirf87Gf3NuAgCMDOR4YYgbXh7Vg6vQExERtROWr05CLYhNLvWQfvU2PtybjcPZNwAAhgoZnh3sisjHesFBydJFRETUnli+OoGEjLwGi5w6Kk0wY5g7knKLse9sIQDAQC7D5EHOmB3cG927mkoVl4iISK+xfOm5hIw8vLIlrd6tfQAgT1WBpT+dAwDIZcCf/J0xd3RvuFp30X5IIiKiToTlS4+pBRFLdmU2KF73MzWU49+zh6OPvYXWchEREXVmcqkDkOYk5RbXm2pszN1qATfLqrSUiIiIiFi+9FhhafPFq7XjiIiI6OGxfOmxli4PwWUkiIiItIflS48FeljBUWkCWRPPy1D7rcdADyttxiIiIurUWL70mEIuw+IwLwBoUMDuPV4c5lW33hcRERFpHsuXnhvn7YjYFwY2WCzVQWmC2BcGYpy3o0TJiIiIOicuNdEJjPN2xBgvhyZXuCciIiLtYfnqJBRyGYJ6Wksdg4iIqNPjtKMGXb16FaNGjYKXlxd8fHzw3XffSR2JiIiIJMYzXxpkYGCA6Oho+Pn5IT8/HwEBARg/fjzMzMykjkZEREQSYfnSIEdHRzg61l7Q7uDgABsbGxQXF7N8ERERdWI6Oe0YGxsLHx8fWFpawtLSEkFBQdi9e3e7HuPw4cMICwuDk5MTZDIZdu7c2ei4mJgYuLu7w8TEBEOGDEFSUlKj41JTU6FWq+Hi4tKuOYmIiEi36GT5cnZ2xvLly5GamoqUlBQEBwdjwoQJOHPmTKPjjx49iurq6gbbMzMzUVBQ0OhrysvL4evri5iYmCZzxMXFISoqCosXL0ZaWhp8fX0xduxYFBYW1htXXFyM8PBwfPrpp614l0RERKSPZKIoilKHaA9WVlZYtWoVXnzxxXrbBUHAwIED0bt3b2zbtg0KhQIAkJWVhZEjRyIqKgpvvfVWs/uWyWSIj4/HxIkT620fMmQIBg8ejHXr1tUdy8XFBa+99hoWLFgAAKisrMSYMWPw0ksvYdq0aU0eIyYmBjExMVCr1cjOzoZKpYKlpWVrfwxEREQkgZKSEiiVyhZ9fuvkma/7qdVqbNu2DeXl5QgKCmrwvFwux08//YQTJ04gPDwcgiAgJycHwcHBmDhx4gOLV1OqqqqQmpqKkJCQescKCQnBsWPHAACiKGL69OkIDg5utngBQGRkJDIzM5GcnNymPERERKQbdLZ8nT59Gubm5jA2NsbLL7+M+Ph4eHl5NTrWyckJ+/fvx5EjR/D8888jODgYISEhiI2NbfPxi4qKoFarYW9vX2+7vb098vPzAdROd8bFxWHnzp3w8/ODn58fTp8+3eZjEhERke7T2W879u3bF+np6VCpVNi+fTsiIiJw6NChJguYq6srNm/ejJEjR6JHjx7YsGEDZDLNrvA+fPhwCIKg0WMQERGRbtHZ8mVkZIRevXoBAAICApCcnIw1a9bgk08+aXR8QUEBZs2ahbCwMCQnJ2P+/PlYu3Ztm49vY2MDhULR4IL9goICODg4tHm/9y7BKykpafM+iIiISLvufW635FJ6nS1ffyQIAiorKxt9rqioCKNHj4anpye+++47ZGdnY9SoUTA2NsY///nPNh3PyMgIAQEBSExMrLsQXxAEJCYmYvbs2W19GygtLQUALklBRESkg0pLS6FUKpsdo5Pla+HChQgNDYWrqytKS0uxdetWHDx4EHv27GkwVhAEhIaGws3NDXFxcTAwMICXlxf27t2L4OBgdO/eHfPnz2/wurKyMly4cKHucW5uLtLT02FlZQVXV1cAQFRUFCIiIjBo0CAEBgYiOjoa5eXlmDFjRpvfm5OTE65evQoLCwuNT4tqW0lJCVxcXHD16tVO+U3Ozv7+Af4MOvv7B/gz4PvX3/cviiJKS0vh5OT0wLE6Wb4KCwsRHh6OvLw8KJVK+Pj4YM+ePRgzZkyDsXK5HEuXLsWIESNgZGRUt93X1xf79u2Dra1to8dISUnBY489Vvc4KioKABAREYGNGzcCAKZMmYIbN25g0aJFyM/Ph5+fHxISEhpchN8acrkczs7ObX69Lri3OG5n1dnfP8CfQWd//wB/Bnz/+vn+H3TG6x69WeeLOr7WrIGijzr7+wf4M+js7x/gz4Dvv3O//3t0dqkJIiIiIl3E8kVaY2xsjMWLF8PY2FjqKJLo7O8f4M+gs79/gD8Dvv/O/f7v4bQjERERkRbxzBcRERGRFrF8EREREWkRyxcRERGRFrF8EREREWkRyxdp3LJlyzB48GBYWFjAzs4OEydORFZWltSxJLN8+XLIZDLMmzdP6ihac+3aNbzwwguwtraGqakpBgwYgJSUFKljaY1arcZ7770HDw8PmJqaomfPnvj73//eonvA6aLDhw8jLCwMTk5OkMlk2LlzZ73nRVHEokWL4OjoCFNTU4SEhOD8+fPShNWQ5n4G1dXVePvttzFgwACYmZnByckJ4eHhuH79unSB29mDfg/c7+WXX4ZMJkN0dLTW8kmN5Ys07tChQ4iMjMSvv/6KvXv3orq6Go8//jjKy8uljqZ1ycnJ+OSTT+Dj4yN1FK25desWhg0bBkNDQ+zevRuZmZlYvXo1unXrJnU0rVmxYgViY2Oxbt06nD17FitWrMDKlSuxdu1aqaNpRHl5OXx9fRETE9Po8ytXrsTHH3+M9evX4/jx4zAzM8PYsWNRUVGh5aSa09zP4M6dO0hLS8N7772HtLQ07NixA1lZWXjqqackSKoZD/o9cE98fDx+/fXXFt2SR6+IRFpWWFgoAhAPHTokdRStKi0tFXv37i3u3btXHDlypDh37lypI2nF22+/LQ4fPlzqGJJ64oknxJkzZ9bbNmnSJHHq1KkSJdIeAGJ8fHzdY0EQRAcHB3HVqlV1227fvi0aGxuL33zzjQQJNe+PP4PGJCUliQDEy5cvayeUFjX1/n/77Texe/fuYkZGhujm5iZ+9NFHWs8mFZ75Iq1TqVQAACsrK4mTaFdkZCSeeOIJhISESB1Fq3744QcMGjQIkydPhp2dHfz9/fHZZ59JHUurhg4disTERGRnZwMATp48iSNHjiA0NFTiZNqXm5uL/Pz8en8OlEolhgwZgmPHjkmYTFoqlQoymQxdu3aVOopWCIKAadOm4c0330T//v2ljqN1OnljbdJdgiBg3rx5GDZsGLy9vaWOozXbtm1DWloakpOTpY6idRcvXkRsbCyioqLwzjvvIDk5GXPmzIGRkREiIiKkjqcVCxYsQElJCfr16weFQgG1Wo0PPvgAU6dOlTqa1uXn5wMA7O3t6223t7eve66zqaiowNtvv43nnnuu09zvcMWKFTAwMMCcOXOkjiIJli/SqsjISGRkZODIkSNSR9Gaq1evYu7cudi7dy9MTEykjqN1giBg0KBBWLp0KQDA398fGRkZWL9+facpX99++y2+/vprbN26Ff3790d6ejrmzZsHJyenTvMzoMZVV1fjmWeegSiKiI2NlTqOVqSmpmLNmjVIS0uDTCaTOo4kOO1IWjN79mz8+OOPOHDgAJydnaWOozWpqakoLCzEwIEDYWBgAAMDAxw6dAgff/wxDAwMoFarpY6oUY6OjvDy8qq3zdPTE1euXJEokfa9+eabWLBgAZ599lkMGDAA06ZNw/z587Fs2TKpo2mdg4MDAKCgoKDe9oKCgrrnOot7xevy5cvYu3dvpznr9csvv6CwsBCurq51fydevnwZr7/+Otzd3aWOpxU880UaJ4oiXnvtNcTHx+PgwYPw8PCQOpJWjR49GqdPn663bcaMGejXrx/efvttKBQKiZJpx7BhwxosLZKdnQ03NzeJEmnfnTt3IJfX/7euQqGAIAgSJZKOh4cHHBwckJiYCD8/PwBASUkJjh8/jldeeUXacFp0r3idP38eBw4cgLW1tdSRtGbatGkNrn0dO3Yspk2bhhkzZkiUSrtYvkjjIiMjsXXrVvz73/+GhYVF3XUdSqUSpqamEqfTPAsLiwbXt5mZmcHa2rpTXPc2f/58DB06FEuXLsUzzzyDpKQkfPrpp/j000+ljqY1YWFh+OCDD+Dq6or+/fvjxIkT+PDDDzFz5kypo2lEWVkZLly4UPc4NzcX6enpsLKygqurK+bNm4d//OMf6N27Nzw8PPDee+/ByckJEydOlC50O2vuZ+Do6Iinn34aaWlp+PHHH6FWq+v+XrSysoKRkZFUsdvNg34P/LFsGhoawsHBAX379tV2VGlI/XVL0n8AGv315ZdfSh1NMp1pqQlRFMVdu3aJ3t7eorGxsdivXz/x008/lTqSVpWUlIhz584VXV1dRRMTE7FHjx7iu+++K1ZWVkodTSMOHDjQ6J/5iIgIURRrl5t47733RHt7e9HY2FgcPXq0mJWVJW3odtbczyA3N7fJvxcPHDggdfR28aDfA3/U2ZaakImini6xTERERNQB8YJ7IiIiIi1i+SIiIiLSIpYvIiIiIi1i+SIiIiLSIpYvIiIiIi1i+SIiIiLSIpYvIiIiIi1i+SIiIiLSIpYvIqIHuHTpEmQyGdLT06WOUufcuXN45JFHYGJiUnePxD8aNWoU5s2b1+x+3N3dER0d3e75iKhpLF9E1OFNnz4dMpkMy5cvr7d9586dkMlkEqWS1uLFi2FmZoasrCwkJia2eT/JycmYNWtW3WOZTIadO3e2Q0IiagrLFxHpBBMTE6xYsQK3bt2SOkq7qaqqavNrc3JyMHz4cLi5uTW4SXFr2NraokuXLm1+PRG1HssXEemEkJAQODg4YNmyZU2O+dvf/tZgCi46Ohru7u51j6dPn46JEydi6dKlsLe3R9euXfH++++jpqYGb775JqysrODs7Iwvv/yywf7PnTuHoUOHwsTEBN7e3jh06FC95zMyMhAaGgpzc3PY29tj2rRpKCoqqnt+1KhRmD17NubNmwcbGxuMHTu20fchCALef/99ODs7w9jYGH5+fkhISKh7XiaTITU1Fe+//z5kMhn+9re/NfkzqampwezZs6FUKmFjY4P33nsP99/S9/5px3s/pz/96U+QyWR1j0+ePInHHnsMFhYWsLS0REBAAFJSUpo8JhE1j+WLiHSCQqHA0qVLsXbtWvz2228Pta/9+/fj+vXrOHz4MD788EMsXrwYTz75JLp164bjx4/j5Zdfxl//+tcGx3nzzTfx+uuv48SJEwgKCkJYWBhu3rwJALh9+zaCg4Ph7++PlJQUJCQkoKCgAM8880y9fWzatAlGRkY4evQo1q9f32i+NWvWYPXq1fjnP/+JU6dOYezYsXjqqadw/vx5AEBeXh769++P119/HXl5eXjjjTeafK+bNm2CgYEBkpKSsGbNGnz44Yf4/PPPGx2bnJwMAPjyyy+Rl5dX93jq1KlwdnZGcnIyUlNTsWDBAhgaGrbgJ01EjRKJiDq4iIgIccKECaIoiuIjjzwizpw5UxRFUYyPjxfv/2ts8eLFoq+vb73XfvTRR6Kbm1u9fbm5uYlqtbpuW9++fcURI0bUPa6pqRHNzMzEb775RhRFUczNzRUBiMuXL68bU11dLTo7O4srVqwQRVEU//73v4uPP/54vWNfvXpVBCBmZWWJoiiKI0eOFP39/R/4fp2cnMQPPvig3rbBgweLr776at1jX19fcfHixc3uZ+TIkaKnp6coCELdtrffflv09PSse+zm5iZ+9NFHdY8BiPHx8fX2Y2FhIW7cuPGBuYmoZXjmi4h0yooVK7Bp0yacPXu2zfvo378/5PL//fVnb2+PAQMG1D1WKBSwtrZGYWFhvdcFBQXV/beBgQEGDRpUl+PkyZM4cOAAzM3N637169cPQO31WfcEBAQ0m62kpATXr1/HsGHD6m0fNmxYm97zI488Uu9LCUFBQTh//jzUanWL9xEVFYW//OUvCAkJwfLly+u9HyJqPZYvItIpjz76KMaOHYuFCxc2eE4ul9e7ngkAqqurG4z745SZTCZrdJsgCC3OVVZWhrCwMKSnp9f7df78eTz66KN148zMzFq8z47ib3/7G86cOYMnnngC+/fvh5eXF+Lj46WORaSzWL6ISOcsX74cu3btwrFjx+ptt7W1RX5+fr0C1p5rc/366691/11TU4PU1FR4enoCAAYOHIgzZ87A3d0dvXr1qverNYXL0tISTk5OOHr0aL3tR48ehZeXV6szHz9+vMF76N27NxQKRaPjDQ0NGz0r1qdPH8yfPx8///wzJk2a1OgXEoioZVi+iEjnDBgwAFOnTsXHH39cb/uoUaNw48YNrFy5Ejk5OYiJicHu3bvb7bgxMTGIj4/HuXPnEBkZiVu3bmHmzJkAgMjISBQXF+O5555DcnIycnJysGfPHsyYMaNVU3xA7YX9K1asQFxcHLKysrBgwQKkp6dj7ty5rc585coVREVFISsrC9988w3Wrl3b7H7c3d2RmJiI/Px83Lp1C3fv3sXs2bNx8OBBXL58GUePHkVycnJd6SSi1mP5IiKd9P777zeYFvT09MS//vUvxMTEwNfXF0lJSc1+E7C1li9fjuXLl8PX1xdHjhzBDz/8ABsbGwCoO1ulVqvx+OOPY8CAAZg3bx66du1a7/qylpgzZw6ioqLw+uuvY8CAAUhISMAPP/yA3r17tzpzeHg47t69i8DAQERGRmLu3Ln1FlX9o9WrV2Pv3r1wcXGBv78/FAoFbt68ifDwcPTp0wfPPPMMQkNDsWTJklZnIaJaMvGPF0gQERERkcbwzBcRERGRFrF8EREREWkRyxcRERGRFrF8EREREWkRyxcRERGRFrF8EREREWkRyxcRERGRFrF8EREREWkRyxcRERGRFrF8EREREWkRyxcRERGRFv0/M0HYKIQN1ZMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "ax.set_xlabel(\"Number of bits\")\n", + "ax.set_ylabel(\"Time (in ms)\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "files = [i for i in range(1, 16)]\n", + "times = []\n", + "\n", + "cur = open(\"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/gamma/bit.txt\")\n", + "a = cur.readlines()\n", + "for i in range(0, len(a)):\n", + " cur2 = a[i]\n", + " times.append(float(cur2.split()[0]))\n", + " # print(i)\n", + " # stan_iter = stan_iterations(f\"/space/poorvagarg/benchmarks_stan/hmm_slicstan/results_{i}.txit\")\n", + " # iterations.append(stan_iter)\n", + "ax.plot(files, times, marker = \"o\")\n", + "# ax.legend([\"Stan\", \"Dice\"])\n", + "fig.savefig(\"gamma_2_2.png\", bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG0CAYAAAA7Go31AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHwElEQVR4nO3deVyUdeIH8M8zA8zINQrIJZcHHgiCIhgeqWkeGZZuauWVbbWZpUaXbWuIXWqbWybptv261jK7tLSNbPFKU0HwQhQBUZFTQWe4j5nn9wc6K3E4IMwzx+f9evHa5plnZj7MIvPheb7P9yuIoiiCiIiIyALJpA5ARERE1FlYdIiIiMhisegQERGRxWLRISIiIovFokNEREQWi0WHiIiILBaLDhEREVksFh0iIiKyWCw6REREZLFYdIiIiMhisegQERGRxbKROsDtys3Nxdy5c1FcXAwbGxssX74cM2bMMPjxOp0O+fn5cHJygiAInZiUiIiIOoooiigrK4O3tzdkspaP2wjmvqhnQUEBioqKEBYWhsLCQoSHh+Ps2bNwcHAw6PGXLl2Cr69vJ6ckIiKizpCbmwsfH58W7zf7IzpeXl7w8vICAHh6esLNzQ2lpaUGFx0nJycADW+Us7Nzp+UkIiKijqPRaODr66v/HG+J5EVn3759ePvtt5GSkoKCggJs3boV999/f6N94uPj8fbbb6OwsBChoaF4//33ERkZ2eS5UlJSoNVq23SE5sbpKmdnZxYdIiIiM3OrYSeSD0auqKhAaGgo4uPjm71/y5YtiImJQWxsLFJTUxEaGoqJEyeiuLi40X6lpaWYN28ePvzww1Zfr6amBhqNptEXERERWSaTGqMjCEKTIzrDhg1DREQE1q9fD6Bh8LCvry+eeeYZLFu2DEBDebn77rvx+OOPY+7cua2+xooVKxAXF9dku1qt5hEdIiIiM6HRaKBSqW75+S35EZ3W1NbWIiUlBePHj9dvk8lkGD9+PA4ePAigYdT1I488grvuuuuWJQcAXn75ZajVav1Xbm5up+UnIiIiaZl00bly5Qq0Wi08PDwabffw8EBhYSEA4MCBA9iyZQu2bduGsLAwhIWF4eTJky0+p0Kh0I/H4bgcIiIiyyb5YOTbNXLkSOh0OqljEBERkQky6SM6bm5ukMvlKCoqarS9qKgInp6eEqUiIiIic2HSRcfOzg7h4eFITEzUb9PpdEhMTERUVJSEyYiIiMgcSH7qqry8HFlZWfrbOTk5OHbsGFxcXODn54eYmBjMnz8fQ4cORWRkJN59911UVFRgwYIFEqYmIiIicyB50Tly5AjGjh2rvx0TEwMAmD9/Pj799FPMmjULly9fxquvvorCwkKEhYUhISGhyQDltoqPj0d8fDy0Wu1tPQ8RERGZLpOaR0cKhl6HT0RERIbT6kQk5ZSiuKwa7k5KRPZ0gVzWcYtnG/r5LfkRHSIiIrIsCWkFiNuejgJ1tX6bl0qJ2OggTAr2MmoWkx6MTEREROYlIa0ACzelNio5AFCorsbCTalISCswah4WHSIiIuoQWp2IuO3paG5MzI1tcdvTodUZb9QMiw4RERF1iKSc0iZHcm4mAihQVyMpp9RomVh0iIiI6LZV1Wrx4/E8g/YtLmu5DHU0DkYmIiKidjtbVIYvD1/Ed6mXUFZdb9Bj3J2UnZzqf1h0iIiIqE2q67RISCvEF4cvIPn8Vf12n25KqCvrUVbTfOERAHiqGi41NxarLTqcMJCIiKhtzl0u1x+9uVpZBwCQywSMH+CO2cP8MbKPG3amF2LhplQAaDQo+cYMOrHRQR06n86tcMJAThhIRETUotp6HXamF+KLQxdx8FyJfru3SokHI/0wK8IXHs6NT0UZYx4dThhIRERE7XaxpBJfJl3Etym5uFJeCwCQCcDYfu6YfYcfRvd1b/HIzKRgL9wd5NmpMyMbikWHiIiIAAB1Wh0STxfhi8MX8VvmFf12dycFHozwxaxIP/To2sWg55LLBET1du2sqAZj0SEiIrJyedeq8FXSRWxJzkVxWQ0AQBCAUYHd8XCkH8YNcIet3DxnpGHRISIiskJanYg9GcX44vBF7Mkoxo3Jit0c7TBjqC8eivCDn6u9tCE7AIsOERGRhTBkxfBCdTW2JOdiS/JF5N80WHh4b1c8PMwPE4I8YWdjnkdvmsOiQ0REZAFau9JpQpAnfsu6gi8OXUDimWL9WlPd7G3xQLgPHor0Q6/ujlJF71QsOkRERGbuxorhf5wvpkBdjSc3pcLV0Q4l16+cAoDIABc8PMwPk4I9obSVGzeskVlt0eGEgUREZAlaWzH8hpLyWjgq5Hgg3BcPD/NDXw8no+WTGicM5ISBRERkxg5ml+Chfx265X6fLYjA6H7uRkhkHIZ+flvOaCMiIiIrdDJPbdB+16rqOjmJabLaU1dERETmSqsTkXi6CJ8fvID9WVdu/QAYd8VwU8KiQ0REZCauVtRiy5Fc/PvgBeRdqwLQsFimnY0MNfW6Zh8jxYrhpoRFh4iIyMSl5anx+cHz+OFYvr7QdLW3xawIX8wZ5o9T+WqTWjHclLDoEBERmaDaeh0SThXis9/PI+XCVf32gd7OmD88AFNDvfWXhvu62GPDnCFN5tHx7OAVw80Riw4REZEJKdZU44vDF/Fl0kVcvr7ulI1MwD0hXpg/3B9D/LpBEJoenTGlFcNNCYsOERGRxERRRMqFq/js4AX8fLIA9ddnLu7upMDsYX54ONIP7s63HkxsKiuGmxIWHSIiIolU12nx47F8fHbwPE7la/Tbh/p3w7zhAZg00LLWnZICiw4REZGR5ZZWYtPhC9iSnItrlQ3z2yhsZLgvzBvzogIQ3EMlcULLYbVFh0tAEBGRMYmiiP1ZV/DZ7xeQeKYIN9Yl8OnWBXPv8MfMob7o5mAnbUgLxCUguAQEERHdJq1ObHEQcFl1Hb5PzcNnB8/j3OUK/WNGBbphXlQA7urvbvUDhtvD0M9vqz2iQ0RE1BES0gqaXNbtpVLiiTt74fyVCnybcgkVtQ1nDxzs5Hgg3AdzowLQx91RqshWhUWHiIionRLSCrBwU2qTlcML1NWI256uv92ruwPmRwVg+pAecFLaGjeklWPRISIiagetTkTc9vQmJedmChsZ/jV3KEb1dWt27hvqfLxmjYiIqB0OnytpdLqqOTX1OtjayFhyJMQjOkRERG1QpKnGN0dy8fGBHIP2Ly5rvQxR52LRISIiugWtTsSejGJsTsrF7oxiaHWGX7Ds7nTrGY2p87DoEBERteDS1Up8feQSvjmS2+g01VD/bpgZ4Yu1OzNQpKlpdpyOgIZFNSN7uhgtLzXFokNERHSTOq0OiaeLsDkpF/syL+sn9utmb4vpQ3zwYIQvAj2cAADOShss3JQKAWhUdm6MyImNDuIcORJj0SEiIgJw/koFvkrOxbcpl3ClvEa/fXhvVzwY6YeJAz2gsJE3esykYC9smDOkyTw6niolYqODMCnYy2j5qXksOkREZLVq6rVISCvEV0m5OHiuRL/dzVGBGUN9MGuoLwLcHFp9jknBXrg7yLPFmZFJWiw6RERkdTKLyrA5KRffH72kX1RTEIA7A7vjoUhfjBvgAVu54TOwyGUConq7dlZcug1WW3S4qCcRkXWpqtXip5MF+CrpIo5cuKrf7qVSYsZQX8wc6gOfbvYSJqTOwEU9uagnEZFZam0hzZudylfjq6RcbDuWh7LqegANR2Du6u+OhyJ9MbovF9U0R1zUk4iILFZLC2neGABcXlOPH4/l46vkizhxSa3fx9elCx6M8MMD4T7wcOb8NtaARYeIiMxKSwtpFqqr8eSmVIzo7YqjuddQeX3FcFu5gAkDPfFQhB+G93aFjEdvrAqLDhERmY3WFtK8se1AdsPVU73cHPBgpC/+NMQHro4Ko2Uk08KiQ0REZiMpp/SWC2kCwKv3DsCCET25mCZx9XIiIjIfhi6Q6eqoYMkhADyiQ0REZkAURfyeXYJ/7Ttn0P5cSJNuYNEhIiKTpdOJ2JlehA17snD8pqunWsKFNOmPWHSIiMjk1Gl1+OFYPjbuzUZWcTkAQGEjw4MRvujr4YS/bUsDwIU06dZYdIiIyGRU1Wrx9ZFcfLjvHPKuVQEAnJQ2mBfljwUjesLt+tVTro52XEiTDMKiQ0REklNX1WHToQv4eH8OSipqATQsrPnnkT0x+w4/OCttG+3PhTTJUCw6REQkmctlNfi//Tn44tAFlNU0LM/g060L/jK6N2aE+0BpK2/xsVxIkwzBokNEREaXW1qJf+7LxtdHLqG2XgcA6OvhiIVjeiN6kDds2rByOFFrWHSIiMhozhaVYcOebPx4PB9aXcNQ4sF+XfHUmD4Y19+dyzNQh2PRISKiTpd68So+2J2N/54u0m8bFeiGp8b0wR29XDi5H3Uaqy068fHxiI+Ph1arlToKEZFFEkURv2VewQd7snDoXCkAQBCASQM98dSYPgjxUUmckKyBIIpic2ujWQ2NRgOVSgW1Wg1nZ2ep4xARmT2dTsQvpwrxwZ5snMxrmOTPRiZg2uAe+Mvo3ujj7ihxQrIEhn5+W+0RHSIiajutTmzxku7aeh22HcvDxr3ZOHe5AgCgtJXhoUg/PD6qF7y7dpEyOlkpFh0iIjJIQlpBk0n6vFRKLJvcHyXltfjot3PIv36fs9IG84cH4JHhAXC9PskfkRRYdIiI6JYS0gqwcFMq/jjWoUBdjSVfHdPf7u6kwGMje+LhYX5w+sMkf0RSYNEhIqJWaXUi4ranNyk5N5MLAlbcF4QZ4b6tTvJHZGyckYmIiFqVlFPa6HRVc7SiiD7dnVhyyOSw6BARUasyi8oM2q+4rPUyRCQFnroiIqJm5V+rwoY92dicdNGg/d2dlJ2ciKjtWHSIiKiRvGtV+GB3Fr45cgm12oZ1qOzkAmq1zY/SEQB4qhouNScyNSw6REQEoGGhzQ/2ZOPblFzUXS81w3q6YMn4QKgr6/DUF6kA0GhQ8o2FG2Kjg/Tz6RCZEhYdIiIrd7GkEh/sycK3KZdQf32hzeG9XbF4XCDu6OWq32/DnCFN5tHxVCkRGx2EScFeRs9NZAgWHSIiK3WhpALrd2Xh+6N5+pXER/Zxw5LxgYgIaHoaalKwF+4O8mxxZmQiU8SiQ0RkZXKuNBScbcf+V3BGBbph6fhAhPu3Ps5GLhMQ1du11X2ITAmLDhGRlci+XI746wXner/BmH7dsXhcIIb4dZM2HFEnYdEhIrJwWcXleH9XJrYfz9cXnLv6u2PxuECE+XaVNBtRZ2PRISKyUJlFZVi3Kws7TuRDvF5wxg9oKDiDfLpKmo3IWFh0iIgsTEZhGdbtysR/ThboC86EIA8sHheI4B4qacMRGRmLDhGRhThdoMG6xEz8nFao3zZpoCeeGdcHA71ZcMg6segQEZkBrU5s8bLuU/lqrEvMxC+nivT73xPiiWfuCsQAL2epIhOZBKstOvHx8YiPj4dWq5U6ChFRqxLSCppM1OelUmLB8AAkX7iKX9MbCo4gAFNCvPDMXYHo5+kkVVwikyKIotj84iVWQqPRQKVSQa1Ww9mZf/kQkWlJSCvAwk2paO0XtSAA0YO88cxdfRDowYJD1sHQz2+rPaJDRGTqtDoRcdvTWy05XWxl2LZoJI/gELVAJnUAIiJqXlJOaaPTVc2pqtOhtKLWSImIzA+LDhGRifo9+4pB+xWXtV6GiKwZT10REZkQURTxe3YJ3kvMRFJOqUGPcXdSdnIqIvPFokNEZAJEUcTes5exLjETqRevAQBsZQJsbWSorG3+6lABgKeq4VJzImoeiw4RkYREUUTi6WK8vysTxy+pAQAKGxkeivTDX0b3wvHca1i4KbVh35seJ1z/39joIP18OkTUFIsOEZEEdDoRO9ML8f6uLJzK1wAAutjKMecOPzx+Zy/96SgvVRdsmDOkyTw6niolYqODMCnYS5L8ROaCRYeIyIi0OhH/OVmA9buykFFUBgCwt5NjXlQAHhvVE26OiiaPmRTshbuDPFucGZmIWsaiQ0RkBPVaHXacKMD7uzKRfbkCAOCksMEjIwLw6Iie6OZg1+rj5TIBUb1djRGVyKKw6BARdaI6rQ7bjubhgz3ZyLnSUHCclTb488heeGREAFRdbCVOSGTZWHSIiDpBbb0O36Vewgd7spBbWgUA6GZvi8dG9cK8KH84KVlwiIyBRYeIqAPV1Gvx9ZFL2LA7C/nXBw+7Odrh8VG9MOcOfzgo+GuXyJj4L46IqANU12mxOekiNu7NRpGmBgDQ3UmBJ0f3xsORfuhiJ5c4IZF1YtEhIroNlbX1+OLQRfxz3zlcKW8oOF4qJZ4c3RuzInyhtGXBIZISiw4RUQu0OrHFS7rLa+rx+cHz+Oi3HP2imj26dsFTY3vjgXAfKGxYcIhMAYsOEVEzEtIKmkzS56VS4oWJ/ZB3tQr/dyAH1yrrAAB+LvZ4emwfTBvSA7ZyrpVMZEpYdIiI/iAhrQALN6U2WnIBAArU1Yj5+rj+di83Bzx9Vx9MDfWGDQsOkUli0SEiuolWJyJue3qTknMzG5mAv88IRXSoN2cnJjJx/BOEiOgmSTmljU5XNadeJ8LDWcmSQ2QGWHSIiG5SXNZ6yWnrfkQkLRYdIqLrCtXV+Co516B9b6wuTkSmjWN0iMjq1dbr8MmBHKxLzERFrbbVfQUAnqqGS82JyPSx6BCRVTuQdQWv/pCmX1F8sF9XTB7oibd+PgMAjQYl3xiRExsdxPE5RGaCRYeIrFKBugqv7ziNn04WAABcHezw0uT+eGCID2QyAX6u9k3m0fFUKREbHYRJwV5SxSaiNmLRISKrUluvw0f7z+H9xCxU1WkhE4B5UQF49u6+UHX534rik4K9cHeQZ4szIxOReWDRISKrse/sZaz48RTOXWk4TTXUvxvi7huIgd6qZveXywRE9XY1ZkQi6mAsOkRk8fKuVeG17elIOFUIAHBzVODlyf0xfUgPCAKP0BBZMqstOvHx8YiPj4dW2/oVFkRkvmrqtfjXvnNYvzsL1XU6yGUC5kX549m7+8JZaXvrJyAisyeIotjaTOcWT6PRQKVSQa1Ww9nZWeo4RNRBdmcUI+7HUzhfUgkAiAxwwcr7B6K/J/+dE1kCQz+/rfaIDhFZptzSSqzckY5f04sAAN2dFHjlngG4L8ybp6mIrBCLDhFZhOo6LT7cdw7xu7NQU99wmmrB8AAsGR8IJ56mIrJaLDpEZPZ2nSlC3PZ0XLh+muqOXi5YeV8w+no4SZyMiKTGokNEZutiSSXitp9C4pliAICHswKvTAlC9CAvnqYiIgAsOkRkhqrrtNiwJxsb9majtl4HG5mAP4/siWfGBcJRwV9rRPQ//I1ARGZDFEX893QxVu44hdzSKgDAiD6uiJs6EH3ceZqKiJpi0SEik6LVic0uu3D+SgVWbD+FPRmXAQBeKiX+NiUI94R48jQVEbWIRYeITEZCWkHThTSdFRjs1w2Jp4tRq9XBVi7gsVG98PTYPnDgaSoiugX+liAik5CQVoCFm1LxxxlMCzU1+DmtYemGUYFuWDF1IHp3dzR+QCIySyw6RCQ5rU5E3Pb0JiXnZt3sbfHJIxGwkcuMlouIzB9/YxCR5JJyShudrmrO1co6JJ+/aqRERGQpWHSISHLFZa2XnLbuR0R0A4sOEUmqXqvDoewSg/Z1d1J2choisjQco0NEkskoLMOL3x7H8UvqVvcTAHiqGi41JyJqCx7RISKjq9PqsH5XJu59/zccv6SGk9IG86L8IaCh1Nzsxu3Y6CDIZZwvh4jahkd0iMioThdo8Pw3x3EqXwMAGNffHW9MC4GnSonhvV2bzqOjUiI2OgiTgr2kikxEZoxFh4iMorZehw/2ZGH9rizU60SouthixdQg3B/WQz+z8aRgL9wd5NnszMhERO3BokNEnS4tT43nvzmOM4VlAIAJQR54/f5guDs3HVwslwmI6u1q7IhEZKFYdIio09TUa7F+VxY+2JMNrU5EN3tbxN0XjOhBXlyfioiMgkWHiDrFiUvX8Pw3x3G2qBwAcE+IJ+KmBqO7k0LiZERkTVh0iKhDVddp8V5iJj7cdw5anQhXBzusvC8YUwZxMDERGR+LDhF1mNSLV/HityeQVdxwFCc61BsrooPg6sijOEQkDRYdIrpt1XVarP31LD767Rx0IuDmqMDr9wdjUrCn1NGIyMqx6BDRbTlyvhQvfnsC565UAACmDe6BV+8NQjcHO4mTERGx6BBRO1XVavH2Lxn45PcciCLg7qTAm9NCMD7IQ+poRER6LDpE1GaHz5Xgxe9O4EJJJQDggXAfLJ8SBJW9rcTJiIgaY9EhIoNV1NRjTcIZfHbwAgDA01mJt/4UgrH93CVORkTUPBYdIjLI71lX8NL3J5BbWgUAeDDCF3+dMgDOSh7FISLTxaJDRK0qr6nHW/85jS8OXwQA9OjaBW9ND8GdfbtLnIyI6NZYdIgIAKDViU0W0/w9+wqWfXcSedcajuLMHuaHZZP7w4lHcYjITLS76NTV1aGwsBCVlZXo3r07XFxcOjIXERlRQloB4rano0Bdrd/WxVaOqjotAMCnWxes+dMgDO/jJlVEIqJ2aVPRKSsrw6ZNm/DVV18hKSkJtbW1EEURgiDAx8cHEyZMwBNPPIGIiIjOyktEHSwhrQALN6VC/MP2GyVnTN/uiJ89BA4KHgAmIvMjM3THtWvXIiAgAJ988gnGjx+Pbdu24dixYzh79iwOHjyI2NhY1NfXY8KECZg0aRIyMzM7MzcRdQCtTkTc9vQmJedmGUVlUNrKjZaJiKgjGfwnWnJyMvbt24eBAwc2e39kZCQeffRRbNy4EZ988gl+++03BAYGdlhQIup4STmljU5XNadAXY2knFJE9XY1Uioioo5jcNHZvHmzQfspFAo8+eST7Q5ERMZTXNZ6yWnrfkREpsbgU1et0Wg02LZtG06fPt0RT0dERlJ9fRzOrbg7KTs5CRFR52hX0Zk5cybWr18PAKiqqsLQoUMxc+ZMDBo0CN99912HBiSiznH4XAle25He6j4CAC9Vw6XmRETmqF1FZ9++fRg1ahQAYOvWrRBFEdeuXcO6devw+uuvd2hAIup4O08VYu7HSSiv0aJ3dwcIaCg1N7txOzY6CHLZH+8lIjIP7So6arVaP29OQkIC/vSnP8He3h5Tpkzh1VZEJu7r5Fw8uSkFtfU6jB/ggZ8Wj8KGOUPgqWp8espTpcSGOUMwKdhLoqRERLevXRNj+Pr64uDBg3BxcUFCQgK++uorAMDVq1ehVPJcPpEpEkURG/eew+qEMwCAGeE+eGt6CGzkMkwK9sLdQZ5NZkbmkRwiMnftKjpLly7F7Nmz4ejoCH9/f4wZMwZAwymtkJCQjsxHRB1ApxPxxn9O4//25wAAnhzdGy9N6gdB+F+RkcsEXkJORBanXaeunnrqKRw6dAgff/wx9u/fD5ms4Wl69eolyRidadOmoVu3bnjggQeM/tpEpq5Oq8Nz3xzXl5y/TRmAZZP7Nyo5RESWShBFsbVJUc3Cnj17UFZWhs8++wzffvttmx6r0WigUqmgVqvh7OzcSQmJpFFZW4+nvkjFnozLsJEJWPPAIEwf4iN1LCKi22bo53eHzKMjtTFjxsDJyUnqGEQm5WpFLWZ/dBh7Mi5DaSvDv+YNZckhIqsjedHZt28foqOj4e3tDUEQsG3btib7xMfHIyAgAEqlEsOGDUNSUpLxgxKZkfxrVZjxz4M4evEaVF1s8cVjd2Bsf3epYxERGZ3kRaeiogKhoaGIj49v9v4tW7YgJiYGsbGxSE1NRWhoKCZOnIji4uJ2vV5NTQ00Gk2jLyJLklVchgc2/I6s4nJ4OivxzZNRCPfvJnUsIiJJSF50Jk+ejNdffx3Tpk1r9v61a9fi8ccfx4IFCxAUFISNGzfC3t4eH3/8cbte76233oJKpdJ/+fr63k58IpNy9OJVPLDxIPLV1ejV3QHfPTUcfT14WpeIrFe7Li8HgGvXriEpKQnFxcXQ6XSN7ps3b95tBwOA2tpapKSk4OWXX9Zvk8lkGD9+PA4ePNiu53z55ZcRExOjv63RaFh2yCLsPXsZT/47BVV1WoT6qPDJgki4ONhJHYuISFLtKjrbt2/H7NmzUV5eDmdn50aXqQqC0GFF58qVK9BqtfDw8Gi03cPDA2fOnNHfHj9+PI4fP46Kigr4+Pjgm2++QVRUVLPPqVAooFAoOiQfkan44Vgenvv6OOp1IkYFumHjnHA4KNr9dwwRkcVo12/C5557Do8++ijefPNN2Nvbd3SmNvvvf/8rdQQiyXxyIAdx2xsW54wO9cY7M0JhZyP5WWkiIpPQrqKTl5eHxYsXd3rJcXNzg1wuR1FRUaPtRUVF8PT07NTXJjJ1oijinZ1nsX53FgDgkeEBePXeIMi4bAMRkV67/uybOHEijhw50tFZmrCzs0N4eDgSExP123Q6HRITE1s8NUVkDeq1Ovx160l9yXl+Ql/ERrPkEBH9UbuO6EyZMgUvvPAC0tPTERISAltb20b3T5061eDnKi8vR1ZWlv52Tk4Ojh07BhcXF/j5+SEmJgbz58/H0KFDERkZiXfffRcVFRVYsGBBe6ITmb3qOi2WfHUUv5wqgkwAXr8/BA8P85M6FhGRSWrXEhA31rZq9gkFAVqt1uDn2rNnD8aOHdtk+/z58/Hpp58CANavX4+3334bhYWFCAsLw7p16zBs2LC2xm4Wl4Agc6KprsPjnx3B4ZxS2MllWPdQGCYFe0kdi4jI6Az9/LaIta7aIz4+HvHx8dBqtTh79iyLDpm84rJqzP84GacLNHBU2ODDeeEY3ttN6lhERJJg0TEQj+iQObhQUoG5/5eEi6WVcHO0w6cLIhHcQyV1LCIiyRj6+W3wGJ1169bhiSeegFKpxLp161rdd/HixYYnJaJWpeWp8cgnybhSXgM/F3t8/mgkAtwcpI5FRGQWDD6i07NnTxw5cgSurq7o2bNny08oCDh37lyHBexsPKJDpuxgdgme+PwIymrqMcDLGZ8tiIC7s1LqWEREkuvwIzo5OTnN/jcRdY6EtAIs/uoYaut1iOzpgo/mD4Wz0vbWDyQiIj3OEU9kgjYnXcQrW09CJwITgjyw7qHBUNrKpY5FRGR2DJ4wcNWqVaiqqjJo38OHD+Onn35qdygia6HViTiYXYIfjuXhYHYJ6rU6rN+ViZe/byg5s4b64oPZQ1hyiIjayeAjOunp6fDz88OMGTMQHR2NoUOHonv37gCA+vp6pKenY//+/di0aRPy8/Px+eefd1poIkuQkFaAuO3pKFBX67fZ28lRWdswD9Wisb3x/IR+jRbNJSKitjG46Hz++ec4fvw41q9fj4cffhgajQZyuRwKhQKVlZUAgMGDB+Oxxx7DI488AqXStAdM3jyPDpGxJaQVYOGmVPzxSoAbJWdGuA9emNjf+MGIiCxMu+bR0el0OHHiBC5cuICqqiq4ubkhLCwMbm7mN3kZr7oiY9PqRIxcvavRkZw/8lIpsf+luyDn2lVERM3q8KuubiaTyRAWFoawsLD25iOyWkk5pa2WHAAoUFcjKacUUb1djZSKiMgytWv1ciJqv+Ky1ktOW/cjIqKWsegQGZm7k2Hj1wzdj4iIWsaiQ2RkkT1d4Opg1+L9AhrG6ET2dDFeKCIiC8WiQ2RkJRU1qNPqmr3vxtDj2OggDkQmIuoAt1V0srKy8Msvv+gnErTyhdCJbqlOq8PTXx6FproeXs5KeDgrGt3vqVJiw5whmBTsJVFCIiLL0q6rrkpKSjBr1izs2rULgiAgMzMTvXr1wp///Gd069YN77zzTkfnJLIIq38+g6ScUjgqbLDp8WEIcHVAUk4pisuq4e7UcLqKR3KIiDpOu47oPPvss7CxscHFixdhb2+v3z5r1iwkJCR0WDgiS7LjRD4+2t+wIO7fZwxC7+6OkMsERPV2xX1hPRDV25Ulh4iog7XriM7OnTvxyy+/wMfHp9H2wMBAXLhwoUOCdTbOjEzGlFVchhe/PQEA+MvoXjw1RURkJO06olNRUdHoSM4NpaWlUCgUzTzC9CxatAjp6elITk6WOgpZuPKaevzl3ymorNUiqpcrXpjQT+pIRERWo11FZ9SoUY0W7RQEATqdDmvWrMHYsWM7LByRuRNFES9+exzZlyvg6azE+w8Pho2cFzsSERlLu05drVmzBuPGjcORI0dQW1uLF198EadOnUJpaSkOHDjQ0RmJzNZHv+XgPycLYSsXED97CNwczeOIJxGRpWjXn5bBwcE4e/YsRo4cifvuuw8VFRWYPn06jh49it69e3d0RiKzdOhcCVYlnAEALL83COH+3SRORERkfdp1RAcAVCoVXnnllY7MQmQxCtXVePrLVGh1IqYN7oG5d/hLHYmIyCq1u+hUV1fjxIkTKC4uhk7XeJbXqVOn3nYwInNVW6/Doi9TcaW8Fv09nfDmtBAIAi8bJyKSQruKTkJCAubNm4crV640uU8QBF6yTVbtzf+cRsqFq3BS2mDjnHB0sZNLHYmIyGq1a4zOM888gxkzZqCgoAA6na7RF0sOWbMfjuXh09/PAwDWzgxDgJuDtIGIiKxcu4pOUVERYmJi4OHh0dF5iMxWRmEZln13EgDw9Ng+uDuI/z6IiKTWrqLzwAMPYM+ePR0cxbji4+MRFBSEiIgIqaOQBdBU1+HJTSmoqtNiVKAbnr27r9SRiIgIgCC2Y8nxyspKzJgxA927d0dISAhsbW0b3b948eIOC9jZNBoNVCoV1Go1nJ2dpY5DZkgURfzl3ynYmV6EHl27YPszI+HiYCd1LCIii2bo53e7BiNv3rwZO3fuhFKpxJ49expdUSIIglkVHaLbtXHvOexML4KdXIYPZg9hySEiMiHtKjqvvPIK4uLisGzZMshknM6erNeBrCt4+5eGSQFXTB2IUN+u0gYiIqJG2tVSamtrMWvWLJYcsmr516rwzOaj0InAjHAfPBTpK3UkIiL6g3Y1lfnz52PLli0dnYXIbNTUa/HUF6korajFQG9nvHZ/MCcFJCIyQe06daXVarFmzRr88ssvGDRoUJPByGvXru2QcESm6rUd6TiWew2qLrbYMDscSltOCkhEZIraVXROnjyJwYMHAwDS0tIa3ce/asnSfZdyCZsOXYQgAO/OCoOfq73UkYiIqAXtKjq7d+/u6BxEZuFUvhp/3dowKeDiuwIxtr+7xImIiKg1HE1MZCB1ZR0WbkpFTb0OY/p1x5JxgVJHIiKiWzD4iM706dPx6aefwtnZGdOnT2913++///62gxGZEp1ORMzXx3CxtBI+3brg3VlhkMl4mpaIyNQZXHRUKpV+/I1Kpeq0QESmKH53FhLPFMPORoaNc8LR1Z6TAhIRmYM2LQGxcuVKPP/887C3t5zBl1wCgm5l39nLmP9JEkQRWPPAIMwcyvlyiIikZujnd5vG6MTFxaG8vPy2w5kCLupJhsgtrcTir45CFIGHIn1ZcoiIzEybjujIZDIUFhbC3d1yrjThER1qSXWdFjM2HsTJPDUG+ajw9V+iOF8OEZGJ6JQjOgDnySHrEbf9FE7mqdHV3hYfzB7CkkNEZIbaPI9O3759b1l2SktL2x2IyBR8nZyLzUm5EARg3YOD4dPNcsalERFZkzYXnbi4OF51RRYtLU+Nv/3QMOP3c3f3xZ19u0uciIiI2qvNRefBBx+0qDE6RDe7WlGLJzeloLZeh/ED3PHUmD5SRyIiotvQpjE6HJ9DlkyrE7F0yzFculoFf1d7vDOTkwISEZm7NhWdNlygRWR21iVmYu/Zy1DayrBhdjhUXWyljkRERLepTaeudDpdZ+UgktTuM8V4LzETAPDG/SEI8uZUA0REloCLepLVu1hSiSVfHQUAzL3DH38K95E4ERERdZQ2D0YmMndanYiknFIUl1Wjq70tVv3nDDTV9Qjz7Yq/3TtA6nhERNSBWHTIqiSkFSBuezoK1NWNtjsqbLBhzhAobDgpIBGRJeGpK7IaCWkFWLgptUnJAYDymnocz71m/FBERNSpWHTIKmh1IuK2p6Ol6wYFAHHb06HV8cpCIiJLwqJDViEpp7TZIzk3iAAK1NVIyuHyJUREloRFh6xCcVnLJac9+xERkXmw2qITHx+PoKAgRERESB2FjMDdSdmh+xERkXmw2qKzaNEipKenIzk5WeooZASRPV3gpWq5xAgAvFRKRPZ0MV4oIiLqdFZbdMi6yGUCHhvVq9n7bqxmFRsdBDnXtiIisigsOmQVRFHEnoxiAIDCpvGPvadKiQ1zhmBSsJcU0YiIqBNxwkCyCnsyLuO3zCuwk8vw85JRKNLUoLisGu5ODaereCSHiMgyseiQxavT6vD6T+kAgAUjAtCruyN6dXeUOBURERkDT12Rxfvi0AVkX66Aq4MdFt3VR+o4RERkRCw6ZNHUlXV4NzETAPDs3X3hrLSVOBERERkTiw5ZtPcSM3Gtsg79PJzwYISv1HGIiMjIWHTIYp27XI7PD54HAPzt3gGwkfPHnYjI2vA3P1msN/9zGvU6EXf1d8eowO5SxyEiIgmw6JBFOpB1Bf89XQwbmYC/3jNA6jhERCQRFh2yOFqdiNd2NFxOPucOf/Rx56XkRETWikWHLM7XR3JxprAMqi62WDIuUOo4REQkIRYdsihl1XV4Z2cGAGDJuEB0c7CTOBEREUmJRYcsSvzubFwpr0UvNwfMjfKXOg4REUmMRYcsRm5pJT7enwMA+Os9A2DLy8mJiKwePwnIYqz6+QxqtTqM6OOKcQPcpY5DREQmgEWHLELy+VL8dLIAMgH425QgCAJXIyciIhYdsgC6my4nnxXhhwFezhInIiIiU2G1RSc+Ph5BQUGIiIiQOgrdpq1H83DikhqOChvE3N1X6jhERGRCBFEURalDSEmj0UClUkGtVsPZmUcCzE1lbT3G/n0PijQ1eGlSfywc01vqSEREZASGfn5b7REdsgz/3HsORZoa+Lp0wYIRAVLHISIiE8OiQ2arQF2Ff+7LBgC8PHkAlLZyiRMREZGpYdEhs/V2Qgaq63SIDHDB5GBPqeMQEZEJYtEhs3Qs9xq+P5oHAPjbvQN4OTkRETWLRYfMjiiKeP365eTTh/TAIJ+u0gYiIiKTxaJDZuenkwU4cuEqutjK8eLE/lLHISIiE8aiQ2aluk6LVT+fAQA8Obo3PFVKiRMREZEpY9Ehs/LxgRxculoFL5UST9zZS+o4RERk4lh0yGwUl1UjflcWAODFSf3QxY6XkxMRUetYdMhsrN15FhW1WoT6qHBfaA+p4xARkRlg0SGzkJ6vwZYjuQCAV6ODIJPxcnIiIro1Fh0yeaIo4vWf0iGKwL2DvBDu7yJ1JCIiMhMsOmTy/nu6GL9nl8DORoZlk3k5ORERGY5Fh0xabb0Ob/zUMDngYyN7wqebvcSJiIjInLDokEn7/OB5nC+phJujAk+N7SN1HCIiMjMsOmSyrlbUYl1iJgDghYl94aiwkTgRERGZGxYdMlnv/vcsNNX1CPJyxgPhvlLHISIiM8SiQyYpq7gMmw5fBNCwOrmcl5MTEVE7sOiQSXr9p9PQ6kTcHeSB4b3dpI5DRERmikWHTM7es5exJ+MybOUC/nrPAKnjEBGRGWPRIZNSr9Xh9R0Nl5PPjwpATzcHiRMREZE5Y9Ehk7I5OReZxeXoZm+LZ8YFSh2HiIjMHIsOmQx1VR3W7swAADx7d1+outhKnIiIiMwdiw6ZjPW7MnG1sg593B3xcKSf1HGIiMgCsOiQSTh/pQKf/n4eAPC3KQNgI+ePJhER3T5+mpBJeOvn06jTihjdtzvG9HOXOg4REVkIFh2S3MHsEvxyqghymYC/TeHl5ERE1HGstujEx8cjKCgIERERUkexalqdiNeuX07+cKQfAj2cJE5ERESWRBBFUZQ6hJQ0Gg1UKhXUajWcnZ2ljmN1vk7OxYvfnYCT0gZ7XxgLFwc7qSMREZEZMPTz22qP6JD0ymvq8fb1y8mXjAtkySEiog7HokOS2bgnG5fLahDgao95UQFSxyEiIgvEokOSuHS1Ev/67RwA4OV7BsDOhj+KRETU8fjpQpJYnZCBmnod7ujlgglBHlLHISIiC2UjdQCyDlqdiKScUhSXVeNaZR22H8+HIADL7w2CIAhSxyMiIgvFokOdLiGtAHHb01Ggrm60fXgvVwz0VkmUioiIrAFPXVGnSkgrwMJNqU1KDgAcyC5BQlqBBKmIiMhasOhQp9HqRMRtT0dLEzUJAOK2p0Ors+qpnIiIqBOx6FCnScopbfZIzg0igAJ1NZJySo0XioiIrAqLDnWa4rKWS0579iMiImorFh3qNO5Oyg7dj4iIqK1YdKjTRPZ0gZeq5RIjAPBSKRHZ08V4oYiIyKqw6FCnkcsE/PWeAc3ed2PmnNjoIMhlnEeHiIg6B4sOdarC64OR/9hlPFVKbJgzBJOCvSRIRURE1oITBlKnKdZU473ETADAm9ND4O/igOKyarg7NZyu4pEcIiLqbCw61GlW/XwG5TX1CPPtipnhvpCx2BARkZHx1BV1iiPnS/H90TwIAhA3dSBLDhERSYJFhzqcVifi1R9OAQBmDfVFqG9XaQMREZHVYtGhDvdl0kWkF2jgrLTBCxP7SR2HiIisGIsOdairFbV4Z2cGAOC5Cf3g6qiQOBEREVkzFh3qUG/vzMC1yjr093TC7GF+UschIiIrx6JDHSYtT43NSRcBACvvC4aNnD9eREQkLX4SUYfQ6US8+kMaRBG4L8ybyzoQEZFJYNGhDrH1aB5SL16Dg528xWUfiIiIjI1Fh26bproOb/18BgDwzLhAeDhzNXIiIjINLDp029b9NxNXymvQy80Bj47oKXUcIiIiPRYdui2ZRWX49PfzAIDYqQNhZ8MfKSIiMh38VKJ2E0URK7afQr1OxIQgD4zu213qSERERI2w6FC7/ZxWiANZJVDYyLD83iCp4xARETXBokPtUlWrxes70gEAT47uDV8Xe4kTERERNcWiQ+3ywZ4s5Kur0aNrFywc01vqOERERM1i0aE2u1BSgX/uOwcAWH5vEJS2cokTERERNY9Fh9rstR3pqK3XYVSgGyYO9JA6DhERUYtYdKhNdp8pxn9PF8NGJiA2eiAEQZA6EhERUYtYdMhgNfVaxG0/BQB4dGRP9HF3lDgRERFR61h0yGAf/ZaD8yWVcHdS4Jm7+kgdh4iI6JZYdMggBeoqrN+VBQB4+Z7+cFLaSpyIiIjo1lh0yCBv/HQaVXVaRAR0w/1hPaSOQ0REZBAWHbqlg9kl2HGiADIBWDGVA5CJiMh8sOhQq+q1Oqz4sWEA8uxh/hjorZI4ERERkeFYdKhV/z50ARlFZehmb4vnJvSVOg4REVGbsOhQi66U12Dtr2cBAC9M7I+u9nYSJyIiImobiyg6O3bsQL9+/RAYGIiPPvpI6jgWY03CGZRV1yO4hzNmRfhKHYeIiKjNbKQOcLvq6+sRExOD3bt3Q6VSITw8HNOmTYOrq6vU0cza0YtX8fWRSwCAuKnBkMs4AJmIiMyP2R/RSUpKwsCBA9GjRw84Ojpi8uTJ2Llzp9SxzJpOJyL2+gDkPw3xQbh/N4kTERERtY/kRWffvn2Ijo6Gt7c3BEHAtm3bmuwTHx+PgIAAKJVKDBs2DElJSfr78vPz0aPH/+Z16dGjB/Ly8owR3WJ9fSQXJy6p4aSwwUuT+0kdh4iIqN0kLzoVFRUIDQ1FfHx8s/dv2bIFMTExiI2NRWpqKkJDQzFx4kQUFxe36/Vqamqg0WgafdH/qCvrsOaXDADAkvGBcHdSSpyIiIio/SQvOpMnT8brr7+OadOmNXv/2rVr8fjjj2PBggUICgrCxo0bYW9vj48//hgA4O3t3egITl5eHry9vVt8vbfeegsqlUr/5evLQbY3W/trBkorahHo7oj5wwOkjkNERHRbJC86ramtrUVKSgrGjx+v3yaTyTB+/HgcPHgQABAZGYm0tDTk5eWhvLwcP//8MyZOnNjic7788stQq9X6r9zc3E7/PszF6QIN/n3oAgAgbupA2MpN+seDiIjolkz6qqsrV65Aq9XCw8Oj0XYPDw+cOXMGAGBjY4N33nkHY8eOhU6nw4svvtjqFVcKhQIKhaJTc5sjURQR+8Mp6ERgSogXhvdxkzoSERHRbTPpomOoqVOnYurUqVLHMGs/Hs9H0vlSdLGV469TBkgdh4iIqEOY9LkJNzc3yOVyFBUVNdpeVFQET09PiVJZnvKaerz5n9MAgEVje6NH1y4SJyIiIuoYJl107OzsEB4ejsTERP02nU6HxMREREVFSZjMsry/KxNFmhr4u9rjsVG9pI5DRETUYSQ/dVVeXo6srCz97ZycHBw7dgwuLi7w8/NDTEwM5s+fj6FDhyIyMhLvvvsuKioqsGDBAglTW47sy+X4eH8OAODVe4OgtJVLnIiIiKjjSF50jhw5grFjx+pvx8TEAADmz5+PTz/9FLNmzcLly5fx6quvorCwEGFhYUhISGgyQLmt4uPjER8fD61We1vPY85EUUTc9nTUaUXc1d8d4wbc3ntKRERkagRRFEWpQ0hJo9FApVJBrVbD2dlZ6jhGtfNUIZ74dwrs5DLsfPZOBLg5SB2JiIjIIIZ+fpv0GB3qPNV1WqzckQ4AePzOniw5RERkkVh0rNQ/957DpatV8FIpsWhsH6njEBERdQoWHSuUW1qJD/Y0DAB/ZcoA2NtJPlSLiIioU7DoWKE3fjqNmnodonq5YkqIl9RxiIiIOg2LjpX5LfMyEk4VQi4TsGLqQAiCIHUkIiKiTsOiY0Vq63VY8eMpAMC8KH/083SSOBEREVHn4uAMC6fViUjKKUVxWTWSckqQfbkCbo52WDq+r9TRiIiIOp3VFh1rmDAwIa0AcdvTUaCubrR9cogXVF1sJUpFRERkPJww0EInDExIK8DCTalo7v9cAcCGOUMwKZgDkYmIyDxxwkArptU1LO3QWoON254Orc6qOy4REVkBFp1OoNWJOJhdgh+O5eFgdolRC0V1nRY/nchvcrrqZiKAAnU1knJKjZaLiIhIClY7RqezNDcuxkulRGx00G2dKqqsrUexpgbFZTUo0lSjuKwGxWXV17dV6+9TV9UZ/JzFZS2XISIiIkvAotOBWhoXU6iuxsJNqU3GxYiiiPKa+obSomlcXIpu3L5+X3lNvcE5bGQC6g04iuTupDT4OYmIiMwRi04HaW1czI1tz319HD8ez8eVslp9mamqM/yqry62crg7K+DhpER3ZwXcnRRwd1LCw7nhf2/c56CQY9Sa3ShUV7c4GNlTpURkT5d2fKdERETmg0WngyTllLY6LgYAKmq1+M/JwibbHRU2cL+puLg7KeDh3FBcut9UZhwVNgbPZBwbHYSFm1IhAI3KjnDT/XIZZ0UmIiLLxqLTQQwd7zJtcA/c1d+9UZnpjEU1JwV7YcOcIU3GC3l2wHghIiIic2G1RaejJww0dLzLzKG+iOrt2iGveSuTgr1wd5CnfmZkd6eG01U8kkNERNaCEwZ20ISBWp2Ikat33XJczP6X7mLRICIiuk2cMNDI5DIBsdFBAP43DuYGjoshIiKSBotOB7oxLsZT1fg0lqdKySUXiIiIJGC1Y3Q6C8fFEBERmQ4WnU4glwlGG3BMRERELeOpKyIiIrJYLDpERERksVh0iIiIyGKx6BAREZHFYtEhIiIii2W1RSc+Ph5BQUGIiIiQOgoRERF1Ei4B0UFLQBAREZHxcAkIIiIisnosOkRERGSxrH5m5Btn7jQajcRJiIiIyFA3PrdvNQLH6otOWVkZAMDX11fiJERERNRWZWVlUKlULd5v9YORdTod8vPz4eTkBEGwzIU3NRoNfH19kZubywHX1/E9aR7fl6b4njTF96R5fF+a6sz3RBRFlJWVwdvbGzJZyyNxrP6Ijkwmg4+Pj9QxjMLZ2Zn/+P6A70nz+L40xfekKb4nzeP70lRnvSetHcm5gYORiYiIyGKx6BAREZHFYtGxAgqFArGxsVAoFFJHMRl8T5rH96UpvidN8T1pHt+XpkzhPbH6wchERERkuXhEh4iIiCwWiw4RERFZLBYdIiIislgsOkRERGSxWHQs1FtvvYWIiAg4OTnB3d0d999/PzIyMqSOZVJWrVoFQRCwdOlSqaNILi8vD3PmzIGrqyu6dOmCkJAQHDlyROpYktFqtVi+fDl69uyJLl26oHfv3njttdduuaaOpdm3bx+io6Ph7e0NQRCwbdu2RveLoohXX30VXl5e6NKlC8aPH4/MzExpwhpJa+9JXV0dXnrpJYSEhMDBwQHe3t6YN28e8vPzpQtsJLf6WbnZk08+CUEQ8O677xolG4uOhdq7dy8WLVqEQ4cO4ddff0VdXR0mTJiAiooKqaOZhOTkZPzzn//EoEGDpI4iuatXr2LEiBGwtbXFzz//jPT0dLzzzjvo1q2b1NEks3r1amzYsAHr16/H6dOnsXr1aqxZswbvv/++1NGMqqKiAqGhoYiPj2/2/jVr1mDdunXYuHEjDh8+DAcHB0ycOBHV1dVGTmo8rb0nlZWVSE1NxfLly5Gamorvv/8eGRkZmDp1qgRJjetWPys3bN26FYcOHYK3t7eRkgEQySoUFxeLAMS9e/dKHUVyZWVlYmBgoPjrr7+Ko0ePFpcsWSJ1JEm99NJL4siRI6WOYVKmTJkiPvroo422TZ8+XZw9e7ZEiaQHQNy6dav+tk6nEz09PcW3335bv+3atWuiQqEQN2/eLEFC4/vje9KcpKQkEYB44cIF44QyAS29L5cuXRJ79OghpqWlif7+/uI//vEPo+ThER0roVarAQAuLi4SJ5HeokWLMGXKFIwfP17qKCbhxx9/xNChQzFjxgy4u7tj8ODB+Ne//iV1LEkNHz4ciYmJOHv2LADg+PHj2L9/PyZPnixxMtORk5ODwsLCRv+OVCoVhg0bhoMHD0qYzLSo1WoIgoCuXbtKHUVSOp0Oc+fOxQsvvICBAwca9bWtflFPa6DT6bB06VKMGDECwcHBUseR1FdffYXU1FQkJydLHcVknDt3Dhs2bEBMTAz++te/Ijk5GYsXL4adnR3mz58vdTxJLFu2DBqNBv3794dcLodWq8Ubb7yB2bNnSx3NZBQWFgIAPDw8Gm338PDQ32ftqqur8dJLL+Ghhx6y+kU+V69eDRsbGyxevNjor82iYwUWLVqEtLQ07N+/X+ooksrNzcWSJUvw66+/QqlUSh3HZOh0OgwdOhRvvvkmAGDw4MFIS0vDxo0brbbofP311/jiiy/w5ZdfYuDAgTh27BiWLl0Kb29vq31PqG3q6uowc+ZMiKKIDRs2SB1HUikpKXjvvfeQmpoKQRCM/vo8dWXhnn76aezYsQO7d++Gj4+P1HEklZKSguLiYgwZMgQ2NjawsbHB3r17sW7dOtjY2ECr1UodURJeXl4ICgpqtG3AgAG4ePGiRImk98ILL2DZsmV48MEHERISgrlz5+LZZ5/FW2+9JXU0k+Hp6QkAKCoqarS9qKhIf5+1ulFyLly4gF9//dXqj+b89ttvKC4uhp+fn/5374ULF/Dcc88hICCg01+fR3QslCiKeOaZZ7B161bs2bMHPXv2lDqS5MaNG4eTJ0822rZgwQL0798fL730EuRyuUTJpDVixIgmUw+cPXsW/v7+EiWSXmVlJWSyxn8HyuVy6HQ6iRKZnp49e8LT0xOJiYkICwsDAGg0Ghw+fBgLFy6UNpyEbpSczMxM7N69G66urlJHktzcuXObjImcOHEi5s6diwULFnT667PoWKhFixbhyy+/xA8//AAnJyf9OXOVSoUuXbpInE4aTk5OTcYoOTg4wNXV1arHLj377LMYPnw43nzzTcycORNJSUn48MMP8eGHH0odTTLR0dF444034Ofnh4EDB+Lo0aNYu3YtHn30UamjGVV5eTmysrL0t3NycnDs2DG4uLjAz88PS5cuxeuvv47AwED07NkTy5cvh7e3N+6//37pQney1t4TLy8vPPDAA0hNTcWOHTug1Wr1v3tdXFxgZ2cnVexOd6uflT8WPltbW3h6eqJfv36dH84o13aR0QFo9uuTTz6ROppJ4eXlDbZv3y4GBweLCoVC7N+/v/jhhx9KHUlSGo1GXLJkiejn5ycqlUqxV69e4iuvvCLW1NRIHc2odu/e3ezvkfnz54ui2HCJ+fLly0UPDw9RoVCI48aNEzMyMqQN3clae09ycnJa/N27e/duqaN3qlv9rPyRMS8vF0TRyqb6JCIiIqvBwchERERksVh0iIiIyGKx6BAREZHFYtEhIiIii8WiQ0RERBaLRYeIiIgsFosOERERWSwWHSIiIrJYLDpEZHLOnz8PQRBw7NgxqaPonTlzBnfccQeUSqV+bac/GjNmDJYuXdrq8wQEBODdd9/t8HxE1DwWHSJq4pFHHoEgCFi1alWj7du2bYMgCBKlklZsbCwcHByQkZGBxMTEdj9PcnIynnjiCf1tQRCwbdu2DkhIRM1h0SGiZimVSqxevRpXr16VOkqHqa2tbfdjs7OzMXLkSPj7+9/WitTdu3eHvb19ux9PRG3DokNEzRo/fjw8PT3x1ltvtbjPihUrmpzGeffddxEQEKC//cgjj+D+++/Hm2++CQ8PD3Tt2hUrV65EfX09XnjhBbi4uMDHxweffPJJk+c/c+YMhg8fDqVSieDgYOzdu7fR/WlpaZg8eTIcHR3h4eGBuXPn4sqVK/r7x4wZg6effhpLly6Fm5sbJk6c2Oz3odPpsHLlSvj4+EChUCAsLAwJCQn6+wVBQEpKClauXAlBELBixYoW35P6+no8/fTTUKlUcHNzw/Lly3HzkoI3n7q68T5NmzYNgiDobx8/fhxjx46Fk5MTnJ2dER4ejiNHjrT4mkTUMhYdImqWXC7Hm2++iffffx+XLl26refatWsX8vPzsW/fPqxduxaxsbG499570a1bNxw+fBhPPvkk/vKXvzR5nRdeeAHPPfccjh49iqioKERHR6OkpAQAcO3aNdx1110YPHgwjhw5goSEBBQVFWHmzJmNnuOzzz6DnZ0dDhw4gI0bNzab77333sM777yDv//97zhx4gQmTpyIqVOnIjMzEwBQUFCAgQMH4rnnnkNBQQGef/75Fr/Xzz77DDY2NkhKSsJ7772HtWvX4qOPPmp23+TkZADAJ598goKCAv3t2bNnw8fHB8nJyUhJScGyZctga2trwDtNRE0YZY10IjIr8+fPF++77z5RFEXxjjvuEB999FFRFEVx69at4s2/NmJjY8XQ0NBGj/3HP/4h+vv7N3ouf39/UavV6rf169dPHDVqlP52fX296ODgIG7evFkURVHMyckRAYirVq3S71NXVyf6+PiIq1evFkVRFF977TVxwoQJjV47NzdXBCBmZGSIoiiKo0ePFgcPHnzL79fb21t84403Gm2LiIgQn3rqKf3t0NBQMTY2ttXnGT16tDhgwABRp9Ppt7300kvigAED9Lf9/f3Ff/zjH/rbAMStW7c2eh4nJyfx008/vWVuIro1HtEholatXr0an332GU6fPt3u5xg4cCBksv/9uvHw8EBISIj+tlwuh6urK4qLixs9LioqSv/fNjY2GDp0qD7H8ePHsXv3bjg6Ouq/+vfvD6BhPM0N4eHhrWbTaDTIz8/HiBEjGm0fMWJEu77nO+64o9GA7aioKGRmZkKr1Rr8HDExMXjssccwfvx4rFq1qtH3Q0Rtw6JDRK268847MXHiRLz88stN7pPJZI3GnwBAXV1dk/3+eNpFEIRmt+l0OoNzlZeXIzo6GseOHWv0lZmZiTvvvFO/n4ODg8HPaSpWrFiBU6dOYcqUKdi1axeCgoKwdetWqWMRmSUWHSK6pVWrVmH79u04ePBgo+3du3dHYWFho7LTkXPfHDp0SP/f9fX1SElJwYABAwAAQ4YMwalTpxAQEIA+ffo0+mpLuXF2doa3tzcOHDjQaPuBAwcQFBTU5syHDx9u8j0EBgZCLpc3u7+trW2zR3v69u2LZ599Fjt37sT06dObHaxNRLfGokNEtxQSEoLZs2dj3bp1jbaPGTMGly9fxpo1a5CdnY34+Hj8/PPPHfa68fHx2Lp1K86cOYNFixbh6tWrePTRRwEAixYtQmlpKR566CEkJycjOzsbv/zyCxYsWNCm00RAw6Dn1atXY8uWLcjIyMCyZctw7NgxLFmypM2ZL168iJiYGGRkZGDz5s14//33W32egIAAJCYmorCwEFevXkVVVRWefvpp7NmzBxcuXMCBAweQnJysL3hE1DYsOkRkkJUrVzY5tTRgwAB88MEHiI+PR2hoKJKSklq9IqmtVq1ahVWrViE0NBT79+/Hjz/+CDc3NwDQH4XRarWYMGECQkJCsHTpUnTt2rXReCBDLF68GDExMXjuuecQEhKChIQE/PjjjwgMDGxz5nnz5qGqqgqRkZFYtGgRlixZ0miCwD9655138Ouvv8LX1xeDBw+GXC5HSUkJ5s2bh759+2LmzJmYPHky4uLi2pyFiABB/OMJdiIiIiILwSM6REREZLFYdIiIiMhisegQERGRxWLRISIiIovFokNEREQWi0WHiIiILBaLDhEREVksFh0iIiKyWCw6REREZLFYdIiIiMhisegQERGRxfp/yuYNB1LqIS0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "ax.set_xlabel(\"Number of bits\")\n", + "ax.set_ylabel(\"Time (in s)\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "files = [i for i in range(1, 15)]\n", + "times = []\n", + "\n", + "cur = open(\"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/gamma/bit3.txt\")\n", + "a = cur.readlines()\n", + "for i in range(0, len(a)):\n", + " cur2 = a[i]\n", + " times.append(float(cur2.split()[0]))\n", + " # print(i)\n", + " # stan_iter = stan_iterations(f\"/space/poorvagarg/benchmarks_stan/hmm_slicstan/results_{i}.txit\")\n", + " # iterations.append(stan_iter)\n", + "ax.plot(files, times, marker = \"o\")\n", + "# ax.legend([\"Stan\", \"Dice\"])\n", + "fig.savefig(\"gamma_3_2.png\", bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYn0lEQVR4nO3deVhUZf8G8HtmWIZ1ZJFNURBXBEFBzS03FM3IpdTKXMvejErFFm1DLHOprMxJ263XfuVbKWUapqiZpoEiKqLigorIpgjDItvM+f1BTE4gssxwZpj7c11z1Zx5OPOdUzK359kkgiAIICIiIjJDUrELICIiIhILgxARERGZLQYhIiIiMlsMQkRERGS2GISIiIjIbDEIERERkdliECIiIiKzxSBEREREZotBiIiIiMwWgxARmZXi4mK4ubnhm2++EbuUelVWVsLb2xsfffSR2KUQtWoMQkRkVj744AM4ODjg4YcfvmObuXPnQiKR4P7779f7+8fHx2POnDno2rUrbG1t0alTJzzxxBPIysrSaWdpaYmoqCgsX74cZWVleq+DiKpJuNcYEZmLyspKtGvXDgsXLsSSJUvqbHPkyBEMGDAAFhYWGDlyJH755Re91hAaGor8/HxMnjwZXbp0wcWLF7Fu3TrY2toiOTkZHh4e2rYFBQVwd3fH+vXrMWfOHL3WQUTVGISIyGxs3boVkyZNwvnz5+Hn51frdUEQMGjQIPTo0QPx8fEICAjQexDav38/Bg8eDKlUqnNs6NCheOWVV/Dmm2/qtI+IiEBhYSH279+v1zqIqBq7xohIrzIzM/H444/Dy8sL1tbW8PX1xbx581BRUaFtU1BQgAULFsDb2xvW1tbo3LkzVq1aBY1GA6A6kAwfPhxt27ZFbm6u9ucqKioQGBgIPz8/lJSUAACWLl0KiUSCM2fOYMqUKXB0dISLiwvmz59fq0spNjYWPj4+dYYgAPjvf/+LlJQULF++XN+XRevee+/VCUE1x5ydnXH69Ola7UeNGoUDBw4gPz/fYDURmTMLsQsgotbj2rVr6NevHwoKCvDkk0+ie/fuyMzMxA8//IDS0lJYWVmhtLQUQ4cORWZmJv7zn/+gQ4cO+PPPP7FkyRJkZWXh/fffh0QiwRdffIFevXrhqaeewpYtWwAA0dHROHXqFPbt2wc7Ozud954yZQp8fHywYsUKHD58GGvXrsXNmzfx9ddfa9v8+eef6NOnT521FxUV4aWXXsLLL7+s0z3VEoqLi1FcXAxXV9dar4WEhEAQBPz5558GGbNEZPYEIiI9mTFjhiCVSoXExMRar2k0GkEQBOGNN94Q7OzshLS0NJ3XFy9eLMhkMuHKlSvaYx9//LEAQNi0aZNw+PBhQSaTCQsWLND5uejoaAGA8MADD+gcf/rppwUAwvHjxwVBEITKykpBIpEIixYtqrP2559/XvD19RXKysoEQRCEjh07CuPGjWvkFWiaN954QwAgxMfH13rt2rVrAgBh1apVLVILkblh1xgR6YVGo0FsbCwiIiIQGhpa63WJRAIA+P777zFkyBA4OTnh+vXr2kdYWBjUarXOWJgnn3wS4eHhePbZZzF9+nT4+fnhrbfeqvP9IyMjdZ4/++yzAIAdO3YAAPLz8yEIApycnGr9bFpaGj744AO8/fbbsLa2btoFaKL9+/cjJiYGU6ZMwYgRI2q9XlPv9evXW7QuInPBrjEi0ou8vDyoVCoEBATU2+7cuXM4ceIE2rZtW+frt48JAoDPP/8cfn5+OHfuHP7880/Y2NjU+XNdunTRee7n5wepVIpLly7pHBfqmB8yf/58DBw4EA8++GC9tTdURUVFrTE9bdu2hUwm0zl25swZTJw4EQEBAfjss8/qPFdNvTVBkoj0i0GIiFqURqPBqFGj8OKLL9b5eteuXXWe79u3D+Xl5QCAkydPYsCAAQ16n38HB2dnZ0gkEty8eVPn+J49exAXF4ctW7bohKaqqircunULly5dgrOzMxwdHRv0vkD1WKThw4frHEtPT4ePj4/2eUZGBkaPHg2FQoEdO3bAwcGhznPV1FvX+CEiaj4GISLSi7Zt28LR0REpKSn1tvPz80NxcTHCwsLues6srCw8++yzGD16NKysrPD8888jPDwcHTt2rNX23Llz8PX11T4/f/48NBqNNnxYWFjAz88P6enpOj935coVAMCkSZNqnTMzMxO+vr547733sGDBgrvWWyMoKAi7du3SOXb7AOwbN25g9OjRKC8vR3x8PDw9Pe94rpp6e/To0eD3J6KGYxAiIr2QSqWYMGECNm3ahCNHjtQaJyQIAiQSCaZMmYKlS5di586dCA8P12lTUFAAe3t7WFhU/2qaO3cuNBoNPv/8c8hkMvTs2ROPP/44du3aVeuOj1KpxOjRo7XPP/zwQwDA2LFjtccGDBiAffv26fzciBEjsHXr1lqf58knn0THjh3xyiuvIDAwsFHXwsnJ6Y5Br6SkBPfddx8yMzOxd+/eWl16/3b06FFIJJIG3wkjosbhgopEpDeZmZkIDQ2FSqXCk08+iR49eiArKwvff/89Dhw4gDZt2qC0tBRDhgzBiRMnMGvWLISEhKCkpAQnT57EDz/8gEuXLsHV1RVffvkl5syZg40bN2LmzJkAgG+++QaPPfYYlEolnn76aQDV6wjFxMQgMDAQPj4+GDNmDA4dOoRNmzbh0Ucf1dlT7Mcff8RDDz2Es2fP1uqC+zcfH586F1ScNWsWvvrqq1pdXQ01YcIE/PTTT5gzZ06t7jN7e3tMmDBB51hERAQKCgrwxx9/NPq9iKgBxJyyRkStz+XLl4UZM2YIbdu2FaytrYVOnToJkZGRQnl5ubZNUVGRsGTJEqFz586ClZWV4OrqKgwcOFB45513hIqKCiEjI0NQKBRCRERErfNPnDhRsLOzEy5evCgIwj/T51NTU4WHHnpIcHBwEJycnIRnnnlGuHXrls7PlpeXC66ursIbb7xx189xp+nzDz74oGBjYyPcvHmzkVfmn/MCqPPRsWNHnbYFBQWClZWV8NlnnzXpvYjo7nhHiIhMWs0doby8vAYNKH7jjTfw5Zdf4ty5c7VmcTWEu7s7ZsyYgbfffrsp5TbK+++/j9WrV+PChQt3nC1HRM3DdYSIyKwsXLgQxcXF+O677xr9s6dOncKtW7fw0ksvGaAyXZWVlVizZg1effVVhiAiA+JgaSIyK/b29rXWKmqonj17QqVS6bmiullaWmpntBGR4fCOEBEREZktjhEiIiIis8U7QkRERGS2GISIiIjIbHGwdD00Gg2uXbsGBwcHbnhIRERkIgRBQFFREby8vCCV1n/Ph0GoHteuXYO3t7fYZRAREVETZGRkoH379vW2YRCqR81u0BkZGY3aeZqIiIjEo1Kp4O3trf0erw+DUB2USiWUSiXUajUAwNHRkUGIiIjIxDRkWAunz9dDpVJBoVCgsLCQQYiIiMhENOb7m7PGiIiIyGwxCBEREZHZYhAiIiIis8UgRERERGaLQYiIiIjMFoMQERERmS0GISIiIjJbDEJ1UCqV8Pf3R9++fcUuhYiIiAyICyrWgwsqEhERGYZaIyAhPR+5RWVwc5Cjn68zZFL9bHDemO9vbrFBRERELSouJQsx21KRVVimPeapkCM6wh9jAjxbtBZ2jREREVGLiUvJwrxNSTohCACyC8swb1MS4lKyWrQeBiEiIiJqEWqNgJhtqahrTE7NsZhtqVBrWm7UDoMQERERtYiE9Pxad4JuJwDIKixDQnp+i9XEIEREREQtIrfoziGoKe30gUGIiIiIWoSVRcNih5uD3MCV/IOzxoiIiMjgEtLz8XpsSr1tJAA8FNVT6VsKgxAREREZjCAI+OyPdKyMOwO1RoCnQo6swjJIAJ1B0zUrCEVH+OttPaGGYNcYERERGYSqrBLzNiVh+Y7TUGsETOzdDvGLhmLDY33godDt/vJQyLH+sT4tvo4Q7wgRERGR3p3JVmHepiSkXy+BlUyK1yL88Vj/DpBIJBgT4IlR/h4GW1m6MRiEiIiISK+2JF3Fy1tPoqxSg3ZtbKCc1gfB3m102sikEgzwcxGnwNswCNVBqVRCqVRCrVaLXQoREZHJKKtUY9kvqfi/v64AAO7t2hbvTw2Gs52VyJXdGTddrQc3XSUiImqYjPxSRP5fEk5cLYREAswf2QXPjugiSncXN10lIiKiFrP3bC4Wbk5GQWkl2tha4oOHe2No17Zil9UgDEJERETUJGqNgA92p+HDvechCECQdxt8NK0P2rWxEbu0BmMQIiIiokbLL6nA/O+O4Y9z1wEA0+/piFfv7wFrC5nIlTUOgxARERE1StKVm4j8JglZhWWwsZRh5YOBGB/cTuyymoRBiIiIiBpEEAR8fegy3tyeikq1gE5t7bDhsRB0dXcQu7QmYxAiIiKiuyopr8LiLSex7fg1AMC4QE+seqgX7K1NO0qYdvVERERkcOdzi/DUpiSczy2GhVSCJff1wJxBPpBIWn5qvL4xCBEREdEdbTt+DS/9eAKlFWq4O1pD+WgfhPq03O7whsYgRERERLVUVGnw1o7T2PjnJQDAgE4uWPtIb7R1sBa3MD1jECIiIiIdWYW3EPlNEpKuFAAAnh7mh6hRXWEhk4pbmAEwCBEREZHWwfPX8dy3x3CjpAIOcgu8NyUYYf7uYpdlMAxCREREBI1GwEf7zmPNrjRoBKCnlyPWTwtBBxdbsUszKAYhIiIiM1dYWomF/0vGnjO5AICpod6IGd8TckvTWiW6KRiEiIiIzNjJq4WY981RXL15C9YWUrwxIQBTQr3FLqvFtL5RT/+SkZGBYcOGwd/fH7169cL3338vdklERESiEwQB3yZcwYMb/sTVm7fQwdkWW54eaFYhCDCDO0IWFhZ4//33ERwcjOzsbISEhOC+++6DnZ2d2KURERGJ4laFGq/GpuDHpKsAgLAe7nh3ShAUNpYiV9byWn0Q8vT0hKenJwDAw8MDrq6uyM/PZxAiIiKzdOl6CZ7adBRnsosglQAvhHfHf+7tBKnU9FeJbgqj7xrbv38/IiIi4OXlBYlEgtjY2FptlEolfHx8IJfL0b9/fyQkJNR5rqNHj0KtVsPb27xu+xEREQHAzlPZiPjwAM5kF8HV3gqbnuiPecP8zDYEASYQhEpKShAUFASlUlnn65s3b0ZUVBSio6ORlJSEoKAghIeHIzc3V6ddfn4+ZsyYgU8++aQlyiYiIhKNWiPg0IUb+Ck5E4cu3EB5pRordpzGf/57FEXlVQjt6ITtzw3BQD9XsUsVnUQQBEHsIhpKIpFg69atmDBhgvZY//790bdvX6xbtw4AoNFo4O3tjWeffRaLFy8GAJSXl2PUqFGYO3cupk+ffsfzl5eXo7y8XPtcpVLB29sbhYWFcHR0NMyHIiIi0qO4lCzEbEtFVmGZ9piVTIIKdfXX/RODffHS2O6wbIWrRNdQqVRQKBQN+v426atQUVGBo0ePIiwsTHtMKpUiLCwMhw4dAlA9Kn7WrFkYMWJEvSEIAFasWAGFQqF9sAuNiIhMSVxKFuZtStIJQQC0IWjuEF+8er9/qw5BjWXSV+L69etQq9Vwd9dd+tvd3R3Z2dkAgIMHD2Lz5s2IjY1FcHAwgoODcfLkyTrPt2TJEhQWFmofGRkZBv8MRERE+qDWCIjZlor6unl+OZEFtcZkOoJaRKufNTZ48GBoNJoGtbW2toa1devaVZeIiMxDQnp+rTtB/5ZVWIaE9HwM8HNpoaqMn0nfEXJ1dYVMJkNOTo7O8ZycHHh4eDT5vEqlEv7+/ujbt29zSyQiImoR1wpKG9Qut6j+sGRuTDoIWVlZISQkBPHx8dpjGo0G8fHxGDBgQJPPGxkZidTUVCQmJuqjTCIiIoNKvJSPd39La1BbNwe5gasxLUbfNVZcXIzz589rn6enpyM5ORnOzs7o0KEDoqKiMHPmTISGhqJfv354//33UVJSgtmzZ4tYNRERkeGpyiqxOu4MNh2+AgCQSoA7DQGSAPBQyNHP17nlCjQBRh+Ejhw5guHDh2ufR0VFAQBmzpyJjRs3YurUqcjLy8Prr7+O7OxsBAcHIy4urtYAaiIiotbkt1PZeP2nU8hWVXd1PdLPG6EdnfH898cBQGfQdM1yidER/pCZ8eKJdTGpdYRailKphFKphFqtRlpaGtcRIiIio5FbVIalP5/CjpPVs6N9XGzx1qRA7eKIda0j5KmQIzrCH2MCPEWpuaU1Zh0hBqF6NOZCEhERGZIgCPjfkQws334aqrIqyKQSPHlvJ8wf2QVyS5lOW7VGQEJ6PnKLyuDmUN0dZk53ghrz/W30XWNERETm7tL1EizZchKHLt4AAAS2U2Dlg4Ho6aWos71MKuEU+QZiECIiIjJSlWoNPvsjHe/vTkN5lQZySymeH90Nswb6wIKrQ+sFg1Adbh8jREREJIaTVwvx0o8nkJqlAgAM6eKK5RMC0cHFVuTKWheOEaoHxwgREVFLu1Whxnu70/DZHxehEYA2tpZ4bZw/JvVpB4nEfMb5NAfHCBEREZmgP87l4eWtJ5GRfwsA8ECQF16P8IerPbd/MhQGISIiIpHdLKnAm9tP48ekqwAAL4Ucb04MwIjuXBPP0BiEiIiIRCIIAradyELMz6dwo6QCEgkwc4APng/vBntrfkW3BF7lOnCwNBERGVpmwS28FpuCPWdyAQBd3e2x8sFe6NPBSeTKzAsHS9eDg6WJiEjf1BoBmw5fxuq4MyipUMNKJsUzIzrjqaF+sLLglHh94GBpIiIiI5SWU4TFP55A0pUCAEBoRyesfDAQnd0cxC3MjDEIERERGVh5lRrKvRewft95VKoF2Ftb4KWx3TGtXwdIzWjrC2PEIERERGRARy7lY/GWkzifWwwACOvhhjcmBMBTYSNyZQQwCBERERlEUVklVsedxX8PXwYAuNpbI+aBnrgv0IMLIxoRBqE6cNYYERE1x+7UHLwam4JsVRkAYEpoe7x8Xw+0sbUSuTL6N84aqwdnjRERUWPkFZVj6bZT2H4iCwDQ0cUWb00MxKDOriJXZl44a4yIiMhA1BoBCen5yC0qg5uDHP18nSGVAN8fvYrl20+j8FYlZFIJnhjiiwUju8LGSiZ2yVQPBiEiIqIGikvJQsy2VGQVlmmPtbW3hrOdJc7mVA+GDmjniJWTeiGgnUKsMqkRGISIiIgaIC4lC/M2JeHf40nyisuRV1wOS5kEL4R3w5xBvrCQcWFEU8EgREREdBdqjYCYbam1QtDtnGyt8PjgTpBxXSCTwshKRER0Fwnp+TrdYXXJLSpHQnp+C1VE+sIgVAelUgl/f3/07dtX7FKIiMgIZBXealC73KL6wxIZHwahOkRGRiI1NRWJiYlil0JERCL7PS0P7+w826C2bg5yA1dD+sYxQkRERHW4mFeM5dtPI/5MLgBAKgE0dxgkJAHgoaieSk+mhUGIiIjoNqqySqzbcx5fHkxHpVqAhVSCWQN90MPLEc//7zgA6AyarhkaHR3hz4HSJohBiIiICIBGI+D7oxl4e+dZXC+uAAAM69YWr93vD7+29gAAOytZrXWEPBRyREf4Y0yApyh1U/MwCBERkdk7cikfMdtScTKzEADQydUOr93vj+Hd3XTajQnwxCh/j1orS/NOkOliECIiIrN1reAWVv56Bj8fvwYAcLC2wPywLpgxwAdWFnXPJ5JJJRjg59KSZZIBMQgREZHZKatU4+PfL2L97+dRVqmBRAI83Ncbi0Z3g6u9tdjlUQtiECIiIrMhCAJ2nMzGWztOI7Ogem2gfj7OeD3Cn3uDmSkGoToolUoolUqo1WqxSyEiIj05da0QMdtStas/eynkWHJfD9zfyxMSCcf4mCuJIAj1bZ1i1lQqFRQKBQoLC+Ho6Ch2OURE1AQ3isvxzm9p+C7xCgQBkFtK8dRQP/znXj/YWMnELo8MoDHf37wjRERErVJFlQZfH7qED+LPoaisCgAQEeSFxWO7o10bG5GrI2PBIERERK3OvrO5WPZLKi7mlQAAeno5IjqiJ1d+ploYhIiIqNW4mFeMN7efxp6/t8VwtbfC86O7YXKoN9f6oToxCBERkclTlVXiw/hz+PLgJVRpqrfFmD3IB8+O7AJHuaXY5ZERYxAiIiKTpdYI+P5I9bYYN0qqt8UY0d0Nr4zrod0Wg6g+DEJERGSSEi/lI2bbKaRkqgAAndr+vS1GN7e7/CTRPxiEiIjIpGT+vS3GtpptMeQWmD+yC2YO9IGlrO5tMYjuhEGIiIhMwq0KNT7efwEbfr9w27YYHbBodFdui0FNxiBERERGQ60Rau3sLpUAv5zIwoodp3GtsAwA0M/XGa/fz20xqPkYhIiIyCjEpWQhZlsqsv4OO0D19Pc2NlY4n1cMAGjXxgYv39cD9wV6cFsM0gsGISIiEl1cShbmbUrCv/d8ul5cgevFFbCUSfDM8C548t5O3BaD9IqjyuqgVCrh7++Pvn37il0KEVGrp9YIiNmWWisE3c7J1grPjOjMEER6xyBUh8jISKSmpiIxMVHsUoiIWr2E9Hyd7rC65BaVa3eNJ9InBiEiIhJVSmZhg9rlFtUfloiagmOEiIhIFDXbYnx+IL1B7d0c5AauiMwRgxAREbUotUbAD0ert8W4Xly9LYa1hRTlVZo620sAeCjk3DmeDIJBiIiIWsyRS/lYWse2GOWVaszblAQAOoOmaybIR0f4c/d4MggGISIiMriswltYseMMfq7ZFsPaAvPDumDGAB9YWVQPV13/WJ9a6wh5KOSIjvDHmABPUeqm1o9BiIiIDKasUo1P9l/E+n0XcKtS/fe2GN5YNLpbrW0xxgR4YpS/R62VpXkniAyJQYiIiPROEAT8mpKN5dtPI7PgFgCgr48ToiN61rsthkwqwQA/l5Yqk4hBiIiI9Ot0lgox207h8MXqdX88FXIsua8HInp5clsMMjoMQkREpBf5JRV497ez+DbhCjRC9Uyw/wz1w7yhflwRmowWgxARETVLpVqDTYcv471daVCVVQEAxvXyxJKx3dHeyVbk6ojqxyBERERN9se5PCzblopzudW7w/fwdER0hD/u6cRxPmQaGISIiKjRLt8owRu/nMbu0zkAACdbSzwf3g0P9+3AWV5kUhiEiIiowYrLq7Buz3l8cSAdFWoNZFIJZgzoiAUju0Jhayl2eUSNxiBERER3pdEI2HIsE6viziCvqBwAMKSLK16/3x9d3B1Ero6o6cwiCE2cOBH79u3DyJEj8cMPP4hdDhGRSTl25SaWbkvF8YwCAICPiy1eHeePkT3cOB2eTJ5ZBKH58+djzpw5+Oqrr8QuhYjIZOSoyrDq1zPYciwTAGBnJcOzI7tg9iAfWFtwOjy1DmYRhIYNG4Z9+/aJXQYRkUkoq1Tji4PpWLfnPEor1ACAySHt8cKYbnBzkItcHZF+ScUu4G7279+PiIgIeHl5QSKRIDY2tlYbpVIJHx8fyOVy9O/fHwkJCS1fKBGRiRMEAb+dysbo9/ZjddxZlFao0btDG/wUOQhvTw5iCKJWyeiDUElJCYKCgqBUKut8ffPmzYiKikJ0dDSSkpIQFBSE8PBw5ObmtnClRETGTa0RcOjCDfyUnIlDF25ArRG0r6XlFGH65wl48r9HcSW/FO6O1nhvahB+fGoggrzbiFc0kYEZfdfY2LFjMXbs2Du+vmbNGsydOxezZ88GAGzYsAHbt2/HF198gcWLFzfqvcrLy1FeXq59rlKpmlY0EZGRiUvJQsy2VGQVlmmPeSrkeH50V5zMVOG/hy9DrRFgZSHF3CG+eHpYZ9hZG/1XBFGzmfT/5RUVFTh69CiWLFmiPSaVShEWFoZDhw41+nwrVqxATEyMPkskIhJdXEoW5m1KgvCv41mFZVj0/Qnt8zE9PfDyfT3QwYXbYpD5MPqusfpcv34darUa7u7uOsfd3d2RnZ2tfR4WFobJkydjx44daN++/R1D0pIlS1BYWKh9ZGRkGLR+IiJDU2sExGxLrRWCbmchleC/c/phw/QQhiAyOyZ9R6ihdu/e3aB21tbWsLa2NnA1REQtJyE9X6c7rC5VGgEWMpP+ezFRk5n0//murq6QyWTIycnROZ6TkwMPD48mn1epVMLf3x99+/ZtbolERKLKLao/BDW2HVFrY9JByMrKCiEhIYiPj9ce02g0iI+Px4ABA5p83sjISKSmpiIxMVEfZRIRiaahU945NZ7MldF3jRUXF+P8+fPa5+np6UhOToazszM6dOiAqKgozJw5E6GhoejXrx/ef/99lJSUaGeRERGZs36+zvBUyJFdWFbnOCEJAA+FHP18nVu6NCKjYPRB6MiRIxg+fLj2eVRUFABg5syZ2LhxI6ZOnYq8vDy8/vrryM7ORnBwMOLi4moNoCYiMkcyqQTREf54alNSrddqdgmLjvCHTMo9w8g8SQRBqG8ygVlSKpVQKpVQq9VIS0tDYWEhHB0dxS6LiKjJJn10EElXCnSOeSrkiI7wx5gAT3GKIjIQlUoFhULRoO9vBqF6NOZCEhEZK1VZJULf3I2KKg3emhgAO2sLuDlUd4fxThC1Ro35/jb6rjEiImqeuJRsVFRp0NnNHo/06wCJhOGHqIZJzxojIqK7+yk5EwAwsXc7hiCif2EQqgPXESKi1iJHVYY/L9wAADwQ5CVyNUTGh0GoDlxHiIhai5+Tr0EQgNCOTvB25vYZRP/GIERE1IrF/t0tNr53O5ErITJODEJERK3U+dwinLqmgoVUgvsDOUWeqC4MQkRErVTssWsAgGHd2sLJzkrkaoiME4NQHThYmohMnSAI/3SLBbNbjOhOGITqwMHSRGTqjl6+ias3b8He2gJhPbjlENGdMAgREbVCNXeDwnt6wMZKJnI1RMaLQYiIqJWpqNJg+4ksAMCE3lw7iKg+DEJERK3M/rQ83CytRFsHawz0cxW7HCKjxiBERNTK1HSLPRDkxU1Vie6CQagOnDVGRKaquLwKu0/nAAAmcLYY0V0xCNWBs8aIyFTtTMlGWaUGndraIaCdo9jlEBk9BiEiolakpltsQjB3midqCAYhIqJWIreoDAfPXwfAbjGihmIQIiJqJbYdz4JGAPp0aIMOLtxpnqghGISIiFqJn2q6xbjTPFGDMQgREbUCF/KKceJqIWRSCcZxp3miBmMQqgOnzxORqfnpWPXdoKFd28LF3lrkaohMB4NQHTh9nohMSfVO89cAAOODuaUGUWNYNPUHKysrkZ2djdLSUrRt2xbOzs76rIuIiBroWEYBruSXwtZKhlH+3GmeqDEadUeoqKgI69evx9ChQ+Ho6AgfHx/06NEDbdu2RceOHTF37lzeRSEiamGxx/7Zad7Wqsl/vyUySw0OQmvWrIGPjw++/PJLhIWFITY2FsnJyUhLS8OhQ4cQHR2NqqoqjB49GmPGjMG5c+cMWTcREQGoVGvwi3anec4WI2qsBv/VITExEfv370fPnj3rfL1fv36YM2cONmzYgC+//BJ//PEHunTpordCiYiotgPnriO/pAKu9lYY5OcidjlEJqfBQejbb79tUDtra2s89dRTTS6IiIgabuvf3WL39/KChYzzX4gaSy9/alQqFWJjY3H69Gl9nI6IiBqgpLwKu1L/3mme3WJETdKkIDRlyhSsW7cOAHDr1i2EhoZiypQp6NWrF3788Ue9FkhERHX7LTUbtyrV8HW1Q1B7hdjlEJmkJgWh/fv3Y8iQIQCArVu3QhAEFBQUYO3atXjzzTf1WqAYuKAiEZmC2GP/rB3EneaJmqZJQaiwsFC7blBcXBwefPBB2NraYty4ca1ithgXVCQiY5dXVI4/zuUB4E7zRM3RpCDk7e2NQ4cOoaSkBHFxcRg9ejQA4ObNm5DL5XotkIiIavvlxDVoBCDIuw18XO3ELofIZDVp5a0FCxZg2rRpsLe3R8eOHTFs2DAA1V1mgYGB+qyPiIjqULOlxkRuqUHULE0KQk8//TT69++PK1euYNSoUZBKq28sderUqVWMESIiMmbp10twPKMAMqkE9wcxCBE1R5PXYg8JCUFISIjOsXHjxjW7ICIiql/NlhqDO7vClTvNEzULV98iIjIhgiDgp+TqIDShN+8GETUXgxARkQk5frUQl26UwsZShtH+HmKXQ2TyGISIiExITbfY6J7usLPmTvNEzcUgRERkIqrUGvxyonq2GNcOItKPJv91oqCgAAkJCcjNzYVGo9F5bcaMGc0ujIiIdB04fx3XiyvgbGeFwV1cxS6HqFVoUhDatm0bpk2bhuLiYjg6Ouos7S6RSBiEiIgM4Ke/1w6K6OUJS+40T6QXTfqTtGjRIsyZMwfFxcUoKCjAzZs3tY/8/Hx910hEZPZKK6qw81Q2AGA8d5on0psmBaHMzEw899xzsLW11Xc9RoGbrhKRsdmVmoPSCjU6utiit3cbscshajWaFITCw8Nx5MgRfddiNLjpKhEZm5rZYuODuNM8kT41aYzQuHHj8MILLyA1NRWBgYGwtLTUef2BBx7QS3FERATcKC7H/nPXAbBbjEjfmhSE5s6dCwBYtmxZrdckEgnUanXzqiIiIq3tJ7Og1gjo1V4Bv7b2YpdD1Ko0KQj9e7o8EREZztaabjGuHUSkd5x/SURkxC7fKMGxKwWQSoCIIE+xyyFqdRp8R2jt2rV48sknIZfLsXbt2nrbPvfcc80ujIiI/lk7aFBnV7g5yEWuhqj1kQiCIDSkoa+vL44cOQIXFxf4+vre+YQSCS5evKi3AsWkUqmgUChQWFgIR0dHscshIjMjCAJGrvkdF/NK8O7kIDwY0l7skohMQmO+vxt8Ryg9Pb3OfyciIsM4mVmIi3klkFtKER7AneaJDIFjhIiIjFTssepusVH+HrDnTvNEBtHgILRy5UrcunWrQW3/+usvbN++vclFERGZO7VGwDbtTvNeIldD1Ho1OAilpqaiQ4cOePrpp/Hrr78iLy9P+1pVVRVOnDiBjz76CAMHDsTUqVPh4OBgkIKJiMzBnxeuI6+oHE62lri3a1uxyyFqtRp8r/Xrr7/G8ePHsW7dOjz66KNQqVSQyWSwtrZGaWkpAKB379544oknMGvWLMjlnN1ARNRUNWsHjeNO80QG1eBZY7fTaDQ4ceIELl++jFu3bsHV1RXBwcFwdXU1RI2i4awxIhLDrQo1Qt/chZIKNX6cNwAhHZ3FLonIpBhk1tjtpFIpgoODERwc3JQfJyKieuw+nYOSCjW8nW3Qp4OT2OUQtWqt/n7rL7/8gm7duqFLly747LPPxC6HiOiu/tlpvh13micysFY9H7OqqgpRUVHYu3cvFAoFQkJCMHHiRLi4uIhdGhFRnfJLKvB7WvVklAm9OVuMyNBa9R2hhIQE9OzZE+3atYO9vT3Gjh2L3377TeyyiIjuaPvJLFRpBAS0c0RnN86+JTI0ow5C+/fvR0REBLy8vCCRSBAbG1urjVKphI+PD+RyOfr374+EhATta9euXUO7dv/s1tyuXTtkZma2ROlERE3y09/dYhO40zxRi2hWEDp//jx27typXWixCRPQ6lVSUoKgoCAolco6X9+8eTOioqIQHR2NpKQkBAUFITw8HLm5uXqtg4ioJWTkl+LI5ZuQSICIIHaLEbWEJgWhGzduICwsDF27dsV9992HrKwsAMDjjz+ORYsW6a24sWPH4s0338TEiRPrfH3NmjWYO3cuZs+eDX9/f2zYsAG2trb44osvAABeXl46d4AyMzPh5XXnXy7l5eVQqVQ6DyKilvJTcvXvq4F+LnB35FpsRC2hSUFo4cKFsLCwwJUrV2Bra6s9PnXqVMTFxemtuPpUVFTg6NGjCAsL0x6TSqUICwvDoUOHAAD9+vVDSkoKMjMzUVxcjF9//RXh4eF3POeKFSugUCi0D29vb4N/DiIioPqOemxyzZYa7BYjailNCkK//fYbVq1ahfbt2+sc79KlCy5fvqyXwu7m+vXrUKvVcHd31znu7u6O7OxsAICFhQXeffddDB8+HMHBwVi0aFG9M8aWLFmCwsJC7SMjI8Ogn4GIqMapayqczy2GtYUUY7jTPFGLadL0+ZKSEp07QTXy8/NhbW3d7KL06YEHHsADDzzQoLbW1tZGVz8RmYeatYPCerjDQW4pcjVE5qNJd4SGDBmCr7/+WvtcIpFAo9Fg9erVGD58uN6Kq4+rqytkMhlycnJ0jufk5MDDg3+bIiLTodYI+Pl4dbfYeO40T9SimnRHaPXq1Rg5ciSOHDmCiooKvPjiizh16hTy8/Nx8OBBfddYJysrK4SEhCA+Ph4TJkwAUL0HWnx8PJ555plmnVupVEKpVEKtVuuhUiKi+h2+eAO5ReVoY2uJYd3cxC6HyKw06Y5QQEAA0tLSMHjwYIwfPx4lJSWYNGkSjh07Bj8/P70VV1xcjOTkZCQnJwMA0tPTkZycjCtXrgAAoqKi8Omnn+Krr77C6dOnMW/ePJSUlGD27NnNet/IyEikpqYiMTGxuR+BiOiuarrF7gv0hJWFUS/vRtTqNHmLDYVCgVdeeUWftdRy5MgRna62qKgoAMDMmTOxceNGTJ06FXl5eXj99deRnZ2N4OBgxMXF1RpATURkrMoq1fg1pXqCB2eLEbU8idDEVRDLyspw4sQJ5ObmQqPR6LzW0MHJxur2rrG0tDQUFhbC0dFR7LKIqBXafiILkf+XhHZtbPDHi8MhlXKTVaLmUqlUUCgUDfr+btIdobi4OMyYMQPXr1+v9ZpEIjH5sTWRkZGIjIzUXkgiIkOJ/XsRxfHBXgxBRCJoUmf0s88+i8mTJyMrKwsajUbnYeohiIiopRSUVmDf2eotgSb0ZrcYkRiaFIRycnIQFRXFsThERM2w/WQWKtUCeng6oqs7d5onEkOTgtBDDz2Effv26bkUIiLz8tOxmi01uHYQkViaNEZo3bp1mDx5Mv744w8EBgbC0lJ3FdTnnntOL8WJhesIEZGhXb1ZioRL+ZBIgAcYhIhE06RZY59//jmeeuopyOVyuLi4QCL5Z4CfRCLBxYsX9VqkWBoz6pyIqDE+2nceq+POYkAnF3z75D1il0PUqhh81tgrr7yCmJgYLF68GFIpF/8iImoMQRC0iyhO6M27QURialKKqaiowNSpUxmCiIia4HRWEdJyimElk2JMgKfY5RCZtSYlmZkzZ2Lz5s36roWIyCz89PfaQSN7uEFhw53micTUpK4xtVqN1atXY+fOnejVq1etwdJr1qzRS3Fi4WBpIjIUjUbAT8k1O81z7SAisTVpsPTt+3/VOqFEgj179jSrKGPBwdJEpG9/XriORz/9C45yCyS+GgZrC5nYJRG1OgYfLL13794mFUZEZO5q1g4a18uTIYjICHC0MxFRCymrVGNHShYAdosRGYsG3xGaNGkSNm7cCEdHR0yaNKnetlu2bGl2YURErc2+s7koKquCl0KOfj7OYpdDRGhEEFIoFNqFE1v7juwcLE1EhrD177WDIrjTPJHRaNRg6WXLluH555+Hra2tIWsyGhwsTUT6Ulhaib7Ld6NCrUHcgiHo7sHfKUSG0pjv70aNEYqJiUFxcXGziiMiMke/pmShQq1Bdw8HhiAiI9KoINSEmfZERIR/usU4SJrIuDR61tjtG6wSEdHdXSu4hb/S8wFwp3kiY9PodYS6du161zCUn5/f5IKIiFqbn49Xrx3U39cZ7drYiFwNEd2u0UEoJiam1c8aIyLSp392mme3GJGxaXQQevjhh+Hm5maIWowGp88Tkb6cyVbhTHYRrGRS3Med5omMTqPGCJnL+KDIyEikpqYiMTFR7FKIyMTF/r2lxrBubaGw5U7zRMaGs8aIiAxEoxHwc3J1t9hEdosRGaVGdY1pNBpD1UFE1OokXsrHtcIyOMgtMLx76x5SQGSquOkqEZGBxP59N2hsgAfkltxpnsgYMQgRERlAeZUa209U7zQ/gYsoEhktBiEiIgPYdzYPqrIqeDjK0b+Ti9jlENEdMAgRERnAT393iz0Q7AUZd5onMloMQkREeqYqq8Tu07kAgPHcUoPIqDEI1UGpVMLf3x99+/YVuxQiMkFxJ7NRUaVBFzd7+Htyp3kiY8YgVAcuqEhEzVEzW2xC73ZmsxAtkaliECIi0qPswjIcungDALvFiExBo/caIyKi2tQaAQnp+fgu8QoEAQjt2AbtnWzFLouI7oJBiIiomeJSshCzLRVZhWXaY2k5xYhLycIYbrRKZNTYNUZE1AxxKVmYtylJJwQBQFFZFeZtSkJcSpZIlRFRQzAIERE1kVojIGZbKurajrrmWMy2VKg13LCayFgxCBERNVFCen6tO0G3EwBkFZYhIT2/5YoiokZhECIiaqLcojuHoKa0I6KWxyBERNREFtKG/Qp1c5AbuBIiairOGiMiaiRBEPC/Ixl4Y1tqve0kADwUcvTzdW6Zwoio0RiEiIga4erNUizZchJ/nLsOAPBxscWlG6WQADqDpmvWk46O8Oemq0RGjEGIiKgBNBoB3yRcwcodp1FSoYa1hRSLRnfF44M7YVdqdq11hDwUckRH+HMdISIjxyBUB6VSCaVSCbVaLXYpRGQErtwoxUs/ntBunRHa0QmrH+qFTm3tAQBjAjwxyt8DCen5yC0qg5tDdXcY7wQRGT+JIAhc4OIOVCoVFAoFCgsL4ejIHaSJzI1GI+CrQ5ewOu4sblWqYWMpw4tjumHGAB+GHCIj1pjvb94RIiKqw8W8Yrz04wkkXroJALinkzNWPdgLHV3sRK6MiPSJQYiI6DZqjYDPD1zEu7+lobxKAzsrGRbf1wPT+nWAlHeBiFodBiEior+dyynCCz+cQHJGAQBgSBdXrJgUyF3kiVoxBiEiMntVag0+3n8RH+w+hwq1Bg7WFnj1/h6YEuoNiYR3gYhaMwYhIjJrp7NUePGHEziZWQgAGN6tLd6aFAhPhY3IlRFRS2AQIiKzVFGlwUf7zkO59zwq1QIc5RaIjuiJSX3a8S4QkRlhECIis5OSWYjnvz+OM9lFAIBR/u5YPiEAbo7cE4zI3DAIEZHZKK9S48P481j/+wWoNQKcbC0RMz4AEb08eReIyEwxCBGRWUjOKMCLPxxHWk4xAGBcoCdixveEq721yJURkZgYhIioVSurVOO9XWn49I+L0AiAq70V3hgfgLGB3AOMiBiEiKgVO3o5Hy98fwIXr5cAACYEeyE6oiec7KxEroyIjAWDEBG1OqUVVXhnZxq+/DMdggC4OVhj+cRAjPJ3F7s0IjIyDEJE1KocvngDL/14ApdvlAIAJoe0x6vj/KGwtRS5MiIyRgxCRNQqFJdXYdWvZ/Dfw5cBAJ4KOVZMCsSwbm4iV0ZExkwqdgEtYeLEiXBycsJDDz0kdilEZAAHzl1H+Hv7tSHokX4d8NvCexmCiOiuzOKO0Pz58zFnzhx89dVXYpdCRE2g1ghISM9HblEZ3Bzk6OfrDJlUAlVZJd7afhrfJWYAANo72WDVg70wqLOryBUTkakwiyA0bNgw7Nu3T+wyiKgJ4lKyELMtFVmFZdpjngo5JvVphy1JmdrjMwZ0xEtjusPO2ix+rRGRnojeNbZ//35ERETAy8sLEokEsbGxtdoolUr4+PhALpejf//+SEhIaPlCiajFxaVkYd6mJJ0QBABZhWVQ7r2ArMIydHSxxeYn78Gy8QEMQUTUaKL/1igpKUFQUBDmzJmDSZMm1Xp98+bNiIqKwoYNG9C/f3+8//77CA8Px9mzZ+HmVt3/HxwcjKqqqlo/+9tvv8HLy8vgn4GI9E+tERCzLRVCPW3srGTY/uwQ2MtF/1VGRCZK9N8eY8eOxdixY+/4+po1azB37lzMnj0bALBhwwZs374dX3zxBRYvXgwASE5O1kst5eXlKC8v1z5XqVR6OS8RNV5Cen6tO0H/VlKhxsnMQgzwc2mhqoiotRG9a6w+FRUVOHr0KMLCwrTHpFIpwsLCcOjQIb2/34oVK6BQKLQPb29vvb8HETVMblH9Iaix7YiI6mLUQej69etQq9Vwd9ddDdbd3R3Z2dkNPk9YWBgmT56MHTt2oH379ncMUUuWLEFhYaH2kZGR0az6iajpMm+WNqidm4PcwJUQUWsmetdYS9i9e3eD2llbW8PamjtRE4npYl4xlv2Sin1n8+ptJwHgoaieSk9E1FRGHYRcXV0hk8mQk5OjczwnJwceHh4iVUVEhlBUVol1e87ji4PpqFQLsJRJMKybG3anVv/5v33QtOTvf0ZH+EMmldQ6FxFRQxl115iVlRVCQkIQHx+vPabRaBAfH48BAwYY7H2VSiX8/f3Rt29fg70HEVXTaAT8ePQqRrz7Oz7efxGVagHDu7XFzgX34tMZoVj/WB94KHS7vzwUcqx/rA/GBHiKVDURtRYSQRDqm51qcMXFxTh//jwAoHfv3lizZg2GDx8OZ2dndOjQAZs3b8bMmTPx8ccfo1+/fnj//ffxv//9D2fOnKk1dkjfVCoVFAoFCgsL4ejoaND3IjJHJ64WYOnPp5B0pQAA4ONii9cj/DGiu+6f7TutLE1EVJfGfH+L3jV25MgRDB8+XPs8KioKADBz5kxs3LgRU6dORV5eHl5//XVkZ2cjODgYcXFxBg9BRGQ414vL8c7Os9h8JAOCANhayfDsiC6YM9gH1hayWu1lUgmnyBORQYh+R8gYKZVKKJVKqNVqpKWl8Y4QkZ5UqjX476HLeG93GorKqhdBndi7HRaP7Q53R87+IiL9aMwdIQaherBrjEh/Dpy7jphtp3AutxgAENDOEUsjeiLUh7O+iEi/TKprjIhat4z8Uizffhpxp6rX/nK2s8IL4d0wJdSb43yISHQMQkRkELcq1Fj/+wV8/PsFlFdpIJNKMP2ejlgY1hUKW0uxyyMiAsAgVKfbxwgRUeMIgoAdJ7OxfHsqrv29V9iATi5Y+kBPdPNwELk6IiJdHCNUD44RImqcM9kqLP35FA5fzAcAtGtjg1fH9cCYAA9IJOwGI6KWwTFCRNSiCkor8N6uNPz38GVoBMDaQop5w/zwn3v9YGNVezo8EZGxYBAioiZTawR8l3gF7+w8i5ullQCA+wI98PJ9PdDeyVbk6oiI7o5BiIiaJPFSPqJ/OoXULBUAoKu7PZZG9MTAzq4iV0ZE1HAMQnXgYGmiO8suLMOKX0/jp+RrAABHuQWiRnXFY/d0hIXMqLcvJCKqhYOl68HB0kT/KK9S47M/0qHcex6lFWpIJMDDfb3x/OhucLG3Frs8IiItDpYmIr0RBAHxp3PxxvZUXL5RCgDo06ENYh4IQGB7hcjVERE1D4MQkZmrb2f3C3nFWLYtFb+n5QEA3Bys8fJ9PTA+2IvT4YmoVWAQIjJjcSlZiNmWiqy/Fz4EAE+FHC+Gd8Pp7CJ8cSAdVRoBljIJnhjSCZHDO8Pemr82iKj14G80IjMVl5KFeZuS8O9BglmFZVj4v+Pa5yO6u+G1+/3h62rXsgUSEbUABqE6cNYYtXZqjYCYbam1QtDtZFIJPn6sD8L8PVqsLiKilsa5rnWIjIxEamoqEhMTxS6FyCAS0vN1usPqotYIsLPm5qhE1LoxCBGZodyi+kNQY9sREZkqBiEiM1NWqUZien6D2ro5yA1cDRGRuDhGiMhMqDUCYo9lYs2uNGQW3Kq3rQSAh6J6Kj0RUWvGIETUygmCgH1peVj16xmcyS4CAHg4yjHK3x2bDl+ubnNb+5rVgaIj/LXrCRERtVYMQkSt2PGMAqz49TQOX6zuCnOQWyByeGfMGugDuaUMgzq71FpHyEMhR3SEP8YEeIpVNhFRi2EQqgOnz5OpS79egnd2nsX2k1kAACsLKWYN9MHTw/zQxtZK225MgCdG+XvccWVpIqLWjpuu1oObrpKpySsqx9r4c/g24QqqNAIkEmBS7/ZYOKoL2jvZil0eEVGL4KarRGamuLwKn+y/iM/+uIjSiuo7mcO7tcVLY7ujuwdDPBHRnTAIEZmwiioNvk24grXx53CjpAIAEOTdBovHdMcAPxeRqyMiMn4MQkQmSKMRsP1kFt757Swu3ygFAPi62uGF8G4YG+DBneGJiBqIQYjIxPx5/jpW/HoGJzMLAQCu9taYH9YFD/f1hqWMa6QSETUGgxCRiUi9psLKuDPYn5YHALCzkuE/Q/3w+GBf2FnzjzIRUVPwtyeRkcvIL8WaXWmITc6EIAAWUgkeu6cjnhnRGa721mKXR0Rk0hiEiIxUfkkFlHvP47+HLqNCrQEARAR54fnRXdHRxU7k6oiIWgcGoTpwQUUS060KNb44mI4N+y6gqLwKADCoswsWj+mBwPYKkasjImpduKBiPbigIrWkKrUG3x+9ivd2pSG3qBwA4O/piMVju2NIF1fOBCMiaiAuqEhkQgRBwG+pOVgddwYX8koAAO2dbPD86G54IMgLUm53QURkMAxCRAak1gj17uN15FI+Vvx6Bkcv3wQAONla4pkRXfDYPR1gbSETq2wiIrPBIERkIHEpWbV2dvf8e2d3v7b2WBV3FrtP5wAA5JZSPDG4E54c2gmOckuxSiYiMjsMQkQGEJeShXmbkvDvAXhZhWV4alMSJAAEADKpBFNCvbEgrAvcHeUiVEpEZN4YhIj0TK0RELMttVYIup0AYLS/G14c0wOd3exbqjQiIvoXrsdPpGcJ6fk63WF3MntQJ4YgIiKRMQgR6Vlu0d1DUGPaERGR4TAIEemZm0PDxvo0tB0RERkOgxCRnvl7OcKqnl3gJaiePdbP17nliiIiojpxsDSRHt0oLsecjYnavcH+rWYFoegIf531hIiISBy8I0SkJ1dvlmLyx4dw/GohnGwt8dKY7vBU6HZ/eSjkWP9YH4wJ8BSpSiIiuh3vCNWBm65SY6XlFGHG5wnIVpXBSyHH14/3R2c3ezx5b6d6V5YmIiJxcdPVenDTVWqIo5dvYs7GRBTeqkRnN3v89/F+8FTYiF0WEZHZ4qarRC1k79lczNt0FGWVGvTu0AZfzOwLJzsrscsiIqIGYhAiaqKtx67ihe9PoEojYGjXtlj/WB/YWvGPFBGRKeFvbaIm+PxAOt74JRUAMCHYC29PDoJlPVPmiYjIODEIETWCIAh4e+dZfLTvAgBg9iAfvDbOH1IOgCYiMkkMQkQNVKXW4NXYFHyXmAEAeCG8G54e5geJhCGIiMhUMQgRNUBZpRrzvzuGnadyIJUAb00MxMP9OohdFhERNRODkAjUGoFry5gQVVkl5n51BH+l58PKQoq1D/fGmAAPscsiIiI9YBBqYXEpWYjZloqswn92HvdUyBEd4c/Vho1QXlE5Zn6RgNQsFeytLfDpjFAM8HMRuywiItITTnNpQXEpWZi3KUknBAFAdmEZ5m1KQlxKlkiVUV2u3CjFQxv+RGqWCq72VvjuyXsYgoiIWhkGoRai1giI2ZaKupbxrjkWsy0Vag0X+jYGqddUeHDDn7h8oxTezjb44amBCGinELssIiLSMwahFpKQnl/rTtDtBABZhWVISM9vuaKoTn9dvIGpHx9CXlE5uns44MenBsLH1U7ssoiIyAA4RqiF5BbdOQQ1pR0Zxm+nsvHMt8dQUaVBPx9nfDozFAobS7HLIiIiA2EQaiFuDnK9tiP9+19iBhZvOQGNAIT1cMO6R/tAbikTuywiIjIgdo21kH6+zvBUyHG3SfJ7zuSguLyqRWqiaoIgYMPvF/Dij9Uh6KGQ9tjwWAhDEBGRGWj1QSgjIwPDhg2Dv78/evXqhe+//16UOmRSCaIj/AGg3jD06R/pGPnuPvx8/BoEgQOnDU2jEfDWjtNY+esZAMB/hnbC2w/1ggX3DSMiMgsSoZV/22ZlZSEnJwfBwcHIzs5GSEgI0tLSYGd398GvKpUKCoUChYWFcHR01Es99a0jZGUhxdKfU3ElvxQAMKCTC2LG90RXdwe9vDfpqlRrsPjHk/gx6SoA4OX7uuPJe/1EroqIiJqrMd/frT4I/VtQUBB++eUXeHt737WtIYIQUP/K0mWVanz8+0V8tO88yqs0sJBKMHuQD+aHdYW9NYd06cutCjWe+b8kxJ/JhUwqwaoHe+GhkPZil0VERHrQmO9v0e//79+/HxEREfDy8oJEIkFsbGytNkqlEj4+PpDL5ejfvz8SEhKa9F5Hjx6FWq1uUAgyJJlUggF+Lhgf3A4D/Fx0tteQW8owP6wLdkcNxSh/d1RpBHz6RzpGvLMPPyVnsrtMDwpLKzH9878QfyYX1hZSfDI9hCGIiMhMiR6ESkpKEBQUBKVSWefrmzdvRlRUFKKjo5GUlISgoCCEh4cjNzdX2yY4OBgBAQG1HteuXdO2yc/Px4wZM/DJJ58Y/DPpg7ezLT6dEYovZ/VFRxdb5BaVY/53yXj4k8M4m10kdnkmK0dVhikfH8KRyzfhKLfApif6Y2QPd7HLIiIikRhV15hEIsHWrVsxYcIE7bH+/fujb9++WLduHQBAo9HA29sbzz77LBYvXtyg85aXl2PUqFGYO3cupk+fXm+78vJy7XOVSgVvb2+9d401VlmlGp/uvwjlvvMoq9RAJpVg1kAfLAjrAgc517hpqIt5xZj+eQIyC27BzcEaXz/eD909xPvvSkREhmFSXWP1qaiowNGjRxEWFqY9JpVKERYWhkOHDjXoHIIgYNasWRgxYkS9IQgAVqxYAYVCoX2I3YVWQ24pw7Mjq7vLwnu6Q60R8PmBdIx493dsPXaV3WUNcPJqISZvOITMglvwdbXDj/MGMgQREZFxB6Hr169DrVbD3V2368Ld3R3Z2dkNOsfBgwexefNmxMbGIjg4GMHBwTh58mSdbZcsWYLCwkLtIyMjo9mfQZ/aO9ni4+mh2Di7L3xcbJFXVI6Fm49j6seHcSZbJXZ5RuvP89fx8CeHcKOkAgHtHPH9UwPg7WwrdllERGQEWv00pMGDB0Oj0TSorbW1NaytrQ1cUfMN6+aGnQtd8Nkf6fhwzzkkXMrHuLUHMGNARywc1RWO7C7T2nEyCwu+S0aFWoMBnVzwyYwQdicSEZGWUd8RcnV1hUwmQ05Ojs7xnJwceHh4GOx9lUol/P390bdvX4O9R3NZW8gQObwz4hcNw9gAD6g1Ar48eAkj3vkdPx5ldxkAbDp8GZH/l4QKtQZjAzzw5ey+DEFERKTDqIOQlZUVQkJCEB8frz2m0WgQHx+PAQMGGOx9IyMjkZqaisTERIO9h760a2OD9Y+F4Os5/dDJ1Q7Xi8ux6PvjmLzhEFKvmWd3mSAIWBt/Dq/GpkAQgEf7d+C+YUREVCfRg1BxcTGSk5ORnJwMAEhPT0dycjKuXLkCAIiKisKnn36Kr776CqdPn8a8efNQUlKC2bNni1i18bm3a1v8umAIXhzTDTaWMhy5fBP3f/gHlv58CoW3KsUur8VoNAKW/nwKa3alAQCeG9EZyycE6KzVREREVEP06fP79u3D8OHDax2fOXMmNm7cCABYt24d3n77bWRnZyM4OBhr165F//79DV6boVaWNrRrBbewfPtpbD+ZBQBwtbfC4rE9MKl3O0hbUSD49wrdwd5t8OKPJ7DtePX6UUsj/DFrkK/IVRIRUUvjFhvNpFQqoVQqoVarkZaWZnJBqMaBc9fx+s8puJhXAgAI6eiEZeN7oqeXQuTKmq+uPdusLKSo+HtbknenBGF8cDsRKyQiIrEwCOmJqd4Rul1FlQZfHEzH2vhzKK1QQyoBHrunIxaN6gaFrWkOHI5LycK8TUm40/+4z47ojEWju7VoTUREZDxazYKK1HxWFlI8NdQP8YuG4v5entAIwNeHLmPEu/vwv8QMaDSmlYPVGgEx21LvGIIA4IejV6E2sc9FRETi4B2herSGO0L/9uf563j951M4n1sMAOjdoQ3eGB+AgHbG2V2mKqtE5s1b1Y+CW0i8lI9fTmTd9ee+nXsPBvi5tECFRERkbBrz/d3qF1RsitvHCLU2Azu7YsdzQ7Dxz3R8sPscjl0pQMS6A5jWvwOeH90NbWytANQeiNzP11nvM68EQUBecbk25NT1z6LyqiadO7eo7O6NiIjI7PGOUD1a4x2h22UXluGtHafx89+zrJztrPBieDc4yi3xxnbdgcieCjmiI/wxJsCzweevVGuQXVhWd8j5+1FRdfdVv51sLdHOyQZeChtIpUBcSs5df4Z3hIiIzBcHS+tJaw9CNQ5duIHon1OQllN8xzY194LWP9ZHG4ZuVaiRWVCKq3e4o5OjKsPdhupIJIC7gxztnGzQro2Nzj/bt7GBVxsb2Fn/c+NSrREweNUeZBeW1TlOSALAQyHHgZdGcO0gIiIzxSCkJ+YShIDquzdfHkzHih1n6h2ILLeQorObPa4VliG/pOKu57WSSeHVRq69o6MbdGzhoZDDyqJxY/ZrZo0B0Km1rrBGRETmh2OEqNEsZVIEtmtTbwgCgLIqDVJu27rD3tqi1p2c2+/ouNpb630RxzEBnlj/WJ9a6wh5NKH7joiIzBuDUB1a82Dp+jR0gPETg30xsU87tG9jC0cbC0gkLd8FNSbAE6P8PQw+oJuIiFo3do3Vw5y6xoDqsUKPfHr4ru04EJmIiIwZF1SkJunn6wxPhRx3uqciQfXssX6+zi1ZFhERkcEwCJGWTCpBdIQ/ANQKQzXPoyP82f1EREStBoMQ6agZiOyhkOsc91DIORuLiIhaHQ6Wplo4EJmIiMwFg1AdzHXW2O1kUgkHRBMRUavHWWP1MLdZY0RERK0BZ40RERERNQCDEBEREZktBiEiIiIyWwxCREREZLYYhIiIiMhsMQjVQalUwt/fH3379hW7FCIiIjIgTp+vB6fPExERmR5OnyciIiJqAK4sXY+am2UqlUrkSoiIiKihar63G9LpxSBUj6KiIgCAt7e3yJUQERFRYxUVFUGhUNTbhmOE6qHRaHDt2jU4ODhAIjG/DUdVKhW8vb2RkZHBMVLNwOuoH7yO+sHrqB+8jvphqOsoCAKKiorg5eUFqbT+UUC8I1QPqVSK9u3bi12G6BwdHfkHXQ94HfWD11E/eB31g9dRPwxxHe92J6gGB0sTERGR2WIQIiIiIrPFIER3ZG1tjejoaFhbW4tdiknjddQPXkf94HXUD15H/TCG68jB0kRERGS2eEeIiIiIzBaDEBEREZktBiEiIiIyWwxCREREZLYYhKiWFStWoG/fvnBwcICbmxsmTJiAs2fPil2WSVu5ciUkEgkWLFggdikmKTMzE4899hhcXFxgY2ODwMBAHDlyROyyTIparcZrr70GX19f2NjYwM/PD2+88UaD9mIyZ/v370dERAS8vLwgkUgQGxur87ogCHj99dfh6ekJGxsbhIWF4dy5c+IUa8Tqu46VlZV46aWXEBgYCDs7O3h5eWHGjBm4du1ai9TGIES1/P7774iMjMThw4exa9cuVFZWYvTo0SgpKRG7NJOUmJiIjz/+GL169RK7FJN08+ZNDBo0CJaWlvj111+RmpqKd999F05OTmKXZlJWrVqF9evXY926dTh9+jRWrVqF1atX48MPPxS7NKNWUlKCoKAgKJXKOl9fvXo11q5diw0bNuCvv/6CnZ0dwsPDUVZW1sKVGrf6rmNpaSmSkpLw2muvISkpCVu2bMHZs2fxwAMPtExxAtFd5ObmCgCE33//XexSTE5RUZHQpUsXYdeuXcLQoUOF+fPni12SyXnppZeEwYMHi12GyRs3bpwwZ84cnWOTJk0Spk2bJlJFpgeAsHXrVu1zjUYjeHh4CG+//bb2WEFBgWBtbS18++23IlRoGv59HeuSkJAgABAuX75s8Hp4R4juqrCwEADg7OwsciWmJzIyEuPGjUNYWJjYpZisn3/+GaGhoZg8eTLc3NzQu3dvfPrpp2KXZXIGDhyI+Ph4pKWlAQCOHz+OAwcOYOzYsSJXZrrS09ORnZ2t8+dboVCgf//+OHTokIiVmb7CwkJIJBK0adPG4O/FTVepXhqNBgsWLMCgQYMQEBAgdjkm5bvvvkNSUhISExPFLsWkXbx4EevXr0dUVBRefvllJCYm4rnnnoOVlRVmzpwpdnkmY/HixVCpVOjevTtkMhnUajWWL1+OadOmiV2aycrOzgYAuLu76xx3d3fXvkaNV1ZWhpdeegmPPPJIi2xoyyBE9YqMjERKSgoOHDggdikmJSMjA/Pnz8euXbsgl8vFLsekaTQahIaG4q233gIA9O7dGykpKdiwYQODUCP873//wzfffIP/+7//Q8+ePZGcnIwFCxbAy8uL15GMRmVlJaZMmQJBELB+/foWeU92jdEdPfPMM/jll1+wd+9etG/fXuxyTMrRo0eRm5uLPn36wMLCAhYWFvj999+xdu1aWFhYQK1Wi12iyfD09IS/v7/OsR49euDKlSsiVWSaXnjhBSxevBgPP/wwAgMDMX36dCxcuBArVqwQuzST5eHhAQDIycnROZ6Tk6N9jRquJgRdvnwZu3btapG7QQCDENVBEAQ888wz2Lp1K/bs2QNfX1+xSzI5I0eOxMmTJ5GcnKx9hIaGYtq0aUhOToZMJhO7RJMxaNCgWss3pKWloWPHjiJVZJpKS0shler+ypfJZNBoNCJVZPp8fX3h4eGB+Ph47TGVSoW//voLAwYMELEy01MTgs6dO4fdu3fDxcWlxd6bXWNUS2RkJP7v//4PP/30ExwcHLR93QqFAjY2NiJXZxocHBxqjamys7ODi4sLx1o10sKFCzFw4EC89dZbmDJlChISEvDJJ5/gk08+Ebs0kxIREYHly5ejQ4cO6NmzJ44dO4Y1a9Zgzpw5Ypdm1IqLi3H+/Hnt8/T0dCQnJ8PZ2RkdOnTAggUL8Oabb6JLly7w9fXFa6+9Bi8vL0yYMEG8oo1QfdfR09MTDz30EJKSkvDLL79ArVZrv3ecnZ1hZWVl2OIMPi+NTA6AOh9ffvml2KWZNE6fb7pt27YJAQEBgrW1tdC9e3fhk08+Ebskk6NSqYT58+cLHTp0EORyudCpUyfhlVdeEcrLy8Uuzajt3bu3zt+HM2fOFAShegr9a6+9Jri7uwvW1tbCyJEjhbNnz4pbtBGq7zqmp6ff8Xtn7969Bq9NIghcVpSIiIjME8cIERERkdliECIiIiKzxSBEREREZotBiIiIiMwWgxARERGZLQYhIiIiMlsMQkRERGS2GISIqNEuXboEiUSC5ORksUvROnPmDO655x7I5XIEBwc36Rz79u2DRCJBQUGBXmsT06xZs7jKMVE9GISITNCsWbMgkUiwcuVKneOxsbGQSCQiVSWu6Oho2NnZ4ezZszp7P5mLO4XTDz74ABs3bhSlJiJTwCBEZKLkcjlWrVqFmzdvil2K3lRUVDT5Zy9cuIDBgwejY8eOLbphY3M15zM3hEKhQJs2bQz6HkSmjEGIyESFhYXBw8MDK1asuGObpUuX1uomev/99+Hj46N9XtN18tZbb8Hd3R1t2rTBsmXLUFVVhRdeeAHOzs5o3749vvzyy1rnP3PmDAYOHAi5XI6AgAD8/vvvOq+npKRg7NixsLe3h7u7O6ZPn47r169rXx82bBieeeYZLFiwAK6urggPD6/zc2g0Gixbtgzt27eHtbU1goODERcXp31dIpHg6NGjWLZsGSQSCZYuXVrnecrLy/Hcc8/Bzc0NcrkcgwcPRmJiYq12Bw8eRK9evSCXy3HPPfcgJSVF+9rly5cREREBJycn2NnZoWfPntixY0ezPvOjjz6KqVOn6tRQWVkJV1dXfP311wCAuLg4DB48GG3atIGLiwvuv/9+XLhwQdve19cXANC7d29IJBIMGzYMQO2usbtdg5ruwfj4eISGhsLW1hYDBw7E2bNntW2OHz+O4cOHw8HBAY6OjggJCcGRI0fqvOZExo5BiMhEyWQyvPXWW/jwww9x9erVZp1rz549uHbtGvbv3481a9YgOjoa999/P5ycnPDXX3/hqaeewn/+859a7/PCCy9g0aJFOHbsGAYMGICIiAjcuHEDAFBQUIARI0agd+/eOHLkCOLi4pCTk4MpU6bonOOrr76ClZUVDh48iA0bNtRZ3wcffIB3330X77zzDk6cOIHw8HA88MADOHfuHAAgKysLPXv2xKJFi5CVlYXnn3++zvO8+OKL+PHHH/HVV18hKSkJnTt3Rnh4OPLz82t9rnfffReJiYlo27YtIiIiUFlZCQCIjIxEeXk59u/fj5MnT2LVqlWwt7dv1meeNm0atm3bhuLiYm2bnTt3orS0FBMnTgQAlJSUICoqCkeOHEF8fDykUikmTpwIjUYDAEhISAAA7N69G1lZWdiyZUuzrsErr7yCd999F0eOHIGFhYXOLvXTpk1D+/btkZiYiKNHj2Lx4sWwtLSs8/2IjJ7Bt3UlIr2bOXOmMH78eEEQBOGee+4R5syZIwiCIGzdulW4/Y91dHS0EBQUpPOz7733ntCxY0edc3Xs2FFQq9XaY926dROGDBmifV5VVSXY2dkJ3377rSAIgna36JUrV2rbVFZWCu3btxdWrVolCIIgvPHGG8Lo0aN13jsjI0MAoN2de+jQoULv3r3v+nm9vLyE5cuX6xzr27ev8PTTT2ufBwUFCdHR0Xc8R3FxsWBpaSl888032mMVFRWCl5eXsHr1akEQ/tkh+7vvvtO2uXHjhmBjYyNs3rxZEARBCAwMFJYuXVrnezT1M1dWVgqurq7C119/rT32yCOPCFOnTr3j58nLyxMACCdPnhQE4Z//JseOHdNpd/v/K425Brt379a22b59uwBAuHXrliAIguDg4CBs3LjxjrURmRLeESIycatWrcJXX32F06dPN/kcPXv2hFT6z68Dd3d3BAYGap/LZDK4uLggNzdX5+cGDBig/XcLCwuEhoZq6zh+/Dj27t0Le3t77aN79+4AoNOlExISUm9tKpUK165dw6BBg3SODxo0qFGf+cKFC6isrNQ5j6WlJfr161frPLd/LmdnZ3Tr1k3b5rnnnsObb76JQYMGITo6GidOnNC2bepntrCwwJQpU/DNN98AqL7789NPP2HatGnaNufOncMjjzyCTp06wdHRUdu9eeXKFYNcg169emn/3dPTEwC0//2joqLwxBNPICwsDCtXrtT5bESmhkGIyMTde++9CA8Px5IlS2q9JpVKIQiCzrGaLp7b/btbQyKR1HmsphumIYqLixEREYHk5GSdx7lz53Dvvfdq29nZ2TX4nMbgiSeewMWLFzF9+nScPHkSoaGh+PDDDwE07zNPmzYN8fHxyM3NRWxsLGxsbDBmzBjt6xEREcjPz8enn36Kv/76C3/99RcAww22vv2/f81MxJr//kuXLsWpU6cwbtw47NmzB/7+/ti6datB6iAyNAYholZg5cqV2LZtGw4dOqRzvG3btsjOztYJQ/pc++fw4cPaf6+qqsLRo0fRo0cPAECfPn1w6tQp+Pj4oHPnzjqPxoQfR0dHeHl54eDBgzrHDx48CH9//wafx8/PTzsup0ZlZSUSExNrnef2z3Xz5k2kpaVpPxcAeHt746mnnsKWLVuwaNEifPrpp83+zAMHDoS3tzc2b96Mb775BpMnT9aGkRs3buDs2bN49dVXMXLkSPTo0aPWbEErKysAgFqt1ss1uJuuXbti4cKF+O233zBp0qQ6B9MTmQIGIaJWIDAwENOmTcPatWt1jg8bNgx5eXlYvXo1Lly4AKVSiV9//VVv76tUKrF161acOXMGkZGRuHnzpnZQbWRkJPLz8/HII48gMTERFy5cwM6dOzF79ux6v6zr8sILL2DVqlXYvHkzzp49i8WLFyM5ORnz589v8Dns7Owwb948vPDCC4iLi0Nqairmzp2L0tJSPP744zptly1bhvj4eKSkpGDWrFlwdXXVzrxasGABdu7cifT0dCQlJWHv3r3akNTcz/zoo49iw4YN2LVrl063mJOTE1xcXPDJJ5/g/Pnz2LNnD6KionR+1s3NDTY2NtoB2oWFhc26Bndy69YtPPPMM9i3bx8uX76MgwcPIjExUScoEpkSBiGiVmLZsmW1uq569OiBjz76CEqlEkFBQUhISLjjjKqmWLlyJVauXImgoCAcOHAAP//8M1xdXQFAexdHrVZj9OjRCAwMxIIFC9CmTRud8UgN8dxzzyEqKgqLFi1CYGAg4uLi8PPPP6NLly6NrvfBBx/E9OnT0adPH5w/fx47d+6Ek5NTrXbz589HSEgIsrOzsW3bNp07LpGRkejRowfGjBmDrl274qOPPtLLZ542bRpSU1PRrl07nXE8UqkU3333HY4ePYqAgAAsXLgQb7/9ts7PWlhYYO3atfj444/h5eWF8ePHN+sa3IlMJsONGzcwY8YMdO3aFVOmTMHYsWMRExPToJ8nMjYS4d8DCIiIiIjMBO8IERERkdliECIiIiKzxSBEREREZotBiIiIiMwWgxARERGZLQYhIiIiMlsMQkRERGS2GISIiIjIbDEIERERkdliECIiIiKzxSBEREREZotBiIiIiMzW/wMebSTeu1H3swAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "ax.set_xlabel(\"Number of observations\")\n", + "ax.set_ylabel(\"Time (in s)\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_title(\"cexp(4, -2)\")\n", + "\n", + "files = [i for i in range(1, 13)]\n", + "times = []\n", + "\n", + "cur = open(\"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/gamma/and.txt\")\n", + "a = cur.readlines()\n", + "for i in range(0, len(a)):\n", + " cur2 = a[i]\n", + " times.append(float(cur2.split()[0]))\n", + " # print(i)\n", + " # stan_iter = stan_iterations(f\"/space/poorvagarg/benchmarks_stan/hmm_slicstan/results_{i}.txit\")\n", + " # iterations.append(stan_iter)\n", + "ax.plot(files, times, marker = \"o\")\n", + "# ax.legend([\"Stan\", \"Dice\"])\n", + "fig.savefig(\"gamma_4_2.png\", bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtI0lEQVR4nO3deVyU1f4H8M/MsCOL7CCyisomqIi54IK4UFHmVSstTSvLUFPUsl+3zBbLuplZXi2vWTdbbFFvluKCCy4YbqiILCKKC6vsINvM8/sDoZBBAWd4Zvm8Xy9et3nmzPN8mYvMh3POc45EEAQBRERERKRyUrELICIiItJVDFpEREREasKgRURERKQmDFpEREREasKgRURERKQmDFpEREREasKgRURERKQmDFpEREREasKgRURERKQmDFpERCpUUVEBBwcHfPfdd2KXck8PPPAAXnnlFbHLINJpDFpERCr06aefwsLCAk888UTTsbi4OMycORM9e/aEmZkZvLy88NxzzyEnJ0fl1z9+/DjmzJkDf39/mJubw83NDZMnT0Z6enqLtq+++irWrFmD3NxclddBRA0k3OuQiEg16urq0K1bNyxYsACvvfZa0/GQkBAUFRVh0qRJ8PHxwaVLl/D555/DzMwMSUlJcHJyUlkNEydOxJEjRzBp0iT06dMHubm5+Pzzz1FRUYFjx44hICCgqa1CoUC3bt3w/PPP4+2331ZZDUT0FwYtIiIV2bp1KyZMmICLFy/C29u76Xh8fDyGDh0KqVTa7Njw4cPx+uuv491331VZDUePHkVISAiMjIyajmVkZCAwMBATJ07Epk2bmrWfO3cutm/fjqysLEgkEpXVQUQNOHRIRFrl+vXrePbZZ+Hi4gJjY2N4enpi9uzZqK2tbWpTUlKC+fPno3v37jA2NkaPHj2wYsUKKBQKAIAgCBg5ciTs7e2Rn5/f9Lra2loEBgbC29sblZWVAIC33noLEokEqampmDx5MiwtLWFra4uXX34Z1dXVzWrbtm0bPDw8moUsABg2bFizkNV4zMbGBhcuXFDp+zN48OBmIQsAfHx84O/vr/Rao0ePxpUrV5CUlKTSOoiogYHYBRARtdWNGzcQGhqKkpISzJo1C71798b169fxyy+/oKqqCkZGRqiqqsLw4cNx/fp1vPDCC3Bzc8PRo0fx2muvIScnB6tWrYJEIsFXX32FPn364MUXX8SWLVsAAEuXLsX58+dx4MABmJubN7v25MmT4eHhgffffx/Hjh3D6tWrUVxcjP/+979NbY4ePYp+/fq16XupqKhARUUF7OzsVPcGtUIQBOTl5cHf37/Fc/379wcAHDlyBH379lV7LUR6RyAi0hLTpk0TpFKpcPz48RbPKRQKQRAE4Z133hHMzc2F9PT0Zs8vWbJEkMlkQnZ2dtOxL774QgAgbNq0STh27Jggk8mE+fPnN3vd0qVLBQDCI4880uz4Sy+9JAAQzpw5IwiCINTV1QkSiURYuHBhm76Xd955RwAgxMXFtan9/fj2228FAMKGDRuUPm9kZCTMnj1b7XUQ6SMOHRKRVlAoFNi2bRuioqIQEhLS4vnG+UU///wzwsLC0LVrVxQWFjZ9RUREQC6XIz4+vuk1s2bNwtixYzF37lw8/fTT8Pb2xvLly5VePzo6utnjuXPnAgB27NgBACgqKoIgCOjates9v5f4+HgsW7YMkydPRnh4eNvegA5KTU1FdHQ0Bg0ahOnTpytt0/heEZHqceiQiLRCQUEBysrKmt01p0xGRgbOnj0Le3t7pc//fU4WAGzYsAHe3t7IyMjA0aNHYWpqqvR1Pj4+zR57e3tDKpXi8uXLzY4L97i/KDU1FY899hgCAgLwn//8565tWyOXy1FQUNDsmI2NTYu5Wbm5uXjooYdgZWWFX375BTKZTOn5BEHgRHgiNWHQIiKdolAoMHr06FYX4uzZs2ezxwcOHEBNTQ0A4Ny5cxg0aFCbrnNnMLGxsYFEIkFxcXGrr7l69SrGjBkDKysr7NixAxYWFm26lrLzeHp6Nju2f/9+jBgxoulxaWkpIiMjUVJSgkOHDsHFxaXV85WUlHTKXDEifcSgRURawd7eHpaWlkhOTr5rO29vb1RUVCAiIuKe58zJycHcuXMxZswYGBkZYdGiRRg7dizc3d1btM3IyGgWbi5evAiFQgEPDw8AgIGBAby9vZGVlaX0Wjdv3sSYMWNQU1ODuLg4ODs737O+1jg5OWHPnj3NjgUFBTX9d3V1NaKiopCeno69e/fCz8+v1XNdv34dtbW18PX17XA9RNQ6ztEiIq0glUoxfvx4bN++HSdOnGjxfOOQ3eTJk5GQkIBdu3a1aFNSUoL6+vqmx88//zwUCgU2bNiAL7/8EgYGBnj22WeVDv+tWbOm2ePPPvsMABAZGdl0bNCgQUprq6ysxIMPPojr169jx44dLYYh28vExAQRERHNvhrnhsnlcjz++ONISEjAzz//fM8eupMnTwJoWBaCiFSPPVpEpDWWL1+O3bt3Y/jw4Zg1axZ8fX2Rk5ODn3/+GYcPH4a1tTUWL16M3377DQ8//DCeeeYZ9O/fH5WVlTh37hx++eUXXL58GXZ2dti4cSP++OMPfP3113B1dQXQEJ6eeuoprF27Fi+99FKza2dlZeGRRx7BuHHjkJCQgE2bNmHKlCnNepIeffRRfPvtt0hPT282RDl16lQkJiZi5syZuHDhQrP1rLp06YLx48c3PX7rrbewbNmyFkOBbbVw4UL89ttviIqKQlFRUYsFSp966qlmj/fs2QM3Nzcu7UCkLqLe80hE1E5XrlwRpk2bJtjb2wvGxsaCl5eXEB0dLdTU1DS1KS8vF1577TWhR48egpGRkWBnZycMHjxY+Ne//iXU1tYKV69eFaysrISoqKgW53/ssccEc3Nz4dKlS4Ig/LW8Q0pKijBx4kTBwsJC6Nq1qzBnzhzh1q1bzV5bU1Mj2NnZCe+8806z4+7u7gIApV/u7u7N2i5cuFCQSCTChQsXOvT+DB8+vNVr3fkrXy6XC87OzsI///nPDl2LiO6NW/AQEd1FYw9TQUFBmyaMv/POO9i4cSMyMjJavcvvbkJDQ+Hu7o6ff/65I+W2y7Zt2zBlyhRkZmbe15wxImod52gREanQggULUFFRgR9//LHdry0rK8OZM2c6bYPnFStWYM6cOQxZRGrEOVpERCrUpUuXFmt1tZWlpWXTUhOdISEhodOuRaSv2KNFREREpCaco0VERESkJuzRIiIiIlITBi0iIiIiNeFkeBEpFArcuHEDFhYW3NCViIhISwiCgPLycri4uEAqvXufFYOWiG7cuIHu3buLXQYRERF1wNWrV5t2lmgNg5aILCwsADT8H2VpaSlyNURERNQWZWVl6N69e9Pn+N0waImocbjQ0tKSQYuIiEjLtGXaDyfDExEREakJgxYRERGRmjBoEREREakJgxYRERGRmjBoEREREakJgxYRERGRmjBoEREREakJgxYRERGRmjBoEREREakJV4YnIiLqALlCQGJWEfLLq+FgYYJQTxvIpPdeKZz0C4MWERFRO8Um52DZ9hTklFY3HXO2MsHSKD+MC3AWsTLSNBw6JCIiaofY5BzM3nSqWcgCgNzSaszedAqxyTkiVUaaiEGLiIiojeQKAcu2p0BQ8lzjsWXbUyBXKGtB+ohBi4iIqI0Ss4pa9GT9nQAgp7QaiVlFnVcUaTQGLSIiojbKL289ZHWkHek+ToYnIiJqIwcLE5W2I/XRlLtCGbSIiIjaKNTTBs5WJq0OH0oAOFk1fKiTeDTprlAOHRIREbWRTCrB0ii/u7ZZGuXH9bREpGl3hTJoERERtcO4AGcEdrNscVwmlWDNlH5cR0tEmnhXKIMWERFRO9TWK5BZUAkAWP5YAD6c2AfmRjLIFQKk7MkSlSbeFcqgRURE1A6ns4tRVSuHrbkRnhjghskh3fHMEA8AwJfxmeIWp+c08a5QBi0iIqJ2OHyxEAAwpIddUw/W9MEeMJJJcSq7BCcucw0tsWjiXaEMWkRERO0Qn9EQtIb62DUdc7AwwYR+3QAAX8RfEqUuAkLcu8LIoPVoI0HD3YedeVcogxYREVEblVbV4dy1EgBA2N+CFgA8F+YFANh7IQ+ZBRWdXRoB+PLQJdTWK5Q+1zh7rrPvCmXQIiIiaqOjmYVQCEAPhy5wtjJt9lwPhy6I8HWEIAD/OcRerc524nIRVu5JBwA8/YA7nK2aDw86WZlg7VOdf1coFywlIiJqo6Zhwx52Sp9/YbgX9l7Iw6+nriNmdC/YWxh3Znl6q6SqFvN+OA25QsD4YBe8/ag/3nrEXyNWhmePFhERURsdvlgAABjWU3nQCnHvir5u1qitV+Cbo5c7sTL9JQgCFv18FjdKq+FpZ453HwuERCKBTCrBIG9bPBrcDYO8bUVbRJZBi4iIqA2u3KzE1aJbMJRJMNDTVmkbiUSCF4Y1zNX69tgVVNbUd2aJemnjkcvYeyEPRjIpPnuyL7oYa9ZgHYOWipSUlCAkJATBwcEICAjA+vXrxS6JiIhUqHHYsK9bV5jf5cN8tJ8TPGzNUHqrDj+duNpZ5emls9dK8P7OCwCAfz7si4BuViJX1BKDlopYWFggPj4eSUlJ+PPPP7F8+XLcvHlT7LKIiEhFDmfcHjb0UT5s2EgmlTTdgbjhcBbq5crvgqP7U1Zdhznfn0adXMBYf0c8/YC72CUpxaClIjKZDGZmZgCAmpoaCIIAQei8vZSIiEh96uUKHM1s+ON5qI/9PdtP7O8KW3MjXCu+hR3JueouT+8IgoDXtpxDdlEVulmb4sN/BEEi0cztj0QPWuXl5Zg/fz7c3d1hamqKwYMH4/jx4yq9Rnx8PKKiouDi4gKJRIJt27YpbbdmzRp4eHjAxMQEAwcORGJiYruuU1JSgqCgILi6umLx4sWws7v7Xz1ERKQdzlwrRXl1PaxMDRHYhuEpE0MZpg3yANCwLQ//8FatHxKv4o+zOTCQSvDZlL6wMjMUu6RWiR60nnvuOezZswfffvstzp07hzFjxiAiIgLXr19X2v7IkSOoq6trcTwlJQV5eXlKX1NZWYmgoCCsWbOm1To2b96MmJgYLF26FKdOnUJQUBDGjh2L/Pz8pjaN86/u/Lpx4wYAwNraGmfOnEFWVha+//77VushIiLtcjijcdudtt+99vQgd5gYSpF8vQwJmZxKoiqpuWVYtv08AGDx2F7o59ZV5IruTtSgdevWLfz666/48MMPMWzYMPTo0QNvvfUWevTogbVr17Zor1AoEB0djSlTpkAulzcdT0tLQ3h4OL755hul14mMjMS7776Lxx57rNVaVq5cieeffx4zZsyAn58f1q1bBzMzM3z11VdNbZKSkpCcnNziy8XFpdm5HB0dERQUhEOHDrX3LSEiIg106Pb8rKE97j1s2MjG3AiTQ7oD4LY8qlJVW4/o706hpl6BEb3s8fztuXCaTNSgVV9fD7lcDhOT5qu3mpqa4vDhwy3aS6VS7NixA6dPn8a0adOgUCiQmZmJ8PBwjB8/Hq+88kqH6qitrcXJkycRERHR7FoRERFISEho0zny8vJQXl4OACgtLUV8fDx69eqltO2aNWvg5+eHAQMGdKheIiLqPOXVdTh9tQRAy2137uW5oV6QSoCD6QVIzS1TQ3X65c3/nUdmQSUcLY3x8aSgpk29NZmoQcvCwgKDBg3CO++8gxs3bkAul2PTpk1ISEhATk6O0te4uLhg3759OHz4MKZMmYLw8HBEREQo7QFrq8LCQsjlcjg6OjY77ujoiNzctk1ivHLlCsLCwhAUFISwsDDMnTsXgYGBSttGR0cjJSVF5XPRiIhI9Y5dKoJcIcDD1gzdbcza9Vo3WzNE3t7y5Uv2at2XLaeu4ZeT1yCVAJ8+0Re2XbRj1X3R52h9++23EAQB3bp1g7GxMVavXo0nn3wSUmnrpbm5ueHbb7/F5s2bYWBggA0bNoh+t0FoaCiSkpJw5swZnD17Fi+88IKo9RARkWo0DRu2szer0azbC5j+lnQDOaW3VFaXPsksqMA/tyUDAF4e1RMPeClfMFYTiR60vL29cfDgQVRUVODq1atITExEXV0dvLxaH3fNy8vDrFmzEBUVhaqqKixYsOC+arCzs4NMJmsxeT0vLw9OTk73dW4iItJujRPhw9qwrIMyQd2tMdDTBvUKARuPXFZhZfqhuk6OOd+fRlWtHIO8bDEnvIfYJbWL6EGrkbm5OZydnVFcXIxdu3bh0UcfVdqusLAQo0aNgq+vL7Zs2YK4uDhs3rwZixYt6vC1jYyM0L9/f8TFxTUdUygUiIuLw6BBgzp8XiIi0m7XiqtwqbCyad+8jnpheEPnwfd/ZqOsuuWd89S69/64gAs5ZbA1N8KqJ4JF27Owo0TfEGjXrl0QBAG9evXCxYsXsXjxYvTu3RszZsxo0VahUCAyMhLu7u5Nw4Z+fn7Ys2cPwsPD0a1bN6W9WxUVFbh48WLT46ysLCQlJcHGxgZubm4AgJiYGEyfPh0hISEIDQ3FqlWrUFlZqbQOIiLSD429WUGuVrA06fhaTSN6OsDHoQsy8ivww5/ZeGG4t6pK1Gk7z+Xg22NXAAArHw+Go6XJPV6heUQPWqWlpXjttddw7do12NjY4B//+Afee+89GBq2/IGWSqVYvnw5wsLCYGRk1HQ8KCgIe/fuhb298m7dEydOYOTIkU2PY2JiAADTp0/H119/DQB4/PHHUVBQgDfffBO5ubkIDg5GbGxsiwnyRESkPw5dvL9hw0ZSqQTPD/PCK7+cxcYjlzFjiCeMDDRmUEkjXS2qwiu/ngUAvDjcG8N73t//B2KRCFyuVjRlZWWwsrJCaWkpLC0txS6HiIj+Rq4Q0P/dPSipqsMvLw5CiIfNfZ2vpl6OsBX7kV9eg39NCsLE/q4qqlT31NYrMOmLBJy5WoJ+btbY/MIgGMo0J5i25/Nbc6omIiLSIOdvlKKkqg5djA0Q1N36vs9nbCDDjCGeAID18Ze4Lc9dfLQrFWeulsDK1BCrn+yrUSGrvbS3ciIiIjU6dHt+1iBvW5V90E8Z6AZzIxnS8spxIL1AJefUNftS87D+UBYA4MOJfeDatX1rl2kaBi0iIiIl/lrWoWPrZyljZWqIJ0MbbsL68iAXML1TTuktLPzpDADgmcEeGOuv/UssMWgRERHdoaq2HieuFAEAhvZQXdACgJlDPWEglSDh0k2cu1aq0nNrs3q5Ai//kITiqjoEdLPEaw/2FrsklWDQIiIiusOfWUWokwvoZm0KTztzlZ7bxdoUUUEuAIAv4jNVem5ttjouA4mXi9DF2ACfP9kPxgYysUtSCQYtIiKiO/x92FAdW7w9H9awgOmOczm4WlSl8vNrmyMXC/HZ/ob1LpdPCISHisOtmBi0iIiI7nC/+xvei5+LJcJ87KAQgA2Hs9RyDW1RUF6D+ZuTIAjAEwO645HbvX26gkGLiIjob/LKqpGeVwGJBBjirZ6gBQAvDGtYHX7z8asorqxV23U0mUIhIOanJBSU16CnYxcsjfIXuySVY9AiIiL6m8ZlHQK7WaGrudE9WnfckB628HO2xK06OTbd3mZG36w9mIlDGYUwMZRizZR+MDXSjXlZf8egRURE9DeHbw8bqnJZB2UkEknTZtPfJFxGdZ1crdfTNCcuF2HlnnQAwNuPBMDH0ULkitSDQYuIiOg2hULA4Ys3AQBDe6h/b70HA53RzdoUhRW12HLqutqvpylKqmox74fTkCsEjA92waQQ3d2OiEGLiIjottTcchRW1MDUUIZ+7tZqv56hTIqZQxu25fnPoUtQKHR/Wx5BELDo57O4UVoNTztzvPtYoFru7NQUDFpERES3Hb7YMGz4gJdNp63j9PiA7rA0McClwkrsuZDXKdcU08Yjl7H3Qh6MZFJ8PqUvuhgbiF2SWjFoERER3dY4EX6oj/qHDRt1MTbA1AfcAQBfxuv2tjxnr5Xg/Z0XAAD/fNgX/i5WIlekfgxaREREAKrr5EjMath2R90T4e80Y7AHjGRSnLxSjJO3t/7RNWXVdZjz/WnUyQWM83fC07fDpa5j0CIiIgJw4nIxauoVcLQ0ho9Dl069toOlCcb3vb0tjw5uNi0IAl7bcg7ZRVXoZm2KFRP76PS8rL9j0CIiIgJw6Pb8rKE97EUJAbOGNSz1sOdCHi4VVHT69dXph8Sr+ONsDgykEnw2pS+sTA3FLqnTMGgREREBOJT+1/6GYujhYIFRvR0gCMD6Q7qzLU9qbhmWbT8PAHhlXC/0c+sqckWdi0GLiIj0XmFFDVJyygAAQ3qIE7SAv3q1fj11DQXlNaLVoSpVtfWI/u4UauoVGNHLHs8N9RK7pE7HoEVERHrvyMWG3ixfZ0vYWxiLVkeopw2Culujtl6B/yZcFq2OjpIrBCRk3sT/kq4jIfMm3tyWjMyCSjhaGuPjSUGQSvVjXtbf6fbiFURERG3QuKyDWMOGjSQSCV4Y5oWXvjuFb49dwewR3jAz0o6P6tjkHCzbnoKc0upmxyUAPn2iL2y7iBdgxcQeLSIi0muCIOCwhgQtABjr7wR3WzOUVNXhp+NXxS6nTWKTczB706kWIQsABDRsuaOvGLSIiEivZRZUILesGkYGUgzwsBG7HMikEjzXuC3P4SzUyxUiV3R3coWAZdtT0NrmQRIAy7anQK4H2wspw6BFRER6Lf723YYDPW1gYtg52+7cy8T+3WFjboRrxbewMzlX7HLuKjGrSGlPViMBQE5pddNisPqGQYuIiPTa4dsT4YeKeLfhnUyNZE0rp38ZfwmCoLm9QfnlrYesjrTTNQxaRESkt2rrFTh26SYAYKgGzM/6u2mD3GFsIMW566VIuF2jJrJv4yR3BwsTNVeimRi0iIhIb53KLkZVrRx2XYzg62QpdjnN2HYxxqQQVwCau9l09s0qfLI3/a5tJACcrUwQ6in+/DcxMGgREZHearzbcEgPO41c4+m5oV6QSIADaQVIyy0Xu5wmCoWAb49dwbhP43H8cjGMDBrixJ3vYOPjpVF+kGng+9sZGLSIiEhvHcpo3N9Qs4YNG3nYmWOcvxMAzenVulZchae/+hNvbEtGVa0cAz1tsHfBcKx7qh+crJoPDzpZmWDtU/0wLsBZpGrFpx2roBEREalYSVUtzl4vBQCE+diLXE3rZg3zws7kXPx25joWj+3VIsx0FkEQsPn4Vbz7xwVU1NTDxFCKV8f1xvRBHpBKJXCzNcNoPyckZhUhv7waDhYNw4X62pPViEGLiIj00tHMmxAEwMehi2jhpS36unVFqIcNEi8XYeORLLz2oG+n15BTeguv/noO8ekNPYD93bviX5OC4Gln3qydTCrBIG/bTq9Pk3HokIiI9FLTsKGG3W2oTONm09//mY3y6rpOu64gCPjl5DWM+SQe8ekFMDKQ4vUHffHTC4NahCxSjj1aRESkdwRBaNrfcJgGDxs2Cu/tAG97c2QWVOKHxGzMGuat9mvml1XjtS3nEJeaDwAI6m6NjycFoYdDF7VfW5ewR4uIiPTOlZtVuFZ8C4YyCQZ6af6yA1KppKlX66vDl1Fbr75teQRBwP+SrmP0J/GIS82HkUyKV8b1wq8vDmLI6gAGLSIi0juNw4b93LrCzEg7BnfG9+0Gewtj5JZVY/uZG2q5RkF5DV7cdBIv/5iE0lt1COhmie1zh+KlET1gIGNk6Ai+a0REpHeahg17av6wYSNjAxmeGewBAFh/SPXb8vx+9gbGfHIQu87nwVAmwcLRPbH1pSHo5WSh0uvoGwYtIiLSK/VyBRIyb2+7o6HrZ7XmqYHuMDOSITW3HAdv3wF4v4oqaxH9/SnM+f40iqvq4Otsif9FD8XcUT4wZC/WfeM7SEREeuXMtRKU19TDytQQAd2sxC6nXazMDPHEADcAqlnANDY5F2M+OYg/zuZAJpVgXngP/C96CPxcNGs7Im2mHQPTREREKtI4bDi0h51WLqY5c6gHvkm4jKOZN5F8vbRDYbGkqhZv/XYe25Ia5nr1dOyCjycFI9BVu4KnNmCPFhER6ZXG/Q21Yf0sZVy7muHhPg1b2nzRgV6tuAt5GP1JPLYl3YBUArw0whvb5w5lyFITBi0VKSkpQUhICIKDgxEQEID169eLXRIREd2hrLoOp6+WANC++Vl/17jUw45zObhaVNWm15TeqsOin8/g2W9OoKC8Bl725vh19mC8Mq43jA1k6ixXr3HoUEUsLCwQHx8PMzMzVFZWIiAgABMmTICtLbciICLSFMcyb0KuEOBpZ47uNmZil9Nh/i5WGNrDDocvFmLD4Sy89Yj/XdsfSMvHkl/PIbesGhIJ8HyYF2JG94SJIQOWurFHS0VkMhnMzBr+0dbU1EAQBJXfektERPfn8MW/5mdpu8Zerc3Hr6KkqlZpm/LqOry25Sye2XgcuWXV8LA1w88vDML/PejLkNVJRA9acrkcb7zxBjw9PWFqagpvb2+88847Kg0p8fHxiIqKgouLCyQSCbZt26a03Zo1a+Dh4QETExMMHDgQiYmJ7bpOSUkJgoKC4OrqisWLF8POTvv/IRMR6ZLGifBhWjo/6+/CfOzg62yJW3VyLN9xAf9Luo6E2z12AHDkYiHGrTqEHxKvAgBmDPHAzpeHIcRD81fC1yWiDx2uWLECa9euxTfffAN/f3+cOHECM2bMgJWVFebNm9ei/ZEjRxAaGgpDQ8Nmx1NSUmBrawtHR8cWr6msrERQUBBmzpyJCRMmKK1j8+bNiImJwbp16zBw4ECsWrUKY8eORVpaGhwcHAAAwcHBqK+vb/Ha3bt3w8XFBdbW1jhz5gzy8vIwYcIETJw4UWk9RETU+a4VVyGrsBIyqQQPeGv/tA6JRIIHvLriQk4ZfjpxDT+duAYAcLQ0Ri8nC8SnN4TK7jam+GhiEB7w0v7vWRtJBJHHtx5++GE4Ojpiw4YNTcf+8Y9/wNTUFJs2bWrWVqFQoF+/fvDx8cGPP/4Imayh2zMtLQ3Dhw9HTEwMXnnllbteTyKRYOvWrRg/fnyz4wMHDsSAAQPw+eefN12re/fumDt3LpYsWdLu7+ull15CeHg4Jk6c2GqbsrIyWFlZobS0FJaWXLOEiEidfkzMxpIt59DfvSt+nT1Y7HLuW2xyDmZvOoW7fYg//YA7lkT2hrmx6P0qOqU9n9+iDx0OHjwYcXFxSE9PBwCcOXMGhw8fRmRkZIu2UqkUO3bswOnTpzFt2jQoFApkZmYiPDwc48ePv2fIak1tbS1OnjyJiIiIZteKiIhAQkJCm86Rl5eH8vJyAEBpaSni4+PRq1cvpW3XrFkDPz8/DBgwoEP1EhFR++nSsKFcIWDZ9pS7hiwbcyO89Yg/Q5bIRH/3lyxZgrKyMvTu3RsymQxyuRzvvfcepk6dqrS9i4sL9u3bh7CwMEyZMgUJCQmIiIjA2rVrO1xDYWEh5HJ5i2E+R0dHpKamtukcV65cwaxZs5omwc+dOxeBgYFK20ZHRyM6OropERMRkXrJFQKOZOpO0ErMKkJOafVd2xRV1iIxqwiDdGCYVJuJHrR++uknfPfdd/j+++/h7++PpKQkzJ8/Hy4uLpg+fbrS17i5ueHbb7/F8OHD4eXlhQ0bNkAiEXd139DQUCQlJYlaAxERKZd8vRQlVXWwMDZAkKu12OXct/zyu4es9rYj9RF96HDx4sVYsmQJnnjiCQQGBuLpp5/GggUL8P7777f6mry8PMyaNQtRUVGoqqrCggUL7qsGOzs7yGQy5OXltbiOk5PTfZ2biIjE17iswyBvWxjowEbJDhYmKm1H6iP6T1tVVRWk0uZlyGQyKBQKpe0LCwsxatQo+Pr6YsuWLYiLi8PmzZuxaNGiDtdgZGSE/v37Iy4urumYQqFAXFwcBg0a1OHzEhGRZjiUUQBAN4YNASDU0wbOViZobSxHAsDZygShnlzKQWyiDx1GRUXhvffeg5ubG/z9/XH69GmsXLkSM2fObNFWoVAgMjIS7u7u2Lx5MwwMDODn54c9e/YgPDwc3bp1U9q7VVFRgYsXLzY9zsrKQlJSEmxsbODm1rALekxMDKZPn46QkBCEhoZi1apVqKysxIwZM9T3zRMRkdpV1tTj5JViAMBQH3uRq1ENmVSCpVF+mL3pFCRAs0nxjeFraZSfVm6arWtEX96hvLwcb7zxBrZu3Yr8/Hy4uLjgySefxJtvvgkjI6MW7ffs2YOwsDCYmDTvDj19+jTs7e3h6ura4jUHDhzAyJEjWxyfPn06vv7666bHn3/+OT766CPk5uYiODgYq1evxsCBA+//m2wFl3cgIlK//an5mPH1cbh2NcWhV0aKPqdXlWKTc7Bse0qzifHOViZYGuWHcQHOIlam29rz+S160NJnDFpEROr39vYUfHUkC0+Gdsf7E/qIXY7KyRUCErOKkF9eDQeLhuFC9mSpV3s+v0UfOiQiIlKnv+Zn6caw4Z1kUgmXcNBgok+GJyIiUpfc0mpk5FdAIgEGM4yQCBi0iIhIZzUu69CnmxWszVrO+yVSNwYtIiLSWbo+bEiaj0GLiIh0kkIh4MjtHq2hOrJ+FmkfBi0iItJJqbnlKKyohZmRDP3cuopdDukpBi0iItJJjcOGD3jZwsiAH3ckDv7kERGRTmqcCD+0B4cNSTwMWkREpHOq6+RIzCoCoDv7G5J2YtAiIiKdc/xyEWrqFXCyNEEPhy5il0N6jEGLiIh0zuGMv+421KW9DUn7MGgREZHOib8dtDhsSGJj0CIiIp1SUF6DCzllAIAhnAhPImPQIiIinXI0s6E3y8/ZEnZdjEWuhvQdgxYREemU+PTbw4Y92ZtF4mPQIiIinSEIAg5fvL2/YQ/ub0jiY9AiIiKdcTG/AnllNTA2kCLEg9vukPgYtIiISGc03m0Y6mkDE0OZyNUQMWgREZEOOXx7f0Mu60CagkGLiIh0Qk29HMcuNWy7M5Tzs0hDMGgREZFOOHWlBLfq5LDrYozeThZil0MEgEGLiIh0ROPdhkN72EIq5bY7pBkYtIiISCf8tb8hhw1JczBoERGR1iuurMXZ66UAOBGeNAuDFhERab2jmTchCEBPxy5wtDQRuxyiJgZiF0BERJpNrhCQmFWE/PJqOFiYINTTBjINmwP11/wsDhuSZmHQIiKiVsUm52DZ9hTklFY3HXO2MsHSKD+MC3AWsbK/CILA/Q1JY3HokIiIlIpNzsHsTaeahSwAyC2txuxNpxCbnCNSZc1dvlmF6yW3YCSTYqCnjdjlEDXDoEVERC3IFQKWbU+BoOS5xmPLtqdArlDWonM1rgbfz90aZkYcqCHNwqBFREQtJGYVtejJ+jsBQE5pNRKzijqvqFY07m8YxmUdSAMx+hOR6LRhsrW+yS9vPWQ1a1fWtnbqUidX4FjmTQBc1oE0E4MWEYlKGyZb6yMHi7YtkbB6XwaMDaUY7eckSjg+c7UE5TX16GpmCH8Xq06/PtG9cOiQiESjLZOt9VGopw2crUxwr+iUWVCJFzedwuiVB/FDYjaq6+SdUl+jQ7eHDQf3sGMvKGkkBi0iEoU2TbbWRzKpBEuj/JQ+J7n9teIffTBnZA9YmhjgUmElXttyDkNX7Mea/RdRequuU+o8fPH2/KweHDYkzcSgRUSi0KbJ1vpqXIAzpg50a3HcycoEa5/qh8cHdMeisb1w9LVR+OdDvnC2MkFhRQ0+2pWGwe/H4b0/UpBTektt9ZVV1yHpagkAYCjnZ5GG4hwtIuoUgiDgWvEtnLhShBOXi7HvQn6bXtfWSdmkHpdvVgEAHh/QHYO9bZXerNDF2ADPhXlh+mAPbD9zA18cvIS0vHKsP5SFjUcu49HgbnhhuBd6OlqotLaEzJuQKwR42ZnDtauZSs9NpCoMWkSkFnVyBVJulOHElWKcvB2u8str2n2etk7KJtUrrKjB0cyGobnoET3gZnv3MGMok2JCP1c81rcbDqQX4IuDmTh2qQi/nrqGX09dQ3hvB7w43BsDPLpCIrn/+VSHb8/PYm8WaTIGLSJSidJbdTiVXYyTl4tx4koRzlwtxa07JkYbyiQI6GaFEPeu6Nu9K97afh4F5TVK52lJ0DBEFcqVvkUTm5wLhQD0cbW6Z8j6O4lEgpG9HDCylwNOZxfjy/hLiD2fi32p+diXmo++btZ4YZg3xvg5QnofE9gP3V6olOtnkSZj0CLSYx1dv+rOYcATl4uRnl8O4Y7EZGVqiP7uXdHfvStC3LsiqLs1TAxlTc9LpcDsTacgAZSGraVRfryTTES/n70BAHgosOPLbPR164q1T/VHVmEl1h+6hF9OXsPp7BK8uOkkvOzM8fwwLzzWt1uzn4u2uFpUhcs3qyCTSvCAF8M4aS6JINz5q5E6S1lZGaysrFBaWgpLS0uxyyE90571q9o6DOhha4b+7jYI8WgIVt72Xe7ZY6GsDmMDKT59IpjraIkov7waA5fHQRCAw6+OVNkcqILyGnxz9DL+m3AZZdX1AAB7C2PMGOKBqQPdYWVq2Kbz/JCYjde2nEOIe1f8MnuwSmojaqv2fH6zR4tIDzWuX3XnX1mN61f9a3IQbMyN7jkM6O/SMAwY4mGD/u5dYW9h3O5axgU4Y7SfExKzipB0tRgrYtOgEAQM5XCQqHaey4UgAMHdrVU60dzewhiLxvbCiyO88WNiNjYczkJOaTU+jE3Dmn0XMWWgG2YO9YSzleldz8NhQ9IWDFpEeqYt61ct/OlMi+fuNQx4P2RSCQZ52+IBLxv8dOIasgorsT81H1FBLio5P7Vf47Dhw33U06vY0TsV5QoBxy7dxP7UhqA1yNtWLfURqQqDFpGeudf6VY0cLY0xtId9u4YB75dEIsG4ACesPZCJ2ORcBi2R5JZW4/jlYgDAQ2oKWo3udafiqN4OeOH2nYq7zue2GGae98NpvPUIt2sizcWgRaRn2rou1f896ItHg7upuZqWIm8Hrf1p+aiuk6us14za7o9zDVsfhbh3vecQnqq0dqdiXGo+4lLz4WlnhqzCqhavyytrGO5e+1Q/hi3SSFwZnkjP5LahNwsQb/2qwG5W6GZtiqpaOQ6mF4hSg75T97DhvTTeqbhv4QhMGegGQ5lEacgCuF0TaT4GLSI9UV0nx7Lt5/H+ztS7tpOg4e5Dsdavahw+BBrWcaLOda24CqezSyCRAA/ex7IOquBpZ47ljwXisyf73rUdt2siTcagRaQHUnPL8OjnR7DxyGUAwPCe9k0bA/9d42Ox169qDFp7L+Shtl4hWh36aMftYcNQDxs4WGrGqvw1bfwZ4HZNpIkYtFSkpKQEISEhCA4ORkBAANavXy92SURQKARsOJyFRz47grS8cth1McJXz4Tgm5mhWPtUPzhZNf8gbdwsWOy5Lv3dGpaKKK+ux5HbW8BQ5/j9bEPQeliDbkRo6zA2t2siTcTJ8CpiYWGB+Ph4mJmZobKyEgEBAZgwYQJsbXnrMYkjr6wai34+g0O394ML7+2ADyf2gV2XhrWu/r5+VXtXhlc3qVSCsf6O2HQsG7uSczGyl4PYJemF7JtVOHutFFJJw00JmiLU0wbOVibILa3mdk2kddijpSIymQxmZg2L+tXU1EAQBHDRfRJLbHIuxq2Kx6GMQpgYSvHO+ABsmB7SFLIaNa5f9WhwNwzyttWIkNUo8nav2u6UPNTLOXzYGX4/1zAJfpC3bYufFTHJpBIsjfIDoLnD3UStET1oeXh4QCKRtPiKjo5W2TXi4+MRFRUFFxcXSCQSbNu2TWm7NWvWwMPDAyYmJhg4cCASExPbdZ2SkhIEBQXB1dUVixcvhp0dd5SnzlVZU48lv57Fi5tOoriqDv4ulvh97lA8/YA7JBLt+hAa6GmDrmaGKKqsReJlTnLuDL+fuT1s2Edzhg0bjQtw1ujhbqLWdGjosK6uDrm5uaiqqoK9vT1sbDreXXv8+HHI5X9t7ZGcnIzRo0dj0qRJStsfOXIEoaGhMDRsvh9WSkoKbG1t4ejo2OI1lZWVCAoKwsyZMzFhwgSl5928eTNiYmKwbt06DBw4EKtWrcLYsWORlpYGB4eGYYvg4GDU19e3eO3u3bvh4uICa2trnDlzBnl5eZgwYQImTpyotB4idUi6WoL5P57G5ZtVkEiAWcO8sHB0LxgZiP73VIcYyKQY7eeIn05cQ2xyLgZ78w8XdbpUUIGUnDLIpBKM9decYcO/0+ThbqJWCW1UVlYm/Pvf/xaGDRsmmJiYCFKpVJBIJIJUKhXc3NyE5557TkhMTGzr6Vr18ssvC97e3oJCoWjxnFwuF4KCgoSJEycK9fX1TcdTU1MFR0dHYcWKFfc8PwBh69atLY6HhoYK0dHRza7l4uIivP/++x36PmbPni38/PPPd21TWloqABBKS0s7dA0iQRCEerlC+CwuXfB67Q/B/dXfhQeW7xWOXCwQuyyV2HchT3B/9XdhwLt7BLm85e8EUp3Ve9MF91d/F57e8KfYpRBpvPZ8frfpT92VK1fCw8MDGzduREREBLZt24akpCSkp6cjISEBS5cuRX19PcaMGYNx48YhIyOjQ6GvtrYWmzZtwsyZM5UOc0ilUuzYsQOnT5/GtGnToFAokJmZifDwcIwfPx6vvPJKh6978uRJRERENLtWREQEEhIS2nSOvLw8lJeXAwBKS0sRHx+PXr16KW27Zs0a+Pn5YcCAAR2ql6jR1aIqPPFlAv61Ox1yhYCH+jgj9uVhOtP7M7iHLSyMDZBfXoPTV4vFLkenNd1tKNIipUS6qk1Dh8ePH0d8fDz8/f2VPh8aGoqZM2di3bp12LhxIw4dOgQfH592F7Nt2zaUlJTgmWeeabWNi4sL9u3bh7CwMEyZMgUJCQmIiIjA2rVr2329RoWFhZDL5S2G+RwdHZGaevfFHRtduXIFs2bNapoEP3fuXAQGBiptGx0djejoaJSVlcHKyqrDdZN+23b6Ot7Ylozymnp0MTbAskf8MaFfN62bi3U3xgYyhPs64H9JN7DzXC76u/OuMnXIyCtHWl45DGUSjPXTzGFDIm3VpqD1ww8/tOlkxsbGePHFFztczIYNGxAZGQkXl7tPxHRzc8O3336L4cOHw8vLCxs2bBD9wyU0NBRJSUmi1kD6ofRWHd7YlozfzjTcIdbfvStWPR6M7jZmIlemHpEBTvhf0g3Ens/F6w/5iv5vXRc19maF+djDyszwHq2JqD3ue5ZsWVkZtm3bhgsXLtzXea5cuYK9e/fiueeeu2fbvLw8zJo1C1FRUaiqqsKCBQvu69p2dnaQyWTIy8trcR0nJ/51R5rjz0s38eCnh/DbmRuQSSVYENETm2c9oLMhCwCG93SAqaEM14pv4fyNMrHL0TmCIDRtIs1hQyLVa3fQmjx5Mj7//HMAwK1btxASEoLJkyejT58++PXXXztcyMaNG+Hg4ICHHnroru0KCwsxatQo+Pr6YsuWLYiLi8PmzZuxaNGiDl/byMgI/fv3R1xcXNMxhUKBuLg4DBo0qMPnJVKV2noFVsSm4on1x3C95Bbcbc3w84uD8HKEDwxk2nlXYVuZGskwopc9AGBnco7I1eietLxyXMyvgJFMigg/3iVNpGrt/g0dHx+PsLAwAMDWrVshCAJKSkqwevVqvPvuux0qQqFQYOPGjZg+fToMDFofzVQoFIiMjIS7uzs2b94MAwMD+Pn5Yc+ePdi4cSM++eQTpa+rqKhAUlJS09BeVlYWkpKSkJ2d3dQmJiYG69evxzfffIMLFy5g9uzZqKysxIwZMzr0PRGpSmZBBf6x9ijWHsiEIACTQ1zxx7ww9HPrKnZpnaZx78OdyblcCFjFGtfOGt7LHpYmHDYkUrV2r6NVWlratG5WbGws/vGPf8DMzAwPPfQQFi9e3KEi9u7di+zsbMycOfOu7aRSKZYvX46wsDAYGRk1HQ8KCsLevXthb2+v9HUnTpzAyJEjmx7HxMQAAKZPn46vv/4aAPD444+joKAAb775JnJzcxEcHIzY2Fiug0WiEQQB3ydm453fU1Bdp4CVqSE+mBCIyED9G94J7+0AI5kUlwoqkZFfgZ6OFmKXpBM4bEikfu0OWt27d0dCQgJsbGwQGxuLH3/8EQBQXFwME5OObeg5ZsyYNv+VOnr0aKXH+/bt2+prRowY0abzz5kzB3PmzGlTHUTqdLOiBq/+eg57LzTMGxzSwxYfTwpusSq2vrAwMcRQHzvsS83HznO5DFoqcv5GGbIKK2FsIMUoX/5RSaQO7R46nD9/PqZOnQpXV1e4uLhgxIgRABqGFFtbzoCI2u5AWj7GrjqEvRfyYCST4vUHffHtzIF6G7Ia/TV8yHlaqtJ4t2F4bwd0Me7QRiFEdA/t/pf10ksvYeDAgcjOzsbo0aMhlTZkNS8vrw7P0SIioLpOjg92puLro5cBAD4OXfDpE33h52IpbmEaYrSvI2RSCVJzy3G5sBIeduZil6TVGoYNG5YIeYjDhkRq06E/Yfr374/+/fs3O3avuwWJqIFcIbTYqy0ttxzzN59Gel4FAOCZwR5YEtkbJoYykavVHF3NjTDIyxaHLxYi9nwuXhzuLXZJWu3stVJcLboFU0MZwns7iF0Okc5iXzFRJ4pNzsGy7SnIKa1uOmZhYoBbtXLUKwTYdTHGR5P6YGQvfvApMy7ACYcvFmJnMoPW/fr9bENv1ihfB5gZ8aOASF10ewEeIg0Sm5yD2ZtONQtZAFBeXY96hYA+3Syxa34YQ9ZdjPF3hEQCnLlaghslt8QuR2sJgoA/uLchUadg0CLqBHKFgGXbU3C3e18LKmphbWZ0lxbkYGGCAbf3O4xNzhW5Gu11KrsEN0qrYW4kwwgGeyK1YtAi6gSJWUUterLulFNajcSsok6qSHuNvX33IYNWxzUOG472c+Q8QCI169DAfElJCRITE5Gfnw+FQtHsuWnTpqmkMCJdkl9+95DV3nb6bFyAE975PQXHr/x1QwG1nUIhYMftRUof6uMicjVEuq/dQWv79u2YOnUqKioqYGlpCYlE0vScRCJh0CJSoq1hgKHh3rpZmyLI1QpnrpViT0oepg50F7skrXLiSjHyympgYWKAYT3txC6HSOe1e+hw4cKFmDlzJioqKlBSUoLi4uKmr6IiDnsQKRPqaQMny9ZDlASAs1XDUg90b+MCGiZwc/iw/RqHDcf4OcHYgMOGROrW7qB1/fp1zJs3D2ZmZuqoh0gnyaSSVheFbOwTXhrlB5lUorQNNRd5e55WQuZNlFTVilyN9pArBOw41xBOebchUedod9AaO3YsTpw4oY5aiHRWnVyBuNv7Ft651YmTlQnWPtWvqZeG7s3Dzhy9nSxQrxCwJyVP7HK0xp9ZN1FYUQMrU0MM6cFhQ6LO0O45Wg899BAWL16MlJQUBAYGwtDQsNnzjzzyiMqKI9IVP5+4hss3q2BrboR9i0Yg5UZZs5Xh2ZPVfpEBzkjNLUdsci4mhXQXuxyt0Lh21lh/RxgZ8KZzos7Q7qD1/PPPAwDefvvtFs9JJBLI5fL7r4pIh1TXyfFpXDoAIHpkD1iZGmKQt63IVWm/cQFO+GRvOg5lFKK8ug4WJob3fpEeq5crmua0Pcy7DYk6Tbv/pFEoFK1+MWQRtfTfhMvIK6tBN2tTTH3ATexydEZPxy7wsjNHrVyBfan5Ypej8RIu3cTNylp0NTPEYAZ9ok7DvmMiNSqrrsO/D2QCAF6O8OFdXiokkUgw7vak+F3neffhvTQOG44LcIaBjL/6iTpLm4YOV69ejVmzZsHExASrV6++a9t58+appDAiXfCf+EsoqaqDt705JvTtJnY5OicywBn/PpCJ/akFuFUrh6kRg6wydXIFYm+H0SjebUjUqdoUtD755BNMnToVJiYm+OSTT1ptJ5FIGLSIbiusqMF/DmcBABaN6cVeBDUI6GYJ166muFZ8CwfTC5p6uKi5wxcLUVJVB7suRhjoxWFDos7UpqCVlZWl9L+JqHVr9l9EVa0cfVytGADURCKRYJy/E/5zOAuxyTl8n1vROGwYGeDMO1yJOhn/xCZSg2vFVfjuWDYAYPHYXs22qiLVigxsCFdxF/JRU88bcu5UUy9vmsPGRUqJOl+bgtYHH3yAW7dutemEf/75J/7444/7KopI2326NwO1cgUGedliKBeGVKu+3bvCwcIY5TX1OHrxptjlaJxD6YUor66Hg4UxBnhwiyeiztamoJWSkgI3Nze89NJL2LlzJwoKCpqeq6+vx9mzZ/Hvf/8bgwcPxuOPPw4LCwu1FUyk6S7ml+PXU9cAAIvHsTdL3aRSCcb6N/Rq7UzOEbkazfPHuYb35MFAZ0g5bEjU6doUtP773/9i7969qKurw5QpU+Dk5AQjIyNYWFjA2NgYffv2xVdffYVp06YhNTUVw4YNU3fdRBrr493pUAjAaD9H9HPrKnY5eqFx78M9KXmolytErkZzVNfJm7YoigrisCGRGNq8MnxQUBDWr1+PL774AmfPnsWVK1dw69Yt2NnZITg4GHZ2HB4hOnutBDuTcyGRNNxpSJ0j1NMGXc0MUVxVh8SsIgzmcC0A4EBaASpq6uFiZYK+3Rn6icTQ7i14pFIpgoODERwcrIZyiLTbR7vSAACPBXdDLycOoXcWA5kUY/ycsPnEVexMzmXQuo3DhkTi412HRCpyNLMQhzIKYSiTYMHonmKXo3fGBf61SrxCIYhcjfhu1coRd6Fh2PDhIO5tSCQWBi0iFRAEAR/GNvRmPRnqhu42ZiJXpH+GeNvBwtgA+eU1OJVdLHY5otuXmo+qWjlcu5oiyNVK7HKI9BaDFpEK7EnJQ9LVEpgYSjEnvIfY5eglIwMpRvk6AAB2JnPvwz/O3QAAPNTHmXe+EomIQYvoPskVAv61u6E3a8YQTzhYmIhckf4aF9BwZ11sci4EQX+HDytr6rEvNR8AENWHw4ZEYupw0Lp48SJ27drVtJCpPv9SI/32v6TrSM+rgKWJAV4c5i12OXpteE97mBrKcL3kFpKvl4ldjmj2XshDdZ0C7rZm8HexFLscIr3W7qB18+ZNREREoGfPnnjwwQeRk9NwV8uzzz6LhQsXqrxAIk1WW6/AJ3vTAQAvDPeGlZmhyBXpN1MjGUb2tgeg34uXNu5t+DCHDYlE1+6gtWDBAhgYGCA7OxtmZn9N+H388ccRGxur0uKINN3m49m4WnQLdl2MMWOIh9jlEDh8WF5dhwPpDbt3PMxhQyLRtXsdrd27d2PXrl1wdXVtdtzHxwdXrlxRWWFEmq6qth6r910EAMwb1QNmRu3+50RqEN7bAUYGUlwqrER6XoXerWe290IeausV8LI3R289+96JNFG7e7QqKyub9WQ1KioqgrGxsUqKItIGXx+9jILyGnS3McUTA9zELodu62JsgGE+DQuW6uPw4e9nGocNXThsSKQB2h20wsLC8N///rfpsUQigUKhwIcffoiRI0eqtDgiTVVaVYd1BzIBAAsiesLIgDfwapLGTaZj9WyZh9KqOsRnNA4bcm9DIk3Q7rGODz/8EKNGjcKJEydQW1uLV155BefPn0dRURGOHDmijhqJNM4X8Zkoq65HT8cueDS4m9jl0B1G+znCQCpBam45sgor4WlnLnZJnWJ3Si7q5AJ6OnZBT0cOGxJpgnb/GR4QEID09HQMHToUjz76KCorKzFhwgScPn0a3t68tZ10X355NTYeuQygYeNoGfeQ0zjWZkYY5G0LQL96tX4/+9ewIRFphg7N3rWyssLrr7+u6lqItMLn+y7iVp0cfd2sMdrPUexyqBXjApxwKKMQsck5mD1C9/8ILK6sxZGLhQAaVoMnIs3QoaBVXV2Ns2fPIj8/HwqFotlzjzzyiEoKI9JEV4uq8ENiNgBg8dhenGyswcb4OeGf25Jx5loprpfcQjdrU7FLUqtd53NRrxDg62wJb/suYpdDRLe1O2jFxsZi2rRpKCwsbPGcRCKBXC5XSWFEmuiTPemokwsI87HDYG87scuhu7C3MMYADxskZhUhNjkXzw71FLsktfr9b4uUEpHmaPccrblz52LSpEnIycmBQqFo9sWQRbosLbccW5OuA2jozSLNFxnQePehbi/zUFhRg6OZDX/8MmgRaZZ2B628vDzExMTA0ZFzU0i//Gt3GgSh4cO7j6u12OVQGzQu83DiSjHyy6tFrkZ9YpNzoRCAwG5WcLfVjzssibRFu4PWxIkTceDAATWUQqS5TmUXY09KHqQSYOGYnmKXQ23kYm2KoO7WEARg1/k8sctRm9/P3gDA3iwiTdTuOVqff/45Jk2ahEOHDiEwMBCGhs030Z03b57KiiPSBIIg4KPYNADAP/q5oocD1yfSJpEBTjhztQS7knPx9APuYpejcvll1fgzqwgA8GAggxaRpml30Prhhx+we/dumJiY4MCBA83uupJIJAxapHMOXyxEwqWbMJJJMX80e7O0TWSAEz7YmYqESzdRXFmLruZGYpekUjuTcyEIQHB3a3S3abk9GhGJq91Dh6+//jqWLVuG0tJSXL58GVlZWU1fly5dUkeNRKIRBAEf7WrozZr6gJvOLxGgi9xtzeHrbAm5QsCeC7o3fMhhQyLN1u6gVVtbi8cffxxSKfd2I90Xm5yLs9dKYWYkQ/TIHmKXQx30192HurVKfE7pLRy/XAyAw4ZEmqrdaWn69OnYvHmzOmoh0ij1cgX+tbuhN+u5oZ6w62IsckXUUY1B63BGIcqr60SuRnV2nGsIjiHuXeHC3lYijdTuOVpyuRwffvghdu3ahT59+rSYDL9y5UqVFUckpi2nryOzoBLWZoZ4bpiX2OXQfejh0AVe9ua4VFCJfan5OrMReOOwIbfcIdJc7Q5a586dQ9++fQEAycnJzZ7jdiSkK2rq5fh0bwYA4KUR3rA0MbzHK0iTSSQSRAY4Yc3+TOw8l6sTQetacRVOZ5dAIuGwIZEma3fQ2r9/vzrqINIo3x3LxvWSW3C0NMa0QR5il0MqEBngjDX7M3EgPR+3auUwNZKJXdJ92XGuYbX7UA8bOFqaiFwNEbWGM9qJ7lBRU481+y8CAOaN8oGJoXZ/IFMDfxdLuHY1RXWdAgfT88Uu575xb0Mi7dCmHq0JEybg66+/hqWlJSZMmHDXtlu2bFFJYURi+epwFm5W1sLD1gyTQ7qLXQ6pSOPw4fpDWdiZnItxAdobULJvVuHstVJIJdDq74NIH7QpaFlZWTXNv7KyslJrQURiKq6sxfr4hvXgFozuCUMZO311ybgAZ6w/lIV9F/JRUy+HsYF29lb+fq5hEvwgb1vYW/BuWCJN1qagtXHjRrz99ttYtGgRNm7cqO6aiESz9mAmymvq4etsiag+LmKXQyrWt7s1HC2NkVdWgyMXCxHe21Hskjrk9zMNw4YPBfJnlEjTtfnP9WXLlqGiokKdtRCJKre0Gt8cvQwAWDy2J6RS3kWra6RSCcb6N6yptfOcdi5eeqmgAik5ZZBJJRh3e30wItJcbQ5agiCosw6tV1JSgpCQEAQHByMgIADr168XuyRqp0/jMlBTr0CIe1eM7OUgdjmkJo3hZM+FPNTJFSJX035/3J4EP6SHHWx0bN9GIl3UruUduE5W6ywsLBAfHw8zMzNUVlYiICAAEyZMgK2trdilURtkFVbipxNXAQCvjOvNn3UdFuphAxtzIxRV1iIxqwhDetiJXVK7NN1tyLWziLRCu4JWz5497/kBVFRUdF8FaSuZTAYzMzMAQE1NDQRBYC+gFlm5Jx1yhYARvewR6mkjdjmkRgYyKcb4OeLH41exMzlHq4JWRl450vLKYSj7awiUiDRbu4LWsmXL1HLX4fXr1/Hqq69i586dqKqqQo8ePbBx40aEhISo5Pzx8fH46KOPcPLkSeTk5GDr1q0YP358i3Zr1qzBRx99hNzcXAQFBeGzzz5DaGhom69TUlKC4cOHIyMjAx999BHs7LTnF7g+O3+jFNvPNNzFtWhML5Groc4wLsAJPx6/il3n8/D2IwFaMx+vsTcrzMceVmbcrYBIG7QraD3xxBNwcFDt3JXi4mIMGTIEI0eOxM6dO2Fvb4+MjAx07dpVafsjR44gNDS0xR6LKSkpsLW1haNjy7uIKisrERQUhJkzZ7a6DtjmzZsRExODdevWYeDAgVi1ahXGjh2LtLS0pu85ODgY9fX1LV67e/duuLi4wNraGmfOnEFeXh4mTJiAiRMnKq2HNMu/djVsHP1wH2cEdOPyJfpgsLcdLEwMUFBeg5PZxRjgofm9mIIg/LW3IYcNibRGm4OWuuasrFixAt27d2+2bISnp6fStgqFAtHR0fDx8cGPP/4ImaxhDZy0tDSEh4cjJiYGr7zySovXRUZGIjIy8q51rFy5Es8//zxmzJgBAFi3bh3++OMPfPXVV1iyZAkAICkpqU3fk6OjI4KCgnDo0CFMnDixTa8hcRy/XIT9aQWQSSVYyN4svWFkIMVoX0dsOX0dO8/lakXQSssrR2ZBJYxkUoz25x9wRNpC9LsOf/vtN4SEhGDSpElwcHBA3759W71jTyqVYseOHTh9+jSmTZsGhUKBzMxMhIeHY/z48UpDVlvU1tbi5MmTiIiIaHatiIgIJCQktOkceXl5KC8vBwCUlpYiPj4evXop/+Bes2YN/Pz8MGDAgA7VS6ohCAI+jE0FAEwOcYWnnbnIFVFnGnv77sNd53O1Yj5l49pZw3rac5NzIi3S5qClUChUPmwIAJcuXcLatWvh4+ODXbt2Yfbs2Zg3bx6++eYbpe1dXFywb98+HD58GFOmTEF4eDgiIiKwdu3aDtdQWFgIuVzeYpjP0dERubltW2vnypUrCAsLQ1BQEMLCwjB37lwEBgYqbRsdHY2UlBQcP368wzXT/TuQVoDjl4thZCDFvFE+YpdDnWx4T3uYGclwveQWzl4rFbucu/r7sGFUEIcNibRJu+ZoqYNCoUBISAiWL18OAOjbty+Sk5Oxbt06TJ8+Xelr3Nzc8O2332L48OHw8vLChg0bRL8dPzQ0tM1DiyQ+hULAR7fnZk0f5A5nK1ORK6LOZmIow8heDvjjXA5iz+ciqLu12CW16vyNMly+WQVjAylG+XLYkEibiL6Rm7OzM/z8/Jod8/X1RXZ2dquvycvLw6xZsxAVFYWqqiosWLDgvmqws7ODTCZDXl5ei+s4OfEWal30x7kcpOSUoYuxAWaP6CF2OSSSxsVLY5M1e/iw8W7Dkb0c0MVY9L+PiagdRA9aQ4YMQVpaWrNj6enpcHd3V9q+sLAQo0aNgq+vL7Zs2YK4uDhs3rwZixYt6nANRkZG6N+/P+Li4pqOKRQKxMXFYdCgQR0+L2mmOrkCK/ekAwCeD/Pi6tp6bGRvBxgZSJFVWIm0vHKxy2lBrhCQkFmIn040/OH5YCD/8CPSNqL/abRgwQIMHjwYy5cvx+TJk5GYmIgvv/wSX375ZYu2CoUCkZGRcHd3x+bNm2FgYAA/Pz/s2bMH4eHh6Natm9LerYqKCly8eLHpcVZWFpKSkmBjYwM3NzcAQExMDKZPn46QkBCEhoZi1apVqKysbLoLkXTHLyevIauwErbmRng2TPkdrqQfuhgbYJiPPfZeyMPOc7no7WQpdklNYpNzsGx7CnJKq5uOvbfjAowMpBgXwHlaRNpCImhAf/nvv/+O1157DRkZGfD09ERMTAyef/55pW337NmDsLAwmJiYNDt++vRp2Nvbw9XVtcVrDhw4gJEjR7Y4Pn36dHz99ddNjz///POmBUuDg4OxevVqDBw48P6+ubsoKyuDlZUVSktLYWmpOb/gdZFcISAxqwjXS6rw3h8XUFxVhzce9sOzQxm09N2vJ69h4c9n0MvRArsWDBO7HAANIWv2plO485dz40zUtU/1Y9giElF7Pr81ImjpKwatzqGsZ0AqAVY9HoxHgruJWBlpgtKqOvR/dw/qFQL2LRwOL/suotYjVwgYumJfs5/Xv5MAcLIyweFXwyHTkhXtiXRNez6/RZ+jRaROjT0Dd35oKQTg5R+TEJucI1JlpCmszAwxyLth8/edyW1bzkWdErOKWg1ZACAAyCmtRmKWfu4rS6RtGLRIZ8kVApZtT2kx/PJ3y7anQK5gp66+i7w9DLfrvHhBS6EQkHS1BN8kXG5T+/zy1sMYEWkO0SfDE6lLe3oGGns0SD+N8XfEP7edw9lrpbhWXAXXrmadct2iylrEpxfgQFo+4jMKUVRZ2+bXOliY3LsREYmOQYt0Vlv/4mfPANl1McYADxv8mVWE2ORcPBfmpZbryBUCzl4rwYG0AhxIL8DZayX4+yxZC2MDDOlhi4RLRSi9Vaf0HI1ztEI9NX9/RiJi0CId1ta/+NkzQAAQGeCklqB1s6IG8RkFOJBWgPj0AhRXNQ9Qvs6WGNHLHiN62qOfe1cYyqRNcwsBNBv6bpz6vjTKjxPhibQEgxbprFBPGzhbmdzz7i32DBDQsMn0W9tTcDK7GPll1XCw7FgAb+y12p9WgINp+Th7vbR5r5WJAcJ87DCipwOG97KHo5LrjAtwxtqn+rW4W9bJygRLo/y4tAORFmHQIp0lk0rwfJgX3v49pcVz7BmgOzlbmSK4uzWSrpZg3cFMBHW3hoNFQxC/18/IvXqt/Bp7rXo5oK+bNQxl974PaVyAM0b7OSExqwj55dVtroWINAuDFum0xlvgjQ2kqKlXNB1nzwAp42VnjqSrJfjqyOWmY85KflbkCgFnbs+16mivVVvIpBLeqEGk5Ri0SGclXS1B7PlcSCTAtughKKmqY88AtSo2OQdbTl9vcTy3tBqzN53Ciol9YCCV4EBaAQ5l3L3Xqp+bNQza0GtFRLqPQYt01ke7UgEAE/q6wteZK+9T6xrXXFOmsaPqlV/ONjtuYdKwT+Lw2xPZOzqni4h0G4MW6aTDGYU4cvEmDGUSzI/wEbsc0nD3WnOtkYetGR7q49ww16o7e62I6N4YtEjnCIKAD2/3Zk0d6I7uNp2z+CRpr7aupbZgdE88yv0xiagd+OcY6ZzY5FycvVYKMyMZokf2ELsc0gJcc42I1IVBi3RKvVyBf+1OAwA8O9QT9hbGIldE2qBxzbXWbo+QoOHuQ665RkTtxaBFOmXL6evILKiEtZkhnh+mnm1USPfIpBIsjfIDgBZhi2uuEdH9YNAinVFdJ8eqPekAgJdGeMPSxFDkikibNK7G7mTVfHjQycoEa5/qxzXXiKhDOBmedMZ3f2bjRmk1nCxNMG2Qh9jlkBbiauxEpGoMWqQTKmrqsWb/RQDAyxE+MDGUiVwRaSuuxk5EqsShQ9IJ/zl0CUWVtfC0M8ek/q5il0NERASAQYt0wM2KGqyPvwQAWDimJxeRJCIijcFPJNJ6/z6QicpaOfxdLPEgJywTEZEGYdAirXa95Ba+PXYFAPDKuN6QctIyERFpEAYt0mqf7k1Hbb0CAz1tMMzHTuxyiIiImmHQIq11Mb8Cv5y8BqChN0siYW8WERFpFgYt0lof706DQgAifB3R372r2OUQERG1wKBFWunM1RLsTM6FRAIsHttL7HKIiIiUYtAirfTRroaNox8L7oZeThYiV0NERKQcgxZpnaMXC3H4YiEMZRIsGN1T7HKIiIhaxaBFWkUQBKy43Zs1JdQN3W3MRK6IiIiodQxapFV2nc/DmaslMDWUYU64j9jlEBER3RWDFmkNuULAv3Y39GY9O9QT9hbGIldERER0dwxapDW2nLqGi/kVsDI1xPPDvMQuh4iI6J4YtEgr1NTLsWpvBgDgpRHesDI1FLkiIiKie2PQIq3w3bFsXC+5BUdLY0wf7CF2OURERG3CoEUar6KmHmv2XwQAzBvlAxNDmcgVERERtQ2DFmm8DYeycLOyFh62Zpgc0l3scoiIiNqMQYs0WlFlLdYfugQAiBnTC4Yy/sgSEZH24KcWabS1By6ioqYefs6WeDjQWexyiIiI2oVBizTWjZJb+CbhCgBg8bhekEolIldERETUPgxapLFWx2Wgtl6BUE8bjOhpL3Y5RERE7cagRRops6ACP524CgB4dVwvSCTszSIiIu3DoEUaaeXudCgEIMLXAf3dbcQuh4iIqEMYtEjjnLtWij/O5UAiARaN7SV2OURERB3GoEUa58NdqQCAR4Nc0NvJUuRqiIiIOo5BizTK0cxCHMoohIFUgpjR7M0iIiLtxqBFGkMQBHwYmwYAeDLUDW62ZiJXREREdH8YtEhj7EnJQ9LVEpgayjA3vIfY5RAREd03Bi3SCHKFgI92NfRmzRjiAQdLE5ErIiIiun8MWqQRtp2+joz8CliZGuKF4d5il0NERKQSDFokupp6OVbuSQcAvDjcG1amhiJXREREpBoMWiS6H/7MxvWSW3CwMMYzgz3ELoeIiEhlGLRIVJU19fh8/0UAwLxRPjA1kolcERERkeowaJGovjqchcKKWrjbmuHxAd3FLoeIiEilGLRINMWVtfgy/hIAIGZ0TxjK+ONIRES6hZ9sJJq1BzNRXlMPX2dLRPVxEbscIiIilWPQIlHklN7CN0cvAwBeGdsLUqlE3IKIiIjUgEGLRLE6LgM19QoM8OiKEb3sxS6HiIhILRi0qNNdKqjATyeuAQBeGdcbEgl7s4iISDcxaFGnW7knHXKFgPDeDhjgYSN2OURERGrDoEWdKvl6KX4/mwMAWDSml8jVEBERqReDFnWqxo2jHw12gZ+LpcjVEBERqReDFnWaY5du4mB6AQykEsSM7il2OURERGrHoEWdQhAEfBibCgB4IrQ73G3NRa6IiIhI/QzELoB0l1whIDGrCPnl1bhaVIVT2SUwMZRiXriP2KURERF1CgYtUovY5Bws256CnNLqZseH97SHg6WJSFURERF1Lg4dksrFJudg9qZTLUIWAOw+n4fY5BwRqiIiIup8DFqkUnKFgGXbUyDcpc2y7SmQK+7WgoiISDcwaJFKJWYVKe3JaiQAyCmtRmJWUecVRUREJBIGLVKp/PLWQ1ZH2hEREWkzBi0VKSkpQUhICIKDgxEQEID169eLXZIoHCzaNtG9re2IiIi0Ge86VBELCwvEx8fDzMwMlZWVCAgIwIQJE2Brayt2aZ0q1NMGzlYmrQ4fSgA4WZkg1JN7HBIRke5jj5aKyGQymJmZAQBqamogCAIEQf8mfMukErwyVvkehpLb/7s0yg8yqURpGyIiIl0ietB66623IJFImn317t1bpdeIj49HVFQUXFxcIJFIsG3bNqXt1qxZAw8PD5iYmGDgwIFITExs13VKSkoQFBQEV1dXLF68GHZ2diqoXvskXS0BgBZhysnKBGuf6odxAc4iVEVERNT5NGLo0N/fH3v37m16bGDQellHjhxBaGgoDA0Nmx1PSUmBra0tHB0dW7ymsrISQUFBmDlzJiZMmKD0vJs3b0ZMTAzWrVuHgQMHYtWqVRg7dizS0tLg4OAAAAgODkZ9fX2L1+7evRsuLi6wtrbGmTNnkJeXhwkTJmDixIlK69Flp7KL8d9jVwAAG6cPgKGBFPnl1XCwaBguZE8WERHpE40IWgYGBnBycrpnO4VCgejoaPj4+ODHH3+ETCYDAKSlpSE8PBwxMTF45ZVXWrwuMjISkZGRdz33ypUr8fzzz2PGjBkAgHXr1uGPP/7AV199hSVLlgAAkpKS2vT9ODo6IigoCIcOHcLEiRPb9BpdUCdX4LVfz0EQgAn9umFYL3uxSyIiIhKV6EOHAJCRkQEXFxd4eXlh6tSpyM7OVtpOKpVix44dOH36NKZNmwaFQoHMzEyEh4dj/PjxSkNWW9TW1uLkyZOIiIhodq2IiAgkJCS06Rx5eXkoLy8HAJSWliI+Ph69eimfq7RmzRr4+flhwIABHapXU30ZfwlpeeXoamaIfz7kJ3Y5REREohM9aA0cOBBff/01YmNjsXbtWmRlZSEsLKwptNzJxcUF+/btw+HDhzFlyhSEh4cjIiICa9eu7XANhYWFkMvlLYb5HB0dkZub26ZzXLlyBWFhYQgKCkJYWBjmzp2LwMBApW2jo6ORkpKC48ePd7hmTZNVWIlP4zIAAG887AcbcyORKyIiIhKf6EOHfx/S69OnDwYOHAh3d3f89NNPePbZZ5W+xs3NDd9++y2GDx8OLy8vbNiwARKJuHN/QkND2zy0qGsEQcDrW8+htl6BoT3s8FjfbmKXREREpBFE79G6k7W1NXr27ImLFy+22iYvLw+zZs1CVFQUqqqqsGDBgvu6pp2dHWQyGfLy8lpcpy1zx/TdllPXcTTzJowNpHjvsQDRQy8REZGm0LigVVFRgczMTDg7K18CoLCwEKNGjYKvry+2bNmCuLg4bN68GYsWLerwNY2MjNC/f3/ExcU1HVMoFIiLi8OgQYM6fF59cLOiBu/+kQIAmB/RE+625iJXREREpDlEHzpctGgRoqKi4O7ujhs3bmDp0qWQyWR48sknW7RVKBSIjIyEu7s7Nm/eDAMDA/j5+WHPnj0IDw9Ht27dlPZuVVRUNOshy8rKQlJSEmxsbODm5gYAiImJwfTp0xESEoLQ0FCsWrUKlZWVTXchknLv/XEBxVV16O1kgefCPMUuh4iISKOIHrSuXbuGJ598Ejdv3oS9vT2GDh2KY8eOwd6+5dIAUqkUy5cvR1hYGIyM/ppsHRQUhL179yp9DQCcOHECI0eObHocExMDAJg+fTq+/vprAMDjjz+OgoICvPnmm8jNzUVwcDBiY2P1bh2s9jiUUYAtp69DIgE++EcfGMo0roOUiIhIVBJBH/eJ0RBlZWWwsrJCaWkpLC0txS6nXW7VyjF2VTyyi6rwzGAPvPWIv9glERERdYr2fH6zC4I65NO4DGQXVcHZygSLWtnbkIiISN8xaFG7pdwow/pDlwAAbz8agC7Goo9AExERaSQGLWoXuULAa1vOQq4QEBnghNF+nMNGRETUGgYtapf/JlzGmWulsDA24LwsIiKie2DQoja7XnILH+1KAwC8GtkbjpYmIldERESk2Ri0qE0EQcCb25JRVStHf/eumBLqJnZJREREGo9Bi9pkZ3Iu4lLzYSiT4P0JgZBKuc0OERHRvTBo0T2V3qrDW7+dBwDMHu6Nno4WIldERESkHRi06J4+jE1FfnkNvOzM8dLIHmKXQ0REpDUYtOiujl8uwnd/ZgMAlk8IhImhTOSKiIiItAeDFrWqpl6O17acAwA8HtIdD3jZilwRERGRdmHQolZ9cfASLuZXwK6LEV57sLfY5RAREWkdBi1SKrOgAp/vuwgAeDPKH9ZmRiJXREREpH0YtKgFhULAa1vOoVauwPCe9ojq4yx2SURERFqJQYta+PnkVSRmFcHUUIZ3xwdAIuGaWURERB3BoEXNFJTX4L0/LgAAYkb3RHcbM5ErIiIi0l4MWtTM27+noKy6Hv4ulpgxxEPscoiIiLQagxY12Z+aj+1nbkAqAT6Y0AcGMv54EBER3Q9+khIAoKq2Hv/clgwAmDnEE4GuViJXREREpP0YtAgA8MmedFwvuYVu1qZYMLqn2OUQERHpBAYtQvL1Umw4nAUAeHd8AMyNDUSuiIiISDcwaOm5erkCS7achUIAooJcMLK3g9glERER6QwGLT339dHLSL5eBksTA7z5sJ/Y5RAREekUBi09drWoCh/vTgcAvP6QL+wtjEWuiIiISLcwaOkpQRDwz23JuFUnx0BPG0wO6S52SURERDqHQUtPbT+bg4PpBTCSSbF8QiC32SEiIlIDBi09VFJVi7e3nwcARI/sAW/7LiJXREREpJsYtPTQ+ztSUVhRix4OXfDiCC+xyyEiItJZDFp6JiHzJjafuAoAeH9CIIwNZCJXREREpLsYtPRIdZ0cr289BwCYMtANAzxsRK6IiIhItzFo6ZF/77+IS4WVsLcwxqvjeotdDhERkc5j0NITGXnlWHswEwCw7BF/WJkailwRERGR7mPQ0gMKhYDXtpxDnVxAhK8DIgOcxC6JiIhILzBo6YEfjmfjxJVimBvJ8PajAVwzi4iIqJMwaOm4vLJqfLAjFQCwaGwvuFibilwRERGR/jAQuwBSPblCQGJWEfLLq/H9n1dQXlOPIFcrTBvkIXZpREREeoVBS8fEJudg2fYU5JRWNzv+cB8XyKQcMiQiIupMHDrUIbHJOZi96VSLkAUAy3dcQGxyjghVERER6S8GLR0hVwhYtj0Fwl3aLNueArnibi2IiIhIlRi0dERiVpHSnqxGAoCc0mokZhV1XlFERER6jkFLR+SXtx6yOtKOiIiI7h+Dlo5wsDBRaTsiIiK6fwxaOiLU0wbOViZo7b5CCQBnKxOEenIjaSIios7CoKUjZFIJlkb5AUCLsNX4eGmUH5d4ICIi6kQMWjpkXIAz1j7VD05WzYcHnaxMsPapfhgX4CxSZURERPqJC5bqmHEBzhjt59S0MryDRcNwIXuyiIiIOh+Dlg6SSSUY5G0rdhlERER6j0OHRERERGrCoEVERESkJgxaRERERGrCoEVERESkJgxaRERERGrCoEVERESkJgxaRERERGrCoEVERESkJgxaRERERGrCleFFJAgCAKCsrEzkSoiIiKitGj+3Gz/H74ZBS0Tl5eUAgO7du4tcCREREbVXeXk5rKys7tpGIrQljpFaKBQK3LhxAxYWFpBIVLvpc1lZGbp3746rV6/C0tJSpefWVnxPlOP70hLfk5b4nijH96UlfXhPBEFAeXk5XFxcIJXefRYWe7REJJVK4erqqtZrWFpa6uwPekfxPVGO70tLfE9a4nuiHN+XlnT9PblXT1YjToYnIiIiUhMGLSIiIiI1YdDSUcbGxli6dCmMjY3FLkVj8D1Rju9LS3xPWuJ7ohzfl5b4njTHyfBEREREasIeLSIiIiI1YdAiIiIiUhMGLSIiIiI1YdAiIiIiUhMGLR3y/vvvY8CAAbCwsICDgwPGjx+PtLQ0scvSKB988AEkEgnmz58vdimiu379Op566inY2trC1NQUgYGBOHHihNhliUYul+ONN96Ap6cnTE1N4e3tjXfeeadNe5npkvj4eERFRcHFxQUSiQTbtm1r9rwgCHjzzTfh7OwMU1NTREREICMjQ5xiO8nd3pO6ujq8+uqrCAwMhLm5OVxcXDBt2jTcuHFDvII7yb1+Vv7uxRdfhEQiwapVqzqtPk3BoKVDDh48iOjoaBw7dgx79uxBXV0dxowZg8rKSrFL0wjHjx/HF198gT59+ohdiuiKi4sxZMgQGBoaYufOnUhJScHHH3+Mrl27il2aaFasWIG1a9fi888/x4ULF7BixQp8+OGH+Oyzz8QurVNVVlYiKCgIa9asUfr8hx9+iNWrV2PdunX4888/YW5ujrFjx6K6urqTK+08d3tPqqqqcOrUKbzxxhs4deoUtmzZgrS0NDzyyCMiVNq57vWz0mjr1q04duwYXFxcOqkyDSOQzsrPzxcACAcPHhS7FNGVl5cLPj4+wp49e4Thw4cLL7/8stglierVV18Vhg4dKnYZGuWhhx4SZs6c2ezYhAkThKlTp4pUkfgACFu3bm16rFAoBCcnJ+Gjjz5qOlZSUiIYGxsLP/zwgwgVdr473xNlEhMTBQDClStXOqcoDdDa+3Lt2jWhW7duQnJysuDu7i588sknnV6b2NijpcNKS0sBADY2NiJXIr7o6Gg89NBDiIiIELsUjfDbb78hJCQEkyZNgoODA/r27Yv169eLXZaoBg8ejLi4OKSnpwMAzpw5g8OHDyMyMlLkyjRHVlYWcnNzm/07srKywsCBA5GQkCBiZZqltLQUEokE1tbWYpciKoVCgaeffhqLFy+Gv7+/2OWIhptK6yiFQoH58+djyJAhCAgIELscUf344484deoUjh8/LnYpGuPSpUtYu3YtYmJi8H//9384fvw45s2bByMjI0yfPl3s8kSxZMkSlJWVoXfv3pDJZJDL5XjvvfcwdepUsUvTGLm5uQAAR0fHZscdHR2bntN31dXVePXVV/Hkk0/q9IbKbbFixQoYGBhg3rx5YpciKgYtHRUdHY3k5GQcPnxY7FJEdfXqVbz88svYs2cPTExMxC5HYygUCoSEhGD58uUAgL59+yI5ORnr1q3T26D1008/4bvvvsP3338Pf39/JCUlYf78+XBxcdHb94Tap66uDpMnT4YgCFi7dq3Y5Yjq5MmT+PTTT3Hq1ClIJBKxyxEVhw510Jw5c/D7779j//79cHV1FbscUZ08eRL5+fno168fDAwMYGBggIMHD2L16tUwMDCAXC4Xu0RRODs7w8/Pr9kxX19fZGdni1SR+BYvXowlS5bgiSeeQGBgIJ5++mksWLAA77//vtilaQwnJycAQF5eXrPjeXl5Tc/pq8aQdeXKFezZs0fve7MOHTqE/Px8uLm5Nf3uvXLlChYuXAgPDw+xy+tU7NHSIYIgYO7cudi6dSsOHDgAT09PsUsS3ahRo3Du3Llmx2bMmIHevXvj1VdfhUwmE6kycQ0ZMqTF0h/p6elwd3cXqSLxVVVVQSpt/renTCaDQqEQqSLN4+npCScnJ8TFxSE4OBgAUFZWhj///BOzZ88WtzgRNYasjIwM7N+/H7a2tmKXJLqnn366xZzYsWPH4umnn8aMGTNEqkocDFo6JDo6Gt9//z3+97//wcLComnOhJWVFUxNTUWuThwWFhYt5qiZm5vD1tZWr+euLViwAIMHD8by5csxefJkJCYm4ssvv8SXX34pdmmiiYqKwnvvvQc3Nzf4+/vj9OnTWLlyJWbOnCl2aZ2qoqICFy9ebHqclZWFpKQk2NjYwM3NDfPnz8e7774LHx8feHp64o033oCLiwvGjx8vXtFqdrf3xNnZGRMnTsSpU6fw+++/Qy6XN/3utbGxgZGRkVhlq929flbuDJyGhoZwcnJCr169OrtUcYl92yOpDgClXxs3bhS7NI3C5R0abN++XQgICBCMjY2F3r17C19++aXYJYmqrKxMePnllwU3NzfBxMRE8PLyEl5//XWhpqZG7NI61f79+5X+Hpk+fbogCA1LPLzxxhuCo6OjYGxsLIwaNUpIS0sTt2g1u9t7kpWV1erv3v3794tdulrd62flTvq6vINEEPRs2WMiIiKiTsLJ8ERERERqwqBFREREpCYMWkRERERqwqBFREREpCYMWkRERERqwqBFREREpCYMWkRERERqwqBFRHSHy5cvQyKRICkpSexSmqSmpuKBBx6AiYlJ0/Y3dxoxYgTmz59/1/N4eHhg1apVKq+PiJRj0CIijfPMM89AIpHggw8+aHZ827ZtkEgkIlUlrqVLl8Lc3BxpaWmIi4vr8HmOHz+OWbNmNT2WSCTYtm2bCiokImUYtIhII5mYmGDFihUoLi4WuxSVqa2t7fBrMzMzMXToULi7u9/XpsX29vYwMzPr8OuJqH0YtIhII0VERMDJyQnvv/9+q23eeuutFsNoq1atgoeHR9PjZ555BuPHj8fy5cvh6OgIa2trvP3226ivr8fixYthY2MDV1dXbNy4scX5U1NTMXjwYJiYmCAgIAAHDx5s9nxycjIiIyPRpUsXODo64umnn0ZhYWHT8yNGjMCcOXMwf/582NnZYezYsUq/D4VCgbfffhuurq4wNjZGcHAwYmNjm56XSCQ4efIk3n77bUgkErz11lutvif19fWYM2cOrKysYGdnhzfeeAN/32nt70OHje/TY489BolE0vT4zJkzGDlyJCwsLGBpaYn+/fvjxIkTrV6TiFrHoEVEGkkmk2H58uX47LPPcO3atfs61759+3Djxg3Ex8dj5cqVWLp0KR5++GF07doVf/75J1588UW88MILLa6zePFiLFy4EKdPn8agQYMQFRWFmzdvAgBKSkoQHh6Ovn374sSJE4iNjUVeXh4mT57c7BzffPMNjIyMcOTIEaxbt05pfZ9++ik+/vhj/Otf/8LZs2cxduxYPPLII8jIyAAA5OTkwN/fHwsXLkROTg4WLVrU6vf6zTffwMDAAImJifj000+xcuVK/Oc//1Ha9vjx4wCAjRs3Iicnp+nx1KlT4erqiuPHj+PkyZNYsmQJDA0N2/BOE1ELIm9qTUTUwvTp04VHH31UEARBeOCBB4SZM2cKgiAIW7duFf7+a2vp0qVCUFBQs9d+8skngru7e7Nzubu7C3K5vOlYr169hLCwsKbH9fX1grm5ufDDDz8IgiAIWVlZAgDhgw8+aGpTV1cnuLq6CitWrBAEQRDeeecdYcyYMc2uffXqVQGAkJaWJgiCIAwfPlzo27fvPb9fFxcX4b333mt2bMCAAcJLL73U9DgoKEhYunTpXc8zfPhwwdfXV1AoFE3HXn31VcHX17fpsbu7u/DJJ580PQYgbN26tdl5LCwshK+//vqedRPRvbFHi4g02ooVK/DNN9/gwoULHT6Hv78/pNK/ft05OjoiMDCw6bFMJoOtrS3y8/ObvW7QoEFN/21gYICQkJCmOs6cOYP9+/ejS5cuTV+9e/cG0DCfqlH//v3vWltZWRlu3LiBIUOGNDs+ZMiQDn3PDzzwQLMbBgYNGoSMjAzI5fI2nyMmJgbPPfccIiIi8MEHHzT7foiofRi0iEijDRs2DGPHjsVrr73W4jmpVNps/hEA1NXVtWh357CXRCJRekyhULS5roqKCkRFRSEpKanZV0ZGBoYNG9bUztzcvM3n1BRvvfUWzp8/j4ceegj79u2Dn58ftm7dKnZZRFqJQYuINN4HH3yA7du3IyEhodlxe3t75ObmNgtbqlz76tixY03/XV9fj5MnT8LX1xcA0K9fP5w/fx4eHh7o0aNHs6/2hCtLS0u4uLjgyJEjzY4fOXIEfn5+7a75zz//bPE9+Pj4QCaTKW1vaGiotLerZ8+eWLBgAXbv3o0JEyYovVmAiO6NQYuINF5gYCCmTp2K1atXNzs+YsQIFBQU4MMPP0RmZibWrFmDnTt3quy6a9aswdatW5Gamoro6GgUFxdj5syZAIDo6GgUFRXhySefxPHjx5GZmYldu3ZhxowZ7RqmAxom3a9YsQKbN29GWloalixZgqSkJLz88svtrjk7OxsxMTFIS0vDDz/8gM8+++yu5/Hw8EBcXBxyc3NRXFyMW7duYc6cOThw4ACuXLmCI0eO4Pjx400Bk4jah0GLiLTC22+/3WJoz9fXF//+97+xZs0aBAUFITEx8a535LXXBx98gA8++ABBQUE4fPgwfvvtN9jZ2QFAUy+UXC7HmDFjEBgYiPnz58Pa2rrZfLC2mDdvHmJiYrBw4UIEBgYiNjYWv/32G3x8fNpd87Rp03Dr1i2EhoYiOjoaL7/8crMFSu/08ccfY8+ePejevTv69u0LmUyGmzdvYtq0aejZsycmT56MyMhILFu2rN21EBEgEe6c4EBEREREKsEeLSIiIiI1YdAiIiIiUhMGLSIiIiI1YdAiIiIiUhMGLSIiIiI1YdAiIiIiUhMGLSIiIiI1YdAiIiIiUhMGLSIiIiI1YdAiIiIiUhMGLSIiIiI1YdAiIiIiUpP/BzBqk/nrWSFmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "ax.set_xlabel(\"Number of bits\")\n", + "ax.set_ylabel(\"Time (in s)\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_title(\"cexp(2, -2)\")\n", + "\n", + "files = [i for i in range(2, 16)]\n", + "times = []\n", + "\n", + "cur = open(\"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/gamma/and2.txt\")\n", + "a = cur.readlines()\n", + "for i in range(0, len(a)):\n", + " cur2 = a[i]\n", + " times.append(float(cur2.split(\",\")[1]))\n", + " # print(i)\n", + " # stan_iter = stan_iterations(f\"/space/poorvagarg/benchmarks_stan/hmm_slicstan/results_{i}.txit\")\n", + " # iterations.append(stan_iter)\n", + "ax.plot(files, times[1:], marker = \"o\")\n", + "# ax.legend([\"Stan\", \"Dice\"])\n", + "fig.savefig(\"gamma_2_2_obs.png\", bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABML0lEQVR4nO3de1zW9f3/8ecFCCgCipwVRBFLPIDnPOShLHUNK1e2rdJqnbUyrWXbr69ZW2mtMovl2spqbc1q6TKX1ZxmmSVKHhDP4SEBEZGznK7r8/sDudYVBwGBz8V1Pe63G7d5fT4fruvFNeN6+nkfXhbDMAwBAAC4IQ+zCwAAADALQQgAALgtghAAAHBbBCEAAOC2CEIAAMBtEYQAAIDbIggBAAC3RRACAABuiyAEAADcFkEIgFspLi5WaGio/va3v5ldynldcskl+vWvf212GYBLIwgBcCsvvvii/P399fOf/9x+bNOmTZo2bZqioqLk6+ur8PBwTZkyRZs3b27x109JSdGcOXPUv39/+fn5KTo6WjNmzNCBAwdqXfvII48oOTlZ2dnZLV4HgGoEIQBuo7KyUi+++KJuv/12eXp62o8fOHBAHh4euvvuu5WcnKyHHnpI2dnZGjdunNatW9eiNSxZskT//Oc/dfnll+vFF1/UnXfeqU2bNmnIkCFKS0tzuPbqq69WQECA/vjHP7ZoDQD+x0LTVQDuYtWqVZo+fboOHTqk2NjYBq8tLS1V7969lZiY2KJh6KuvvtKwYcPk7e1tP3bw4EENHDhQ1113nd5++22H6++77z6tWbNGGRkZslgsLVYHgGrcEQLQok6cOKFf/epXioyMlI+Pj3r16qV77rlHFRUV9mvy8/M1d+5cRUVFycfHR3369NGSJUtks9kkSYZhaOLEiQoJCVFOTo79+yoqKjRw4EDFxsaqpKREkvT444/LYrFo3759mjFjhgICAtStWzc98MADKisrc6ht9erViomJOW8IkqROnTopJCRE+fn5LfCu/M/o0aMdQpAkxcXFqX///tq7d2+t66+44godPXpUO3bsaNE6AFTzMrsAAK4jMzNTI0aMUH5+vu68805dfPHFOnHihN5//32VlpbK29tbpaWlGj9+vE6cOKG77rpL0dHR+uqrr/Too48qKytLS5culcVi0euvv65Bgwbp7rvv1gcffCBJWrhwofbs2aONGzfKz8/P4bVnzJihmJgYPf300/r666+1bNkynTlzRm+99Zb9mq+++kpDhgypt/7CwkJVVFQoNzdXb731ltLS0vSb3/ymdd6sHzAMQydPnlT//v1rnRs6dKgkafPmzRo8eHCr1wK4HQMAWsjMmTMNDw8PIyUlpdY5m81mGIZhPPnkk4afn59x4MABh/MLFiwwPD09jWPHjtmP/elPfzIkGW+//bbx9ddfG56ensbcuXMdvm/hwoWGJGPatGkOx++9915DkrFz507DMAyjsrLSsFgsxvz58+utf/LkyYYkQ5Lh7e1t3HXXXcbZs2eb9iY0w1//+ldDkvHaa6/Ved7b29u45557Wr0OwB0xNAagRdhsNq1evVpJSUkaNmxYrfM181vee+89XXrpperatatyc3PtX5MmTZLVatWmTZvs33PnnXdq8uTJuu+++3TzzTcrNjZWTz31VJ2vP3v2bIfH9913nyTp3//+tyQpLy9PhmGoa9eu9f4Mixcv1qeffqrXXntNl1xyiSoqKlRVVdW0N6KJ9u3bp9mzZ2vUqFGaNWtWndfUvFcAWh5DYwBaxKlTp1RYWKgBAwY0eN3Bgwe1a9cuhYSE1Hn+h3OCJOm1115TbGysDh48qK+++kodO3as8/vi4uIcHsfGxsrDw0NHjhxxOG40sD4kMTHR/uebbrpJQ4YM0S233KL333+/gZ+oNqvVqlOnTjkcCwoKqjU3KDs7W1dddZUCAwP1/vvvO6xk+3HNTJQGWgdBCECbstlsuuKKK+rdKLBv374Ojzdu3Kjy8nJJ0u7duzVq1KhGvc6Pg0NQUJAsFovOnDnTqO/39vbWtGnTtHjxYp09e7beAFaX48ePq1evXg7HNmzYoAkTJtgfFxQUaOrUqcrPz9cXX3yhyMjIep8vPz9fwcHBjX59AI1HEALQIkJCQhQQEFBrL5wfi42NVXFxsSZNmnTe58zKytJ9992nK6+8Ut7e3nrooYc0efJk9ezZs9a1Bw8edAgfhw4dks1mU0xMjCTJy8tLsbGxysjIaPTPdPbsWRmGoaKioiYFofDwcH322WcOxxISEux/LisrU1JSkg4cOKD//Oc/io+Pr/e5Tpw4oYqKCvXr16/Rrw+g8ZgjBKBFeHh46JprrtGaNWu0bdu2WudrhqRmzJihLVu26JNPPql1TX5+vsOcnDvuuEM2m02vvfaaXn31VXl5eelXv/pVncNbycnJDo9feuklSdLUqVPtx0aNGlVnbT8ejqup5Z///KeioqIUGhpa349dJ19fX02aNMnhq2ZuktVq1Q033KAtW7bovffeO+8dru3bt0uqXnYPoOVxRwhAi3nqqaf06aefavz48brzzjvVr18/ZWVl6b333tOXX36pLl266OGHH9aHH36on/70p7rllls0dOhQlZSUaPfu3Xr//fd15MgRBQcHa8WKFVq7dq3eeOMN9ejRQ1J1uLnpppv0yiuv6N5773V47YyMDE2bNk1TpkzRli1b9Pbbb+uXv/ylw52Yq6++Wn/961914MABhyG4qVOnqkePHho5cqRCQ0N17NgxrVixQpmZmVq5cqXD6zz++ONatGhRraGuxpo/f74+/PBDJSUlKS8vr9YGijfddJPD488++0zR0dEsnQdai5lL1gC4nqNHjxozZ840QkJCDB8fH6N3797G7NmzjfLycvs1RUVFxqOPPmr06dPH8Pb2NoKDg43Ro0cbf/jDH4yKigrj+PHjRmBgoJGUlFTr+a+99lrDz8/P+O677wzD+N/y+fT0dOO6664z/P39ja5duxpz5syptfS9vLzcCA4ONp588kmH4y+//LIxduxYIzg42PDy8jJCQkKMpKQkY9OmTbVef/78+YbFYjH27t3brPdn/Pjx9iX6dX39kNVqNSIiIoz/9//+X7NeC8D50WIDQLtWc4fm1KlTjZpQ/OSTT2rFihU6ePBgvau0GjJixAj17NlT7733XnPKbZLVq1frl7/8pQ4fPqyIiIhWfz3AHTFHCIBbefDBB1VcXKx//OMfTf7ewsJC7dy5U0888UQrVFbbkiVLNGfOHEIQ0IqYIwTArXTu3LnOydGNERAQYF/K3xa2bNnSZq8FuCvuCAEAALfFHCEAAOC2uCMEAADcFkEIAAC4LSZLN8BmsykzM1P+/v40PAQAoJ0wzrXGiYyMlIdHw/d8CEINyMzMVFRUlNllAACAZjh+/Lh9Z/r6EIQa4O/vL6n6jQwICDC5GgAA0BiFhYWKioqyf443hCDUgJrhsICAAIIQAADtTGOmtTBZGgAAuC2CEAAAcFsEIQAA4LYIQgAAwG0RhAAAgNsiCAEAALdFEAIAAG6LIAQAANwWQQgAALgtdpYGAABtzmoztDUjTzlFZQr199WIXkHy9Gj7BucEIQAA0KbWpWVp0Zp0ZRWU2Y9FBPpqYVK8pgyIaNNaGBoDAABtZl1alu55O9UhBElSdkGZ7nk7VevSstq0HoIQAABoE1aboUVr0mXUca7m2KI16bLa6rqidRCEAABAqzIMQyfyz+qVjYdq3QlyuE5SVkGZtmbktVltzBECAAAtpspq03e5JUrPLNSezALtySxUelah8ksrG/0cOUX1h6WWRhACAMBNtPRKrdKKKu3LLqoOO5mFSs8s0L7sIpVX2Wpd6+VhUUSgr46fOXve5w319212TU1FEAIAwA1c6Eqt08XlSs8q1J7MwnPBp0AZuSWqazqPn7en+kUEqH9kgOIjA9Q/MlB9Qjurg6eHxi75r7ILyuqcJ2SRFB5YHdDaCkEIAAAXV7NS68fho2al1is3DbGHIcMwdDzvrPZkFtiDT3pmobIL6x6uCu7so/6RjqGnZ1AnedRzp2lhUrzueTtVFsmhHssPzrflfkIWwzDabmp2O1NYWKjAwEAVFBQoICDA7HIAAO2UmZsHWm2Gxi75b4OTlLt07KBpiZHal12kvZmFKiqvqvO6XsF+io+oDjzx58JPc4axWnsfoaZ8fnNHCACAVmTW5oE2m6HCskr9Z29OgyFIkvLPVuqtLUftj709PdQ3vLP6RwTaA8/FEQHq7NMysWHKgAhdER/uFDtLc0eoAdwRAgBciPqGpGo+7n84JHU+hmGo4GylTpdUKK+kQqeLy6v/XFyh0yXnvorLq8+du6Yp+/GM7xuipIRI9Y8MsM/naa+4I/QDH330kebPny+bzaZHHnlEt99+u9klAQDcwPk2D7RIWvjhHsWGdFb+2UqdLnYMONVhplynzwWdMyUVqmrGRoMdO3jobGXtVVw/dvf4WI2K7dbk52/vXDoIVVVVad68edqwYYMCAwM1dOhQXXvtterWzf3+jwYAtK2tGXnn3TzwZGG5rnhhU5Oe19/HS906eyvIz1vdOvuom5/jn+3n/HwU5OctTw+L063UciYuHYS2bt2q/v37q3v37pKkqVOn6tNPP9UvfvELkysDALiqvJIKfXU4V3/7+uj5L5bk6+WhsEDfc4HGMcwEd64OMzV/7urXQT5enk2uydlWajkTpw5CmzZt0rPPPqvt27crKytLq1at0jXXXONwTXJysp599lllZ2crISFBL730kkaMGCFJyszMtIcgSerevbtOnDjRlj8CAMDFlVValXIkT18ezNWXh3K1J7OwSd+/4tYRrT4kNWVAhF65aUitSdvhJnV8dyZOHYRKSkqUkJCg2267TdOnT691fuXKlZo3b56WL1+ukSNHaunSpZo8ebL279+v0NBQEyoGALg6q83QnswCfXkoV18ezNW2o2dU8aOdlC8O99fo2G5a9e0J5ZdWOsWQlDOt1HImTh2Epk6dqqlTp9Z7/vnnn9cdd9yhW2+9VZK0fPlyrV27Vq+//roWLFigyMhIhztAJ06csN8tqkt5ebnKy8vtjwsLm5bqAQCu6ejpEnvw+erwaRWcdeybFRHoq7F9gjU2LlijY4MV4u8jSRrRK8iphqQ8PSxuOSG6IU4dhBpSUVGh7du369FHH7Uf8/Dw0KRJk7RlyxZJ0ogRI5SWlqYTJ04oMDBQH3/8sR577LF6n/Ppp5/WokWLWr12AIBzq5nns/lQ9XDX8TzH/lj+Pl4aFdtNY+OCNaZPsHoH+8liqR1oGJJyfu02COXm5spqtSosLMzheFhYmPbt2ydJ8vLy0nPPPaeJEyfKZrPp17/+dYMrxh599FHNmzfP/riwsFBRUVGt8wMAAFpVU3Zzts/zOVQdfvZkFuqHu+x18LRocHRXXdonWGPigjWoe6C8GrnPDkNSzq3dBqHGmjZtmqZNm9aoa318fOTj49PKFQEAWtv5dnP+4TyfzYdylXKk7nk+Y84Nd42ICZLfBeyqzJCU82q3QSg4OFienp46efKkw/GTJ08qPDzcpKoAAGarbzfnrIIy3f12qoZEd9F3uSXKL3Wc5xMe4KuxccG6NC5Yo2K7NauHFtqfdhuEvL29NXToUK1fv96+pN5ms2n9+vWaM2eOucUBAEzR0G7ONVKP5UuqnudzSWw3+yTn+ub5wLU5dRAqLi7WoUOH7I8zMjK0Y8cOBQUFKTo6WvPmzdOsWbM0bNgwjRgxQkuXLlVJSYl9FVlzJScnKzk5WVar9UJ/BABAKykorVTG6RIdyS3RkXP/u/tEwXkbjErSomn9dePI6EbP84Hrcuqmqxs3btTEiRNrHZ81a5beeOMNSdLLL79s31AxMTFRy5Yt08iRI1vk9Wm6CgBN05QJyo2RX1qhI6dLHcLOkdOlOnK69tBWU7z480Rdndj9/BeiXWrK57dTByGzEYQAoPHON0G5PvmlFcrILdHR06Xn/rdEGadLdbQRYScswEc9u/mpVzc/9QzupMoqm174z8Hz1vrOHZcwedmF0X0eANCm6pugnF1QpnveTtUfrh+k3iGda4WdI7kltTYn/LGwAB/FdPOr/gr2U0y3TooJ9lPPbp3UydvxY8xqM/SPlOM0GEWjEYQAABekoQnKNcfmv7erwecID/BVz26d1CvYr/oOT3An9exWd9hpiKeHhQajaBKCEACg0aw2Q5n5Z3X4VLG+O1Wi73KLlXo0v1ETlLt26qCLwv1r3dmJDmpa2DkfdnNGUxCE6sCqMQDtSUtPUJakwrLK6qDzg8BzOKdEGadLam082FiPT+vfZhOU2c0ZjcVk6QYwWRqAs2vuBGWpOkB9f6bUfnfncE3wyS3RqaLyer/P29NDMcGd1Du4s2JD/WSzSa98fvi8tTJBGW2FydIA4AbON0H5lZuGaMqACBWUVupwbrEO51SHnJq7PEdPl6rCWv/dnVB/H/UO8VPvkM7qHeyn2JDOig3prO5dOzrcWbHaDK3ecYIJymiXCEIA0A41ZoLy/e98q84+u5XXwBJ0Hy8P9Qr2U++Q6qDTO8RPvYM7q1eInwJ8OzSqFiYooz0jCAFAO/T5/pzzTlCusBr2EBQe4Hvu7o7fuSGt6rs83bt0lEcLBBQmKKO9IggBgJMzDEMZuSXafvSMUo/l69tjZ7Qvu6hR3/vQlRfpljEx6nwBndMbiwnKaI8IQgDgZErKq7Tz+3yl/iD4nGlmO4mhPbu2SQiq4elhYUI02hWCUB1YPg+grRiGoWN5pUo9dkapR/O1/egZ7csulO1Hk3+8vTw0qHughvTsqiHRXZTQo4umv/IVE5SBC8Ty+QawfB5AQ5qzf8/ZCqt2fZ+v1GP5Sj12Rt8eO6Pc4opa10UG+mpwz64aEt1VQ3t2VXxEgLy9HDul16wak+qeoFyzagxwNyyfB4BW1pj9ewzD0Pdnzp4LPNXBJz2zUFU/ut3j7emh/t0DNCS6OvgM6dlFEYEdz1sDE5SBC8cdoQZwRwhAXerbv6dm6fj0Id1VWm5V6rEzyqljY8KwAB+H0NM/MlC+HTybXU9r7CwNtGfcEQKAVtKY/Xs+SD1hP+blYVH/yAANju5qn9/TvUtHWSwtF1SYoAw0H0EIAJpga0ZeoxqM/mJElKYP6aGB3S/sbg+A1kUQAoBGqrLa9NGuzEZde0nvbhoew4otwNkRhADgPCqtNq369oSSNxzS0dOljfqeUH/fVq4KQEsgCNWBfYQASFJFlU0fpH6v5I2HdDzvrCQpqFMHVdoMFZdVsX8P4AJYNdYAVo0B7qm8yqr3t3+vP244rBP51QEouLO37hoXqxsvidamA6fYvwdwYqwaA4BmKKu06r1tx/XKxsPKPDchOsTfR3ePj9UvR0Sro3f1pGf27wFcB0EIgNsrq7TqH1uPafnn3ym7sDrYhAX46J7xsfr5iOg6V33RYBRwDQQhAG6rrNKqv31zTH/6/LB948OIQF/dMyFWM4ZFnXfZO/v3AO0fQQiA2ymtqNLfv6m+A5RbXB2AunfpqHsmxOr6YT3k48W+P4C7IAgBcBsl5VV6++ujenXTdzpdUt3otEfXjpo9sY9+NqRHraamAFwfQQiAyysur9JbW47oL19kKO9cAIoO6qQ5E/vo2iHd1cGTAAS4K4IQAJdVVFapN786or98maH80kpJUky3TppzWZyuTowkAAEgCAFwPQVnK/XG5iN67cvvVFhWJUnqHeKn+y7ro6RBkfIiAAE4hyBUB3aWBpyX1WbUu2S9oLRSr23O0IrNGSo6F4BiQ/x0/+Vx+umgSJa2A6iFnaUbwM7SgHNZl5ZVaxPDiEBfzb+ir46cLtUbXx1RcXl1AOob1ln3XRannwyMIAABboadpQG4nHVpWbrn7dRa/b2yCsr00Pu77I8vDvfX/ZfHaUr/cHkQgACcB0EIgNOz2gwtWpNeZ5PTGl4eFi37+WBNGUAAAtB4zBgE4PS+PHTKYTisLlU2Q139vAlBAJqEO0IAnI5hGDqYU6xNB05p08FcfXUot1Hfl1PUcFgCgB8jCAFwCmdKKvTloVxtOnBKXxzMtTc/bYpQf99WqAyAKyMIATBFpdWmb4/l64uDp7TpwCntOlGgH65h9fHy0Mje3TQuLlhj+gTr1jdSdLKgrM55QhZJ4YHVS+kBoCkIQgDazNHTJdp0sPquz5bDp+1L3WtcFOavcX2DNa5viIbHBDl0f388KV73vJ0qi+QQhmpmBC1MimeZPIAmIwgBOK+GNjFsSFFZpbYcPq1NB6uHu46eLnU4H+TnrbF9gnVpXHX4CQuof2hryoAIvXLTkFr7CIUH+mphUrymDIho/g8IwG0RhAA0qL5NDOsKH1abobQTBfZ5PqnHzqjK9r/7N14eFg3p2VXj+4ZoXFyI+kcGNGmV15QBEboiPrxZoQwA6sLO0g1gZ2m4u/o2MayJHa/cNEQJUV30xbnhrs2HcnXmXHPTGjHdOmlc3xBdGheiUbHd1NmHf38BaF3sLH2B6DUGNLyJYc2xOX//1uGOjyT5+3hpdJ9uujSu+q5PdLdOrV4rADQXd4QawB0huLMth0/rF3/+ulHXJkR10fi4YF3aN0SJUV3Uge7uAEzEHSEAF6yxmxM+de0A/XJkz1auBgBaB/9sA1BLXkmFNh041ahrewV3buVqAKD1cEcIgN3xvFL95YvvtHLbcZVV2hq8lk0MAbgCghAApZ0o0KubvtPa3Vmynpv83D8yQJf07qbXv8yQxCaGAFwTQQhwU4Zh6KvDp7X888P64uD/mppeGhesu8fHanRsN1ksFg2P6comhgBcFkEIcDNVVps+TsvWnzYdVtqJQkmSh0X66aBI3TmutwZ0D3S4nk0MAbgyghDgJs5WWPX+9uP68xcZOpZX3erCt4OHfj48Wr8a20tRQfXv9+PpYdGo2G5tVSoAtBmCEODizpRU6K0tR/XmliPKK6mQJHXt1EGzRsdo5qgYBfl5m1whAJiHIAS4qON5pXrtywytTDmus5XVu6T36NpRd47rreuHRqmjt+d5ngEAXB9BCHAx6ZmF+tOmw/pol+MKsLvGx+onA8Llxa7PAGBHEAJcgGEY2nL4tJZv+s5hI8RL44J117hYjelTvQIMAOCIIAQ4MavNaHC1ltVmaN25FWC7vi+QVL0C7KpBkbqrjhVgAABHBCHASa1Ly6q1f0/Euf17JlwUqve2f68/b/rOYQXYDcOidPulvRtcAQYA+B+CUB2Sk5OVnJwsq9VqdilwU+vSsnTP26kOuzlLUnZBme5+O1WdfbxUXF4lqXoF2MxRMZo1mhVgANBUFsMwfvy7FucUFhYqMDBQBQUFCggIMLscuAmrzdDYJf91uBNUl+5dfHXnuFhdP6yHOnnzbxoAqNGUz29+ewJOZmtG3nlDkCQt+dkgjY0LaYOKAMB1sY4WcDI5RecPQZJ0+tzmiACA5iMIAU4kM/+s/rUjs1HXhvr7tnI1AOD6GBoDnEBOYZmSNxzSO1uPq8Jqa/Bai6q7v4/oFdQ2xQGACyMIASY6XVyu5Z8f1ltbjqq8qjoAjerdTWP6dNNznx6QJIeVYzU7CC1Miqf7OwC0AIIQYIL80gq9uuk7vfHVEZVWVG/TMKxnV827sq9GxwZLkvqEdq61j1D4uX2EpgyIMKVuAHA1BCGgDRWWVer1LzP02hcZKjq3D9CgHoGad0Vfje8b4tAGY8qACF0RH97gztIAgAtDEALaQEl5ld746ohe3fSdCs5WSpL6RQRo3hV9NalfaL19wDw9LBoV260tSwUAt0IQAlpRWaVVf91yVMs/P2xf7t4ntLPmXdFXU/qHy4O7OwBgKoIQ0ArKq6z6x9bjSt5wSDlF5ZKkmG6dNHdSXyUlRDK8BQBOgiAEtKBKq03vb/9eL60/qMxzk5y7d+moBy6P0/Qh3eXlydZdAOBMCEJAC6iy2rR6R6aWrT9o7wYfHuCrOZf10YxhUfL2IgABgDMiCAEXwGYztGZXpl78z0F9l1siSQru7KN7J8TqlyOj5dvB0+QKAQANIQgBzWAYhj7Zk60XPjuo/SeLJEldO3XQ3eNjdfOonnSDB4B2gt/WwI9YbUa9e/cYhqH/7svR858d0J7MQklSgK+X7ri0t24d20udffhPCgDaE35rAz+wLi2r1m7OEYG++r+fxquzr5ee+/SAdhzPlyT5eXvqV2N76VeX9lZgxw4mVQwAuBAEIeCcdWlZuuftVIfeXpKUVVCme/6Wan/s28FDs0bH6K5xsQry827bIgEALYogBKh6OGzRmvRaIejHbhkdo9kT+yjE36dN6gIAtC7W9AKStmbkOQyH1Wdy/3BCEAC4EIJQHZKTkxUfH6/hw4ebXQraSE7R+UNQU64DALQPBKE6zJ49W+np6UpJSTG7FLSRUH/fFr0OANA+EIQASSN6BSk8sP6QY1H16rERvYLarigAQKsjCAGSPD0smnRxaJ3natqjLkyKp1kqALgYghAg6UT+Wa3ekSlJ8vd1XEwZHuirV24aoikDIswoDQDQilg+D7dnGIYe/WC3isurNCS6i/5x5yhtP3qmzp2lAQCuhSAEt/fetu+16cApeXt56JnrEuTt5aFRsd3MLgsA0AYYGoNbyyo4qyfXpkuS5l/RV31CO5tcEQCgLRGE4LYMw9BvPtitorIqJUZ10e2X9ja7JABAGyMIwW39M/WENuw/JW9PDz173SDmAQGAGyIIwS2dLCzTE2v2SJLmXhGnuDB/kysCAJiBIAS3UzMkVlhWpUE9AnUnQ2IA4LYIQnA7q3ec0Pp9OeeGxBLk5cl/BgDgrvgEgFvJKSzT4x9WrxK7//I+uiicITEAcGcEIbgNwzD029VpKjhbqQHdA3TX+FizSwIAmIwgBLfx4c5MfZZ+Uh08LXr2ugR1YEgMANwenwRwC6eKyrXww+pVYnMmxqlfRIDJFQEAnAFBCC7PMAw9tjpN+aWVio8I0L0TGRIDAFQjCMHlrd2dpXV7suXlYdGz1w9iSAwAYMcnAlxabnG5/u9f1UNisyf2Uf/IQJMrAgA4E4IQXNrCf+1RXkmFLg731+yJfcwuBwDgZAhCcFn/3p2ltbuz5Olh0R+uT5C3F3/dAQCO+GSAS8orqdBjq9MkSfdOiNWA7gyJAQBqIwjBJS38cI9Ol1Sob1hnzbmMITEAQN0IQnA569KytGZnpn1IzMfL0+ySAABOiiAEl3KmpEL/79yQ2F3jemtQjy7mFgQAcGoEIbiURWv2KLe4QnGhnfXApDizywEAODmCEFzGp3uytXpHpjws0rMMiQEAGoEgBJeQX1qh354bErtjXG8lRnUxtyAAQLtAEIJLeOKjdJ0qKldsiJ8enNTX7HIAAO0EQQjt3vq9J/VB6gn7kJhvB4bEAACN4xZB6Nprr1XXrl113XXXmV0KWlhBaaV+s2q3JOlXY3tpSHRXkysCALQnbhGEHnjgAb311ltml4FW8OTadJ0sLFfvYD/Nv/Iis8sBALQzbhGEJkyYIH9/f7PLQAvbsD9H72//XhaL9Mx1gxgSAwA0melBaNOmTUpKSlJkZKQsFotWr15d65rk5GTFxMTI19dXI0eO1NatW9u+UDiVwrJKPfrP6iGxW0f30rCYIJMrAgC0R6YHoZKSEiUkJCg5ObnO8ytXrtS8efO0cOFCpaamKiEhQZMnT1ZOTo79msTERA0YMKDWV2ZmZlv9GGhjv/9or7ILy9SzWyc9PJkhMQBA83g19xsrKyuVnZ2t0tJShYSEKCioef8inzp1qqZOnVrv+eeff1533HGHbr31VknS8uXLtXbtWr3++utasGCBJGnHjh3Neu0fKy8vV3l5uf1xYWFhizwvWtbnB05p5bbjslikZ69LUEdvhsQAAM3TpDtCRUVFeuWVVzR+/HgFBAQoJiZG/fr1U0hIiHr27Kk77rhDKSkpLVZcRUWFtm/frkmTJv2vYA8PTZo0SVu2bGmx16nx9NNPKzAw0P4VFRXV4q+BC1NUVqlH/7lLkjRrVIxG9GJIDADQfI0OQs8//7xiYmK0YsUKTZo0SatXr9aOHTt04MABbdmyRQsXLlRVVZWuvPJKTZkyRQcPHrzg4nJzc2W1WhUWFuZwPCwsTNnZ2Y1+nkmTJun666/Xv//9b/Xo0aPeEPXoo4+qoKDA/nX8+PELqh8t76l/71NmQZmigzrp11MYEgMAXJhGD42lpKRo06ZN6t+/f53nR4wYodtuu03Lly/XihUr9MUXXyguzjmaXv7nP/9p1HU+Pj7y8fFp5WrQXF8ezNU7W49Jkpb8bJA6eTd7ZBcAAElNCELvvPNOo67z8fHR3Xff3eyCfig4OFienp46efKkw/GTJ08qPDy8RV4D7UNxeZUeOTckNnNUT42K7WZyRQAAV9Aiq8YKCwu1evVq7d27tyWezs7b21tDhw7V+vXr7cdsNpvWr1+vUaNGtehrwbkt/nivTuSfVY+uHfXIlIvNLgcA4CKaNbYwY8YMjRs3TnPmzNHZs2c1bNgwHTlyRIZh6B//+Id+9rOfNfq5iouLdejQIfvjjIwM7dixQ0FBQYqOjta8efM0a9YsDRs2TCNGjNDSpUtVUlJiX0XWGpKTk5WcnCyr1dpqr4HG++pQrt7+unpI7JmfDZKfD0NiAICWYTEMw2jqN4WHh+uTTz5RQkKC/v73v2vhwoXauXOn3nzzTb366qv69ttvG/1cGzdu1MSJE2sdnzVrlt544w1J0ssvv6xnn31W2dnZSkxM1LJlyzRy5Mimlt1khYWFCgwMVEFBgQICAlr99VBbSXmVJi/dpO/PnNWNI6P1+2sHml0SAMDJNeXzu1lBqGPHjjpw4ICioqI0c+ZMRUZGavHixTp27Jji4+NVXFzc7OKdCUHIfP/3rzS9teWounfpqE8eHKfO3A0CAJxHUz6/mzVHKCoqSlu2bFFJSYnWrVunK6+8UpJ05swZ+fr6NucpgVq+/u603tpyVJK0+GcDCUEAgBbXrE+WuXPn6sYbb1Tnzp3Vs2dPTZgwQVJ137CBAxm6wIUrrajSr9+vXiX2ixFRujQuxOSKAACuqFlB6N5779XIkSN17NgxXXHFFfLwqL6x1Lt3b/3ud79r0QLhHqw2Q1sz8pRTVKZQf199nJalY3mligz01W9+0s/s8gAALqpZc4Rc3Q9XjR04cIA5Qq1sXVqWFq1JV1ZBWa1zb942QuP7cjcIANB4rT5HyNXNnj1b6enpLdo3DXVbl5ale95OrTMESdLZiqo2rggA4E4IQjCN1WZo0Zp01XdL0iJp0Zp0WW3ctAQAtA6CEEyzNSOv3jtBkmRIyioo09aMvLYrCgDgVghCME1OUf0hqDnXAQDQVM3emCU/P19bt25VTk6ObDabw7mZM2decGFwfaH+jdtzqrHXAQDQVM0KQmvWrNGNN96o4uJiBQQEyGKx2M9ZLBaCEBplRK8gRQT6KrugrM55QhZJ4YG+GtErqK1LAwC4iWYNjc2fP1+33XabiouLlZ+frzNnzti/8vLa/3yO5ORkxcfHa/jw4WaX4tI8PSxamBRf57maaL0wKV6eHpY6rwEA4EI1ax8hPz8/7d69W717926NmpwGvcbaxl++/E6/+2ivw7GIQF8tTIrXlAERJlUFAGivmvL53ayhscmTJ2vbtm0uH4TQNnKLKiRJw3p21c2jeirUv3o4jDtBAIDW1qwgdNVVV+nhhx9Wenq6Bg4cqA4dOjicnzZtWosUB9dnsxn6144TkqTbL+3FHSAAQJtqVhC64447JElPPPFErXMWi0VWq/XCqoLb+DrjtLIKyhTg66UJF4WaXQ4AwM00Kwj9eLk80Fyrv62+G3TVoAj5dvA0uRoAgLthQ0WYpqzSqo93Z0uSrknsbnI1AAB31Og7QsuWLdOdd94pX19fLVu2rMFr77///gsuDK5v/d4cFZVXqXuXjhoew15BAIC21+gg9MILL+jGG2+Ur6+vXnjhhXqvs1gsBCE0yqpzw2JXJ0bKgxViAAATNDoIZWRk1PlnV5ScnKzk5GQmfbeivJIKbdyfI0m6djDDYgAAczBHqA6zZ89Wenq6UlJSzC7FZa3dlakqm6EB3QMUF+ZvdjkAADfV6CC0ePFinT17tlHXfvPNN1q7dm2zi4LrqxkWY5I0AMBMjQ5C6enpio6O1r333quPP/5Yp06dsp+rqqrSrl279Mc//lGjR4/WDTfcIH9//pWPuh09XaLUY/nysEjTEiLNLgcA4MYaPUforbfe0s6dO/Xyyy/rl7/8pQoLC+Xp6SkfHx+VlpZKkgYPHqzbb79dt9xyi3x9fVutaLRvq7/NlCSN6ROs0AD+ngAAzNOkDRUTEhL05z//WX/605+0a9cuHT16VGfPnlVwcLASExMVHBzcWnXCRRiGodXnWmowSRoAYLZm7Szt4eGhxMREJSYmtnA5cHU7jucrI7dEHTt4anL/cLPLAQC4OVaNoU3VtNSY3D9Mfj7NyuEAALQYghDaTKXVpjW7siRJ1zAsBgBwAgShOiQnJys+Pl7Dhw83uxSX8sXBU8orqVBwZ2+N7cN8MgCA+QhCdWBDxdax6txqsaSESHl58lcPAGC+C/o0OnTokD755BP7RouGYbRIUXA9RWWV+nRPdad5VosBAJxFs4LQ6dOnNWnSJPXt21c/+clPlJVVPe/jV7/6lebPn9+iBcI1rEvLVnmVTb1D/DSwe6DZ5QAAIKmZQejBBx+Ul5eXjh07pk6dOtmP33DDDVq3bl2LFQfXUbN30PTB3WWx0GkeAOAcmrV++dNPP9Unn3yiHj16OByPi4vT0aNHW6QwuI7sgjJ9dfi0JOlqeosBAJxIs+4IlZSUONwJqpGXlycfH58LLgqu5cOdJ2QY0vCYrooKqv33BgAAszQrCF166aV666237I8tFotsNpueeeYZTZw4scWKg2uoWS3G3kEAAGfTrKGxZ555Rpdffrm2bdumiooK/frXv9aePXuUl5enzZs3t3SNaMf2ZRdqb1ahOnhadNXACLPLAQDAQbPuCA0YMEAHDhzQ2LFjdfXVV6ukpETTp0/Xt99+q9jY2JauEe1YTaf5iReFqksnb5OrAQDAUbObPQUGBuq3v/1tS9YCF2OzGfpXzWqxIQyLAQCcT7ODUFlZmXbt2qWcnBzZbDaHc9OmTbvgwtD+fZ1xWlkFZQrw9dKEi0LNLgcAgFqaFYTWrVunmTNnKjc3t9Y5i8Uiq9V6wYWZKTk5WcnJye3+5zBbTaf5qwZFyLeDp8nVAABQW7PmCN133326/vrrlZWVJZvN5vDlCuGBXmMXrqzSqo93V7fUuIa9gwAATqpZQejkyZOaN2+ewsLCWroeuIj1e3NUVF6l7l06anhMkNnlAABQp2YFoeuuu04bN25s4VLgSladGxa7OjFSHh601AAAOKdmzRF6+eWXdf311+uLL77QwIED1aFDB4fz999/f4sUh/Ypr6RCG/fnSKLTPADAuTUrCL3zzjv69NNP5evrq40bNzo00bRYLAQhN7d2V6aqbIYGdA9QXJi/2eUAAFCvZgWh3/72t1q0aJEWLFggD49mja7BhdUMizFJGgDg7JqVYioqKnTDDTcQglDL0dMlSj2WLw+LNC0h0uxyAABoULOSzKxZs7Ry5cqWrgUuoKalxpg+wQoN8DW5GgAAGtasoTGr1apnnnlGn3zyiQYNGlRrsvTzzz/fIsWhfTEMQ6vPtdRgkjQAoD1oVhDavXu3Bg8eLElKS0tzOPfDidNwLzuO5ysjt0QdO3hqcv9ws8sBAOC8mhWENmzY0NJ1wAXUtNSY3D9Mfj7NbmMHAECbYbYzWkSl1aY1u7IkSdcwLAYAaCca/c/26dOn64033lBAQICmT5/e4LUffPDBBReG9uWLg6eUV1Kh4M7eGtsn2OxyAABolEYHocDAQPv8n8DAwFYrCO3TqnOrxZISIuXlyY1GAED70OggtGLFCj3xxBN66KGHtGLFitasyXTJyclKTk6W1Wo1u5R2oaisUp/uqe40z2oxAEB7YjEMw2jsxZ6ensrKylJoaGhr1uQ0CgsLFRgYqIKCAgUEBJhdjtN6b9txPfz+LvUO8dP6eeNZOQgAMFVTPr+bNIbRhMwEN1Kzd9D0wd0JQQCAdqXJkzn4oMMPZReU6avDpyVJV9NbDADQzjR5s5e+ffueNwzl5eU1uyC0Lx/uPCHDkIbHdFVUUCezywEAoEmaHIQWLVrEqjHY1awWY+8gAEB71OQg9POf/9xtJkujYfuyC7U3q1AdPC26amCE2eUAANBkTZojxPwg/FBNp/mJF4WqSydvk6sBAKDpWDWGZrHZDP2rZrXYEIbFAADtU5OGxmw2W2vVgXbm64zTyiooU4CvlyZcxFApAKB9ohcCmqWm0/xVgyLk28HT5GoAAGgeghCarKzSqo93V7fUuIa9gwAA7RhBCE22fm+Oisqr1L1LRw2PCTK7HAAAmo0ghCZbdW5Y7OrESHl4sJIQANB+EYTQJHklFdq4P0cSneYBAO0fQQhNsnZXpqpshgZ0D1BcmL/Z5QAAcEEIQmiSmmExJkkDAFwBQQiNdvR0iVKP5cvDIk1LiDS7HAAALhhBCI1W01JjTJ9ghQb4mlwNAAAXjiCERjEMQ6vPtdRgkjQAwFUQhNAoO47nKyO3RB07eGpy/3CzywEAoEUQhOqQnJys+Ph4DR8+3OxSnEZNS43J/cPk59OkFnUAADgtglAdZs+erfT0dKWkpJhdilOotNq0ZleWJOkahsUAAC6EIITz+uLgKeWVVCi4s7fG9gk2uxwAAFoMQQjntercarGkhEh5efJXBgDgOvhUQ4OKyir16Z7qTvOsFgMAuBqCEBq0Li1b5VU29Q7x08DugWaXAwBAiyIIoUE1ewdNH9xdFgud5gEAroUghHplF5Tpq8OnJUlX01sMAOCCCEKo14c7T8gwpOExXRUV1MnscgAAaHEEIdSrZrUYewcBAFwVQQh12pddqL1ZhergadFVAyPMLgcAgFZBEEKdajrNT7woVF06eZtcDQAArYMghFpsNkP/qlktNoRhMQCA6yIIoZavM04rq6BMAb5emnBRqNnlAADQaghCqKWm0/xVgyLk28HT5GoAAGg9BCE4KKu06uPd1S01rmHvIACAiyMIwcH6vTkqKq9S9y4dNTwmyOxyAABoVQQhOFh1bljs6sRIeXjQUgMA4NoIQrDLK6nQxv05kug0DwBwDwQh2K3dlakqm6EB3QMUF+ZvdjkAALQ6ghDsaobFmCQNAHAXBCFIko6eLlHqsXx5WKRpCZFmlwMAQJsgCEHS/1pqjOkTrNAAX5OrAQCgbXiZXQDMZbUZ2ppxWm9/c1SSdDV3gwAAboQg5MbWpWVp0Zp0ZRWU2Y89++l+dfb10pQBdJwHALg+hsbc1Lq0LN3zdqpDCJKknMJy3fN2qtalZZlUGQAAbYcg5IasNkOL1qTLqONczbFFa9JltdV1BQAAroMg5Ia2ZuTVuhP0Q4akrIIybc3Ia7uiAAAwAUHIDeUU1R+CmnMdAADtFUHIDYX6N255fGOvAwCgvSIIuaERvYIUEVh/yLFIigj01YhedJ8HALg2lw9Cx48f14QJExQfH69BgwbpvffeM7sk03l6WPR/P42v81xNv/mFSfHypPs8AMDFufw+Ql5eXlq6dKkSExOVnZ2toUOH6ic/+Yn8/PzMLs1UYfXcEQoP9NXCpHj2EQIAuAWXD0IRERGKiKj+UA8PD1dwcLDy8vLcPgi9m3JcknTt4EjNGBatnKIyhfpXD4dxJwgA4C5MHxrbtGmTkpKSFBkZKYvFotWrV9e6Jjk5WTExMfL19dXIkSO1devWZr3W9u3bZbVaFRUVdYFVt2+lFVVas7O6t9gNw6M1Krabrk7srlGx3QhBAAC3YnoQKikpUUJCgpKTk+s8v3LlSs2bN08LFy5UamqqEhISNHnyZOXk5NivSUxM1IABA2p9ZWZm2q/Jy8vTzJkz9eqrr7b6z+Ts1u7KUkmFVTHdOmkkE6IBAG7M9KGxqVOnaurUqfWef/7553XHHXfo1ltvlSQtX75ca9eu1euvv64FCxZIknbs2NHga5SXl+uaa67RggULNHr06AavKy8vtz8uLCxswk/Sfry7rXpY7PphUbJYuAMEAHBfpt8RakhFRYW2b9+uSZMm2Y95eHho0qRJ2rJlS6OewzAM3XLLLbrssst08803N3jt008/rcDAQPuXKw6hfXeqWClHzsjDIv1sSA+zywEAwFROHYRyc3NltVoVFhbmcDwsLEzZ2dmNeo7Nmzdr5cqVWr16tRITE5WYmKjdu3fXee2jjz6qgoIC+9fx48cv+GdwNu9u+16SNL5viMIb2EsIAAB3YPrQWGsbO3asbDZbo6718fGRj49PK1dkniqrTf9MrQ5CNwx3vbtdAAA0lVPfEQoODpanp6dOnjzpcPzkyZMKDw83qar2a+P+UzpVVK5uft667OKw838DAAAuzqmDkLe3t4YOHar169fbj9lsNq1fv16jRo0ysbL2qWaS9LWDu8vby6n/rwcAoE2YPjRWXFysQ4cO2R9nZGRox44dCgoKUnR0tObNm6dZs2Zp2LBhGjFihJYuXaqSkhL7KrLWkJycrOTkZFmt1lZ7jbZ2qqhc/91XveXADIbFAACQJFkMwzDMLGDjxo2aOHFireOzZs3SG2+8IUl6+eWX9eyzzyo7O1uJiYlatmyZRo4c2eq1FRYWKjAwUAUFBQoICGj112tNf/r8sJ7+eJ8So7po9ewxZpcDAECracrnt+lByJm5ShAyDEOTnv9ch0+V6OnpA/WLEdFmlwQAQKtpyuc3E0XcQOqxMzp8qkQdO3jqp4NopgoAQA2CkBt4N6V6yfxPBkbI37eDydUAAOA8CEIurqS8Sh/tqmmwyiRpAAB+iCDk4tburm6w2ivYT8NjuppdDgAAToUgVIfk5GTFx8dr+PDhZpdywd5NqWmw2oMGqwAA/AhBqA6zZ89Wenq6UlJSzC7lghzKKda2ozRYBQCgPgQhF/be9uq7QRMvClVYAA1WAQD4MYKQi6q02vTP7SckSdcPY5I0AAB1IQi5qI37Tym3uFzBnb11eb9Qs8sBAMApEYRc1Mpzk6SnD+mhDp783wwAQF34hHRBOUVl2rD/XIPVYUySBgCgPgShOrT35fMfpJ6Q1WZoSHQX9Qn1N7scAACcFkGoDu15+bxhGPa9g2YwSRoAgAYRhFzM9qNn9F3uuQarCZFmlwMAgFMjCLmYmknSVw2KUGcfL5OrAQDAuRGEXEhxeZXW7s6SRINVAAAagyDkQtbuylRphVW9g/00rCcNVgEAOB+CkAtZaW+wGkWDVQAAGoEg5CIO5RQp9Vi+PD0s+tmQ7maXAwBAu0AQqkN73Efo3W3fS5ImXhSiUBqsAgDQKAShOrS3fYQqrTZ9kFodhNg7CACAxiMIuYD/7stRbnGFgjv7aOLFNFgFAKCxCEIu4L1t1ZOkfzakOw1WAQBoAj4127mcwjJt2H9KUvVqMQAA0HgEoXbu/dTvZbUZGtqzq/qEdja7HAAA2hWCUDtmGIbeO7da7AbuBgEA0GQEoXYs5cgZZeSWqJO3p34yKMLscgAAaHcIQu3Yu+cmSf+UBqsAADQLQagO7WFDxaKySq3dRYNVAAAuBEGoDu1hQ8W1u7J0ttKq3iF+GhJNg1UAAJqDINROrTw3LHYDDVYBAGg2glA7dPBkkb4912D1WhqsAgDQbAShdqhmkvRlF4cq1J8GqwAANBdBqJ2pqLLpg9QTkmiwCgDAhSIItTP/3Zej0yUVCvH30cSLQswuBwCAdo0g1M68a2+w2kNeNFgFAOCC8EnajmQXlGnj/hxJ0vXDephcDQAA7R9BqB35Z+r3shnS8Jiuig2hwSoAABeKINROVDdYrR4Wu55J0gAAtAiCUDuxNSNPR06Xys/bU1cNpMEqAAAtgSBUB2fsNbbS3mA1Un40WAUAoEUQhOrgbL3Gisoq9e/d1Q1WZ9BgFQCAFkMQagfW7MxSWaVNfUI7a0h0F7PLAQDAZRCE2oGaYbEZw3rQYBUAgBZEEHJy+7OLtPN4vrw8LLp2MHsHAQDQkghCTu6HDVZD/H1MrgYAANdCEHJiFVU2rfq2usHqDUySBgCgxRGEnNj6vSeVV1KhUH8fje9Lg1UAAFoaQciJ2RusDqXBKgAArYFPVyeVXVCmzw+ckiTNoKUGAACtgiDkpN7fflw2QxoRE6RewX5mlwMAgEsiCDkhm83Qu9u+l8RO0gAAtCaCkBP6JiNPx/JK1dnHSz8ZGG52OQAAuCyCkBN679wk6aSECHXypsEqAACthSDkZArLKvXvtOoGq9czSRoAgFZFEKpDcnKy4uPjNXz48DZ/7TU7M1VWaVNcaGcNjurS5q8PAIA7IQjVYfbs2UpPT1dKSkqbv/a7KdXDYjcMj6LBKgAArYwg5ET2ZRdq5/cF8vKw6JrB3c0uBwAAl0cQciLvplQvmZ/UL0zBnWmwCgBAayMIOYnyKqtWfVuzd1APk6sBAMA9EIScxPq9OTpTWqmwAB+Ni6PBKgAAbYEg5CRWnpsk/bMhNFgFAKCt8InrBDLzz2rTQRqsAgDQ1ghCTuCf27+XYUgjewUphgarAAC0GYKQyWw2Q+9urx4W424QAABtiyBksq8zTut43tlzDVYjzC4HAAC3QhAyWc1O0kkJkero7WlyNQAAuBeCkIkKzlbq47RsSdUtNQAAQNvyMrsAd2S1GdqakacPvv1e5VU2xYX6KaFHoNllAQDgdghCbWxdWpYWrUlXVkGZ/Vh2Ybk+2ZOtKQOYIwQAQFtiaKwNrUvL0j1vpzqEIEkqKqvSPW+nal1alkmVAQDgnghCbcRqM7RoTbqMBq5ZtCZdVltDVwAAgJZEEGojWzPyat0J+iFDUlZBmbZm5LVdUQAAuDmCUBvJKao/BDXnOgAAcOEIQm0k1N+3Ra8DAAAXjiDURkb0ClJEoK8s9Zy3SIoI9NWIXkFtWRYAAG6NIFSH5ORkxcfHa/jw4S32nJ4eFi1MipekWmGo5vHCpHh5etQXlQAAQEuzGIbBMqV6FBYWKjAwUAUFBQoICGiR56xrH6GIQF8tTIpnHyEAAFpAUz6/2VCxjU0ZEKEr4sO1NSNPOUVlCvWvHg7jThAAAG2PIGQCTw+LRsV2M7sMAADcHnOEAACA2yIIAQAAt0UQAgAAbosgBAAA3BZBCAAAuC2CEAAAcFsEIQAA4LYIQgAAwG0RhAAAgNtiZ+kG1LRhKywsNLkSAADQWDWf241pp0oQakBRUZEkKSoqyuRKAABAUxUVFSkwMLDBa+g+3wCbzabMzEz5+/vLYnHdpqiFhYWKiorS8ePHz9ul113wntTGe1I33pfaeE/qxvtSW2u9J4ZhqKioSJGRkfLwaHgWEHeEGuDh4aEePXqYXUabCQgI4D/OH+E9qY33pG68L7XxntSN96W21nhPzncnqAaTpQEAgNsiCAEAALdFEIJ8fHy0cOFC+fj4mF2K0+A9qY33pG68L7XxntSN96U2Z3hPmCwNAADcFneEAACA2yIIAQAAt0UQAgAAbosgBAAA3BZByE09/fTTGj58uPz9/RUaGqprrrlG+/fvN7ssp7J48WJZLBbNnTvX7FJMd+LECd10003q1q2bOnbsqIEDB2rbtm1ml2Uaq9Wqxx57TL169VLHjh0VGxurJ598slF9jVzJpk2blJSUpMjISFksFq1evdrhvGEY+r//+z9FRESoY8eOmjRpkg4ePGhOsW2kofeksrJSjzzyiAYOHCg/Pz9FRkZq5syZyszMNK/gNnK+vys/dPfdd8tisWjp0qVtUhtByE19/vnnmj17tr7++mt99tlnqqys1JVXXqmSkhKzS3MKKSkp+tOf/qRBgwaZXYrpzpw5ozFjxqhDhw76+OOPlZ6erueee05du3Y1uzTTLFmyRK+88opefvll7d27V0uWLNEzzzyjl156yezS2lRJSYkSEhKUnJxc5/lnnnlGy5Yt0/Lly/XNN9/Iz89PkydPVllZWRtX2nYaek9KS0uVmpqqxx57TKmpqfrggw+0f/9+TZs2zYRK29b5/q7UWLVqlb7++mtFRka2UWWSDMAwjJycHEOS8fnnn5tdiumKioqMuLg447PPPjPGjx9vPPDAA2aXZKpHHnnEGDt2rNllOJWrrrrKuO222xyOTZ8+3bjxxhtNqsh8koxVq1bZH9tsNiM8PNx49tln7cfy8/MNHx8f45133jGhwrb34/ekLlu3bjUkGUePHm2bopxAfe/L999/b3Tv3t1IS0szevbsabzwwgttUg93hCBJKigokCQFBQWZXIn5Zs+erauuukqTJk0yuxSn8OGHH2rYsGG6/vrrFRoaqsGDB+vPf/6z2WWZavTo0Vq/fr0OHDggSdq5c6e+/PJLTZ061eTKnEdGRoays7Md/jsKDAzUyJEjtWXLFhMrcy4FBQWyWCzq0qWL2aWYymaz6eabb9bDDz+s/v37t+lr03QVstlsmjt3rsaMGaMBAwaYXY6p/vGPfyg1NVUpKSlml+I0vvvuO73yyiuaN2+efvOb3yglJUX333+/vL29NWvWLLPLM8WCBQtUWFioiy++WJ6enrJarfr973+vG2+80ezSnEZ2drYkKSwszOF4WFiY/Zy7Kysr0yOPPKJf/OIXbt+EdcmSJfLy8tL999/f5q9NEIJmz56ttLQ0ffnll2aXYqrjx4/rgQce0GeffSZfX1+zy3EaNptNw4YN01NPPSVJGjx4sNLS0rR8+XK3DULvvvuu/va3v+nvf/+7+vfvrx07dmju3LmKjIx02/cETVNZWakZM2bIMAy98sorZpdjqu3bt+vFF19UamqqLBZLm78+Q2Nubs6cOfroo4+0YcMG9ejRw+xyTLV9+3bl5ORoyJAh8vLykpeXlz7//HMtW7ZMXl5eslqtZpdoioiICMXHxzsc69evn44dO2ZSReZ7+OGHtWDBAv385z/XwIEDdfPNN+vBBx/U008/bXZpTiM8PFySdPLkSYfjJ0+etJ9zVzUh6OjRo/rss8/c/m7QF198oZycHEVHR9t/9x49elTz589XTExMq78+d4TclGEYuu+++7Rq1Spt3LhRvXr1Mrsk011++eXavXu3w7Fbb71VF198sR555BF5enqaVJm5xowZU2trhQMHDqhnz54mVWS+0tJSeXg4/jvS09NTNpvNpIqcT69evRQeHq7169crMTFRklRYWKhvvvlG99xzj7nFmagmBB08eFAbNmxQt27dzC7JdDfffHOtOZmTJ0/WzTffrFtvvbXVX58g5KZmz56tv//97/rXv/4lf39/+5h9YGCgOnbsaHJ15vD39681R8rPz0/dunVz67lTDz74oEaPHq2nnnpKM2bM0NatW/Xqq6/q1VdfNbs00yQlJen3v/+9oqOj1b9/f3377bd6/vnnddttt5ldWpsqLi7WoUOH7I8zMjK0Y8cOBQUFKTo6WnPnztXvfvc7xcXFqVevXnrssccUGRmpa665xryiW1lD70lERISuu+46paam6qOPPpLVarX/7g0KCpK3t7dZZbe68/1d+XEg7NChg8LDw3XRRRe1fnFtsjYNTkdSnV8rVqwwuzSnwvL5amvWrDEGDBhg+Pj4GBdffLHx6quvml2SqQoLC40HHnjAiI6ONnx9fY3evXsbv/3tb43y8nKzS2tTGzZsqPP3yKxZswzDqF5C/9hjjxlhYWGGj4+Pcfnllxv79+83t+hW1tB7kpGRUe/v3g0bNphdeqs639+VH2vL5fMWw3CzrVABAADOYbI0AABwWwQhAADgtghCAADAbRGEAACA2yIIAQAAt0UQAgAAbosgBAAA3BZBCEC7c+TIEVksFu3YscPsUuz27dunSy65RL6+vvaWEj82YcIEzZ07t8HniYmJ0dKlS1u8PgB1IwgBaLJbbrlFFotFixcvdji+evVqU7pHO4OFCxfKz89P+/fv1/r165v9PCkpKbrzzjvtjy0Wi1avXt0CFQKoC0EIQLP4+vpqyZIlOnPmjNmltJiKiopmf+/hw4c1duxY9ezZ84IaaYaEhKhTp07N/n4ATUMQAtAskyZNUnh4uJ5++ul6r3n88cdrDRMtXbpUMTEx9se33HKLrrnmGj311FMKCwtTly5d9MQTT6iqqkoPP/ywgoKC1KNHD61YsaLW8+/bt0+jR4+Wr6+vBgwYoM8//9zhfFpamqZOnarOnTsrLCxMN998s3Jzc+3nJ0yYoDlz5mju3LkKDg7W5MmT6/w5bDabnnjiCfXo0UM+Pj5KTEzUunXr7OctFou2b9+uJ554QhaLRY8//ni970lVVZXmzJmjwMBABQcH67HHHtMPOx39cGis5n269tprZbFY7I937typiRMnyt/fXwEBARo6dKi2bdtW72sCqB9BCECzeHp66qmnntJLL72k77///oKe67///a8yMzO1adMmPf/881q4cKF++tOfqmvXrvrmm290991366677qr1Og8//LDmz5+vb7/9VqNGjVJSUpJOnz4tScrPz9dll12mwYMHa9u2bVq3bp1OnjypGTNmODzHm2++KW9vb23evFnLly+vs74XX3xRzz33nP7whz9o165dmjx5sqZNm6aDBw9KkrKystS/f3/Nnz9fWVlZeuihh+r9Wd988015eXlp69atevHFF/X888/rL3/5S53XpqSkSJJWrFihrKws++Mbb7xRPXr0UEpKirZv364FCxaoQ4cOjXinAdTSJq1dAbiUWbNmGVdffbVhGIZxySWXGLfddpthGIaxatUq44e/VhYuXGgkJCQ4fO8LL7xg9OzZ0+G5evbsaVitVvuxiy66yLj00kvtj6uqqgw/Pz/jnXfeMQzDsHfxXrx4sf2ayspKo0ePHsaSJUsMwzCMJ5980rjyyisdXvv48eOGJHsH9PHjxxuDBw8+788bGRlp/P73v3c4Nnz4cOPee++1P05ISDAWLlzY4POMHz/e6Nevn2Gz2ezHHnnkEaNfv372xz/uui3JWLVqlcPz+Pv7G2+88cZ56wZwftwRAnBBlixZojfffFN79+5t9nP0799fHh7/+3UUFhamgQMH2h97enqqW7duysnJcfi+UaNG2f/s5eWlYcOG2evYuXOnNmzYoM6dO9u/Lr74YknV83lqDB06tMHaCgsLlZmZqTFjxjgcHzNmTLN+5ksuucRhQvmoUaN08OBBWa3WRj/HvHnzdPvtt2vSpElavHixw88DoGkIQgAuyLhx4zR58mQ9+uijtc55eHg4zH+RpMrKylrX/XhYx2Kx1HnMZrM1uq7i4mIlJSVpx44dDl8HDx7UuHHj7Nf5+fk1+jmdxeOPP649e/boqquu0n//+1/Fx8dr1apVZpcFtEsEIQAXbPHixVqzZo22bNnicDwkJETZ2dkOYagl9/75+uuv7X+uqqrS9u3b1a9fP0nSkCFDtGfPHsXExKhPnz4OX00JPwEBAYqMjNTmzZsdjm/evFnx8fFNrvmbb76p9TPExcXJ09Ozzus7dOhQ592ivn376sEHH9Snn36q6dOn1zmZHMD5EYQAXLCBAwfqxhtv1LJlyxyOT5gwQadOndIzzzyjw4cPKzk5WR9//HGLvW5ycrJWrVqlffv2afbs2Tpz5oxuu+02SdLs2bOVl5enX/ziF0pJSdHhw4f1ySef6NZbb23SMJRUPSl7yZIlWrlypfbv368FCxZox44deuCBB5pc87FjxzRv3jzt379f77zzjl566aUGnycmJkbr169Xdna2zpw5o7Nnz2rOnDnauHGjjh49qs2bNyslJcUeAAE0DUEIQIt44oknag1d9evXT3/84x+VnJyshIQEbd26tcEVVU21ePFiLV68WAkJCfryyy/14YcfKjg4WJLsd3GsVquuvPJKDRw4UHPnzlWXLl0c5iM1xv3336958+Zp/vz5GjhwoNatW6cPP/xQcXFxTa555syZOnv2rEaMGKHZs2frgQcecNhA8ceee+45ffbZZ4qKitLgwYPl6emp06dPa+bMmerbt69mzJihqVOnatGiRU2uBYBkMX48gA8AAOAmuCMEAADcFkEIAAC4LYIQAABwWwQhAADgtghCAADAbRGEAACA2yIIAQAAt0UQAgAAbosgBAAA3BZBCAAAuC2CEAAAcFsEIQAA4Lb+P5kn7ixLYZEAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "ax.set_xlabel(\"Number of bits\")\n", + "ax.set_ylabel(\"Time (in s)\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_title(\"cexp(3, -2)\")\n", + "\n", + "files = [i for i in range(1, 15)]\n", + "times = []\n", + "\n", + "cur = open(\"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/gamma/and3.txt\")\n", + "a = cur.readlines()\n", + "for i in range(0, len(a)):\n", + " cur2 = a[i]\n", + " times.append(float(cur2.split(\",\")[1]))\n", + " # print(i)\n", + " # stan_iter = stan_iterations(f\"/space/poorvagarg/benchmarks_stan/hmm_slicstan/results_{i}.txit\")\n", + " # iterations.append(stan_iter)\n", + "ax.plot(files, times, marker = \"o\")\n", + "# ax.legend([\"Stan\", \"Dice\"])\n", + "fig.savefig(\"gamma_3_2_obs.png\", bbox_inches=\"tight\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Logical OR" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4901517\n", + "111194\n", + "1471\n", + "20.0,16384.0,0.49999951323396313,1165.36880457\n", + "\n", + "20.0,16384.0,0.4999995228525644,1191.538354594\n", + "\n", + "20.0,16384.0,0.49999952315314444,1195.822749048\n", + "\n", + "20.0,8192.0,0.4999995231625377,796.622643009\n", + "\n", + "20.0,8192.0,0.4999995231628315,795.771191682\n", + "\n", + "20.0,8192.0,0.49999952316284085,780.768020832\n", + "\n", + "20.0,8192.0,0.49999952316284085,819.848470767\n", + "\n", + "20.0,16384.0,0.49999952316284085,1180.780619909\n", + "\n", + "20.0,16384.0,0.49999952316284085,1163.926247549\n", + "\n", + "20.0,16384.0,0.49999952316284085,1183.44950681\n", + "\n", + "20\n", + "or_5 MCMC 20\n", + "yo\n", + "20\n", + "21\n", + "or_5 MCMC 21\n", + "22\n", + "or_5 MCMC 22\n", + "yo\n", + "22\n", + "23\n", + "or_5 MCMC 23\n", + "yo\n", + "23\n", + "24\n", + "or_5 MCMC 24\n", + "25\n", + "or_5 MCMC 25\n", + "20\n", + "or_10 MCMC 20\n", + "yo\n", + "20\n", + "21\n", + "or_10 MCMC 21\n", + "yo\n", + "21\n", + "22\n", + "or_10 MCMC 22\n", + "yo\n", + "22\n", + "23\n", + "or_10 MCMC 23\n", + "yo\n", + "23\n", + "24\n", + "or_10 MCMC 24\n", + "yo\n", + "24\n", + "25\n", + "or_10 MCMC 25\n", + "20\n", + "or_15 MCMC 20\n", + "yo\n", + "20\n", + "21\n", + "or_15 MCMC 21\n", + "yo\n", + "21\n", + "22\n", + "or_15 MCMC 22\n", + "yo\n", + "22\n", + "23\n", + "or_15 MCMC 23\n", + "yo\n", + "23\n", + "24\n", + "or_15 MCMC 24\n", + "yo\n", + "24\n", + "25\n", + "or_15 MCMC 25\n", + "20\n", + "or_20 MCMC 20\n", + "yo\n", + "20\n", + "21\n", + "or_20 MCMC 21\n", + "yo\n", + "21\n", + "22\n", + "or_20 MCMC 22\n", + "yo\n", + "22\n", + "23\n", + "or_20 MCMC 23\n", + "24\n", + "or_20 MCMC 24\n", + "yo\n", + "24\n", + "25\n", + "or_20 MCMC 25\n", + "20\n", + "or_25 MCMC 20\n", + "yo\n", + "20\n", + "21\n", + "or_25 MCMC 21\n", + "yo\n", + "21\n", + "22\n", + "or_25 MCMC 22\n", + "yo\n", + "22\n", + "23\n", + "or_25 MCMC 23\n", + "yo\n", + "23\n", + "24\n", + "or_25 MCMC 24\n", + "25\n", + "or_25 MCMC 25\n", + "20\n", + "or_30 MCMC 20\n", + "yo\n", + "20\n", + "21\n", + "or_30 MCMC 21\n", + "22\n", + "or_30 MCMC 22\n", + "yo\n", + "22\n", + "23\n", + "or_30 MCMC 23\n", + "yo\n", + "23\n", + "24\n", + "or_30 MCMC 24\n", + "yo\n", + "24\n", + "25\n", + "or_30 MCMC 25\n", + "20\n", + "or_35 MCMC 20\n", + "yo\n", + "20\n", + "21\n", + "or_35 MCMC 21\n", + "yo\n", + "21\n", + "22\n", + "or_35 MCMC 22\n", + "23\n", + "or_35 MCMC 23\n", + "yo\n", + "23\n", + "24\n", + "or_35 MCMC 24\n", + "25\n", + "or_35 MCMC 25\n", + "20\n", + "or_40 MCMC 20\n", + "yo\n", + "20\n", + "21\n", + "or_40 MCMC 21\n", + "22\n", + "or_40 MCMC 22\n", + "yo\n", + "22\n", + "23\n", + "or_40 MCMC 23\n", + "yo\n", + "23\n", + "24\n", + "or_40 MCMC 24\n", + "25\n", + "or_40 MCMC 25\n", + "20\n", + "or_45 MCMC 20\n", + "yo\n", + "20\n", + "21\n", + "or_45 MCMC 21\n", + "yo\n", + "21\n", + "22\n", + "or_45 MCMC 22\n", + "yo\n", + "22\n", + "23\n", + "or_45 MCMC 23\n", + "yo\n", + "23\n", + "24\n", + "or_45 MCMC 24\n", + "25\n", + "or_45 MCMC 25\n", + "20\n", + "or_50 MCMC 20\n", + "yo\n", + "20\n", + "21\n", + "or_50 MCMC 21\n", + "22\n", + "or_50 MCMC 22\n", + "yo\n", + "22\n", + "23\n", + "or_50 MCMC 23\n", + "24\n", + "or_50 MCMC 24\n", + "25\n", + "or_50 MCMC 25\n", + "15\n", + "orsmc/or_5 SMC 15\n", + "yo\n", + "15\n", + "16\n", + "orsmc/or_5 SMC 16\n", + "yo\n", + "16\n", + "17\n", + "orsmc/or_5 SMC 17\n", + "18\n", + "orsmc/or_5 SMC 18\n", + "19\n", + "orsmc/or_5 SMC 19\n", + "20\n", + "orsmc/or_5 SMC 20\n", + "21\n", + "orsmc/or_5 SMC 21\n", + "22\n", + "orsmc/or_5 SMC 22\n", + "23\n", + "orsmc/or_5 SMC 23\n", + "24\n", + "orsmc/or_5 SMC 24\n", + "25\n", + "orsmc/or_5 SMC 25\n", + "15\n", + "orsmc/or_10 SMC 15\n", + "yo\n", + "15\n", + "16\n", + "orsmc/or_10 SMC 16\n", + "yo\n", + "16\n", + "17\n", + "orsmc/or_10 SMC 17\n", + "18\n", + "orsmc/or_10 SMC 18\n", + "19\n", + "orsmc/or_10 SMC 19\n", + "20\n", + "orsmc/or_10 SMC 20\n", + "21\n", + "orsmc/or_10 SMC 21\n", + "22\n", + "orsmc/or_10 SMC 22\n", + "23\n", + "orsmc/or_10 SMC 23\n", + "24\n", + "orsmc/or_10 SMC 24\n", + "25\n", + "orsmc/or_10 SMC 25\n", + "15\n", + "orsmc/or_15 SMC 15\n", + "yo\n", + "15\n", + "16\n", + "orsmc/or_15 SMC 16\n", + "17\n", + "orsmc/or_15 SMC 17\n", + "18\n", + "orsmc/or_15 SMC 18\n", + "19\n", + "orsmc/or_15 SMC 19\n", + "20\n", + "orsmc/or_15 SMC 20\n", + "21\n", + "orsmc/or_15 SMC 21\n", + "22\n", + "orsmc/or_15 SMC 22\n", + "23\n", + "orsmc/or_15 SMC 23\n", + "24\n", + "orsmc/or_15 SMC 24\n", + "25\n", + "orsmc/or_15 SMC 25\n", + "15\n", + "orsmc/or_20 SMC 15\n", + "yo\n", + "15\n", + "16\n", + "orsmc/or_20 SMC 16\n", + "yo\n", + "16\n", + "17\n", + "orsmc/or_20 SMC 17\n", + "18\n", + "orsmc/or_20 SMC 18\n", + "19\n", + "orsmc/or_20 SMC 19\n", + "20\n", + "orsmc/or_20 SMC 20\n", + "21\n", + "orsmc/or_20 SMC 21\n", + "22\n", + "orsmc/or_20 SMC 22\n", + "23\n", + "orsmc/or_20 SMC 23\n", + "24\n", + "orsmc/or_20 SMC 24\n", + "25\n", + "orsmc/or_20 SMC 25\n", + "15\n", + "orsmc/or_25 SMC 15\n", + "yo\n", + "15\n", + "16\n", + "orsmc/or_25 SMC 16\n", + "yo\n", + "16\n", + "17\n", + "orsmc/or_25 SMC 17\n", + "18\n", + "orsmc/or_25 SMC 18\n", + "19\n", + "orsmc/or_25 SMC 19\n", + "20\n", + "orsmc/or_25 SMC 20\n", + "21\n", + "orsmc/or_25 SMC 21\n", + "22\n", + "orsmc/or_25 SMC 22\n", + "23\n", + "orsmc/or_25 SMC 23\n", + "24\n", + "orsmc/or_25 SMC 24\n", + "25\n", + "orsmc/or_25 SMC 25\n", + "15\n", + "orsmc/or_30 SMC 15\n", + "yo\n", + "15\n", + "16\n", + "orsmc/or_30 SMC 16\n", + "yo\n", + "16\n", + "17\n", + "orsmc/or_30 SMC 17\n", + "18\n", + "orsmc/or_30 SMC 18\n", + "19\n", + "orsmc/or_30 SMC 19\n", + "20\n", + "orsmc/or_30 SMC 20\n", + "21\n", + "orsmc/or_30 SMC 21\n", + "22\n", + "orsmc/or_30 SMC 22\n", + "23\n", + "orsmc/or_30 SMC 23\n", + "24\n", + "orsmc/or_30 SMC 24\n", + "25\n", + "orsmc/or_30 SMC 25\n", + "15\n", + "orsmc/or_35 SMC 15\n", + "yo\n", + "15\n", + "16\n", + "orsmc/or_35 SMC 16\n", + "17\n", + "orsmc/or_35 SMC 17\n", + "18\n", + "orsmc/or_35 SMC 18\n", + "19\n", + "orsmc/or_35 SMC 19\n", + "20\n", + "orsmc/or_35 SMC 20\n", + "21\n", + "orsmc/or_35 SMC 21\n", + "22\n", + "orsmc/or_35 SMC 22\n", + "23\n", + "orsmc/or_35 SMC 23\n", + "24\n", + "orsmc/or_35 SMC 24\n", + "25\n", + "orsmc/or_35 SMC 25\n", + "15\n", + "orsmc/or_40 SMC 15\n", + "yo\n", + "15\n", + "16\n", + "orsmc/or_40 SMC 16\n", + "yo\n", + "16\n", + "17\n", + "orsmc/or_40 SMC 17\n", + "18\n", + "orsmc/or_40 SMC 18\n", + "19\n", + "orsmc/or_40 SMC 19\n", + "20\n", + "orsmc/or_40 SMC 20\n", + "21\n", + "orsmc/or_40 SMC 21\n", + "22\n", + "orsmc/or_40 SMC 22\n", + "23\n", + "orsmc/or_40 SMC 23\n", + "24\n", + "orsmc/or_40 SMC 24\n", + "25\n", + "orsmc/or_40 SMC 25\n", + "15\n", + "orsmc/or_45 SMC 15\n", + "yo\n", + "15\n", + "16\n", + "orsmc/or_45 SMC 16\n", + "yo\n", + "16\n", + "17\n", + "orsmc/or_45 SMC 17\n", + "18\n", + "orsmc/or_45 SMC 18\n", + "19\n", + "orsmc/or_45 SMC 19\n", + "20\n", + "orsmc/or_45 SMC 20\n", + "21\n", + "orsmc/or_45 SMC 21\n", + "22\n", + "orsmc/or_45 SMC 22\n", + "23\n", + "orsmc/or_45 SMC 23\n", + "24\n", + "orsmc/or_45 SMC 24\n", + "25\n", + "orsmc/or_45 SMC 25\n", + "15\n", + "orsmc/or_50 SMC 15\n", + "yo\n", + "15\n", + "16\n", + "orsmc/or_50 SMC 16\n", + "yo\n", + "16\n", + "17\n", + "orsmc/or_50 SMC 17\n", + "18\n", + "orsmc/or_50 SMC 18\n", + "19\n", + "orsmc/or_50 SMC 19\n", + "20\n", + "orsmc/or_50 SMC 20\n", + "21\n", + "orsmc/or_50 SMC 21\n", + "22\n", + "orsmc/or_50 SMC 22\n", + "23\n", + "orsmc/or_50 SMC 23\n", + "24\n", + "orsmc/or_50 SMC 24\n", + "25\n", + "orsmc/or_50 SMC 25\n" + ] + }, + { + "data": { + "text/plain": [ + "([0.005678808976441396,\n", + " 0.001050892124704661,\n", + " 0.0009332106254706484,\n", + " 0.0008718332371600579,\n", + " 0.0007773691729226262,\n", + " 0.0008111491847657027,\n", + " 0.0010896772887583062,\n", + " 0.0010997066790573774,\n", + " 0.0010261221499151207,\n", + " 0.0007244206796401586],\n", + " [0.0003107203101135658,\n", + " 0.00022309103739437397,\n", + " 0.0009860988323602937,\n", + " 0.0010369503333704454,\n", + " 0.0016814922160924505,\n", + " 0.0007626843327180333,\n", + " 0.0020389350045837197,\n", + " 0.0014812613802465124,\n", + " 0.0016591638825716904,\n", + " 0.0016217072590030024])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "benchmark = \"or\"\n", + "files = [5, 10, 15]\n", + "# files = [\"results_10.txt\", \"results_5.txt\", \"results_25.txt\", \"results_125.txt\", \"results_625.txt\", \"results_3125.txt\", \"results_15625.txt\", \"results_78125.txt\"]\n", + "\n", + "slicstan_time = [4, 9, 12, 23, 31, 153, 33*60 + 51, 42*60 + 27, 11*60 + 10, 159*60 + 47]\n", + "iterations = []\n", + "\n", + "abs_error = []\n", + "for i in files:\n", + " stan_res = stan_accuracy(\"\", \"prior1\", gt[\"or\"], f\"/space/poorvagarg/benchmarks_stan/or/results_{i}.txt\")\n", + " abs_error.append(stan_res)\n", + " \n", + " stan_iter = stan_iterations(f\"/space/poorvagarg/benchmarks_stan/or/results_{i}.txt\")\n", + " iterations.append(stan_iter)\n", + "\n", + "iterations += [0, 0, 0, 0, 0, 0]\n", + "abs_error\n", + "\n", + "files2 = [i for i in range(5, 55, 5)]\n", + "\n", + "abs_error_dice = []\n", + "# files = [\"results_1000.0.txt\", \"results_500.0.txt\", \"results_250.0.txt\", \"results_125.0.txt\", \"results_62.5.txt\", \"results_31.25.txt\", \"results_15.625.txt\", \"results_7.8125.txt\"]\n", + "for i in files2:\n", + " dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/all_beta_priors\"+ f\"/results_{i}.txt\", gt[benchmark], 2, None)\n", + " abs_error_dice.append(dice_res)\n", + "\n", + "abs_error_dice\n", + "\n", + "abs_error_mcmc = []\n", + "for i in files2:\n", + " webppl_res = WebPPL_accuracy(\"or_\"+str(i), \"MCMC\", gt[\"or\"], 25, lower_limit=20)\n", + " abs_error_mcmc.append(webppl_res)\n", + "\n", + "abs_error_mcmc\n", + "\n", + "abs_error_smc = []\n", + "for i in files2:\n", + " webppl_res = WebPPL_accuracy(\"orsmc/or_\"+str(i), \"SMC\", gt[\"or\"], 25, lower_limit=15)\n", + " abs_error_smc.append(webppl_res)\n", + "\n", + "abs_error_smc, abs_error_mcmc\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAG6CAYAAADDIKgBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8+0lEQVR4nOzdeXxMV//A8c9kj6wIiSxI7XvsS+2l/KpFqaKWoFSflhbdF0vp82h1U+qpp2httbVUV0ottdPaldLYt5AgiQRZJvf3xzGTTDJJJpNJJpN836/XvJK599x7z5BkvnPO936PTtM0DSGEEEIIkW9O9u6AEEIIIYSjkkBKCCGEEMJKEkgJIYQQQlhJAikhhBBCCCtJICWEEEIIYSUJpIQQQgghrCSBlBBCCCGElVzs3YGSLj09nStXruDj44NOp7N3d4QQQghhAU3TuH37NsHBwTg55TzuJIFUIbty5QphYWH27oYQQgghrHDx4kVCQ0Nz3C+BVCHz8fEB1H+Er6+vnXsjhBBCCEskJCQQFhZmfB/PiQRShcwwnefr6yuBlBBCCOFg8krLkWRzIYQQQggrSSAlhBBCCGElCaSEEEIIIawkgZQQQgghhJUkkBJCCCGEsJIEUkIIIYQQVpJASgghhBDCSlJHSgghHEBqaip6vd7e3RDCITk7O+Pq6loo55ZASgghirGEhARiY2NJTk62d1eEcGju7u4EBATYvDi2BFKOSK+H7dvh6lWoVAnatQNnZ3v3SghhYwkJCVy+fBlvb28CAgJwdXWVxc+FyCdN00hNTSU+Pp7Lly8D2DSYkkDK0axZAy++CJcuZWwLDYVPP4U+fezXLyGEzcXGxuLt7U1oaKgEUEIUgKenJz4+Ply6dInY2FibBlKSbO5I1qyBJ54wDaIALl9W29essU+/hBA2l5qaSnJyMn5+fhJECWEDOp0OPz8/kpOTSU1Ntdl5JZByFHq9GonStOz7DNvGjVPthBAOz5BYXlgJskKURobfJ1veuCGBlKPYvj37SFRmmgYXL6p2QogSQ0ajhLCdwvh9kkDKUVy9att2QgghhCgwCaQcRaVKtm0nhBBCiAKTQMpRtGun7s7LaVhSp4OwMNVOCCGEEEVCAilH4eysShxA9mDK8HzmTKknJYQo8bZs2ULfvn0JCQnBzc2NsmXLUqtWLfr168dnn31GfHy8vbsoShEJpBxJnz7w7bcQEmK6PTRUbZc6UkKIEm7q1Kl07tyZNWvW4Ofnx6OPPsrDDz+Mp6cna9asYezYsZw4ccLYvmrVqpKwLwqVFOR0NH36QK9e6u68b76Bw4fh+ecliBJClHj79+9nypQpuLq6smrVKnr37m2yPzo6mqVLl+Lv72+X/onSSUakHJGzM3TsCN7esHMn7Nhh7x4JIRxduh6ubYVzy9XX9OJXk27NmjVomsaTTz6ZLYgCCAoK4uWXX6Z27dpF3zlRakkg5cgefxw++QSeftrePRFCOLKLa+CHqrCpE+x6Sn39oaraXozExMQAUKFChTzbbt26FZ1Ox/nz5wFVP8jwqFq1qrFdVFQUU6ZMoXXr1gQFBeHm5kZoaChDhw7l1KlTZs9tOIder+f999+nZs2auLu7ExYWxmuvvSYLTJcyMrXnyFq1Ug8hhLDWxTWw/Qkgy6oJdy6r7e2+hbDikToQFhYGwOrVq3njjTeoWLFijm2DgoKIjIzk22+/JSkpicjISOO+gIAA4/fz589nxowZ1K9fn+bNm+Pu7s7x48dZsmQJ33//Pdu3b6dhw4Zmr/HUU0/xyy+/0LFjR2rVqsX27duZMWMGly9fZunSpTZ61aK402mauTVHhK0kJCTg5+dHfHy8TRdJFEKUbPfu3ePs2bOEh4fj4eGRc8O0pPyf3MkdnFzU9N33VeFuTqsm6MAzBHr8BU4W3BHs5AZO95e0SddD+j11Dpcy+e+jGWfOnKF+/frcvXsXHx8f+vTpQ9u2bWnatCkNGzbE2cxdy1WrVuX8+fPk9Fa3Z88eAgMDCQ8PN9n+1VdfMWLECDp16sTmzZtN9hmS1+vUqcPmzZsJCgoC4OzZszRp0oS4uDiioqKoVq2aLV62sCGLf6+w/P1bAqlCVuiB1M2bKuE8LAyqV7f9+YUQdmHxH/xlVtyR1nYVVO6ncqE2dbK6j9k0+wxqPq++N5zbr64KxGxk06ZNDB8+nIsXL5ps9/f3Z+DAgUycOJFKmQoT5xVI5aZt27bs2rWLW7du4efnZ9xuCKQ2btxIly5dTI4ZO3Ysn332GV999RXDhg3L9zVF4SqMQEqm9hzdSy/BwoUweTJMmWLv3gghHMldx1tS6qGHHiIqKoqff/6ZDRs2sG/fPo4cOUJcXByff/45q1evZtu2bdSqVcvicyYmJvLjjz9y6NAhbt68SWpqKgBXr15F0zROnz5NkyZNTI5xdXWlU6fsQWjNmjWNx4rSQQIpRxcRAeHhkEdkLYQooZ5MzP8xTu7qq6eFS0p1/AUqtrfgvG4Z31dod79vtq/h5ObmxuOPP87jjz8OQFxcHCtWrODNN9/k+vXrjBkzho0bN1p0rs2bNzNgwABjIrs5t2/fzrYtKCjI7FSij48PgCSclyJy156je+EFOHMGXn/d3j0RQtiDi1f+H073P0NXaAdlQsk52NFBmTAIetjC87pmHOrkfH+7bfKjcuPv78+zzz7LwoULAVX5/M6dO3kel5iYyJNPPklsbCyTJk3i+PHjJCUlkZ6ejqZpDBw4EMDstKCTk7x9CkV+EhydVOwVQljLyRma3l96Klswdf9505mWJZoXA507dwZAr9cTFxeXZ/vt27dz48YN+vbtyzvvvEOdOnUoU6aMMQfqzJkzhdldUUJIICWEEKVZWB9V4qBMlqWnyoQWq9IHYH5kKLOoqChATf0ZShy4uanpxrS0tGztb926BUBoaKjZcx04cKBA/RWlgwRSJcHHH0ODBvDFF/buiRDCEYX1gZ7n4KEt0GaZ+trzbLEKogAmTpzIK6+8wunTp7Ptu3z5MqNHjwagZ8+exgAqODgYgJMnT2Y7xpAYvmbNGpMcqbi4OJ5++mlj0rkQuZFk85Lgxg04dgz277d3T4QQjsrJGQI72rsXuUpMTOTTTz/lww8/pGbNmtStWxcPDw8uXbrE3r17SU1NpXr16sycOdN4TM+ePfn999956KGH6NSpE15eXgQEBPDee+/RrFkzunbtysaNG6lZsyYdO3YEVFX0gIAAevXqxffff2+fFyschgRSJcGgQdCmDWS5PVcIIUqSt99+m2bNmvHrr79y+PBhtm/fbqzx06JFC3r16sVzzz2Hl5eX8ZgXXniBW7dusXz5clavXk1qaipVqlThvffeA+D777/n3//+N6tWrWLdunVUrFiRAQMG8O677/LSSy/Z66UKByIFOQuZVDYXQlgjP4UDhRCWKYyCnJIjJYQQQghhJQmkSopjx2DePJC7TIQQQogiI4FUSTFzJjzzDKxZY++eCCGEEKWGJJuXFG3bwoULsnCxEEIIUYQkkCophg1TDyGEEEIUGZnaE0IIIYSwkgRSJY1eD/fu2bsXQgghRKkggVRJ8vLL4OsrS8UIIXJ2dBosc4Jj71p33NFphdMvIRyU5EiVJJ6ecOeOKoUghBBZHZ0GRyep749MVF/rv52/4wxfG0y0ff+EcEASSJUkzzyjloupUcPePRFCFDeZgyEDS4Ipc8dJMCWEkQRSJUlYmL17IIQojswFQwa5BVO5HSfBlBCA5EgJIUTJllswZHBkYvacKUuOOzpJcqZEqSeBVEmzcSO89hr8/ru9eyKEsDdLgiGDzMFUfo6TYEqUchJIlTSrV8OMGfDrr/buiRDCnvITDBkcmQibuuT/uCIOprZs2ULfvn0JCQnBzc2NsmXLUqtWLfr168dnn31GfHx8kfWlIM6dO4dOp8vXo2PHjgBUrVoVnU5n3xcgAMmRKnn+7//A2Rnat7d3T4QQ9nR0snXHXdtk/fWKIF9q6tSpTJ6sXludOnVo2bIlrq6unDx5kjVr1vDtt9/SrFkzWrVqZTymatWqnD9/Hk3TCr1/+eHt7U1kZGS27evXr+fatWs8+OCDVM+y7Fft2rWLqnvF2rlz5wgPD6dDhw5s3brVrn2RQKqk6dVLPYQQpVuDd/I/slQQDacW+iX279/PlClTcHV1ZdWqVfTu3dtkf3R0NEuXLsXf37/Q+2ILAQEBLFy4MNv2jh07cu3aNUaOHMmwHJb+2rRpE6mpqYXbQWERh5ramzNnDlWrVsXDw4OWLVuyb9++XNt/88031K5dGw8PDxo0aMAvv/xisl/TNCZNmkSlSpXw9PSkS5cu/PPPPyZtDMOnmR/vvfeezV+bEELYVIOJ0KDwgxsAGk6zrB5VAa1ZswZN03jyySezBVEAQUFBvPzyy6Vi1KZatWql4nU6AocJpFauXMmECROYPHkyBw4coFGjRnTr1o3r16+bbb9r1y4GDhzI008/zcGDB+nduze9e/fmWKZilTNmzGDWrFnMnTuXvXv34uXlRbdu3biXZYmVqVOncvXqVeNj7NixhfpaC0zT4PJluHHD3j0RQthTUQRTRRREAcTExABQoUIFi9pv3boVnU7H+fPnAUw+EFetWtXYLioqiilTptC6dWuCgoJwc3MjNDSUoUOHcurUKbPnNpxDr9fz/vvvU7NmTdzd3QkLC+O1114jOTm5YC82D+ZypAw5Vx07diQpKYkJEyYQFhaGp6cnTZo04ccffzS2/eabb2jZsiVeXl4EBgbywgsvcPfuXbPXunPnDtOnT6dx48Z4e3vj7e1Nq1atWLRoUY79O378OIMGDaJSpUq4ubkREhLC0KFDOXnyZLa2CxcuRKfTMWXKFLPn6tixIzqdjnPnzgEwZcoUwsPDAfj9999N/l9zGsErTA4TSH388ceMGjWK4cOHU7duXebOnUuZMmX48ssvzbb/9NNP6d69O6+88gp16tRh2rRpNGnShM8++wxQo1EzZ87k7bffplevXjRs2JDFixdz5coV1q5da3IuHx8fgoKCjA8vL6/CfrkFM3QohIbC4sX27okQwt4KM5gqwiAKIOx+rbzVq1fn+CE6s6CgICIjI41/syMjI42PJ554wthu/vz5TJ06laSkJJo3b07Pnj3x9fVlyZIlNG/enCNHjuR4jaeeeop3332XWrVq8fDDD3P79m1mzJjB008/XcBXa72UlBQeeughvv76a1q1akWrVq04fPgwjz/+OL/99huffPIJTz31FD4+PnTr1g29Xs/s2bMZOXJktnNdv36d1q1b8+abbxIdHU2HDh1o3749f//9N8OGDTM7sLBp0yaaNWvGsmXLqFSpEn379qVixYosWbKEZs2asX379gK9voiICPr27QtAYGCgyf9r27ZtC3Ruq2gOIDk5WXN2dta+++47k+1Dhw7VevbsafaYsLAw7ZNPPjHZNmnSJK1hw4aapmna6dOnNUA7ePCgSZv27dtrL7zwgvF5lSpVtMDAQK1cuXJaRESENmPGDC01NTXHvt67d0+Lj483Pi5evKgBWnx8vOUvuKCmTNE0Z2dNe/31orumEMKm7t69qx0/fly7e/eu+Qbp6ZqWmmj549DbmvY1tnscnpi/66enF/jf5PTp05qnp6cGaD4+PlpkZKQ2b9487cCBA1paWlqOx1WpUkXL7e1u9+7d2pkzZ7Jt//LLLzVA69SpU7Z9gAZoderU0a5evWrcfubMGc3f318DtKioqHy+QqVDhw4aoH311Vc5tjH3ms6ePWvsV+fOnbXExETjvq+++koDtOrVq2tly5bV/vjjD+O+y5cvaxUrVtQA7fTp0ybnfOSRRzRAe/HFF7V79+4Zt0dHR2vNmjXTAG3dunXG7YmJiVpgYKAGaJ999pnJuT7++GMN0EJDQ01+rg19mzx5cq7/HmfPns32Wjt06JDjv5E5ef5eZRIfH2/R+7dDjEjFxsai1+sJDAw02R4YGEh0dLTZY6Kjo3Ntb/ia1zlfeOEFVqxYwZYtWxg9ejT/+c9/ePXVV3Ps6/Tp0/Hz8zM+wuxRbXz8eEhMhOnTi/7aQoiiob8Dq7wtf/yVz0WK83JsWv6ur79T4Es+8MAD/Pjjj4SFhXH79m0WLVrEqFGjaNKkCQEBATz33HNcvXo13+dt1aqVcaoos+HDh/Pggw+ydevWHEsqzJo1i6CgIOPz8PBwBg8eDFDgkRdrOTk58fnnn5vMngwdOpSAgACioqJ4/vnnadasmXFfcHAwgwYNAmDbtm3G7YcOHeKXX36hefPmfPzxx7i7uxv3BQYG8sUXXwDw+eefG7evWrWKa9eu0bp1a55//nmTfo0fP56mTZty6dIlVq9ebdsXbUdy114eJkyYYPy+YcOGuLm5MXr0aKZPn27yQ2XwxhtvmByTkJBQ9MGUr2/RXk8IIYrIQw89RFRUFD///DMbNmxg3759HDlyhLi4OD7//HNWr17Ntm3bqFWrVr7Om5iYyI8//sihQ4e4efOm8Y64q1evomkap0+fpkmTJibHuLq60qlTp2znqlmzpvFYe6hataqxDwZOTk5UqVKF2NhYHn744WzHPPDAA4Bpnzds2ABA7969cXLKPu5iyJnKfOOXIXg0BGZZDR48mP3797N9+/Yc2zgahwikAgICcHZ25tq1aybbr127ZvJJILOgoKBc2xu+Xrt2jUqVKpm0iYiIyLEvLVu2JC0tjXPnzpn9RXV3dzcbYAkhhE05l4EnE/N3zF/v2WZkqv5EqPta/o5xLlPw697n5ubG448/zuOPPw5AXFwcK1as4M033+T69euMGTOGjRs3Wny+zZs3M2DAAGMyuzm3b9/Oti0oKAhnZ+ds2318fAAKPeE8JyEhIWa3e3t757jfsC9znw3J3W+99RZvvfVWjtfLfIPWlStXAEyS+TMzbL98+XKO53M0DhFIubm50bRpUzZt2mS85TU9PZ1NmzYxZswYs8e0bt2aTZs2MW7cOOO2jRs30rp1a0ANvwYFBbFp0yZj4JSQkMDevXv517/+lWNfDh06hJOTExUrVrTJays0CxfCDz/AiBHw6KP27o0QwtZ0OnDJx40vR6fZbnrv2DRwcivSRPPc+Pv78+yzzxIcHEyvXr3YsmULd+7coUyZvIO3xMREnnzySW7evMmkSZMYMGAAVapUwdPTE51Ox1NPPcXy5cvNFvM0N0pTHOTVL0v7nZ6eDkDbtm2pVq1agfsFWFWN3dCP4sohAilQU2yRkZE0a9aMFi1aMHPmTJKSkhg+fDig5n9DQkKYfj8v6MUXX6RDhw589NFH9OjRgxUrVvDnn38a53R1Oh3jxo3j3XffpUaNGoSHhzNx4kSCg4ONwdru3bvZu3cvnTp1wsfHh927dzN+/HgGDx5M2bJl7fLvYLF9++C776B6dQmkhCjtrFkuJi9H7lcxLybBFEDnzp0B0Ov1xMXFWRRIbd++nRs3bvDEE0/wzjvvZNt/5swZm/fTUYSGhgJqau+ll16y6Jjg4GAAY8mJrAyjXJlHxdzc3AAV1Jpz8eJFi65tL8UznDajf//+fPjhh0yaNImIiAgOHTrE+vXrjcniFy5cMJnbbdOmDcuWLeOLL76gUaNGfPvtt6xdu5b69esb27z66quMHTuWZ555hubNm5OYmMj69evx8PAA1DTdihUr6NChA/Xq1ePf//4348ePNwZjxVq/fvDRRzBwoL17IoSwp8IIogwyL3RcBMyNCmUWFRUFqDfmgIAA43bDG3VaWlq2Y27dugVkBA1Zz3fgwAGr++vounbtCsB3331n8THt2rUDYPny5Wb3L1261KQdYEyvMVez69SpU1y4cCHb9tz+T4uawwRSAGPGjOH8+fMkJyezd+9eWrZsady3devWbKX2+/Xrx8mTJ0lOTubYsWM88sgjJvt1Oh1Tp04lOjqae/fu8dtvv5kk6DVp0oQ9e/YQFxfH3bt3OX78OG+88YZj5EB16gQTJkDjxvbuiRDCXgoziDIowmBq4sSJvPLKK5w+fTrbvsuXLzN69GgAevbsaXyjhYxREnPFIA1/89esWWOSIxUXF8fTTz9dqpdhadmyJV27dmXnzp08//zzJCQkZGtz+PBh1q9fb3z+5JNPEhgYyI4dO7INOsyaNYs///yTkJAQYx0ogObNm1OmTBnWrVvH/v37jdtjY2MZOXKk2am9gIAAXF1dOX36NHq93hYv12oOFUgJIYSwUFEEUQZFFEwlJiby4YcfUr16dWrVqsXjjz/OwIEDadeuHeHh4ezbt4/q1aszc+ZMk+N69uwJqDv+Bg4cyMiRI3n99dcBaNasGV27duXChQvUrFnTmMQeHh7OlStX6FXK1y5dunQpjRs35r///S9VqlShU6dODBo0iEcffZTKlSsTERFhEkh5eXnx9ddf4+npyejRo2nWrBlPPfUUTZo04cUXX8Tb25vly5cbZ35AJbq//PLLpKWl0bZtW7p3787//d//UbNmTfR6vTG3OTM3Nze6d+9OdHQ0jRo1YujQoYwcOZKvvvqqSP5dMpNAqiS7dQu2boUc5qqFECXY0clFe70jhR+0vf322yxZsoTBgwfj7u7O9u3b+fbbbzl+/DgtWrRgxowZHDp0KNtdaS+88AJvv/023t7erF69mgULFrBixQrj/u+//5633nqLChUqGEdFBgwYwJ49exxmAeTCUrFiRXbt2sWsWbOoW7cuBw8e5Ntvv+XIkSM88MADfPDBB7z88ssmxzz00EP88ccfDBw4kEuXLvHtt98SHR3N4MGD+fPPP02m9QymTJnCBx98QGhoKJs3b+bYsWOMGDGCjRs3mowuZjZ//nyGDBnCjRs3WLZsGQsWLOD3338vlH+H3Oi0vCadRYEkJCTg5+dHfHw8vkVd36lfP/j2W/jgA8jygy6EKN7u3bvH2bNnCQ8PN/n0bjFrR6SCukD0b/k/rsFUtRyNEMVYfn6vLH3/lhGpkiwiAqpUATN1ToQQJZw1a+w1nAadN+b/OAmiRCnmMOUPhBXefBNyKaImhCjhDMGNJSNTmRcgzs9xEkSJUk5GpEoyKwqfCSFKGEtGpjIHUfk5ToIoISSQEkKIEi+3oMhcEGXJcRJECQFIIFXyTZ8OjRrBsmX27okQwp7MBUW5BVG5HSdBlBBGEkiVdFevwpEjkKnImRCilDIGRTrLgihzx0kQJYQJSTYv6UaMgK5doVkze/dECFEcNJhoXSBk7XFClHASSJV0ERHqIYQQQgibk6k9IYQQQggrSSBVGhw7BgsWwPHj9u6JEEIIUaJIIFUa/PvfMHIk/PijvXsihBBClCiSI1UatGsHsbEQGmrvngghhBAligRSpcFzz6mHEEIIIWxKpvaEEEIIIawkgVRpkp4OKSn27oUQQlhNp9Ohy2Md0YULF6LT6Rg2bJjNrpf54erqSnBwMH379mXXrl1mj+vYsSM6nY5z584VuA+ieJNAqrQYOxZ8fWHpUnv3RAghHE5kZKTx0bNnT8qUKcOaNWto27Yty/KxBJdOp6Nq1aqF11FR5CRHqrRwcYGkJLVcjBBCZKHXw/btalWpSpXUPSrOzvbuVfGxcOFCk+fp6em8+eabvP/++7zwwgv069cPV1dX4/7Fixdz584dQkJCirinoqjJiFRp8cIL8Ndf8OGH9u6JEKKYWbMGqlaFTp3gqafU16pV1XZhnpOTE1OnTsXFxYUbN27w119/meyvXLkytWvXNgmuRMkkgVRpER4OdeuqkSkhhLhvzRp44gm4dMl0++XLantJCabGjBmDTqfjiy++yLFNrVq1cHJy4syZMxad083NDT8/PwDS0tJM9mXNkTLkbQGcP3/eJOeqY8eO+X9BotiQd1UhhHBAmgZ37hTsHHq9GqzWNPPn1+ngxRehS5eCT/OVKaPOZy+jR49mzpw5zJs3j2eeeSbb/t9//51Tp07RpUsXHnjgAYvOefbsWW7cuIGrqyvVq1fPtW316tWJjIxk0aJFeHl58cQTTxj31a5dO38vRhQrEkiVJuvXw9at8Pjj0LKlvXsjhCiAO3fA27twr6FpaqTq/qBLgSQmgpdXwc9jrQYNGtCmTRt27drFoUOHiMiymPu8efMAGDVqVJ7nSkxM5NChQ4wfPx6Af/3rX/j7++d6TNu2bWnbti2LFi0iICAgW86VcFwSSJUmS5bAsmXg4yOBlBDCoeVVAsGcZ599ll27djFv3jzmzJlj3H7r1i1Wr15NhQoV6N27t8XX8/HxYfbs2Tz//PP57osoOSSQKk169FAlEFq0sHdPhBAFVKaMGuUpiG3b4JFH8m73yy/Qvn3BrlWmTMGOzyoyMjLHfVFRUezcuTPb9n79+jF+/Hi+/vprPvjgA8rc79TSpUu5d+8eY8aMwc3NLc/rJScnc/78efbu3cvUqVOpVq0a//d//1fAVyQclQRSpclTT6mHEMLh6XQFnyp7+GG1BOfly+bzpHQ6tf/hh4tfKYTcpsYWLlxoNpDy8PAgMjKSjz/+mG+++cYYHM2fPx+AkSNH5ut6Bw8epEOHDvTs2ZNjx45Rq1at/L0IUSLIXXtCCFFKOTvDp5+q77POXBmez5xZ/IKoghg9ejQ6nc6YE7Vv3z6OHDlC+/bt8x0INW7cmNGjR5OWlsbnn39eGN0VDkACqdJG01TFvbg4e/dECFEM9OkD334LWetGhoaq7X362KdfhaVmzZp06tSJnTt3cuLECWNAZe5OPkuEh4cD8M8//9isj8KxSCBV2vTrB8HB6i+kEEKggqVz52DLFnU/ypYtcPZsyQuiDJ599lkAPv74Y1asWEHZsmXp27evVecy1JzytvAWSldX12w1p4Rjkxyp0iY8HJyc1KiUEELc5+wMpaUuZO/evQkKCjLmRr3wwgt4eHjk+zwHDx40Fvh8xJKsfSA4OJjLly8TFxeXZ8kE4RgkkCpt3nwTpk4FT09790QIIezC1dWVESNG8J///AewbFpv2LBhxu9TUlI4f/48e/bsIT09nccee4whQ4ZYdO2ePXsye/ZsmjRpQps2bfDw8KBWrVq88sorVr0WYX8SSJU2ZcvauwdCCGF3nTt35j//+Q+tW7emXr16ebZftGiR8XsnJyf8/f1p3749Q4YMYdiwYTg5WZYpM336dDRN4/vvv2flypWkpaXRoUMHCaQcmNWB1NSpUwEYPnw4YWFhNuuQEEIIkRPNXJ2GLIYNG2YygmTOqlWrgLxHoyy5njlbt241u93Ly4vZs2cze/Zsq84rih+dZuVPibOzM87OziQlJcnq1rlISEjAz8+P+Ph4fH197d0dZcECWLcOnnsOOne2d2+EEGbcu3ePs2fPEh4eblX+jsjZ+fPnqVOnDl5eXly4cAFPSXUoNfLze2Xp+7fVI1IBAQHo9XoJohzRtm2wejU0bCiBlBCi1Pjggw84cuQIGzdu5O7du0yfPl2CKFFgVpc/aNSoEXFxcdy4ccOW/RFFYcAA+OAD6NnT3j0RQogi8/PPP7N06VKcnZ2ZPHkyL7zwgr27JEoAq0ekRo8ezW+//cbHH3/Mv//9b1v2SRS2//s/9RBCiFIkp7wlIQrC6hGpvn37MmHCBN577z1effVVYmNjbdkvIYQQQohiz+oRqc73c2u8vLz46KOP+OSTT6hevToVK1bEOYeFmXQ6HZs2bbL2ksKW4uLgyBGoXl1VOhdCCCFEvlkdSGUdItXr9Zw8eZKTJ0/meIwu66qYwn4GDoT16+Hzz+H+cglCCCGEyB+rA6nJkyfbsh+iqDVqBMePQ3q6vXsihBBCOCyr60gJyxTLOlKgAigLK/EKIYqe1JESwvYKo46UvJOWVhJECSGEEAUm76ZCCCGEEFayyaLFBw8eZNmyZfz5559cv34dgIoVK9K8eXMGDhxI48aNbXEZYWvvvAPffQdTp0pxTiGEEMIKBQqkkpKSGDVqFCtXrgRMF3c8ceIE27Zt46OPPmLAgAF88cUXeHl5Fay3wrbOn4fDh2H/fgmkhBBCCCtYHUilp6fTq1cvtmzZgqZpVKpUic6dOxMaGgrApUuX2LJlC1euXGHFihVcv36dDRs2SAmE4mT0aOjVC1q0sHdPhBDCIlnfQ3Q6Hb6+vjRo0IDIyEiefvppq99ndDodVapU4dy5czboqSgtrA6kFi9ezObNm3F1deWjjz7iueeewylLAnN6ejpz585l/PjxbN68mSVLljB06NACd1rYSMuW9u6BEEJYJTIyElA1DE+fPs3OnTvZsWMHmzZtYvny5XbunShNrE42X7p0KTqdjg8++IAxY8ZkC6IAnJyceO655/jggw/QNI3FixcXqLNz5syhatWqeHh40LJlS/bt25dr+2+++YbatWvj4eFBgwYN+OWXX0z2a5rGpEmTqFSpEp6ennTp0oV//vnH7LmSk5OJiIhAp9Nx6NChAr0OIYQQBbNw4UIWLlzIkiVL2LVrF7/++isuLi6sWLGCn376yapznjhxQlbfEPlmdSB1+PBhnJ2dGTVqVJ5tR40ahYuLS4ECkJUrVzJhwgQmT57MgQMHaNSoEd26dTMmt2e1a9cuBg4cyNNPP83Bgwfp3bs3vXv35tixY8Y2M2bMYNasWcydO5e9e/fi5eVFt27duHfvXrbzvfrqqwSXxKVUjh6FL7+EqCh790QIYUf6dD1bz21l+dHlbD23FX263t5dypeuXbsyZMgQANauXWvVOWrXrk21atVs2CtRKmhWcnd318qVK2dx+3Llymnu7u7WXk5r0aKF9vzzzxuf6/V6LTg4WJs+fbrZ9k8++aTWo0cPk20tW7bURo8erWmapqWnp2tBQUHaBx98YNwfFxenubu7a8uXLzc57pdfftFq166t/fXXXxqgHTx4MMd+3rt3T4uPjzc+Ll68qAFafHx8fl9y0ejRQ9NA0z77zN49EUJkcvfuXe348ePa3bt3C/1aq4+v1kI/DtWYgvER+nGotvr46kK/dn4BWk5vXbNmzdIA7eGHHzZuO3funPbss89qNWrU0Dw9PbWyZctqdevW1Z555hnt77//znbuKlWqFGb3hZ3l5/cqPj7eovdvq0ekAgICiI+Pz3FEKLPr168TFxdH+fLlrbpWSkoK+/fvp0uXLsZtTk5OdOnShd27d5s9Zvfu3SbtAbp162Zsf/bsWaKjo03a+Pn50bJlS5NzXrt2jVGjRrFkyRLKlCmTZ1+nT5+On5+f8REWFpav11rk2reHzp2hQgV790QIYQdrTqzhiVVPcCnhksn2ywmXeWLVE6w5scZOPcu/27dvA+Du7g7AxYsXadKkCXPnzgXgkUceoUOHDri7uzNv3rwc3z+EyA+rk81bt27NmjVrmDJlCv/9739zbTt58mQ0TePBBx+06lqxsbHo9XoCAwNNtgcGBvL333+bPSY6Otps++joaON+w7ac2miaxrBhw3j22Wdp1qyZRXdyvPHGG0yYMMH4PCEhoXgHU6++qh5CCIeiaRp3Uu8U6Bz6dD0vrHsBjewrhWlo6NDx4roX6RLeBWcn5wJdq4xrmUK9a1vTNGNuVMOGDQGYP38+N2/eZMyYMcyePduk/YULF0hNTS20/ojSw+pA6vnnn2f16tX873//4/bt20yePJnq1aubtImKimLKlCksW7YMnU7H888/X+AOF6XZs2dz+/Zt3njjDYuPcXd3N34aEkKIwnIn9Q7e070L9RoaGpduX8Lvfb8CnyvxjUS83GxfS1Cv13PmzBn+85//sHv3btzd3Rk+fDgAMTExANlmJwAqV65s876I0snqQKpjx46MGzeOmTNnsmzZMpYtW0ZYWBghISGAqiN16VLGUPH48ePp0KGDVdcKCAjA2dmZa9eumWy/du0aQUFBZo8JCgrKtb3h67Vr16hUqZJJm4iICAA2b95s/MXMrFmzZgwaNIhFixZZ9XqKpfR09XCxSbF7IYQoVOZGt3x8fFi0aJExYbxp06YAvPnmmzg7O9OlSxdZAFrYXIHeNT/++GMeeOABpkyZws2bN7lw4QIXLlwwaVO+fHmmTJlSoNEoNzc3mjZtyqZNm+jduzegalRt2rSJMWPGmD2mdevWbNq0iXHjxhm3bdy4kdatWwMQHh5OUFAQmzZtMgZOCQkJ7N27l3/9618AzJo1i3fffdd4/JUrV+jWrRsrV66kZUmqwTR6NCxbpu7e69fP3r0RQligjGsZEt9ILNA5tp3fxiPLHsmz3S9P/UL7Ku0LdK0yrnnnmOaHoY6Uk5OTsSBnnz59KFu2rLHNsGHD2LBhA6tWreKxxx7Dw8OD5s2b0717d0aMGJHjB3Eh8qPAww9jxoxh5MiRbNy4Mdtae82aNaNr1642+QQwYcIEIiMjadasGS1atGDmzJkkJSUZh3CHDh1KSEgI06dPB+DFF1+kQ4cOfPTRR/To0YMVK1bw559/8sUXXwDq08y4ceN49913qVGjBuHh4UycOJHg4GBjsJZ16NfbWw2jV6tWzVjBvUTQNEhMVMvFSCAlhEPQ6XQFnip7uNrDhPqGcjnhstk8KR06Qn1DebjawwXOkbK1hQsX5tnG2dmZlStX8vrrr/P999+zefNm9u7dy/bt23nvvfdYv349bdq0KfzOihKtQJXNQd0JFxgYyGOPPcZjjz1ms45l1b9/f2JiYpg0aRLR0dFERESwfv16Y7L4hQsXTIqCtmnThmXLlvH222/z5ptvUqNGDdauXUv9+vWNbV599VWSkpJ45plniIuLo23btqxfv770Df2+/DK88ALUqmXvngghipCzkzOfdv+UJ1Y9gQ6dSTClQ02dzew+s9gFUfnVuHFjGjduzJQpU0hISGDKlCl88sknjBs3Ls/CzkLkRadpWvaPIRZwcnLCxcWFuLg4i8oClFYJCQn4+fkRHx+Pr6+vvbsjhHAQ9+7d4+zZs4SHhxf6h7s1J9bw4voXTUoghPmGMbP7TPrU6VOo184vQ26UlW9dgFqpwtPTEw8PD+7cybjzUdbaK/ny83tl6fu31SNS5cqVA5AgSgghHFyfOn3oVasX2y9s5+rtq1TyqUS7yu0cfiRqyZIlNG7c2GQmAmDdunVomla8S9MIh2F1IFW7dm327t1LYmKiMXdIOLBffoEdO2DAALhfg0UIUXo4OznTsWpHe3fDplavXs3QoUOpVq0aDRo0wNPTk7Nnz7J3716cnJxMbiYSwlpWVzYfNmwYer2e+fPn27I/wl7+9z+YPh22bLF3T4QQwiYmTJjA888/j4+PD9u3b+e7777j+vXr9O/fn71799JPbq4RNmD1iNTIkSP59ddfee2113Bzc+OZZ57BRWoQOa7HHoOgIGjQwN49EUKIHOUnN6p9+/a0b2952YaC5F2J0svqyGfEiBF4e3vj7u7O2LFjmTRpEs2bN6dixYo4O5ufV9fpdCxYsMDqzopCNHKkegghhBDCYlYHUgsXLkSn0xkj+Js3b/Lrr7+abWtoJ4GUEEIIIUoSqwOpoUOHFuoClMIONA2uXQMvL/DxsXdvhBBCiGKvQCNSooTp0QPWrVPLxQwcaO/eCCGEEMWe1YHU1KlT0el0DBs2TGpxlBSVK4NOB5kWmxZCCCFEzqyubO7s7IyzszNJSUm4urraul8lhkNVNo+NhTJl1EMIYVdFWdlciNKiWFU2DwgIQK/XSxBVkgQE2LsHQgghhEOxuiBno0aNiIuL48aNG7bsjxBCiEI07fdpOL3jxLvb8lfV23DctN+nFVLPhHBMVgdSo0ePJj09nY8//tiW/RH29sUX8OSTsGePvXsihLCxab9PY9LWSWhoTNwy0eJgKvNxk7ZOkmBKiEysDqT69u3LhAkTeO+993j11VeJjY21Zb+Evfz6K3zzDezebe+eCCFsyBAMZWZJMGXuOAmmhMhgdY5U586dAfDy8uKjjz7ik08+oXr16nlWNt+0aZO1lxRFYcgQaNUKunSxd0+EEDZiLhgymLhlIgBvt387X8cZtk/sMNFGvRTCMVkdSG3dutXkuV6v5+TJk5w8eTLHY6SApwPo3dvePRBC2FBuwZCBuWDKkuMkmBKiAIHU5MmTbdkPIYQQNmZJMGSQOZjKz3ESTInSTgIpkV1CAhw5ArVqQYUK9u6NEMIK+QmGDCZumcjWc1vZdDZ/KRhFGUxlndnQ6XT4+vrSoEEDIiMjefrpp62e/dDpdFSpUoVz587l2m7KlCm88847+Tr3V199RdWqVenUqRORkZGyOkgJYnUgJUqwHj1gxw5YsgQGD7Z3b4QQVpi81boPu/kNojJfryhHpSIjIwGVVnL69Gl27tzJjh072LRpE8uXLy/Ua0dERBivb5CYmMjq1atN+pZZ9erVSUtLK9R+OQJDEPrVV18xbNgwe3fHJiSQEtk1agTnzkFysr17IoSw0jsd38n3iFRBTO00tciuBdnXe924cSOPPPIIK1asYNCgQTz66KP5PueJEycsKjLdu3dvemfJJz137pwxkMpptOnOnTucOHECPz+/fPdNFF8Wlz9YvHgx33zzjdUXGj9+PE8//bTVx4siNHMmXLwI8v8lhMOa2GEiUzsWTXAzrdM0s3f9FaWuXbsyZMgQANauXWvVOWrXrk21atVs2CtTZcqUoXbt2lSqVKnQriGKnsWB1LBhwxg3bpzZfZUqVcLFJffBrRUrVsicsKPI4/9SCOEYiiKYKg5BlEHjxo0BuHjxonHb+fPn+de//kXNmjUpU6YM5cqVo169eowePTrbXeY6nY6qVasWWv+2bt2KTqfLNqU1ZcoUdDodCxcuZP/+/fzf//0f/v7+lCtXjieffJJL9xeST0pK4tVXX6Vq1ap4eHhQv359vv322xyvd+LECYYNG0ZYWBju7u4EBgYyYMAA/vrrrxyPWbJkCW3btsXX15cyZcrQsGFDpk+fzr1797K17dixIzqdzmxO2blz59DpdHTs2NG4rWrVqsbcsuHDh6PT6YyPrJUAHEm+3jFzW9/YyrWPhRBCFCJD3lJhTPMVpyAK4Pbt2wC4u7sDKqBq0qQJN2/epEaNGjzyyCPo9XrOnz/PvHnzaN26NbVq1bJnl03s3buXZ599lvr169OtWzcOHDjAN998w+HDh9m3bx9du3bl/PnztG/fntjYWH7//XeefPJJ1q1bR7du3UzOtXbtWgYMGEBycjIRERG0atWKixcvsmrVKn788UfWrVtH+/btTY4ZPXo0X3zxBR4eHnTu3JkyZcqwdetW3nzzTX788Ud+++03yhRgUfsnnniC3377jcOHD/Pggw9SvXp1476goCCrz2tvMvQgzHvrLVi3Dj78EO4XXxVCFB+apnEn9Y5FbSe0nkCKPoV3t+dvfb3cTGw/kfGtxpOUkmRR+zKuZQq1lqCmafz0008ANGzYEID58+dz8+ZNxowZw+zZs03aX7hwgdTU1ELrjzXmzp3L559/zrPPPgtAamoqjzzyCL/99htt2rQhKCiIM2fO4OXlBcCCBQsYOXIk//nPf0wCqXPnzjF48GBcXV356aef6JKpwPL69evp2bMngwcPJioqCjc3NwBWr17NF198QXBwMFu3bqVGjRoAxMfH8+ijj7Jjxw4mTZrEhx9+aPXr+/DDD5kyZQqHDx9m5MiRkmwuSrhTp+DgQdi/XwIpIYqhO6l38J7ubbfrT9s2jWnbLF8mJvGNRLzcvGzeD71ez5kzZ/jPf/7D7t27cXd3Z/jw4QDExMQAmAQSBpUrV7Z5Xwqqbdu2xiAKwNXVlbFjx/Lbb7/x999/89133xmDKFApN6+//jq7d+8mNTXVmCg/c+ZMkpKSmD17drbX3r17d/71r38xa9Ysfv75Zx5//HEAZs2aBajSRoYgCsDPz485c+YQERHB//73P9599108PDwK7d/AEVm91p4o4caOhTVrpPyBEKJYMuTWuLi4ULNmTRYuXIiPjw/Lly83Jow3bdoUgDfffJOffvrJbJ5PcfLwww9n2/bAAw8AKr+oZs2aJvucnZ2pUqUKqampJuvdbtiwAYA+ffqYvU67du0A2LdvH6BGvvbcX6h+0KBB2do3bNiQhg0bkpiYyKFDh/L5qko+GZES5mWZOxdCFC9lXMuQ+EZivo55b8d7Npnem9h+Iq89+Fq+jinjan1ujTmGWk1OTk7Ggpx9+vShbNmyxjbDhg1jw4YNrFq1isceewwPDw+aN29O9+7dGTFiRLHLywkJCcm2zdvbO8d9mfcnZypXY0j+zukYA0PwdePGDVJSUggICDAZ8cqsatWqHD58mMuXL+f+IkohCaSEEMIB6XS6fE2VTft9ms1ypKZtm4abs5tdE80tuQvc2dmZlStX8vrrr/P999+zefNm9u7dy/bt23nvvfdYv349bdq0KfzOWsjJKedJotz2ZZWeng6YLwyaWcuWLS0+Z37z2wx9KA0kkBI5O3oU/vwTunSBsDB790YIYSVrlovJi7mFjourxo0b07hxY6ZMmUJCQgJTpkzhk08+Ydy4ccbprZIkNDSU06dP89FHH1G+fPk825cvXx43NzdiY2NJSkoyOyplbpTLkKiemJh9ZDRzCYqSLl+B1N27d1m8eLHZ7aDqT+RUBsHQRjiQsWPh999h4ULI45ONEKJ4KowgysCRgikDX19fpk+fzsyZMzl27Ji9u1MounbtyunTp/nuu+8YOXJknu1dXV1p1aoV27ZtY8WKFdmKZx87dozDhw/j7e1NRESEcbuhsOipU6eoX7++yTEbN240ey1D8FWSlsvJVyCVkJBgvBvCnNxuZdQ0rVBvfRWFoH170OlAljMQwiEVZhBlUJyDqSVLltC4ceNsb/Lr1q1D0zTCSuhI+0svvcSiRYt4+eWXKVeuXLak8+TkZH788UdatWpFaGgoAGPHjmXbtm1MmTKFTp06GZPcb9++zZgxY9A0jdGjR5vcsdehQwcWL17MRx99RPfu3Y01pjZv3szMmTPN9i04OBggWzFUR2azgpyiBJpatGtnCSFspyiCKIPiGkytXr2aoUOHUq1aNRo0aICnpydnz55l7969ODk58e67tqurVZxUr16d5cuX89RTT9G3b1+qV69OnTp18PLy4vLlyxw4cICkpCQOHjxoDKSeeOIJnnnmGb744gvq169vUpAzJiaGVq1aMTXLe8LAgQOZMWMGu3btok6dOjRv3pxLly7xxx9/MGHCBLM1px5++GE8PDz45JNPOHbsGMHBweh0Ol555ZViVRw1PywOpM6ePVuY/RBCCGFDk7dOLtLrTdoyqdgFUhMmTCA0NJSdO3eyfft2kpKSCA4Opn///rz00ks0a9bM3l0sNL169eLIkSN8/PHHbNy4kY0bN+Lq6kpwcDCPPfYYffr0oW7duibH/O9//6Nt27bMnTuX33//nbS0NKpVq8a4ceMYP348np6eJu09PT3ZtGkTr7zyCuvXr+eXX36hXr16rFy5kmbNmpkNpIKDg/n++++ZOnUqO3bsMOZXDR482GEDKZ0mw0yFKiEhAT8/P+Lj4/H19bV3d6yjaZCeDs7O9u6JEKXGvXv3OHv2LOHh4VYVQLR2RKrLA1347cxv+T5uasepxuVohCiu8vN7Zen7txTkFLmLjAR/f/j1V3v3RAiRD9YsWDyt0zQ2DtmY7+MkiBKlmQRSIncpKZCQAIcP27snQoh8yk8wlXkB4vwcJ0GUKO0kkBK5mzhR1ZN6+WV790QIYQVLgqLMQVR+jpMgSggpyCnykiUZUQjheAzBjrmcKXNBlCXHSRAlhCIjUkIIUQqYG2HKLYjK7TgJooTIIIGUyNvPP8Pbb8OpU/buiRCiAAxBkQ6dRUGUueMkiBLClJQ/KGQlovxBly6waRMsWAAjRti7N0KUCgUtfyCEyK4wyh9IjpTIW69eEB4O1avbuydCCCFEsSKBlMjb2LH27oEQQghRLEmOlBBCCCGElQocSF26dIkJEyZQr149vL29cXExHeS6desW//nPf5g+fTppaWkFvZywp+vX4c4de/dCCCGEKDYKNLW3ceNGnnzySRISEjDkrOt0OpM2ZcuWZe3atezfv5969erRs2fPglxS2EvnzrBlC/zwAzz2mL17I4QQQhQLVo9IXbx4kSeeeIL4+Hgee+wxvv32W8qWLWu27YgRI9A0jZ9//tnqjgo7Cw4GnQ7OnbN3T4QQQohiw+pA6qOPPuL27ds8+eSTrF27lj59+uDm5ma2bbdu3QD4448/rL2csLcPP1Rr7kniuRBCCGFkdSD166+/otPpmDZtWp5tw8PDcXd35+zZs9ZeDoA5c+ZQtWpVPDw8aNmyJfv27cu1/TfffEPt2rXx8PCgQYMG/PLLLyb7NU1j0qRJVKpUCU9PT7p06cI///xj0qZnz55UrlwZDw8PKlWqxJAhQ7hy5UqBXodDCgoCb29790IIUUodPHgQnU5HSEiI2f3p6en4+/uj0+l45plnzLbZtm0bOp2OevXqWd2PqlWrZkthycuUKVPQ6XQmD3d3dx544AFGjRpFVFRUtmOytndycsLf35927doxf/58spaANFxjypQpVr82gK1btxqv6efnx71793Js+9xzzxnbDhs2zGTfwoULzW7PqmPHjuh0OrZu3VqgftuT1YHUhQsX8PT0pEaNGha19/b2JikpydrLsXLlSiZMmMDkyZM5cOAAjRo1olu3bly/ft1s+127djFw4ECefvppDh48SO/evenduzfHjh0ztpkxYwazZs1i7ty57N27Fy8vL7p162byg9OpUydWrVrFyZMnWb16NadPn+aJJ56w+nUIIYTIv0aNGuHr68uVK1c4c+ZMtv1Hjx4lPj4egB07dpg9x/bt2wFo165d4XU0F40aNSIyMpLIyEj+7//+j7t37zJ//nwaN26c44yNof2gQYOoW7cuO3fuZNSoUTz11FOF3t+EhAR++ukns/tSU1NZtWpVoffBIWhW8vb21jw9PU22BQUFaU5OTtnapqamam5ublr58uWtvZzWokUL7fnnnzc+1+v1WnBwsDZ9+nSz7Z988kmtR48eJttatmypjR49WtM0TUtPT9eCgoK0Dz74wLg/Li5Oc3d315YvX55jP77//ntNp9NpKSkpZvffu3dPi4+PNz4uXryoAVp8fLzFr7XY+uwzTXvySU07dMjePRGixLt79652/Phx7e7du/buSrHRvXt3DdAWLVqUbd/s2bM1QGvUqJGm0+m02NjYbG26deumAdrSpUut7kOVKlW0/L51Tp48WQO0yZMnm2y/ffu21qNHDw3QmjZtarIPMHudDRs2aC4uLhqg/fjjj3leI7+2bNmiAVqDBg00Z2dnrVevXmbbff/99xqgNWnSRAO0yMhIk/1fffWV2e1ZdejQQQO0LVu2FKjflsrP71V8fLxF799Wj0hVqVKF5ORkLly4kGfbbdu2kZqaavHoVVYpKSns37+fLl26GLc5OTnRpUsXdu/ebfaY3bt3m7QHlatlaH/27Fmio6NN2vj5+dGyZcscz3nz5k2+/vpr2rRpg6urq9k206dPx8/Pz/gICwvL12st1r7/Hlatgr177d0TIYStaRrEJcD1G+prMVw9zDCSZG7EaceOHbi6ujJu3Dg0TWPnzp0m+9PT041/2+01IpWVt7c3//3vfwHYv38/ly5dyvOYrl27MmTIEADWrl1baH2rWLEiXbt2Zd26ddy6dSvb/qVLl+Lk5FQkI2PFndWBlCEAmTt3bq7tUlNTeeutt9DpdPzf//2fVdeKjY1Fr9cTGBhosj0wMJDo6Gizx0RHR+fa3vDVknO+9tpreHl5Ub58eS5cuMD333+fY1/feOMN4uPjjY+LFy9a9iIdwfDh8N578OCD9u6JEMKWYm7BniNw+BScOKu+7jmithcjhgDIMEWX2fbt22nSpAldu3Y12+bw4cMkJCRQuXJlKleubNyelpbG559/TuvWrfH19cXT05OIiAhmzpyZa+1DTdP49NNPqVu3Lh4eHoSEhPDCCy8QFxeXr9dUuXJlypUrB2Dx+0Xjxo3z1d5agwcPJiUlJdsUXkJCAj/++CMdO3bMMWetNLE6kBo/fjxubm589NFHLFiwwGybAwcO0KVLF/bu3YuPjw/PPfec1R21p1deeYWDBw+yYcMGnJ2dGTp0aLZEPwN3d3d8fX1NHiXGwIHw2mtQgERNIUQxE3MLjp+GlFTT7SmpansxCqZatGiBu7s7J0+eJDY21rj9zJkzXLlyhbZt2xISEkKVKlWyjVqZy4+6e/cuDz/8MM899xynTp2iVatWdO3alatXrzJ+/Hj69u1Lenq62b6MHTuWV155hdDQUHr16oVer2f27Nl06NCBhIQEi19Tenq6MX/Y3d3domNu376dr/bW6t27N15eXnz99dcm21evXs29e/cYNGhQoV7fURRoam/+/Pno9XqeeeYZAgMDjcN/bdq0ISQkhObNm7N9+3ZcXFxYvHgxAQEBVl0rICAAZ2dnrl27ZrL92rVrBAUFmT0mKCgo1/aGr5acMyAggJo1a9K1a1dWrFjBL7/8wp49e6x6LUIIYVN6fc6PrEFA1v1paRCVR3pG1AXVzuTYPM6b9WEj7u7uNG/ePNvUnSFoatu2LQAPPvggBw4c4O7du9naZA6kXn75ZbZs2UL//v05c+YMGzZs4IcffiAqKopHHnmEH374gS+++MJsX5YsWcLu3bvZsGEDK1euJCoqis6dO3PkyBEmTZpk8WvauHEjycnJuLq6Urt27Tzba5pmTABv2LChxdexhpeXF71792bHjh2cP3/euH3p0qV4eHjIjVf3FWiJmEGDBrFu3TqqVatGTEwMKSkpaJrGnj17uHr1KpqmUb16ddavX1+giuZubm40bdqUTZs2Gbelp6ezadMmWrdubfaY1q1bm7QH9QNraB8eHk5QUJBJm4SEBPbu3ZvjOQ3XBUhOTrb69Ti027dh1y7I5/C1EKKQ7DiY8+Ov06Ztdx023b/zUPaRqKxSUlW7zMcd/tu0zR9/5dyHAyds+WrNTu8Zvn/wftrBgw8+SEpKCnsz5XNmDaSuX7/OvHnzCAsL46uvvsLPz8/Y1sfHhwULFuDm5sbnn39uth9jxoyhadOmxufe3t7Mnj0bnU7HggULci0bABAXF8d3333H8OHDAXV3XpkyZXJsr9fr+eeffxgxYgS7d+/G3d3deGxhGjRoEJqmsWzZMgAuX77M1q1beeyxxyyacVm0aFG2Ug6ZH7///nthv4RCV6AlYkAlvp08eZJt27axc+dOrly5gl6vJygoiAcffJBOnTrh7Oxc4I5OmDCByMhImjVrRosWLZg5cyZJSUnGH6ShQ4cSEhLC9OnTAXjxxRfp0KEDH330ET169GDFihX8+eefxk8XOp2OcePG8e6771KjRg3Cw8OZOHEiwcHB9O7dG4C9e/fyxx9/0LZtW8qWLcvp06eZOHEi1apVyzXYKtE6dICDB+G77+D+v5MQQhSVdu3aMX36dJOpux07dlCzZk0qVKgAZARUO3bsoGPHjpw+fZqrV69Svnx56tSpA6h6SampqXTv3h1PT89s1wkKCqJGjRocPXqUu3fvZmszYMCAbMfUrVuXRo0acejQIQ4ePJjtfeKdd97hnXfeyXZc9+7dmTlzptnXa65mlY+PD4sWLaJatWpmj7Glrl27UrFiRb7++mveeOMNli1bRnp6OoMHD7bo+GrVqhlHCs1Zv359tpkhR1PgQArUf3SHDh3o0KGDLU5nVv/+/YmJiWHSpElER0cTERHB+vXrjcniFy5cwMkpY4CtTZs2LFu2jLfffps333yTGjVqsHbtWurXr29s8+qrr5KUlMQzzzxDXFwcbdu2Zf369Xh4eABQpkwZ1qxZw+TJk0lKSqJSpUp0796dt99+u9Dnpouthg3V4sUFqAkmhLChto1z3pf1TbhNI9PncbfhWPZikNnUrw7+PplPbLq/edHlTbZp0wYnJyfj1F1iYiJ///03I0aMMLZp0KABvr6+xmDLMGLVtm1bY2By7v5yV/PmzWPevHm5XvPmzZvZkqqrVKlitm3VqlU5dOiQ2cLNjRo1IiIiAlDTlMHBwTz00EO5BhqRkZGAulPd19eXBg0a0KdPnxyXZLM1FxcXBgwYwKxZszh06BBLly6lfPnyFt881rZtWxYuXJjj/o4dO5beQGrx4sV4enrSr18/i9qvWbOGxMREhg4dau0lGTNmDGPGjDG7z1xV1H79+uXaP51Ox9SpU5k6darZ/Q0aNGDz5s1W9bXEmjcPcij9IISwg/yM+GdtW84P3Fxzn95zd1XtcqvmbYNZB0v5+fnRsGFDDh06xJ49e4x3yWUORpycnGjVqhW7d+9Gr9ebTTQ3pGlERETQqFGWADMLW31w7t27d74rj+cWhBSVQYMGMWvWLN544w2OHDnCv/71rxxLAJVGVgdSw4YNo1KlShYHUi+99BIXL14sUCAligH55RGi5NDpoHpldXdeTqpVzj2IsoN27dpx6NAhduzYYTaQAjW9t2HDBo4cOWI20Tw0NNR43OzZs/Pdh/Pnz9OgQQOz2wGCg4Pzfc7iqkWLFtSoUYP169cDWDytV1oUKNk8pxIAtmovhBCikFUoC3WrqZGpzNxd1fYKRTOFlB+ZC3Nu376dwMDAbAWfDXlSa9as4dSpU3h5edGkSRPjfkP+7k8//URqah4J92aYWx7l77//5tChQ3h7exun8EqKESNGUL58eSIiImjTpo29u1OsFCiQyo+EhATc3NyK6nKiML32GjRrJhXOhSgpKpSFVg2hUU2oE66+tmxYLIMoyAikdu3axcGDB41BU2YtW7bE2dmZOXPmANCqVStcXDImYUJCQhgxYgTnzp1j4MCBZvN0oqKiWL16tdk+zJ49m4MHDxqf37lzh7Fjx6JpGsOHDzebwO7IXn/9dWJjY01es1Bskmyel927d3Pr1i0eeOCBoricKGxHj8L+/XDgALRsae/eCCFsQacDf8coIBwUFET16tWJilKJ8uaStb29vWnUqBEHDhwAzC8L8+mnn3Lu3DlWr17N+vXriYiIoHLlyiQlJXH8+HGioqLo1asXffv2zXbs4MGDadmyJZ07d8bPz49t27YRHR1NvXr1mDZtmo1fseXmz59vnIIzR2og2p7FgdSiRYtYtGiRybabN2/SuXPnHI/RNI24uDj++usvdDodDz30kPU9FcXH+PHw9NMgw7tCCDtp165droEUZBTmNLTPytPTk3Xr1vH111+zaNEiDh06xL59+6hQoQJVqlRhyJAhZsscAMyaNYvw8HDmz5/P2bNnKVeuHM8//zzTpk0zqUlV1C5fvszly5ftdv3SSKdZmLiUU/0LS9WqVYvNmzdTqVIlq8/hiBISEvDz8yM+Pr5kLRcjhChU9+7d4+zZs4SHhxtLsgghCiY/v1eWvn9bPCLVsWNHk+fvvPMO3t7evPTSSzkeY6h7Ub9+fTp27GiTwpxCCCGEEMWFxSNSWTk5OREUFGS26JjIUGJHpI4eVTlS3bvD/aKoQgjbkREpIWzPriNSWZ09e1ZGmEqz4cNVwvm334KZREwhhBCiNLA6kMqpPL4oJdq1Ay8vKGG3+AohhBD5USTlD0QJ9Mkn9u6BEEIIYXdWB1LWTOvpdDrS0tKsvaQQQgghRLFidSAly70IADRNPZyKrEi+EEIIUWxYHUht2bIl1/3x8fHs3buXefPmoWkac+bMIVDu7ipZBgyA9evhxx9VzpQQQghRylgdSHXo0CHPNj179uTFF1+kU6dOTJ48mT///NPay4niKCkJ4uPh8GEJpIQQQpRKhT4fU7FiRebMmcPJkyeZPn16YV9OFKVp01QQ9cwz9u6JEEIIYRdFktjSoUMHPDw8+Pbbb4vicqKoRERAw4bg5mbvngghhBB2USSBlE6nw8nJiQsXLhTF5YQQQgghikSRBFL79+/nzp07lClTpiguJ4rSjz/CpEkgQbIQQohSqNADqT/++IMhQ4ag0+l48MEHC/tyoqi9+67Kldq92949EUKUYAcPHkSn0xESEmJ2f3p6Ov7+/uh0Op7JIW9z27Zt6HQ66tWrZ3U/qlatik6ny9cxU6ZMQafTmTzc3d154IEHGDVqFFFRUdmOydreyckJf39/2rVrx/z587OVIDJcY8qUKVa/NoP09HS+/PJLOnXqRLly5XB1dSUwMJBGjRoxatQovv7661z7uzuX94NVq1YZ21WtWjXHdjdu3GDq1Km0bt2aChUq4OrqSkBAAB06dGDGjBnExMQU+HXaitV37XXu3DnX/ffu3ePixYtcuXIFTdNwc3Pj7bfftvZyorh6/HFo0AAqV7Z3T4QQJVijRo3w9fXlypUrnDlzhgceeMBk/9GjR4mPjwdgx44dZs+xfft2ANrZ6S7jRo0aERERAUBcXBx79+5l/vz5rFixgs2bN9O8efNsx0RGRgKg1+s5ffo0O3fuZMeOHWzatInly5fbvI8pKSn06tWL9evX4+TkRIsWLahSpQrJyckcPnyY+fPns2TJEgYNGpTjOb7++mtat25tdt/SpUvz7MPatWuJjIwkISEBf39/WrZsSbly5bhx4wZ79uxh27Zt/Pvf/2bXrl0FCoptRrOSTqez+FG1alXt119/tfZSDi0+Pl4DtPj4eHt3RQjhQO7evasdP35cu3v3rr27Umx0795dA7RFixZl2zd79mwN0Bo1aqTpdDotNjY2W5tu3bppgLZ06VKr+1ClShUtv2+dkydP1gBt8uTJJttv376t9ejRQwO0pk2bmuwDzF5nw4YNmouLiwZoP/74Y57XyK+PPvpIA7SwsDDtxIkT2fYfO3ZMe+WVV7JtBzRnZ2etQYMGWkBAgJaampqtTWxsrObq6qo1adJEA7QqVapka/PLL79oTk5OmouLi/bRRx9pKSkpJvuTk5O1BQsWaIGBgdqWLVvy/fry83tl6fu31SNSkydPznW/i4sLZcuWpVGjRrRp0ybfQ6FCCCGKkF4P27fD1atQqZKqDWfFUmCFqV27dqxfv54dO3YwdOhQk307duzA1dWVcePGMXz4cHbu3EnPnj2N+9PT041TTvYakcrK29ub//73v1SpUoX9+/dz6dIlQkNDcz2ma9euDBkyhK+++oq1a9fy6KOP2rRPq1evBmDSpEnUrl072/569eoxY8aMHI8fNGgQr7/+Or/++is9evQw2bdy5UpSU1MZPHgwBw4cyHZsUlISkZGRxqlFw2hcZm5ubowYMYJu3bqRmpqa35dXKAotkBKlTEwM+PqCu7u9eyKEyK81a+DFF+HSpYxtoaHw6afQp4/9+pWFIQAyTNFltn37dpo0aULXrl2NzzMHUocPHyYhIYHKlStTOVMqQlpaGvPmzWPx4sX89ddfpKamUqtWLYYNG8aYMWNwcTH/NqlpGrNmzeJ///sfZ86coXz58vTt25epU6fi7+9v8WuqXLky5cqV4+bNm1y8eDHPQAqgcePGfPXVV1y8eNHi61jKkHtUoUIFq45/6qmneOONN1i6dGm2QGrp0qV4e3vTq1cvJkyYkO3YxYsXExMTQ8uWLc0GUZnllCtnD7JAmii4Nm2gYkVJOBfCEa1ZA088YRpEAVy+rLavWWOffpnRokUL3N3dOXnyJLGxscbtZ86c4cqVK7Rt25aQkBCqVKmSLU/KXH7U3bt3efjhh3nuuec4deoUrVq1omvXrly9epXx48fTt29f0tPTzfZl7NixvPLKK4SGhtKrVy/0ej2zZ8+mQ4cOJCQkWPya0tPTSUpKAsDdwg+it2/fzlf7/AgLCwNg/vz5Vo34hIWF0b59e3744QcSExON28+cOcPu3bt5/PHHc7yD/+effwZUMOZIJJASBWdYQ/H0afv2Q4jSKClJPTLfxZWSorYlJ5tvawgO9Hp44QXTYw0M28aNU+0AUlPV8ffumba9c0dtN7QDSEtT2+7eLdDLy8zd3Z3mzZujaRo7d+40bjcETW3btgXgwQcf5MCBA9zNdG1Dm8yB1Msvv8yWLVvo378/Z86cYcOGDfzwww9ERUXxyCOP8MMPP/DFF1+Y7cuSJUvYvXs3GzZsYOXKlURFRdG5c2eOHDnCpEmTLH5NGzduJDk5GVdXV7NTaVlpmsZPP/0EQMOGDS2+jqVGjRoFwE8//UT16tUZP348q1at4nQ+/r4PHjyYO3fusCZTEG6402/w4ME5Hnfo0CEAmjRpYkXP7UcCKVFwn30GCQnw9NP27okQpY+3t3pkGqHhgw/UtjFjTNtWrKi2G+q+bd+uRp5yomlw8aJqB7BwoTp+wADTdnXrqu2Z815WrlTbMk2v2YK56T3D94YSOw8++CApKSns3bvX2CZrIHX9+nXmzZtHWFgYX331FX5+fsa2Pj4+LFiwADc3Nz7//HOz/RgzZgxNmzY1Pvf29mb27NnodDoWLFjAvazBZhZxcXF89913DB8+HFB35+VWa1Gv1/PPP/8wYsQIdu/ejbu7u/FYWxowYAAff/wxXl5eXLhwgZkzZ9K/f3+qV69OeHg47733Xp6v7YknnsDd3d2kTMLXX39NpUqVeOihh3I87saNG4D104r2YlEg5ezsbJNHTnPNwsGFhICPj717IYTIr6tXbduuCBgCocxTdzt27KBmzZrGN2BDQGVoc/r0aa5evUr58uWpU6cOAFu3biU1NZXu3bvj6emZ7TpBQUHUqFGDo0ePmoxsGQzIGkwCdevWpVGjRiQmJnLw4MFs+9955x1jDaWyZcvSp08frl69Svfu3Zk5c6bZ12to7+LiQs2aNVm4cCE+Pj4sX76catWq5fZPZbXx48dz4cIFvvjiC5566ilq1KgBwLlz53jjjTfo1KmT2X8TA39/f3r06MGmTZuIjo7mjz/+4OTJkwwYMADnYnYDgy1YFNlo5oZ9hRBC2J8hDyXzaMYrr6gpuawfXq9fV18NgUOlSpZdw9Bu2DB46qnsd/MdP65Grzw8Mrb17w+9e4OTbSc+2rRpg5OTk3HqLjExkb///psRI0YY2zRo0ABfX19jIGUYsWrbtq3xDvJz584BMG/ePObNm5frNW/evJktublKlSpm21atWpVDhw5x5cqVbPsy15Fyd3cnODiYhx56yDglaY4h6drJyQlfX18aNGhAnz59KFu2bK59Lqhy5coxatQo41Tf+fPnmTNnDh9//DF79uzh448/5q233srx+MGDB7NmzRpWrFjB2bNnjdtyU758eS5fvkxMTAy1atWy3YspZBYFUlu2bCnsfghHN2uWSjafOhXuf3oRQhQBL6/s29zczC8mnrVtu3bq7rzLl83nSel0ar8hr8jVVT2yMjcl5eKSPZCzAT8/Pxo2bMihQ4fYs2cPcXFxACbBiJOTE61atWL37t3o9XqzieaGJPKIiAgaNWqU6zVtldTdu3fvfFceX7hwoU2uXVBVqlRhxowZpKWl8cknn/Dzzz/nGkg98sgj+Pv7s3jxYq5cuUKdOnXyzH2KiIjg8uXLHDhwINfgsrix6Ke8Q4cOhd0P4ehWroRdu+CxxySQEsJRODurEgdPPKGCpszBlKH238yZxbKe1KFDh9ixY4fZQArU9N6GDRs4cuSI2URzQ5mBtm3bMnv27Hz34fz58zRo0MDsdoDg4OB8n9MRdO7cmU8++cTkrklz3N3d6devn3G074UXXsjz3D169ODnn39m+fLlFrUvLiTZXNjG00/Df/4DjRvbuydCiPzo0we+/VblOmYWGqq2F6M6UgaZ86S2b99OYGCgMY/HwJAntWbNGk6dOoWXl5fJiEinTp1wdnbmp59+suo2/1WrVmXb9vfff3Po0CG8vb2NU3iOJq9UHsO6gJbUcRoyZAjly5cnICAg1yVlDIYOHUqFChXYs2cPixYtyrXtlStXjNOz9iaBlLCNESPgjTfgfiKnEMKB9OkD587Bli2wbJn6evZssQyiICOQ2rVrFwcPHjQGTZm1bNkSZ2dn5syZA0CrVq1MbngKCQlhxIgRnDt3joEDB3Lt2rVs54iKijJW+s5q9uzZJgnld+7cYezYsWiaxvDhw80msDuCnj17MmvWLG7evJlt3969e5k2bRqg7szLS7t27YiNjSUmJibHnLLMvLy8WLhwIU5OTowcOZJPPvkkW5CblpbG4sWLadq0abEJpAo8ga1pGt999x3Lly/nzz//5Pr9ZMaKFSvSvHlznnrqKXr16iVLxAghRHHm7AwdO9q7FxYJCgqievXqxtERc/k03t7eNGrUyLgUibllYT799FPOnTvH6tWrWb9+PREREVSuXJmkpCSOHz9OVFQUvXr1om/fvtmOHTx4MC1btqRz5874+fmxbds2oqOjqVevnjHYsIf58+ezfv36HPfv2bMn1+MvXrzIiy++yEsvvURERATh4eGkp6dz+vRpY52nxx57jNGjR9uy20aPPPII3377LZGRkUyYMIGpU6fSqlUr46LFe/fuJS4uDn9/fypWrFgofcivAgVS165d44knnmDXrl2A6ZDg+fPnuXDhAqtXr+bBBx9k1apVBAUFFay3onhLTISjR6FBA1U/RgghCkm7du1yDaQgozCnoX1Wnp6erFu3jq+//ppFixZx6NAh9u3bR4UKFahSpQpDhgwxW+YAYNasWYSHhzN//nzOnj1LuXLleP7555k2bZpJTaqidvnyZS7nVhssD99++y3r1q1j48aNnDx5knXr1pGcnExAQAA9evRg0KBBDBgwoFAHRx5//HHatWvHnDlzWLduHfv27SMhIcF4o8Fjjz3GiBEjKFeuXKH1IT90mpW1DVJSUmjRogVHjx5F0zRatGhB165djQl8ly5d4rfffmPv3r3odDoaNmzIvn37cDV3x0cJZvjPj4+Px9fX197dKVw1a8I//8DGjdCli717I4RDu3fvHmfPniU8PByPzGUFhBBWy8/vlaXv31aPSH3++eccOXIEX19fli5danYF6mnTpvHLL7/w1FNPceTIEebOncvYsWOtvaQo7ho0UKNS8fH27okQQghRJKxONl+1ahU6nY45c+aYDaIMHnnkEebMmYOmaaxYscLaywlHsGwZXLkCZvIJhBBCiJLI6kDqxIkTuLq60r9//zzb9u/fHzc3N06cOGHt5YQjKISVyIUQQojizOpA6u7du5QpU8ai9fNcXFwoU6ZMrmvzCCGEEEI4GqsDqcDAQOLj47lgWEU8F+fOnSMuLo7AwEBrLyccxYQJ0Lw5/PWXvXsihBBCFDqrA6n27dujaRrjx4/PtRKqpmlMmDABnU4nS82UBn/+qR73bzkWQgghSjKrAylDcLR27Vo6d+7Mpk2bTCqQpqam8ttvv9GpUyfWrl2LTqdj/PjxNum0KMZeew2++Qa6drV3T4QQQohCZ3UgFRERwYcffoimaWzbto2HH34Yb29vQkJCCAkJwdvbm27durFt2zYAPvzwQ4dde0jkQ48eagHUklp89eg0WOYEx9617rij9qt4LByTlaX+hBBmFMbvU4HW2hs/fjw//PADtWrVQtM0UlNTuXr1KlevXiU1NRVN06hbty4//vgj48aNs1GXhbCTo9Pg6CRAgyMTLQ+mMh93dJIEU8Iizs7OAFYtqFvsaBqk6SE1TX2V4FDYieH3yfD7ZQsFXmvv0Ucf5dFHH+Xo0aPZ1tpr1qwZDRo0KHAnhYM5dgwOHoRHH4WyZe3dG9swBkOZHJmovtZ/O3/HGZ43mGi7/okSx9XVFXd3d+Lj4/Hx8XHc9UpT0yA5xTR40unA3Q1cC/wWJITFNE0jPj4ed3d3m66yYvUSMcIypWqJGIPateHkSVi/Hrp1s3dvCs5cMJRZw2nmg6m8jmswVYIpkauEhAQuX76Mt7c3fn5+uLq6OlZAlZoGKSk573eTYEoUPsOMWXx8PImJiYSEhFj0flzoS8QIkaN27aBCBXAq0Mxx8ZBXMATmR6YsOU5GpkQeDH+8Y2NjC7QQrd1kHYnKyjAyJUQRcHd3tziIyg+rA6mUlBSio6Nxc3MjKEticWJiIlOmTGHjxo04OTnx6KOP8uabb+Lp6Vmgzs6ZM4cPPviA6OhoGjVqxOzZs2nRokWO7b/55hsmTpzIuXPnqFGjBu+//z6PPPKIcb+maUyePJl58+YRFxfHgw8+yOeff06NGjUAVf9q2rRpbN68mejoaIKDgxk8eDBvvfUWbm7yy5+jefPs3QPbsCQYMsgcTOXnOAmmRB58fX3x9fUlNTUVvV5v7+5YLiER/j6Xd7vaIeDrXejdEaWbs7OzTafzMrM6kJo/fz5jx44lMjKSL7/80mRfjx492LFjhzE7/siRI2zfvp0tW7ZYPSy9cuVKJkyYwNy5c2nZsiUzZ86kW7dunDx5kooVK2Zrv2vXLgYOHMj06dN59NFHWbZsGb179+bAgQPUr18fgBkzZjBr1iwWLVpEeHg4EydOpFu3bhw/fhwPDw/+/vtv0tPT+d///kf16tU5duwYo0aNIikpiQ8//NCq1yEcRH6CIYMjE+HaVri2KZ/XkmBK5M3V1bXQ3ggKRUISWJQ4ogMPj8LujRCFxuocqV69evHTTz/x66+/0qVLF+P2H374gd69e+Pk5MTAgQPx9PRk8eLFpKam8tVXXzF06FCrOtqyZUuaN2/OZ599BkB6ejphYWGMHTuW119/PVv7/v37k5SUxE8//WTc1qpVKyIiIpg7dy6aphEcHMxLL73Eyy+/DEB8fDyBgYEsXLiQAQMGmO3HBx98wOeff86ZM2cs6nepzJEyMPxoOVJOh8EyJyx8F7ARHTyVXoTXE6KQxSXA4VN5t2tUE/xL2d9G4RAsff8u0KLFAE2bNjXZvmzZMnQ6Ha+99hpLlizhiy++YObMmWiaxrJly6y6VkpKCvv37zcJ2JycnOjSpQu7d+82e8zu3btN2gN069bN2P7s2bNER0ebtPHz86Nly5Y5nhNUsFWuXLkc9ycnJ5OQkGDyKJX69IHy5eHQIXv3xDoN3ina6zWcWrTXE6Kw+fmAmwUjaGkONF0phBlWB1IxMTGUKVOGsllub9+yZQsAI0eONG4bMmQIAIcPH7bqWrGxsej1+mxr9QUGBhIdHW32mOjo6FzbG77m55xRUVHMnj2b0aNH59jX6dOn4+fnZ3yEhYXl/uJKqlu31MPK/3O7azBR3VVXFHK6608IR6bTQVkLRpr+Og0nzqg7/IRwQFYHUklJSThluSvr3LlzxMTEEBYWRnh4uHG7l5cX/v7+3Lx50/qe2tnly5fp3r07/fr1Y9SoUTm2e+ONN4iPjzc+Ll68WIS9LEbef1/Vkho40N49sV5RBFMSRImS6s5duH7/b75LluKH7q5QOxxC73+QvX4T/jimpgOFcDBWJ5uXK1eOmJgY4uLi8Pf3B2Dz5s0AtGnTJlv7tLQ0vL2tuzMjICAAZ2dnrl27ZrL92rVr2e4YNAgKCsq1veHrtWvXqFSpkkmbrEvZXLlyhU6dOtGmTRu++OKLXPvq7u6Ou7u7Ra+rRMvlbkqHYkgAz2/iuSUkiBIllaapO/Y0TY1K1a+u7uJLSVXTfX4+asQqsDxUKAsnz8G9FCmFIByS1SNSTZo0AWDBggWASv5esGABOp2OTp06mbSNiYkhMTExx6AnL25ubjRt2pRNmzLuhkpPT2fTpk20bt3a7DGtW7c2aQ+wceNGY/vw8HCCgoJM2iQkJLB3716Tc16+fJmOHTvStGlTvvrqq2yjcKIUKIyRKQmiREl26RrcTgJnZ6hZVdWU8/eFiuXV18w3oPh6Q9O60LAGeGa6e+92kiwlIxyC1SNSkZGRrF+/ntdff53ffvuNmJgYDhw4gI+PD/369TNpu337dgDq1KljdUcnTJhAZGQkzZo1o0WLFsycOZOkpCSGDx8OwNChQwkJCWH69OkAvPjii3To0IGPPvqIHj16sGLFCv7880/jiJJOp2PcuHG8++671KhRw1j+IDg4mN69ewMZQVSVKlX48MMPiYmJMfbH2qCwVPn+ezhwAJ5/HsyUqHAothyZkiBKlHRp9/OdqoWChwWjTE5OapTKIO42HD4J5f2hRmUZqRLFmtWBVP/+/fn1119ZuHAhv/76KwAeHh7MnTvXONVnsHLlSrMjVfm9XkxMDJMmTSI6OpqIiAjWr19vTBa/cOGCyWhRmzZtWLZsGW+//TZvvvkmNWrUYO3atcYaUgCvvvoqSUlJPPPMM8TFxdG2bVvWr1+Px/2aJhs3biQqKoqoqChCQ0NN+iMr61jgzTfh+HFo2RIyFUJ1WA0mwvXf818nKrOgLhJEiZIvPBQqlAMvK4sw37mrRq1uxEH8bagWpqYBHbGUiijxCrzW3s6dO9m1axf+/v489NBDPPDAAyb7U1JSGDNmDKmpqUyaNMkkCb00KNV1pCZOhMuX4V//gubN7d2bgrOmSKc5MiIlRN4S76jcqcQ76nk5P6hZRUanRJGx9P1bFi0uZKU6kCpJbBVEGUgwJUqaO/fgn/NQowqUsVGlck2Di9Fw7or63tlZTfUFlrfN+YXIRaEX5BSi1LB1EAVqOZlj79r2nELYi6ap0aO423DahiVfdDqoXEklo/t4gV4vCeii2LE6RyqzlJQUNm7cyJ9//sn169cBqFixIs2aNaNr166ywG9pd+MG+PqCI60TZlAYQZRB5oWOhXBkl6+r8gZOTmrEyNa8PKFxbYi9BQGZikDfTVbJ7JI7JeyowIHUZ599xjvvvJNjsc1y5coxadIkxo4dW9BLCUfUuLFaJmbfPsfLkyrMIMpAginh6O7eg7OX1ffVQsGjkOro6XQqgd0gNQ0O/Q2e7lCrqmnpBCGKUIGm9kaOHMmLL77IjRs30DSNkJAQWrRoQYsWLQgJCUHTNG7cuMG4ceMYMWKErfosHEn5+7kMUVH27Ud+FUUQZSDTfMJRGab00tPB3wcqVSi6ayfeUev0xSfCn8fhUrRM+wm7sDqQWr58OV9++SWapjF48GBOnTrFhQsX2L17N7t37+bChQv8888/DB06FE3TWLRokdWLFgsHtmABxMc71lIxaXeKLogyOFLE1xPCFq7EqEDGyUkV3izKKbayvtCsngrg0tPh9CU1QnXnbtH1QQgKEEj997//RafTMXbsWBYvXkz16tWztalWrRoLFy5k7NixaJrGf//73wJ1VjigKlVUfpSjiP4Nfmlg/fFBXaw7rsE71l9TZKdpat226zfUVxmpsD1Ng5j7KR0PhKoptqLm6Q4Na6o7BZ2dICFJjU5duCr/56LIWF3+wM/Pj6SkJK5du0b58rnfinrjxg0qVqyIt7c38fHxVnXUUUn5Awdy6E04rirjUyYMKraHc19bfryhpEF+pwUbTM2onC4KLuYWRF1Q67oZuLlC9cpqXTdhO+npasHh4lAs814KnDoHtxKgYjmo80CehwiRmyIpf+Dv759nEAVQvnx5/P390dn7F03Yx8yZMGiQKs5ZnFVoA+ig5ljo8Re0WWr5GnuZ60LlZ20+CaJsK+YWHD9tGkSBen78tNovbMfJCYIC7B9Egbp7r0ENqB2ugmaD1DQV8IkMMmJrU1bftVerVi0OHjxIYmIi3t7eubZNTEwkISHBuNCxKGW++gqOHIEBAyAkxN69yZB0ERJOQKWH1fOQR+HRE+BbK6ONJWvsmSuuaclxEkTZlqapkajcnL4AAf7F443fUd1LhuhYVd+puC3irtOZFus0JMPfS4Za4eBTxm5dKzZkxNbmrP4tGDFiBHq9ntmzZ+fZ9rPPPkOv18ude6XVM8/Av/8NtWrl3bao3DoEP9eFHf3h7tWM7b5m+pjbCFNuFcpzO06CKNuLv519JCqr5FTVTljHEJicvwr/5BG0FgfJqSoZPukuHDiuyjSU5tGpkjZiW0xG1qwekXr22Wf5/fffmThxIikpKbz00kvZRqbu3LnDhx9+yLRp0xgwYACjR48ucIeFA3r+eXv3IDu/+uBbG5xc1V16eTE3wmTJMi/mjpMgqnDkFUTlt53I7mqsql7u5ARhQfbuTd483KB5PTUCE3NLJaHH3lJ1p3xzn0kpcSwZsY26oO6CdHEu/qO2xWhkzaJk89xGkr777jsSEhLw9PSkWbNmhNyfurl8+TJ//vknd+/exc/Pj969e6PT6ViwYIHteu8AJNm8mNAnwz+fQ41nwfl+4b5718E9AHT5GJg9Og2OToaGU/NXRNNwXIN3JIgqLLcS4MipvNs1qgn+8ruYb/eS4c+/QJ8O1cIgNNDePcqfmFtqLcDUNPU8NBCqhqi7/UoyTVOJ+NGxKpC0lJMOnJyhRX1wvT/mcuma+j1zdlLrHjo7qaDa8DwoQAVhoAq1pqZlb+fkVPAgzTCylpO61WwSTNl00WInJyd0Oh1Zm5rblhudToder7e4fUkggdR9SUlw7Bg0agQeRVyBOGYX7BsF8ceh3lvQSIpfljhpejh5FmLjcm/n7gotGxb/T9vFjabB0X/Um6ivN0TUcsx/w9RUiLqo7jT0cFN1qJyd7d0r20tIhJvxcDsJEu5AWpr152rbJCPY/PssXLuRc9vWjdSoEKig9UqM+XbOTurf3lAF/8p19bubOSjLHHxVCshYYuzOXTh0MiMgNsdGv+eWvn9bNLU3dOhQueNOFEytWuquvd27oVWrorlm6m049Ab8819AA/cK4N+waK4tik7iHfXp9G5y3m2rBDtmAGBv0bEqiHLSqWkxR/03dHVVZREqlFMjJ4YgStNU7pSjBVV6Pdy+owKmShUyRoNibqnRIwOdTgWOlvyONKihkvL16erhlOn/ulIA+Hln7EvXZ3yvT8+4Pqjv3d3Uv6s+3TQ3TZ9ueqNC0j3185WTgLIZgdS5K7kHUZCRC1lEI88WBVILFy4s5G6IEq9+ffWpKDa2aK53+Sf4419w55J6/sAwaPwhuOddrkM4kKuxEHUe0jX1KbRONZUzkTV3wuDy9ft/lG2yXnvpkJ6u3rxATYWVKQFr2gX4mz6/EqMCj5pVVMX04ig9XQUct5MyHkmZqrh7l8noe1lfFWz4eKmHt6cKpvYcyT1H0N1VHavTgbk15v181MMS4aHqYaBpGQGVXm/6OxhUHny91HZjYKbPCMIyt7U0iC/CXEj5ayKKxnffgadn4V/n3nXY/yKcX6Gee4VDyy+srzguiq/MUwdlfaFOeMan1gD/jLv43FzBzQ0On1RvPMf+UdWwHW30wV6cnNRU3uXrjpcXZQlNU1NL95JVjl2lCqpSu4sdfz40TfXHxSUjiIiONX+npJurCpYyj/CU81OPrKpXzj23qFrlwhtt1Onu/5s6ky1KMwR8lqgUoKZm8+JmLhIsHEUSSKWnp/Pzzz+zYMEC1q5dWxSXFMVNYQdRmgZnF8OBCZByUyWQ156gkrtdpHZMieR9//+1arCqaZT5DUCnyz6s37CmWotNQ41gSRxlOU8P0yKXJYlOB43rwJlLcDVGPW7Gq9Epc8FIYUhJvZ/PlGm0KU2vlr4Jvr8QtI+XCv59yqjRG0Pw4e5m+XUqlFWJ2FlHbN1dVRDlCHWk/HxUkJTXyJqlI2c2YPUSMZb4559/WLBgAYsXL+baNTVfK8nmwuYSz8C+0WqdPICyEdByPpRratduiUKQlqY+pYMKnu/cA698BOmJd9T6bDIalbfkFJVT4190b0h2dytBLTNzL0U9DwqAaqGmP3OZRzr9fPI/gqNpGcck3oFjUerfOiudDqpUUnl9huMM2wvKFq/DnorZXXs2H5G6c+cOq1atYsGCBezatQvAeGdfnTp1bH054UjGjoV9+2DFCggPt805Y/fCpk6gv6vKGjSYokainIpuWFcUgfR0OH0JbsRB07pqukOny18QBRmjWAZxt1XyrCO9iRQFTYNT59XIjCOWOrBWWV91N9nZy2oqMzpWjQj5uFhXtyg9XU0nG0aZEpKgvL+aOgSVAG4Iosp4qBEmw2iTl6fpdJ0tf0bNjdg6kmI2smazQGrPnj0sWLCAVatWkZiYCKgAqnbt2vTr149+/fpRv359W11OOKIdO+DQIfWwVSBVrgn4VAe38tDiC/CtYZvziuLjXrL69Hn7fuHUm/Gmy4BY68JV9YZZpZJKohYZrt1Q/846XfFNvi4szs4ZwVHiHRXU5DQCYqgInnkEJD1dTRPeTlI/s1knfVyTMr53cYGI2iposmdOliOqUDZ7LqSdRtYKFEjFxMSwePFivvzyS/7++28gY/RJp9Pxxx9/0LSpTK+I+95+W92J0aaN9edIu6vKGdQcC85uauSp82+qtIGMKpQ8N+JU7Zo0vXqjqR2uPtHbgmF67/xVNcIVUkpGXfKSnAKnL6rvqwbnf9SvpDDcoWZJRfCTZzPWcNTp4NrNjNpNLs4Z+UyGESeT65SyCuu2VExG1vIdSGmaxi+//MKXX37JTz/9RFpaGpqm4enpSe/evYmMjKR79+6ATOWJLPr2LdjxmgZbukLMTrWsi6FCuEfFgvdNFC+apkaLLkar5z5eUPeBjAJ+thBSUd0ifv6KKtLo4mKbkS5HZpjSS9OrpGZHWAamsFmyhqM+PaNukU4H4cH3E8O9VE6efMgr0SwOpE6fPs2XX37JokWLuHr1KpqmodPpaNu2LUOHDuXJJ5/Ex6cUJSWKoqfTQY3nIfEslG1k796IwnTuSkYQFVJR5ZRkzhexlSqV1MjB5etqMV4XFyhfRHdqFUfXb2ZM6dUKlwAALK9HlJypXbB8uCtNLA6katSoYVwSJjw8nKFDhzJ06FDCbZXrIkqHY8fg8GHo1Qu88xjS1jS4uEZN34X2VNuqDICQx8BVhsNLtNBANa1XuRJULFd419HpVDJ1apoKIo6fVmUSSuN0S2paxhRWlVI8pZeVpfWI3OUGl9Iq31N7L7zwAjNmzMDNLR+1K4Qw6N5dLRWzYwe0bgUx2+HuVfCsBBXaqUUyAe5chj/HwKW1auquwoOqKrlOJ0FUSaRpKnAq73///9hF3Z1XFCMiuvvLnqSlwc0EuJ1YOgMpl/tJ1tduQGWZ0jMqhnWLRPFicSDl7u5OcnIys2fPZunSpfTv358hQ4bQqqjWTRMlQ7t2cPEiXN0MPwzIWMIFoEwoNPkEkm/AoVchNQF0LlDtGXCxsOqtcDypqXDirKrhk7kAYVFOKzk5qTuvbiY4RlHCwqDTqRyxiuVkSi8znc6+FcFFsWdxQc64uDiWLl3KggULOHz4sDpYp6N69epERkYyePBgKldWlW+dnJzQ6XTcvn2bMmVKd1VpKchpxsU1sP0JVInpzHSm28q3hJbzwL9BEXZOFKn4RDhxWuWXOOlUIBUUYO9eKWn31/oqwqUm7CIlNWMUUOTMXB0pR6oILvLN0vdvqyqbHzx4kPnz57N8+XLi4uLQ6XTodDrat2/PkCFDePrppyWQuk8CqSzS9fBDVdORqGx00ORjVeLASWqrlEiaphK8z1xS33u6qxGhrAUz7SU1FY7+o5aSiaiVUdm6pNE0+Ou0qnlUO7z01YzKL0evCC7yxdL3b6tug2ncuDFz5szh6tWrLFmyhA4dOqBpGlu3bmXkyJHGdhs2bCDNUEtDCFA5UXcuqYGnHEN4TS3zIkFUyZSWBsfPqFpFmqY+zTepW3yCKFCjUfdSVFXqo1Gq/llJFHNL5aalpsmIlCUMdYsqls8odSBKvQLdT+zu7s6gQYPYvHkzUVFRvPXWW4SEqArBmqbRt29fKlasyPDhw/nll18kqBIqsfwD4FngWh7tRMmUeBdib2XkntR5oPhVdfb0UHfvOTtDQqIK/NLT7d0r20pJhX/u36VXuVLxCmSFcCA2K8wSHh7OtGnTOH/+PL/88gt9+vTBxcWFuLg4Fi9ezGOPPUZgoFQOLvU8K0ECkAicz6OdKJn8fVQAFVFL1Ygqrp/qvctAg+oqd+tmvKozVXhrvBe9fy6o0UFvT7lLT4gCsCpHylKxsbHGJWSOHz+OTqdDX1KHyHMgOVJZpOvh/UqQHgOhQLY8Xp26e6/nWZnaKyn0erXgcGigWpjV0dyIg2NR6vuQiqruVHEN/iwVc1ONsul00KSOjEYJYUah5khZKiAggAkTJnDs2DF27drF008/XZiXE47AyRkGz4VwnfkgCqDpTAmiSoqku3DgBFyNgRNnHHNEp7y/SsQGVbQz1cFTFEym9IIkiBKigAp1RErIiFSOLq6B/S9mqSMVpoKosD5265awoWs31LpthhICdR5Q03qOKjpWFer0dMBRtcxS01Sif+IdNRpVGEvvCFECWPr+LbdpiKKVdB6cPGG/ExwaAYOag+vt7JXNheNKT1eLAF+NUc/9fVQQ5ej1mLLWt0pLc8yyCK4uaoQtTS9BlBA24IB/BYTD0tJh12BIOAEvOqs6Qp1/h/aP2rtnwlZS7tdfSryjnleuBFWDHT+nKKsbcaoae90HoJyDLHKcnq7+Hwz/F8XtTkkhHJQEUqLo3ItRy77o70HvAZCYBjLdWbK4OKs3ahcXqBPuOEFGfl2/qZLo/zoNjWqCrwOszXfynBqFqlkF3GWtVCFsRQIpUXQ8A6HbH3DrEDzZwt69EbZiqK/k5KQe9aqpYqseJfjNulZVlWt0K0GNwEXUBi9Pe/cqZ7G3VPAHajkeCaSEsBmZIBdFy9kNAiSIKjGSU+DwKTh7OWObu1vJDqIgI2D08VKjPEdOwb1ke/fKvNQ0lfQPEBYEvrIAuBC2JIGUKHxnl8LRqaBPyb7v1q2SVzG6tLgZD/uPq8rfV2NNF3MtDZydoUENVRsrJVUFU8Xx3yDqggqmyniofDUhhE3J1J4oXHejYf8LkHILPAKhxmi1XdOgXj04cUI9ate2bz+F5TQNzl+B8/eX8fEuo5KuHf2uPGu4uqilZA7+DXeT4fI1CA+1d68yZJ7Sq1XVfnfp6fWwfTtcvQqVKkG7dioQdTQl5XUIm5JAShSuP8eoIKpsE6iWqSCrTpeRaH7ypARSjiIlVRXWjLutnlcKUMu9lObb6N3dVDB1NQaqhti7NxlS0zIKb4YF2S8hfs0aePFFuJSpZlxoKHz6KfRxoJpxJeV1CJuTgpyFrFQX5LywGnY8AToX6P4HlI0w3X/6NAQEgF8JvbOrpNE0+OMvuHtPBU41q0BgeXv3qngy/Fm1Z9mHpLtqaRsnHTSta59gd80aeOKJ7BXtDf8u337rGEFISXkdIl8sff+WQKqQldpAKvkm/FwX7l2Dem9Bo3ezt5Fhcsdz/aaa1qtbrXjfpWZPmqZKDeiAmlXtG0zp9eouPXuscajXQ9WqpiM4mel0akTn7Fn7/d4nJ6vCqh4eGX24cwfi4sDdHcqXd4zXIQpFsVhrT5RiByaoIMq3DtSfmH3/mjXqj1OnTvDUU+pr1apqu7AfTYO4BLh+Q31NSc0orglQsZwa3ZAgKmcJSWp5nOgbcCaHN9+i4uxsv4Wit2/POfgA9bN28SJs2pSxbckSeOQR+Pxz07Zt20KrVnDjRsa2efOgTh14+23TtjVqQGAgnD+fsW3OHBUYDRli2jYsDLy94fjxjG3LlkFICAwfnr/XsX276TkWLYLo6JyPsye9HrZuheXL1Ve93t49cmiSIyVs78p6OLsI0EHLBeDsbro/p2Hyy5fVdhkmt4+YW+oOr6x3nrk4Q/P6GcnkpTkfyhJ+3iqx++Q5uHRNJaRXrlR01//nvAqegivadzTs6lXL2l28mPH9P//AunXwwAOmbXbvVnf3JmcqMXHzJvz9t/q7kdm1a3D7NqRkuks4PV09T85SosIwgpT5zmEXF7Xd8G9n6evI3O6dd+DUKfj9dwgKUtt++AGGDoWuXeGbbzLaLlig+tWrlwrgQAU2Tk6F8/8nuV42J4GUsK3U27Dv/p15tV6ACq1N9+v16pfY3Iyypqk/HOPGqT8qMkxedGJuwfHT5vel6dWUXmhg0fbJkQUFqGTvM5dUjS1XF6hUofCveyMOrtxf49DXB3zKFP41M/vjD/VB6LXX1HS9JcLCMr7v3VsFUXXqmLZZvVr9bShbNmPbwIFqlCrrdXbuVF8rV87YFhmp/qZ4ZamhdeqUOm+ZTP9Ow4aph4GlryNzu4ceUiPsmV/btWsQH589mHv/fRVANmiQEUj9+CM8+SR066a+N/jsM7h7V+2rUkVtS0lRfzvds3xgNUc+xBYKh/loOWfOHKpWrYqHhwctW7Zk3759ubb/5ptvqF27Nh4eHjRo0IBffvnFZL+maUyaNIlKlSrh6elJly5d+Oeff0za/Pvf/6ZNmzaUKVMGf39/W7+kkunQ63DnAniFQ6N/Z99v6TD5s8+abr93z7b9tLWsU2LFOfVQ01RwZBh50jQ1EpWbS9HF+zUVR2FB6gGqIGbMrcK9XlqmwpshgUUfRAGMHAkzZqjRl3bt1EhHTqMqOp0KNB56KGNbkyYqiGnZ0rRt794qEPLMNKVcuTJ06AA1a5q2bdBAPTIHFr6+qn35LDdH+Pioqb3cRlktfR3t2mVs++9/4ddfITw8Y9tTT6lSLx9+aHp8z57w+OOmgd/165Camr1fn34Kr75qOor3888qx6trV9O2H3wAkyfDmTPquV4PL7yQ84dYUB9iZZov3xwikFq5ciUTJkxg8uTJHDhwgEaNGtGtWzeuX79utv2uXbsYOHAgTz/9NAcPHqR379707t2bY8eOGdvMmDGDWbNmMXfuXPbu3YuXlxfdunXjXqY37JSUFPr168e//vWvQn+NJcL17fDPf9X3LeeBi5kKypYOk//1l+lzQ97D0aMZ2y5ehL171RC/PcXcgj1HVIXvE2fV1z1HCu+NMz1dBUF37qlimDfjIeamuv3+aqxp26gLcOhv+PMv2HsEdh6EbfvV1/3380Lib+ddSDI5VbUT+RMeokanAE6eVaNUheX0JfX/6OkO4YVcePPmTfWm27q16bTY0KFqtKR6dTWi/OmnanvWIMTwfObM4j/ybKvX4eWlyrxkDfw+/FCNFBlGmEAFkxcuwKxZpm0HDoTBg03bGt4Hs462/e9/MHVqxt/c7duzT4NmZi7XS1jEIe7aa9myJc2bN+ezzz4DID09nbCwMMaOHcvrr7+erX3//v1JSkrip59+Mm5r1aoVERERzJ07F03TCA4O5qWXXuLll18GID4+nsDAQBYuXMiAAQNMzrdw4ULGjRtHXFxcvvteau7aS7sL6xrB7X+g2kgVSJmzdatKLM/LRx/BhAnq+3v31NC7pqk/GhUqZLR5+WXo3x9WrMg49v33VZsnnij8RZFzmxIDdXdbhUzTEYbRoPR00/XOYm6p5Vb0erXf+EhT00J1q2W0/fMvdWu7OW6u0LpRxvODf6tgyxxnJ2jbRI2inTib92utEw4VpdxBvhnu4qtYrvAWcb4Zr9b8A2hUC/x9bHt+vR5iYjLyfe7dg4oVVS7Srl0qoMqJuZycsDAVfDjSNFJxfR2apu4yTElRHzYN3ntPJdy//baaMly+XI2K5WXZMhWwCYvfv4t9jlRKSgr79+/njTfeMG5zcnKiS5cu7N692+wxu3fvZoLhTfi+bt26sXbtWgDOnj1LdHQ0Xbp0Me738/OjZcuW7N69O1sglR/JyckkZ5oDT0hIsPpcDuXuFdA5g2cwNP4g53aGYfLLl80PMRtuJX7xxYxtHh5qKRlD3anMbUNC1GiVQXIyvPGGOnePHhmB1NdfqwTPvn1N79zR663/RJx5SkyvhyOH4GYslAuAhhHqvCfOwFk3FTil6UF//9N7GQ+VwG1w/kruwVFmhv46O6tEcBfnjO+ztq1cSfUtazsX54xpA0srkpfGyuW2oNNB7XDTbYZ8QFtIS4NT59T3IRVtH0T99psaBalXL+MOOw8PNYUXHAyNG+d+fJ8+alrO0UudFNfXkTV3zCDrIEN+c71iYtR5XYp9mGB3xf5fKDY2Fr1eT2CgaaJrYGAgf//9t9ljoqOjzbaPvn8rquFrbm2sNX36dN55550CncMh+VSD/zsIt0+Dm3/O7QzD5E88of4AZA6mchsm9/NT+ROZTZigHpnPcfeuyq+6dEl9YjbYvRu+/940iTUlRZ03LExNERr+GJ07pz5xh4fnnsBpmBLbthlmfwQxmaaaK1SEsS9B+85q6ZCssq4vWNZXBVcmwY5LxtfMGtaw/I6e8haMgPj5qCApt+k9d1fVThTcnXtqhKrOA7ZZ3DkuEVLSwMNdTSUWRGoqbNmiPszUrau2VaumEqX1elVjyZCYnTWPMTfOztCxY8H6Vhw48uvI60MsmOZ6PfusStyfNw8ee6zo+umAHCJHypG88cYbxMfHGx8XMycFlnTOHuBfL+92ffqou0NCsvzRDw217q6RzAGFv79K9PzhB9Ptw4apO1569crYdv68CpguXVLHGXz8sQq4Jk3K2JaWpqYMV69W30NGEDXpNdMgCtTzSa+p/WFB0KQOtKivpt3aNYGWDU3bVwtT03c1q6rvqwSr0YXA8tmDocy3ZtuCTqeWeclNtcr2vZW+pNA0NXqUkAhHT6nApaAC/KFxHTX1WtDRkfHj1Z1i99MoAPWBwpBfU8YOCezCNvLK9dLpMj7EpqaqD5fXrpnmY125omYGhIliH0gFBATg7OzMtWvXTLZfu3aNIMN8fRZBQUG5tjd8zc85LeXu7o6vr6/Jo0Q7PkM90vOZRNunjxr52bJFzclv2aIqAxdWrkGzZvD88+p2aYNq1VRC59atpn9YNE3dyVMtU17ShQtqqHzQoIwpsbvJMGNa7tf97GPw8wIfL/D0UCM/xbEOU4WyKpBzdoKD+2HTr+qri1P2PC9hPcM0n7urGpk6+o+a8i0onzL5X0vv559VWYDMOT+PPabyC8uVM23bti242WD0TNiXpR9iXV3V3+PffoOGmT70zZqlbiR47bWi67MDKIZ/0U25ubnRtGlTNmWqfpuens6mTZtonUOCY+vWrU3aA2zcuNHYPjw8nKCgIJM2CQkJ7N27N8dzCjMSz8CRt+HQa3BlXf6PNwyTDxyovhZ1roGTkxrKbtHCdPvs2ZCQACNGZGzTNBVEPf64Oi72Fnz3IyTmkMhtcP2ayp0ClfzZq5d6AzNISlJ/wLZutcUrKpjtW2BgLxj/LEx7W30d0EttF7bj4Q4Naqop29t34K+o7FO9lrgYbVp1Pi9ZrzF9OixerEZZDbp0Ufk/75pZ0kmUDJZ+iHV1NS1NASpvysnJ9G9mfLzKQU1KKvSuF1uaA1ixYoXm7u6uLVy4UDt+/Lj2zDPPaP7+/lp0dLSmaZo2ZMgQ7fXXXze237lzp+bi4qJ9+OGH2okTJ7TJkydrrq6u2tGjR41t3nvvPc3f31/7/vvvtSNHjmi9evXSwsPDtbt37xrbnD9/Xjt48KD2zjvvaN7e3trBgwe1gwcPardv37a47/Hx8RqgxcfH2+BfophJT9e0019p2s4h6vvS4toNTdv6h6ZNfFfTVIiV+2PZMnXcY4+p5//7X8a5TpxQ2/z9Ta8xerSmBQdr2vz5Gdvi4jTttdc07cMPTdtGR2valSualpxs/WtavVrTdLrsfdfp1GP1auvPLcyLv61p2/arn6VjUfn7HboZr477/U9Nu5vH//uNG5rWv7+mVa5s+jOyaJGmvfCCph04YF3/Rel09aqm3buX8XzBAvW3olkz+/WpkFj6/u0QgZSmadrs2bO1ypUra25ublqLFi20PXv2GPd16NBBi4yMNGm/atUqrWbNmpqbm5tWr1497eeffzbZn56erk2cOFELDAzU3N3dtYceekg7efKkSZvIyEgNyPbYsmWLxf0u0YFUaXUvWdN2H9K0RcstC6QMPy+bN2va3LkqeDI4cULT2rbVtG7dTK9hCLq++CJj2/Hj5oOuyEi1/b33MrbFxmpaly6aNmCA6Rv0H39o2o8/atrZsxnb0tI0LTQ05/7rdJoWFqbaCdu6Ga+Coa1/aNq5y5Ydk5qmabsPq2NOncu+//Zt05+xtDRNCwxU/5cbN9qm30IYLF6sadWqadq//52xTa/XtLfe0rQ9exz6Q7al798OUUfKkZXIOlJ3LoOLN7gVUk2c4ijr7eopqeCkU4m4eZVysGZV+CtX1BRLaGhGbZiLF1XtLGdn9dXgqadg5UqYOxdGjVLbjh9Xt6uXLWtasDQyUk3nvP++qpAMqj5O375592nLFse9Y6k4i7kJl69DveqqZlhmen322+3PXFLLwHi4QbN6pj9bv/6qqoDXqwd//pmx/bvvVF5M8+Zy04CwPU1Td0Eb7nLesUP9rPr4qIT1zBXpHUiJqSMlihlNg91DIOEkPLgSKra1d48Knz4d/j4DFcqpooqQUVPJmlIOlggOVo/MDMX/slq2DJYuNV3aoVIltS3rXWFVqqjE+6pVM7ZZehfO1asqKGvbVi1n8fPPGa8tKkr9Ia1SJXuFZZG7CuUgoGz2AMdcAcjgYHj2RVVWI9Bf/d9Xr55RELNxY/X/EB+vimX63C9Z8fjjRfJSRCml05mWivHzUzml/v6mQdS4cepvT2Sk+dpXDkpGpApZiRuRivpCLUrs7Ak9joH3A3kf48hS0+BYlLpd3dkZWjbIPmpQXCseW2rjRnj44bzbbdmi/vhFRKg7uzIv0WQY6Zo+PaMQYFycqjxfuTJMnJgRKKSlFX6RP3MjOfYunGipy9dg/ToYNcLMSKcO0GD2XDh7SpXqGDRIBc0GUVHqjlMZeRLFiWGEPT0942e0mLP0/bvY37UnipE7l+CAWlKHRv8u+UFUcopap84QRNU3M/UCRV/KwdY6d7Z8UdYHHlC3RM+fb9rG1VV9+gwNzdh27hwsWABz5piee8QI1XZepmWEEhPhq6/UuQtqzRr1qbdTJzXt2amTer5mTcHPXdhuxqtinW+8lkPRRA3QwfvvqlGmevWgUSPTJtWrSxAlip8yZdSHy2eeMQ2iXntN3bl94IDdulZQMiJVyErMiJSmwe+PwZWfoXwr6LoDnBzkE741ku6qGj/JKWoar0EN8C7BxQjXrFFTlGB+itLSQqmZc8kuXlTBkU6nRqQMOndWwebSpWo0BeDQITUtVbGiyqkwePtt9Qf2xRdVoUhQywCdO6eCtqzTiIbXkfXPWn5fR170elUiI+v6ZgcPqtfdoIHKnwM1cjdnjgrGMxd5ff99ldP0r39Bv35q29mzqqJ4psXTc7R5s2XrVgpRXKWmqunq2FhYvz7jdzwlRX04s/MHAhmRErZ1frkKopzcoNWCkh1ExSeqkajkFLVsS+PaJTuIAttVm8/8hy8sTAUOmYMoUFXnjx+HRx7J2ObkpP6IZk1m37kT1q2DGzcytp04AbVrq9GxzBYsgOHDzY/kGLaNG6eCoB9/VPXCTp3KaPPPP2qKctw402OfeUZd69tvM7YdOqSKVjZrZtr23XdVrbD16zO2xcXB1KlqGi6zv//OGL008PCwLIgCKOByVkLYnYuL+v1+/XXTmlWff65GrbKOfGel16safMuXq6+Z80SLkCSbi7zduw77X1Df158IfnXt25/CdiNOVZv28VIjUeam80qiolqU1dvbdM1DUNWTMwcfBtOmwcmT0KZNxrZbt1QSdViYaVtDIdWcaJoaLdq+XU0xbN6sCgnWrJlx3sWLVcJ85qT+mBgV7GQO5gxLpWRaoBxQAV7LllC+fMa2gABVVd+Q+G0wapQKHiMiMrZVqKD6MHRozq/DoICrMAhhdzqd+jCS9QPJ2rXqd+5upoXc09LU6K7hJhxzuamhoeoGoCJOq5CpvUJWIqb2dgyACyvBvyF0/xOcXO3do8Klaep29EoBjpOgXBrdu6dGcAyGDYNFi/I+btkylex67Bg89xx06KC2X7umjg8IMK1q/9df6g64atVUoAMqYVavV9MPtnbjFtSpnX39xswqBsLxE1C+5Nz5JITRnTtq1Lhz54zfuXXroEcP6N9fTYUXwRS+lD8QtnHpexVE6Zyh1ZclM4jSNLh2Q5U2cHK6X/8pMO/jhH1lDqLA8kCqUiWV3JpVYGBGba3M6plZiNvJqfDWTNSnw9iX1KLXORkzQbUToiQqU0YFTJnt26f+Vpcrp0aicprC1+nU9HyvXkX2QVhypETOUuLgj3+p7+u8DOWa2rU7hULTIOqCulPq77M53CklHEK7dpbffVicubmqOlFT34cKFU33VQxU29t3zqhlJkRpMHkynDkD7dubTudllXkKv4jIiJTI2cGX4e5V8KkJ9Sfbuze2l54OJ85AbJx67udj97tERAE4OxdegdSi5OeTEUw92EEten0zFsoFQMMI1X93V9VOiNIkPBz27LGs7dWrhduXTGRESpgXuxdOL1Dft5wPLo5Z4j9HaWlw5JQKonQ6qPsAhFTM8zBRzNnq7kN70umgemX1vbMzNG4KD3VTXw1BYLXKEvSL0qlSJdu2swFJNi9kDptsrqWrKuZJ5yDiPXv3xraSU1SNqKS79wttVgN/B/q/EXlz5MrmBjG31LRzSqZlftxdVRBVQZLMRSml16sCu4WxxmkWkmwuCkbnBDWetXcvbE/TMoKo0lBos7Rydnb8BZYrlIUAf4i/rYIpN1eZfhaiGE7hy9SeMJVwClJv27sXhccwbeLlWToKbQrHptOp0dKK5dVXCaKEKHZT+DK1V8gcampPnwzrGkNaEnT4HspG2LtHtpN1odzMS5kIIYRwPIU8hS9TeyL/ks6D/i6kJ0OZyvbuje1cjYUzl6BRzYwRKAmihBDCsRWTKXwJpEQG35rwyFG4fQrcy9m7NwWnaXDhKpy7op5fuyFTeUIIIWxKAilhytUbyjWxdy8KzlBo80qMeh4WBOEhuR8jhBBC5JMEUgJOzgKdi7pLT1cC7j9IT4cTZyH2lnpePQxCZMkXIYQQtieBVGmXcBIOvqryorwqQ8ij9u5RwaTp4ViUumVcp4Pa4WoNPSGEEKIQSCBVmmnpsPdpFURV6g7BPezdo4Jz0oEOcHaCetWhbDG/U1IIIYRDk0CqNDv1X4jZCS7e0OJ/JeNONqf7AdS9ZEksF0IIUehKQEKMsEriOTj8uvo+4n01reeoEhLhXKblAlycJYgSQghRJGREqjTSNNj3jCq8WaGdYy8FcyMOjp9RCeYe7hAUYO8eCSGEKEUkkCqNziyE6I3g7AEt5zvunXrRsXDynPq+rK8s5CqEEKLISSBV2ty9CgcmqO8bvKOKcDoaTYOL0XD2snoeWB5qVlH5UUIIIUQRkkCqNNE0+ON5SI2Dck2h9gR79yj/NA1OX4TL19VzQ6HNkpAoL4QQwuFIIFWaXPwWLn2nim+2/BKcHPC/PyEpI4iqFgahUmhTCCGE/TjgO6mwSvIN+HOM+r7eG1C2oX37Yy0/b6hRWd2ZV7G8vXsjhBCilJNAyhFpmqrcnZIKbq7g55P31FbSOXByA7+6UO+tIummzaSkQroGHm7qeXBF+/ZHCCGEuE8CKUcTc0stxpuSmrHNzRWqV879rrVyTaHHX3A3GpzdC7+ftnLnHhw9pRLJI2qDq/zICiGEKD7kNidHEnMLjp82DaJAPT9+Wu3PjauvY92ll5AEh/6GeylqRCpNb+8eCSGEECYkkHIUmqZGonITdUEVpszs0OtwekFG1W9HcTMeDp+E1DRVpbxxbfB0oJE0IYQQpYLMkzgKQ05UblJSYfsBlUvk5grBCXD8fbXPvRF41QR3N3B3BWfnwu+zta7dUIU2NQ38fdTaeS7FuL9CCCFKLQmkHEVeQVRm91IgORUCmkDjD+DOJYj3h9OnMto4O6uAys1VBVeZC1reSwZ04OZSuEUuzSXNG4IogIrloFZVKbQphBCi2JJAylG4uVrWrk44uLtDWho4u0Kdl9X2f86DpwekpIA+HfR6uKNXydw6nQpYDE5fhNg49b2riwq03FzvB15uUDkoI7jR69X3+S2ImVPSfNVgNaJWvixUC5VCm0IIIYo1CaQchZ+PCjRyG5lyd4UK5SDpPHgHme6rUSXj+zS9CqiSU9X50vSmAYuGeq5pKkcpNS1j3/+3d+9hUVXrH8C/MwwMDPeLDnIRLRUVAy0VsRAvpGlaWileso5hPp3Uo5HXXyqiaF47xVNq1lFPlqIeNdMsJVOUIhI6aJL3APECRspFkNvM+/tjmn1mYGYYhhlm0PfzPPMoe6+911qz9p55Z+211xaLgKB2//v7fK5qPJNmoKXZ09XWq2EwpB40X19NLXApXxXU8cOHGWOMtQIcSLUWIpFqigNdAYjao+0BZS2QOgqgWuCpvYBHSMN0EjtA4gTInHTvp0en/wVR1bUaQddfd89pBkY1taq01TWqFyr+t04sUgVSaud/B8orVJceDcm7oXp+HvdGMcYYs3E8+KQ1aeMJdH+04WU+qb1qeRtPIGclUHoOqL4DODbj8SkikSofVxng7QH4tQE6+AOPBGin6xkMhD+mmuOp+yOqx7YE+qoCKB9PQCTC8tTlECeIceP278D96sbvIKyuBUrLhe2Wpy43vR6MMcaYBYmIWtt98a1LWVkZ3N3dUVpaCjc3N/PsVN/M5iW/At8+oeqVejIZCIoxT37NsDx1OZacWAIAeNQpANvC1+IpdGp0u33IxosnXhf+XjZwGRZHLbZYORljjDFNxn5/c49UayQSAR5uqmfNebip/lbWAT/FqoKogOeB9uOsXUqtIAoArt6/jkXZa43aNil7o9bfS04s4Z4pxhhjNocDqQfFxfeBO6cBe3eg9warjy+qH0SpnSrJRkFVEQi6O0IJhGtVhThVkt1gHQdTjDHGbA0HUg+CssvA2b8uez2+HpD5WbU4+oIoAFBCiVlX1oMIDYIpAoGIMPvKe1BCqXN7DqYYY4zZEg6kWiOlAig6AeTtBAq/BzKmAooqwDcaeOQ1qxbNUBCltr/4OF7KmY/rVbe1lhdUFeGlnAXYX3zc4PYcTDHGGLMVPP1Ba1OwD8iapZqtXJPYAei72aqX9IwJotT2Fx/HgeJURHr0xNP+A5Fy4wROlWTr7YmqT50PD0BnjDFmTXzXnoWZ9a69gn3AqZcAPeOLELkXCHyheXk0gzhBrHfskyWIIIIy3rjAizHGGGsKvmvvQaNUqHqi9AYqIiBrtiqdlSQMTGjR/JYNWtai+THGGGP18aW91uKPU8LlvBqFCBsuheJqpQyPyirxZpezcLAjoLJAlU4+0CpFVF9mM/byXnMsH7QciwYssng+xlIogFOngFu3gHbtgMhI1XOhWxuuh23hetgWrodtsZV6tKoeqY8++ggdOnSAo6MjwsPD8fPPPxtMv2fPHnTt2hWOjo547LHHcPjwYa31RIQlS5agXbt2cHJyQnR0NC5fvqyV5s6dO5g0aRLc3Nzg4eGB2NhY3Lt3z+x1a9T9WwCAedl9ITvji7ckZ/ChWzrekpyB7Iwv5mX31UpnLYujFmPZQMv2FNlaELVvH9ChAzBoEDBxourfDh1Uy1sTrodt4XrYFq6HbbGlerSaQGrXrl2Ii4tDfHw8fvnlF4SFhWHYsGG4ffu2zvQ//vgjJkyYgNjYWPz3v//F6NGjMXr0aJw7d05Is2bNGiQlJWHTpk3IyMiAs7Mzhg0bhqqqKiHNpEmTkJOTg5SUFBw6dAgnT57EtGnTLF7fBpzaYV52X6yVnYbCRTtYUrgUYq3stCqYcmqnZwctx5LBlC0GUS+9BFyvN/b/xg3V8tby4cT1sC1cD9vC9bAttlaPVjPYPDw8HH369MGHH34IAFAqlQgMDMTMmTOxYMGCBuljYmJQUVGBQ4cOCcv69euHnj17YtOmTSAi+Pn54e2338acOXMAAKWlpZDL5di2bRvGjx+P8+fPo3v37jh9+jR69+4NAPj2228xYsQIXL9+HX5+jc/XZK7B5jXVNZC900EVROm6MY9EEN/zRfrLOXBwcDA5H3Pa/NsqbMxJNNv+Zj22HG/2sJ0gSqEABg8GCgt1rxeJALkc+P572+4253rYFq6HbeF62BZj6hEQAOTmNr8exn5/t4oxUjU1NcjKysLChQuFZWKxGNHR0UhPT9e5TXp6OuLi4rSWDRs2DF9++SUAIDc3F4WFhYiOjhbWu7u7Izw8HOnp6Rg/fjzS09Ph4eEhBFEAEB0dDbFYjIyMDIwZM6ZBvtXV1aiurhb+LisrM6nO9W345kcoXA1cthMRlK63EH7Ayyz52Zzvl+ODpYvwgbXL0QREqpO9e3drl6R5uB62hethW7getoUIKChQjZ0aOLBl8mwVgVRxcTEUCgXkcrnWcrlcjgsXLujcprCwUGf6wr/CWPW/jaVp27at1nqJRAIvLy8hTX3vvvsuEhLMf/fa1SLrjn2yGgIk16LhfGYR4G7twmirqQHu3288nZMTYCOdhDpxPWwL18O2cD1si7H1uNWCX5mtIpBqTRYuXKjVE1ZWVobAwMBm7/dReTtAT1emplU9DmPGqAHNzs9cVqWtQuKpZlzeEwF1Qd9hzleJNjU2CgBOnFANcGzM4cMt98vIFFwP28L1sC1cD9tibD3ateBw4VYRSPn4+MDOzg5FRUVay4uKiuDr66tzG19fX4Pp1f8WFRWhncY7XlRUhJ49ewpp6g9mr6urw507d/TmK5VKIZVKja+ckd58NhJzfgiAwvkGINIxrI1EsKsIwFvPDYWDvW1c4F6eurx5QZSGxcdVUyvYUjAVGam6Fn/jhqo7uT71tfrIyJYvW1NwPWwL18O2cD1siy3Wo1Xctefg4IAnnngCx44dE5YplUocO3YMEREROreJiIjQSg8AKSkpQvqOHTvC19dXK01ZWRkyMjKENBERESgpKUFWVpaQ5vvvv4dSqUR4eLjZ6mcMB3s7xHX/a4QQ1Rtt/tffcd3ft6kgytzzSS0+vhiJJ803eL257OyAD/5qkvpP5lH//f77tj1wE+B62Bquh23hetgWm6wHtRLJyckklUpp27Zt9Ntvv9G0adPIw8ODCgsLiYho8uTJtGDBAiH9Dz/8QBKJhNatW0fnz5+n+Ph4sre3p19//VVIs2rVKvLw8KADBw7Q2bNn6fnnn6eOHTvS/fv3hTTPPPMM9erVizIyMigtLY06d+5MEyZMMLrcpaWlBIBKS0vN8C4Qzd2yl+zmBBCWQnjZzQmkuVv2mmX/5rDsxDKt8pn7tTx1ubWrqGXvXqKAACLV7yPVKzBQtbw14XrYFq6HbeF62JaWqIex39+tZvoDAPjwww+xdu1aFBYWomfPnkhKShJ6hgYOHIgOHTpg27ZtQvo9e/Zg0aJFyMvLQ+fOnbFmzRqMGDFCWE9EiI+Px+bNm1FSUoKnnnoKGzZsQJcuXYQ0d+7cwYwZM3Dw4EGIxWK8+OKLSEpKgouLi1FlNuuz9v5SU6vAhq9P4WrRLTwqb4c3n418oHuidOZjY/NJ2coMu83F9bAtXA/bwvWwLZauh7Hf360qkGqNLBFI2aqWCqKE/GwsmGKMMfbg4EDKRjxMgZQ4QQzS+1Bl8xNBBGW8ssXyY4wx9vAw9vu7VQw2Z61DwkDT5s+KfiS68URmzI8xxhgzFw6kmNmY8oy95YOWI2VySpO3WzZwGRZHLW7SNowxxpi5cSDFzKopwZTmGKembMdBFGOMMVvBgRQzO2OCIl0DxY3ZjoMoxhhjtoQDKWYRhoIiQ3fbGdqOgyjGGGO2hgMpZjG6giJjpizQtR0HUYwxxmwRB1LMotRBkQiiJs37pLkdB1GMMcZsFc8jZWEP0zxSjDHG2IPC2O9vSQuW6aGkjlPLysqsXBLGGGOMGUv9vd1YfxMHUhZWXl4OAAgMDLRySRhjjDHWVOXl5XB3d9e7ni/tWZhSqcTNmzfh6uoKkUhk7eLYnLKyMgQGBqKgoIAvfdoIbhPbwu1hW7g9bIsl24OIUF5eDj8/P4jF+oeUc4+UhYnFYgQEBFi7GDbPzc2NP5RsDLeJbeH2sC3cHrbFUu1hqCdKje/aY4wxxhgzEQdSjDHGGGMm4kCKWZVUKkV8fDykUqm1i8L+wm1iW7g9bAu3h22xhfbgweaMMcYYYybiHinGGGOMMRNxIMUYY4wxZiIOpBhjjDHGTMSBFGOMMcaYiTiQYi3i5MmTGDVqFPz8/CASifDll19qrSciLFmyBO3atYOTkxOio6Nx+fJl6xT2IfDuu++iT58+cHV1Rdu2bTF69GhcvHhRK01VVRWmT58Ob29vuLi44MUXX0RRUZGVSvxg27hxI0JDQ4VJBSMiIvDNN98I67ktrGvVqlUQiUSYPXu2sIzbpGUtXboUIpFI69W1a1dhvTXbgwMp1iIqKioQFhaGjz76SOf6NWvWICkpCZs2bUJGRgacnZ0xbNgwVFVVtXBJHw6pqamYPn06fvrpJ6SkpKC2thZDhw5FRUWFkOatt97CwYMHsWfPHqSmpuLmzZt44YUXrFjqB1dAQABWrVqFrKwsZGZmYvDgwXj++eeRk5MDgNvCmk6fPo2PP/4YoaGhWsu5TVpeSEgIbt26JbzS0tKEdVZtD2KshQGg/fv3C38rlUry9fWltWvXCstKSkpIKpXSzp07rVDCh8/t27cJAKWmphKR6v23t7enPXv2CGnOnz9PACg9Pd1axXyoeHp60qeffsptYUXl5eXUuXNnSklJoaioKJo1axYR8flhDfHx8RQWFqZznbXbg3ukmNXl5uaisLAQ0dHRwjJ3d3eEh4cjPT3diiV7eJSWlgIAvLy8AABZWVmora3VapOuXbuiffv23CYWplAokJycjIqKCkRERHBbWNH06dPx7LPPar33AJ8f1nL58mX4+fnhkUcewaRJk3Dt2jUA1m8Pfmgxs7rCwkIAgFwu11oul8uFdcxylEolZs+ejSeffBI9evQAoGoTBwcHeHh4aKXlNrGcX3/9FREREaiqqoKLiwv279+P7t27Izs7m9vCCpKTk/HLL7/g9OnTDdbx+dHywsPDsW3bNgQHB+PWrVtISEhAZGQkzp07Z/X24ECKsYfc9OnTce7cOa3xBqzlBQcHIzs7G6WlpfjPf/6DV199FampqdYu1kOpoKAAs2bNQkpKChwdHa1dHAZg+PDhwv9DQ0MRHh6OoKAg7N69G05OTlYsGQ82ZzbA19cXABrcYVFUVCSsY5YxY8YMHDp0CMePH0dAQICw3NfXFzU1NSgpKdFKz21iOQ4ODujUqROeeOIJvPvuuwgLC8MHH3zAbWEFWVlZuH37Nh5//HFIJBJIJBKkpqYiKSkJEokEcrmc28TKPDw80KVLF1y5csXq5wgHUszqOnbsCF9fXxw7dkxYVlZWhoyMDERERFixZA8uIsKMGTOwf/9+fP/99+jYsaPW+ieeeAL29vZabXLx4kVcu3aN26SFKJVKVFdXc1tYwZAhQ/Drr78iOztbePXu3RuTJk0S/s9tYl337t3D1atX0a5dO6ufI3xpj7WIe/fu4cqVK8Lfubm5yM7OhpeXF9q3b4/Zs2cjMTERnTt3RseOHbF48WL4+flh9OjR1iv0A2z69OnYsWMHDhw4AFdXV2Ecgbu7O5ycnODu7o7Y2FjExcXBy8sLbm5umDlzJiIiItCvXz8rl/7Bs3DhQgwfPhzt27dHeXk5duzYgRMnTuDIkSPcFlbg6uoqjBdUc3Z2hre3t7Cc26RlzZkzB6NGjUJQUBBu3ryJ+Ph42NnZYcKECdY/Ryx+XyBjRHT8+HEC0OD16quvEpFqCoTFixeTXC4nqVRKQ4YMoYsXL1q30A8wXW0BgLZu3SqkuX//Pr355pvk6elJMpmMxowZQ7du3bJeoR9gr732GgUFBZGDgwO1adOGhgwZQkePHhXWc1tYn+b0B0TcJi0tJiaG2rVrRw4ODuTv708xMTF05coVYb0120NERGT5cI0xxhhj7MHDY6QYY4wxxkzEgRRjjDHGmIk4kGKMMcYYMxEHUowxxhhjJuJAijHGGGPMRBxIMcYYY4yZiAMpxhhjjDETcSDFGGOMMWYiDqTYQ2/gwIEQiURYunSptYtiVZWVlVi8eDG6desGJycniEQiiEQiZGdnt3hZli5dCpFIhIEDB7Z43sw2WeqY2LZtG0QiETp06GCV7a0pMjISIpEIGRkZZtunUqlESEgI7O3tcfHiRbPt15ZxIMV0Un9oiUQiyGQy3Lx5U2/avLw8Ie2JEydarpDMrGJiYpCYmIgLFy5AJBJBLpdDLpfD3t7eqO3VAanmSyKRwNPTEx06dMDQoUMxf/58pKWlWbgmrcuJEyewdOlSbNu2rcXz/uGHH4S2+s9//mP0dsuXL4dIJIK9vT2KioosWEJmKXv37kVaWhpGjBiB8PBwANqf+019qQNJsViMxYsXo66uDvPmzbNiDVsOB1KsUffv30dCQoK1i8Es6MKFCzh06BAAYNeuXaisrERhYSEKCwsREhLSpH3Z29sLQZiPjw9qamqQn5+PlJQUrFmzBpGRkejevTtSU1P17sPHxwfBwcFo3759s+rVGpw4cQIJCQlWCaSefPJJBAcHAwC2bNli1DZEJJR15MiRkMvlliqelofpmLC02tpazJ8/HwC0euJdXFyEc7f+S83Z2Vnn+jZt2ghpxo0bh+7du+Orr77CyZMnW6xe1sKBFDPKli1bcOnSJWsXg1nIr7/+CgDw9vbGuHHjmrWv/v37C0FYYWEhKioqUFlZiR9++AFxcXFwc3PD+fPnMWjQIGzatEnnPmbMmIELFy7gs88+a1ZZWONiY2MBAEePHjXY86yWmpqK33//HQDw2muvWbRsmviYMJ+9e/fi6tWr6N27N/r06SMsnzNnjta5q/lqLM3p06eFNGKxGK+//joAYM2aNS1XMSvhQIoZFBgYiNDQUNTV1eH//u//rF0cZiGVlZUAVL9ILcHJyQn9+/fH+vXrcfbsWYSGhoKIMGPGDJw6dcoieTLjvPLKK5BIJFAoFPj3v//daHp1z1W7du0wYsQISxePWYD6B8zLL79ssTwmTJgAOzs7fPPNN7h27ZrF8rEFHEgxg8RiMd59910Aql8xP//8c5O21xw/lZeXpzddhw4dIBKJGlzeqL99fn4+Xn/9dbRv3x6Ojo549NFHsWjRIlRUVAjbnDt3Di+//DICAwPh6OiIzp07IzExEbW1tY2Wt6amBqtWrUJoaCicnZ3h6emJp59+Gt98802j2547dw7Tpk1D586dIZPJ4OLigtDQULzzzjsoLi7WuU39AbR79+7F0KFD0bZtW4jF4iYPgK+qqsL777+P/v37w9PTE46OjggKCsIrr7yic9C4Ov+//e1vAID8/HytcQ/q5eYUFBSEAwcOwNnZGQqFQmeA3tjA4iNHjuCFF15AQEAAHBwc4ObmhkceeQRDhw7FunXrcOfOHZ3bVVRU4L333kNUVBR8fHzg4OCAgIAAREVFYf369Q3G+2jeiFBbW4v169ejd+/e8PDw0DkmsCnHgPrYVl82T01NbTDuRNflvry8PMyePRshISFwcXGBTCZD165dMWvWLJO+sORyOUaOHAkA2Lp1q8G0ZWVl2Lt3LwDg1VdfhZ2dHQDgp59+wvz58xEZGYmgoCA4OjrCw8MD/fr1w+rVq3Hv3j29+9QcX3n79m3ExcWhS5cukMlkEIlEQjpDx0RlZSV27tyJV155BT179kSbNm0glUrh5+eH0aNHG3X+qqWkpGD48OFo06YNnJycEBISgsTERFRVVRm9j/rKy8uxatUqREREwMvLC1KpFIGBgRg/fjzS09P1bnf37l0sWbIEjz/+ONzc3ODg4ABfX1+EhobijTfewLFjx5pclkuXLgnH2vjx402uU2PkcjkGDx4MpVKJf/3rXxbLxyYQYzrEx8cTAAoKCiIioqioKAJAgwYNapA2NzeXABAAOn78uN51ubm5evMLCgoiALR161a92+/du5c8PDwIALm5uZGdnZ2wLjIykmpqaujQoUMkk8kIALm7u5NIJBLSxMTE6MxbXbeFCxdSZGQkASCJRCLkpX7Fx8frLf/q1atJLBYLaWUyGTk4OAh/t2vXjn755Re973NUVBTFxcURABKJROTp6Ul2dnYG86zv+vXr1KNHDyFPe3t7cnd3F/4Wi8WUlJSktc3atWtJLpeTm5ubkEYulwuvf/zjH0bnr34fo6KijEo/ffp0oWxXr17VWqf5vtSXkJCg1S4ymYxcXFy0ltU/DomIsrKyKDAwUOv98PLyIqlUKiz75z//qbNO8+fPp/79+wvHhqenJ4lEIq18mnoMXLt2jeRyOTk7Owvtpfney+VySk5O1irP559/rlVeqVRKTk5Owt+urq505MgRo95/TQcPHhT2cerUKb3pNm/eLKS7dOmSsLx+e3h6emot6969OxUVFencpzrNJ598QnK5nACQo6Mjubq6kuZXlKFjYuvWrcJ+RCIRubu7C58D6tfbb7+tM3/1tkFBQfTRRx8JnxkeHh4kkUiE7Xv16kV37twxuL0u//3vfykgIEDYj52dnVA3dXlXrlzZYLuCggJq37691vGq/lxQLzP2XNOUlJREACg4OLhJ2xnzOVjf8uXLCQD17du3iaVsXTiQYjrVD6TS09OFE+mbb77RSttSgZSHhwcNGTKEcnJyiIiosrKSkpKShA+WRYsWkbu7O8XExFBeXh4REZWXl9M777wj7CMlJaVB3uovS3d3d5JKpbRp0ya6f/8+Eam+7F566SVh+wMHDjTY/tNPPyUA5OLiQitWrKBbt24REVFdXR1lZmbS4MGDCQAFBARQeXm5zvdZHQjMnz+fbt++TUREVVVVQj0aU1dXR+Hh4UI9Pv/8c6quriYioqtXr9LIkSOFD+3Dhw832L6xLwNjNDWQOnz4sPC+btmyRWudvi/NvLw8IViJi4ujGzduCOtKSkro1KlT9Oabb1JmZqbWdteuXSMfHx8CQIGBgZScnEwVFRVERKRUKiknJ4eWLl1Kn3/+uc46ubi4kIuLC23dupUqKyuJiKi4uJj+/PNPIjLPMdDY+3b06FESi8UkkUho3rx5lJubS0qlkpRKJV24cIHGjh0r/MjIz883uK/66urqyM/PjwDQlClT9Kbr16+f8MNF06hRo2jXrl1CvYlU5+e+ffsoODiYANCYMWN07lN9DLi4uFBwcDAdO3aMFAoFERFdvHhRSGfoffryyy9pzpw5lJaWJrQrEdHNmzcpISGB7O3t9Z6/6mNfJpORvb09jR07lq5duybUYePGjULwqqsOhs6dmzdvUtu2bQkAvfDCC5SZmUk1NTVERFRUVESLFy8WgrX9+/drbRsbG0sAqEOHDvTdd99RXV0dEanaKi8vjzZu3Ejz58/X+Z4aov48mzx5cpO2MyWQOnr0qPDjo/5x/yDhQIrpVD+QIiIaM2YMAaCePXuSUqkUlrdUIBUSEkJVVVUNtp08ebKQ5umnn9Yqm5q6pyk2NrbBOvWXJQD617/+1WC9QqGgAQMGCGXQVFZWJvRcffvttzrrVltbS0888YTOHg/1+6wODEyVnJws7EdXj0Rtba0QaPXo0aPBemsEUjdu3BDK/M4772it0/eluWvXLgJAXbp0aVLZXn75ZQJA3t7ewpekMTSPja+++kpnGnMdA4beN4VCQZ07dyYA9PHHH+tN99xzzxEAmjVrVmNVa2DhwoVCQKPrS++3334T3ott27YZvd/r16+TVColkUikM8BT79PNzY0KCgr07sfYgFOXtWvXEgAaMmRIg3WavVlRUVFCEKdJHSgDoJ9//lnn9rrOnddee40A0MSJE/WW7b333iMAFBYWprW8W7duBIB27NhhXCWNpO6VXbduXZO2MyWQ+uOPP4Ttvv/++yaWtPXgMVLMaCtXroSdnR2ys7Oxc+fOFs//rbfeglQqbbB82LBhwv8XLFigNa6ifpqzZ8/q3X9gYCCmTJnSYLlYLMaiRYsAADk5OcIdboBqTFNJSQl69eqlVQ5NEokEEyZMAKAa26OLWCwWbkc2xa5duwAAERERGDp0qM4yxMfHA1CN49Gsg7V4eXkJ/9c3pqk+Dw8PAKoxJ5rj4gypqKgQ3p8FCxYgMDCwaQUFEBISglGjRulcZ65jwJCTJ0/i8uXL8PHxwdSpU/Wme+WVV0zOQ30H3r1797Bnz54G69Xjp1xdXTF27Fij9+vv74+wsDAQEX788Ue96SZPnoyAgIAmlto4zz77LAAgPT0dCoVCb7pFixZBLG74tThlyhShbMnJyUblWVVVhR07dgCAwXNb3WZnzpzRGqOnPtZv3bplVH7GICJhf5rTFViKl5eX8H4ac0doayWxdgFY69G1a1dMmTIFn376KRYvXoyxY8caPVmjOfTt21fncs05TjRv5dWV5u7du3r3rx5YrEtkZCQkEgnq6uqQmZmJxx57DIBqQkMAOH/+PHx9ffXu+/79+wBUg7l16dSpE9q2bat3+8ZkZmYCAKKjo/WmGTRoEOzs7KBQKLTq0Jr07dsXPj4+uHXrFsLDw/HGG28gOjoawcHBetsuMzNTuNFAXzDUmCeffFLvOnMdA4ao8ygtLYWfn5/edDU1NSbn0alTJwwYMAAnT57Eli1btH5U1NXVYfv27QCA8ePHQyaTaW2rVCqRnJyM5ORkZGdn448//tA5OPv69et68zf0HhujqKgIGzZswNGjR3Hp0iWUlpY2CJoqKytx9+5d+Pj4NNheIpEgMjJS577FYjEGDhyIzz//XDjXGpOVlSW8B7p+3OiSn58vfFaNHDkS6enpWLBgAS5cuIAXXngB/fv3h5ubm1H70qWkpAR1dXUAtH/IWIpYLIa7uzvu3r2LP/74w+L5WQsHUqxJli5dii+++AK///47Nm3ahJkzZ7ZY3q6urjqXSyQSo9MYunPP399f7zpHR0d4e3ujqKgIt2/fFparf2VVVVUZdVePepqB+poTRAEQytRYHXx8fBrUwVo0e6G8vb2N2sbDwwM7d+7ExIkTkZOTIxx/7u7uGDBgAMaNG4eYmBitAF9zDpygoCCTymqofcx1DBiizqO2ttaomcTVQVtTxcbG4uTJk0hLS8Ply5fRuXNnAMDhw4eF91E975RaZWUlRo4ciePHjwvLHBwc4OXlJbTDnTt3UFtba7AXsTnnQHp6OkaMGIGSkhJhmfqORpFIBIVCIdw1WVFRoTOQ8vHx0dnjraY+t4w9dzR7YIyd/V3z2Jg7dy7OnDmD3bt345NPPsEnn3wCkUiEkJAQPPPMM5g6daowmaqxNI9PQ3U1JycnJ9y9e7dZdz3aOr60x5rE399f+PJKTEw0eFvzw0D9izcmJgakGnNo8KVvCgj1beQPkzNnzgj/f/TRR43eLjo6Grm5ufjss8/w6quvonPnzigtLcXBgwcxefJk9OrVCzdu3BDS6+upagpD7WOuY8AQdR7h4eFG5UFEJtXzpZdeEno8NKdCUP8/JCREeJyI2ooVK3D8+HE4OTnhn//8J/Lz81FVVYU///xTmKxRvY2hcpl6DtTV1WHChAkoKSlBz549cfjwYZSVlaG8vBxFRUUoLCzETz/9JKQ39b1pKs3esPv37xvVZppTO9jb22PXrl3Izs7GkiVLMHjwYMhkMpw7dw7r1q1DSEgI1q9f36Qyaf5gMdQ7b07qH0zG/lhqjTiQYk22YMECeHp64vbt242eyJq9RYZ+kZSWlpqtfKbS/PKtr7q6Gn/++ScA7V/O6ks5plxKMSd1mQxdOlF/uWmmt6avv/5a+H9TH0Tr7OyMyZMnY9u2bbh06RKuX7+O1atXw9HRUaunCoDW5TZLtFNLHAMtdZzJZDJhLNdnn30GhUKB27dvC22layZz9ZihJUuWYPbs2Wjfvn2D4FWzV9Dc0tPTkZ+fDzs7Oxw6dAjDhw9v0DNtTP7FxcXCpVFd1J8Pxp475jruwsLCkJCQgGPHjqGkpATfffcdBgwYAIVCIfRaGUs95xpg/LjE5rh//77wud8SY7KshQMp1mSenp5YsGABAGD9+vUGr317enoK/y8oKNCZ5tKlS1pd8taSmpqq99fqqVOnhLEFvXv3Fparx3VkZWWZdVBoU6nLZGiCvhMnTgh10DeWrKXk5+cLk01GRUUJDzw1lb+/P+bNm4e3334bgGpSRbXevXvDwcEBAHDw4MFm5aNLc48B9WBcQz0l6jwKCwuNHqNjKvWluxs3buDIkSPYvn07amtrYW9vj8mTJzdIrz6ve/XqpXN/eXl5uHLlisXKq86/TZs2ei9tf/fdd43up66uTu8s+0QkPBtS8/w3pE+fPmY/7iQSCYYMGYKvv/4aUqkURGRU3TR1794dAITH/FhSbm6u8P9u3bpZPD9r4UCKmWTmzJkICAhAeXk5li9frjeds7OzcNlGPSNyfStWrLBIGZvq2rVrOh+RoVQqsXLlSgCqDyHNQdpjx46Fh4cHamtrERcXZ/DLUKlUWixgVM9QnJ6ejqNHjzZYX1dXh2XLlgEAevTogR49elikHMa4du0annvuOVRUVMDOzq5J7V9dXW1wvZOTEwBo3Xklk8mE92fVqlV6A3pTNfcYUPcQGDo2Bg0ahE6dOgFQ3b1qqOcEaF5vQ58+fYRjfOvWrcJlvVGjRunsVXB3dwcAvT0j6h9dlqLOv6ioSOdYpOvXryMpKcmofa1YsQJKpbLB8n//+9/CcRMTE2PUvpydnTFx4kQAwOrVqxuddb5+mxk61qVSqXApVNddhoYMGDAAAJr8lApTZGRkAFDd7NPU8VytCQdSzCROTk7C40sa+7WlvlSwZcsWbNiwQRgIW1BQgKlTp2LXrl0N7gKyBnd3d/z973/HJ598InRHFxQUYMKECcJA2sTERK1tPDw88P777wNQXeJ49tlnkZGRIXwYK5VKnD9/HuvXr0dISAgOHTpkkbK/+OKLwjiUcePGYceOHcLA+tzcXLz44ovCoyis8RDRqqoqpKenY+7cuQgNDcXZs2chFouxcePGJt2ttXr1agwfPhzbt2/XuoxZXV2N3bt3Y+3atQD+d7u72ooVK+Dj44M///wTTz75JHbv3i0ch0SEc+fOYe7cucKdaU3R3GNAHdTm5OTonR5AIpFg06ZNkEgkSEtLw4ABA3Ds2DGtmyfUN4D06dMHGzZsaHI9NKl7pfbt24ecnBytZfU988wzAFTnxr59+4Rez9zcXEycOBG7d+/W6pk2t6eeegrOzs4gIowbN054uLpCocCRI0cM3o2rSSaTIS0tDRMnThSOraqqKmzevBl///vfAQDPP/+83ruHdVm5ciX8/PxQXFyMiIgIbN++HeXl5cL6P/74A3v37sWYMWOEz0m1oKAgLFy4ED/99JNWUHXlyhVMmjQJlZWVEIvFeqfc0Ed9GT0zM9PgVBDmoA6koqKiLJqP1Zl9Zir2QNA1IWd9dXV11LVrV2HCNeiYkJNINbt49+7dhTRisViYwNDe3p527txp1ISc+ib0PH78uJBGH0OT5mk+Iuapp54SylX/MReLFi3Su/+NGzdqPQ5EKpWSt7e3MKOy+lV/5uzmTDJY3/Xr1ykkJETIy8HBQesxN2KxmD744AOd25pzQs76jzqp//gW/DWx6cmTJ/XuS9/7ojmBKQBycnIiLy8vrUcBdevWTWuGbbWsrCzy9/cX0tnZ2ZG3tzc5OjoKy/Q9IsaYSQhNPQZqa2uF2b8BkKenJwUFBVFQUBDt2bNHK+3+/fu1Hi9ib29P3t7eWo+NAUCJiYmNlteQ4uJirbr4+/sLM2vXl5eXJzzaBX/NYq35aKKVK1cafB8NfXZoMnSubNy4Uav+Li4uQrv6+PjQV199pfdzRPPY//DDD4VjydPTU6vtwsLCqLi4uEHejZ07v/32G3Xp0kXrPPTy8hIeDaR+RUdH63xf1Nt4enpqHasikajB8WqM6upqatOmDQGgo0ePGr2dOl9jJ+RUKBTCo3G+/PLLJpezNeEeKWYyOzs74ZKXIS4uLkhLS0NcXBw6duwIiUQCe3t7oZfEkg/ObAoHBwccO3YMK1euRHBwMKqrq+Hu7i6MSTB0CfONN97AxYsXMWfOHISFhUEqlaKkpAQuLi7o3bs3Zs6ciZSUlAa/Os3J398fmZmZeO+999CvXz84OTmhsrISgYGBmDx5MrKysvCPf/zDYvmrqW/RLyoqQnFxMezs7BAUFITo6GjMmzcPaWlpOHfunN45ewyZNm0aNm/ejAkTJqBHjx6QyWQoKyuDp6cnIiMj8f777+OXX37ROZ/T448/jvPnz2PVqlXo168fXF1dUV5ejjZt2mDgwIF47733hEsxpjD1GJBIJDh27BimTp2Kjh07oqKiAvn5+cjPz29wV+zo0aNx5coVxMfHo2/fvnBxcUFJSQmkUinCwsIwdepU7N+/H3PnzjW5HoDqDqvRo0cLf2s+oLi+oKAgZGZmIjY2VpjjytHRESNHjsSRI0ewcOHCZpXFGG+88Qa+/vprDBw4EC4uLqirqxPuMD5z5ozRc6ZNnz4dR44cwTPPPAOxWAyxWIyuXbti2bJlSE9PN+nOs27duuHs2bP4+OOPMXToUPj4+KCsrAxEhE6dOmHs2LHYvHkzdu/erbXd0aNHsXDhQkRGRiIwMFDoQe3UqROmTJmC06dPY/bs2U0uj4ODgzBH2BdffNHk7Y2VmpqK69evw9/fX3go9oNKRNRC94IyxhhjzOp+//13dOnSBTKZDLdu3YKzs7PZ83jttdewdetWJCQkYMmSJWbfvy3hHinGGGPsIfLII48gNjYW5eXl+Oijj8y+/4KCAnzxxRdo06aNSb1mrQ0HUowxxthDZtmyZXBxccG6deuMfm6lsVauXImamhosXbq0WY+0aS34ETGMMcbYQ0Yul2P79u3Izs5GXl4eQkJCzLJfpVKJ9u3bIzExEdOmTTPLPm0dj5FijDHGGDMRX9pjjDHGGDMRB1KMMcYYYybiQIoxxhhjzEQcSDHGGGOMmYgDKcYYY4wxE3EgxRhjjDFmIg6kGGOMMcZMxIEUY4wxxpiJOJBijDHGGDPR/wNAiWKq7NedCgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]\n", + "y = abs_error\n", + "y2 = abs_error_dice\n", + "y3 = [0, 0]\n", + "y4 = abs_error_mcmc\n", + "y5 = abs_error_smc\n", + "\n", + "fig, ax = plt.subplots()\n", + "\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=20)\n", + "plt.xlabel('xlabel', fontsize=18)\n", + "plt.ylabel('xlabel', fontsize=18)\n", + "plt.rc('legend', fontsize=15)\n", + "\n", + "ax.set_xlabel(\"Number of Discrete Variables (T)\")\n", + "ax.set_ylabel(\"Absolute Error\")\n", + "ax.plot(files, y, marker = \"o\", color=\"orange\", linestyle=\"dashdot\")\n", + "ax.plot([15], [y[-1]], marker=\"X\", markersize=20, color=\"orange\")\n", + "ax.plot(files2, y2, marker = \"o\", color=\"blue\")\n", + "ax.plot([5, 10], y3, marker = \"o\", color=\"green\")\n", + "\n", + "ax.plot([10], [0], marker=\"X\", markersize=20, color=\"green\")\n", + "ax.plot(files2, y4, marker=\"o\", linestyle=\"dashed\", color=\"pink\")\n", + "ax.plot(files2, y5, marker=\"o\", linestyle=\"dotted\", color=\"red\")\n", + "# ax.set_yscale(\"log\")\n", + "\n", + "ax.legend([\"Stan\", \"Stan Timeout\", \"HyBit\", \"Psi\", \"Psi Timeout\", \"WebPPL MH\", \"WebPPL SMC\"])\n", + "fig.savefig(\"or_error.pdf\", bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxQAAAGzCAYAAAC2BVHuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQK0lEQVR4nOzdd3xTVf8H8M9N996FAm2hLC2jULBYoIDIRqZMZePCAYg8+uNRBMcjKkPAgaBQVNwMoaDIFBDKKGVv6KIUKF3pTJsm5/dHSWho2qZN2nR83q9XXpZzz7nne0Ok95t7hiSEECAiIiIiIqoEmbkDICIiIiKi2osJBRERERERVRoTCiIiIiIiqjQmFEREREREVGlMKIiIiIiIqNKYUBARERERUaUxoSAiIiIiokpjQkFERERERJXGhIKIiIiIiCqt1iYUJ0+exMcff4yRI0eiSZMmkCQJkiSV2279+vUICQmBo6Mj3N3dMWjQIBw5cqTMNocPH8agQYPg7u4OR0dHhISE4Pvvvy+zTWJiIqZOnYpGjRrB1tYWrVq1woIFC6BQKEptk5eXh3fffRetWrWCra0tGjVqhGnTpuHWrVvlXhcRERERkTlIQghh7iAqY/jw4di6dWuJ8rIuZ/bs2VixYgXs7OzQr18/KBQK7N27F0IIbNy4EcOHDy/RZtOmTRg7dizUajV69OgBT09P7N27FxkZGXjjjTewZMmSEm2uX7+O0NBQpKSkoG3btggMDERUVBRiYmLQrVs37N27FzY2NjptFAoFnnjiCRw9ehQ+Pj4ICwtDXFwcjh8/Di8vLxw9ehQBAQEVf6OIiIiIiKqSqKU+/vhjMX/+fLFt2zZx+/ZtYWNjI8q6nN27dwsAwsPDQ1y9elVbfuTIEWFtbS1cXV1Fenq6TpvU1FTh7OwsAIhNmzZpy+/cuSNatGghAIj9+/eX6Ktbt24CgJg5c6a2TKlUihEjRggAYsGCBSXavP322wKACA0NFVlZWdrypUuXCgCiZ8+e5b8pRERERETVrNYmFA8rL6EYOHCgACA+++yzEsdmzpwpAIglS5bolH/yyScCgBg2bFiJNps3bxYAxFNPPaVTfuzYMQFAeHt7C4VCoXPszp07wsrKSri5uQmlUqktz8/PFy4uLgKAiI6OLtFX+/btBQARFRVV6vUREREREZmDZfU/E6l+eXl52LdvHwBg1KhRJY6PGjUKK1euREREBN544w1t+Y4dO0ptM3jwYNja2mLPnj1QKBSwtbXVaTNkyJASw5oaNGiAsLAw7Nu3D//++y969eoFoGiOhlwuR/PmzdGxY0e98Z09exYRERHo1KmTwdetVquRlJQEJycng+aXEBEREREBRdMIsrKy0KhRI8hkZU+7rhcJxZUrV5Cfnw8vLy80adKkxPHg4GAAwNmzZ3XKz5w5o3O8OGtra7Rt2xZRUVG4evUq2rdvX24bTfm+fftw9uxZbUJhSBt98ZUnKSkJvr6+FWpDRERERKRx8+ZNvffPxdWLhCIhIQEASn0zHBwc4OrqivT0dGRlZcHJyQmZmZmQy+VltmvSpAmioqIQHx+vTSjK60tTHh8fb3B8+trok5+fj/z8fO2fxf0J6jdv3oSzs3OZbYmIiIiINDIzM+Hr6wsnJ6dy69aLhCI7OxsAYG9vX2odBwcHZGRkaBMKTZuy2jk4OAAAsrKyDO7LVG30WbRoEd57770S5c7OzkwoiIiIiKjCDBk2X2v3oaCS5s2bB7lcrn3dvHnT3CERERERUR1XL55QODo6AgByc3NLrZOTkwMA2sc6mjaadvq+4X+4jSF9maqNPjY2NiUmghMRERERVaV68YTCz88PQNHu1frk5OQgIyMDbm5u2pt2Z2dnuLi4lNlOU+7v729wX6ZqQ0RERERUE9SLhKJ169awsbHBvXv3cOvWrRLHo6OjAUA7sVojKChI53hxSqUS58+fh62tLVq1amVQm9L6qkwbIiIiIqKaoF4kFHZ2dujduzcA4Pfffy9xfOPGjQCK9o4obvDgwTrHi9u+fTsUCgX69Omj3YOieJuIiAidFZcA4O7duzh06BDc3NzQrVs3bXm3bt3g4uKCGzdu4PTp0wbHR0RERERkbvUioQCAOXPmAAA+/PBDXLt2TVseGRmJ1atXw9XVFdOnT9dp89xzz8HZ2Rlbt27F5s2bteXJycl48803AUBnIzwACAkJQbdu3ZCcnIy33npLW15YWIiXX34ZSqUSM2fOhJWVlfaYtbU1Xn31VQDAK6+8op0zAQDLli3D2bNn0bNnzwptakdEREREVB0kodmsoJbZsWMHPvjgA+2fjx8/DiEEunTpoi2bP3++9okBAMyePRsrVqyAvb09+vbti4KCAuzevRtCCGzcuBHDhw8v0c+mTZswZswYCCHQq1cveHh4YM+ePcjIyMCcOXOwdOnSEm2uXbuG0NBQpKamol27dggMDMSJEycQExODrl27Yt++fSUmTysUCvTq1QvHjh2Dj48PwsLCEB8fj2PHjsHLywtHjx5FQEBAhd6jzMxMuLi4QC6Xc9lYIiIiIjJYRe4ja21CsX79ekydOrXMOuHh4ZgyZUqJdl988QUuXboEa2trPP7445g/fz66du1a6nkOHz6MDz/8EEePHkVBQQECAwPx6quvYvLkyaW2uXnzJt59913s3LkTaWlp8PPzw/jx4/Hf//5XZ4hUcXl5eVi0aBF++ukn3Lx5E+7u7hgwYAA++OCDcnco1IcJBRERERFVRr1IKKh8TCiIiIiIai+VWuB4bBqSsxTwdrJFSDN3WMjK32jOFCpyH1kv9qEgIiIiIqpNdp6/jfciLuK2XKEt83GxxYIhgRjQ1seMkZXEhILKJYSAUqmEWq02dyhUx8lkMlhZWUGSqufbFyIioppo5/nbmLEhGg8PI7ojV2DGhmismhBco5IKJhRUqtzcXMjlcmRlZUGlUpk7HKonLCws4OTkBBcXF9jb25s7HCIiomqlUgu8F3GxRDIBAAKABOC9iIvoG9iw2oY/lYcJBemVlZWFxMREWFlZwdXVFQ4ODpDJZPzmmKqMEAJqtRo5OTnIzMxERkYGmjRpot29noiIqD44HpumM8zpYQLAbbkCx2PTENrco/oCKwMTCiohNzcXiYmJcHZ2RqNGjZhEULVycHCAl5cXkpKSkJiYCH9/fz6pICKieiM5q/RkojL1qkO92diODCeXy2FlZcVkgsxGkiQ0atQIVlZWkMvl5g6HiIio2ng76d9eoLL1qgMTCtIhhEBWVhacnZ2ZTJBZSZIEZ2dnZGVlgatbExFRfRHSzB0+LrYo7S5MQtFqTyHN3KszrDIxoSAdSqUSKpUKDg4O5g6FCPb29lCpVFAqleYOhYiIqFpYyCQsGBKo95gmyVgwJLDGTMgGmFDQQzRLw8pk/GiQ+VlYWAAAlywmIqJ6ZUBbH6yaEAwrC92koaGLbY1bMhbgpGwqBYc7UU3AzyEREdVXvR9poP357UGPom1jl2rdKbsimFAQEREREdUwF5LkUKoE3B2s8VxYsxr9JRvHtRARERER1TAn49MBAMF+bjU6mQCYUBARERER1TiahKKTv5uZIykfEwoiIiIiohpECIGoWpRQmGwOxbVr1/D9998jMjISd+7cQV5eHv7++2+0aNFCW+f8+fNISEiAg4MDevbsaaquiYiIiIjqjMT0PNzLyoelTEL7Ji7mDqdcRicUarUab775JlasWAG1Wq3dgEqSJBQUFOjUTUhIwFNPPQVLS0vExsaicePGxnZPVGfk5OTghx9+wLZt23DmzBmkpqZCCAFnZ2c0bdoU7dq1Q2hoKAYMGABfX19zh0tERERVJDqh6OlEm8YusLWyMHM05TN6yNOLL76Izz77DCqVCo0aNcKoUaNKrTto0CA0a9YMKpUKGzduNLZrojojMjISgYGBmDFjBv766y8kJSUhPz8fBQUFSElJQVRUFMLDw/HCCy/gscceK9G+V69ekCQJvXr1qv7giYiIyKS08yf8av5wJ8DIhGLv3r1Yu3YtAOC///0v4uLi8Ntvv5XZZvTo0RBCYN++fcZ0TVRnXL16Ff3790dCQgIAYOjQofj+++9x9OhRREdHY9euXVi8eDH69esHKysrM0dLREREVa02TcgGjBzytGbNGgBFTx4+/PBDg9qEhIQAAC5cuGBM10R1xttvv42srCwAQHh4OKZMmVKiTt++fTF37lzcu3ev3KSdiIiIaq+c/EJcup0JAAj2dzVvMAYy6glFZGQkJEnC9OnTDW7TpEkTAMCdO3eM6ZqoTlCpVNixYwcAoHPnznqTieK8vLzwyiuvVENkREREZA5nbmZALYDGrnbwcbEzdzgGMSqhSE5OBgA0bdrU4DaaIRuFhYXGdE1UJ9y7dw95eXkAoLMimqGmTJkCSZJw4MABAMCBAwcgSZLO6+H/P3NycvDrr7/iueeeQ4cOHeDi4gIrKyt4eXmhZ8+eWLJkCbKzs8vsV3PuhQsXAgBOnDiB8ePHo0mTJrCxsUHjxo0xceJEXLp0qcLXREREVJ/VtuFOgJFDnhwcHJCRkYF79+4Z3CYxMREA4O7ubkzXVM+o1ALHY9OQnKWAt5MtQpq5w0JWs3eNNIS1tbX25+q6+R48eLA2ASkuJSUFBw8exMGDB/HVV1/hzz//xCOPPFLu+b766ivMmjVL50uCpKQkbNiwAZs3b8Zff/2FHj16mPQaiIiI6qratP+EhlEJRUBAAKKjo3Hx4kX07dvXoDZ//fUXAKBNmzbGdE31yM7zt/FexEXcliu0ZT4utlgwJBAD2vqYMTLjubu7w9/fH/Hx8Thz5gw++eQT/Oc//4FMZtjDw//973+YO3cupk6diqioKHTu3Bnh4eE6dYonLUDR08F27dph6NCh6Ny5Mxo1agQhBOLj47Flyxb89ttviI2NxfDhw3H69GnY2tqW2v/ff/+N48ePo127dpg1axbatWuHvLw8bNmyBStWrEBubi4mTpyIa9eulYiDiIiIdKnVQrtkbL1JKPr164eTJ0/iyy+/xGuvvVbuTdDFixexfv16SJKEQYMGGdM11RM7z9/GjA3REA+V35ErMGNDNFZNCK71ScVrr72GuXPnAgD+7//+D19//TWGDh2Krl27IiQkBM2aNSu1bePGjdG4cWM4ODgAKHpq2LZt2zL7Cw8PR8uWLUuUd+nSBWPGjMH06dPRv39/XLlyBT/++GOZc6SOHj2KQYMGYcuWLToJQ1hYGDw8PPDOO+8gISEBO3bswIgRI8qMi4iIqL67fi8bWYpC2FlZ4JGGTuYOx2BGzaGYOXMmHBwccOPGDbz00ktlzovYvXs3+vXrB4VCAXd3dzz//PPGdE01gBACuQWFVfbKUiixYNuFEskEAG3Zwm0XkaVQVmkcms0aq8rrr7+OadOmaf8cFxeHlStXYty4cQgICEDDhg0xbtw4REREmCQWfclEcX369MHQoUMBAH/88UeZdW1tbREeHq736cPMmTO15YcOHapcsERERPWIZv5EB19XWFoYvV1ctTHqCUWDBg3w9ddfY9KkSVi7di3+/vtvDB48WHt8xYoVEELg8OHDuHz5MoQQkMlkWL9+PRwdHY0OnswrT6lC4Lt/m61/AeBOpgLtFu6q0n4uvt8f9tZGbypfKplMhrVr12LcuHFYtmwZ9uzZo5Oc3717F7/++it+/fVXdO7cGb/88guaN29usv7v3buHjIwM5Ofna8u8vLwAAGfOnCmzbd++feHt7a33mJOTE1q2bIkLFy4gJibGZPESERHVVbVxQjZgZEIBAM8++yysrKzw4osv4ubNm1i9ejUkqWiy7LfffgsA2m9VHR0d8d133+kkHURUpG/fvujbty8yMzNx+PBhnDhxAlFRUTh48CDkcjkAICoqCmFhYTh58iR8fCo/1Ovw4cNYuXIl9uzZg7S0tFLrpaSklHme8iZtaxZf0OyzQURERKWLrq8JBQCMGTMGTz75JL766itERETg9OnTOt+wtmnTBkOHDsWsWbNK/TaTah87KwtcfL9/lZ3/eGwapoSfKLfe+qmPIaRZ1a0aZmdlUWXn1sfZ2RkDBw7EwIEDAQD5+fn46aef8MYbbyA9PR23b9/G/PnztQl7RS1cuBDvvfeeQXU1S9qWxt7evszjmnlVKpXKsOCIiIjqqbScAsSk5AAAOvq5mjeYCjLZOA4PDw/Mnz8f8+fPh1qtRlpaGlQqFdzd3bV7T1DdIklSlQ4FCmvpBR8XW9yRK/TOo5AANHSxRVhLrzqxhGxpbGxsMHXqVDRq1AgDBgwAAGzevBlr1qwxeDUojb1792qTiYCAAMydOxfdu3eHn58fHBwcYGlZ9Pf57rvv4oMPPjDthRAREVGpNE8nWno7wtW+dq2MWCV3gzKZDJ6enlVxaqpHLGQSFgwJxIwN0ZAAnaRCkz4sGBJYp5OJ4vr37w9fX1/cvHkT6enpSE1N1c51MNQ333wDAHBzc8PRo0dLbV/WMCgiIiIyvdq4/4RG7Zk+TvXSgLY+WDUhGA1ddPdCaOhiWyeWjK2oRo0aaX/WzFV6+OeyXLhwAQDwxBNPlJmMREVFVTJCIiIiqgzNE4rgWphQVN14FSITGdDWB30DG9bJnbIrIjc3FxcvXgRQNM/Cw8NDe0yz+VzxlZr00cxtysnJKbXOqVOncOzYMWPDJSIiIgMVFKpxJjEDQD1+QnHp0iW8/vrr6Ny5s3bOhIWFRZkvzVhtIkNYyCSENvfAsA6NEdrco84kE9nZ2ejSpQu2b98OtVpdaj21Wo3XXntNu1rS0KFDdZ5KaFZ8iomJKXOvCs0eFP/++y+uX79e4vi9e/cwceLESl0LERERVc7F25nIL1TD1d4KAZ4O5g6nwoy+q//444/x7rvvQqVSVfkGYER10fHjxzFkyBA0btwYw4cPR2hoKPz9/eHk5ISMjAycOnUK69atw7lz5wAALi4uJSZMd+3aFeHh4UhOTsacOXMwYcIEuLi4AACsrKzg7+8PAJg0aRIiIiKQk5ODnj174v/+7//QqVMnAMCRI0ewbNky3LlzB6GhoYiMjKzGd4GIiKj+0u4/4edm8DDmmsSohOL333/Hf//7XwBFE7HDwsIQFBQEV1fXCq8+Q1QfWVpaomHDhrhz5w5u3bqFL7/8El9++WWp9Vu2bImff/4ZTZs21SkfN24cFi1ahJiYGCxfvhzLly/XHvP390dcXBwAYNSoUZg6dSrCw8ORlJSEmTNn6pzHwsICn332GdLT05lQEBERVZPaPH8CMDKhWLFiBQCgcePG+PPPP9GuXTuTBEVUX9ja2uLWrVs4evQo9uzZg6NHj+LKlSu4e/cuFAoFHBwc0KhRIwQFBWHYsGF4+umnYW1dcik5R0dHHDlyBIsWLcKuXbsQHx+P3NxcvX2uW7cOvXv3xpo1a3D69GkUFBSgYcOG6NGjB1599VWEhIRg4cKFVXzlREREBBRtAB0VX7S6Ym2cPwEAkjBinJKzszNycnKwdu1aTJkyxYRhkSlkZmbCxcUFcrkczs7OBrVRKBSIjY1Fs2bNtBN9icyFn0ciIqrrbmXkodvH+2Apk3BuYX/YWVfvhrqlqch9pFHjkjQb1nXo0MGY0xARERER1Uua+RNtGjnXmGSiooxKKFq1agUASE1NNUkwRERERET1ycm4ouFOtXX+BGBkQjF58mQIIfDHH3+YKBwiIiIiovrjZELt3SFbw6iEYvr06QgLC8OaNWsQERFhqpiIiIiIiOq8nPxCXLpdtMdUbU4ojFrlycrKClu3bsXkyZMxYsQIjB07FmPHjkWrVq1gb29fbns/Pz9juiciIiIiqrXOJGZApRZo5GILHxc7c4dTaUZvbOfq6oqZM2fi6NGj+OWXX/DLL78Y1E6SJBQWFhrbPRERERFRrVTb95/QMHr3udmzZ6Nfv35ISUmBEKJCLyIiIiKi+kq7Q3YtTyiMekKxYcMGrFy5EgDg5OSEESNGcKdsIiIiIqJyqNUC0QkZAOp5QvH5558DAB555BHs378fDRo0MElQRERERER1WUxKNuR5SthZWeBRH8M2IK6pjHqMcPnyZUiShIULFzKZICIiIiIykGa4U5CvC6wsavfIHpPslK3Z4I7qDs5xoZqAn0MiIqqrouLqxvwJwMiE4pFHHgEA3LlzxyTBkPlZWBRt+c4VuKgm0HwONZ9LIiKiuqIubGinYVRCMXXqVAgh8PPPP5sqnip34sQJjBkzBo0aNYKVlRVcXV0RFhaG8PBwvd+GqlQqfPbZZ2jXrh3s7Ozg5eWFMWPG4NKlS2X2ExERgZ49e8LZ2RnOzs7o1asXduzYUWabCxcuYPTo0fDy8oKdnR3atWuH5cuXQ61WG3XNFWFpaQkbGxvI5fJq65OoNHK5HDY2NrC0NHqFayIiohojLacAMfdyAAAdfet5QjF9+nQ89dRT2LBhA7744gtTxVRlNm3ahNDQUPz+++/w8fHByJEjERwcjKNHj2LatGmYMGGCTn21Wo3Ro0djzpw5SExMxODBg9GmTRts3LgRnTt3xvHjx/X2s3z5cgwdOhRHjhxBt27d0Lt3bxw/fhxPPfVUqe9TZGQkHnvsMWzcuBEBAQEYOnQoUlJS8Prrr2PcuHHVNvRDkiS4uroiKysL6enp1dInkT7p6enIysqCq6srJEkydzhEREQmc+r+04nmXg5wc7A2czTGk4QRd6oHDx5EQUEB5s+fj+PHj6NLly4YN26cwTtl9+jRo7JdV1hhYSEaN26M5ORk/Pjjj3jmmWe0xy5duoTu3bsjLS0N+/btwxNPPAEA+Pbbb/H888+jZcuWOHTokHbi+aZNmzBq1Ci0aNECly5d0vn29MqVK2jTpg0sLS2xf/9+hIaGAgCuXr2Krl27Qi6X49KlS2jRooW2jVKpROvWrREbG4tly5bh9ddfBwBkZ2ejX79+iIyMRHh4OKZMmVKha87MzISLiwvkcjmcnQ1fPUAIgbt37yI9PR329vZwdHSEra0tZDIZb+yoygghoFaroVAokJ2djdzcXLi5uaFBgwb83BERUZ3y6c7L+OqfGxjTuQk+HRVk7nD0qsh9pFEJhTE3mNW9U/b58+fRrl07tG7dGpcvXy5xfNasWVi5ciU++eQTvPnmmwCAwMBAXLp0CVu2bMHw4cN16g8bNgzbtm3Dxo0b8fTTT2vLX375ZaxatQqzZs3C8uXLddp89tlnmDNnDl599VXtkrsA8Ntvv2Hs2LEICgrC6dOnddpER0ejU6dOaNu2Lc6dO1eha65sQqEhl8uRmZmJ3Nzcah12RfWbTCaDvb09nJ2d4eLiYu5wiIiITG7s6kgci03DJ0+3w9jH/Mwdjl4VuY80emBybVmFxcbGxqB6Hh4eAIDY2FhcunQJdnZ2GDx4cIl6o0aNwrZt2xAREaGTUGjmSYwaNUpvmzlz5iAiIkInoSirTXBwMAICAnD+/HnExcWhadOmBl2HKbi4uMDFxQVqtRqFhYVMKqjKyWQyWFpacmNMIiKqs5QqNc4kZgAAOvm7mzcYEzEqodi/f7+p4qhyAQEBaN68Oa5cuYKffvqpxJCnDRs2wM3NDSNGjAAAnDlzBgDQtm1b7fK4xQUHBwMAzp49qy3LyMhAQkICAKBjx44l2vj6+sLT0xPx8fHIzMzUZnuavjTn1NdXTEwMzp49W60JhYZMJoO1de0f30dERERkbpduZ0KhVMPV3goBng7mDsckjEooevbsaao4qpyFhQW+++47PPXUU3j22WexdOlStGzZEsnJyTh06BACAwOxfv16uLsXZYqaxKBJkyZ6z6cpj4+P15Zp2ri5ucHBQf8HpEmTJkhJSUF8fDzatWtX6b70yc/PR35+vvbPmZmZZdYnIiIiouql2X8i2M8NMlndmCNYr8YVdOvWDQcOHEBAQACio6Px66+/Yv/+/ZDJZOjbty8CAgK0dbOzswGg1MnlmoQhKyvL4DaVbaevjT6LFi3SDlNycXGBr69vmfWJiIiIqHrVpf0nNOpVQvHzzz8jJCQEvr6+OHbsGLKzs3H16lVMmTIFS5cuRe/evXW+4a9t5s2bB7lcrn3dvHnT3CERERERUTHR8Q+eUNQV9Wa3qGvXrmHy5Mnw9vbG9u3b4ejoCABo2bIlVq9ejaSkJGzfvh3r1q3DjBkztMdzc3P1ni8np2gzEicnJ21ZeW3Kapeenl6hvvSxsbExePI5EREREVWvpIw83JYrYCGTEORbd1YyNCihmDZtGoCipV7Xrl1borwyHj5XVfvll1+gVCoxYMAA7Y1/cWPGjMH27dtx8OBBzJgxA35+RUt4JSYm6j2fptzf319bpmmTnp6OnJwcvfMoSmuXnp6OxMREtG/f3qA2RERERFS7nLz/dCLQxxn21nXne32DrmT9+vXa/SaKJwHFyytCCFHtCYXmpry0de015ZrdoYOCijYZOX/+PJRKZYmVnqKjowFAJwFwdXWFn58fEhIScOrUKXTv3l2nzc2bN5GSkgJ/f3+d9XyDgoJw5swZREdHY9CgQSVi09cXEREREdUumoSiLs2fAAxMKPz8/PQmDqWV10QNGzYEAERFRek9fuLECQDQLsvarFkzPProo7h06RJ27NhRYmO7jRs3AgCGDBmiUz548GCsWrUKGzduLJFQlNXm+++/x8aNG/HOO+/oHDt16hRiYmLQtm1bsywZS0RERESmEX1/QnZwHUsoIOqJkydPCgACgPjqq690jkVGRgoHBwcBQOzevVtb/s033wgAomXLluLu3bva8k2bNgkAokWLFkKpVOqc6/Lly8LCwkLY2NiIyMhIbfnVq1eFh4eHsLS0FNeuXdNpU1BQIJo1ayYAiGXLlmnLs7OzRWhoqAAgwsPDK3zNcrlcABByubzCbYmIiIjIdHLylSJg3g7h/9Z2cSs919zhlKsi95GSELVkq2sT+M9//oMlS5YAANq0aYPAwEAkJSUhMjISarUaL7zwAlavXq2tr1arMWrUKGzZsgVubm548sknkZKSggMHDsDW1hb79+9Hly5dSvTz2WefYc6cObC0tETfvn1hbW2NXbt2IS8vDytXrsRrr71Wos2RI0fQp08f5OXloUuXLvD398ehQ4dw+/ZtjBo1Cr/99luFnwZVZMt0IiIiIqo6R2NSMW7NUfi42CJy3pPmDqdcFbmPrFcJBQBs2bIFX3/9NU6ePAm5XA4nJyd06NABzz//PMaPH1+ivkqlwooVK7Bu3TrcuHEDDg4OeOKJJ/Dee+8hMDCw1H4iIiKwePFinDp1CkDRztlvvvkmnnrqqVLbXLhwAQsWLMA///yDnJwcNG/eHNOnT8esWbMgk1V8hV8mFEREREQ1w5f7r2Px31cwuL0Pvnwm2NzhlKvaEopmzZpBJpPh77//RosWLQxqk5CQgF69ekGSJNy4caOyXZMBmFAQERER1QzT1p/AvsvJePepQEzr3szc4ZSrIveRRq1XFR8fD0mSUFBQYHAbpVKJuLi4WjOZm4iIiIjIGGq10E7IrmsrPAH1bKdsIiIiIqLqFpOSg4xcJWytZAhsVPdGjVR7QiGXywEA9vb21d01EREREVG1i76//0T7Jq6wsqh73+dX+xVt2LABAHd9JiIiIqL6oa5uaKdRoTkUvXv31ls+depUODg4lNk2Pz8fMTExSE5OhiRJ6NevX0W6JiIiIiKqlU7enz/RmQkF8M8//0CSJBRfGEoIod1l2lABAQGYN29ehdoQEREREdU2GbkFuJ6cDQDo6MeEAj169NBZnenAgQOQJAmdOnUq8wmFJEmwtbWFj48PunbtinHjxpX7RIOIiIiIqLbTrO4U4OUAdwdrM0dTNSr8hKI4zWZr69evL3OTNyIiIiKi+kg7f6KOPp0AjNyHYtKkSZAkCW5udfcNIiIiIiKqrLo+IRswMqFYv369icIgIiIiIqpblCo1ztws2jKhLicUdW8hXCIiIiKiGuDy7SzkKVVwtrVEcy9Hc4dTZZhQEBERERFVgZPxaQCAYH83yGRSObVrLyYURERERERV4GRCBoC6PSEbYEJBRERERFQlojUTspsyoSAiIiIiogq4Lc/DrYw8WMgkBDVxNXc4VYoJBRERERGRiWmWi33UxwkONkYtrFrjMaEgIiIiIjKx+rChnQYTCiIiIiIiE9PMnwiuw/tPaDChICIiIiIyobwCFS4kZQKo2xvaaZh8QFdiYiLu3LmD3NxcPPbYY7CzszN1F0RERERENdbZxAwUqgUaONugsWvdvxc2yROKrKwszJ8/H76+vvD390eXLl3wxBNPIDY2VqfeL7/8gjFjxuD55583RbdERERERDXOyYT78yf83SBJdXdDOw2jn1Bcu3YNgwYNQkxMDIQQ2nJ9b97jjz+OCRMmQAiByZMno3v37sZ2T0RERERUo2j3n/B3N3Mk1cOoJxQKhQKDBw/GjRs3YG9vjzfffBPbt28vtX7Tpk3xxBNPAAC2bdtmTNdERERERDWOEOLBCk/1YP4EYOQTilWrVuH69etwcHDAoUOH0KFDh3LbDBw4EHv37kVkZKQxXRMRERER1TixKTlIz1XCxlKGQB9nc4dTLYx6QrF582ZIkoRZs2YZlEwAQFBQEICioVJERERERHVJ1P2nE0FNXGFtWT8WVDXqKi9dugQA6Nevn8FtPDw8AAAZGRnGdE1EREREVOPUp/0nNIxKKLKzswEAjo6OBrfJz88HAFhZWRnTNRERERFRjVPf5k8ARiYUmqcNcXFxBre5cOECAKBhw4bGdE1EREREVKPIc5W4llz0hXuwn6t5g6lGRiUUwcHBAICDBw8a3Ob777+HJEkIDQ01pmsiIiIiohol+mbR04lmng7wcLQxczTVx6iEYtSoURBCYM2aNUhISCi3/vLly7XJx/jx443pmoiIiIioRtHOn/CrP8OdACMTiokTJ6J9+/ZQKBTo1asX/vrrrxKb2wkhcOLECTz77LN44403IEkSwsLCMHDgQKODJyIiIiKqKTTzJzo3rV8JhVH7UMhkMmzbtg3du3dHXFwcnnrqKdjb22t3ye7VqxeysrK0E7GFEGjevDl+++034yMnIiIiIqohClVqnL6ZAaB+TcgGjHxCAQB+fn44ffo0xo8fD5lMhpycHAghIITAvXv3oFAotE8txowZg+PHj8Pb29vowImIiIiIaorLd7KQW6CCk60lWngZvgJqXWDUEwoNd3d3/Pjjj/joo4+wY8cOREVFITk5GSqVCh4eHujYsSOGDBmCVq1amaI7IiIiIqIa5WSx+RMymWTmaKqXSRIKDX9/f7z88sumPCURERERUY1XH/ef0Kgf+4ETEREREVUhJhRERERERFQpd+QK3MrIg0wCgnxdzR1OtTNoyJMhe0xUhp+fX5Wcl4iIiIioukQnFD2deKShMxxtTDqjoFYw6IqbNWtm8o4lSUJhYaHJz0tEREREVJ3q6/4TGgYlFMU3qyMiIiIiogfq8/wJwMCEIjw8vKrjICIiIiKqdRRKFS4kyQEULRlbHxmUUEyePLmq4yAiIiIiqnXOJsqhVAl4O9mgiZuducMxC67yRERERERUScWHO0lS/drQToMJBRERERFRJdX3+RMAEwoiIiIiokoRQmiXjA2uxwmFQXMovv/+e+3PkyZN0lteGcXPRURERERUm8Sl5iItpwDWljK0aeRs7nDMRhIGrAkrk8kgSVKJvSM05ZXqmPtQVLnMzEy4uLhALpfD2bn+fsiJiIiIqsLGk4mY+/sZdPZ3w8YZXc0djklV5D7S4K38Sss7uEcFEREREdVH2vkT9XRDOw2D5lDExsYiNjYWMTExessr83r4XNXp3r17mDt3Llq3bg07Ozu4u7sjODgY//nPf/TWj4iIQM+ePeHs7AxnZ2f06tULO3bsKLOPCxcuYPTo0fDy8oKdnR3atWuH5cuXQ61Wl9omPT0ds2bNgr+/P2xsbODv74/Zs2cjIyPDmMslIiIioioQrUko6un+ExoGDXmqS06ePIn+/fsjNTUVbdq0Qdu2bZGZmYmLFy8iMTGxxDCs5cuX4/XXX4elpSX69OkDGxsb7Nq1C3l5efj888/x6quvlugjMjISTz75JPLy8hASEoKmTZvi4MGDuHPnDkaPHo1ff/21xFCxlJQUhIaG4vr16wgICEDnzp1x4cIFXLhwAa1atUJkZCTc3d0rdK0c8kRERERUNeR5SnR4fxeEAKLe6QNPRxtzh2RSFbqPFPVIcnKy8PT0FPb29mLr1q0ljh87dkznz5cvXxYWFhbCxsZGHDlyRFt+5coV4eHhISwtLcW1a9d02hQUFIhmzZoJAGLZsmXa8qysLBEaGioAiPDw8BJ9P/vsswKAGDlypFAqldry1157TQAQkydPrvD1yuVyAUDI5fIKtyUiIiKi0u2/fFf4v7Vd9Px0n7lDqRIVuY+sV8vGLliwACkpKVi8eDGGDh1a4nhISIjOn1esWAGVSoWXXnoJoaGh2vJWrVrh7bffRmFhIVasWKHTZsuWLYiNjUVQUBBef/11bbmjoyO++OILAMDSpUt12ty+fRs///wzrK2t8dVXX8HS8sHUlsWLF8PLywsbNmxAcnJy5S+eiIiIiExGM9ypPi8Xq2HShCI6OhqffvopJk6ciMGDB2Pw4MGYOHEiPvnkE5w8edKUXVVYXl4eNmzYAAcHB0ydOtWgNpp5EqNGjSpxTFMWERFhcJvg4GAEBATg/PnziIuL05bv3LkTarUaYWFhaNCggU4bGxsbDBkyBCqVCn/++adBcRMRERFR1TqZwA3tNAxe5aks0dHRePnll3HixIlS6/z3v/9F586d8eWXX6Jz586m6LZCoqKikJWVhe7du8POzg5//fUXdu/eDYVCgVatWmHMmDFo1KiRtn5GRgYSEhIAAB07dixxPl9fX3h6eiI+Ph6ZmZnasWVnzpwBUJQ86BMcHIyYmBicPXsWTZs2NbjNunXrcPbs2cpdPBERERGZTKFKjdMJGQCYUAAmSCg2btyICRMmQKlUapeQtba21k4gTktLQ0FBAQDgxIkT6NatGzZs2IDRo0cb23WFXLx4EQDg7e2N4cOHY+vWrTrH//vf/2Lt2rUYP348AGiTCTc3Nzg4OOg9Z5MmTZCSkoL4+Hi0a9dOp12TJk1KbQMA8fHx2rLKtCEiIiIi87hyNws5BSo42ViipbeTucMxO6OGPF25cgUTJ05EQUEBLCwsMGPGDJw4cQI5OTlISkpCUlIScnJyEBUVhRkzZsDS0hJKpRKTJk3C5cuXTXUNBklPL3ostW3bNuzcuRNffvklkpOTERcXh7lz5yIvLw+TJ0/G6dOnAQDZ2dkAAHt7+1LPqUk0srKytGXltTNVG33y8/ORmZmp8yIiIiIi09LMn+jo7wYLWeU2ea5LjEooPvnkE+Tn58PW1ha7du3Cl19+iU6dOsHCwkJbx8LCAsHBwfjyyy+xe/du2NraoqCgAJ9++qnRwVeEZv+HwsJCvP/++3j55Zfh5eUFf39/LF68GKNHj4ZSqcTixYurNS5TWrRoEVxcXLQvX19fc4dEREREVOec5P4TOoxKKPbs2QNJkjB79mz06tWr3Po9e/bE7NmzIYTAnj17jOm6whwdHbU/65uUrSk7cOCATv3c3NxSz5mTkwMAcHJ68KirvHamaqPPvHnzIJfLta+bN2+WWZ+IiIiIKo4TsnUZlVDcu3cPADBo0CCD2wwePFinbXXx9/cHUDSsyMvLq8RxzQRpzdKsfn5+AIqGSmlu6B+WmJioc+7i7TTHqqqNPjY2NtrdvDUvIiIiIjKd5EwFbqblQSYBQb4u5g6nRjAqodDcmNva2hrcxsamaBdBT09PY7quMM1KTXl5ecjPzy9xPC0tDcCDpwWurq7aG/1Tp06VqH/z5k2kpKTA399f58Y9KCgIQNHKV/poytu3b29UGyIiIiKqfprhTq0bOsPJ1srM0dQMRiUU3bp1A4Ayl4t92PHjxwEA3bt3N6brCvPz80NQUBCEENphTcVpyoovEat5mrJx48YS9TVlQ4YM0Skvq82pU6cQExODtm3bap+IAMCAAQMgk8lw6NChEpvX5efnIyIiAhYWFhV6EkREREREpqedP+Hvat5AahCjEoo5c+bAwsICH330kUFDmJKTk7Fo0SJYWVnp7CJdXd58800AwNy5c3H79m1t+enTp7W7V7/00kva8lmzZsHCwgJff/01jh49qi2/du0a/ve//8HS0hKzZs3S6WPEiBFo1qwZzpw5g88++0xbnpOTg1deeQUA8MYbb+i08fHxwfjx41FQUICXX34ZhYWFOjHfu3cPEyZMgLe3t7FvAREREREZgfMn9BBGWrdunbC2thbNmjUTW7ZsESqVqkQdlUol/vjjDxEQECBsbGzE2rVrje220iZPniwACFdXVzFo0CDxxBNPCBsbGwFAPP/88yXqL1u2TAAQlpaWYuDAgWLYsGHCzs5OABArV67U28fhw4e1dbp06SLGjBkjfHx8BAAxatQooVarS7S5d++eaN68uQAgmjdvLsaOHSvatm0rAIiWLVuK1NTUCl+rXC4XAIRcLq9wWyIiIiLSlVdQKFr8d4fwf2u7iE/JMXc4Vaoi95GSEPd3o6uEadOmASgaynPmzBlIkgQ3Nzd07NgR3t7ekCQJd+/exenTp7VzFIKCgtChQ4dSzylJEtauXVvZkMolhMC3336L1atX49KlS5AkCe3bt8eLL76IyZMn620TERGBxYsXa+dSdOzYEW+++SaeeuqpUvu5cOECFixYgH/++Qc5OTlo3rw5pk+fjlmzZkEm0/9gKC0tDQsXLsQff/yBu3fvokGDBhgxYgTee+89uLq6VvhaMzMz4eLiArlczgnaREREREaKikvDqK8j4elogxNvPwlJqrt7UFTkPtKohEImk+m8kZpTPfzmllb+MCEEJEmCSqWqbEhUDBMKIiIiItNZfeAGFv11GQPaNMTXEzuZO5wqVZH7SEtjOvLz86vTmRkRERERkcaDCdmcP1GcUQlFXFycicIgIiIiIqq5hBCIvj8hO5gJhQ6jVnkiIiIiIqoP4lNzkZJdAGsLGdo25lDy4phQEBERERGVQzPcqV0TF9hYWpg5mpqFCQURERERUTm4/0TpjJpD8bCsrCzExsYiKyvLoJWaevToYcruiYiIiIiqRPT9JxTBfkwoHmZ0QiGEwDfffINVq1bh7NmzBreTJElnR2giIiIiopooU6HElbtZAPiEQh+jEgqlUonhw4dj586dAB7sN0FEREREVFecTsiAEIC/hz28nGzMHU6NY1RCsXTpUvz1118AAH9/f0yePBlBQUFwdXUtdTdoIiIiIqLaRLv/BIc76WVUQvHDDz8AAEJDQ7Fnzx7Y2dmZJCgiIiIiopqC+0+UzajHCLGxsZAkCfPmzWMyQURERER1jkotcCohAwDnT5TGqITCza3oTW3SpIlJgiEiIiIiqkmu3MlCdn4hHG0s0aqBk7nDqZGMSiiCgoIAAHFxcaaIhYiIiIioRtHsP9HRzxUWMsnM0dRMRiUUr776KoQQWLt2raniISIiIiKqMbj/RPmMSigGDRqE1157DTt27MDcuXMN2syOiIiIiKi20K7wxPkTpTJ6Y7sVK1bA398f77zzDjZu3IiRI0eiVatWsLe3L7ftpEmTjO2eiIiIiKhKJGcpkJCWC0kCOvi5mjucGsvohCIvLw/p6emwsrLCzZs3sWLFCoPaSZLEhIKIiIiIaqzo+AwAQOsGTnC2tTJvMDWYUQlFbm4u+vXrh8jISADcKZuIiIiI6g7N/hMc7lQ2oxKKZcuW4ciRIwCAxx9/HC+88AJ3yiYiIiKiOoHzJwxjVELx008/QZIkDBw4ENu2bWMSQURERER1gkKpwrlEOQAmFOUxKgPQ7D8xa9YsJhNEREREVGdcSJKjQKWGp6M1/NzLX2yoPjPJTtmenp4mCYaIiIiIqCY4WWz/CUnihnZlMSqheOyxxwAAV69eNUkwREREREQ1AedPGM6ohGLWrFkAgC+++IIrPBERERFRnSCEwMn7S8YyoSifUQnFE088gf/97384fPgwxo0bh4yMDBOFRURERERkHjfT8pCSnQ9rCxnaNnYxdzg1nlGrPL3//vsAgJCQEPz+++/4888/0bdvX4N3yn733XeN6Z6IiIiIyOROJqQBANo2doatlYWZo6n5jEooFi5cqJ2kIkkScnJysHXrVoPbM6EgIiIiopqG8ycqxqiEAii5OzbnUhARERFRbcb5ExVjVEKhVqtNFQcRERERkdllKZS4cicTQNGSsVQ+7kZHRERERHTf6ZsZUAvA190O3s625g6nVmBCQURERER0n3b+BJ9OGIwJBRERERHRfZyQXXFGT8rWSEtLQ3h4OPbs2YPz588jLa1ouS13d3e0bdsWffr0wdSpU+Hu7m6qLomIiIiITEalFjidkAEA6OTPe1ZDmSShWL16NebOnYvc3FwAuis93bp1C0lJSdi1axcWLlyIpUuX4oUXXjBFt0REREREJnMtOQtZ+YVwsLZA64ZO5g6n1jA6ofj444/x9ttva5MIFxcXdOzYEQ0bNgQA3LlzB6dOnYJcLkdOTg5mzJiBjIwMvPnmm8Z2TURERERkMprhTh393GAhk8wcTe1hVEJx/vx5zJ8/H0II+Pj4YPHixRg9ejSsrKx06hUWFuL333/Hf/7zHyQlJeGdd97B4MGD0aZNG6OCJyIiIiIyFU1CEcz5ExVi1KTsL774AiqVCl5eXoiMjMQzzzxTIpkAAEtLS4wfPx6RkZHw9vaGSqXCF198YUzXREREREQmxQnZlWNUQrFv3z5IkoR58+bBz8+v3Pq+vr546623IITA3r17jemaiIiIiMhk7mXlIz41F5IEdPB1NXc4tYpRCcWtW7cAAF27djW4Tbdu3QAASUlJxnRNRERERGQy0QlFTydaeTvBxa7kiBsqnVEJhYWFBYCiORKGUqlURR3LuAUGEREREdUM0Zw/UWlG3dVrhjlVZPiSpq4hQ6SIiIiIiKoD509UnlEJRd++fSGEwJIlS3Du3Lly658/fx6LFy+GJEno16+fMV0TEREREZlEfqEKZ2/JAQCdmVBUmFEJxezZs2FjY4Ps7Gx0794dS5YsQWpqaol6qampWLJkCcLCwpCVlQUbGxvMnj3bmK6JiIiIiEziQlImCgrV8HCwhr+HvbnDqXWM2ofC398fq1evxtSpU5GdnY233noL//d//4dmzZrB29sbkiTh7t27iI2NhRACQghIkoTVq1dzyBMRERER1QjF509IEje0qyijd8qeNGkSPDw88OKLLyIpKQlCCNy4cQMxMTEAoN1BGwAaNWqENWvWYNCgQcZ2S0RERERkEpw/YRyjEwoAGDx4MOLi4rBlyxbs2bMH58+fR1paGgDA3d0dbdu2RZ8+fTB8+HC9G98REREREZmDEAJRTCiMYpKEAijaDXv06NEYPXq0qU5JRERERFSlEtPzcC8rH1YWEto1djF3OLUSN4MgIiIionpLM9ypTSMX2FpZmDma2okJBRERERHVW5w/YTyjEopz584hICAALVu2xK1bt8qtf+vWLbRo0QLNmzfH1atXjenaJFJTU7WrUbVo0aLMuuvXr0dISAgcHR3h7u6OQYMG4ciRI2W2OXz4MAYNGgR3d3c4OjoiJCQE33//fZltEhMTMXXqVDRq1Ai2trZo1aoVFixYAIVCUeHrIyIiIqKyaRIK7j9ReUYlFBs2bEBcXBxatGiBxo0bl1u/cePGaNWqFeLi4rBhwwZjujaJN954AykpKeXWmz17NqZOnYrz58+jT58+CAkJwe7du9GjRw/88ccfetts2rQJPXv2xM6dO9G+fXsMGDAA165dw+TJkzF37ly9ba5fv46OHTti/fr18PDwwLBhw6BSqfD++++jT58+yM/PN+ZyiYiIiKiY7PxCXL6TCaBoyViqHKMSigMHDkCSJAwdOtTgNsOGDYMQAnv37jWma6Pt3bsX3333HZ5//vky6+3ZswcrVqyAh4cHzpw5gz/++AM7d+7EwYMHYWFhgalTpyIjI0OnTVpaGqZNmwaVSoWNGzfin3/+wcaNG3H58mW0aNECS5cuxT///FOirylTpiAlJQUzZ87EuXPn8Ouvv+LKlSsYMWIEDh8+jEWLFpnwHSAiIiKq387czIBaAE3c7NDA2dbc4dRaRiUUmmFL7du3N7hN27ZtAQBXrlwxpmuj5OXl4cUXX0RgYGCpTws0li1bBgB455130LJlS215aGgoXnrpJWRkZGDt2rU6bb799ltkZmZi2LBhGDlypLa8QYMG+PTTTwEAS5cu1Wlz/PhxHD58GN7e3to6QNHqWatWrYKVlRVWrlyJwsLCyl00EREREeng/AnTMCqhyM7OBgA4Ojoa3EZTNzMz05iujfLee+8hJiYGX3/9dZn7YuTl5WHfvn0AgFGjRpU4rimLiIjQKd+xY0epbQYPHgxbW1vs2bNHZ16Eps2QIUNgY2Oj06ZBgwYICwtDeno6/v33X0MukYiIiIjKwf0nTMOohMLNrejNv3PnjsFtNHWdnJyM6brSzp49i6VLl2Lq1KkICwsrs+6VK1eQn58PLy8vNGnSpMTx4OBg7TmLO3PmjM7x4qytrdG2bVsoFAqdielltSmrLyIiIiKqOLVa4NT9hCLYjwmFMYxKKDRDgHbu3Glwm7/++gsA0Lx5c2O6rhS1Wo3nnnsOrq6uOsOKSpOQkAAAepMJAHBwcICrqyvS09ORlZUFoOjJi1wuL7Odpjw+Pt7gvvS1ISIiIqLKuZacjaz8QthbW+CRhub5oruuMCqh6N+/P4QQWLNmDS5dulRu/QsXLuCbb76BJEkYMGCAMV1Xyueff44TJ05g8eLF8PDwKLe+ZkiXvb19qXUcHBwAQJtQaNqU1e7hNob0pa/Nw/Lz85GZmanzIiIiIqKSNPMnOvi6wtKCW7MZw6h3b8aMGXBwcIBCoUDv3r2xffv2Uutu27YNffr0QV5eHuzs7PDKK68Y03WFJSQk4J133kHPnj0xZcqUau27uixatAguLi7al6+vr7lDIiIiIqqROCHbdCyNaezp6Ymvv/4aEydORHJyMoYNG4aAgAB0794dPj4+AIDbt2/j0KFDiI2NhRACkiRh1apVaNCggUkuwFCvvPIKCgoK8PXXXxvcRjOBPDc3t9Q6OTk5AB7MCSk+QT03NxfOzs7ltjGkL31tHjZv3jzMmTNH++fMzEwmFURERER6RCcwoTAVoxIKAHj22WehVqsxY8YM5Obm4saNG4iJidGpI4QAUDRsZ9WqVZgwYYKx3VbY9u3b4erqipdeekmnXLPS0q1bt9CrVy8AwC+//IKGDRvCz88PQNHu1frk5OQgIyMDbm5u2ht9Z2dnuLi4QC6XIzExEYGBgSXaac7n7++vLfPz88OpU6dK7Utfm4fZ2NiUWCGKiIiIiHSlZucjNqXoy9qOnJBtNKMTCgCYOHEi+vbti5UrV2LHjh04f/68NomQyWRo164dhgwZgldffbXan0wUl5GRgQMHDug9plAotMc0SUbr1q1hY2ODe/fu4datWyV2A4+OjgZQch+OoKAgHDx4ENHR0SUSCqVSifPnz8PW1hatWrXSabN161btOR9WWl9EREREVDHRCRkAgFYNHOFiV/oWAmQYk81AadiwIT766COcOXMG+fn5uHPnDu7cuQOFQoHTp0/jgw8+MGsyIYTQ+4qNjQVQtOqUpqxp06YAADs7O/Tu3RsA8Pvvv5c458aNGwEU7R1R3ODBg3WOF7d9+3YoFAr06dMHtra2JdpEREQgPz9fp83du3dx6NAhuLm5oVu3bpW5fCIiIiK6j/MnTKtKprRbWlrC29sb3t7esLQ0yUMQs9HMSfjwww9x7do1bXlkZCRWr14NV1dXTJ8+XafNc889B2dnZ2zduhWbN2/WlicnJ+PNN98EALzxxhs6bUJCQtCtWzckJyfjrbfe0pYXFhbi5ZdfhlKpxMyZM8vciI+IiIiIyncyPg0A958wFa6RVY4+ffpg1qxZSE1NRYcOHTB8+HAMGjQIPXr0QGFhIcLDw+Hq6qrTxt3dHevWrYNMJsOoUaPQu3dvjB49Gq1bt8b169cxZ84c7XyN4sLDw+Hh4YEVK1agffv2GDduHFq3bo3Nmzeja9eumDdvXvVcNBEREVEdVVCoxpnEoj3D+ITCNJhQGGD58uUIDw/Ho48+it27dyMyMhJ9+vTBwYMHMXz4cL1tnn76aRw8eBD9+/fHqVOn8Oeff6JFixZYv349li5dqrdNy5YtcerUKUyZMgX37t3Dli1bIJPJMH/+fOzdu5cTromIiIiMdCFJjoJCNdzsrdDM08Hc4dQJktDMnqY6JzMzU7vilL7la4mIiIjqm28PxeDDHZfQ51FvfDv5MXOHU2NV5D6STyiIiIiIqN54sP+Eu5kjqTuYUBARERFRvSCE4ApPVYAJBRERERHVC7cy8nA3Mx+WMgntm7iYO5w6gwkFEREREdULmqcTbRq7wNbKwszR1B1MKIiIiIioXojWDHfi/hMmxYSCiIiIiOqFKM6fqBJMKIiIiIiozsvJL8Sl25kAgGB/V/MGU8dYmvqEmZmZyMrKgkqlKreun5+fqbsnIiIiIirhzM0MqAXQ2NUOPi525g6nTjFJQrF792589dVX+Pfff5GWlmZQG0mSUFhYaIruiYiIiIjKpJmQHczhTiZndEIxc+ZMfPnllwCK1vYlIiIiIqppTt7f0K4zEwqTMyqh+Omnn/DFF18AAGxtbTF8+HB06tQJ7u7ukMk4PYOIiIiIzE+tFg9WeGJCYXJGJRSrV68GAPj6+mLfvn1o3ry5SYIiIiIiIjKVG/eykakohJ2VBR5p6GTucOocox4jnD17FpIkYcGCBUwmiIiIiKhG0syf6ODrCksLjqIxNaPeUaVSCQDo2LGjSYIhIiIiIjI17j9RtYxKKJo2bQoAyM7ONkUsREREREQmx/kTVcuohGLkyJEAgL1795okGCIiIiIiU0rLKUBMSg4AoKOfq3mDqaOMSijeeOMN+Pn5Yfny5bh8+bKpYiIiIiIiMgnN04kW3o5wtbc2czR1k1EJhYuLC/7++280aNAAXbt2xVdffYX09HRTxUZEREREZBTuP1H1jFo2NiAgAACQm5uLjIwMvPbaa5g5cyY8PT1hb29fZltJknDjxg1juiciIiIiKhN3yK56RiUUcXFxOn8WQkAIgeTk5HLbSpJkTNdERERERGVSqtQ4czMDACdkVyWjEorJkyebKg4iIiIiIpO6mJSJ/EI1XO2tEODpYO5w6iyjEorw8HBTxUFEREREZFKa4U6d/Nw4OqYKcatAIiIiIqqTOH+iejChICIiIqI6RwiBqPg0AJw/UdWYUBARERFRnZMkV+BuZj4sZBKCmriaO5w6zag5FA9LT0/HmTNnkJKSgry8PAghyqw/adIkU3ZPRERERATgwXCnNo2cYWdtYeZo6jaTJBT//PMPFixYgH///dfgNpIkMaEgIiIioiqh2SGbw52qntEJxapVq/Daa69p96AgIiIiIjK3k0woqo1RcyguXbqEmTNnQgiBdu3a4Y8//sCOHTsAPNgJ+8SJE1i1ahWCg4MBAN27d8eFCxcQExNjfPRERERERA/JLSjExduZAJhQVAejEorPP/8cKpUKnp6eOHToEIYOHQo/Pz/t8WbNmqFTp0548cUXceLECfznP//Bv//+i9deew3+/v5GB09ERERE9LAzN+VQqQUaudjCx8XO3OHUeUYlFAcOHIAkSZg5cyacnJzKrCtJEj755BP07t0b+/fvx7p164zpmoiIiIhIr5P3l4vl/hPVw6iEIjExEQC0w5kA6OxCqFQqS7R54YUXIITAhg0bjOmaiIiIiEgvzp+oXkYlFAqFAgDQqFEjbZmDg4P25/T09BJtWrRoAQC4ePGiMV0TEREREZWgVgtEJ2QAYEJRXYxKKNzd3QEAOTk52jIvLy/tU4qrV6+WaJOSkgIAyMjIMKZrIiIiojpFpRaIvJGKradvIfJGKlRqrp5ZGTEp2ZDnKWFnZYFHfZzNHU69YNSysY888giSk5Nx7do1dO3aFQBgb2+Pli1b4tq1a9i2bRu6d++u02bLli0AihIPIiIiIgJ2nr+N9yIu4rZcoS3zcbHFgiGBGNDWx4yR1T6a4U5Bvi6wsjDqu3MykFHvcvfu3SGEwKFDh3TKR44cCSEEVq5cifDwcOTk5CA5ORmffvopvv32W0iShN69exsVOBEREVFdsPP8bczYEK2TTADAHbkCMzZEY+f522aKrHbi/InqJwkjdqM7duwYQkND4e7ujsTERNja2gIAUlNT0bp1a71zKIQQsLOzQ1RUFB599NHKR07lyszMhIuLC+RyOZyd+ciPiIioplGpBbp/sq9EMqEhAWjoYot/3+oNC5mktw7penLpP7hxLwfrpnRG70camDucWqsi95FGPaHo0qULwsPD8cknn+gkDx4eHvj777/RtGlT7Q7ampe3tze2bNnCZIKIiIjqveOxaaUmEwAgANyWK3A8Nq36gqrF0nMKcONe0dzejr58QlFdjJpDAQCTJ0/WW96pUydcvnwZ+/btw4ULF1BYWIiWLVuif//+sLe3N7ZbIiIiolqroFCNs4kZ+CEyzqD6yVmlJx30wKmbRV9wN/dygJuDtZmjqT+MTijKYmVlhf79+6N///5V2Q0RERFRjVaoUuN8UiaO3EhB5I1URMWlI0+pMri9t5NtFUZXd0TFcf6EORiVUBw8eBAA8Nhjj8HOzrBtzRUKBY4fPw4A6NGjhzHdExEREdVIarXAxduZiLyRisiYVByPTUN2fqFOHXcHa3Rp5obD11ORqSgs5UyAl6MNQpq5V3XIdQInZJuHUQlFr169IJPJcPbsWQQGBhrU5tatW9p2hYWl/89DREREVFsIIXD1bjYib6TgyI1UHItNgzxPqVPH2dYSXQI8EBrgga4tPNDK2wkymaRd5QkomjPxsJyCQpy+mcGb5HIoVWqcScwAwISiuhk95Kmyi0QZsbgUERERkVkJIRCTkoMjN1Jx9EYqjsakIjWnQKeOg7UFQpq5I7S5B7o298SjPs56V2oa0NYHqyYEl9iHooGzDeytLRCbkosJ3x7D6omd0KMV9/EqzaXbmVAo1XCxs0KAp6O5w6lXqnQOhT5qtRoAYGFhUd1dExEREVWKEAI30/KK5kDEpCLyRiqSs/J16thayfBYU3c8HuCBrs090K6xCywN3FhtQFsf9A1siOOxaUjOUsDbyRYhzdyRX6jCiz+cxKFrKZj+3QksH9sRg9tzozt9ig93knGJ3WpV7QlFfHw8AMDFxaW6uyYiIiIyWFJGHiJvpBY9hYhJxa2MPJ3j1pYyBPu5IjTAE6HNPRDk6wIby8p/YWohkxDa3EOnzN7aEmsnP4bXfzuNHWdv49Wfo5GpaIfxIX6V7qeu4vwJ86lQQpGQkKC3/Pbt23B0LPvRUn5+Pm7cuIH58+dDkiS0adOmIl0TERERVankTIX26UNkTCriU3N1jlvKJHTwdUVo86J5EMH+brC1qvoRF9aWMqwc1xHOtlb4+XgC5m0+h4xcJWb0al7lfdcm0fcTimA/JhTVrUIJRbNmzUqUCSHQr1+/Cnc8adKkCrchIiIiMpW0nAIcjUnVLuWq2RBNQyYB7Zq4IjTAA6HNPdDZ3w0ONtU+uANA0dOLj0a0hZu9Fb765wY+2XkZGbkF+L+Bj0CSOLwnKSMPSXIFLGQSgnw5Cqa6Vej/itImUldkgrWtrS1mzpyJadOmVaRrIiIiIqPIc5U4FvtgCNPlO1k6xyUJCPRx1iYQjzVzh7OtlZmiLUmSJLw54BG42Vvjf39ewuqDMcjIVeKjke30TvauT6ITip5OBPo4w97aPElffVahdzw8PFznz1OnToUkSfjggw/QuHHjUttJkgRbW1v4+PigY8eO5Q6PIiIiIjJWdn4hTsSmaSdSX0jKxMPfgbZu4ITQ5h54PMADjwe4w9W+5u+u/HyPALjYWeH/Np/Fr1E3kalQYvm4DkbN36jtuKGdeUnCiPVbZTIZJEnCuXPnDN6Hwlxyc3Oxa9cuRERE4N9//0V8fDwsLCzQokULPP3005gzZ06pic769evx1Vdf4eLFi7C2tsbjjz+Od955B127di21v8OHD+N///sfjh49ioKCAgQGBuLVV18tc6hXYmIi5s+fj7///htpaWnw8/PD+PHjMW/ePNjaVnyHzMzMTLi4uEAul8PZ2bnC7YmIiGqTvAIVouLTcORG0TyIc7fkUKl1b3MCvBy0TyAeD/CAp6ONmaI13s7ztzHz59MoUKnRvYUnVk/sZLYhWeY29It/cTZRjpXjO2JoUCNzh1MnVOQ+0qiE4sCBAwCAkJAQg3fKNpdvv/0Wzz//PADg0UcfRdu2bZGZmYkjR44gKysLjzzyCA4cOABvb2+ddrNnz8aKFStgZ2eHfv36QaFQYO/evRBCYOPGjRg+fHiJvjZt2oSxY8dCrVajR48e8PT0xN69e5GRkYE33ngDS5YsKdHm+vXrCA0NRUpKCtq2bYvAwEBERUUhJiYG3bp1w969e2FjU7F/9JhQEBFRbaBSixLLpRoyhEehVOFUQgYi7z+BOH0zA0qV7m2Nn7u9NoEIbe6BBs4V/4KuJjt8PQXPfx+F3AIVOvi6InzKY3BzqPlPWUwpt6AQ7RbugkotcPj/eqOxa82+J60tqi2hqE2+++47HDlyBLNnz8ajjz6qLb99+zYGDx6MU6dOYfz48fjpp5+0x/bs2YO+ffvCw8MDkZGRaNmyJQAgMjISvXr1gr29PWJjY+Hq6qptk5aWhmbNmiEzMxObNm3CyJEjAQB3795F9+7dcf36dezfvx+9evXSia979+44fPgwZs6ciRUrVgAACgsLMWbMGGzZsgULFizAwoULK3TNTCiIiKim23n+dokN3XxcbLFgSCAGtNXdb6GgUI2ziRnaJxAnE9JRUKjWqePjYqtdhSm0uQeauNlXy3WY0+mbGZgSfhwZuUq09HbED9O7oKFL3UqcynI0JhXj1hyFj4stIuc9ae5w6owakVDk5ORgz549uH79OiRJQkBAAPr06VMj509ERkaia9eusLGxQWZmJqytizL7QYMG4a+//sJnn32G2bNn67SZNWsWVq5ciSVLluCNN97Qln/66ad46623MGzYMPzxxx86bbZs2YKRI0fiqaeeQkREhLb8+PHj6NKlC7y9vZGQkKDzJOLu3bvw9fWFo6MjkpOTYWlp+KNMJhRERFST7Tx/GzM2ROPhGxHNs4kvnumIxm722lWYouLSkadU6dT1crJ58AQiwAP+Hvb1ctWja3ezMHHtcdzJVKCJmx1+mN4FzTwdzB1Wtfhy/3Us/vsKBrf3wZfPBJs7nDqjIveRBt+dCiGwe/duAICvr6/Ot/wP++677/DGG28gPT1dp9zBwQH/+9//8NprrxnabbUICgoCULRXRmpqKnx8fJCXl4d9+/YBAEaNGlWizahRo7By5UpEREToJBQ7duwotc3gwYNha2uLPXv2QKFQaOdFaNoMGTKkxLCmBg0aICwsDPv27cO///5b4skGERFRbaRSC7wXcbFEMgFAW/bqT6dKHHd3sMbjAe7aJKK5l2O9TCAe1rKBE35/KRQT1x5DXGouRn99BN9NC0GbRnV/CVXN/hOduP+E2Ri2HzyKvkUfMGAABg4ciMuXL5da74cffsDUqVORnp4OIYTOKzs7G7Nnz8ayZctMErypxMTEAACsrKzg7u4OALhy5Qry8/Ph5eWFJk2alGgTHFyUAZ89e1an/MyZMzrHi7O2tkbbtm2hUChw9epVg9qU1RcREVFtdTw2TWeYkz4CgJ2VDH0DG+DdpwLx16wwRL3dB1892wkTQ5uihbcTk4lifN3t8ftLXRHo44yU7AKMW3MUJ+LSzB1WlRJC4GQCV3gyN4MTij179gAAvL299U5EBoD09HTMmjULQNFfcIsWLTB//nysWrUK06dPh6WlJYQQmD9/Pm7dumV89CaimbMwYMAA7RMCza7g+pIJoOhpi6urK9LT05GVVbSOdWZmJuRyeZntNOXx8fHasvL60tdGn/z8fGRmZuq8iIiIaqLkrLKTCY2PRrbHN5M6Y1r3ZnjUxxmyer7fQnm8nGzw8wuP47GmbshSFGLi2mPYfznZ3GFVmZiUHGTkKmFrJUNgIw7vNpcKPaGQJAlDhw4t9duA7777DhkZGZAkCWFhYTh9+jTee+89vPjii/jmm2+wY8cOyGQyKBQK/PDDDya7CGP8+eefWLt2LaysrPDBBx9oy7OzswEA9valT+ZycCgam6hJKDRtymr3cBtD+tLXRp9FixbBxcVF+/L19S2zPhERkbl4Oxk2abhhHVuVqTq42Fnh+2ld0PsRbyiUajz/fRS2nq45X+Sa0sn7+0+0b+IKKwuDb2vJxAx+5zVDdLp161ZqnS1btmh/Xr58eYkb5L59+2L06NEQQmD//v0VjdXkLl++jAkTJkAIgcWLF2vnUtRW8+bNg1wu175u3rxp7pCIiIj0spBJKOtZg4SiFZtCmrlXV0h1ip21BVZP7IRhHRqhUC0w+9fT+CEyztxhmdzJeA53qgkMTiiSkpIAQLt06sOUSqX2KUbLli3RsWNHvfWGDRsGALh48WJFYzWpW7duYcCAAUhPT8ecOXO0Q7U0NKtR5ebmlnqOnJwcAICTk5NOm7LaPdzGkL70tdHHxsYGzs7OOi8iIqKa5uDVe5i87rh2wvXDiYXmzwuGBBq0HwXpZ2Uhw2djOmByqD+EAOZvvYDP915DXdoxQDt/ghOyzcrghEJzs6sZfvOwM2fOID8/HwAQFhZW6nlatGgBACVWgKpOaWlp6NevH+Lj4zF16lS9G835+fkBKNq9Wp+cnBxkZGTAzc1Ne6Pv7OwMFxeXMttpyv39/Q3uS18bIiKi2mjH2duY/t0J5ClVCGvpiRXjOpTYM6Ghiy1WTQgusQ8FVZxMJmHh0DaY+WTRF8JLd1/FB9svQa2u/UlFRm4BricXDRsP5hMKszJ42Vh7e3tkZ2eXmggcO3ZM+3OnTp1K7/D+PgpKpdLQrk0qOzsbAwcOxMWLFzFy5Eh88803eueEtG7dGjY2Nrh37x5u3bqFxo0b6xyPjo4GALRv316nPCgoCAcPHkR0dDQCAwN1jimVSpw/fx62trZo1aqVTputW7dqz/mw0voiIiKqTX4+noD/bjkHIYDB7XywbGwQbCwt8FT7RpXaKZsMI0kS5vRtBVc7K7y//SLWHY6FPE+JT55uB8taPO/gVEIGACDAywHu9Wx38JrG4E+RZqWhEydO6D1+4MAB7c+PP/54qedJTU0FUP7wnaqQn5+PYcOG4fjx4+jfvz9+/vlnWFhY6K1rZ2eH3r17AwB+//33Esc3btwIoGjviOIGDx6sc7y47du3Q6FQoE+fPto9KIq3iYiI0D7l0bh79y4OHToENze3MuevEBER1WSr/rmBeZuLkonxIb5YOb4jbCyLfgdbyCSENvfAsA6NEdrcg8lEFZnWvRmWjg6ChUzCpuhEzPgxGoqHNgqsTU5y/4kaw+CE4vHHH4cQAt98802JpwspKSnazdk8PT3RoUOHUs9z/vx5ANU/fEelUmH8+PHYt28fwsLCsHnzZu2O2KWZM2cOAODDDz/EtWvXtOWRkZFYvXo1XF1dMX36dJ02zz33HJydnbF161Zs3rxZW56cnIw333wTAHQ2wgOAkJAQdOvWDcnJyXjrrbe05YWFhXj55ZehVCoxc+ZMWFlZVe7iiYiIzEQIgUV/XcInO4v2sJrRqzk+GtGOSYOZPN2pCb6e0AnWljLsvngXU8NPIEthnlEjxuKE7JrD4IRi0qRJAIDr169j+PDhuHz5MpRKJc6ePYuRI0ciLy8PkiThmWeeKfM8Bw4cgCRJaNu2rXGRV9AXX3yhXYXK09MTL7/8MqZMmVLilZKSom3Tp08fzJo1C6mpqejQoQOGDx+OQYMGoUePHigsLER4eDhcXV11+nF3d8e6desgk8kwatQo9O7dG6NHj0br1q1x/fp1zJkzR+9u1+Hh4fDw8MCKFSvQvn17jBs3Dq1bt8bmzZvRtWtXzJs3ryrfHiIiIpNTqQXmbT6H1QeKNpCdN/ARvDXgEW5GZ2Z9Axvgu6khcLSxRGRMKp755hhSs/PLb1iDFKrUOH0zAwATippAEhWY6j9ixAhs3bpV7z8EQgg4OTnh0qVLaNSokd726enp8PHxgVKpxOrVq/Hcc89VPvIKWrhwId57771y68XGxqJp06Y6ZevXr8cXX3yBS5cuwdraGo8//jjmz5+Prl27lnqew4cP48MPP8TRo0dRUFCAwMBAvPrqq5g8eXKpbW7evIl3330XO3fuRFpaGvz8/DB+/Hj897//1RkiZajMzEy4uLhALpdzxSciIqpW+YUqvP7rafx57g5kEvDRiHYYF+Jn7rComHOJckwOP460nAIEeDlgw/QuaORqZ+6wDHL+lhxPff4vnG0tcfrdftzwsApU5D6yQglFTk4Onn76aezatavEMXt7e/z666/a+QD6LFq0CG+//TYkSUJ8fHypO0OTaTChICIic8jJL8RLG07i0LUUWFvIsGJcBwxsxxWbaqLrydmYtPYYkuQKNHKxxQ/PdUFzL8fyG5rZ+sOxWBhxEb1ae2H91BBzh1MnVeQ+0uBVnoCiJWN37tyJP//8E1u3bkVCQgKsra0RHByM6dOnl5sgJCQk4Omnn0bjxo2ZTBAREdVBGbkFmBJ+AqdvZsDe2gJrJnZG95ae5g6LStHC2xG/z+iKiWuPIeZeDkZ/HYnvp4WgbWMXc4dWppP3V3jihOyaoUJPKKh24RMKIiKqTnczFZi49hiu3s2Gi50V1k99DB15w1crpGbnY0r4CZy7JYejjSW+ndwZjwd4mDusUnX7eB9uZeThp+e6oGsLJqxVoSL3kbV38WEiIiKqMeJScvD0qiO4ejcbDZxt8PtLoUwmahEPRxv89HwXPB7gjuz8Qkxadxy7L941d1h63Zbn4VZGHixkEoJ8Xc0dDoEJBRERERnp0u1MjPo6EonpefD3sMfGl7qiVYPq32+KjONka4X1U0PQ59EGKChU46UNJ7E5OtHcYZUQHZ8BAHjUxwkONhUavU9VxKiE4s6dO5g2bRqmTZuGW7dulVv/1q1bmDZtGqZPn460tDRjuiYiIqIaICouDWNWRyIlOx+PNHTC7y+Fwtfd3txhUSXZWlng6wnBeDq4CVRqgTm/ncG6f2PNHZYObmhX8xiVUPzwww9Yv349Tp8+jcaNG5dbv3Hjxjh9+jTWr1+PDRs2GNM1ERERmdk/V5IxYe0xZCkK0dnfDb++GApvp4ovc041i6WFDItHtce0bs0AAO9vv4hlu6+ipky7PZlQlFAEc/+JGsOohGLXrl2QJAmjRo0yuM3YsWMhhMBff/1lTNdERERkRtvOJOG576KgUKrRq7UXfpjeBS52VuYOi0xEJpMw/6lH8UbfVgCAlXuvYeG2C1CrzZtUKJQqXLglB8AN7WoSoxKK8+fPAwBCQgxf/7dz584AgLNnzxrTNREREZnJhqPxmPXLKRSqBYYENcKaiZ1hZ21h7rDIxCRJwmtPtsQHw9pAkoDvIuMx57fTUKrUZovpbKIchWqBBs42aFxLNuGrD4xKKFJTUwEAXl5eBrfx9PTUaUtERES1gxACX+6/jnf+OA8hgGe7+GH52A6wtuQaL3XZxNCmWD62AyxlEv44nYQXfziJvAKVWWKJii+ag9vJ3w2SxN2xawqj/gVwdCzaSVEulxvcJjMzEwBgbW1tTNdERERUjYQQ+OjPS1j89xUAwKtPtMCHw9vCQsabuvpgWIfG+GZSZ9hYyrDvcjImrTsGeZ6y2uOIvj8hO5gTsmsUoxIKzW7XkZGRBrc5fPgwABg0iZuIiIjMr1ClxlubzuKbQ0Wr/bwz+FHM7d+a3xDXM0884o0Nz3WBk60lTsSlY/yao7iXlV9t/QshtCs8dW7qXm39UvmMSih69eoFIQQ+//xz7ZOHsmRmZuKLL76AJEno1auXMV0TERFRNVAoVXjlp2j8FpUImQR8Oqo9ngsLMHdYZCaPNXXHLy88Dk9Ha1y8nYnRXx/BzbTcauk7NiUH6blK2FjKEOhT9s7NVL2MSihefPFFSJKE27dvY/Dgwbh7t/QdFe/cuYPBgwcjKSkJkiThxRdfNKZrIiIiqmLZ+YWYtv4E/r5wF9YWMnz1bCeM6exr7rDIzNo0csHvL3VFY1c7xKXmYvTXkbh2N6vK+9U8nQhq4sp5OzWMUdsLtmnTBrNmzcLy5ctx5MgRtGjRAmPHjkVYWBh8fHwAALdv38bBgwfx22+/ITc3F5Ik4ZVXXkGHDh1MET8RERFVgfScAkwJP44ziXI4WFtgzaTO6NbC09xhUQ3RzNMBm2Z0xcS1x3AtORujV0di/dQQdPB1rbI+o7n/RI0lCSN3KVGr1Xj++ecRHh5edMJSxlNqunnuueewevVqjrusBpmZmXBxcYFcLoezMx8NEhGRYW7L8zBx7XFcT86Gm70V1k8NQVAV3ihS7ZWeU4Ap60/gzM0M2Ftb4JsqTDz7fXYAV+9m45tJndE3sEGV9EEPVOQ+0ujnRTKZDGvXrsUff/yB0NBQAEXJQ/EXAHTr1g3btm3DmjVrmEwQERHVULEpORi1KhLXk7PR0NkWv70YymSCSuXmYI2fnuuCbi08kFugwtTwE9h5/o7J+5HnKXH1bjYAINjP1eTnJ+MY/YTiYWlpaTh9+jRSUlIAFO070bFjR7i58fFUdeMTCiIiqogLSXJMXnccKdkFaObpgB+mh6CJm725w6JaIL9QhVk/n8bOC3cgk4CPR7bHmMdMN99m/5VkTA0/gWaeDtg/t5fJzkulq8h9pFFzKPRxd3dH7969TX1aIiIiqkLHY9Mwff0JZOUXItDHGd9NC4GXk425w6JawsbSAl880xFvbzmPX6Nu4s1NZyHPU+L5HqZZEYz7T9RsnCJPRERUz+27fBcT1x5DVn4hQpq645cXH2cyQRVmaSHDx0+3w4v3k4j//XkJn+68DFMMhtGs8NSJE7JrJCYURERE9djW07fwwvcnkV+oRu9HvPHdtBA421qZOyyqpSRJwrxBj+KtAY8AAL765wbe/uM8VOrKJxWFKjVO38wAAHRuyoSiJjJoyNP777+v/fndd9/VW14Zxc9FRERE1ev7yDgs2HYBQgDDOjTCktFBsLLgd41kvBm9msPFzgpv/3EOPx1LgDxPic/GdKjU/hGX72Qht0AFJ1tLtPByrIJoyVgGTcqWyWTalZlUKpXe8soofi4yPU7KJiIifYQQ+GLfdSzdfRUAMDnUHwuGtIFMxlUYybS2n03C67+ehlIl0KOVF76eEAx764pN4f0+Mg7vbr2Anq288N20kCqKlB5WJcvGFl8CVl95ZV5ERERUvdRqgQ+2X9ImEzOfbImFQ5lMUNV4qn0jfDv5MdhZWeDg1XuY8O0xyHOVFToH50/UfAYlFGq1WvsqrbwyLyIiIqo+hSo1/rPxLNYdjgUAvPtUIOb0bcX9oahK9WzlhQ3PdYGLnRWiEzIwdk0kkjMVBrdnQlHzcaAkERFRPaBQqjDjx2hsik6EhUzC0tFBmNa9mbnDonqik78bfnsxFN5ONrh8Jwujvo5EQmpuue3uZiqQmJ4HmQRusFiDMaEgIiKq47IUSkwNP4HdF+/C2lKGryd0wtOdmpg7LKpnWjd0wsaXusLP3R4JabkY9fURXL6TWWYbzdOJRxo6w9HG5NunkYkwoSAiIqrDUrPz8cw3xxAZkwpHG0t8NzUEfQMbmDssqqf8POyx8aVQPNLQCclZ+RjzdaQ2adCHw51qByYUREREdVRSRh7GrI7EuVtyuDtY4+fnH0docw9zh0X1nLezLX59IRTBfq7IVBRiwrfHcPDqPb11NQkF95+o2Qx6dtS7d2+TdyxJEvbu3Wvy8xIRERFw4142Jn57DElyBXxcbPHD9C5o4c01/KlmcLG3wobnuuClDdE4ePUepn93AsvHdsTg9j7aOgqlCheS5ACAYD8mFDWZQQnFP//8A0mSTLLUq+Y8XFGCiIioapy/JcfkdceRmlOAAE8H/PBcFzR2tTN3WEQ67K0t8e2kzpjz22lsP3sbr/4cDXleOzzTxQ8qtcAvxxOgVAm42lnBx8XW3OFSGQxKKHr06MEEgIiIqBY4GpOK576LQnZ+Ido2dsb6qSHwdLQxd1hEellbyrBiXEc421nhp2MJ+O+Wczgem4qjsWm4Iy9aWjYjT4mwT/djwZBADGjrU84ZyRwM2imbaifulE1EVL/suXgXr/wUjfxCNbo0c8e3kzvDydbK3GERlUsIgSW7ruDL/Tf0Htd8rb1qQjCTimpSJTtlExERUc215VQiXtxwEvmFavR51BvfTQthMkG1hiRJmNO3NZxs9Q+e0Xz7/V7ERajU/C68pmFCQUREVMuFH47F67+egUotMLJjY6ya0Am2VhbmDouoQo7HpiFLUVjqcQHgtlyB47Fp1RcUGaTKdwhJTU2FJElwd3ev6q6IiIjqFSEEVuy9huV7rgEApnRtinefCoRMxnmPVPskZylMWo+qT5U8obh79y5eeOEFeHp6wtvbG15eXnBzc8OUKVOQkJBQFV0SERHVK2q1wHsRF7XJxOt9WmHBECYTVHt5Oxm2kpOh9aj6GJxQJCYmolGjRmjUqBFWrVpVar2YmBh06tQJa9euRVpaGoQQEEJALpfjhx9+QMeOHXH69GlTxE5ERFQvKVVqvPH7Gaw/EgcAeG9oG8zq05IrMlKtFtLMHT4utijtUywB8HGxRUgzjnqpaQxOKHbu3Ik7d+4gLS0NY8aMKbXeuHHjkJSUpN2zwtfXF126dIGTkxOEEEhPT8f48eNRWFj6GDkiIiLST6FUYcaGk9hy6hYsZBKWj+2AyV2bmjssIqNZyCQsGBIIACWSCs2fFwwJhAWfwtU4BicUkZGRAIAnnngCHh4eeuts374dUVFR2jkTO3fuRHx8PCIjI3Hnzh1MnToVAHD16lVs2rTJBOETERHVH5kKJSatO449l5JhYynDmomdMLxjY3OHRWQyA9r6YNWEYDR8aCO7hi62XDK2BjN4Uva5c+cgSRL69u1bap0ff/xR+/PSpUvRr18/7Z/t7Ozw7bffIioqCufPn8fWrVsxduzYSoZNRERUv6Rk52PyuuO4kJQJJxtLfDu5M7oE6P+Cj6g2G9DWB30DG+J4bBqSsxTwdioa5sQnEzWXwU8o4uLiAABBQUGl1vnnn38AAC4uLnjmmWdKHJckCdOmTYMQAmfOnKlYpERERPXUrYw8jPk6EheSMuHhYI2fX3icyQTVaRYyCaHNPTCsQ2OENvdgMlHDGfyEIjMzEwDg6emp93hcXBzu3r0LSZLQo0cPWFnp30ynY8eOAICkpKSKxkpERFTvXE/OxsS1x3BbrkBjVzv8MD0EAV6O5g6LiEjL4IRCs3JEQUGB3uPHjx/X/ty5c+dSz+Pq6goAyMnJMbRrIiKieulsYgamhJ9AWk4Bmns54IfpXdDI1c7cYRER6TB4yJNmIvbVq1f1Hj9y5Ij258cee6zU82RlZQEAbG25hjAREVFpjtxIwfg1R5GWU4D2TVzw+0tdmUwQUY1kcEKhmTuhb3UmIQS2bdsGALC0tES3bt1KPU98fDwAoEGDBhUKlIiIqL7YdeEOpoSfQE6BCqEBHvjp+cfh7mBt7rCIiPQyOKEYOnQohBDYunUrfvjhB51jS5YsQVxcHCRJQp8+feDoWPrYTs3ys61bt65kyERERHXXxpOJmPFjNAoK1egb2ADhUx+Do43BI5SJiKqdJDQ70JUjNzcXjz76KBITEwEUzZNo0aIFLl26hDNnzkAIAUmSsGvXLjz55JN6zyGEgJ+fH5KSkvDee+/hnXfeMd2VUAmZmZlwcXGBXC6Hs7OzucMhIqJiVGpRYlnM9Ufi8MH2iwCAUZ2a4OOR7WBpYfB3f0REJlOR+0iDv/Kwt7fHL7/8ggEDBiArKwtRUVGIiooCAO2u2NOmTSs1mQCAP//8E7du3dI+ySAiIqqPdp6/jfciLuK2XKEtc7SxQHa+CgAwvXszvD3oUci4VCYR1QIV+tojNDQUUVFRePrpp2FrawshBIQQ8Pf3x5IlS7BmzZoy23/wwQcAgIYNG+Lxxx+vfNRERES11M7ztzFjQ7ROMgFAm0wMDfLBO4OZTBBR7VHhQZktW7bE77//DrVajXv37sHa2hpubm4Gtd27d29Rp5YcC1qavLw8LFq0CL/88gsSEhLg7u6OAQMG4IMPPkDjxo3NHR4RERlBpRZ4L+IiyhprfCIuHWoBWDCfIKJaotJ39jKZrMIrNTk4OFS2u3pBoVCgd+/eOHr0KHx8fDBs2DDExcUhPDwc27dvx9GjRxEQEGDuMImoEvSNl6+vO7/Wtfciv1CFLEUhMvOUyFIUFv2sUCJLoURmXmHRf++Xxafmlngy8bDbcgWOx6YhtDl3wiai2oGPCmqQDz/8EEePHkVoaCh27dqlXS1r2bJleOONNzBt2jT8888/5g2yDHXtJsEYfC8e4Huhf7y8j4stFgwJxIC2PmaMrPrVtPdCrRbIyi+eDBTd/BclA/fLih3P1BzPe1Avv1Bt8riSs8pOOoiIahKDV3miqlVQUABvb2/I5XJER0ejY8eOOseDgoJw9uxZREVFoVOnTgadszpXeappNwnmxPfiAb4XD8bLP/wPrSalWjUhmO/F/f9W9L0QQkChVN9PAu4/BSjnKUGWQqn7NCG/0GTX52RjCWc7KzjZWsLZtui/Tra6Zfey8vHtv7Hlnuvn5x/nEwoiMqsqWeWJqtbhw4chl8vRvHnzEskEAIwaNQpnz55FRESEwQlFdSntJuGOXIEZG6J5wwS+F8XVp/eirPHyAkU30u9FXETfwIZ1/qlNee8FALy95TzUaiCnoLDYU4JiScBD/81SKKFUmeY7MRtLGZxsreBsZ1n03/sJgObP+pIFzZ+dbK3gaGNp0N+hSi2w49xt3JEr9L4XEoCGLkVP8oiIagsmFDXEmTNnAADBwcF6j2vKz549W20xGcKQG6YF2y6go58bLGQShACEprZ4cCMhtEWi2M8PliQu/hyt3Lo69R60L14uoHtefWWl1n2oL025Sq3G21vOl3vD5GxrBdn99+LBcVGicvHz6KsrSja5Xy5KlKG89nrOVfzhpf5YhJ6yolK1WuCdrWW/F/+36RyyFIUPygSgFkXRqYXQ/p0Jzc9CQP1wGe6X3W+ribt4mbgfoPqh+prPT/H6Jcru/1l9P0C1WreseP2iuHVjS8nKL3O8vEDRePkRXx2Gi52V9r18cN7i11CsHA/61H62df78oP3D/x/pOwf0nvPBOVDaMe3ffSlxFTu/Uq2GQln20KDUnAK8/FN0mXX0kUl4kAzYFEsCNEmB7cPJwMMJgSVsLC0q3G9lWMgkLBgSiBkboiFB9/8tTTqyYEhgnU8wiahuYUJRQyQkJAAAmjRpove4pjw+Pr7Uc+Tn5yM/P1/758zMTBNGqN/x2LRyb5juZuajy0d7qzyW2iA1pwDPfHvM3GHUCBl5SvxnY81KkM3lbKLc3CHUGE097NHU00H7lKD4zb9zKU8HHKwtIEm15wZ8QFsfrJoQXGI4YMN6NhyQiOoOJhQ1RHZ2NoCiDQT10ayQlZWVVeo5Fi1ahPfee8/0wZWhMhMHJenBN3GamwDpfnnRzw8qlCjX0157G6HvvKXULTosFfu5ZF+65bo3K5JUsm5OfiFSsgvKvX5vJxs43/82uvhZi3chPRTbw4q/b3rbP/SelTx/yUJ959ItK1lXX8wAkJqTjxv3cvQHX8wjDZ3Q0MUWEgCZJGn/XmSS5u9Ogkz24D3W/B3KND9LD47JpIfqPVQmux+sTNsOkMnuR33/uPTQ8eJ9aGPSU6Y5tyTdL7v/c3xqDtYdjiv3fZjRszlaNnDUuR7N+TSfS+21ad/3h+LU1JMe/D9U4lixNihxTgPPXyw+7XtlQHynE9Lx+m9nyn0vFo1sXy/mDgxo64O+gQ3r/YIFRFQ3MKGoQ+bNm4c5c+Zo/5yZmQlfX98q7dPbydagevVhgmHkjVSM/+ZoufVWjOvI9+K+BUPa1On3QqUW+Ov8nXLHy8/t37rO30j6udvj07+vcO5AMRYyqU5//omo/qjQTtlUdTRLxObm5uo9npNT9G2vk5NTqeewsbGBs7OzzquqhTRzh8/9b5j1kVC0qk99uEnge/EA34simvHyAEq8F5o/15fx8nwviIjqLiYUNYSfnx8AIDExUe9xTbm/v3+1xWQI3iQ8wPfiAb4XD2jGyzd00X2a19DFtl6sdFUc3wsiorqJQ55qiKCgIABAdLT+FU405e3bt6+2mAzFCYYP8L14gO/FAxwv/wDfCyKiuocb29UQxTe2O3XqFDp06KBzvKZvbAdwR+Ti+F48wPeCiIio9uHGdrWQtbU1Xn31Vfzvf//DK6+8gl27dmlXdlq2bBnOnj2Lnj171rhN7YrjBMMH+F48wPeCiIiobuMTihpEoVCgV69eOHbsGHx8fBAWFob4+HgcO3YMXl5eOHr0KAICAgw+X3U/oSAiIiKiuqEi95GclF2D2NraYv/+/Zg/fz7s7e3xxx9/ID4+HlOmTEF0dHSFkgkiIiIiourAJxR1GJ9QEBEREVFl8AkFERERERFVCyYURERERERUaUwoiIiIiIio0phQEBERERFRpTGhICIiIiKiSuPGdnWYZgGvzMxMM0dCRERERLWJ5v7RkAVhmVDUYVlZWQAAX19fM0dCRERERLVRVlYWXFxcyqzDfSjqMLVajaSkJDg5OUGSJHOHU+9kZmbC19cXN2/e5D4gBICfCSqJnwl6GD8T9DBzfSaEEMjKykKjRo0gk5U9S4JPKOowmUyGJk2amDuMes/Z2Zm/FEgHPxP0MH4m6GH8TNDDzPGZKO/JhAYnZRMRERERUaUxoSAiIiIiokpjQkFURWxsbLBgwQLY2NiYOxSqIfiZoIfxM0EP42eCHlYbPhOclE1ERERERJXGJxRERERERFRpTCiIiIiIiKjSmFAQEREREVGlMaEgqoDc3Fz88ccfmD59Olq3bg1bW1s4ODggKCgI77//PrKzs0ttu379eoSEhMDR0RHu7u4YNGgQjhw5Uo3RU3VJTU2Ft7c3JElCixYtyqzLz0Xddu/ePcydOxetW7eGnZ0d3N3dERwcjP/85z9660dERKBnz57a9eZ79eqFHTt2VHPUVFVOnDiBMWPGoFGjRrCysoKrqyvCwsIQHh4OfVNaVSoVPvvsM7Rr1w52dnbw8vLCmDFjcOnSJTNET5V18uRJfPzxxxg5ciSaNGkCSZIM2nC4Mr8fDh8+jEGDBsHd3R2Ojo4ICQnB999/b6pLKZ0gIoN98803AoAAIB599FExevRo0b9/f+Hk5CQAiEceeUTcvXu3RLtZs2YJAMLOzk4MGzZM9O/fX1haWgoLCwuxZcuW6r8QqlKTJ08WkiQJAKJ58+al1uPnom6LiooSHh4eAoBo06aNGDt2rBg4cKDw9/cXFhYWJep/9tlnAoCwtLQUAwYMEMOGDRN2dnYCgPj888/NcAVkShs3bhQWFhYCgAgODhZjxowRTzzxhLC0tBQAxDPPPKNTX6VSiREjRggAwtXVVTz99NOiZ8+eQpIkYW9vL44dO2amK6GKGjZsmPbeofirLJX5/aD5jEmSJHr27Cmefvpp4erqKgCIN954owqu7AEmFEQVsH79evHCCy+Iixcv6pQnJSWJjh07CgBi/PjxOsd2794tAAgPDw9x9epVbfmRI0eEtbW1cHV1Fenp6dURPlWDPXv2CADihRdeKDOh4OeibktOThaenp7C3t5ebN26tcTxh28GL1++LCwsLISNjY04cuSItvzKlSvCw8NDWFpaimvXrlV53FQ1lEql8Pb2FgDEjz/+qHPs4sWLwt3dXQAQ+/bt05ZrvsBq2bKluHPnjrZ848aNAoBo0aKFUCqV1XYNVHkff/yxmD9/vti2bZu4ffu2sLGxKTOhqMzvh9TUVOHs7CwAiE2bNmnL79y5I1q0aCEAiP3795v60rSYUBCZyJEjRwQAYWNjI/Lz87XlAwcOFADEZ599VqLNzJkzBQCxZMmSaoyUqkpubq5o3ry5CAwMFFevXi0zoeDnom6bMWOGACC+/PLLCtWfNWtWiWPLli0TAMSrr75q4iipupw7d04AEK1bt9Z7XPP//CeffKIte/TRRwUAvd9GDx06VAAQGzdurKqQqQqVl1BU5vfDJ598IgCIYcOGlWizefNmAUA89dRTxoZeKs6hIDKRoKAgAEB+fj5SU1MBAHl5edi3bx8AYNSoUSXaaMoiIiKqKUqqSu+99x5iYmLw9ddfw8rKqtR6/FzUbXl5ediwYQMcHBwwdepUg9po5knw81A3GbohmYeHBwAgNjYWly5dgp2dHQYPHlyiHj8TdVdlfz+U9W/I4MGDYWtriz179kChUJg6ZACclE1kMjExMQAAKysruLu7AwCuXLmC/Px8eHl5oUmTJiXaBAcHAwDOnj1bfYFSlTh79iyWLl2KqVOnIiwsrMy6/FzUbVFRUcjKykLHjh1hZ2eHv/76C3PmzMHLL7+M5cuXIykpSad+RkYGEhISAAAdO3YscT5fX194enoiPj4emZmZ1XINZFoBAQFo3rw5rly5gp9++knn2KVLl7Bhwwa4ublhxIgRAIAzZ84AANq2bav3ywn+G1F3Vfb3g+YzozlenLW1Ndq2bQuFQoGrV69WQdRMKIhMZsWKFQCAAQMGaL+N0twk6PtHAQAcHBzg6uqK9PR0ZGVlVU+gZHJqtRrPPfccXF1d8emnn5Zbn5+Luu3ixYsAAG9vbwwfPhyDBg3CZ599hlWrVuH1119HixYt8PPPP2vraz4Pbm5ucHBw0HtOzWclPj6+iqOnqmBhYYHvvvsOrq6uePbZZ9GpUyeMGzcOvXv3Rvv27dGkSRPs3btX+2VUef9G8PNQd1Xm90NmZibkcnmZ7ar6M8OEgsgE/vzzT6xduxZWVlb44IMPtOWaZWTt7e1Lbau5geCNY+31+eef48SJE1i8eLF2yEJZ+Lmo29LT0wEA27Ztw86dO/Hll18iOTkZcXFxmDt3LvLy8jB58mScPn0aAD8P9UW3bt1w4MABBAQEIDo6Gr/++iv2798PmUyGvn37IiAgQFu3vM8EPw91V2X+PSi+ZL25PjNMKIiMdPnyZUyYMAFCCCxevFg7l4Lqh4SEBLzzzjvo2bMnpkyZYu5wqAZQq9UAgMLCQrz//vt4+eWX4eXlBX9/fyxevBijR4+GUqnE4sWLzRwpVaeff/4ZISEh8PX1xbFjx5CdnY2rV69iypQpWLp0KXr37o38/Hxzh0lUKUwoiIxw69YtDBgwAOnp6ZgzZw5mzZqlc9zR0RFA0YZ4pcnJyQEAODk5VV2gVGVeeeUVFBQU4Ouvvza4DT8XdZvm7xeA3knZmrIDBw7o1Ofnoe66du0aJk+eDE9PT2zfvh0hISFwcHBAy5YtsXr1ajz11FOIjo7GunXrAJT/meDnoe6qzL8Hxf/NMddnhgkFUSWlpaWhX79+iI+Px9SpU7FkyZISdfz8/AAAiYmJes+Rk5ODjIwMuLm58RdDLbV9+3bY29vjpZdeQq9evbSvcePGAShKOjVld+7cAcDPRV3n7+8PoGjogZeXV4njTZs2BQAkJycDePB5SE9P1/7Sf5jms6I5N9Uuv/zyC5RKJQYMGKBz86cxZswYAMDBgwcBlP9vBD8PdVdlfj84OzvDxcWlzHZV/ZmxrJKzEtVx2dnZGDhwIC5evIiRI0fim2++gSRJJeq1bt0aNjY2uHfvHm7duoXGjRvrHI+OjgYAtG/fvlripqqRkZGh/bb5YQqFQntMs1wfPxd1m2alpry8POTn55dYMjQtLQ3Ag28VXV1d4efnh4SEBJw6dQrdu3fXqX/z5k2kpKTA398fzs7O1XAFZGqamznNTd/DNOWa+TeaobPnz5+HUqkssdIT/42ouyr7+yEoKAgHDx5EdHQ0AgMDdY4plUqcP38etra2aNWqVZXEzScURBWUn5+PYcOG4fjx4+jfvz9+/vlnWFhY6K1rZ2eH3r17AwB+//33Esc3btwIABgyZEjVBUxVShRtEFriFRsbCwBo3ry5tkzzzTQ/F3Wbn58fgoKCIITQm2hqyoovEavZa0Dzd18cPw+1X8OGDQEULSmsz4kTJwA8eHrVrFkzPProo8jLy9PuL1AcPxN1V2V/P5T1b8j27duhUCjQp08f2NramjrkIlW2ZR5RHVRYWChGjBghAIiwsDCRk5NTbpvdu3cLAMLDw0NcvXpVW37kyBFhY2MjXF1dRXp6ehVGTeYQGxtb5k7Z/FzUbT/++KMAINq1ayeSkpK05adOnRLu7u4CgPjtt9+05ZcvXxYWFhbCxsZGREZGasuvXr0qPDw8hKWlpbh27Vq1XgOZzsmTJwUAAUB89dVXOsciIyOFg4ODACB2796tLf/mm28EANGyZUtx9+5dbfmmTZsEANGiRQuhVCqr7RrIdMrbKbsyvx9SU1OFs7OzACA2bdqkLb97965o0aKFACD2799v6kvRYkJBVAHLly/X/lIYMWKEmDx5st7XvXv3dNrNmjVLABD29vZi2LBhYuDAgcLS0lJYWFiILVu2mOdiqEqVl1AIwc9FXTd58mQBQLi6uopBgwaJJ554Qnsj8fzzz5eov2zZMgFAWFpaioEDB4phw4YJOzs7AUCsXLnSDFdApjR37lzt7482bdqI0aNHi27dugmZTCYAiBdeeEGnvkql0n6B5ebmJkaNGiV69eolJEkSdnZ24ujRo2a6Eqqo7du3iy5dumhfkiQJADpl27dv12lTmd8PGzduFDKZTEiSJJ544gkxatQo4erqKgCIOXPmVOk1MqEgqoAFCxZofyGU9YqNjS3RNjw8XHTq1EnY29sLV1dXMWDAAHH48OHqvwiqFoYkFELwc1GXqdVqsWbNGu3fr4ODgwgNDRXr168vtc22bdtEWFiYcHR0FI6OjiIsLExERERUY9RUlTZv3iz69eunferk5uYmnnjiCfHTTz/prV9YWCiWLl0q2rRpI2xtbYWHh4cYNWqUuHDhQjVHTsYIDw8v974hPDxcb7uK/n74999/xYABA4Srq6uwt7cXnTt3LvPfHFORhBDC5OOoiIiIiIioXuCkbCIiIiIiqjQmFEREREREVGlMKIiIiIiIqNKYUBARERERUaUxoSAiIiIiokpjQkFERERERJXGhIKIiIiIiCqNCQUREREREVUaEwoiIiIiIqo0JhRERFSCJEmQJAkLFy6skvOvX79e20dcXFylzzNlyhRIkoSmTZuaLLbqtHDhQu37QERUWzGhICKqAi+++KL2RnHfvn0Vartr1y5t21mzZlVRhESlUygUCA8Px9NPP43mzZvD0dERjo6OaN68OUaOHIl169YhLy+v3PMUTxwffjk6OiIgIACjRo3C77//DrVaXQ1XRkRVgQkFEVEVmDRpkvbnDRs2VKjtDz/8oPc8RNVh69ataN26NaZNm4bNmzcjJiYGOTk5yMnJQUxMDLZs2YLp06ejdevW+OOPPyrdT05ODmJjY7Fp0yaMGTMGPXv2RHp6uukuhIiqDRMKIqIq0K1bNzRv3hwAsGnTJoO+zQWKbrK2bNkCAGjTpg06depUZTGWRQgBIUSVDXmiIgsXLtS+1zXBypUrMWLECCQkJAAAhg4dih9++AFHjhxBZGQkNmzYgOHDhwMAbt68iZEjR2LlypUGnfvDDz/EuXPntK+///4bH330Edzc3AAA//77LyZMmFAl10VEVYsJBRFRFZk4cSIAIDMzE1u3bjWozebNm5GTk6PTnqg67NixA7NmzYIQAi4uLtizZw+2bt2KCRMmIDQ0FI8//jieffZZbNmyBXv37oWLiwuEEJg9ezb+/PPPcs/fuHFjtG3bVvvq168f5s2bh7Nnz8LFxQUA8OeffyIqKqqqL5WITIwJBRFRFZk4caJ2sq2hw540w51kMhm/raVqk52djalTpwIo+uxFRETgySefLLV+7969sW3bNshkMgghMHXqVG0iXFFNmjTBa6+9pv3znj17KnUeIjIfJhRERFUkICAA3bp1AwD8/fffSE5OLrN+UlIS9u7dC6Dohq1x48baY0ePHsU777yDXr16oWHDhrC2toazszMCAwMxY8YMXLx4scxzP7wa0u3bt/HWW2+hTZs2cHJygiRJ+Oeff7T1y1vlKSYmBkuXLsWQIUPQtGlT2NnZwc7ODv7+/hg7dix27txZzrujKz8/H0uWLEFwcDBcXFzg7OyMLl264KuvvoJKparQufSRy+VYtGgRunXrBi8vL1hbW8PHxwdDhgzBxo0byx1ytGXLFgwfPhxNmjSBjY0NnJycEBAQgLCwMMyfPx/Hjx+vVFzlrfLUtGlTSJKEKVOmAACuXLmC559/Hk2bNoWNjQ0aNGiAESNG4OjRo5XqX2Pt2rW4d+8egKIFBcLCwspt06NHD7zwwgsAgOTkZKxbt67S/bdr1077882bNyt9HiIyE0FERFVmzZo1AoAAIFasWFFm3cWLF2vrfv/999ry8PBwbXlpLwsLC/Hll1+Weu7JkycLAMLf319ERkYKT0/PEufYv3+/tr6mbMGCBSXOFRMTU248AMSECROEUqnUG0/xa4qOjhadOnUq9Tw9evQQWVlZ5V5Xafbs2SM8PDzKjHXQoEF6+ygsLBSjR48u91o7depUav9lWbBggfYc+vj7+wsAYvLkyWLz5s3C3t6+1L//X375pVIxCCFEx44dtee6fPmywe0uXbqkbdexY8cSx4v/PYeHh5d6ni1btmjrzZo1qxJXQETmxCcURERVaMyYMbC1tQWgu3qTPprjjo6OGDlypLa8sLAQbm5umDJlCtatW4dDhw4hOjoa27dvx/vvvw9PT0+oVCq8+uqr5S5Rm52djaeffhoKhQJvv/02/vnnHxw/fhxr166Fj4+PQdekUqlgbW2NIUOGYOXKldizZw+io6OxZ88efPXVV2jTpg2AomFeH3zwQbnne/HFF3Hy5EmMHTtWO4b+p59+wmOPPQYAOHjwYKXnkxw+fBgDBw5EamoqGjRogA8//BARERE4efIkIiIitMPK/vzzT0yePLlE+1WrVuH3338HAHTv3h3r16/Xvv+7d+/G0qVL0bdvX1hYWFQqPkOdO3cOzzzzDBo0aIAvvvgCR48eRWRkJBYuXAhbW1uoVCq88MIL2qcMFSGXy3HmzBkAQKtWrdC6dWuD2z7yyCNo1aoVAODs2bPIysqqcP8AcOnSJe3PtXVPEaJ6zdwZDRFRXTdmzJhyv/09c+aMts6kSZN0jiUmJoqcnJxSz5+RkSHat28vAIju3bvrraP5Jh+AcHR0FKdPny4zZk1dfU8osrOzRVJSUqlt1Wq1mDJligAgHBwcREZGRok6Dz91+eijj0rUUSqVon///to6O3bsKPW69D2hKCgoEE2bNhUAxIABA0p9D4s/Rdq1a5fOsbCwMAFAdOnSpdSnLUIIkZqaWuqxshj6hAL3n4LI5fISdTZs2KCts2zZsgrH8O+//2rbjxs3rsLtx40bp21/+PBhnWOGPKHIzMwUjRo10j5piY2NrXAMRGRefEJBRFTFiu8lUdpTirL2nmjcuDHs7e1LPb+Liwvef/99AEVLb6amppYZz5tvvomgoKBy4y6Ng4NDmU8zJEnC0qVLYWFhgZycnHIn2bZv3x7/93//V6L8/9u705Couj8O4F/Lycn0MbOszGlaLCRajBbSKM1KW1RGixathoSKIojKiFZ7YxKRRYXZajttk6BEG1NZWVRqQiPlBkOU7WW2UE54/y+Guf9RZ8a5Vx17eL4fuHCde8+5547z4v7u+Z1z3N3dceTIESgUCgBAZmampHaeO3cORqMRSqUSJ0+etPsdLlmyBGPHjgVgXojN2tu3bwEAYWFhcHd3t3utbt26SWqbHMeOHcM///zT5PPExEQEBAQAAO7duye53o8fP4r7vXr1kly+Z8+e4n5zvz1r1dXVyMvLQ2hoKKqrqwEAq1evZg8F0b8QAwoiojYWHR0tPnSdOXOmyQDg+vp6nD17FoB5xptJkyY5rO/Hjx8wGo0oLS2FwWCAwWAQH7oBiOkr9iQlJcm5DbtMJhNevXqF58+fi+2prq6Gn5+fU+3RarV2ByUHBgYiKioKAHDnzh1JA7Rzc3MBAOHh4ejRo4fDcydOnAgAePjwYYPPLYFTXl5egwdvVxs2bBiGDx9u85ibmxtGjhwJwDxYXirrNCUvLy/J5a3L1NbW2j1v8eLFDVbK7tOnD+Li4lBaWgpfX19s374dO3fulHx9Imp/9l+3EBFRq3B3d0diYiJ2794No9GI+/fvN5hFR6/Xi29ok5KS0KFD03c9Hz9+REZGBnQ6HSoqKhzOSuTowdfLywsDBgxowd2YmUwmHDp0CKdOncLTp09RV1cnqz0AxLES9owdOxZXrlwRV2oeNGiQU220rGdw/fp1uwFLY5YeCQutVou7d++isrISQUFBSEhIwNSpUzFhwgQEBgY6VWdrCA4Odnjc0kMiZwyDt7e3uP/9+3fJ5a3L2OpBccaECROwbNkyWWWJqP2xh4KIyAUcpT05SncCgKKiIgQHByM9PR3l5eXNTnHqaFXurl27Otli+z5//ozQ0FCsXLkSjx49chhMNNceAPD393d43Dql5vPnz063s7lpem1p3Nbk5GRs3LgR7u7u+Pr1K7Kzs5GYmAiVSoWgoCCsXbtWVq+AVI5S3gCIQaicKXa7d+8u7jcOqJzx7t07cd/SK2WL9UrZhYWF0Ol04qrbubm5iIqKwq9fvyRfn4jaHwMKIiIXCAkJEefav3jxIn7//g3AnL50+fJlAMCoUaMwZMiQBuXq6uowZ84cfPr0CQqFAmvWrEF+fj7evHmDX79+QRAECIKAqqoqsYyjgKM1ZiNatWoVioqKAAAajQa5ubkwGo34+fMn6uvrxTapVKpm2wPA6d4DqSwP19OnTxcfZJ3ZGktLS0NlZSXS0tIQGRkpPtxXVVUhIyMDwcHByMrKapN7cIWhQ4eKAcnTp08lly8uLgZg/m0NHTrU7nnWK2WPGjUKCQkJyMnJEdc6KSoqwvr166XfABG1OwYUREQuYul9qKmpQV5eHgDzgmmWFYZt9U7cunVLfAOemZmJXbt2YeLEiejVqxc8PDzE86S8uW+J2tpanD9/HoA5PSsnJwexsbFQq9Xo3Llzg+Dgy5cvTtVp/Ya7ueNSBj9b3pbX1dWJD7LObLao1Wps3LgRer0eNTU1KCgowKpVq6BUKmEymbBixQpZD+N/Ax8fH3F8RllZGcrLy50ua33+iBEjZKU8bdmyRUx7y8zMlHR9Ivo7MKAgInKRpKQksYfg9OnTAP6f7qRQKDB//vwmZUpLS8X9uXPn2q3bMl6grVVUVMBkMjXbnhcvXjidj//kyROnjnt6ekoa/2EZqFxYWNhsWpYUCoUCYWFh2LNnjziYXhAEXLp0qdWu4WqWlbgBYO/evU6Xsz7Xug4pOnTogPT0dADmNVe2bt0qqx4iaj8MKIiIXKR3796YMmUKAPNCagaDAXq9HgAwbdo0mzMR/fnzR9y39GQ0Vl9fj8OHD7dBi5typj0AJKUAnTp1ym5a1OvXr3Hjxg0AQEREhKSUrbi4OAAQxz60hcmTJ4v77TkLVEslJyeLYymysrJQUFDQbJmCggIcPHgQgHkcTHJysuzrT548GaGhoQDMKYFlZWWy6yIi12NAQUTkQpa0JpPJhHnz5ol5/rbSnQA0mNGo8RoJFhs2bBDz2NtaUFCQmNZ04sQJm4FAXl4e9u/f73SdJSUlNqcL/fPnD5YsWSL2LixfvlxSW7VarTiOIyUlBXfv3nV4/v3795Gfn9/gs9OnTzcIohqzBDsA0L9/f0nt+5t4e3vj6NGjAMxjT2JiYnD79m2759+5cwcxMTHi7zc7OxtdunRpURs2bdoEwBwgb9++vUV1EZFrcdpYIiIXio+Ph7e3N759+yamM/n6+iI2Ntbm+dHR0fD398f79++xefNmGI1GxMfHo3v37qisrMThw4eh1+sxfvx4p94qt5Sfnx9mzJiBK1eu4Nq1a4iKisLy5cuhVqvx/v176HQ6HD9+HAMGDEBNTQ0+fPjQbJ2jR4/G+vXrUVJSgkWLFsHf3x8VFRXIyMjA48ePAQCxsbGIiYmR1FYPDw9cuHABERER+P79OyIjIzFv3jxoNBr0798f9fX1ePPmDYqKipCTk4Nnz55h3759CA8PF+tYuHAhUlJSkJCQgLCwMAwcOBBKpRLv3r3DzZs3ceDAAQDm6Xhbe30PV4uLi8OuXbuQkpKCmpoaREZGQqPRYPbs2Rg4cCDc3NxQVVUFnU6HnJwcCIIANzc37N69GzNmzGjx9WfOnImQkBCUlJTg7Nmz2LZt2786SCP6T2mX9bmJiP7DFi9eLAAQt2XLljk8/9q1a4JSqWxQxnqLiIgQDAaD+Hd2dnaTOrRarQBAUKvVTrXRUldqamqTYy9fvhT69u1rtz19+/YVSktLBbVaLQAQtFptkzqys7PF84uLi4WRI0farW/8+PFCbW2tzXY6c18PHz4UVCqV3fqttxMnTtj8HhxtPj4+wtWrV536XhtLTU0V67HF0XdoTer/1xGdTicEBgY2e98qlUq4fPmyw7qs/8+2fpeNXbhwQTx/6dKlLb4XInINpjwREbmYVqtt8Le9dCeL6OhoFBYWYsGCBQgICIBCoUCPHj0QHh6OQ4cOQa/XtzjdRAqVSoXi4mKsW7cOgwcPhoeHB3x8fDBixAikpqaipKSkyfS3jvj6+uLBgwdIT09HSEgIvL294eXlhTFjxmDfvn3Iz89vsPiaVOPGjUNFRQWysrIwc+ZMBAQEoFOnTlAqlVCpVIiKikJaWhpevHjR5H9hMBiwY8cOxMbGYsiQIfDz80PHjh3RtWtXjBs3DqmpqSgrK8O0adNkt+9vk5CQgPLychw9ehQajQb9+vWDp6cnPD090a9fP2g0Ghw5cgRlZWWIj49v1WvPmjVLXMTv+PHjePXqVavWT0Rtw00QmpkgnIiIiIiIyA72UBARERERkWwMKIiIiIiISDYGFEREREREJBsDCiIiIiIiko0BBRERERERycaAgoiIiIiIZGNAQUREREREsjGgICIiIiIi2RhQEBERERGRbAwoiIiIiIhINgYUREREREQkGwMKIiIiIiKSjQEFERERERHJxoCCiIiIiIhk+x8rnhX26xoqcAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "# ax.set_xscale(\"log\")\n", + "# ax.set_yscale(\"log\")\n", + "ax.set_xlabel(\"Variables in OR\")\n", + "ax.set_ylabel(\"SlicStan compile time\")\n", + "ax.plot(x, slicstan_time, marker = \"o\")\n", + "\n", + "ax.legend([\"Stan\", \"Dice\"])\n", + "fig.savefig(\"or_slicstan.png\", bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAHBCAYAAADkXzTsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCfUlEQVR4nO3deVxU5RoH8N8Z9nUGkFUWl9w3wBUVt9xzQ63UzCXTq2lpWreruWZl95pmpVaaoi2maWm5K+YKKiogLqmpCCigIDDsgzDn/oEzgmwDMzAM/L6fz3ySs7zvM4cDPbzznPcVRFEUQUREREREBkei7wCIiIiIiKhymMwTERERERkoJvNERERERAaKyTwRERERkYFiMk9EREREZKCYzBMRERERGSgm80REREREBorJPBERERGRgWIyT0RERERkoJjMV4NLly7hs88+w8iRI+Hu7g5BECAIgs7av3fvnrrNsl5vvPGGzvokIiIiIv0z1ncAdcHy5cvxxx9/VFn71tbWmDhxYqn7d+zYgZycHPj7+1dZDERERERU/QRRFEV9B1Hb/fe//0VmZiY6duyIjh07okGDBlAoFKiOS//333+jZcuWsLCwQEJCAmxtbau8TyIiIiKqHhyZrwYffPCB3vr+6aefAADDhw9nIk9ERERUy7BmvobKysrCihUr4OPjA2tra1hbW6NLly7YunWrxm2Iooht27YBAF5//fWqCpWIiIiI9IRlNnpgbm5eZpnNo0eP0K9fP0RGRsLFxQW+vr4QRREhISGQy+WYNWsWvv7663L7OX36NHr06AEnJyc8ePAAxsb8IIaIiIioNuHIfA00efJkREZGYvbs2bh37x7279+PAwcO4ObNm+jQoQPWrl2LQ4cOlduOqsRmzJgxTOSJiIiIaiGOzOtBWSPzERER8PHxQceOHXHu3DlIJEX/3goPD4evry+GDRtW5gw5CoUCrq6uSElJwYULF9ChQwedvw8iIiIi0i+OzNcwR44cAQCMGDGiWCIPQF1DHxoaWmY7+/fvR0pKCpo3b85EnoiIiKiWYjJfw9y7dw8A8OGHH5a6+FNGRgaSkpLKbEdVYsMHX4mIiIhqLxZS1zBKpRIA0L17dzRu3LhSbaSmpuLAgQMQBAGvvfaaLsMjIiIiohqEyXwN4+7uDqCgzGbevHmVauPXX3+FQqFAjx494OXlpcvwiIiIiKgGYZlNDdOvXz8AwO7duyvdBktsiIiIiOoGJvM1TOfOndGvXz8EBwdj5syZSEtLK3bM5cuXS52aMjo6GmfOnIG5uTlefvnlqg6XiIiIiPSIyXw12L9/P7p06aJ+5ebmAkCRbfv371cf/9NPP8HHxwfr16+Hl5cXevfujddeew1DhgyBp6cnvL29S03mf/75Z4iiiKFDh0IqlVbL+yMiIiIi/WDNfDVITEzE+fPni20vvC0xMVH9bycnJ4SEhGDjxo3Yvn07wsPDERISAmdnZzRq1AjvvPMOxowZU2JfP//8MwBg/PjxOn4XRERERFTTcNEoIiIiIiIDxTIbIiIiIiIDxTKbKqJUKhEXFwcbGxsIgqDvcIiIiIjIQIiiiPT0dLi5uUEiKXvsncl8FYmLi4OHh4e+wyAiIiIiAxUbG6teg6g0TOariI2NDYCCb4Ktra2eoyEiIiIiQ5GWlgYPDw91PlkWJvNVRFVaY2try2SeiIiIiCpMk1JtPgBLRERERGSgmMwTERERERkoJvNERERERAaKyTwRERERkYFiMk9EREREZKCYzBMRERERGSgm80REREREBorJPBERERGRgeKiUbVEvlJEaFQyHqXnwMnGHJ0a2sNIUv5CA0RERERkuJjM1wKHrsZj2d7riJfnqLe5Ss2xZGhLDGztqsfIiIiIiKgqMZk3cIeuxmPGT2EQn9ueIM/BjJ/C8M14Xyb0RERU54miiCdPnkCpVOo7FKrljIyMYGxsDEGongoJJvMGLF8pYtne68USeQAQAQgAlu29jn4tXVhyQ0REdVJWVhbkcjnS09ORn5+v73CojjAzM4NMJoOdnV2VJ/VM5g1YaFRykdKa54kA4uU5CI1Khl9jh+oLjIiIqAZIT0/H/fv3YWJiAplMBisrK0gkkmobMaW6RxRF5OXlQS6X4+HDh8jNzYWLi0uV9slk3oA9Si89ka/McURERLVFVlYW7t+/D1tbW7i5uTGBp2plY2ODlJQUJCQkwMLCAlKptMr64tSUBszJxlynxxEREdUWcrkcJiYmTORJb+zs7GBpaYm0tLQq7YfJvAHr1NAerlJzlPYrSkDBrDadGtpXZ1hERER6JYoi0tPTYWtry0Se9Mra2hpZWVlV+uA1k3kDZiQRsGRoSwAoNaFfMrQlH34lIqI65cmTJ8jPz4eVlZW+Q6E6ztzcHEqlEnl5eVXWB5N5AzewtSu+Ge8LF2nRUhprMyNOS0lERHWSahRUImGaQ/qlugercmSeD8DWAgNbu6JfSxeERiVjd/h9/HrxPtq6S5nIExFRncYSG9K36rgH+SdrLWEkEeDX2AETuzYAAETeT0O+sqQZ6ImIiIiotmAyX8s0c7aBhYkRMhR5uJOYoe9wiIiIiKgKMZmvZYyNJGjjXjCXaURMqn6DISIiIqIqxWS+FvLxlAEAwmNT9BsIEREREVUpJvO1kI+HDAAQzpF5IiIiolqNs9nUQj6edgCAWw/TkanIg5UZv81ERERU9TIzM/Hjjz/izz//xOXLl/H48WOIoghbW1s0aNAAbdq0gZ+fHwYOHAgPDw99h1srMMurhZxtzeEqNUe8PAeR9+Xwa+yg75CIiIioljt79izGjBmDmJiYYvuSkpKQlJSEixcvIjAwEM7OzkhISChyTK9evXDy5En07NkTJ06cqKaoDR+T+VrKx1OG+CsJCI9NYTJPREREVerWrVsYMGAA0tPTAQDDhg3D6NGj0bRpU5iamiIpKQmXL1/G0aNHcfz4cT1HW7swma+lvD1kOHAlgTPaEBERUZX78MMP1Yl8YGAgJk2aVOyYfv364b333kNiYiJ+/fXXao6w9uIDsLWUqm4+PDYVosjFo4iIiKhq5OfnY//+/QCADh06lJjIF+bo6IiZM2dWQ2R1A5P5Wqq1mxRGEgGJ6QrEyXP0HQ4RERHVUomJicjOzgYAvPDCCxU+f9KkSRAEASdPngQAnDx5EoIgFHk1aNCgyDmZmZnYsWMH3nzzTXh7e0MqlcLExASOjo7o2bMnPv/8c2RklL14pqrtpUuXAgAuXLiAsWPHwt3dHWZmZqhfvz5ef/11/P333xV+T9WJZTa1lIWpEVq42uDqgzSEx6SgvsxC3yERERHVaflKEaFRyXiUngMnG3N0amgPI4mg77C0Zmpqqv53dSW+L730kjr5LywpKQmnTp3CqVOnsH79ehw4cADNmzcvt73169dj9uzZyMvLU2+Li4vDTz/9hN9//x0HDx5Ejx49dPoedIXJfC3m7SHD1QdpiIhJxZC2bvoOh4iIqM46dDUey/ZeR3yhT8tdpeZYMrQlBrZ21WNk2rO3t4eXlxeio6Nx+fJl/Pe//8X7778PiUSzApBPPvkE7733HiZPnoyLFy+iQ4cOCAwMLHJM4T8YACAvLw9t2rTBsGHD0KFDB7i5uUEURURHR2P37t349ddfERUVhREjRiAiIgLm5ual9n/48GGEhoaiTZs2mD17Ntq0aYPs7Gzs3r0bX375JbKysvD666/jn3/+KRZHTSCIBlpQfenSJRw9ehShoaEIDQ3FgwcPAKDS9eEpKSlYunQp9uzZg4SEBLi4uCAgIABLly6FTCarcHtpaWmQSqWQy+WwtbWtVEza+u3SfczbeRntvezw24yueomBiIiouuXk5CAqKgoNGzYsM4mrLoeuxmPGT2F4PkNRjcl/M97X4BP6VatW4b333lN/3aBBAwwbNgxdu3ZFp06d0LBhw3LbqMjUlP/88w+aNGlS6v6goCAMGDAASqUS33//PaZMmVLsGEF49qnI4MGDsXv37mLJ+ieffIKFCxcCAH7//XcEBASU+z4Kq+y9WJE80mCT+REjRuCPP/4otr0ybycpKQl+fn64ffs2GjVqhA4dOuDatWu4du0amjZtirNnz8Le3r5CbdaEZP5OYgZeXHUSZsYSXF02ACZGfESCiIhqP00TKFEUkf0kv0pjyVeK6Lv6JB6mKUrcL6BgfZijc3tUacmNhYlRkeRV15RKJaZOnYrNmzeXuN/Z2Rm9evXCa6+9hiFDhpQYi67nmQ8ICMCePXswZMgQ7N27t9h+VQzm5uaIjo6Gk5NTsWPS09NRr1495Obm4t1338Xq1asrFEN1JPMGW2bj5+eHtm3bomPHjujYsSMaNGgAhaLkH5TyzJkzB7dv38bIkSOxY8cOGBsXXJZ33nkHX3/9NebOnYstW7boMPrq0dDBCrbmxkjLycON+HS0cZfqOyQiIqIaI/tJPlouPqzXGEQACWk5aLP0SJX2c/2jAbA0rbq0TyKRYNOmTRgzZgxWr16NoKCgIvXnDx8+xI4dO7Bjxw506NAB27dvR+PGjXXWf2JiIlJTU4vkgo6OjgCAy5cvl3luv379SkzkAcDGxgZNmjTBtWvXcPfuXZ3Fq0sGm8x/8MEHOmknPj4ev/zyC0xNTbF+/Xp1Ig8AK1euxPbt2/HTTz/hf//7X6nf6JpKIhHg7WmHU7cSER6bwmSeiIiIqlS/fv3Qr18/pKWlITg4GBcuXMDFixdx6tQpyOVyAMDFixfh7++PS5cuwdW18uVFwcHB+OqrrxAUFITk5ORSj0tKSiqznfIekFVVZ6jm0a9pDDaZ15VDhw5BqVTC398fzs7ORfaZmZlh6NCh2Lx5Mw4cOFDuvKk1kbeHDKduJSIiJhUT/PQdDRERUc1hYWKE6x8NqNI+QqOSMSnwQrnHbZncEZ0aVqyktyIsTIyqrO2S2NraYtCgQRg0aBAAQKFQYNu2bZg3bx5SUlIQHx+PRYsW4fvvv69U+0uXLsWyZcs0OlY1bWZpLC0ty9yvepA3P79qS7Iqq1qKqBUKBR4+fAilUlkd3VWI6qMXX1/fEvertkdGRlZbTLrk4ykDULB4FBERET0jCAIsTY2r9OXfxBGuUnOUVq0uoGBWG/8mjlUaR1XWy2vCzMwMkydPxi+//KLe9vvvv1cqNzx27Jg6kW/UqBHWr1+PyMhIpKam4smTJxBFEaIoYtGiRTqLvybTKpnPyMjAgQMHcODAgRIn5k9KSsKoUaNga2sLNzc32NnZYd68eZWuba8KMTExAAB3d/cS96u2R0dHV1tMuuTtLgMARCVlIiUzV7/BEBER1TFGEgFLhrYEgGIJverrJUNb1or55jUxYMAAeHh4ACiYSfDx48cVbmPjxo0AADs7O5w7dw4zZsxAmzZtIJVKi5RLl1V6U5tolcz/9ttvGDJkCKZPn17sIwqlUolBgwZhz5496r+S0tPTsWbNGowbN06roHVJ9UdIaR+xWFlZASi/TkqhUCAtLa3IqyawszJFw3oF7yHifqp+gyEiIqqDBrZ2xTfjfeEiLTqbiYvUvFZMS1lRbm7P1r4p/ImBpp8eXLt2DQDQu3dv9UOuJbl48WIlIzQsWtXMHz5c8AR4QEBAsYUBduzYgUuXLkEQBPj6+qJnz544efIkwsLCsGfPHhw6dAgDBw7UpvsaZcWKFRrXblU3bw8ZopIyERGTit7NDOshXiIiotpgYGtX9GvpUitXgK2IrKwsXL9+HUBBXb2Dg4N6n2rqxvIqOFSz5GRmZpZ6THh4OM6fP69tuAZBq5H5q1evQhAEdO1afEGiH374AQDQvn17nDt3DqtWrcLZs2fRqVMnAMDWrVu16VpnrK2tARTcXCVR3Sg2NjZltjN//nzI5XL1KzY2VreBaoF180RERPpnJBHg19gBw73rw6+xQ61J5DMyMtC5c2fs27evzBp4pVKJt99+W13tMGzYsCKj8aqZbe7evVvmukGqxaLOnDmD27dvF9ufmJiI119/vVLvxRBpNTL/6NEjACi2qteTJ09w6tQpCIKAmTNnquuXTExMMH36dPWqrTWBp6cnAOD+/fsl7ldt9/LyKrMdMzMzmJmZ6TY4HfH2kAEALsemQqkUIaklvzyIiIioZggNDcXQoUNRv359jBgxAn5+fvDy8oKNjQ1SU1MRHh6OzZs348qVKwAAqVSK5cuXF2mja9euCAwMxKNHjzB37lyMHz8eUmnBtNomJibqXGzChAnYu3cvMjMz0bNnT/znP/9B+/btAQAhISFYvXo1EhIS4Ofnh7Nnz1bjVdAPrZJ51YMFzy99e+HCBWRnZ0MQhGKlNE2bNgUAJCQkaNO1zrRr1w4AEBYWVuJ+1fa2bdtWW0y61tzFFmbGEsiznyDqcSYaO1rrOyQiIiKqJYyNjeHi4oKEhAQ8ePAA69atw7p160o9vkmTJvjll1/QoEGDItvHjBmDFStW4O7du1izZg3WrFmj3ufl5YV79+4BAEaPHo3JkycjMDAQcXFxeOedd4q0Y2RkhC+++AIpKSl1IpnXqsxG9dCoaoRe5dSpUwCAF154odjc7RYWFtp0qXMDBw6ERCLB6dOni70PhUKBvXv3wsjICIMHD9ZThNozNZagdf2Cv2wjYlL1GwwRERHVKubm5njw4AGCg4OxbNkyDBo0CI0aNYKVlRWMjIxga2uL5s2b49VXX8W2bdtw9epV9Uh6YdbW1ggJCcHs2bPRokWLMud/37x5M3788Uf4+/vDxsYGZmZm8PLywuuvv65uo67QamS+cePGiIiIwIkTJ9C/f3/19t27d0MQBPTo0aPYOYmJiQBQ7auprl27FmvXrkVAQABWrFih3u7q6oqxY8fi559/xltvvYXt27ery4L+/e9/IzExERMnTjS41V+f5+Mhw6XoFITHpmBU+5Kn4SQiIiKqDIlEgq5du5b4HGVFODs7FxmRL8v48eMxfvz4UvcvXboUS5cuLXV/WXX5hZ04cUKj4/RFq2S+X79+CA8Px/r16+Hv7w9/f38EBgbiwoULEAQBQ4cOLXaOavGlwtMSVcb+/fuL1Frl5hbMod6lSxf1tkWLFuGll14CUDDn/c2bNxEfH1+srTVr1uDcuXP47bff0Lx5c3To0AHXrl3D1atX0aRJE6xevVqrWGsC76cPwUbwIVgiIiKiWkOrZH727Nn49ttvkZ6ejiFDhhTZ16JFixKT+f3790MQBPj4+GjTNRITE0uccqjwNtWnAOWpV68eQkNDsXTpUuzZswe7d++Gs7Mz3nnnHSxbtgwymUyrWGsCH087AMCN+HRk5+bDwrR6l3UmIiIiIt0TRE0/YyjF6dOnMWbMmCIj3o0aNcK+ffvQvHnzIsfeuXMHzZo1gyiK+O233zBixAhtuq7R0tLSIJVKIZfLYWtrq+9wIIoiOn16DInpCuyc7oeODez1HRIREVGVyMnJQVRUFBo2bKieu5xIHyp7L1Ykj9RqZB4A/P39ERUVheDgYCQkJMDV1RXdu3cvspyuSnx8PBYtWgQARWrsqeoJggBvDxmOXn+IiJhUJvNEREREtYDWyTxQMDVl7969yz2ue/fu6N69uy66pErw8SxI5sNjU/QdChERERHpgFZTU5JhUS0exekpiYiIiGoHnYzMq9y5cwdnz55FQkICsrKy8NZbb6FevXq67IK00NZdBokAxMlz8DAtB862rCMkIiIiMmQ6GZkPCwtDjx490LRpU0ycOBEffPABli1bVmwRpnXr1sHJyQlNmjTBkydPdNE1VYC1mTGaOtsAAMI5Ok9ERERk8LRO5vft24du3bohODgYoiiqXyWZMGECsrOzcffuXezbt0/brqkSfJ7ON8+6eSIiIiLDp1UyHx8fj7Fjx0KhUKBly5Y4ePAg0tPTSz3exsYGw4YNAwAcPHhQm66pklg3T0RERFR7aJXMf/HFF8jMzISXlxdOnz6NAQMGwMrKqsxzevXqBVEUcenSJW26pkpSLR4VeV+OvHylnqMhIiKqOloupUOkteq4B7VK5g8dOgRBEDBv3jyNV0lVLSQVFRWlTddUSY0drWFtZozsJ/m49TBD3+EQERHpnJFRwSrneXl5eo6E6rr8/HwAgERSdRNIatVydHQ0AKBTp04an6NaxSojg4mkPhhJBLTzkAJg3TwREdVOxsbGMDMzg1wu13coVMelp6fDxMQEJiYmVdaHVsm86i9epVLzcg3VD5a1tbU2XZMWWDdPRES1mSAIkMlkSE9PR0oKB65IP7Kzs5GWlgYbGxsIglBl/Wg1z7yLiwvu3buHu3fvokuXLhqdExoaCgDw9PTUpmvSgo9HQd18eGyqfgMhIiKqInZ2dsjNzUVCQgLS0tJgbW0Nc3NzSCSSKk2sqG4TRRH5+flIT09HWloazMzMqnzNJa2SeX9/f0RFRWHnzp0YN25cucfn5ubiu+++gyAI6NWrlzZdkxa8n05PeScxA2k5T2BrXnUf/RAREemDIAhwcXGBhYUF0tLSkJSUVKFKAiJtmJiYQCaToV69eupnOKqKVsn8pEmT8MMPP+DPP//E0aNH0a9fv1KPzc3NxYQJE3Dnzh1IJBJMnTpVm65JC/WszeBhb4HY5GxExsrRvQlX6SUiotpJKpVCKpVCqVQiLy+PCT1VOYlEAhMTk2r7BEirZL5Xr1549dVXsWPHDgwdOhSzZ8/GqFGj1Pvv3buH1NRUBAcHY8OGDbh79y4EQcD06dPRqlUrrYOnyvP2sENscjbCY1KYzBMRUa0nkUhgamqq7zCIdE4QtZwAU6FQYNSoUThw4ECZf4Gouhk5ciR27NhR5R856FtaWhqkUinkcrl6Bp+aZNOZKCzfdx0vNnfCpkkd9R0OERERET1VkTxS60kvzczMsG/fPnz33Xdo1KgRRFEs8eXu7o7169dj165dtT6RNwQ+T+vmw2NTuagGERERkYHSqsymsKlTp2Lq1Km4fv06Ll68iEePHiE/Px8ODg7w8fGBr68vnx6vQVq62sLESEByZi5ik7Ph6WCp75CIiIiIqIJ0lsyrtGzZEi1bttR1s6Rj5iZGaOkmxeXYVITHpjCZJyIiIjJAVbe2LNV4Pk8Xjwrn4lFEREREBonJfB1WuG6eiIiIiAyPRmU2P/zwQ5V0PmHChCpplzTj/XRk/u+4NCjy8mFmzAeTiYiIiAyJRsn8pEmTdP7wqiAITOb1zNPeEvZWpkjOzMW1uDT4etrpOyQiIiIiqgCNy2xKm3JSmxfplyAI6tH5CNbNExERERkcjUbmo6KiqjoO0hMfDxn+uvGIdfNEREREBkijZN7Ly6uq4yA98X76EGxEbIp+AyEiIiKiCuNsNnVcOw8ZBAGITc5GUoZC3+EQERERUQUwma/jbM1N0NjRGgDr5omIiIgMjU5XgA0LC0NQUBCuXLmC5ORkAIC9vT1at26Nvn37on379rrsjnTEx0OG248yEBGbir4tnfUdDhERERFpSCfJfFhYGN566y1cuHCh1GMWLFiADh06YN26dejQoYMuuiUd8faUYeel+whn3TwRERGRQdG6zGbXrl3o2rUrLly4oJ5y0sTEBM7OznB2doaJiYl6+4ULF9CtWzfs3LlTF7GTjqimp7wcK0e+klOGEhERERkKrZL5mzdv4vXXX0dubi6MjIwwY8YMXLhwAZmZmYiLi0NcXBwyMzNx8eJFzJgxA8bGxnjy5AkmTJiAGzdu6Oo9kJaaOdvAwsQIGYo83EnM0Hc4RERERKQhrZL5//73v1AoFDA3N8eRI0ewbt06tG/fHkZGRupjjIyM4Ovri3Xr1uHo0aMwNzdHbm4u/ve//2kdPOmGsZEEbdylAPgQLBEREZEh0SqZDwoKgiAImDNnDnr16lXu8T179sScOXMgiiKCgoK06Zp0zOfpfPOsmyciIiIyHFol84mJiQCAwYMHa3zOSy+9VORcqhl8ntbNh3NknoiIiMhgaJXMOzo6AgDMzc01PsfMzAwAUK9ePW26Jh3z8bQDANx6mI5MRZ6eoyEiIiIiTWiVzHfr1g0AypyS8nmhoaEAgO7du2vTNemYs605XKXmUIpA5H25vsMhIiIiIg1olczPnTsXRkZG+PTTTzUqm3n06BFWrFgBExMTvPvuu9p0TVWAdfNEREREhkWrZL5jx4747rvv8OjRI3Tu3Bl79uyBUqksdpxSqcQff/wBPz8/JCYm4ptvvkGnTp206ZqqgGq+ec5oQ0RERGQYtFoB9o033gAAtGzZEpcvX8aoUaNgZ2cHHx8fODk5QRAEPHz4EBEREUhOTgYAtGvXDmfOnMGZM2dKbFMQBGzatEmbsKiSVHXz4bGpEEURgiDoOSIiIiIiKosgimKll/yUSCRFEj5VU88ngaVtf54qgczPz69sSDVGWloapFIp5HI5bG1t9R2ORrJz89F66WHkK0UE/6cP6sss9B0SERERUZ1TkTxSq5F5T09PvY7eZmdnY8WKFdi+fTtiYmJgb2+PgQMHYvny5ahfv36F2jp69CjWrFmD0NBQpKamwtbWFu3bt8eMGTMQEBBQRe+gZrEwNUILVxtcfZCGiJhUJvNERERENZxWyfy9e/d0FEbF5eTkoE+fPjh37hxcXV0xfPhw3Lt3D4GBgdi3bx/OnTuHRo0aadTWmjVr8O6770IQBPj5+cHDwwOxsbEICgrC0aNHsWDBAnzyySdV/I5qBm8PGa4+SEN4TApeauuq73CIiIiIqAxaPQCrTx9//DHOnTsHPz8/3Lp1Czt27MD58+exatUqJCYmquv5y5OYmIj//Oc/MDExwfHjxxEcHIzt27cjODgYJ06cgJmZGVasWIG7d+9W8TuqGXw8CurmI2JT9RsIEREREZXLIJP53NxcrF27FgCwbt06WFtbq/fNnTsXbdu2xcmTJ3Hp0qVy2zp//jwUCgX69OmDnj17FtnXo0cPDBgwAKIo4uLFi7p9EzWU99PpKa88kONJfvGZiYiIiIio5jDIZD44OBhyuRyNGzeGj49Psf2jR48GAOzdu7fctlQr0pbHwcGhYkEaqIYOVrA1N4YiT4kb8en6DoeIiIiIyqBVzfzz0tPTERUVhfT0dI1mpOnRo0el+rl8+TIAwNfXt8T9qu2RkZHlttWpUyfIZDL89ddfOHnyZJHR+VOnTuHw4cNo0qQJ/P39KxWroZFIBHh72uHUrUSEx6agjbtU3yERERERUSm0TuZFUcTGjRvxzTffaJQ8qwiCgLy8vEr1GRMTAwBwd3cvcb9qe3R0dLltSaVSbNq0CePGjUPv3r3RtWtXuLu74/79+wgJCUG3bt3www8/wNTUtMx2FAoFFAqF+uu0tDRN306N4+0hw6lbiYiIScUEP31HQ0RERESl0SqZf/LkCUaMGIFDhw4BeDaffFXLyMgAAFhaWpa438rKCkDBJwWaGDlyJA4ePIhXXnkFwcHB6u22trbo37+/RtNcrlixAsuWLdOov5rO52ndfDgfgiUiIiKq0bRK5letWoWDBw8CALy8vDBx4kS0a9cOMpkMEonhlOOvWrUK//73vzFixAgsXboUjRo1wt27d7F48WIsXrwY58+fx759+8psY/78+Zg7d67667S0NHh4eFR16FXC210GAIhKykRKZi7srMr+VIKIiIiI9EOrZP7HH38EAPj5+SEoKAgWFtWzyJBq9pqsrKwS92dmZgIAbGxsym3rxIkTeO+99+Dr64udO3eq/whp06YNdu3ahQ4dOmD//v04ePAgBg0aVGo7ZmZmGj9MW9PZWZmiYT0rRCVlIuJ+Kno3c9J3SERERERUAq2Gz6OioiAIAubPn19tiTxQsPIsANy/f7/E/artXl5e5bal+oMkICCg2KcJRkZGGDlyJICCh2HrEm8PGQAgIiZVr3EQERERUem0Subt7AoWGCrtQdSq0q5dOwBAWFhYiftV29u2bVtuW6rEXyotedYW1faUlJQKx2nIWDdPREREVPNplcyrkup79+7pIhaNdevWDVKpFHfu3EFERESx/bt27QIADB06tNy2XFxcAKDURaEuXLgAAGjQoEHlgjVQqpH5y7Gp1fZgMxERERFVjFbJ/KxZsyCKIjZt2qSreDRiamqKWbNmAQBmzpyprpEHgNWrVyMyMhI9e/ZE+/bt1dvXrl2L5s2bY/78+UXaGjFiBADg559/LvaQ6x9//IFt27ZBIpEgICCgit5NzdTcxRZmxhLIs58gKimz/BOIiIiIqNpplcwPHjwYb7/9Nvbv34/33ntPo4WidGXhwoXo3LkzQkJC0KRJE7z66qvo0qUL5s2bB0dHR2zevLnI8UlJSbh58ybi4+OLbB8xYgRefvll5OfnY+jQoejYsSNeeeUVdOzYESNGjIBSqcTy5cvRrFmzantvNYGpsQSt6xeUGIWzbp6IiIioRtJ60agvv/wSXl5eWLhwIXbt2oWRI0eiadOmpc4BX9iECRMq3a+5uTmOHz+OFStWYNu2bdizZw/s7e0xadIkLF++XOM6fkEQsGPHDgwcOBBbt25FZGQkIiIiIJPJ1H+sDBw4sNJxGjIfDxkuRacgIjYVo9pX73MRRERERFQ+QdSyIDo7OxuffvopvvrqK/ViThp1rMUKsIYgLS0NUqkUcrkctra2+g6nUvZFxmHWtnC0rm+LfW/76zscIiIiojqhInmkViPzWVlZ6N+/P86ePQug+laAperh41kwW9GN+HRk5+bDwtRIzxERERERUWFaJfOrV69GSEgIAKBLly6YNm2aQa4ASyVzk5rD0cYMiekKXI2To2MDe32HRERERESFaJXMb9u2DYIgYNCgQfjzzz+ZwNcygiDA20OGo9cfIiImlck8ERERUQ2jVfatml9+9uzZTORrqWeLR9WtRbOIiIiIDIFOVoCtV6+eToKhmke1eFQEp6ckIiIiqnG0SuY7duwIALh165ZOgqGap627DBIBiJPn4GFajr7DISIiIqJCtErmZ8+eDaBgdVXOZFM7WZsZo6mzDQAuHkVERERU02iVzPfu3RuffPIJgoODMWbMGKSmpuooLKpJWDdPREREVDNpNZvNRx99BADo1KkTdu7ciQMHDqBfv34arwC7ePFibbqnauLtIcMvobGsmyciIiKqYbRaAVYikUAQBPXXoigW+bo8+fn5le26xqsNK8Cq3HqYjv5fnIKlqREil/SHsRFnLiIiIiKqKhXJI7XOykRRVL+e/7q8FxmGxo7WsDYzRlZuPm49zNB3OERERET0lFbJvFKp1OpFhsFIIqCdhxQAEBGbqt9giIiIiEiN9RKkEdV88+ExfAiWiIiIqKZgMk8a8fEoWCCMI/NERERENQeTedKI99PpKW8nZiAt54l+gyEiIiIiAEzmSUP1rM3gYW8BUQQiY+X6DoeIiIiIoKNkPjc3F4GBgRg+fDgaNGgAa2trGBkZlfkyNtZqinvSA++npTasmyciIiKqGbTOqG/duoURI0bg5s2bnG6ylvP2kGHv5TjWzRMRERHVEFol85mZmRg0aBCioqIgkUgwfPhwODo6YuPGjRAEAQsXLkRycjIuXryI8+fPQxAE+Pn5oV+/frqKn6qRz9O6+fDY1AovEEZEREREuqdVMv/tt98iKioKRkZGOHz4MPr06YNr165h48aNAIBly5apjw0PD8frr7+Oc+fOYcyYMZg1a5Z2kVO1a+lqCxMjAcmZuYhNzoang6W+QyIiIiKq07Sqmd+7dy8EQcArr7yCPn36lHmsj48Pjh8/DicnJ8ydOxeXLl3SpmvSA3MTI7R0K1g8KjyWdfNERERE+qZVMn/9+nUAQEBAQIn7n1/l1dHREXPnzkVeXh7Wrl2rTdekJz7qxaNS9RoHEREREWmZzKempgIAvLy81NvMzMzU/87MzCx2Trdu3QAAJ0+e1KZr0pPCdfNEREREpF9aJfOWlgU104UfhJTJZOp/x8TElHpuQkKCNl2Tnng/HZn/Oy4Nirx8/QZDREREVMdplcw3bNgQABAXF6feVq9ePdjb2wMAgoODi52jqpU3NTXVpmvSE097S9hbmSI3X4nrcWn6DoeIiIioTtMqme/QoQMA4OLFi0W2v/jiixBFEStXrkRycrJ6+927d/HZZ59BEAR4e3tr0zXpiSAI6tF51s0TERER6ZdWyXy/fv0giiL+/PPPItvfeecdAAXJe9OmTfHyyy9j8ODB8Pb2Vo/iT5s2TZuuSY9UD8Fy8SgiIiIi/dIqmR8yZAh69OgBGxsb3LlzR729W7duWLx4MURRRHJyMn7//XccPnwYGRkZAIDJkydj3Lhx2kVOeuOtfgiW01MSERER6ZNWi0ZZWlrixIkTJe5bunQp/P398f333+PatWvIy8tDkyZNMGHCBIwaNUqbbknP2nnIIAhAbHI2kjIUqGdtVv5JRERERKRzWiXz5XnxxRfx4osvVmUXpAe25iZo7GiN248yEBGTir4tnfUdEhEREVGdpFWZDdVdrJsnIiIi0r9qSeYVCgUePnxYbEVYMlysmyciIiLSP62S+YyMDBw4cAAHDhxQP9xaWFJSEkaNGgVbW1u4ubnBzs4O8+bNg0Kh0KZbqgFU01NejpUjXynqNxgiIiKiOkqrmvnffvsNkydPhru7O+7du1dkn1KpxKBBgxAWFgZRLEj20tPTsWbNGty7dw+//fabNl2TnjVztoGFiREyFHm4k5iBps42+g6JiIiIqM7RamT+8OHDAICAgABIJEWb2rFjh3q1V19fX7z77rvw9fWFKIrYs2cPDh06pE3XpGfGRhK0cZcCACK4eBQRERGRXmiVzF+9ehWCIKBr167F9v3www8AgPbt2+PcuXNYtWoVzp49i06dOgEAtm7dqk3XVAP4sG6eiIiISK+0SuYfPXoEAGjYsGGR7U+ePMGpU6cgCAJmzpwJY+OCah4TExNMnz4doigiNDRUm66pBlDNaBPOkXkiIiIivdAqmU9OTgYAmJqaFtl+4cIFZGdnAwAGDhxYZF/Tpk0BAAkJCdp0TTWAj6cdAODWw3RkKvL0HA0RERFR3aNVMm9paQng2Qi9yqlTpwAAL7zwApydiy4oZGFhoU2XVIM425rDVWoOpQhE3pfrOxwiIiKiOkerZL5x48YAgBMnThTZvnv3bgiCgB49ehQ7JzExEQDg5OSkTddUQ6jq5rl4FBEREVH10yqZ79evH0RRxPr163Hw4EFkZGTg66+/xoULFwAAQ4cOLXZOZGQkAMDNzU2brqmG8FbXzfMhWCIiIqLqplUyP3v2bNja2iI9PR1DhgyBVCrFnDlzAAAtWrQoMZnfv38/BEGAj4+PNl0DALKzs7F48WI0bdoU5ubmcHNzwxtvvIEHDx5Uqr179+5h+vTpaNiwIczMzFCvXj34+flh5cqVWsdaW6nq5sNjU9XrCRARERFR9dAqmXd1dcXevXvh4uICURTVr0aNGmHXrl0QBKHI8Xfu3MHp06cBAH379tWma+Tk5KBPnz5Yvnw5MjIyMHz4cHh4eCAwMBA+Pj64e/duhdo7ePAgWrVqhQ0bNsDBwQEjR46Er68v7t27h++++06rWGuz1m5SGEkEJKYrECfP0Xc4RERERHWKVivAAoC/vz+ioqIQHByMhIQEuLq6onv37urpKAuLj4/HokWLAAD9+/fXqt+PP/4Y586dg5+fH44cOQJra2sAwOrVqzFv3jy88cYbxWr5S3Pjxg2MHDkSNjY2OHr0aJF585VKJcLCwrSKtTazMDVCC1cbXH2QhoiYVNSX8QFnIiIiouoiiAZYG5GbmwsnJyfI5XKEhYUVK9lp164dIiMjcfHiRbRv377c9gYPHoyDBw9i//79GDx4sE5iTEtLg1QqhVwuh62trU7arKkW7rmCn87F4M3uDbFwSEt9h0NERERk0CqSR2pVZqMvwcHBkMvlaNy4cYm196NHjwYA7N27t9y2YmNjcfjwYTRq1EhniXxd4+NRUDfPGW2IiIiIqpfWZTb6cPnyZQCAr69viftV21Uz55TlxIkTUCqV6Nq1K/Ly8vD7778jODgY+fn5aN26NV599VXY2dnpLvhayPvp9JRXHsjxJF8JEyOD/BuRiIiIyOAYZDIfExMDAHB3dy9xv2p7dHR0uW1dv34dAGBtbQ1/f3+cO3euyP4PP/wQu3btQu/evctsR6FQQKFQqL9OS0srt+/aoqGDFWzNjZGWk4cb8elo4y7Vd0hEREREdYJBDqFmZGQAeLYC7fOsrKwAAOnp6eW2lZJSMD/6999/jxs3bmDbtm1ITk7GzZs3MX78eCQnJyMgIKDc6S5XrFgBqVSqfnl4eFTkLRk0iUSAt3qKSs43T0RERFRdDDKZ1yWlUgkAyMvLw3fffYexY8fCzs4OTZs2xY8//oiOHTtCLpdj/fr1ZbYzf/58yOVy9Ss2NrY6wq8xVItHRcSk6jUOIiIiorrEIJN51TSUWVlZJe7PzMwEANjY2GjclrW1NV5++eVi+ydPngwAOHnyZJntmJmZwdbWtsirLvF5WjcfzodgiYiIiKqNQSbznp6eAID79++XuF+13cvLq9y2VMd4enoWW+QKABo0aAAAePToUWVCrTO83WUAgKikTKRm5eo3GCIiIqI6wiCT+Xbt2gFAqYs5qba3bdu23LZUU1uqauefl5ycDODZCD6VzM7KFA3rFTyrwCkqiYiIiKqHRsn8yJEjMWrUqFJHwqtbt27dIJVKcefOHURERBTbv2vXLgDA0KFDy22ra9eucHBwQEJCAm7evFlsv6q8pqT57KkoVd18OOvmiYiIiKqFRsn8nj17sGfPnmLTLUokEhgbG6und6wupqammDVrFgBg5syZ6hp5AFi9ejUiIyPRs2fPIqu/rl27Fs2bN8f8+fOLtGVsbIy5c+dCFEXMnDmzyHsMCgrCli1bIAgC/vWvf1XxuzJ8qrp5jswTERERVY8KzTMviqJG26rDwoULERQUhJCQEDRp0gT+/v6Ijo7G+fPn4ejoiM2bNxc5PikpCTdv3kR8fHyxtt5//30cP34cQUFBaNq0Kbp06YKkpCScO3cO+fn5+OSTT9CpU6fqemsGSz2jTWwqRFEs8RkEIiIiItIdjUbmVbPCPHz4sEqDqQhzc3McP34cixYtgqWlJfbs2YPo6GhMmjQJYWFhaNSokcZtmZiY4MCBA/jvf/+LevXq4fDhw7hy5Qp69uyJvXv3YsGCBVX4TmqP5i62MDOWQJ79BFFJmeWfQERERERaEUQNhtY7d+6MixcvYsiQIfj555/VD4NKJBIIgoCrV6+iRYsWVR6sIUlLS4NUKoVcLq9T01SO+iYEl6JTsOrldhjVvuQVeomIiIiodBXJIzUqsxk3bhwuXLiAffv2wd7eHs7OzjAxMVHv79+/f5GvNSEIAu7cuVOhc6jm8/GQ4VJ0CiJiU5nMExEREVUxjZL5t99+G8HBwdi1axfy8vLw4MED9T5RFIt8rSnWU9dO3urFo0qe6pOIiIiIdEejZF4ikeDXX3/F2bNnERQUhAcPHkChUGDr1q0QBAHDhg2DTCar4lDJEKgegr0Rn47s3HxYmBrpNyAiIiKiWkyjmvnSqGrmr1y5gpYtW+oyLoNXV2vmRVFEp0+PITFdgZ3T/dCxgb2+QyIiIiIyKBXJIw1yBViquQRBeDZFJRePIiIiIqpSFZpn/nlKpVJXcVAt4uMpw9HrD1k3T0RERFTFODJPOseReSIiIqLqodXIfGH5+fnYs2cPgoKCcPXqVSQnJwMA7O3t0bp1a/Tt2xcjRoyAkREfiKzt2rrLIBGAOHkOHqblwNnWXN8hEREREdVKOknmDx06hGnTphWbshIoqKEOCQnBhg0b4O7ujg0bNmDAgAG66JZqKGszYzR1tsGNhHSEx6RiYGsXfYdEREREVCtpXWbz448/YsiQIXjw4AFEUYQoivDy8kKXLl3QpUsXeHl5AShI7mNjY/HSSy/h559/1jpwqtl8ns43HxGbqtc4iIiIiGozrZL56OhoTJs2DUqlEpaWlvj444+RkJCAu3fvIiQkBCEhIbh79y4SEhLwySefwNraGkqlElOnTkVMTIyu3gPVQKq6+fAYPgRLREREVFW0Sua//PJLKBQKWFtb4/Tp01iwYAGcnJyKHefo6Ij58+fj9OnTsLa2hkKhwJdffqlN11TD+XjaAQCuPJAjL5+zHhERERFVBa2S+SNHjkAQBLz//vvw9vYu9/h27drhvffegyiKOHz4sDZdUw3X2NEa1mbGyMrNx62HGfoOh4iIiKhW0iqZV5XK9O3bV+Nz+vXrV+Rcqp2MJALaeUgBsG6eiIiIqKpolczn5+cDQIWmmzQ2LphAhwtO1X6smyciIiKqWlol8/Xr1wcAhISEaHyO6lg3NzdtuiYD4ONRUDfPkXkiIiKiqqFVMt+7d2+IoojPPvsMcXFx5R4fFxeHzz77DIIgoE+fPtp0TQbA++n0lLcTM5CW80S/wRARERHVQlol82+//TYkEgkSExPRuXNn7Nq1S116U5hSqcSuXbvg5+eHhw8fQiKRYNasWdp0TQagnrUZ3O0sIIpAZKxc3+EQERER1TparQDbunVrLF++HB9++CHi4uLw6quvQiaTwdfXF05OThAEAQ8fPkRYWBhSU1PVq8IuX74crVu31skboJrNx9MO91OyER6Tgu5N6uk7HCIiIqJaRatkHgDmz58PqVSKf//738jKykJKSgr++uuvIseoknhLS0usXLkSM2bM0LZbMhDeHjLsvRzHunkiIiKiKqB1Mg8Ab731Fl555RUEBgYiKCgIV69eRXJyMgDA3t4erVu3Rt++fTF58mTUq8fR2brE52ndfHhswSczgiDoNyAiIiKiWkQQVcPmpFNpaWmQSqWQy+WwtbXVdzh6k/MkH22WHsaTfBGn3u8NTwdLfYdEREREVKNVJI/U6gFYovKYmxihpVvB4lHhsZxvnoiIiEiXmMxTlfNRLx6Vqtc4iIiIiGobJvNU5VR183wIloiIiEi3mMxTlfN+OjJ/PS4Nirzi6xAQERERUeUwmacq52lvCXsrU+TmK3E9Lk3f4RARERHVGkzmqcoJgqAenWfdPBEREZHuMJmnaqF6CJZ180RERES6w2SeqoW3evEoTk9JREREpCtM5qlatPOQQRCA2ORsJGUo9B0OERERUa1grM3JH330EQCgc+fOGDBggE4CotrJ1twEjR2tcftRBiJiUtG3pbO+QyIiIiIyeFqNzC9duhTLli2DQsGRViqfN+vmiYiIiHRKq2TewcEBAODp6amTYKh282HdPBEREZFOaZXMv/DCCwCAhIQEnQRDtZtqZD4yVg6lUtRvMERERES1gFbJ/KuvvgpRFPHrr7/qKh6qxZo528DCxAjpijzcSczQdzhEREREBk+rZP6tt95Cu3bt8MMPP2DLli06ColqK2MjCdq4SwFw8SgiIiIiXdBqNpuEhAR8//33mDJlCqZMmYJt27Zh3LhxaNu2Lezs7GBkZFTm+ay1r3t8PGUIjUpGeGwqXunooe9wiIiIiAyaVsl8gwYNIAgCAEAURRw7dgzHjh3T6FxBEJCXl6dN92SAVCvBhsfwIVgiIiIibWmVzAMFSXxJ/yYqiY+nHQDg1sN0ZCryYGWm9S1IREREVGdplUkFBgbqKg6qI5xtzeEqNUe8PAeR9+Xwa+yg75CIiIiIDJZWyfzEiRN1FUelZGdnY8WKFdi+fTtiYmJgb2+PgQMHYvny5ahfv36l2/3nn3/Qtm1b5OTk4MUXX0RQUJAOoyYfTxniryQgIjaVyTwRERGRFrSazUafcnJy0KdPHyxfvhwZGRkYPnw4PDw8EBgYCB8fH9y9e7fSbU+bNo2r2lYhb9bNExEREemEwSbzH3/8Mc6dOwc/Pz/cunULO3bswPnz57Fq1SokJibijTfeqFS7mzZtwokTJzB16lQdR0wqqrr58NhUPmdBREREpAWdJfNKpRLHjh3Dxx9/jFmzZuGNN95AfHx8kWNyc3ORlZWl9ah3bm4u1q5dCwBYt24drK2t1fvmzp2Ltm3b4uTJk7h06VKF2n348CHef/999OvXD2PHjtUqRipdazcpjCQCEtMViJPn6DscIiIiIoOlk2R+3759eOGFF9C/f38sWbIE33zzDbZu3YqUlKJlFN9//z1sbGzg5OSEzMzMSvcXHBwMuVyOxo0bw8fHp9j+0aNHAwD27t1boXZnz56N7OxsrF+/vtKxUfksTI3QwtUGABDBxaOIiIiIKk3rZH7jxo0YPnw47t27B1EU4eDgUGrpxJtvvgmpVIqMjAzs3r270n1evnwZAODr61viftX2yMhIjds8cOAAduzYgQULFuCFF16odGykGdbNExEREWlPq2T+n3/+wcyZMwEAffr0wfXr1/Ho0aNSjzc1NcWoUaMgiiKOHDlS6X5jYmIAAO7u7iXuV22Pjo7WqL3MzEy89dZbaNasGT744INKxaRQKJCWllbkRaXz9iiom4+ITdVvIEREREQGTKtk/osvvkBeXh5atWqFAwcOoHnz5uWe4+/vDwAIDw+vdL8ZGRkAAEtLyxL3W1lZAQDS09M1am/hwoWIjo7Gt99+C1NT00rFtGLFCkilUvXLw8OjUu3UFT6eMgDAlQdyPMlX6jcYIiIiIgOlVTL/119/QRAEzJkzR+MkWFXCEhsbq03XOnPx4kV89dVXmDBhAnr16lXpdubPnw+5XK5+1ZT3V1M1dLCCrbkxFHlK3IjX7I8uIiIiIipKq2T+/v37AIB27dppfI5q1DwrK6vS/apmrymtDdXDtTY2NmW2k5eXh6lTp0Imk+Hzzz+vdDwAYGZmBltb2yIvKp1EIsDbU1Vqw7p5IiIiosrQagVYQRAAVCwxf/z4MQBAKpVWul9PT08Az/6YeJ5qu5eXV5nt3L9/HxEREXBxccHLL79cZF9qaioA4NKlS+oR+xMnTlQ6ZirO20OGU7cSER6Titf99B0NERERkeHRKpmvX78+/vnnH9y9e1ddC1+eM2fOAAAaNWpU6X5VnwSEhYWVuF+1vW3bthq1l5CQgISEhBL3paam4uTJk5WIksqjqpvnQ7BERERElaNVmU2vXr0giiK2bt2q0fFyuRzffvstBEFAnz59Kt1vt27dIJVKcefOHURERBTbv2vXLgDA0KFDy2ynQYMGEEWxxNfx48cBAC+++KJ6G+mWt7sMAHA3KROpWbn6DYaIiIjIAGmVzP/rX/+CIAg4efIktmzZUuaxjx8/xogRI5CQkABjY2NMnz690v2amppi1qxZAICZM2cWWYBq9erViIyMRM+ePdG+fXv19rVr16J58+aYP39+pfsl3bKzMkXDegXPUHB0noiIiKjitCqz8fHxwezZs7FmzRpMmTIFBw8exKhRo9T7Q0JCEBERgeDgYGzbtg1paWkQBAGLFi0qt569PAsXLkRQUBBCQkLQpEkT+Pv7Izo6GufPn4ejoyM2b95c5PikpCTcvHkT8fHxWvVLuuXtIUNUUibCY1LRq5mTvsMhIiIiMihaJfMAsGrVKigUCnzzzTfYtWsXdu3apX4w9l//+pf6OFWZypw5c7Bw4UJtu4W5uTmOHz+OFStWYNu2bdizZw/s7e0xadIkLF++vNQFpahm8fGUYXf4A47MExEREVWCIOqoGPzo0aP47LPPcPLkSSiVRRcBEgQBXbp0wcKFCzFo0CBddFfjpaWlQSqVQi6Xc5rKMkTeT8WwtcGQWpggYnE/9R+CRERERHVVRfJIrUfmVfr164d+/fohPT0d4eHhePToEfLz8+Hg4ABvb2/Uq1dPV11RLdLcxRZmxhLIs58gKikTjRyt9R0SERERkcHQWTKvYmNjgx49eui6WaqlTI0laF1fikvRKQiPSWUyT0RERFQBWs1mQ6QLPh4yAJzRhoiIiKiidDoy/+jRI5w4cQJXrlxBcnIyAMDe3h6tW7dGr1694OzsrMvuqJbwfrp4VHhsin4DISIiIjIwOknmHzx4gHnz5mH37t3Iy8sr8RgjIyMEBARg5cqV8PT01EW3VEt4Px2ZvxGfjpwn+TA3MdJvQEREREQGQusymzNnzqB169bYuXMnnjx5UuqKqnl5edi1axfatm2LM2fO6CJ2qiXqyyzgaGOGPKWIqw/k+g6HiIiIyGBolczHxcVh6NChkMvlEEURgwYNws6dOxEdHY2cnBzk5OQgOjoau3btwuDBgyGKItLS0jB06FDExcXp6j2QgRMEQT06Hx6TqtdYiIiIiAyJVsn8ihUrIJfLYWRkhB9++AH79+/HqFGj4OHhAVNTU5iamsLDwwMjR47Evn378NNPP0EikSAtLQ2fffaZrt4D1QI+T+vm+RAsERERkea0SuYPHDgAQRAwdepUjB8/vtzjx40bh2nTpkEURezfv1+brqmWeTYyz4dgiYiIiDSldZkNALz88ssan6M6lmU2VFhbdxkkAhAnz8HDtBx9h0NERERkELRK5u3s7AAAUqlU43NUx6rOJQIAazNjNHW2AcC6eSIiIiJNaZXMd+jQAQBw5coVjc9RHas6l0iFdfNEREREFaNVMv/OO+9AFEX873//Q1ZWVrnHZ2Vl4b///S8EQcDbb7+tTddUC7FunoiIiKhitErm+/btiyVLluDvv/9Gr169EBERUeqxly9fRu/evXHz5k0sWbIE/fr106ZrqoV8PAtKr648kCMvX6nnaIiIiIhqPo1WgP3oo49K3ScIAjp06ICLFy+iffv2aNOmDTp27AgnJycIgoCHDx/iwoULxcprPvroIyxevFgHb4Fqi8aO1rA2M0aGIg+3HmagpZutvkMiIiIiqtEEURTF8g6SSCQQBKHcxkRRLPW4kvbl5+drGKbhSUtLg1QqhVwuh60tk1JNvfb9OQTffoxPA9pgXGdPfYdDREREVO0qkkdqXGYjimK5r7KOK2kf0fNYN09ERESkOY3KbJRK1i9T9fDxKKib54w2REREROXT6gFYIl3zfjo95e3EDKTlPNFvMEREREQ1HJN5qlHqWZvB3c4CoghExsr1HQ4RERFRjcZknmoc1RSVEbGsmyciIiIqi0Y18xWRlpaG9PR0jWaq8fTkbCVUnLeHDHsvxyE8JlXfoRARERHVaDpJ5o8cOYJvvvkGp0+fRkqKZqOpgiAgLy9PF91TLePztG4+Ija1zOlOiYiIiOo6rZP56dOnY+PGjQDA6SZJJ1q62sLESMDjzFzEJmfD08FS3yERERER1UhaJfPfffcdNmzYAACwsbFBQEAA2rVrB5lMBomE5fhUOeYmRmjpJsXl2FSEx6YwmSciIiIqhVbJvCqRb9GiBf766y84OzvrJCgiHw9ZQTIfk4rh3vX1HQ4RERFRjaTV8PmNGzcgCAKWLl3KRJ50qnDdPBERERGVTKtk3traGgDQpEkTnQRDpOLtIQMAXI9LgyKv/JmRiIiIiOoirZL5Fi1aAADi4+N1EgyRiqe9JeytTJGbr8T1uDR9h0NERERUI2mVzE+bNg2iKOKXX37RVTxEAAqmLlWNznO+eSIiIqKSaZXMjxs3DqNGjcLPP/+MtWvX6iomIgAFD8ECrJsnIiIiKo3W88z//PPPeO+99zBnzhxs374dr7zyCpo2bQpLy/KnE+zRo4e23VMt5v30IdjwWM0WIiMiIiKqa7RO5k1MTNCuXTvY2dnh7NmzOHv2rEbncQVYKk87DxkEAYhNzsbjDAUcrM30HRIRERFRjaJVmU1eXh5eeeUVTJs2DcnJyRBFsUIvorLYmpugsWPBjEkstSEiIiIqTquR+W+//Ra//fYbAMDLywsTJ07kCrCkU94eMtx+lIHwmFS82IJrGRAREREVplUy//333wMAunTpgmPHjsHCwkInQRGp+HjKsOvSfY7MExEREZVAq+Hz27dvQxAEzJ8/n4k8VQnV9JSXY1OhVLI0i4iIiKgwrZJ5KysrAICHh4dOgiF6XjNnG1iYGCFdkYc7iRn6DoeIiIioRtEqmW/Xrh0AIDo6WifBED3P2EiCNu5SAFw8ioiIiOh5WiXz06dPhyiK2LRpk67iISrGRz3ffKpe4yAiIiKqabRK5keOHInp06dj3759eO+995Cfn6+ruDSSnZ2NxYsXo2nTpjA3N4ebmxveeOMNPHjwQOM2UlNTsW3bNowdOxYNGzaEqakpbGxs0LlzZ3z55Zd48uRJFb4D0oRqJdjwGC4eRURERFSYIGox4fsPP/wAAPjmm28QGhoKDw8PjBw5UuMVYCdMmFDZrpGTk4PevXvj3LlzcHV1hb+/P+7du4fQ0FA4Ojri3LlzaNSoUbntLFy4EJ988gkEQYC3tzeaNm2KxMREBAcHQ6FQoHv37jh8+LBG76ewtLQ0SKVSyOVy2NraVvZtEoCHaTno/OkxSATgytIBsDLTeq0zIiIiohqrInmkVsm8RCKBIAiVOlfbFWBVSbifnx+OHDkCa+uCxYVWr16NefPmoWfPnjhx4kS57axYsQKpqamYOXMmPD091dv/+ecf9O3bFzExMZg/fz4+/fTTCsXHZF63/FYcQ7w8B79M7QK/xg76DoeIiIioylRrMl9ZgiBUuiwnNzcXTk5OkMvlCAsLg4+PT5H97dq1Q2RkJC5evIj27dtXOsZffvkF48aNQ4MGDRAVFVWhc5nM69ZbP1/CgSsJ+GBgc8zo1Vjf4RARERFVmYrkkVrVK1Q0wdWV4OBgyOVyNG7cuFgiDwCjR49GZGQk9u7dq1Uyr5qtJy4urtJtkG54e8hw4EoC6+aJiIiICtEqmffy8tJVHBVy+fJlAICvr2+J+1XbIyMjtern7t27AAAXFxet2iHt+XjaAQAiYlMhimKly7uIiIiIahODfJIwJiYGAODu7l7iftV2bee///LLLwEAw4cPL/dYhUIBhUKh/jotLU2rvqmo1m5SGEkEPEpXIF6eAzcZVxwmIiIi0mpqSn3JyChYCbS0GWZUK9Omp6dXuo9vv/0WQUFBkMlk+M9//lPu8StWrIBUKlW/uCqublmYGqGFqw0ALh5FREREpGKQyXxVO336NGbPng1BELB582a4ubmVe878+fMhl8vVr9jY2GqItG7xfjrffEQs6+aJiIiIAC3LbDSZx700giDgzp07lTpXNQ1lVlZWifszMzMBADY2NhVu++rVqxg+fDhyc3Px1VdfISAgQKPzzMzMYGZmVuH+SHPeHnb46VwMR+aJiIiIntIqmb93757GxwqCgMKzYGrzAKNqPvj79++XuF+1vaIP6EZFRaF///5ISUnB0qVL8fbbb1c6RtI9H08ZAODKAzme5CthYsQPloiIiKhu0yqZnzhxYrnHZGZm4tatW4iMjIQgCPDx8UGbNm206VY9ZWRYWFiJ+1Xb27Ztq3Gb8fHx6NevH+Lj4zF79mwsWbJEqxhJ9xo6WMHW3BhpOXm4EZ+ONu5SfYdEREREpFdaJfOBgYEaH3vt2jVMmTIFV65cwYIFCzBy5MhK99utWzdIpVLcuXMHERER8Pb2LrJ/165dAIChQ4dq1F5KSgoGDBiAO3fuYPLkyfjiiy8qHRtVHYlEgLenHU7dSkREbAqTeSIiIqrzqq1OoVWrVggKCoKbmxsmTJiAGzduVLotU1NTzJo1CwAwc+ZMdY08AKxevRqRkZHo2bNnkQWj1q5di+bNm2P+/PlF2srKysJLL72EK1eu4JVXXsHGjRs5h3kNpnoIlnXzRERERNU8z7y1tTXmzp2LmTNnYuXKldi0aVOl21q4cCGCgoIQEhKCJk2awN/fH9HR0Th//jwcHR2xefPmIscnJSXh5s2biI+PL7L9ww8/xNmzZ2FkZARjY2NMmTKlxP62bNlS6VhJd1R18xGxqXqNg4iIiKgmqPZFozp06AAAOHbsmFbtmJub4/jx41ixYgW2bduGPXv2wN7eHpMmTcLy5ctLXVDqeSkpBdMc5ufnY9u2baUex2S+ZvB2lwEA7iZlIjUrFzJLU/0GRERERKRHglh4iplqEBoaii5dusDMzAzZ2dnV2XW1SktLg1QqhVwuh62trb7DqVV6f34CUUmZ2DK5I3o1c9J3OEREREQ6VZE8strn9jt8+DAAQCrlw4tUOaybJyIiIipQrcn89u3bsWLFCgiCgO7du1dn11SLsG6eiIiIqIBWNfNvvPFGuccolUqkpKQgLCwMcXFxEEURxsbG+M9//qNN11SHqUbmI2JTIYoiZx8iIiKiOkurZH7Lli0aJ1Kq0nxbW1t8//336gdhiSqquYstzIwlkGc/QVRSJho5Wus7JCIiIiK90CqZ9/T0LDeZl0gksLGxQcOGDdGzZ0+MHz8e9erV06ZbquNMjSVoXV+KS9EpiIhNZTJPREREdZZWyfy9e/d0FAZRxfh4yHApOgXhMakY6avZNKREREREtU21z2ZDpAvefAiWiIiIiMk8GSbVQ7B/x6ch50m+foMhIiIi0hMm82SQ6sss4GhjhjyliKsP5PoOh4iIiEgvmMyTQRIEgYtHERERUZ2n8QOwRkZGOu1YEATk5eXptE2qW3w8ZTh6/SHr5omIiKjO0jiZV80TT1RTPBuZT9FvIERERER6onEyP3HiRK06EkURBw4cwOPHj/mHAelEW3cZJAIQJ8/Bw7QcONua6zskIiIiomqlcTIfGBhY6U727NmDJUuW4PHjx+ptHh4elW6PCACszYzR1NkGNxLSER6TioGtXfQdEhEREVG1qtIHYA8cOICOHTti1KhRuHr1KkRRhIuLC77++mvcunWrKrumOsKH880TERFRHVYlyfzRo0fRtWtXDB06FGFhYRBFEY6Ojli1ahXu3LmDmTNnwtTUtCq6pjqGdfNERERUl2lcZqOJkydPYtGiRQgODgZQUCfv4OCA999/H7NmzYKlpaUuuyOCj6cdAODKAznylSKMJIKeIyIiIiKqPjpJ5kNCQrB48WIcP34cQEESL5PJMHfuXMyZMwfW1ta66IaomMaO1rA2M0aGIg+3HqajhautvkMiIiIiqjZaldlcvHgRgwYNgr+/P44fPw5RFGFtbY1FixYhKioKCxcuZCJPVcpIIqCdhxQAF48iIiKiuqdSyfzly5cxfPhwdO7cGUeOHIEoirC0tMQHH3yAqKgoLFu2DFKpVNexEpVIVTcfEcu6eSIiIqpbKlRmc+3aNSxZsgS7d+8GUFBOY2FhgRkzZuCDDz6Ao6NjlQRJVBYfj4K6eY7MExERUV2jcTI/duxY7Ny5E6IoQhRFmJmZ4V//+hf+85//wMWF83uT/ng/nZ7ydmIG0nKewNbcRL8BEREREVUTjZP5HTt2qP/t6OiId955Bx4eHjhy5EilO58wYUKlzyVSqWdtBnc7C9xPyUZkrBzdm9TTd0hERERE1aJCZTaCUDDtX1JSEhYvXqxVx4IgMJknnfHxtMP9lGxExKYwmSciIqI6o0IPwKpKbHT1ItKVZ4tHpeo1DiIiIqLqpPHIvGoOeaKayOdp3XxEbCpEUVR/ikRERERUm2mczPfs2bMq4yDSSktXW5gYCXicmYvY5Gx4OnC1YSIiIqr9tFo0iqimMDcxQku3p4tHcb55IiIiqiOYzFOt4cO6eSIiIqpjmMxTrVG4bp6IiIioLmAyT7WGakab63FpUOTl6zcYIiIiomrAZJ5qDU97S9hbmSI3X4nrcWn6DoeIiIioyjGZp1pDEAT16DxLbYiIiKguYDJPtQofgiUiIqK6hMk81SrefAiWiIiI6hAm81SrtHs6Mh+TnIWfz0Xj7J3HyFeK+g2KiIiIqIpovAIskSEIuZ0EI4mAfKWID/dcBQC4Ss2xZGhLDGztqufoiIiIiHSLI/NUaxy6Go8ZP4UVG4lPkOdgxk9hOHQ1Xk+REREREVUNJvNUK+QrRSzbex0lFdSoti3be50lN0RERFSrMJmnWiE0Khnx8pxS94sA4uU5WPvXP7gcm4rEdAWUTOyJiIjIwLFmnmqFR+mlJ/KFfRH0D74I+gcAYGokgavMHG5SC7jJLOAmM3/6Xwu4SQv+bWXGHxEiIiKquQw6U8nOzsaKFSuwfft2xMTEwN7eHgMHDsTy5ctRv379CrWVkpKCpUuXYs+ePUhISICLiwsCAgKwdOlSyGSyqnkDpDNONuYaHdfEyQoZinw8TMtBbr4S0Y+zEP04q9TjpRYmRZL755N+ZxszGBvxAy4iIiLSD0EURYOsNcjJyUHv3r1x7tw5uLq6wt/fH/fu3UNoaCgcHR1x7tw5NGrUSKO2kpKS4Ofnh9u3b6NRo0bo0KEDrl27hmvXrqFp06Y4e/Ys7O3tKxRfWloapFIp5HI5bG1tK/MWqQLylSK6//cvJMhzSqybFwC4SM1x5oM+MJIIeJKvxMO0HMSl5iBeno0HqdmIS81GXGrO0/9mIy0nr9x+JQLgYmsO10KJfn2ZBVylz/4ttTCBIAg6f89ERERUO1UkjzTYkfmPP/4Y586dg5+fH44cOQJra2sAwOrVqzFv3jy88cYbOHHihEZtzZkzB7dv38bIkSOxY8cOGBsXXJZ33nkHX3/9NebOnYstW7ZU0TshXTCSCFgytCVm/BQGASiS0KvS6CVDW8JIUvCViZEE7naWcLezLLXN9JwniJfnFEvy4+TZ6j8CnuSLiJPnIE6eg0vRKSW2Y2FipB7Nfz7Rd5NZwEVqDnMTI91ciOfkK0WERiXjUXoOnGzM0amhvfoa1CW8Ds/wWhTgdXiG16IAr8MzvBYFDOU6GOTIfG5uLpycnCCXyxEWFgYfH58i+9u1a4fIyEhcvHgR7du3L7Ot+Ph4uLu7w9jYGDExMXB2dlbvUygU8PDwQHJyMuLi4uDk5KRxjByZ149DV+OxbO/1Ig/DVtU880qliKQMRUEy/zTRV43wq/4ISMrI1aitetamT8t5LOBaKNF3lRb8u561GSQV/AVSndeiJuN1eIbXogCvwzO8FgV4HZ7htSig7+tQkTzSIJP548ePo0+fPmjcuDFu375dbP/y5cuxePFiLFmyBEuXLi2zrcDAQLzxxht48cUXERQUVGz/lClTsHnzZgQGBmLSpEkax8hkXn9q0l/SOU/yES/PQbw60c8pNLpf8HX2k/xy2zExEuAqfZbcq2r2Cyf+1oUe1lXNuf/8D7fqKnwz3rdO/FLmdXiG16IAr8MzvBYFeB2e4bUoUBOuQ60vs7l8+TIAwNfXt8T9qu2RkZE6aWvz5s0atUU1g5FEgF9jB32HAQAwNzFCw3pWaFjPqsT9oigiNeuJunTnWSnPs38/TMvBk3wRMclZiEku/WFdW3Nj9Wj++ajkMufcX7jnKhxtzGEkEdS/nAQBUH1VuMRf9e/n95V0vFDk3JL2CYX2aNCnBscLhQ4ovE+pFLH4j2ulXgcBwJI/r6Fjg5r5saku5StFLPmT14LX4RleiwK8Ds/wWhTQ5Dos23sd/Vq61JjrYJDJfExMDADA3d29xP2q7dHR0dXWlkKhgEKhUH+dlpZWbt9EgiDAzsoUdlamaOUmLfGYJ/lKPEpXFCnliX+a+D8o9LBuWk4e0hLScSMhvdx+kzJyMeqbEF2/HYMiAniYpkD7j4t/IlfX8FoU4HV4hteiAK/DM7wWBVTr1oRGJdeYgUODTOYzMjIAAJaWJT+8aGVVMAqanl5+UqOrtlasWIFly5aV2x9RRZkYSVD/6cOzpclQ5KlLeQ5eScCOi7HltmtvZQILk2e/AlQVd6L6a0B8+pWqGK/wPpSwr8Q2ntuG8o4vpU+Usq+kNoiIiKqSpuvbVAeDTOZrovnz52Pu3Lnqr9PS0uDh4aHHiKgusTYzRhNnGzRxtoGZsZFGyfy6ce1rzKhCVTh75zHGbjxX7nE/v9kZXRrV3usAAOfuPsZr358v97ifpnSq1dfi3N3HGL8ptNzjavt1AHgtVHgdnuG1KKDpddB0fZvqYJDJvGoayqyskuuHMzMzAQA2NjbV1paZmRnMzMzK7Y+oqnVqaA9XqXm5c+53alixtRMMjabXoUsjhxpT91hVujRy0Oha+DWuV6uvhV/jerwOT/FaFOB1eIbXooCm16Em/T/UIJeu9PT0BADcv3+/xP2q7V5eXtXaFlFNoJpzH3j24KhKSXPu11a8Ds/wWhTgdXiG16IAr8MzvBYFDPE6GGQy365dOwBAWFhYiftV29u2bVutbRHVFANbu+Kb8b5wkRb9GNBFal5nphYDeB0K47UowOvwDK9FAV6HZ3gtChjadTDIeeYLLxoVHh4Ob2/vIvsru2hUbGxskYWhuGgUGbqaNOe+PvE6PMNrUYDX4RleiwK8Ds/wWhTQ53Wo9YtGAcDChQvxySefoGvXrjhy5Ih61pnVq1dj3rx56NmzJ06cOKE+fu3atVi7di0CAgKwYsWKIm2NHz8eP//8M0aNGoXt27fD2LjgUYLZs2fjq6++wsSJE7Fly5YKxcdknoiIiIgqo9YvGgUUJPNBQUEICQlBkyZN4O/vj+joaJw/fx6Ojo7YvHlzkeOTkpJw8+ZNxMfHF2trzZo1OHfuHH777Tc0b94cHTp0wLVr13D16lU0adIEq1evrq63RURERESkMYOsmQcAc3NzHD9+HIsWLYKlpSX27NmD6OhoTJo0CWFhYWjUqJHGbdWrVw+hoaF4++23kZubi927d0Mul+Odd95BaGgo7O1rzhPLREREREQqBltmU9OxzIaIiIiIKqMieaTBjswTEREREdV1TOaJiIiIiAwUk3kiIiIiIgPFZJ6IiIiIyEAxmSciIiIiMlAGO898TaeaJCgtLU3PkRARERGRIVHlj5pMOslkvoqkp6cDADw8PPQcCREREREZovT0dEil0jKP4TzzVUSpVCIuLg42NjYQBEHf4dQ5aWlp8PDwQGxsLOf5JwC8J6g43hP0PN4T9Dx93ROiKCI9PR1ubm6QSMquiufIfBWRSCRwd3fXdxh1nq2tLX8hUxG8J+h5vCfoebwn6Hn6uCfKG5FX4QOwREREREQGisk8EREREZGBYjJPtZKZmRmWLFkCMzMzfYdCNQTvCXoe7wl6Hu8Jep4h3BN8AJaIiIiIyEBxZJ6IiIiIyEAxmSciIiIiMlBM5omIiIiIDBSTeTIoly5dwmeffYaRI0fC3d0dgiBotCjXli1b0KlTJ1hbW8Pe3h6DBw9GSEhINURMVSkrKwt79uzBlClT0KxZM5ibm8PKygrt2rXDRx99hIyMjFLP5T1Ru61evRojR45EkyZNIJVKYWZmBi8vL0yYMAFXrlwp9TzeF3XD48eP4eTkBEEQ8MILL5R5LO+J2qtXr17qPKKk16FDh0o8r8bdEyKRARk+fLgIoNirLLNnzxYBiBYWFuLw4cPFAQMGiMbGxqKRkZG4e/fu6gmcqsTGjRvV90CLFi3El19+WRwwYIBoY2MjAhCbN28uPnz4sNh5vCdqPwcHB9Hc3Fzs1KmTGBAQIAYEBIhNmzYVAYgmJibi3r17i53D+6LumDhxoigIgghAbNy4canH8Z6o3Xr27CkCEEeNGiVOnDix2CsyMrLYOTXxnmAyTwbls88+ExctWiT++eefYnx8vGhmZlZmMn/06FERgOjg4CDeunVLvT0kJEQ0NTUVZTKZmJKSUg2RU1XYsmWLOG3aNPH69etFtsfFxYk+Pj4iAHHs2LFF9vGeqBvOnDkjZmdnF9u+bt06EYDo7OwsPnnyRL2d90XdERQUJAIQp02bVmYyz3ui9lMl81FRURodX1PvCSbzZNDKS+YHDRokAhC/+OKLYvveeecdEYD4+eefV2GEpC8hISEiANHMzExUKBTq7bwnqHHjxiIA8fLly+ptvC/qhqysLLFx48Ziy5YtxVu3bpWZzPOeqP0qmszX1HuCNfNUa2VnZ+Ovv/4CAIwePbrYftW2vXv3VmtcVD3atWsHAFAoFHj8+DEA3hNUwMTEBABgamoKgPdFXbJs2TLcvXsX3377rfo+KAnvCXpeTb4njKu9R6JqcvPmTSgUCjg6OsLd3b3Yfl9fXwBAZGRkdYdG1eDu3bsAChI3e3t7ALwnCPjxxx9x8+ZNNGnSBE2aNAHA+6KuiIyMxKpVqzB58mT4+/vj3r17pR7Le6Ju2bRpEx4/fgyJRIKmTZtixIgR8PT0LHJMTb4nmMxTrRUTEwMAJf7QAYCVlRVkMhlSUlKQnp4OGxub6gyPqtiXX34JABg4cKB6GW7eE3XPypUrce3aNWRmZuLvv//GtWvX4Obmhl9++QVGRkYAeF/UBUqlEm+++SZkMhn+97//lXs874m65eOPPy7y9XvvvYdFixZh0aJF6m01+Z5gmQ3VWqppCS0tLUs9xsrKCgCQnp5eLTFR9Thw4AA2bdoEExMTLF++XL2d90Tdc/jwYWzduhW7du3CtWvX4OXlhV9++QXt27dXH8P7ovb7+uuvceHCBaxcuRIODg7lHs97om7o0aMHfvzxR9y5cwdZWVm4efMmPvnkExgbG2Px4sXqQSGgZt8TTOaJqFa5ceMGxo8fD1EUsXLlSnXtPNVNQUFBEEURKSkpOHXqFJo0aYKePXvik08+0XdoVE1iYmKwcOFC9OzZE5MmTdJ3OFSDfPTRRxg/fjwaNWoECwsLNG3aFAsWLMCePXsAAEuXLkV2drZ+g9QAk3mqtaytrQEULCxUmszMTADgR6S1xIMHDzBw4ECkpKRg7ty5mD17dpH9vCfqLplMBn9/fxw4cADt27fHokWLcOHCBQC8L2q7mTNnIjc3F99++63G5/CeqNv69++PDh06IDU1FefPnwdQs+8J1sxTraV6eOX+/fsl7s/MzERqairs7Oz4y7gWSE5ORv/+/REdHY3Jkyfj888/L3YM7wkyMTHBq6++ikuXLmHv3r3o2LEj74tabt++fZDJZJg+fXqR7Tk5OQAKBgF69eoFANi+fTtcXFx4TxCaNGmCixcvIj4+HkDN/v8Hk3mqtZo1awYzMzMkJibiwYMHqF+/fpH9YWFhAIC2bdvqIzzSoYyMDAwaNAjXr1/HyJEjsXHjRgiCUOw43hMEAPXq1QMAJCYmAuB9URekpqbi5MmTJe7LyclR71Ml+LwnKCUlBcCzOviafE+wzIZqLQsLC/Tp0wcAsHPnzmL7d+3aBQAYOnRotcZFuqVQKDB8+HCEhoZiwIABRWYpeR7vCQKgTtwaN24MgPdFbScWLJBZ7BUVFQWg4D5QbWvQoAEA3hN1XWJiIk6fPg3g2ZSTNfqeqPZlqoh0qLwVYMtaetnMzIzLcRu4vLw8MSAgQAQg+vv7i5mZmeWew3ui9jtz5ox48OBBMT8/v8j23Nxc8auvvhIlEoloYWEhxsTEqPfxvqh7oqKiylwBlvdE7RYcHCzu3r1bzMvLK7I9KipK7NatmwhAHDZsWJF9NfWeYJkNGZT9+/cXmWowNzcXANClSxf1tkWLFuGll14CAPTt2xezZ8/Gl19+CW9vb/Tr1w+5ubk4evQoRFFEYGAgZDJZtb4H0p21a9di9+7dAApKJ956660Sj/v888/VpRW8J2q/f/75B5MnT0a9evXQvn17ODg4ICkpCVeuXEF8fDzMzc2xZcsWeHh4qM/hfUHP4z1Ru926dQuTJ0+Gi4sLfH19IZPJEB0djUuXLiEnJwetWrXCxo0bi5xTY++Jav/zgUgLgYGBIoAyX4GBgSWe1759e9HS0lKUyWTiwIEDxeDg4Op/A6RTS5YsKfd+ACBGRUUVO5f3RO119+5dccGCBWK3bt1EV1dX0cTERLSyshJbtWolvv322+I///xT6rm8L+qO8kbmVXhP1E7Xr18XZ8yYIfr6+oqOjo6isbGxKJVKxS5duoirVq0Ss7KySj23pt0TgiiKYnX/AUFERERERNrjA7BERERERAaKyTwRERERkYFiMk9EREREZKCYzBMRERERGSgm80REREREBorJPBERERGRgWIyT0RERERkoJjMExEREREZKCbzREREREQGisk8UR0nCAIEQcDSpUv1HUqNlZ+fjy+//BKdOnWCra2t+pqNGDFC36Hx+0c6s3TpUvX9VFUaNGgAQRAwadKkSrdx7949dZxbtmzRWWz6snjxYgiCgCFDhlRJ+zNnzoQgCJg4cWKVtE/6x2Se6qwTJ06o/4cgCAJeffXVcs+ZNGlSlf/PjmqesWPHYs6cObhw4QLS09Mr1cbz95vqZWxsDHt7ezRs2BA9evTAu+++i99++w25ubk6fhdU1R48eAAjIyMIgoAePXpU+PyuXbtCEASYmJggMTGxCiKkmiYmJgYrV64EACxZskS9vaTfFRV93bt3DwDwwQcfwNTUFD/++CMuXbqkj7dJVYzJPNFTO3fuxJUrV/QdBtUwISEh2LlzJwDgpZdewtGjRxEZGYkrV67gq6++0rr9/Px8pKSk4N69ezh9+jTWrFmD0aNHw93dHR9//DHy8vK07qO2U/2R3aBBA73GUb9+ffTp0wcAcObMGURHR2t87u3bt3H27FkAwMCBA+Ho6FglMVLN8vHHHyMnJwcDBw5Ex44dq6QPT09PTJw4EaIoYtGiRVXSB+mXsb4DIKopRFHEkiVL8Pvvv+s7FKpBgoKCAABGRkbYtm0bbG1ttW5zxowZeOutt9RfZ2RkICUlBZGRkTh27BiCgoKQmJiIRYsWYe/evdi3b1+pyZ0oilrHQ7ozYcIEBAUFQRRF/PTTT/jwww81Ou+nn34q0oY+LF26lOVa1ejBgwfqMqF58+YV2VfWwNKAAQMQFxcHNzc3HD58uNTj6tevr/73vHnzsHHjRhw8eBCXLl1C+/bttQueahQm80QA6tWrh6SkJOzevRvh4eHw8fHRd0hUQzx48AAA4OzsrJNEHgCcnJzQunXrYtsHDRqEDz74ANevX8f48eMRHh6O0NBQBAQE4K+//oKpqalO+qeqM3LkSLz11lvIyMioVDIvk8kwbNiwqgyRaoj169fjyZMncHNzU3+io1LS7wcVExMT9X/LOq6wZs2awdfXF2FhYfj6669rxbMG9AzLbIgAvPPOOzAzMwNQ8DASkYpCoQDw7H+g1aFly5YIDg5W/1EZHByMdevWVVv/VHlWVlYYOXIkAODGjRu4ePFiueeEhITgzp07AIBXXnlF/buIai+lUqlOqMeMGQOJpOrTsddeew1AQUlpZZ/9oZqJyTwRAA8PD0ybNg0AsG/fPoSGhlaqHU1naiirxrekmRp+//139O/fH05OTrCyskK7du3w9ddf48mTJ+rzRFHEtm3b0KtXLzg5OcHS0hK+vr749ttvK1SKERQUhGHDhsHV1RXm5uZo1KgRZs2apR6hLk9YWBimT5+OZs2awdraGlZWVmjWrBlmzJiBW7dulXreli1bijy4pVAosGbNGnTp0gX16tXTasaWK1euYNq0aWjSpAksLS1hY2ODVq1a4d1331U/JPY8VSxbt24FAERHRxd7wKwqWVhY4Mcff1T38/nnnxf5fj8fZ2nXJjU1FZ988gn8/PxgZ2cHExMTODo6omXLlggICMA333yDhw8flhqHQqHAhg0b8NJLL6F+/fowMzODlZUVWrVqhTfffBOHDx8udn89f3/Hx8fjgw8+QKtWrWBjYwNBEHDixIki5+Tn52Pr1q0YMmQI3NzcYGZmBgcHB3Tv3h2rV69GdnZ2sdhUs6+U9T0q7fuUk5ODtWvX4sUXX4SLiwtMTU3h5OSEvn37YtOmTVo9q1C4TObHH38s9/jCxxQ+NyUlBYGBgRg/fjxatmwJa2trmJqawsXFBQMGDMCGDRvKfFC6tN8lgwcPhpubG4yNjdGrVy/18eXNZpObm4u9e/di1qxZ6Nixo/p+cnBwQOfOnbF06VIkJSWV+34Lu3DhAsaOHQsPDw+Ym5vDw8MDkydPxo0bNyrUTmmOHz+OiRMnolGjRrC0tIStrS3atGmD999/H3FxcWWeGxcXh//85z/w9fWFVCqFiYkJnJ2d0aZNG4wdOxZbtmxBWlpapeI6c+aMuv9Ro0ZVqo2KUvWTlZWFP/74o1r6pGoiEtVRx48fFwGIAMTAwEAxLi5OtLCwEAGI/fv3L/GciRMnqs8piZeXlwhAnDhxYpl9q9rx8vIqti8qKqpIXDNmzFB//fxr5MiRYl5enpiTkyOOHj261OOmTp1aaiyqY5YsWSIuXbq01DakUql46tSpUtvJz88X3333XVEQhFLbMDY2Fr/77rsSzw8MDFQfd+HCBdHb27vY+UuWLCnzupbk008/FSUSSakxmZmZiVu3bi31upT1qojC91tF3kf//v3V5wUHB5caZ0ltXr9+XXRzcyv3fXz99dcl9h0eHi42bNiw3POjoqKKnFf4/j579qxYr169YuccP35cfXx0dLTYrl27Mvt44YUXxJs3bxbpZ8mSJZX6PkVERKh/Vkt7dezYUUxISCj/G1SC/Px80cPDQwQgOjk5iU+ePCn1WIVCIdrb24sAxMaNGxfZV16MAEQfHx8xPj6+xLYL/y7ZvHmz+Prrrxc7v2fPniVez5IU/v1X2svBwUE8c+ZMqe+38O/ITZs2icbGxqX+XP7666/lvq/AwMASj8nOzhbHjBlTZqxWVlbin3/+WeL5p06dEm1tbct9v3v37i31vZZF9bvWxMREzMnJqdC5qmtY0v8/yuPi4iICEMeNG1fhc6nmYs080VOurq6YMWMGVq9ejSNHjuDMmTPo3r27XmP69ttvcf78eQwePBhvvvkmvLy8EBsbixUrVuD8+fP4/fffERgYiMjISOzatQvjxo3DuHHj4Orqin/++QdLly7FjRs3sHHjRowcORIDBw4sta/9+/fj4sWLaNasGf7973+jbdu2kMvl2LlzJzZu3Ai5XI4hQ4bg6tWr8PDwKHb+22+/jfXr1wMAevTogUmTJqlHwy5fvow1a9bg2rVr+Ne//gUXF5cy64KnTJmCK1euYMKECXj11Vfh4uKCmJiYCpcfrF+/HgsWLAAAODo64oMPPkC3bt2Qn5+PoKAgrFy5EpmZmZg0aRLq1auHwYMHq89VPYC2cOFC/PHHH+U+bFZV+vbtiyNHjgAATp8+ja5du2p87uuvv464uDiYmJhg6tSpGDRoEFxcXKBUKnH//n2cO3cOu3fvLvHcv//+G/7+/sjIyAAABAQEYMyYMWjUqBHy8/Nx69YtHDlypNTzgYIHe0eNGoWcnBx8+OGH6NevHywtLXHlyhW4uroCAB4/fozu3bsjNjYWZmZmmDp1Knr27IkGDRogIyMDR44cwZdffonbt29j0KBBCAsLg1QqBQC89dZbGD16dIW+R7dv30bPnj0hl8tha2uLmTNnolOnTvDw8MDjx4/x559/4rvvvsOFCxcwfPhwnD59usIlVhKJBK+99ho+++wzPHr0CIcPH8ZLL71U4rH79+9HcnIygILvV2H5+fno3LkzhgwZAh8fHzg7OyM3NxdRUVH46aefcOjQIYSHh2PMmDHFPul43po1axAZGQl/f3/MmDEDTZs2RWpqaqmfTJUkLy8PjRo1QkBAADp16gRPT08YGxsjOjoaQUFB2Lx5Mx4/foyAgABcvXoVTk5OpbYVERGBbdu2wcnJCfPnz0enTp2Qk5ODAwcOYM2aNVAoFHjttdfQsGFDdOjQQeMYAUAURYwePRr79+8HAAwdOhSvvPIKGjVqBIlEgtDQUKxatQoxMTEYPXo0goODi/ShUCgwZswYpKWlwcbGBjNmzEDv3r3h5OSkvv4hISFl3vvlOX36NACgTZs21VpW1alTJ/z55584efJktfVJ1UDff00Q6cvzI/OiKIoPHz4UraysRABi7969i51T3SPzAMQ5c+YUOyYzM1Pdl4ODgygIgrhmzZpix8XHx4s2NjYiAHHYsGElxlK4L19fXzE9Pb3YMT/88IP6mJdffrnY/iNHjqj3f//99yX2k52dLfbp00f9vp8frSw8Ml9WO5p69OiRaGlpKQIQ3dzcxJiYmGLHhIWFqb/f9evXF3Nzc4sdU9b3qiIqOzIfFBSkPu+NN94otr+0Nu/cuVPuyLsoiqJSqRSTk5OLbff19RUBiBKJRPzll19KPT8pKUnMysoqsq3wz4m1tbUYERFR6vnjxo1TX9+7d++WeEzh79OCBQuK7a/I96hr167qEe3ExMQSjzl48KD605wNGzaU22ZJrl+/rr4GY8aMKfW4gIAAEYAoCIJ4586dIvtu3bpVZh+bN29W9xEUFFRs//O/SyZMmCAqlcpS2ytvZP727dtlnh8ZGSlaW1uLAMSFCxeWeEzhTxu8vLxK/FThr7/+Uo/Yd+zYscz3VdLI/IYNG9Sj3gcPHiwxjuTkZLFVq1YiALFbt25F9h07dkyjkfcnT56Icrm81P2lUSqV6vt5ypQpFT5fm5H5ZcuWqd9bZT95opqHNfNEhTg5OWHWrFkACmotjx8/rtd4PDw88L///a/YdktLS/Vqfo8fP0bnzp0xe/bsYse5uLggICAAwLORoLJs2LAB1tbWxba//vrrGDRoEABg9+7dSEhIKLL/s88+A1BQkzllypQS2zY3N8fatWsBFNQ2l3Vt+/TpU2o7mgoMDERWVhYAYPXq1SV+muDj44P58+cDKJi1Zs+ePVr1WRUcHBzU/05JSdH4vMLfo7IWMBIEAXZ2dkW2HTlyBGFhYQAKHg4fM2ZMmfFZWFiUuv/f//432rVrV+K+e/fuYceOHQCAtWvXomHDhiUe5+Pjg5kzZwKAVrNwnD59GiEhIQCArVu3ol69eiUeN3DgQIwePVqr/lq0aKEe7f3jjz9KfOAwOTlZPXrcrVs3NGrUqMj+Jk2alNnH5MmT4e3tDQDl3rsymQxr167V6lmPxo0bl3l+mzZt8Oabb2oUDwCsWrUKLi4uxbb37t0bU6dOBVBQU6/JQ8Qqoijiv//9L4CCe7e0TyPt7OzUizUFBwfjn3/+Ue/T9GfH2Ni4UjNcpaSkIDMzEwDK/PSiKhTu7+7du9XaN1UdJvNEz3n//fdhY2MDAHpfYGPkyJGlfsRfOEEqa/Va1XEpKSlITU0t9bg2bdqUOffwG2+8AaDgo/bCH+mnpaWpv1YlQKVp0aKFOoFSLZBTEtWsC9pQzQ8vk8nUs4uURJV8FD6nJin8x1VFZqBQlbEAFU9I9+3bp/73nDlzKnTu88r6Xu7fvx/5+fmwtLRU/7FYGlVSFRcXh5iYmErF8ueffwIomKavTZs2GvV34cKFSj8Mq/qDOzs7G7t27Sq2/9dff1U/wFre3PKiKCIhIQG3bt3C1atX1S/VXOKXL18u8/yhQ4eqf6/pSkpKCu7cuYNr166p45HJZACA69evl/jAtoqdnR2GDx9e6n7V7xugYj+X169fV88MVN7vo8KJeuHfR4V/dgIDAzXuW1OFV/d9/g/pqmZvb6/+9/ODMmS4mMwTPcfBwUGdwAQHB+ulTlqladOmpe5T/U+zIseVlQyWt/pgp06d1P8uvKBJeHg4lEolAGDs2LHlLjGumu2irP+RtG3btsxYNHH16lUAgK+vb5k1z87OzupZV1Tn1CSFv2cVGQVs2LAh/P39AQBffPEFWrVqhcWLF+Ovv/5Sf2JRmvDwcAAFK0d6eXlVIuoC1tbWxUabC1ONuGZlZcHY2LjM+2bIkCHq8yqbhKj6u3nzZrn3qeoTuidPnqhr2itq7Nix6nuv8KJQKqpZbMzNzfHyyy+X2Mb+/fsxZMgQSKVSuLq6qv8QUb1UI/vlzSKji58poOBn/4033oCrqyvs7e3xwgsvoHXr1up4VLMqKZXKMj9J8vHxgbFx6Y/teXt7q9dVqMjK3IVH8f38/Mr8Hhf+Q7nwPdW9e3f1fTtnzhx06tQJK1asQHBwcJmzB2mq8P1U3cl84f5Unw6Q4WMyT1SCuXPnqpPgJUuW6C0OS0vLUvcVnpdY0+Py8/NLPa68j3udnZ3V/y78P6NHjx6VeV5pykoodfE/OFWMmnyMrfqov7JJW1UqnKQVHlXTxC+//AI/Pz8ABSOWy5cvx4svvgiZTIYePXrg22+/RU5OTql9Fh6hrIzCf0iWpCrunZrUn4ODg/qh6hMnTuD+/fvqfXfu3FGX/AwdOrTYtRJFEW+++SaGDBmC/fv3l/upTElTdxami5+pTZs2wdfXF4GBgRr9QVVWTOX9XBobG6vv94r8XOrie2xiYoK9e/eiRYsWAAo+nVmwYAG6d+8OmUyGgQMHYtu2bWX+Pi2Lubm5+t/lfd90rXB/1bl2BlUtzmZDVAKZTIa5c+di8eLFOH/+PPbt21dkZLA2qmwtbeH/oX333Xcaz7ZSVnJhZGRUqVhKUtXzwVc11Sg5UFAeUhH169dHSEgIjh07ht9//x0nT55Ulz+cPn0ap0+fxueff44DBw6U+elOZZX3fVTdO/Xq1avQ8yml1daXR9Vfu3btShwpL42qlKUyJkyYgD/++ANKpRI///wzPvjgAwBFR+pLKrHZvHkzNm3aBKBglHrOnDno3Lkz6tevD0tLS/W1nTBhAn788cdy15LQ9mfqxo0bmD59OvLy8uDk5IT3338fffr0QYMGDWBjY6NODDdv3qx+3qWsmKrq57Lw76O9e/eWuJZHSZ7/46Jly5a4cuUK9u7di7179+LUqVO4ffs2srOzcfjwYRw+fBirV6/GgQMHKlz37ujoqP53dQ8gFO6vvD+2yXAwmScqxZw5c/Dll1/i8ePHWLJkiUbJvGoUXFV2Upqa+PFmWQsHPb+/8Ahx4Qc0LS0tNV5evKrZ29sjPj6+3PcFPPuIvaIj39Xh6NGj6n9XdqrUF198ES+++CKAggemg4KCsGHDBvz111+4c+cOXn311SJ/NKiea4iPj9ci8vKp7p309HS0aNFCp3/EldVfRkZGtd2nQ4YMgb29PZKTk/HTTz8VS+adnJxKfEhz48aNAIAXXngBISEhpT5kXF3J4JYtW5CXlwcjIyOcPHkSzZs31yqe8n4u8/Ly1G1V5Oey8O8jmUym1ffZyMgII0aMwIgRIwAU/DwcOnQI69atw6VLl3Dp0iX861//qvAUlYWT+Yo81K4Lhfvz9PSs1r6p6rDMhqgUNjY2eP/99wEUrGqqyS9s1QNm5f2CLmslVH25cOGCxvsL/w/S29tbPcoWHBxcNcFVgirGsLCwMh9gfPToEaKjo4ucU1NcvXoVx44dA1Aws1FF59suiYODA1599VUcO3ZMPdd/REREkdk8fH19AQAxMTHqa1MVfHx8ABTM612RGUuep+kor6q/u3fvVtvDf6ampuoH1K9evYqIiAicPXsWt2/fBlBQV19S7fi1a9cAAMOGDSs1kRdFUT3rUFVTxdOuXbtSE3kAGn8fIyIiyvy5vHz5sro+vSI/l6rvMaD730eurq6YPHkyzp49q/4Z2bdvX4VLZczMzNQzFVX3/wtU/ZmZmeGFF16o1r6p6jCZJyrDrFmz1B+hLlmypNyPslUf/4eFhZV67LVr1xAZGanbQHXgypUrRUZnn7d582YABaNVhZeAd3R0RJcuXQAA27ZtKzJTgz717dsXAJCamorff/+91OM2bdqk/l6pzqkJsrOzMWHCBHVs7733XpkPDFaGarQeKFqbP3ToUPW/v/jiC532WdjQoUPVifiaNWsq3Y6qBlmhUJR5nOqPF1EU8eWXX1a6v4oqXEbz448/qh98fX5fYapEt6xP8f74448q//SkIvHEx8erZwwqT3JyMvbu3VvqftXvG6BiP5e+vr5wd3cHUDDVbknPhGjLxMQEPXv2BFBwXcqaJaw0qofTyxtE0TVVfz4+PqyZr0WYzBOVwcrKSv2x+JUrV3DgwIEyj1f9go+Li8Mvv/xSbH96errW86dXpWnTppX4P+tt27ap3/uIESOKPRi5cOFCAAXTVI4ePbrM/7kpFAqsW7euSv4nW9jkyZPVDwbPmzcPDx48KHbM5cuX8emnnwIoqItWfZyub9evX0f37t3Vf1z17NkTM2bMqFAbERERiIiIKHW/KIrqKf8EQShSW9y3b1/1NKVff/01tm/fXmo7jx8/rvRDfM2aNVPP4rJ9+3asXr26zOOjoqJK/LlS3Y+PHj0q80HR/v37q2dlWrlyJX799dcy+1PVTGurS5cu6mcStm3bpu63VatW6hHe56lGbvfu3Vti6cqdO3fUc+9XB1U8//zzj/rB3cKysrIwbty4Ct0Lc+fOLbHc5uTJk9iwYQMAoH379uXOtFWYRCJRr/p89+5dTJgwocw/8tLS0tTrX6icPn1a/clJSXJzc9UrqFpbWxcpm9GUKplPSkpCVFRUhc+vDIVCoR5I6t+/f7X0SdWDyTxROWbMmKFOFsqb/m38+PHq6QOnTJmCjz76COfPn0doaCi++eYb+Pr64vLly0U+Cq4pOnTogIsXL6JDhw7YsmULLl26hL/++gtvvfWWepl5GxsbfP7558XOHTx4sHrRqlOnTqFFixZYtmwZjh07hoiICAQHB2Pr1q1488034erqilmzZlV67m5NOTo6qheFuX//Ptq3b481a9YgNDQUISEh+Oijj9C9e3dkZGRAEARs2LCh2kaqHj16VGSu8PPnz+PQoUP43//+hwEDBqB169bq8okuXbpg165dFY4tIiICPj4+6NSpE5YvX479+/fj0qVLOHfuHH755RcMGDBAnagOGzas2B9oP/74I6ytraFUKjF27FiMGjUKO3fuxKVLlxAaGopt27Zh0qRJ8PLy0ui5hNJ888036mkA582bh549e2LTpk04d+4cwsPDERQUhFWrVqFfv3544YUX8NtvvxVrQ/XQtVKpxPTp03Hu3Dncvn1b/Sps27ZtsLe3R35+Pl599VUMGzYMP//8M0JDQ3Hp0iUcPHgQn376Kfz8/NC2bVudLXuv+hlKSEjA48ePAZQ9t7xqX1xcHPz8/LB582aEhobi1KlTWLp0Kdq3b4/k5ORS/xjQNVX8SqUSL730Ej799FOcOnVK/bvN29sbJ06cQLdu3TRqr127dnjw4AHat2+PdevW4cKFCzhz5gwWLFiAgQMHIi8vD8bGxli3bl2FY50+fbp6sbydO3eiVatWWLlyJU6ePImIiAicOnUKGzZswLhx4+Dm5qaeTlPl2LFjaNasGXr16oWVK1fi8OHDCAsLQ3BwMAIDA+Hv76/++ZwyZUqlPjEbPHiw+mdaVUpX1U6dOqWe+191faiW0M/Cs0T6d/z48TKXBC/s66+/LrIselk/Or/++qtoZGRU7HgAooWFhbhz584yl58vb6nykuI/fvx4qccFBgaqj4uKiiq2X7VvyZIlRZZzf/5la2srnjhxotR+lEqluGzZMvUy7GW9rKysxKysrArFWVmffPKJKJFISo3FzMxM3Lp1a6nnl/W9qojC3y9NXo6OjuInn3wiPnnypMx2C3//Cit8Pct6de3aVUxKSiqx7YsXL4oeHh7ltvH896ui1yw+Pl709/fXKN7JkycXOz8/P1/s0qVLqec87+bNm2Lr1q016m/ZsmUavYfy3Lt3TxQEQd2uRCIRHzx4UOrxubm5Yv/+/UuNy8LCQvz111918rtEpfDPf0mWLVtW5rWaN29euT/HXl5eIgBx4sSJ4saNG0v9fWFqair+8ssvJcahyfvKzc0VZ8yYUeSal/Zq2LBhqdehrNfw4cOL/R6riFGjRokAxN69e1foPNU1rOjvpEmTJokAxFatWlXoPKr5ODJPpIGpU6fCw8NDo2NffvllhISEICAgAI6OjjA1NYWHhwcmTpyICxculLsqoT4tXboUhw4dwksvvQRnZ2eYmpqiQYMGeOutt3Dt2jV1GVFJBEHA4sWLcevWLfz73/9Ghw4dYG9vDyMjI9jY2KBly5Z47bXXsHXrVsTHx5f6UJ+uLViwAOHh4Zg6dSoaN24MCwsLWFlZoUWLFpg9ezZu3LhR7uqbVUkikUAqlcLT0xP+/v6YM2cOfvvtN9y/fx8LFiyodJ382LFjceDAAbz77rvo3r07GjZsCEtLS5iamsLd3V09In369OkiM4AU1r59e9y8eRNfffUV+vTpAycnJxgbG8Pa2hpt2rTBtGnTcOzYMY2n/yuNi4sLTp06hX379uG1115Do0aNYGlpCRMTEzg6OqJr166YN28eTp48WaSWWkUikeDIkSNYuHAh2rVrB2tr6zIfim3atCkiIiKwbds2jBo1Cp6enrCwsICpqSlcXV3Rq1cvLFy4EJcuXcLixYu1em8qXl5eRX5+XnzxRbi5uZV6vImJCfbv34+vvvoKHTp0gKWlJSwsLPDCCy9g+vTpCAsLK3WhqaqyePFi7N+/H/3794ednZ36Xho5ciSOHDlS4qd2ZXnzzTdx+vRpvPLKK3Bzc4OpqSnq16+PCRMmIDw8HGPGjKl0rCYmJli/fj0uX76Mt99+G23atIFUKoWRkRGkUim8vb0xZcoU7Nq1C3///XeRc9977z389ttvmDFjBrp06QJPT0+Ym5vD3NwcDRo0wCuvvIJ9+/Zhz549Wv0emzZtGoCCsqK4uLhKt6OJnJwc9bNDb731VpX2RdVPEMVynugjIiIiIp0SRRFt2rTBtWvX8PHHH+PDDz+ssr5++uknvP7663BwcMC9e/eKrH5Lho8j80RERETVTBAErFixAkDBbE5Vtf6IUqlUP+j//vvvM5GvhZjMExEREenB0KFD4e/vj6SkpEo97KuJnTt34u+//4anpyfeeeedKumD9IsrwBIRERHpybp16/Dbb79V2Yh5fn4+lixZgj59+lTbs0pUvVgzT0RERERkoFhmQ0RERERkoJjMExEREREZKCbzREREREQGisk8EREREZGBYjJPRERERGSgmMwTERERERkoJvNERERERAaKyTwRERERkYFiMk9EREREZKCYzBMRERERGaj/A+9biEkm93OqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "# ax.set_xscale(\"log\")\n", + "# ax.set_yscale(\"log\")\n", + "ax.set_xlabel(\"Number of Discrete Variables (T)\")\n", + "ax.set_ylabel(\"Number of samples\")\n", + "ax.plot(files2, iterations, marker = \"o\")\n", + "\n", + "ax.legend([\"Stan\", \"Dice\"])\n", + "fig.savefig(\"or_samples.png\", bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAGtCAYAAACREAK2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2GElEQVR4nO3deVxUVf8H8M9l2PddUBF3H1cUlTRF0dTcSEVzy1xafNRMTbN+Wq7VU08uaWWLZmiLPSXuaC6opYIb4pqlqbgioIAssjPn9wfNFWSAgTsL4Of9es1LufecOd+BC3O/czZJCCFARERERESkR2amDoCIiIiIiGoeJhpERERERKR3TDSIiIiIiEjvmGgQEREREZHeMdEgIiIiIiK9Y6JBRERERER6x0SDiIiIiIj0ztzUAVD51Go14uLi4ODgAEmSTB0OEREREVUjQgikp6ejdu3aMDMzXj8DE41qIC4uDj4+PqYOg4iIiIiqsVu3bqFu3bpGa4+JRjXg4OAAoPDicHR0NHE0RERERFSdpKWlwcfHR76nNBYmGtWAZriUo6MjEw0iIiIiqhRjD8HnZHAiIiIiItI7JhpERERERKR3TDSIiIiIiEjvmGgQEREREZHeMdEgIiIiIiK9Y6JBRERERER6x0SDiIiIiIj0jokGERERERHpHTfsI9JRgVrgRGwyEtOz4elgjYAGrlCZGXfjGyIiIqLqgokGkQ52X7iLRTsu4m5qtnzM28kaC4JboG8rbxNGRkRERFQ1MdEgKsfuC3cx+YcYiMeOx6dmY/IPMfhyjD+TDSIi0ishBPLz81FQUGDqUMjEVCoVzM3NIUnVbxQFEw2iMhSoBRbtuFgiyQAAAUACsGjHRfRu4cVhVEREpJgQAikpKXjw4AFycnJMHQ5VEVZWVnB2doaLi0u1SjiYaBCV4URscrHhUo8TAO6mZuNEbDI6N3IzXmBERFQjJSQkICUlBQ4ODvDw8Ki2n2STfmh6tlJTU5GQkIDc3Fx4eXmZOiydMdEgKkNieulJRmXKERERlSY1NRUpKSnw9vaGs7OzqcOhKsTBwQEpKSmIj4+HjY0NnJycTB2STri8LVEZPB2s9VqOiIioNGlpabC1tWWSQVq5uLjA1tYWaWlppg5FZ0w0iMoQ0MAV3k7WKK3TWkLh6lMBDVyNGRYREdUwarUaDx8+hL29valDoSrM3t4emZmZUKvVpg5FJ0w0iMqgMpOwILiF1nOa5GNBcAtOBCciIkXy8/MhhIC1NXvIqXTW1tZQq9XIz883dSg6YaJBVI6+rbzx5Rh/OFoXn9Lk5WTNpW2JiEgvNJ9Qm5nx1oxKp7k+qkuPBieDE+mgbytvnLqZgjWHYtG9qQcmdW/EncGJiEjvuMIUlaW6XR9MNIh0dC+tcD3zLo3duJQtERERUTnYP0eko/i0wiVsazly/CwRERFReZhoEOko4Z8eDSYaREREROVjokGkAyEE4v/ZIdyLiQYRERFRuZhoEOkgPScfWXkFAApXmyIiIiKqqPHjx0OSJNSvX9/UoRgFEw0iHST805vhZGMBawuViaMhIiIiJX777TdIkqT1YWtrC19fXwwePBgbNmyoNntWVEVMNIh08GgiuJWJIyEiIiJDysrKws2bN7Ft2za88MILePrppxEfH2/qsKolJhpEOtDMz+BEcCIioppl8uTJOH/+vPw4evQoPvvsM3l408mTJzFo0CAIIRS3tW7dOgghcP36dcXPVR1wHw0iHSSmF644xYngRERENYunpydatWpV7FinTp3wwgsvICAgAFeuXMGJEycQHh6O4OBgE0VZPbFHg0gH8opTnAhORET0RHBxccGcOXPkr3fv3m3CaKonJhpEOtDM0fBkjwYREdETIyAgQP7/jRs35P9nZ2fj008/RVBQEDw8PGBhYQFXV1c0a9YM/fr1w/Lly7UOj3rSVp3i0CkiHSSkcQ8NIiJ68hSoBU7EJiMxPRueDtYIaOAKlZlk6rCMxsLCQv5/QUHhMvd3795Fr169cPHixWJlU1JSkJKSgsuXL2P37t2Ii4vD0qVLjRpvVcNEg0gH3KyPiIieNLsv3MWiHRdx95/3QADwdrLGguAW6NvK24SRGc/58+fl/9euXRsA8Prrr8tJxpgxYxASEoLatWtDpVLh7t27iI6OxrZt20wSb1XDRIOoHPkFatzPKJwMXsuJy9sSEVHNt/vCXUz+IQaPr7MUn5qNyT/E4Msx/jU+2cjPz8eyZcvkr4OCgpCdnY3t27cDAGbNmqW1xyI4OBiLFi1CcnKy0WKtqphoEJXjfkYu1AJQmUlws2OiQUREpiOEQFZegUHbKFALLNj+R4kkAwAEAAnAwu0X0aWxu8GGUdlYqCBJphmi9fDhQ0RHR2PhwoU4duwYAMDX1xfDhw9HUlIS8vLyAADdunUr83lcXV0NHmtVx0SDqBzyRHAHqydqXCoREVU9WXkFaDF/j0ljECh8b2y9cK/B2ri4+FnYWhrnNnXRokVYtGhRqec9PT2xdetWWFlZwc3NDZaWlsjNzcX333+P/v37w9yct9Ol4apTROXgZn1ERERPngYNGmD27Nk4f/482rZtCwCwsrLCiBEjAABhYWFo3Lgx3nrrLezatQsPHjwwXbBVFFMwonIkpnMiOBERVQ02FipcXPysQds4EZuM8aEnyy23bkJHBDQwzPAgGwuVQZ5Xm8mTJ2PKlCkAAEmSYG1tDXd3dzg5OWkt//nnn+PBgwfYsWMHbty4gSVLlmDJkiUwMzODv78/hg8fjokTJ5Za/0lilEQjJycHDx48gIeHB8zM2IlC1Qs36yMioqpCkiSDDykKbOIBbydrxKdma52nIaHwPTGwiUeNGFKsbWfwsjg6OmL79u04ceIEfvnlF/z22284c+YMCgoKEB0djejoaCxduhRbt25F586dDRh51aforj8jIwO7du3Crl27kJGRUeL8/fv3MXToUDg6OqJ27dpwcXHBrFmzkJOTo6RZIqN6tFkfJ4ITEVHNpzKTsCC4BYDCpKIozdcLglvUiCRDiYCAACxduhTR0dFISUnB9u3bERISAgBITEzE0KFDkZWVZeIoTUtRorFp0yYMHDgQkyZNgq2tbbFzarUa/fr1w9atW5GXlwchBNLT07FixQqMHj1aUdBExsTN+oiI6EnTt5U3vhzjX6I338vJ+olY2raiHBwcEBwcjE2bNmHatGkACjf2O3LkiIkjMy1FfW979hSuejBkyJASQ6J+/vlnnDp1CpIkwd/fH927d8fvv/+OmJgYbN26Fbt370bfvn2VNE9kFAlphT1wTDSIiOhJ0reVN3q38HqidwavjGeeeQaffvopgMLRPU8yRYnGhQsXIEkSnn766RLnvvvuOwBA+/btERUVBXNzc+Tl5SEwMBAnT57E+vXrmWhQtZCgWXWKczSIiOgJozKT0LmRm6nDqDKuXbuGW7duoXv37qWW2bv30bK/DRo0MEZYVZaiRCMxMRFAyW9iXl4eDh06BEmS8Nprr8nrC1tYWGDSpEk4ceIETpw4oaRpIqN4mJOP9Jx8AFzeloiI6El38+ZN9OjRAy1atMCQIUPQoUMH1KlTBwBw69Yt/Pzzz/jll18AAG3btsVTTz1lynBNTlGiodla3dLSstjxkydPIisrC5Iklei1aNq0KQAgPj5eSdNERqGZCG5vZQ57K64GTURERMDFixdx8eLFUs//61//wubNm022u3lVoejOydbWFunp6XLPhsahQ4cAAI0bN0atWrWKnbOxsVHSJJFRycOmuOIUERHREy8wMBC//fYb9uzZg2PHjuHWrVtISEhAdnY2XF1d4efnh5CQEIwfPx5WVrx3UJRoNGrUCGfOnMFvv/2GPn36yMe3bNkCSZLQrVu3EnXu3bsHoHDNYqKqLiGde2gQERHVNEFBQRBC2y4hZVOpVOjevXuZczTKsm7dOqxbt65SdasjRcvb9u7dG0IIfPHFF/j111+RkZGBzz77DCdPFu4mGRwcXKLOuXPnAAC1a9dW0jSRUcSnFq44VcuBiQYRERFRRSjq0Zg+fTq++uorpKenY+DAgcXONW/eXGuisXPnTkiShHbt2ilpmsgoNHtocMUpIiIioopR1KPh7e2NHTt2wMvLC0II+dGwYUOEhYWVmABz9epVHD58GADQq1cvJU0TGUV8KjfrIyIiIqoMxcvoBAYGIjY2FpGRkYiPj4e3tze6du0qL2lb1N27dzFv3jwAKDang6iq0szR4NK2RERERBWjl/U6LS0t0aNHj3LLde3aFV27dtVHk0RGoVl1ipPBiYiIiCpG0dApoppMrRZITP9nMjiXtyUiIiKqEL3uQHb16lUcPXoU8fHxyMzMxJQpU+Du7q7PJoiM5v7DHOSrBcwkwMOeiQYRERFRRegl0YiJicGMGTMQGRlZ7PiwYcOKJRqrVq3CokWL4OTkhIsXL8LCwkIfzRMZRGJaYW+Gu70VzFXs/CMiIiKqCMV3T+Hh4ejSpQsiIyOLrTylzdixY5GVlYVr164hPDxcadNEBhXP+RlERERElaYo0bh79y5GjRqFnJwctGjRAr/++ivS09NLLe/g4IDnnnsOAPDrr78qaZrI4OL/2UPDk5v1EREREVWYokTjk08+wcOHD+Hr64vDhw/j2WefhZ2dXZl1NFu+nzp1SknTRAan2azPy4nzM4iIyDhKGxVCBFS/60NRorF7925IkoRZs2bB2dlZpzr/+te/AACxsbFKmiYyOG7WR0RExmJmVnhLVlBQYOJIqCrTXB+a66WqUxTljRs3AAABAQE613F0dAQAZGRkKGmayOAS5KVtmWgQEZFhWVhYwMLCgvdHVKb09HT5WqkOFCUa+fn5AAC1Wq1zndTUVACAvb29kqaJDE6zWR8TDSIiMjRJkuDg4IDU1FRkZWWZOhyqgrKyspCWlgYHBwdIkmTqcHSiaHlbLy8vXL9+HdeuXUOnTp10qnPixAkAQL169ZQ0TWRw8WlcdYqIiIzH3d0dWVlZuHnzJhwdHeHg4ACVSlVtbipJ/4QQKCgoQHp6OtLS0mBlZVWt9qhTlGgEBgYiNjYWGzduxOjRo8stn5ubi6+//hqSJCEoKEhJ00QGlZ1XgNSsPADs0SAiIuNQqVTw8fHB/fv3kZ6ejgcPHpg6JKoiLCws4OzsDHd3d6hUKlOHozNFicb48ePx3XffYfv27di3bx969+5datnc3FyMHTsWV69ehZmZGV599VUlTRMZlGbFKRsLFRyt9bKvJRERUblUKhVq1aoFT09P5OXlVWh4OtVMZmZmsLCwqJY9W4ruoIKCgjBixAj8/PPPCA4OxvTp0zF06FD5/PXr1/HgwQNERkZi9erVuHbtGiRJwqRJk9CyZUtFgZ86dQr79u3DiRMncOLECdy5cwdA6ct+LVy4EIsWLSr1+d5++2189NFHWs9FRkbigw8+wLFjx5Cbm4sWLVpg6tSpGDt2bKnPd/v2bcybNw979uxBcnIy6tWrh1GjRmHOnDmwtuYn5FVd0c36quMvNhERVW+SJMHS0tLUYRApovij2nXr1iE9PR27du3C0qVLsXTpUvnGLDg4WC6nSQBCQkKwcuVKpc3ivffew7Zt2ypcr0uXLmjcuHGJ4+3bt9daftOmTRgxYgTUajW6desGd3d37N+/H+PGjcO5c+ewdOnSEnWuXLmCzp074/79+2jVqhUCAwMRHR2NxYsXY//+/di/fz+srLg3Q1X2aLM+/pyIiIiIKkNxomFlZYXw8HCsWbMGH3/8Ma5evaq1XN26dTF37lxMmjRJaZMAgM6dO6NNmzbo2LEjOnbsiPr16yMnJ6fceq+88grGjx+vUxvJycl46aWXUFBQgE2bNiEkJAQAkJCQgK5du2LZsmUYOHBgifkm48ePx/379zFt2jQ5qcrPz8fw4cOxZcsWfPjhh1i4cGFFXi4ZWQInghMREREporfB56+++ipeffVVXLx4EdHR0UhMTERBQQHc3NzQrl07+Pv763UIyttvv6235yrNN998g7S0NAwaNEhOMgCgVq1a+PjjjxESEoJly5YVSzROnDiByMhIeHp64uOPP5aPm5ub48svv0R4eDg+/fRTvPvuuzA359j/qiohrTBp5WZ9RERERJWj9zvdFi1aoEWLFvp+WpPYuXMnAGDYsGElzg0YMADW1taIiIhAdna2PO9CUyc4OLjE8KhatWohMDAQBw4cwJEjR7jyVhWmGTrFFaeIiIiIKqd67F+uRwcOHMCMGTMwadIkvP/++zh16lSpZc+ePQsA8Pf3L3HO0tISrVq1QnZ2Ni5fvqxTnaLHz507V+nXQIbHzfqIiIiIlHnixu58//33xb6eN28ehg4dinXr1hXbrTwtLU3exbxu3bpan6tu3bqIjo7GjRs30KZNGwDAzZs3y60DADdu3Cg1xpycnGLzTdLS0sp7WaRnjzbr42RwIiIiosrQKdH47rvvDNJ4WcvD6lvjxo2xdOlS9OvXD76+vkhJScGhQ4fw1ltvYdOmTSgoKMCWLVvk8hkZGfL/bW1ttT6nnZ0dACA9Pb1EvYrUedyHH35Y5lK8ZFhCCCT+M0eDPRpERERElaNTojF+/Hi97yUgSZJRE40xY8YU+9rOzg6jR49Gjx490Lp1a2zduhXHjh1Dp06djBZTaebMmYOZM2fKX6elpcHHx8eEET1ZUjLzkFtQuEGSpwMTDSIiIqLK0HmOhhBC74+qwNvbGxMmTAAA7N69Wz5edBhVZmam1roPHz4EADg4OJSoV5E6j7OysoKjo2OxBxmPZrM+NztLWJo/cdOYiIiIiPRCpx6N2NhYQ8dhUk2aNAEA3L17Vz7m6OgIJycnpKam4vbt21pX0rp9+zYAwNfXVz5Wr149nD59Wj6nSx2qWhK44hQRERGRYjolGjX9pjglJQXAo/kTGn5+fjh06BBiYmJKJBp5eXm4cOECrK2t0bRp02J1tm3bhpiYGK1taY5rJo9T1RPPzfqIiIiIFHvix4UIIeRJ4I8vSTtgwAAAQFhYWIl64eHhyM7ORq9eveQ9NIrW2bFjR4mdyhMSEnD48GG4uLigS5cuen0dpD/s0SAiIiJS7olINO7du4dVq1aVWOkpIyMDkydPxvHjx+Hl5VVs928AeOWVV+Do6Iht27Zh8+bN8vHExES89dZbAIBZs2YVqxMQEIAuXbogMTGx2O7l+fn5mDJlCvLy8jBt2jRYWFjo+2WSnmgSDe4KTkRERFR5ktDjrOyYmBhERETg/PnzSE5OBgC4urqiVatW6NWrF9q3b6+vprBz506899578tcnTpyAEAJPPfWUfGzevHkYMGAArl+/jgYNGsDe3h4dO3aEt7c37t27h5iYGCQlJcHZ2Rnh4eFaexk2bdqE4cOHQwiBoKAguLm5ISIiAg8ePMDMmTOxbNmyEnX+/vtvdO7cGUlJSWjdujVatGiBkydP4tq1a3j66adx4MCBEruGlyUtLU2eL8KJ4YY3IfQEDl66h49CWmNkQD1Th0NERESkiKnuJfWyYV9MTAymTJmCkydPllpm7ty56NChA1atWoUOHToobvPevXs4fvx4ieNFj927dw8A4ObmhrfffhvHjh3D5cuXERUVBZVKhQYNGmD8+PF44403UKdOHa3tDB06FIcOHcL777+PY8eOITc3Fy1atMDUqVMxbtw4rXWaNGmC06dPY/78+di9eze2bNmCevXqYd68eZg7d26FkgwyvnjNHhqco0FERERUaYp7NMLCwjBmzBjk5eXJS9ZaWlrC1dUVAJCcnIzc3Fy5vIWFBX744Qc8//zzSpp9orBHw7jav7cPSQ9z8ev0QDT35vebiIiIqjdT3UsqmqNx6dIlvPjii8jNzYVKpcLkyZNx8uRJPHz4EHFxcYiLi8PDhw8RHR2NyZMnw9zcHHl5eRg7diz++usvfb0GIr3JyS9A0sPCxJhzNIiIiIgqT1Gi8d///hc5OTmwtrbG3r17sWrVKrRv3x4qlUouo1Kp4O/vj1WrVmHfvn2wtrZGbm4uPv74Y8XBE+lb4j/DpizNzeBsywn7RERERJWlKNGIiIiAJEmYMWMGgoKCyi3fvXt3zJgxA0IIREREKGmayCAeLW1rBUmSTBwNERERUfWlKNHQTLbu37+/znU0+0xo6hJVJfFc2paIiIhILxQlGh4eHgBQbMO68mhWXHJ3d1fSNJFBJGhWnGKiQURERKSIokRDs+9EWcvaPu7EiRMAgK5duyppmsgguCs4ERERkX4oSjRmzpwJlUqF//znPzoNhUpMTMSHH34ICwsLvPHGG0qaJjKI+FQOnSIiIiLSB0WJRseOHfH1118jMTERTz31FLZu3Qq1Wl2inFqtxrZt29C5c2fcu3cPX375JQICApQ0TWQQmjka3KyPiIiISBlFO4O/9NJLAIAWLVrg7NmzGDp0KFxcXNCuXTt4enpCkiQkJCTgzJkzSE5OBgD4+fnhyJEjOHLkiNbnlCQJa9euVRIWUaUlcjI4ERERkV4o2hnczMys2BKgmqd6fFnQ0o4/TggBSZJQUFBQ2ZBqJO4MbhxCCDSfvxvZeWocmt0D9dxsTR0SERERkWKmupdU1KNRr1497jVANUZaVj6y8wqH/nk6Wpk4GiIiIqLqTVGicf36dT2FQWR6mvkZzrYWsLZQlVOaiIiIiMqiaDI4UU2SwPkZRERERHrDRIPoH/HcQ4OIiIhIb5hoEP0jIVWTaHB+BhEREZFSiuZoPC49PR2xsbFIT0/XaeWobt266bN5IkXiOXSKiIiISG8UJxpCCKxZswZffvklzp07p3M9SZKQn5+vtHkivUngZn1EREREeqMo0cjLy8PgwYOxe/duAI/2yyCqjhLScgCwR4OIiIhIHxQlGsuWLcOvv/4KAPD19cW4cePg5+cHZ2dnmJlx+gdVL5wMTkRERKQ/ihKN77//HgDQuXNnREREwMbGRi9BERlbXoEa9zMKezSYaBAREREpp6jbITY2FpIkYc6cOUwyqFq7l54DIQALlQQ3O0tTh0NERERU7SlKNFxcXAAAdevW1UswRKaimQju6WANMzPJxNEQERERVX+KEg0/Pz8AwPXr1/URC5HJyCtOcQ8NIiIiIr1QlGhMnToVQgisXbtWX/EQmUR8KieCExEREemTokSjf//+eP3117Fz5068+eabOm3SR1QVxadxIjgRERGRPinesG/lypXw9fXFu+++i7CwMISEhKBp06awtbUtt+7YsWOVNk+kF4maXcG5WR8RERGRXihONLKyspCSkgILCwvcunULK1eu1KmeJElMNKjK0Oyhwc36iIiIiPRDUaKRmZmJPn364OjRowC4MzhVX5pEw5OTwYmIiIj0QlGisXz5ckRFRQEAOnXqhIkTJ3JncKqWElLZo0FERESkT4oSjQ0bNkCSJPTr1w/bt29nckHVUnp2Hh7mFi5kwDkaRERERPqhKDPQ7J8xffp0JhlUbSX8s+KUg7U5bC0VT1siIiIiIuhpZ3B3d3e9BENkCo8262NvBhEREZG+KEo0OnbsCAC4fPmyXoIhMoV4zs8gIiIi0jtFicb06dMBAJ9//jlXnKJqK549GkRERER6pyjR6NGjBz744ANERkZi5MiRePDggZ7CIjKeR5v1cWlbIiIiIn1RNPN18eLFAICAgABs3LgRu3btQu/evXXeGXz+/PlKmifSC27WR0RERKR/klAw5snMzAySJMlfCyGKfV2egoKCyjb9RElLS4OTkxNSU1Ph6Oho6nBqnEGrInH21gN8/WJ7PNvSy9ThEBEREemVqe4lFa/l+XiewrkaVN1wsz4iIiIi/VOUaKjVan3FQWQSBWqBexmF+2hwsz4iIiIi/eEue/RES8rIQYFawEwC3O05GZyIiIhIX5ho0BNNMxHcw8EKKjPd5xcRERERUdmYaNATjZv1ERERERkGEw16oiVwsz4iIiIig9BLopGbm4vQ0FAMGjQI9evXh729PVQqVZkPc3PFC14RKZaQxongRERERIag+G7/8uXLGDx4MC5dusSlbanaiWePBhEREZFBKEo0Hj58iH79+iE2NhZmZmYYNGgQPDw8sGbNGkiShHfffRfJycmIjo7G8ePHIUkSOnfujN69e+srfiJFOHSKiIiIyDAUJRpfffUVYmNjoVKpsGfPHvTs2RN//PEH1qxZAwBYtGiRXPb06dN48cUXcezYMYwcORJTp05VFjmRHnAyOBEREZFhKJqjsWPHDkiShOHDh6Nnz55llm3Xrh0OHjwIT09PzJw5E6dOnVLSNJFeaHo0vJy4hwYRERGRPilKNC5evAgAGDJkiNbzj+8c7uHhgZkzZyI/Px+ff/65kqaJFMvKLUBadj4ADp0iIiIi0jdFicaDBw8AAL6+vvIxK6tHnww/fPiwRJ0uXboAAH7//XclTRMpppkIbmupgr0VV0EjIiIi0idFiYatrS0AQJIe7ajs7Ows///mzZul1o2Pj1fSNJFiRednFL2GiYiIiEg5RYlGgwYNAABxcXHyMXd3d7i6ugIAIiMjS9TRzM2wtLRU0jSRYlxxioiIiMhwFCUaHTp0AABER0cXO/7MM89ACIElS5YgOTlZPn7t2jV89NFHkCQJbdu2VdI0kWKPJoIz0SAiIiLSN0WJRu/evSGEwPbt24sdnzZtGoDCxKJp06Z4/vnn0b9/f7Rt21bu/Zg4caKSpokU08zR8HTkilNERERE+qYo0Rg4cCC6desGBwcHXL16VT7epUsXzJ8/H0IIJCcnY/PmzdizZw8yMjIAABMmTMDo0aOVRU6kkNyjwaFTRERERHqnaKkdW1tb/Pbbb1rPLVy4EIGBgfjmm2/wxx9/ID8/H02aNMHYsWMxdOhQJc0S6QU36yMiIiIyHIOu6fnMM8/gmWeeMWQTRJWWkJYDAKjFORpEREREeqdo6BRRdaVWCySmc9UpIiIiIkMxSqKRk5ODhISEEjuFE5lKcmYu8goEJAnwdOBkcCIiIiJ9U5RoZGRkYNeuXdi1a5c80buo+/fvY+jQoXB0dETt2rXh4uKCWbNmIScnR0mzRIpp5me42VnBQsWOPSIiIiJ9UzRHY9OmTZgwYQLq1q2L69evFzunVqvRr18/xMTEQAgBAEhPT8eKFStw/fp1bNq0SUnTRIpohk15ObE3g4iIiMgQFH2Uu2fPHgDAkCFDYGZW/Kl+/vlneRdwf39/vPHGG/D394cQAlu3bsXu3buVNE2kSHxqYa8aV5wiIiIiMgxFPRoXLlyAJEl4+umnS5z77rvvAADt27dHVFQUzM3NkZeXh8DAQJw8eRLr169H3759lTRPVGmPNutjokFERERkCIp6NBITEwEADRo0KHY8Ly8Phw4dgiRJeO2112BuXpjPWFhYYNKkSRBC4MSJE0qaJlIkgXtoEBERERmUokQjOTkZAGBpaVns+MmTJ5GVlQUAJXotmjZtCgCIj49X0jSRIvHcFZyIiIjIoBQlGra2tgAe9WxoHDp0CADQuHFj1KpVq9g5GxsbJU0S6UXCP4kGN+sjIiIiMgxFiUajRo0AAL/99lux41u2bIEkSejWrVuJOvfu3QMAeHp6KmmaSBE50XDkqlNEREREhqAo0ejduzeEEPjiiy/w66+/IiMjA5999hlOnjwJAAgODi5R59y5cwCA2rVrK2maqNKy8wqQkpkHgEOniIiIiAxF0apT06dPx1dffYX09HQMHDiw2LnmzZtrTTR27twJSZLQrl07JU0TVVpiWuHStlbmZnCysTBxNEREREQ1k6IeDW9vb+zYsQNeXl4QQsiPhg0bIiwsDJIkFSt/9epVHD58GADQq1cvJU3j1KlT+OijjxASEoK6detCkqQS7Wmzbt06BAQEwN7eHq6urujfvz+ioqLKrBMZGYn+/fvD1dUV9vb2CAgIkJfvLc3t27cxYcIE1K5dG9bW1mjatCkWLFiA7OzsCr1O0r8EebM+a52uGSIiIiKqOEU9GgAQGBiI2NhYREZGIj4+Ht7e3ujatau8pG1Rd+/exbx58wAAffr0UdTue++9h23btlWozowZM7By5UrY2NigT58+yM7Oxr59+7B3716EhYVh8ODBJeps2rQJI0aMgFqtRrdu3eDu7o79+/dj3LhxOHfuHJYuXVqizpUrV9C5c2fcv38frVq1QmBgIKKjo7F48WLs378f+/fvh5UV5waYSvw/S9vWcuCwKSIiIiJDkYQQwtRBVMZ///tfPHz4EB07dkTHjh1Rv3595OTkoLSXExERgd69e8PNzQ1Hjx5FkyZNAABHjx5FUFAQbG1tERsbC2dnZ7lOcnIyGjRogLS0NGzatAkhISEAgISEBHTt2hVXrlzBwYMHERQUVKytrl27IjIyEtOmTcPKlSsBAPn5+Rg+fDi2bNmCBQsWYOHChTq/1rS0NDg5OSE1NRWOjo66f5NIq28OX8P7O/9EsF9tfDaKQ/iIiIioZjPVvaSioVOm9Pbbb2Px4sUIDg6Gl5dXueWXL18OAHj33XflJAMAOnfujEmTJuHBgwdYu3ZtsTrffPMN0tLSMGjQIDnJAIBatWrh448/BgAsW7asWJ0TJ04gMjISnp6echkAMDc3x5dffgkLCwt8+umnyM/Pr/iLJr2IlzfrY68SERERkaFU20SjIrKysnDgwAEAwLBhw0qc1xzbsWNHseM7d+4stc6AAQNgbW2NiIiIYvMuNHWCg4NLDI+qVasWAgMDkZKSgiNHjih4RaREQnrhZPBaXHGKiIiIyGCeiETj0qVLyMnJgYeHB+rWrVvivL+/P4BHS+9qnD17ttj5oiwtLdGqVStkZ2fj8uXLOtUpqy0ynoTUR5PBiYiIiMgwnohE4+bNmwCgNckAADs7Ozg7OyMlJQXp6ekACseypaamlllPc/zGjRs6t6WtzuNycnKQlpZW7EH6Ey9v1sdEg4iIiMhQnohEIyMjAwBga2tbahk7OzsAkBMNTZ2y6j1eR5e2tNV53IcffggnJyf54ePjU2pZqhghhJxocLM+IiIiIsN5IhKN6mbOnDlITU2VH7du3TJ1SDXGg8w85OarAQCenAxOREREZDCK99GoDuzt7QEAmZmZpZZ5+PAhAMDBwaFYHU09bUuBPV5Hl7a01XmclZUV99kwEM1mfa52lrAyV5k4GiIiIqKa64no0ahXrx6Awt26tXn48CEePHgAFxcXOQFwdHSEk5NTmfU0x319fXVuS1sdMh7N0raeDkzkiIiIiAxJp0QjJCQEQ4cOLfXmuapr1qwZrKyscO/ePdy5c6fE+ZiYGABAmzZtih338/Mrdr6ovLw8XLhwAdbW1mjatKlOdcpqi4wjIY0rThEREREZg06JxtatW7F169YSqx+ZmZnB3NwcFy9eNEhw+mJjY4OePXsCADZu3FjifFhYGIDCvS+KGjBgQLHzRYWHhyM7Oxu9evWCtbV1iTo7duxATk5OsToJCQk4fPgwXFxc0KVLFwWviCorPrXwZ8KJ4ERERESGVaGhU0IInY5VRTNnzgQAvP/++/j777/l40ePHsXXX38NZ2dnvPzyy8XqvPLKK3B0dMS2bduwefNm+XhiYiLeeustAMCsWbOK1QkICECXLl2QmJiIt99+Wz6en5+PKVOmIC8vD9OmTYOFhYXeXyOVTzNHg0vbEhERERmWTomGZt5CQkKCQYOpiJ07d6JTp07yIzc3FwCKHdPs0g0AvXr1wvTp05GUlIS2bdti8ODB6N+/P7p164b8/HyEhobC2dm5WBuurq749ttvYWZmhmHDhqFnz554/vnn0axZM1y5cgUzZ85EUFBQidhCQ0Ph5uaGlStXok2bNhg5ciSaNWuGzZs34+mnn8acOXMM+a2hMmg262OiQURERGRYOiUa//rXvwAAK1euLLa/hIYkSfqNSgf37t3D8ePH5YemZ6XosXv37hWrs2LFCoSGhqJ58+bYt28fjh49il69euHQoUMYPHiw1naGDh2KQ4cO4dlnn8Xp06exa9cuNG7cGOvWrcOyZcu01mnSpAlOnz6N8ePH4969e9iyZQvMzMwwb9487N+/nytKmZC8h4YTfwZEREREhiQJHcY+rVy5Em+88QYkSYJKpUKtWrVgYWGB69evQ5Ik1K5du8JDgSRJwtWrVysd+JMkLS0NTk5OSE1N1brMLumuw/v7cD8jFzundUXL2k6mDoeIiIjI4Ex1L6nTPhqvv/46IiMjERYWhvz8/GIrNwkhtK7kVB5T9ILQky2vQI37GYVD7DgZnIiIiMiwdEo0zMzM8Msvv+Do0aOIiIjAnTt3kJOTg/Xr10OSJDz33HMl5jcQVTWJ6YUrTlmoJLjaWZo4GiIiIqKarUI7g3fu3BmdO3eWv16/fj0A4IMPPkCLFi30GxmRnj3arM+aPWpEREREBvZE7AxOBHCzPiIiIiJjqlCPxuPUarW+4iAyOE2PBudnEBERERkeezToicHN+oiIiIiMR1GPRlEFBQXYunUrIiIicOHCBSQnJwMo3PSuVatW6NWrFwYPHgyVSqWvJokq5NFmfdxDg4iIiMjQ9JJo7N69GxMnTiyx7C1QuIxtVFQUVq9ejbp162L16tV49tln9dEsUYXEc44GERERkdEoHjr1/fffY+DAgbhz5w6EEBBCwNfXF506dUKnTp3g6+sLoDDxuHXrFgYMGIAff/xRceBEFZWQVri8LYdOERERERmeokTjxo0bmDhxItRqNWxtbfH+++8jPj4e165dQ1RUFKKionDt2jXEx8fjgw8+gL29PdRqNV599VXcvHlTX6+BqFxCiEerTjHRICIiIjI4RYnGypUrkZOTA3t7exw+fBhz586Fp6dniXIeHh6YM2cODh8+DHt7e+Tk5GDlypVKmiaqkPScfGTmFgBgjwYRERGRMShKNPbu3QtJkjB79my0bdu23PJ+fn548803IYTAnj17lDRNVCGaieCO1uawseSCBERERESGpijR0Ax/6tWrl851evfuXawukTFwIjgRERGRcSlKNAoKCoeiVGTJWnPzwoWuuNkfGRMnghMREREZl6JEo06dOgCAqKgonetoytauXVtJ00QVwongRERERMalKNHo0aMHhBD46KOPEBcXV275uLg4fPTRR5AkCT179lTSNFGFxKdyV3AiIiIiY1KUaLz++uswMzPDvXv38NRTTyEsLEweTlWUWq1GWFgYOnfujISEBJiZmWHq1KlKmiaqEM0cjVqco0FERERkFIp2Bm/VqhXee+89vPPOO4iLi8OIESPg7OwMf39/eHp6QpIkJCQkICYmBg8ePJB3C3/vvffQqlUrvbwAIl1w6BQRERGRcSlKNABgzpw5cHJywltvvYXMzEykpKTgwIEDxcpoEgxbW1ssWbIEkydPVtosUYUw0SAiIiIyLsWJBgBMmTIFw4cPR2hoKCIiInDhwgUkJycDAFxdXdGqVSv06tULEyZMgLu7uz6aJNJZfoEa99I1q05ZmTgaIiIioieDXhINAHB3d8fs2bMxe/ZsfT0lkV7cz8iFWgAqMwlu9kw0iIiIiIxB0WRwoupAMxHc08EKKjPJxNEQERERPRmYaFCNp5mfwaVtiYiIiIyHiQbVeI8SDQ6bIiIiIjIWJhpU42k26+OKU0RERETGw0SDajxu1kdERERkfEw0qMZLTCtc2pY9GkRERETGw0SDarx4btZHREREZHRMNKjGS/hnjoYnEw0iIiIio2GiQTXaw5x8pOfkAwC8OEeDiIiIyGgU7Qy+ePFiAMBTTz2FZ599Vi8BEemTZtiUvZU57K0UXe5EREREVAGK7rwWLlwISZKwZcsWfcVDpFfcQ4OIiIjINBQNnXJzcwMA1KtXTy/BEOkbdwUnIiIiMg1FiUbjxo0BAPHx8XoJhkjf4lO5tC0RERGRKShKNEaMGAEhBH755Rd9xUOkVwncrI+IiIjIJBQlGlOmTIGfnx++++47rFu3Tk8hEelPAvfQICIiIjIJRZPB4+Pj8c033+Dll1/Gyy+/jA0bNmD06NFo06YNXFxcoFKpyqzPuR1kaPGcDE5ERERkEooSjfr160OSJACAEAL79+/H/v37daorSRLy8/OVNE9ULs1mfZwMTkRERGRcijcWEEJo/T+RqanVAonp/0wG5xwNIiIiIqNSlGiEhobqKw4ivbv/MAf5agEzCfCw59ApIiIiImNSlGiMGzdOX3EQ6V1iWmFvhru9FcxVitY9ICIiIqIK4t0X1VjxnJ9BREREZDJMNKjGiueu4EREREQmo3gyuIZarcbBgwdx9OhRxMfHIzMzEx988AG8vb3lMrm5ucjPz4dKpYKVFcfMk2HJe2g48VojIiIiMja9JBrh4eGYNm0abty4Uez4m2++WSzR+Oabb/D666/D3t4ecXFxsLOz00fzRFpxsz4iIiIi01E8dGrNmjUYNGgQrl+/DiEE3NzcSl3m9pVXXoGTkxMyMjKwZcsWpU0TlSn+n8ngnkw0iIiIiIxOUaLx999/47XXXgMA9OzZExcvXkRiYmKp5S0tLTF06FAIIbB3714lTROVS7NZH3s0iIiIiIxPUaLxySefID8/Hy1btsSuXbvwr3/9q9w6gYGBAIDTp08raZqoXPHyHA0mGkRERETGpijROHDgACRJwowZM2BpaalTncaNGwMAbt26paRpojJl5xUgNSsPAFedIiIiIjIFRYnG7du3AQB+fn4619FMAM/MzFTSNFGZNBPBrS3M4Gitt8XViIiIiEhHihINSZIAVCxpSEpKAgA4OTkpaZqoTPFF5mdorlMiIiIiMh5FiUadOnUAANeuXdO5zpEjRwAADRs2VNI0UZm4WR8RERGRaSlKNIKCgiCEwPr163Uqn5qaiq+++gqSJKFnz55KmiYqUwInghMRERGZlKJE49///jckScLvv/+OdevWlVk2KSkJgwcPRnx8PMzNzTFp0iQlTROVKeGfPTS4tC0RERGRaShKNNq1a4fp06dDCIGXX34ZI0aMwC+//CKfj4qKwoYNG/Daa6+hcePGOHToECRJwrx58+Dr66s4eKLSaIZOcbM+IiIiItNQvBzPsmXLkJOTgy+//BJhYWEICwuTJ9/++9//lstpdgufMWMG3n33XaXNEpWJm/URERERmZaiHg2gcOWpVatWYc+ePQgKCoIkSRBCFHsAQOfOnbFz504sX75ccdBE5Xm0WZ+ViSMhIiIiejLpbYOB3r17o3fv3khPT8fp06eRmJiIgoICuLm5oW3btnB3d9dXU0RlEkIg8Z85Glx1ioiIiMg09L6TmYODA7p166bvpyXSWUpmHnIL1AAATwcmGkRERESmoHjoFFFVo9msz83OEpbmvMSJiIiITEGvPRqJiYn47bffcP78eSQnJwMAXF1d0apVKwQFBaFWrVr6bI5IqwRu1kdERERkcnpJNO7cuYNZs2Zhy5YtyM/P11pGpVJhyJAhWLJkCerVq6ePZom04mZ9RERERKaneFzJkSNH0KpVK2zcuBF5eXklVpzSPPLz8xEWFoY2bdrgyJEj+oidSKt4uUeDK04RERERmYqiRCMuLg7BwcFITU2FEAL9+vXDxo0bcePGDWRnZyM7Oxs3btxAWFgY+vfvDyEE0tLSEBwcjLi4OH29BqJiOHSKiIiIyPQUJRoffvghUlNToVKp8N1332Hnzp0YOnQofHx8YGlpCUtLS/j4+CAkJATh4eH44YcfYGZmhrS0NHz00Uf6eg1ExcRzsz4iIiIik1OUaOzatQuSJOHVV1/FmDFjyi0/evRoTJw4EUII7Ny5U0nTRKWK1+yhwTkaRERERCajeOgUADz//PM619GU5dApMpREzdAp7qFBREREZDKKEg0XFxcAgJOTk851NGU1dYn0KSe/AEkPcwFw1SkiIiIiU1KUaHTo0AEAcP78eZ3raMpq6hLpU+I/w6Yszc3gYmth4miIiIiInlyKEo1p06ZBCIGPP/4YmZmZ5ZbPzMzEf//7X0iShNdff11J05USFBQESZJKfezevVtrvXXr1iEgIAD29vZwdXVF//79ERUVVWZbkZGR6N+/P1xdXWFvb4+AgAB89913hnhZVERCkaVtJUkycTRERERETy5FG/b16tULCxYswKJFixAUFITVq1ejbdu2WsuePXsWEydOxKVLl7BgwQL07t1bSdOKDB06FPb29iWO16lTp8SxGTNmYOXKlbCxsUGfPn2QnZ2Nffv2Ye/evQgLC8PgwYNL1Nm0aRNGjBgBtVqNbt26wd3dHfv378e4ceNw7tw5LF261BAviwAk/NOjwRWniIiIiExLp0Rj8eLFpZ6TJAkdOnRAdHQ02rdvj9atW6Njx47w9PSEJElISEjAyZMnSwyZWrx4MebPn6+Hl1BxS5cuRf369cstFxERgZUrV8LNzQ1Hjx5FkyZNAABHjx5FUFAQJkyYgKCgIDg7O8t1kpOT8dJLL6GgoACbNm1CSEgIACAhIQFdu3bFsmXLMHDgQAQFBRnglZFmsz5PJhpEREREJqVTorFw4cJyh6FIkgQhBM6fP691zoYQApIkITo6GtHR0QBgskRDV8uXLwcAvPvuu3KSAQCdO3fGpEmT8Omnn2Lt2rWYNWuWfO6bb75BWloaBg0aJCcZAFCrVi18/PHHCAkJwbJly5hoGIhm6BR7NIiIiIhMS+c5GkKIch9lldN2rirLysrCgQMHAADDhg0rcV5zbMeOHcWOa/YH0VZnwIABsLa2RkREBLKzs/UdMoGb9RERERFVFTr1aKjVakPHYVRr165FUlISzMzM0LRpUwwePBj16tUrVubSpUvIycmBh4cH6tatW+I5/P39AQDnzp0rdvzs2bPFzhdlaWmJVq1aITo6GpcvX0abNm309ZLoH/JkcC5tS0RERGRSiiaDV1fvv/9+sa/ffPNNzJs3D/PmzZOP3bx5EwC0JhkAYGdnB2dnZ6SkpCA9PR0ODg5IS0tDampqmfXq1q2L6Oho3Lhxg4mGAciJhoOViSMhIiIierIpWt62uunWrRu+//57XL16FZmZmbh06RI++OADmJubY/78+Vi5cqVcNiMjAwBga2tb6vPZ2dkBANLT04vVKave43W0ycnJQVpaWrEHlU8IIU8G52Z9RERERKb1RCUaixcvxpgxY9CwYUPY2NigadOmmDt3LrZu3QqgcNJ7VlaWaYME8OGHH8LJyUl++Pj4mDqkaiEtKx/ZeYXD/GpxjgYRERGRSel96FRaWhrS09NRUFBQbtnH50WYSp8+feQleo8fP46goCB5n42yNiJ8+PAhAMDBwQEAiu3NkZmZCUdHx3LraDNnzhzMnDlT/jotLY3Jhg40vRnOthawtlCZOBoiIiKiJ5teEo29e/fiyy+/xOHDh5GSkqJTHUmSkJ+fr4/m9aJJkyaIjo7G3bt3ATxKgm7fvq21/MOHD/HgwQO4uLjISYOjoyOcnJyQmpqK27dvo0WLFiXqaZ7P19e31FisrKxgZcU5BhX1aH4GezOIiIiITE3x0KlJkyahX79+2L59O5KTk3VaBrcqLm+rSZA0cyiaNWsGKysr3Lt3D3fu3ClRPiYmBgBKTOj28/Mrdr6ovLw8XLhwAdbW1mjatKle46dHPRpccYqIiIjI9BT1aHz99ddYvXo1gMKhQEOGDIGfnx+cnZ1hZlZ9pn/cu3cPhw8fBvBoWVobGxv07NkTv/76KzZu3IgZM2YUqxMWFgYACA4OLnZ8wIABOHToEMLCwjBmzJhi58LDw5GdnY2BAwfC2po3w/qWIO+hwd4gIiIiIlOThIKuhfbt2+P06dNo3rw5Dhw4gFq1aukzNr2KiopCYmIigoODoVI9Gr9//fp1jBkzBpGRkXjuueewbds2+VxERAR69+4NNzc3HD16VN4d/OjRo+jRowdsbGwQGxsLZ2dnuU5ycjIaNGiAtLQ0bNq0Sd4dPDExEV26dMGVK1dw8ODBCu0MnpaWJg/J0jbvgwq9s+U8fjx+E9N6NsbMPs1MHQ4RERFRlWCqe0lFPRp//fUXJEnCwoULq3SSAQCXL1/GhAkT4OXlBX9/fzg7O+PGjRs4deoUsrOz0bJlS6xZs6ZYnV69emH69OlYuXIl2rZti969eyM3Nxf79u2DEAKhoaHFkgwAcHV1xbfffovhw4dj2LBhCAoKgpubGyIiIvDgwQPMnDmzQkkG6S4hLQcAh04RERERVQWKEg17e3tkZ2fLn/RXZU899RQmT56M48eP4+TJk0hJSYGdnR3atm2L559/HpMnT4aNjU2JeitWrEDbtm3x+eefY9++fbC0tESvXr0wb948PP3001rbGjp0KA4dOoT3338fx44dQ25uLlq0aIGpU6di3Lhxhn6pTyxOBiciIiKqOhQNnQoKCsLhw4cRHh6Ofv366TMuKoJDp3TT8YMI3EvPQfjrXdGqjpOpwyEiIiKqEkx1L6loxvbEiRMhhMBPP/2kr3iIKiWvQI37Gf8MneJmfUREREQmpyjRGD16NIYOHYoff/wRn3/+ub5iIqqw+xk5EAIwN5PgZmdp6nCIiIiInniKN+z78ccf8eabb2LGjBn43//+h+HDh6Np06awtbUtt263bt2UNk8EAIj/Z2lbTwcrmJlJJo6GiIiIiBQnGhYWFvDz84OLiwuOHj2Ko0eP6lSvqu0MTtVbAjfrIyIiIqpSFCUa+fn5GDVqFDZv3gwAVW63b3pyxMub9THRICIiIqoKFCUaX331FTZt2gQA8PX1xbhx46rlzuBU/cWncSI4ERERUVWiKNH45ptvAACdOnXC/v37te5DQWQMiZqhU0w0iIiIiKoERd0OV65cgSRJmDNnDpMMMqn4fxINLycrE0dCRERERIDCRMPOzg4A4OPjo5dgiCornj0aRERERFWKokTDz88PAHDjxg29BENUWQmcDE5ERERUpShKNCZNmgQhBNauXauveIgqLCMnHw9zCwCwR4OIiIioqlCUaISEhGDSpEkIDw/Hm2++iYKCAn3FRaQzzdK2DlbmsLNSvDUMEREREemBoruy7777Dp06dcLp06fxySefICwsDCEhITrvDD527FglzRMB4GZ9RERERFWRokRj/PjxkCRJ/vrWrVtYuXKlTnUlSWKiQXrBzfqIiIiIqh7F40y4GziZWkI6V5wiIiIiqmoUJRqxsbH6ioOo0jQrTtVy5B4aRERERFWFokTD19dXX3EQVdqjzfrYo0FERERUVShadYqoKohPywHAoVNEREREVQkTDar2uFkfERERUdXDRIOqtQK1wL0M9mgQERERVTWK5mg0bNiw0nUlScLVq1eVNE+EpIwcFKgFzCTA3d7S1OEQERER0T8UJRrXr1/XuawkScWWwi26/wZRZWkmgns4WMFcxQ46IiIioqpCUaIxbty4css8fPgQly9fxrlz5yBJEtq1a4fWrVsraZZIxs36iIiIiKomRYlGaGiozmX/+OMPvPzyyzh//jzmzp2LkJAQJU0TAQAS0jk/g4iIiKgqMtpYk5YtWyIiIgK1a9fG2LFj8ddffxmraarBHm3Wx0SDiIiIqCox6qB2e3t7zJw5E5mZmViyZIkxm6Yaipv1EREREVVNRp8926FDBwDA/v37jd001UAJaezRICIiIqqKjJ5oaFaeSkhIMHbTVANpEg1OBiciIiKqWoyeaOzZswcA4OTkZOymqQaKl+doWJk4EiIiIiIqyqiJxv/+9z98+OGHkCQJXbt2NWbTVANl5RYgLTsfAFCLczSIiIiIqhRFy9u+9NJL5ZZRq9VISUlBTEwM4uLiIISAubk5/u///k9J00TyRHBbSxUcrBRdykRERESkZ4ruztatW6fzDt+auRmOjo745ptv5EnhRJVVdLM+7jRPREREVLUoSjTq1atX7g2emZkZHBwc0KBBA3Tv3h1jxoyBu7u7kmaJAACJ6YWJhifnZxARERFVOYoSjevXr+spDKKKK9qjQURERERVi9FXnSLSF80cDU4EJyIiIqp6mGhQtcU9NIiIiIiqLiYaVG0lpOUAYKJBREREVBUx0aBqSzNHw5OJBhEREVGVo/NkcJVKpdeGJUlCfn6+Xp+TnhxqtZBXnfLiHA0iIiKiKkfnREOzDwZRVZCcmYu8AgFJAjwduLwtERERUVWjc6Ixbtw4RQ0JIbBr1y4kJSUxaSHFNMOm3OysYKHiCEAiIiKiqkbnRCM0NLTSjWzduhULFixAUlKSfMzHx6fSz0ekGTZVi5v1EREREVVJBv0oeNeuXejYsSOGDh2KCxcuQAgBLy8vfPbZZ7h8+bIhm6YaLj6VK04RERERVWWKdgYvzb59+7BgwQIcP34cQOGwKU9PT7z99tuYPHkyrK15c0jKcLM+IiIioqpNr4nG77//jnnz5iEyMhJAYYLh5uaG2bNnY+rUqbC1tdVnc/QES0jlZn1EREREVZleEo2oqCjMnz8fBw8eBFCYYDg7O2PmzJmYMWMG7O3t9dEMkSyBczSIiIiIqjRFiUZ0dDTmzZuHvXv3AihMMBwcHDBjxgzMnDkTTk5OegmS6HGaVadqsUeDiIiIqEqqVKJx9uxZzJ8/H+Hh4QAKEww7OztMnToVs2fPhqurq16DJHpcQho36yMiIiKqyiqUaPzxxx9YsGABtmzZAqAwwbCxscHkyZPx9ttvw8PDwyBBEhWVnVeAlMw8AJyjQURERFRV6ZxojBo1Chs3boQQAkIIWFlZ4d///jf+7//+D15eXoaMkaiYe+mFS9tamZvBycbCxNEQERERkTY6Jxo///yz/H8PDw9MmzYNPj4+8vyMyhg7dmyl69KTS17a1tEakiSZOBoiIiIi0qZCQ6c0N3X379/H/PnzFTUsSRITDaqUeC5tS0RERFTlVSjREEIYKg4inSVwsz4iIiKiKk/nREOzRwaRqT3q0eAeGkRERERVlc6JRvfu3Q0ZB5HOEv6ZDM49NIiIiIiqLjNTB0BUUQncrI+IiIioymOiQdVOPDfrIyIiIqrymGhQtSKEeJRosEeDiIiIqMpiokHVSmpWHnLz1QAADwdOBiciIiKqqphoULWi6c1wsbWAtYXKxNEQERERUWmYaFC1Es+J4ERERETVAhMNqlYSOBGciIiIqFpgokHVSkJa4R4anAhOREREVLUx0aBqRTNHw5OJBhEREVGVxkSDqhXNZn3s0SAiIiKq2phoULXyaLM+Lm1LREREVJUx0aBqRTMZnKtOEREREVVtTDSo2sgrUON+Ri4AJhpEREREVR0TDao2EtMLV5yyUElwtbU0cTREREREVBYmGgaUlZWF+fPno2nTprC2tkbt2rXx0ksv4c6dO6YOrVrSbNbn6WANMzPJxNEQERERUVmYaBhIdnY2evbsiffeew8ZGRkYNGgQfHx8EBoainbt2uHatWumDrHa4WZ9RERERNUHEw0Def/993Hs2DF07twZly9fxs8//4zjx49j2bJluHfvHl566SVTh6izArXA0atJ2HbmDo5eTUKBWpgkhuPXkgAA5mYwSQxEREREpDtJCME7Nj3Lzc2Fp6cnUlNTERMTg3bt2hU77+fnh3PnziE6Ohrt27cv9/nS0tLg5OSE1NRUODo6GipsrXZfuItFOy7i7j/DlgDA28kaC4JboG8r7ycmBiIiIqLqylT3kuzRMIDIyEikpqaiUaNGJZIMABg2bBgAYMeOHcYOrUJ2X7iLyT/EFLvBBwrnSkz+IQa7L9x9ImIgIiIiooozN3UANdHZs2cBAP7+/lrPa46fO3fOaDFVVIFaYNGOi9DW3aU59lbYOSSk58DCzAwqM8BMkqAyK3yYSRLMzSSYmUlQ/XNc838zM0AlSTBXSXKdx+uqzCRAAPO2/VFqDBKARTsuoncLr8LyRERERFRlMNEwgJs3bwIA6tatq/W85viNGzeMFlNFnYhNLtGL8Li07Hws2PaHkSIqSQC4m5qNE7HJ6NzIzWRxEBEREVFJTDQMICMjAwBga2ur9bydnR0AID09Xev5nJwc5OTkyF+npaXpOcLyJaaXnWRotKnrhFqO1lCrBQqEQIH60UOt+VoAarVAvlrI5YqWl8+JonWBnPwC5BWUP4VI11iJiIiIyHiYaFRBH374IRYtWmTSGDwddFtCdk6/5gbrTTh6NQmj1hwrt5yusRIRERGR8XAyuAHY29sDADIzM7Wef/jwIQDAwcFB6/k5c+YgNTVVfty6dcswgZYhoIErvJ2sUdrMBwmFKz8FNHCt0TEQERERUeUw0TCAevXqAQBu376t9bzmuK+vr9bzVlZWcHR0LPYwNpWZhAXBLQCgxI2+5usFwS0MOgm7KsRARERERJXDRMMA/Pz8AAAxMTFaz2uOt2nTxmgxVUbfVt74cox/iZ24vZys8eUYf6PsYVEVYiAiIiKiiuOGfQZQdMO+06dPo23btsXOV6cN+4DCpW5PxCYjMT0bng6FQ5WM3YtQFWIgIiIiqo64YV8NYmlpialTpwIAXnvtNXlOBgAsX74c586dQ/fu3XVKMqoClZmEzo3cMKhtHXRu5GaSG/yqEAMRERER6Y49GgaSnZ2NoKAgHD9+HN7e3ggMDMSNGzdw/PhxeHh44NixY2jYsKFOz2XqHg0iIiIiqr7Yo1HDWFtb4+DBg5g3bx5sbW2xdetW3LhxA+PHj0dMTIzOSQYRERERUXXEHo1qgD0aRERERFRZ7NEgIiIiIqIag4kGERERERHpHRMNIiIiIiLSOyYaRERERESkd0w0iIiIiIhI78xNHQCVT7MwWFpamokjISIiIqLqRnMPaezFZploVANJSUkAAB8fHxNHQkRERETVVVJSEpycnIzWHhONasDV1RUAcPPmTaNeHFQ1paWlwcfHB7du3eK+KsTrgYrh9UAavBaoqNTUVNSrV0++pzQWJhrVgJlZ4VQaJycn/rEgmaOjI68HkvF6oKJ4PZAGrwUqSnNPabT2jNoaERERERE9EZhoEBERERGR3jHRqAasrKywYMECWFlZmToUqgJ4PVBRvB6oKF4PpMFrgYoy1fUgCWOvc0VERERERDUeezSIiIiIiEjvmGgQEREREZHeMdEgIiIiIiK9Y6JRhWVlZWH+/Plo2rQprK2tUbt2bbz00ku4c+eOqUMjPcvMzMTWrVvx8ssvo1mzZrC2toadnR38/PywePFiZGRklFp33bp1CAgIgL29PVxdXdG/f39ERUUZMXoyhqSkJHh6ekKSJDRu3LjMsrwmaq579+7hzTffRLNmzWBjYwNXV1f4+/tj9uzZWsvv2LED3bt3l/dSCAoKws6dO40cNenbyZMnMXz4cNSuXRsWFhZwdnZGYGAgQkNDoW3qbUFBAT755BO0bt0aNjY28PDwwPDhw/Hnn3+aIHqqqFOnTuGjjz5CSEgI6tatC0mSIElSufUq814QGRmJ/v37w9XVFfb29ggICMB3331X+eAFVUlZWVmiU6dOAoDw9vYWw4cPFwEBAQKA8PDwEFevXjV1iKRHa9asEQAEANG8eXPx/PPPi2effVY4ODgIAOJf//qXSEhIKFFv+vTpAoCwsbERgwYNEs8++6wwNzcXKpVKbNmyxfgvhAxm3LhxQpIkAUA0atSo1HK8Jmqu6Oho4ebmJgCIli1bihEjRoh+/foJX19foVKpSpT/5JNPBABhbm4u+vbtKwYNGiRsbGwEAPHZZ5+Z4BWQPoSFhQmVSiUACH9/fzF8+HDRo0cPYW5uLgCI0aNHFytfUFAghgwZIgAIZ2dnMXToUNG9e3chSZKwtbUVx48fN9ErIV0NGjRIvkco+ihLZd4LNNeWJEmie/fuYujQocLZ2VkAELNmzapU7Ew0qqh33nlHABCdO3cW6enp8vFly5YJAKJ79+6mC470bt26dWLixIni4sWLxY7HxcWJdu3aCQBi1KhRxc7t27dPABBubm7i8uXL8vGoqChhaWkpnJ2dRUpKijHCJwOLiIgQAMTEiRPLTDR4TdRciYmJwt3dXdja2opt27aVOP/4zeJff/0lVCqVsLKyElFRUfLxS5cuCTc3N2Fubi7+/vtvg8dN+pWXlyc8PT0FAPHjjz8WO3fx4kXh6uoqAIgDBw7IxzUfZDVp0kTEx8fLx8PCwgQA0bhxY5GXl2e010AV99FHH4l58+aJ7du3i7t37worK6syE43KvBckJSUJR0dHAUBs2rRJPh4fHy8aN24sAIiDBw9WOHYmGlVQTk6OcHJyEgBETExMifNt2rQRAER0dLQJoiNji4qKEgCElZWVyMnJkY/369dPABCffPJJiTrTpk0TAMTSpUuNGCkZQmZmpmjUqJFo0aKFuHz5cpmJBq+Jmmvy5MkCgFi1alWFyk+fPr3EueXLlwsAYurUqXqOkgzt/PnzAoBo1qyZ1vOa3/P//ve/8rHmzZsLAFo/xX7uuecEABEWFmaokMkAyks0KvNe8N///lcAEIMGDSpRZ/PmzQKAGDhwYIVj5RyNKigyMhKpqalo1KgR2rVrV+L8sGHDABSOvaWaz8/PDwCQk5ODpKQkAIXzdw4cOADg0fVQFK+RmmPRokW4du0avvrqK1hYWJRajtdEzZWVlYUffvgBdnZ2mDBhgk51NPMweC3ULLputubm5gYAiI2NxZ9//gkbGxsMGDCgRDleCzVPZd8LyvqbMWDAAFhbWyMiIgLZ2dkVioeJRhV09uxZAIC/v7/W85rj586dM1pMZDrXrl0DAFhYWMDV1RUAcOnSJeTk5MDDwwN169YtUYfXSM1w7tw5LFu2DBMmTEBgYGCZZXlN1FzR0dFIT09Hu3btYGNjg19//RUzZ87ElClTsGLFCsTFxRUr/+DBA9y8eRMAtH5Y5ePjA3d3d9y4cQNpaWlGeQ2kHw0bNkSjRo1w6dIlbNiwodi5P//8Ez/88ANcXFwwZMgQAI/uJ1q1aqX1gwr+Xah5KvteUNa9p6WlJVq1aoXs7Gxcvny5QvEw0aiCNG8Q2i6Qosdv3LhhtJjIdFauXAkA6Nu3r/xpVnnXiJ2dHZydnZGSkoL09HTjBEp6pVar8corr8DZ2Rkff/xxueV5TdRcFy9eBAB4enpi8ODB6N+/Pz755BN8+eWXeOONN9C4cWP89NNPcnnNteDi4gI7Ozutz8n3kepJpVJh/fr1cHZ2xgsvvID27dtj5MiR6NmzJ9q0aYO6deti//798odSvJ948lTmvSAtLQ2pqall1qvstcJEowrSLGVqa2ur9bzmjYM3CzXfrl27sHbtWlhYWOC9996Tj5d3jQC8Tqq7zz77DCdPnsSSJUvkYRBl4TVRc6WkpAAAtm/fjt27d2PVqlVITEzE9evX8eabbyIrKwvjxo3DmTNnAPBaqOm6dOmC33//HQ0bNkRMTAx+/vlnHDx4EGZmZujduzcaNmwol+X9xJOnMr//RZfQ1/e1wkSDqIr666+/MGbMGAghsGTJEnmuBtV8N2/exLvvvovu3btj/Pjxpg6HTEytVgMA8vPzsXjxYkyZMgUeHh7w9fXFkiVL8PzzzyMvLw9LliwxcaRkDD/99BMCAgLg4+OD48ePIyMjA5cvX8b48eOxbNky9OzZEzk5OaYOkwgAE40qyd7eHkDhJm7aPHz4EADg4OBgtJjIuO7cuYO+ffsiJSUFM2fOxPTp04udL+8aAXidVGevvfYacnNz8dVXX+lch9dEzaX52QLQOhlcc+z3338vVp7XQs3z999/Y9y4cXB3d0d4eDgCAgJgZ2eHJk2a4Ouvv8bAgQMRExODb7/9FgDvJ55Elfn9L/o3Rt/XChONKqhevXoAgNu3b2s9rznu6+trtJjIeJKTk9GnTx/cuHEDEyZMwNKlS0uUKe8aefjwIR48eAAXFxe+gVRD4eHhsLW1xaRJkxAUFCQ/Ro4cCaAwEdUci4+PB8BroibT/K23tbWFh4dHifP169cHACQmJgJ4dC2kpKTINweP4/tI9fS///0PeXl56Nu3b7GbQ43hw4cDAA4dOgSA9xNPosq8Fzg6OsLJyanMepW9VswrVJqMQjNEJiYmRut5zfE2bdoYLSYyjoyMDPTr1w8XL15ESEgI1qxZA0mSSpRr1qwZrKyscO/ePdy5cwd16tQpdp7XSPX34MED+RPqx2VnZ8vnNEsN8pqouTQrR2VlZSEnJ6fEEqfJyckAHn0q6ezsjHr16uHmzZs4ffo0unbtWqz8rVu3cP/+ffj6+sLR0dEIr4D0RXOzp7kpfJzmuGZej+Z+4sKFC8jLyyux8hT/LtQ8lX0v8PPzw6FDhxATE4MWLVoUO5eXl4cLFy7A2toaTZs2rVA87NGogrp06QInJydcvXpVntxXVFhYGAAgODjYyJGRIeXk5GDQoEE4ceIEnn32Wfz0009QqVRay9rY2KBnz54AgI0bN5Y4z2ukehOFm6mWeMTGxgIAGjVqJB/TfJrNa6LmqlevHvz8/CCE0Jp8ao4VXcpWs2eC5udeFK+F6svLywtA4ZLH2pw8eRLAo16uBg0aoHnz5sjKypL3SSiK10LNU9n3grL+ZoSHhyM7Oxu9evWCtbV1xQKq8BZ/ZBTvvPOOACCefvppkZGRIR9ftmyZACC6d+9uuuBI7/Lz88WQIUMEABEYGCgePnxYbp19+/YJAMLNzU1cvnxZPh4VFSWsrKyEs7OzSElJMWDUZGyxsbFl7gzOa6Lm+vHHHwUA0bp1axEXFycfP336tHB1dRUAxC+//CIf/+uvv4RKpRJWVlbi6NGj8vHLly8LNzc3YW5uLv7++2+jvgZS7tSpUwKAACC++OKLYueOHj0q7OzsBACxb98++fiaNWsEANGkSRORkJAgH9+0aZMAIBo3bizy8vKM9hpIufJ2Bq/Me0FSUpJwdHQUAMSmTZvk4wkJCaJx48YCgDh48GCFY2WiUUVlZWWJp556SgAQ3t7eYvjw4fLXHh4e4urVq6YOkfRoxYoV8pvHkCFDxLhx47Q+7t27V6ze9OnTBQBha2srBg0aJPr16yfMzc2FSqUSW7ZsMc2LIYMpL9EQgtdETTZu3DgBQDg7O4v+/fuLHj16yDccr776aonyy5cvFwCEubm56Nevnxg0aJCwsbERAMSnn35qgldA+vDmm2/K7xctW7YUzz//vOjSpYswMzMTAMTEiROLlS8oKJA/yHJxcRHDhg0TQUFBQpIkYWNjI44dO2aiV0K6Cg8PF0899ZT8kCRJACh2LDw8vFidyrwXhIWFCTMzMyFJkujRo4cYNmyYcHZ2FgDEzJkzKxU7E40qLDMzU8ybN080atRIWFpaCi8vLzF+/Hhx69YtU4dGerZgwQL5jaOsR2xsbIm6oaGhon379sLW1lY4OzuLvn37isjISOO/CDI4XRINIXhN1FRqtVqsXr1a/tna2dmJzp07i3Xr1pVaZ/v27SIwMFDY29sLe3t7ERgYKHbs2GHEqMkQNm/eLPr06SP3Trm4uIgePXqIDRs2aC2fn58vli1bJlq2bCmsra2Fm5ubGDZsmPjjjz+MHDlVRmhoaLn3B6GhoVrrVfS94MiRI6Jv377C2dlZ2Nraig4dOpT5N6Y8khBCVGywFRERERERUdk4GZyIiIiIiPSOiQYREREREekdEw0iIiIiItI7JhpERERERKR3TDSIiIiIiEjvmGgQEREREZHeMdEgIiIiIiK9Y6JBRERERER6x0SDiIiIiIj0jokGEemVJEmQJAkLFy40dShVVkFBAVauXImAgAA4OjrK37PBgwebOjT+/EhvFi5cKF9PhlK/fn1IkoTx48dX+jmuX78ux7lu3Tq9xWYq8+fPhyRJGDhwoEGe/7XXXoMkSRg3bpxBnp9qFiYaRHry22+/yW9WkiRhxIgR5dYZP368wd+IqeoZNWoUZsyYgZMnTyI9Pb1Sz/H49aZ5mJubw9XVFQ0aNEC3bt3wxhtvYNOmTcjNzdXzqyBDu3PnDlQqFSRJQrdu3Spc/+mnn4YkSbCwsMC9e/cMECFVNTdv3sSSJUsAAAsWLJCPa/tbUdHH9evXAQBvv/02LC0t8f333+PUqVOmeJlUjTDRIDKQjRs34vz586YOg6qYqKgobNy4EQAwYMAA7Nu3D+fOncP58+fx6aefKn7+goICpKSk4Pr16zh8+DBWrFiBYcOGoW7dunj//feRn5+vuI2aTvMBQP369U0aR506ddCzZ08AwJEjR3Djxg2d6165cgVHjx4FAPTt2xceHh4GiZGqlvfffx/Z2dno27cvOnbsaJA26tWrh3HjxkEIgXnz5hmkDao5zE0dAFFNJYTAggULsHnzZlOHQlVIREQEAEClUmHDhg1wdHRU/JyTJ0/GlClT5K8zMjKQkpKCc+fOYf/+/YiIiMC9e/cwb9487NixA+Hh4aXeeAohFMdD+jN27FhERERACIEffvgB77zzjk71fvjhh2LPYQoLFy7kEDwjunPnjjz0a9asWcXOlfWh17PPPou4uDjUrl0be/bsKbVcnTp15P/PmjULa9aswa+//opTp06hffv2yoKnGouJBpEBuLu74/79+9iyZQtOnz6Ndu3amTokqiLu3LkDAKhVq5ZekgwA8PT0RKtWrUoc79evH95++21cvHgRY8aMwenTp3HixAkMGTIEBw4cgKWlpV7aJ8MJCQnBlClTkJGRUalEw9nZGc8995whQ6Qq4osvvkBeXh5q164t94RpaPv7oGFhYSH/W1a5opo1awZ/f3/ExMTgs88+qxFzW8gwOHSKyACmTZsGKysrAIUT84g0cnJyADx6czeGFi1aIDIyUk54IyMjsWrVKqO1T5VnZ2eHkJAQAMBff/2F6OjocutERUXh6tWrAIDhw4fLf4uo5lKr1fLN/siRI2FmZvjbuxdeeAFA4TDhys41o5qPiQaRAfj4+GDixIkAgPDwcJw4caJSz6PriipljSnXtqLK5s2b0adPH3h6esLOzg5+fn747LPPkJeXJ9cTQmDDhg0ICgqCp6cnbG1t4e/vj6+++qpCw2siIiLw3HPPwdvbG9bW1mjYsCGmTp0qf7JfnpiYGEyaNAnNmjWDvb097Ozs0KxZM0yePBmXL18utd66deuKTWLMycnBihUr0KlTJ7i7uytaWen8+fOYOHEimjRpAltbWzg4OKBly5Z444035AmTj9PEsn79egDAjRs3Sky2NCQbGxt8//33cjtLly4t9vN+PM7SvjcPHjzABx98gM6dO8PFxQUWFhbw8PBAixYtMGTIEHz55ZdISEgoNY6cnBysXr0aAwYMQJ06dWBlZQU7Ozu0bNkSr7zyCvbs2VPi+nr8+r579y7efvtttGzZEg4ODpAkCb/99luxOgUFBVi/fj0GDhyI2rVrw8rKCm5ubujatSuWL1+OrKysErFpVkkq62dU2s8pOzsbn3/+OZ555hl4eXnB0tISnp6e6NWrF9auXatobkzRoU/ff/99ueWLlilaNyUlBaGhoRgzZgxatGgBe3t7WFpawsvLC88++yxWr15d5qIBpf0t6d+/P2rXrg1zc3MEBQXJ5ctbdSo3Nxc7duzA1KlT0bFjR/l6cnNzw1NPPYWFCxfi/v375b7eok6ePIlRo0bBx8cH1tbW8PHxwYQJE/DXX39V6HlKc/DgQYwbNw4NGzaEra0tHB0d0bp1a8yePRtxcXFl1o2Li8P//d//wd/fH05OTrCwsECtWrXQunVrjBo1CuvWrUNaWlql4jpy5Ijc/tChQyv1HBWlaSczMxPbtm0zSptUDQki0ouDBw8KAAKACA0NFXFxccLGxkYAEH369NFaZ9y4cXIdbXx9fQUAMW7cuDLb1jyPr69viXOxsbHF4po8ebL89eOPkJAQkZ+fL7Kzs8WwYcNKLffqq6+WGoumzIIFC8TChQtLfQ4nJydx6NChUp+noKBAvPHGG0KSpFKfw9zcXHz99dda64eGhsrlTp48Kdq2bVui/oIFC8r8vmrzn//8R5iZmZUak5WVlVi/fn2p35eyHhVR9HqryOvo06ePXC8yMrLUOLU958WLF0Xt2rXLfR2fffaZ1rZPnz4tGjRoUG792NjYYvWKXt9Hjx4V7u7uJeocPHhQLn/jxg3h5+dXZhuNGzcWly5dKtbOggULKvVzOnPmjPy7WtqjY8eOIj4+vvwfkBYFBQXCx8dHABCenp4iLy+v1LI5OTnC1dVVABCNGjUqdq68GAGIdu3aibt372p97qJ/S7799lvx4osvlqjfvXt3rd9PbYr+/Svt4ebmJo4cOVLq6y36N3Lt2rXC3Ny81N/LX375pdzXFRoaqrVMVlaWGDlyZJmx2tnZie3bt2utf+jQIeHo6Fju692xY0epr7Usmr+1FhYWIjs7u0J1Nd9Dbe8f5fHy8hIAxOjRoytcl54MnKNBZCDe3t6YPHkyli9fjr179+LIkSPo2rWrSWP66quvcPz4cfTv3x+vvPIKfH19cevWLXz44Yc4fvw4Nm/ejNDQUJw7dw5hYWEYPXo0Ro8eDW9vb/z9999YuHAh/vrrL6xZswYhISHo27dvqW3t3LkT0dHRaNasGd566y20adMGqamp2LhxI9asWYPU1FQMHDgQFy5cgI+PT4n6r7/+Or744gsAQLdu3TB+/Hj5U8SzZ89ixYoV+OOPP/Dvf/8bXl5eZY5Df/nll3H+/HmMHTsWI0aMgJeXF27evFnhISVffPEF5s6dCwDw8PDA22+/jS5duqCgoAARERFYsmQJHj58iPHjx8Pd3R39+/eX62omY7777rvYtm1buRMvDaVXr17Yu3cvAODw4cN4+umnda774osvIi4uDhYWFnj11VfRr18/eHl5Qa1W4/bt2zh27Bi2bNmite6ff/6JwMBAZGRkAACGDBmCkSNHomHDhigoKMDly5exd+/eUusDhZPchw4diuzsbLzzzjvo3bs3bG1tcf78eXh7ewMAkpKS0LVrV9y6dQtWVlZ49dVX0b17d9SvXx8ZGRnYu3cvVq5ciStXrqBfv36IiYmBk5MTAGDKlCkYNmxYhX5GV65cQffu3ZGamgpHR0e89tprCAgIgI+PD5KSkrB9+3Z8/fXXOHnyJAYNGoTDhw9XeNicmZkZXnjhBXz00UdITEzEnj17MGDAAK1ld+7cieTkZACFP6+iCgoK8NRTT2HgwIFo164datWqhdzcXMTGxuKHH37A7t27cfr0aYwcObJED9HjVqxYgXPnziEwMBCTJ09G06ZN8eDBg1J79LTJz89Hw4YNMWTIEAQEBKBevXowNzfHjRs3EBERgW+//RZJSUkYMmQILly4AE9Pz1Kf68yZM9iwYQM8PT0xZ84cBAQEIDs7G7t27cKKFSuQk5ODF154AQ0aNECHDh10jhEAhBAYNmwYdu7cCQAIDg7G8OHD0bBhQ5iZmeHEiRNYtmwZbt68iWHDhiEyMrJYGzk5ORg5ciTS0tLg4OCAyZMno0ePHvD09JS//1FRUWVe++U5fPgwAKB169ZGHSoXEBCA7du34/fffzdam1TNmDrTIaopHu/REEKIhIQEYWdnJwCIHj16lKhj7B4NAGLGjBklyjx8+FBuy83NTUiSJFasWFGi3N27d4WDg4MAIJ577jmtsRRty9/fX6Snp5co891338llnn/++RLn9+7dK5//5ptvtLaTlZUlevbsKb/uxz/lLdqjUdbz6CoxMVHY2toKAKJ27dri5s2bJcrExMTIP+86deqI3NzcEmXK+llVRGV7NCIiIuR6L730UonzpT3n1atXy+2xEEIItVotkpOTSxz39/cXAISZmZn46aefSq1///59kZmZWexY0d8Te3t7cebMmVLrjx49Wv7+Xrt2TWuZoj+nuXPnljhfkZ/R008/LfcE3Lt3T2uZX3/9Ve4FW716dbnPqc3Fixfl78HIkSNLLTdkyBABQEiSJK5evVrs3OXLl8ts49tvv5XbiIiIKHH+8b8lY8eOFWq1utTnK69H48qVK2XWP3funLC3txcAxLvvvqu1TNFeGl9fX629MQcOHJB7Ojp27Fjm69LWo7F69Wq5t+DXX3/VGkdycrJo2bKlACC6dOlS7Nz+/ft16rHIy8sTqamppZ4vjVqtlq/nl19+ucL1lfRoLFq0SH5tle2xo5qNczSIDMjT0xNTp04FUDi29+DBgyaNx8fHBx9//HGJ47a2tvIur0lJSXjqqacwffr0EuW8vLwwZMgQAI8+QSvL6tWrYW9vX+L4iy++iH79+gEAtmzZgvj4+GLnP/roIwCFY4Bffvllrc9tbW2Nzz//HEDhWPqyvrc9e/Ys9Xl0FRoaiszMTADA8uXLtfbCtGvXDnPmzAFQuLrU1q1bFbVpCG5ubvL/U1JSdK5X9GdU1uZxkiTBxcWl2LG9e/ciJiYGQOFCCSNHjiwzPhsbm1LPv/XWW/Dz89N67vr16/j5558BAJ9//jkaNGigtVy7du3w2muvAYCi1XIOHz6MqKgoAMD69evh7u6utVzfvn0xbNgwRe01b95c/pR827ZtWiffJicny5+6d+nSBQ0bNix2vkmTJmW2MWHCBLRt2xYAyr12nZ2d8fnnnyuaW9SoUaMy67du3RqvvPKKTvEAwLJly+Dl5VXieI8ePfDqq68CKJzDocuEeg0hBP773/8CKLx2S+vFdXFxkTfKi4yMxN9//y2f0/V3x9zcvFIr0aWkpODhw4cAUGavjyEUbe/atWtGbZuqByYaRAY2e/ZsODg4AIDJNzcKCQkpddhG0Zu3snY115RLSUnBgwcPSi3XunXrMtdWf+mllwAUDp8oOkwjLS1N/lpzc1aa5s2byzd3ms3JtNGsjqKEZv8LZ2dneRUgbTQ3RkXrVCVFE7+KrBSjGZoEVPxmOTw8XP7/jBkzKlT3cWX9LHfu3ImCggLY2trKiWxpNDd8cXFxuHnzZqVi2b59O4DCpT5bt26tU3snT56s9MRwzYcBWVlZCAsLK3H+l19+kSdzl7d3hhAC8fHxuHz5Mi5cuCA/NHslnD17tsz6wcHB8t81fUlJScHVq1fxxx9/yPE4OzsDAC5evKh18QINFxcXDBo0qNTzmr83QMV+Ly9evCiv4FXe36OiSUTRv0dFf3dCQ0N1bltXRXd9fzzJNzRXV1f5/49/YEQEMNEgMjg3Nzf55ioyMtIk4/I1mjZtWuo5zRt6RcqVdaNa3q60AQEB8v+LbiZ1+vRpqNVqAMCoUaO0rvpT9KFZlaasN7k2bdqUGYsuLly4AADw9/cvc4x9rVq15NWRNHWqkqI/s4p8etqgQQMEBgYCAD755BO0bNkS8+fPx4EDB+SentKcPn0aQOGOwr6+vpWIupC9vX2JT+mL0nxSnZmZCXNz8zKvm4EDB8r1KnuDpGnv0qVL5V6nmp7NvLw8eQ5FRY0aNUq+9opuyKehWW3K2toazz//vNbn2LlzJwYOHAgnJyd4e3vLSZLmoekRKW+1J338TgGFv/svvfQSvL294erqisaNG6NVq1ZyPJrVz9RqdZk9cO3atYO5eenTTtu2bSvvG1PW5nWPK9r70blz5zJ/xkWT+KLXVNeuXeXrdsaMGQgICMCHH36IyMjIMlf50lXR68nYiUbR9jS9KkRFMdEgMoKZM2fKN+gLFiwwWRy2tralniu67rqu5QoKCkotV14Xfq1ateT/F32jTExMLLNeacq62dXHm68mRl2GJmiGb1T2htKQit5AFv00Uhc//fQTOnfuDKDwk9733nsPzzzzDJydndGtWzd89dVXyM7OLrXNop/sVkbRJFcbQ1w7Vak9Nzc3eYGB3377Dbdv35bPXb16VR7GFRwcXOJ7JYTAK6+8goEDB2Lnzp3l9mZpW/63KH38Tq1duxb+/v4IDQ3VKdkrK6byfi/Nzc3l670iv5f6+BlbWFhgx44daN68OYDCXq25c+eia9eucHZ2Rt++fbFhw4Yy/56WxdraWv5/eT83fSvanjH3BqLqg6tOERmBs7MzZs6cifnz5+P48eMIDw8v9olqTVTZsdtF32y//vprnVdFKuvGR6VSVSoWbQy934WhaXoXgMIhPxVRp04dREVFYf/+/di8eTN+//13eUjL4cOHcfjwYSxduhS7du0qs1esssr7OWquHXd39wrNhyptLkd5NO35+flp7WEojWZ4UmWMHTsW27Ztg1qtxo8//oi3334bQPEeDm3Dpr799lusXbsWQOGn+zNmzMBTTz2FOnXqwNbWVv7ejh07Ft9//325e+Uo/Z3666+/MGnSJOTn58PT0xOzZ89Gz549Ub9+fTg4OMg3rd9++608v6qsmAz1e1n079GOHTu07lWkzeOJT4sWLXD+/Hns2LEDO3bswKFDh3DlyhVkZWVhz5492LNnD5YvX45du3ZVeJ6Fh4eH/H9jf7hRtL3yPgigJxMTDSIjmTFjBlauXImkpCQsWLBAp0RD03ugGUpUmqrYZV3Wpm2Pny/6yXrRycq2trZo1aqV/oOrBFdXV9y9e7fc1wU8GjZR0R4DY9i3b5/8/8out/zMM8/gmWeeAVC4eEBERARWr16NAwcO4OrVqxgxYkSxhEYzj+bu3bsKIi+f5tpJT09H8+bN9ZpgltVeRkaG0a7TgQMHwtXVFcnJyfjhhx9KJBqenp5aJyyvWbMGANC4cWNERUWVOuHeWDeq69atQ35+PlQqFX7//Xf861//UhRPeb+X+fn58nNV5Pey6N8jZ2dnRT9nlUqFwYMHY/DgwQAKfx92796NVatW4dSpUzh16hT+/e9/V3iZ26KJRkUWeNCHou3Vq1fPqG1T9cChU0RG4uDggNmzZwMo3O1alzcTzWTL8t48ytoh21ROnjyp8/mib95t27aVP52MjIw0THCVoIkxJiamzMm8iYmJuHHjRrE6VcWFCxewf/9+AIUrkFV0PwFt3NzcMGLECOzfv1/ey+TMmTPFVt3x9/cHANy8eVP+3hhCu3btABTuW1CRlYUep+un45r2rl27ZrSJsJaWlvJiDRcuXMCZM2dw9OhRXLlyBUDhPA5tcxX++OMPAMBzzz1XapIhhJBXBzM0TTx+fn6lJhkAdP45njlzpszfy7Nnz8rzISrye6n5GQP6/3vk7e2NCRMm4OjRo/LvSHh4eIWHP1lZWckrihn7vUDTnpWVFRo3bmzUtql6YKJBZERTp06Vu8UXLFhQ7vAEzZCOmJiYUsv+8ccfOHfunH4D1YPz588X+1T7cd9++y2Awk/5goKC5OMeHh7o1KkTAGDDhg3FVlQxpV69egEAHjx4gM2bN5dabu3atfLPSlOnKsjKysLYsWPl2N58880yJ89WhqaXAyg+FyQ4OFj+/yeffKLXNosKDg6Wk4QVK1ZU+nk0Y95zcnLKLKdJrIQQWLlyZaXbq6iiQ6O+//57eRL44+eK0tyEl9X7uW3bNoP3OlUknrt378ore5UnOTkZO3bsKPW85u8NULHfS39/f9StWxdA4XLd2uYgKWVhYYHu3bsDKPy+lLWaX2k0CzWU9wGPvmnaa9euHedokFZMNIiMyM7OTh7qcP78eezatavM8po3n7i4OPz0008lzqenpyveH8KQJk6cqPVGYsOGDfJrHzx4cIlJwu+++y6AwqVuhw0bVuYbb05ODlatWmWQG4CiJkyYIE+SnzVrFu7cuVOizNmzZ/Gf//wHQOE4fM0QCVO7ePEiunbtKid+3bt3x+TJkyv0HGfOnMGZM2dKPS+EkJcNlSSp2Fj2Xr16yUsdf/bZZ/jf//5X6vMkJSVVekJrs2bN5NWW/ve//2H58uVllo+NjdX6e6W5HhMTE8ucNN2nTx959bQlS5bgl19+KbM9zRh9pTp16iTPgdmwYYPcbsuWLeVPxh+n+cR7x44dWocjXb16Vd5bxBg08fz999/yJPaiMjMzMXr06ApdCzNnztQ6hOr333/H6tWrAQDt27cvd0W8oszMzDB37lwAhT1XY8eOLTMBTUtLk/f30Th8+LDc46RNbm6uvLO2vb19saFQutIkGvfv30dsbGyF61dGTk6O/CFXnz59jNImVT9MNIiMbPLkyfKNTHlLSI4ZM0ZegvTll1/G4sWLcfz4cZw4cQJffvkl/P39cfbs2WLd+1VFhw4dEB0djQ4dOmDdunU4deoUDhw4gClTpuDFF18EUDg0bOnSpSXq9u/fX94w8NChQ2jevDkWLVqE/fv348yZM4iMjMT69evxyiuvwNvbG1OnTq303gS68vDwkDfkun37Ntq3b48VK1bgxIkTiIqKwuLFi9G1a1dkZGRAkiSsXr3aaJ/wJSYmFtsL4fjx49i9ezc+/vhjPPvss2jVqpU8JKZTp04ICwurcGxnzpxBu3btEBAQgPfeew87d+7EqVOncOzYMfz000949tln5Zvo5557rkTy+P3338Pe3h5qtRqjRo3C0KFDsXHjRpw6dQonTpzAhg0bMH78ePj6+uo0D6Y0X375pbyU6KxZs9C9e3esXbsWx44dw+nTpxEREYFly5ahd+/eaNy4MTZt2lTiOTQLEKjVakyaNAnHjh3DlStX5EdRGzZsgKurKwoKCjBixAg899xz+PHHH3HixAmcOnUKv/76K/7zn/+gc+fOaNOmjXxDqZTmdyg+Ph5JSUkAyt47Q3MuLi4OnTt3xrfffosTJ07g0KFDWLhwIdq3b4/k5ORSExV908SvVqsxYMAA/Oc//8GhQ4fkv21t27bFb7/9hi5duuj0fH5+frhz5w7at2+PVatW4eTJkzhy5Ajmzp2Lvn37Ij8/H+bm5li1alWFY500aZK8UenGjRvRsmVLLFmyBL///jvOnDmDQ4cOYfXq1Rg9ejRq164tL8mrsX//fjRr1gxBQUFYsmQJ9uzZg5iYGERGRiI0NBSBgYHy7+fLL79cqZ7G/v37y7/TmuGRhnbo0CF5bxPN94eoBNNsSE5U8xw8eFAAEABEaGhomWU/++wzuazmUZpffvlFqFSqEuUBCBsbG7Fx40Yxbtw4AUD4+vqWqB8bG6tTXEXjP3jwYKnlQkND5XKxsbElzmvOLViwQCxYsEBr3ACEo6Oj+O2330ptR61Wi0WLFglzc/NSn0PzsLOzE5mZmRWKs7I++OADYWZmVmosVlZWYv369aXWL+tnVRFFf166PDw8PMQHH3wg8vLyynzeoj+/oop+P8t6PP300+L+/ftanzs6Olr4+PiU+xyP/7wq+j27e/euCAwM1CneCRMmlKhfUFAgOnXqVGqdx126dEm0atVKp/YWLVqk02soz/Xr14UkSfLzmpmZiTt37pRaPjc3V/Tp06fUuGxsbMQvv/yil78lGkV//7VZtGhRmd+rWbNmlft77OvrKwCIcePGiTVr1pT698LS0lL89NNPWuPQ5XXl5uaKyZMnF/uel/Zo0KBBqd+Hsh6DBg0q8XesIoYOHSoAiB49elSonuZ7WNG/SePHjxcARMuWLStUj54s7NEgMoFXX30VPj4+OpV9/vnnERUVhSFDhsDDwwOWlpbw8fHBuHHjcPLkyXJ3qzWlhQsXYvfu3RgwYABq1aoFS0tL1K9fH1OmTMEff/whDw3TRpIkzJ8/H5cvX8Zbb72FDh06wNXVFSqVCg4ODmjRogVeeOEFrF+/Hnfv3i11gqu+zZ07F6dPn8arr76KRo0awcbGBnZ2dmjevDmmT5+Ov/76q9xdmQ3JzMwMTk5OqFevHgIDAzFjxgxs2rQJt2/fxty5cys9L2PUqFHYtWsX3njjDXTt2hUNGjSAra0tLC0tUbduXfmT/MOHDxdbqaeo9u3b49KlS/j000/Rs2dPeHp6wtzcHPb29mjdujUmTpyI/fv367yEaGm8vLxw6NAhhIeH44UXXkDDhg1ha2sLCwsLeHh44Omnn8asWbPw+++/Fxu7r2FmZoa9e/fi3XffhZ+fH+zt7cucIN60aVOcOXMGGzZswNChQ1GvXj3Y2NjA0tIS3t7eCAoKwrvvvotTp05h/vz5il6bhq+vb7Hfn2eeeQa1a9cutbyFhQV27tyJTz/9FB06dICtrS1sbGzQuHFjTJo0CTExMaVu8mco8+fPx86dO9GnTx+4uLjI11JISAj27t2rtbezLK+88goOHz6M4cOHo3bt2rC0tESdOnUwduxYnD59GiNHjqx0rBYWFvjiiy9w9uxZvP7662jdujWcnJygUqng5OSEtm3b4uWXX0ZYWBj+/PPPYnXffPNNbNq0CZMnT0anTp1Qr149WFtbw9raGvXr18fw4cMRHh6OrVu3Kvo7NnHiRACFQ8Xi4uIq/Ty6yM7OlueqTZkyxaBtUfUmCVHObFQiIiIiqtKEEGjdujX++OMPvP/++3jnnXcM1tYPP/yAF198EW5ubrh+/XqxXdGJimKPBhEREVE1J0kSPvzwQwCFq64Zan8ltVotL3oxe/ZsJhlUJiYaRERERDVAcHAwAgMDcf/+/UpNfNfFxo0b8eeff6JevXqYNm2aQdqgmoM7gxMRERHVEKtWrcKmTZsM1tNQUFCABQsWoGfPnkabG0fVF+doEBERERGR3nHoFBERERER6R0TDSIiIiIi0jsmGkREREREpHdMNIiIiIiISO+YaBARERERkd4x0SAiIiIiIr1jokFERERERHrHRIOIiIiIiPSOiQYREREREekdEw0iIiIiItK7/wcAN9TnJ4TMVQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "plt.xlim(0, 100)\n", + "# ax.set_xscale(\"log\")\n", + "# ax.set_yscale(\"log\")\n", + "ax.set_xlabel(\"Number of Discrete Variables (T)\")\n", + "ax.set_ylabel(\"Number of samples\")\n", + "psi_time = [6.654, 4.320, 30*60+32]\n", + "ax.plot(files2[:3], psi_time, marker = \"o\")\n", + "\n", + "ax.legend([\"Psi\", \"Dice\"])\n", + "fig.savefig(\"or_samples.png\", bbox_inches=\"tight\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Figure7" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: '/space/poorvagarg/.julia/dev/Dice/scratch/clt_results.txt'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/plotting.ipynb Cell 64\u001b[0m in \u001b[0;36m3\n\u001b[1;32m 1\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mmatplotlib\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mpyplot\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mplt\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m filehandle \u001b[39m=\u001b[39m \u001b[39mopen\u001b[39m(\u001b[39m\"\u001b[39m\u001b[39m/space/poorvagarg/.julia/dev/Dice/scratch/clt_results.txt\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mr\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 4\u001b[0m lines \u001b[39m=\u001b[39m filehandle\u001b[39m.\u001b[39mreadlines()\n\u001b[1;32m 6\u001b[0m x \u001b[39m=\u001b[39m []\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/space/poorvagarg/.julia/dev/Dice/scratch/clt_results.txt'" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "filehandle = open(\"/space/poorvagarg/.julia/dev/Dice/scratch/clt_results.txt\", \"r\")\n", + "lines = filehandle.readlines()\n", + "\n", + "x = []\n", + "y = []\n", + "annot = []\n", + "for i in range(0,11):\n", + " # i = 1\n", + " cur = lines[i].split(\",\")\n", + " x.append(float(cur[3]))\n", + " y.append(float(cur[2]))\n", + " annot.append(int(float(cur[0])))\n", + "\n", + "plt.rcParams[\"figure.figsize\"] = [7.50, 5.50]\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=20)\n", + "plt.rc('legend', fontsize=15)\n", + "fig, ax = plt.subplots()\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_xlabel(\"Time (s)\")\n", + "ax.set_ylabel(\"KL divergence\")\n", + "ax.plot(x, y, marker = \"o\")\n", + "for i in range(11):\n", + " ax.annotate(annot[i], (x[i], y[i]))\n", + "\n", + "filehandle = open(\"/space/poorvagarg/.julia/dev/Dice/scratch/lpa_results.txt\", \"r\")\n", + "lines = filehandle.readlines()\n", + "\n", + "x = []\n", + "y = []\n", + "annot = []\n", + "for i in range(0,10):\n", + " # i = 1\n", + " cur = lines[i].split(\",\")\n", + " x.append(float(cur[2]))\n", + " y.append(float(cur[1]))\n", + " annot.append(int(float(cur[0])))\n", + "\n", + "# fig, ax = plt.subplots()\n", + "# ax.set_xscale(\"log\")\n", + "# ax.set_yscale(\"log\")\n", + "ax.plot(x, y, marker = \"o\")\n", + "for i in range(10):\n", + " ax.annotate(annot[i], (x[i], y[i]))\n", + "ax.legend([\"CLT (#random variables)\", \"PA (#pieces)\"])\n", + "fig.savefig(\"figure7.png\", bbox_inches=\"tight\")\n", + "# end\n", + "# annotate!(x[1], y[1], annot[1])" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Figure8" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeIAAAGBCAYAAAC6ibJXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACet0lEQVR4nOzdd3RU1drA4d+0THrvhSRACDV0CCBVLKBib6DYUYqi2BWuinq9ishFVMBPFESRa0EUpIj0mtACAUINIZ30nunn++MkE0IK6Qmwn7VmZco5Z+8JZN7Z7d0KSZIkBEEQBEFoFcrWroAgCIIgXM9EIBYEQRCEViQCsSAIgiC0IhGIBUEQBKEViUAsCIIgCK1IBGJBEARBaEUiEAuCIAhCKxKBWBAEQRBakQjEgiAIgtCKRCAWhOvUu+++i0KhYMSIEa1dlSZ1rb4v4dolArEgCIIgtCIRiAVBEAShFYlALAiCIAitSARiQRAEQWhFIhALQj306NEDhULBF198UeW1vXv3olAoUCgU3HfffVVeNxqNODk5oVAo2Lx5c6XXLBYLP/74I2PHjsXHxwcbGxu8vLy4+eab+emnn7jSbqXHjh1j0qRJhIWFYW9vj6OjIxEREbz99ttkZWU16L0ePnwYX19fFAoFt9xyC0VFRY0u8/KJVJs3b+a2227Dy8sLW1tbunTpwnvvvYdOp6u1buvXr+emm27C1dUVR0dHevbsySeffILRaGzQexWEViUJglBnzz//vARId999d5XXPvjgAwmQAMnDw0OyWCyVXt+1a5cESFqtViotLbU+n52dLQ0bNsx6LiC5uLhUejxu3DhJr9dXW6ePP/5YUiqV1mPt7e0lGxsb62M/Pz/p0KFDVc575513JEAaPnx4ldc2bdokOTk5SYD0yCOPSAaDocnL/OSTTySFQiEpFArJ1dVVUigU1vNHjhwpmUymat9v+TXKb66urpJarZYAadiwYdKbb75Z4/sShLZIBGJBqIdVq1ZJgOTu7i6ZzeZKr914440SIDk7O0uAdPjw4Uqvv//++1UChMlkkoYPHy4BUq9evaQ1a9ZIxcXFkiRJUlFRkbRs2TLJ29tbAqQXX3yxSn2++eYbCZAcHR2lDz/8UEpLS7Ne98CBA9KoUaMkQAoMDJQKCwsrnVtTIF6xYoU1qL788stVvlA0RZmurq6SUqmU3nzzTSkzM1OSJEnKz8+X/vWvf1kD7JIlS6q83z/++MP6+v333y8lJiZKkiRJJSUl0pdffinZ2NhIrq6uIhALVxURiAWhHnJycqwtwYMHD1qf1+l0kp2dnWRvby+98sorEiDNnTu30rkjR46UAOndd9+1Pvf9999LgNS5c2cpLy+v2jIPHDggKRQKycbGRrp48aL1+YKCAmvQ2bBhQ7XnGo1GqW/fvhIgzZs3r9Jr1QXiuXPnWlupl9e/KcsEpHfeeafa8++55x4JkEaPHl3lta5du1rrfPkXIUmSpEWLFlmvLwKxcLUQY8SCUA9ubm707NkTgC1btlif37dvH6WlpQwZMoRbb721yut6vZ69e/cCMHLkSOvzS5YsAWDy5Mm4uLhUW2bfvn3p1q0bBoOBrVu3Wp//7bffyMvLo3fv3txyyy3VnqtWq3n44YcB2LhxY43vS5IkXn31VV5++WXUajU//PADM2bMqHJcU5Wp1Wp55ZVXqn3tzjvvBODo0aOVnj969CgnTpwAYObMmSiVVT++nnnmGQICAmp4l4LQNqlbuwKCcLUZNWoUhw8fZsuWLdZgUh50R40axeDBg9FqtezcuROz2YxKpWLPnj3odDrs7OyIjIwEwGw2s2/fPkCexPTvf/+7xjJzcnIAuHDhgvW53bt3AxAXF4evr2+N55aWllY591JGo5GJEyfyww8/4OjoyKpVq7jpppuqPbapyuzWrRuOjo7Vvubv7w9UvOdyBw4cAORAP3To0GrPVSqVjBgxgh9//LHGuglCWyMCsSDU08iRI5k7dy47d+7EZDKhVqutLdVRo0ZZg+327dvZv38/kZGR1tcHDx6MjY0NIAcavV4PQG5ubp3KLikpsd5PTU0FQKfTXXGW8eXnXmrPnj3s2bMHgO+++67GINyUZTo5OdV4jlotfyyZTKZKz2dkZADg6emJVqut8fzAwMAr1ksQ2hLRNS0I9TRs2DDUajVFRUVER0dTUlJCVFQULi4u9O3bF5ADMlS0lMt/XtotbTabrffXr1+PJM/ZqPX27rvvVjn/wQcfrNO5CQkJ1b6fHj16EBERAcCMGTM4d+5cje+9qcoUBKGCCMSCUE9OTk7WgLtlyxZ27dqFwWBg2LBhqFQqoCLgbtmyheLiYqKjo4GKAA3g4eFhbf3V1IVbm/Ku4Yaceyl3d3e2bNlCr169SEpKYvjw4Zw+fbpZy2wIb29vALKysjAYDDUel5KS0lJVEoQmIQKxIDTApYH20m7pcgMHDsTe3p49e/awefNmjEYjjo6O9O/f33qMRqNhwIABAKxZs6bedRgyZAgABw8eJC0trcHvBeQvBZs3b6ZPnz6kpKQwYsQITp061axl1le/fv0Auct6586d1R5jsVjYtm1bC9ZKEBpPBGJBaIDyoLt3717Wr19f6TkAGxsbhgwZQmlpqXUS1g033GBtAZebNGkSAOvWrWPdunW1lnn55KX7778fV1dXjEYjM2bMqDX7lsViIS8vr9bru7u7s3nzZvr3709aWhojRowgLi6uWcusj4iICLp06QLAhx9+iMViqXLMt99+S3JycpOVKQgtQQRiQWiAIUOGYGNjg06n48iRI3h5edGjR49Kx5QH5qioKKDy+HC5Rx55hNGjRyNJEnfffTcffPCBdUIUQHFxMVu3bmXq1Km0b9++0rmurq7897//BWDlypXcdtttREVFWQOUxWIhLi6OuXPn0q1bN9auXXvF9+Xq6sqmTZuIjIwkPT2dESNGcOzYsWYtsz4+/PBDALZu3cr48eOtQVen07Fo0SKmTZuGq6trk5YpCM2uBdYqC8I1aejQoZWyPF1u3759lVIxRkdHV3ud/Px86fbbb690rLOzc5W0j2q1utrzFy5cWCm9pFarlTw8PCSNRlPpmj/88EOl82pLcVlQUCANHjxYAiRPT0/pyJEjzV5mua1bt1rPr87bb79dqQw3NzdrisuhQ4eKFJfCVUe0iAWhgS5t4V7aLV2uX79+ODs7A+Ds7EyfPn2qvY6zszNr1qxh3bp1PPjgg7Rr1w69Xk9JSQkBAQHcfPPNfPTRR9WO2QI899xznDp1ildeeYWePXui1WrJy8vD0dGRfv368fzzz7Np0yZrko26cHJyYuPGjQwdOpSsrCzr2unmLLOuPvjgA9auXcuoUaNwdnZGr9fTpUsX/vOf/7B582br8jBBuFooJOkK27oIgiAIgtBsRItYEARBEFqRCMSCIAiC0IpEIBYEQRCEViQCsSAIgiC0IhGIBUEQBKEViUAsCIIgCK3oqtwG0WKxkJqaipOTEwqForWrIwiCIAiVSJJEYWEh/v7+KJW1t3mvykCcmppKUFBQa1dDEARBEGqVlJR0xT2yr8pAXL6peFJSkjVzkSAIgiC0FQUFBQQFBVnjVW2uykBc3h3t7OwsArEgCILQZtVl+FRM1hIEQRCEViQCsSAIgiC0IhGIBUEQBKEVXZVjxHVlNpsxGo2tXY3rikajQaVStXY1BEEQrhrXZCCWJIn09HTy8vJauyrXJVdXV3x9fcUab0EQhDq4JgNxeRD29vbG3t5eBIQWIkkSJSUlZGRkAODn59fKNRIEQWj7rrlAbDabrUHYw8Ojtatz3bGzswMgIyMDb29v0U0tCIJwBdfcZK3yMWF7e/tWrsn1q/x3L8bnBUEQruyaaxGXE93RrUf87gVBuBp9/8k2bDVabnywBx7+ji1W7jXXIhYEQRCE+jLoTOSfN5F5qpSThSdatGwRiNuQESNG8OKLL7Z2NQRBEK47x+LOopSU6NR59G3fo0XLFoH4OpeWlsb48ePp1KkTSqWy2i8CS5cuRaFQVLrZ2tq2fGUFQRCaSeyxMwAEpcZjPhzbomWLQHyd0+v1eHl5MXPmTHr27Fnjcc7OzqSlpVlvFy5caMFaCoIgNK/cU/kAOBcnYFfLZ2FzEIG4jTGZTEybNg0XFxc8PT2ZNWsWkiQ1W3khISHMnz+fiRMn4uLiUuNxCoUCX19f683Hx6fZ6iQIgtCSLBYLqmx5Jz8nLzNKrbZFy78uArEkSZQYTK1yq28QXbZsGWq1mujoaObPn89nn33GN998U+PxO3fuxNHRsdbbjz/+2NhfIUVFRQQHBxMUFMSdd97J8ePHG31NQRCEtuBkQjxKyRGFxUhw/y4tXv41u3zpUqVGM13/tbFVyj4x+xbsber+aw4KCmLevHkoFArCw8OJjY1l3rx5PPPMM9Ue369fP2JiYmq9ZmNbr+Hh4Xz77bdERESQn5/Pp59+yuDBgzl+/DiBgYGNurYgCEJrO3TkBOCIU2ES7kMGt3j510UgvppERkZWWoc7aNAg5s6di9lsrjZLlZ2dHR07dmzWOg0aNIhBgwZZHw8ePJguXbqwePFi3n///WYtWxAEobllxl7EBkeciy9gGzGxxcu/LgKxnUbFidm3tFrZzWnnzp2MGTOm1mMWL17MhAkTmqxMjUZD7969OXv2bJNdUxAEoTVIkoQyXU7N6+SqR2lj0+J1uC4CsUKhqFf3cGuKioqq9Hjfvn2EhYXVmLO5JbqmL2c2m4mNjWXs2LFNel1BEISWdj7rAmqzLyggpE9oq9Th6ohO15HExERmzJjBs88+y6FDh1iwYAFz586t8fim6JouD+RFRUVkZmYSExODjY0NXbt2BWD27NlERkbSsWNH8vLymDNnDhcuXODpp59uVLmCIAitLepIDCic0epy8B02sFXqIAJxGzNx4kRKS0sZMGAAKpWK6dOnM2nSpGYts3fv3tb7Bw8eZMWKFQQHB5OQkABAbm4uzzzzDOnp6bi5udG3b1/27NljDdSCIAhXq7SDiWjpjnNRAnbdx7VKHUQgbkO2bdtmvb9w4cIWK/dKS6zmzZvHvHnzWqg2giAILUOSJBSJ8rCfk1MpilYYH4brZB2xIAiCIFwuqSAJG4O8BLNdN/9Wq4cIxIIgCMJ1aV/cAVA5obQYCR7Zp9XqIQKxIAiCcF1K3itv9OBYlIRDRPdWq4cIxIIgCMJ1R5IkOGcBwMmuAIVG02p1EYFYEARBuO4kFyVjVxoAQFAnr1atiwjEgiAIwnUnOiEai1qeoBUyrEer1kUEYkEQBOG6k7A9FhRKtPoc3Pu33vgwiEAsCIIgXGckSYKTegCcVTko1K2bUkMEYkEQBOG6klKUgmOhHwB+oc6tXBsRiNuUESNG8OKLL7Z2NQRBEK5p0clRoA4BIHhgeOtWhiYIxNnZ2Xh7e6NQKGrcfODdd99FoVDUeHvjjTcaWw2hgdLS0hg/fjydOnVCqVTW+EUgLy+PqVOn4ufnh1arpVOnTqxbt65lKysIgtAEEnZGYdI4orQY8B/auuPD0AS5pl9++WWysrLqdOyQIUOqDdZ9+/ZtbDWEBtLr9Xh5eTFz5swa80kbDAZuuukmvL29+fXXXwkICODChQu4urq2bGUFQRCagOVoEQCOZKPWtt764XKNCsSbN29m2bJlTJo0ia+//vqKxz/99NM8/vjjjSnymmcymZg2bRrLly9Ho9EwefJkZs+ejUKhaJbyQkJCmD9/PgDffvtttcd8++235OTksGfPHjRli95DQkKapT6CIAjNKaUoBZc8XwyO4Otv29rVARrRNV1aWsqzzz5L165deeWVV5qyTk1PksBQ3Dq3K+xsdLlly5ahVquJjo5m/vz5fPbZZ3zzzTc1Hr9z504cHR1rvf3444+N+vX9+eefDBo0iKlTp+Lj40P37t3597//jdlsbtR1BUEQWtr+lH2oFKEABPUNbeXayBrcIn7vvfeIj49n+/bt1lZSm2UsgX+30s4ab6WCjUOdDw8KCmLevHkoFArCw8OJjY1l3rx5PPPMM9Ue369fP2JiYmq9po+PT31qXEV8fDxbtmxhwoQJrFu3jrNnzzJlyhSMRiPvvPNOo64tCILQkuJ3b0NrfycAQTd0aeXayBoUiI8ePcrcuXN54oknGDp0qHUD+SvZsmULMTEx6HQ6AgMDGTNmjBgfvkxkZGSlbuhBgwYxd+5czGYzKpWqyvF2dnY1TpJrKhaLBW9vb77++mtUKhV9+/YlJSWFOXPmiEAsCMJVxXI4V07kIRXg4GbX2tUBGhCILRYLTz/9NK6urnzyySf1Onf58uWVHs+aNYt7772XpUuX4ujoWN+q1J3GXm6ZtgaNfbNefufOnYwZM6bWYxYvXsyECRMaXIafnx8ajabSF4EuXbqQnp6OwWDAppU20xYEQaiPlKIU3DK90bmCt2fzzLtpiHoH4gULFrB//36+++47PDw86nROx44d+fTTTxkzZgzBwcHk5uayY8cOXnvtNX777TfMZjO///57jefr9Xr0er31cUFBQf0qrVDUq3u4NUVFRVV6vG/fPsLCwqptDUPLdE0PGTKEFStWYLFYUCrlaQWnT5/Gz89PBGFBEK4aB5KjsJVC0QGBPQJbuzpW9QrEiYmJzJw5k+HDh9dr9vMjjzxS6bGDgwPjx49n5MiR9OjRg9WrV7Nv3z4iIyOrPf+jjz7ivffeq09Vr1qJiYnMmDGDZ599lkOHDrFgwQLmzp1b4/FN0TVdHsiLiorIzMwkJiYGGxsbunbtCsDkyZP54osvmD59Os8//zxnzpzh3//+Ny+88EKjyhUEQWhJ8fs2Ye94GwABkc07pFcf9Zo1PXXqVAwGA4sWLWqSwv38/HjiiScA2LBhQ43Hvfnmm+Tn51tvSUlJTVJ+WzRx4kRKS0sZMGAAU6dOZfr06UyaNKlZy+zduze9e/fm4MGDrFixgt69ezN27Fjr60FBQWzcuJH9+/cTERHBCy+8wPTp00UiFkEQrirmgymYNPYoJROeQU6tXR2rerWI165di6urK88991yl53U6HQApKSmMGDECgJUrV+Lr63vFa4aFhQFyhqeaaLVatFptfap6Vdq2bZv1/sKFC1usXKkOS6wGDRrEvn37WqA2giAITS+1KBXPNE+KPcHd2YRK1XYyPNd7jDgvL4/t27dX+5pOp7O+Vh6cryQ3NxeQu6sFQRAEoTkcSN6HgymUYsA/3Ku1q1NJvb4SSJJU7e38+fMAdOjQwfpcXTIvSZJknaTVp0+f+tdeEARBEOrgfNQmip3kBB4B/YJbuTaVNXvbPDMzky+//JLCwsJKzxcVFTF58mSioqLw9fXlnnvuae6qCIIgCNcpY/RJiu3l4VLf9q6tW5nLNPtuyMXFxUybNo033niD/v374+fnR2ZmJocOHSI7OxtXV1d+/fVX7O2bd72tIAiCcH1KK0rDJ8WdAl8lDrZG7J3b1rLLZg/EHh4evP766+zbt4/Tp0+zZ88eVCoVoaGhPP7447z00ksEBAQ0dzUEQRCE69SB5H24GEIoAPzau7R2dapokkAcEhJS48xbJycn/vOf/zRFMYIgCIJQbwl7/8bTsRsA/hFtJ5FHubYzf1sQBEEQmoFx/xEKnEMA8G2DLWIRiAVBEIRrVnpxOn6JtpjU9qiUFjwC2t5SWRGIBUEQhGvWgcQ9uJfIy5a8A+xRtqFEHuXaXo2uYyNGjODFF19s7WoIgiBcMxL2Vawf9uvq3cq1qZ4IxNe5tLQ0xo8fT6dOnVAqldV+ERgxYgQKhaLK7bbbbmv5CguCINSDaX8M+c5yIPbt4Nq6lamBCMTXOb1ej5eXFzNnzqRnz57VHrNq1SrS0tKst2PHjqFSqbj//vtbuLaCIAh1l16cjn+8nhIHPwB8Q51buUbVE4G4jTGZTEybNg0XFxc8PT2ZNWtWnTZlaKiQkBDmz5/PxIkTcXGpfjahu7s7vr6+1tumTZuwt7cXgVgQhDbtwIU9eBfJrWFnNzV2Tm0rkUe5Zk/o0RZIkkSpqbRVyrZT26FQKOp8/LJly3jqqaeIjo7mwIEDTJo0iXbt2vHMM89Ue/zOnTsZM2ZMrddcvHgxEyZMqFe9a7NkyRIeeughsVGHIAhtWuLeTQQ7lo0Pd/Js5drU7LoIxKWmUgauGNgqZUeNj8JeU/f0nUFBQcybNw+FQkF4eDixsbHMmzevxkDcr18/YmJiar2mj49Pfapcq+joaI4dO8aSJUua7JqCIAjNwXQghnznRwDw7dD21g+Xuy4C8dUkMjKyUgt60KBBzJ07F7PZjEqlqnK8nZ0dHTt2bLH6LVmyhB49ejBgwIAWK1MQBKG+0ovTCTiTT2bZToC+7dvm+DBcJ4HYTm1H1PioViu7ObVk13RxcTErV65k9uzZjb6WIAhCczp4YQ8BeX6kq+3Q2Chw93ds7SrV6LoIxAqFol7dw60pKqryF4Z9+/YRFhZWbWsYWrZr+pdffkGv1/PII480yfUEQRCaS+Luv9GWrR/2DnVBqaz7XJ2Wdl0E4qtJYmIiM2bM4Nlnn+XQoUMsWLCAuXPn1nh8U3RNlwfyoqIiMjMziYmJwcbGhq5du1Y6bsmSJdx11114eHg0qjxBEITmZjp0hHzn24G2mV/6UiIQtzETJ06ktLSUAQMGoFKpmD59OpMmTWrWMnv37m29f/DgQVasWEFwcDAJCQnW50+dOsWuXbv4+++/m7UugiAIjXWx+CKBp/PICyhL5CECsVBX27Zts95fuHBhi5Vbl3XK4eHhzbqeWRAEoakcTNhNcKY9qWG+APiGtu1ALBJ6CIIgCNeUC7v/prhs/bCrjz22jppWrlHtRCAWBEEQrimWg0coKM8v3YaXLZUTgVgQBEG4ZmSUZBB4Jo98lwaMDyfth6KMZqpZzUQgFgRBEK4ZB+N30T5NQYFTCFCPQCxJ8Mvj8GkYJOxutvpVRwRiQRAE4ZqRuHsjpfb+mNW2aGxVuPnVMSd+TjwUJIPKBvx7NWsdLycCsSAIgnDNMB88SkFZt7RPiHPdE3nEb5V/Bg0Em5bd0EYEYkEQBOGakFmSSdCZPPKdGzA+HL9d/hk6vBlqVjsRiAVBEIRrwsH4XbRPp/6B2GKG8zvk++1HNE/laiECsSAIgnBNSNy1AZPagVJ7Ob++T2gdly6lHQFdHmidwb/3FQ9vaiIQtyEjRozgxRdfbO1qCIIgXJUsB49a1w+7+dpj61DHRB7ny7qlQ24AVcsnnBSB+DqXlpbG+PHj6dSpE0qlssYvAv/9738JDw/Hzs6OoKAgXnrpJXQ6XctWVhAEoQZZpVny+uGyQOxTr/HhbfLPVuiWBhGIr3t6vR4vLy9mzpxJz549qz1mxYoVvPHGG7zzzjvExcWxZMkS/ve///HWW2+1cG0FQRCqd/DsTkIvXjI+XNduaaMOEvfJ91thohZcJ5s+SJKEVFraKmUr7OxQKOq+D6bJZGLatGksX74cjUbD5MmTmT17dr2uUR8hISHMnz8fgG+//bbaY/bs2cOQIUMYP3689ZyHH364yt7JgiAIrSVp1wYCUVLgEgKAb4c6toiTosCkA0df8ApvvgrW4voIxKWlnOrTt1XKDj90EIW9fZ2PX7ZsGU899RTR0dEcOHCASZMm0a5dO5555plqj9+5cydjxoyp9ZqLFy9mwoQJ9ar3pQYPHswPP/xAdHQ0AwYMID4+nnXr1vHoo482+JqCIAhNyXLwKMUO/liUWmzs1Lj71nEt8KXd0s3U4LmS6yIQX02CgoKYN28eCoWC8PBwYmNjmTdvXo2BuF+/fsTExNR6TR8fn0bVafz48WRlZXHDDTcgSRImk4nnnntOdE0LgtAmZJVmEXAmj3znHoA8W1pR10Qe5RO12rdOtzRcJ4FYYWdH+KGDrVZ2fURGRlbqhh40aBBz587FbDajUqmqHG9nZ0fHjh0bXc/abNu2jX//+9989dVXDBw4kLNnzzJ9+nTef/99Zs2a1axlC4IgXMmhs9sJuQhxndsD9RgfLs2F1MPy/VYaH4brJRArFPXqHr6atETX9KxZs3j00Ud5+umnAejRowfFxcVMmjSJt99+G6VSzPkTBKH1JO/4myAgz70DUI9EHgm7QLKARxi4BDRfBa/gugjEV5PLJ0Dt27ePsLCwalvD0DJd0yUlJVWCbXl9JElq1LUFQRAay3zoKAaNI3obD6AeiTzK01q20rKlciIQtzGJiYnMmDGDZ599lkOHDrFgwQLmzp1b4/FN0TVdHsiLiorIzMwkJiYGGxsbunbtCsAdd9zBZ599Ru/eva1d07NmzeKOO+6o8QuCIAhCS6hYPyyPD7v5OaC1r2Mij1ZeP1xOBOI2ZuLEiZSWljJgwABUKhXTp09n0qRJzVpm794VKd0OHjzIihUrCA4OJiEhAYCZM2eiUCiYOXMmKSkpeHl5cccdd/Dhhx82a70EQRCu5PCZHYRkwLnQ8vzSdWwN56dA9hlQKOWMWq1IBOI2ZNu2bdb7CxcubLFyr9S9rFareeedd3jnnXdaqEaCIAh1k7RjA4FAtlcYUI/x4fLZ0v69wc61WepWV2KWjSAIgnDVkg7FYlEoKbFvB4BvaB0DcRvplgYRiAVBEISrVHZpNoFn8ih2CMCCGq29GjffOqyQkaRq9x9OzStFZzQ3U21rJgKxIAiCcFU6dGob7TIh30VeP1znRB6Zp6AoHdS2EDQQkIfopq04xOjPtnM4Mbc5q12FCMSCIAjCVSl550YAsnzlHNF1Hh8u75ZuFwkaWwB+P5zCocQ8cooN+LvWLxFTYzU6EGdnZ+Pt7Y1CobjiMpqlS5cyYMAAHB0dcXd3Z+zYsezZs6exVRAEQRCuR4diASh2LkvkUdfx4fOV1w8X6U18tP4kAM+PCsPH2bZJq3kljQ7EL7/8MllZWVc87sUXX+SJJ57g2LFjjB49mgEDBrBp0yaGDRvG6tWrG1sNQRAE4TqSXZpNwJk8DBon9JIjKOqYyMNskjNqgTUQL9hyhsxCPSEe9jx5Q0iz1bkmjQrEmzdvZtmyZTVuSFDun3/+Yf78+Xh4eHDkyBFWr17Nhg0b2LFjByqViieeeIK8vLzGVEUQBEG4jhw+uZWgLMh1kdcPu/s5YGNXhxW5qYdBXwC2ruAbQXxmEd/uOg/Av+7oilbd8kmKGhyIS0tLefbZZ+natSuvvPJKrcd+9tlngJwYIiwszPr8oEGDeO6558jLy2PJkiUNrYogCIJwnUneUTY+HNgFaMD4cOgwUKp4f+0JjGaJkeFejOrcuHTADdXgQPzee+8RHx/PokWL0GhqTidWWlrKli1bALjvvvuqvF7+3Jo1axpaFUEQBOF6c/gYAMWe5YG4rvmlt8k/2w9ny8mLbD2ViUalYNbtXZuhknXToEB89OhR5s6dyxNPPMHQoUNrPfbUqVPo9Xq8vLwIDAys8nqfPn2s17zejRgxghdffLG1qyEIgtCm5ehyCDydh0WhpFTyBOrYIjYUQ3K0fDd4GLPXnADgqRva097LsdnqeyX1DsQWi4Wnn34aV1dXPvnkkysen5iYCFBtEAZwcHDA1dWV3NxcCgsLqz1Gr9dTUFBQ6SY0jbS0NMaPH0+nTp1QKpXVfhEwGo3Mnj2bDh06YGtrS8+ePdmwYUPLV1YQBAE4fGILATlQ4BiI2axAa6/G1bsOiTwS94LZAC5BfHNcQUJ2Cd5OWqaNat493a+k3oF4wYIF7N+/nzlz5uDh4XHF44uKigCwr2U/YAcHB4AaA/FHH32Ei4uL9RYUFFTfags1KO+tmDlzJj179qz2mJkzZ7J48WIWLFjAiRMneO6557j77rs5fPhwC9dWEAQBUsrGhzNCugHgE+pSt0QeZd3SJYFD+GLrOQDeHNsZR23rbrtQr0CcmJjIzJkzGT58OI8//ngzVamqN998k/z8fOstKSmpXudLkoRRb26VW3336zWZTEybNg0XFxc8PT2ZNWtWs+75GxISwvz585k4cSIuLtV37Sxfvpy33nqLsWPH0r59eyZPnszYsWNr3Z5REAShuUhl48MlfhEA+HWo3/7Dv+Z0pMRgpk87V+7qFdAsdayPen0NmDp1KgaDgUWLFtX5HEdHud+9pKSkxmOKi4sBcHJyqvZ1rVaLVqutR00rMxksfD19e4PPb4xJ84ej0dZ9OvyyZct46qmniI6O5sCBA0yaNIl27drVuERs586djBkzptZrLl68mAkTJtSr3pfS6/XY2lZe4G5nZ8euXbsafE1BEISGyNXlEng6DwCdOhAM4FOX8eHibEiX5yJ9fj4AhQLeG9cdhaIOLelmVq9AvHbtWlxdXXnuuecqPa/T6QBISUlhxIgRAKxcuRJfX1/atZN3xEhOTq72msXFxeTl5eHm5lZjIL6eBAUFMW/ePBQKBeHh4cTGxjJv3rwaA3G/fv2IiYmp9Zo+Po2bkn/LLbfw2WefMWzYMDp06MDmzZtZtWoVZnPLJ0cXBOH6dvj4ZvxzoVTrTEmJEoUCfELq0CJO2CH/UAWThQsP9w+iR2Adlzw1s3p3jOfl5bF9e/WtS51OZ32tPDiHh4ej1WrJzMwkJSWFgIDK3QCHDh0CICIior5VqTO1jZJJ84df+cBmKrs+IiMjK31DGzRoEHPnzsVsNqNSVW1Z29nZXTG1aGPNnz+fZ555hs6dO6NQKOjQoQNPPPEE3377bbOWKwiCcLmUHRvxA9I7yDHD3d8RG9s6hLKy8eHN+q4426p55ebw5qtkPdUrSkiSVO3t/Hk5K0mHDh2sz4WEhAByoBg1ahQAv/zyS5Vr/vrrrwDccccdjXkftVIoFGi0qla5NXe3x86dO3F0dKz19uOPPzaqDC8vL1avXk1xcTEXLlzg5MmTODo60r59+yZ6F4IgCHVUll+6pF1foO7rh83ntgGw29KNGTd1wsOx4cOdTa1FporNmDGD9evX88EHH3DbbbdZs2vt3buXxYsX4+rqylNPPdUSVWnzoqKiKj3et28fYWFh1baGoWW6psvZ2toSEBCA0Wjkt99+44EHHmiS6wqCINRFni6PwDP5ABgdOoCujuuHcxNQ5SVgkpRke/bjkcjgZq5p/bRIIB49ejTTp09n/vz59OrVi5tuugmDwcCmTZuQJInvvvsOV1fXlqhKm5eYmMiMGTN49tlnOXToEAsWLKh1dnJTdE2XB/KioiIyMzOJiYnBxsaGrl3lTDNRUVGkpKTQq1cvUlJSePfdd7FYLLz22muNKlcQBKE+Dsf+g28eGFUq8vPVgFSnQJwWI3dnH5Y68vq4/qhVbWsH4BZbPPXf//6XXr168cUXX7Bp0yZsbGwYPXo0s2bNYvDgwS1VjTZv4sSJlJaWMmDAAFQqFdOnT2fSpEnNWmbv3r2t9w8ePMiKFSsIDg4mISEBkMf7Z86cSXx8PI6OjowdO5bly5eLL0+CILSo1J0b8QXSw7phNknYOmhw8a5972BJkoiP/gs/IMMzkts6erZIXeujSQJxSEhInda6Pv744y26/vhqs23bNuv9hQsXtli5V/q3Gz58OCdOnGih2giCIFRPOiSvHy7tGAlF4NPe+YrzcNYdTWVgyWFQQP9Rd7dENeutbbXPBUEQBKEa+fp8gs7kASC5yhm1fENr75YuMZj439r1eCoKMCjt8O58Q3NXs0FEIBYEQRDavMNHNuKdD2Yl5BfLKZOvNGN60bZzhJXIS2RVoUNAbdPs9WwIEYgFQRCENi91598AZHYMpSjXgEIB3rUk8kjKKWHRjnhuUMrd2aoOI1ukng0hArEgCILQ9pWND+u6yFvvegTWnsjjg79OIJkMDFKflJ9o3zpJnerimg3EzblRglA78bsXBKEpXbp+WOlTlsijlvHhnWcy2Xj8In1U57CV9GDvCd7dWqSuDXHNBWKNRgPUvsmE0LzKf/fl/xaCIAiNceTI33gVgEkFhQZXoObxYaPZwntr5FUeU9qV7dTXfjgo2264a91NGJuBSqXC1dWVjIwMQN4HuS3srnE9kCSJkpISMjIycHV1rTEbmCAIQn2k7PgbbyCnvS+ZyfJufTXtuLRsTwJnM4rwcLBhiPK4/GRo2+2WhmswEAP4+voCWIOx0LJcXV2t/waCIAiNpSjbf9jYYxiWHAlbRw0uXlUTeWQW6pn/zxkA3roxAPWmA/IL7Ue0VFUb5JoMxAqFAj8/P7y9vTEaja1dneuKRqMRLWFBEJrMpePDNsFDIEfOL11dT+ecjScp1JuICHThbvcLIJnBLRTc2lZu6ctdk4G4nEqlEkFBEAThKnb08Ea8CsGkUlBi8QGyqx0fjknK4+cD8r7379zRDWXcJ/ILbXi2dLm2O3otCIIgXPfK1w/ndvDkYmIRUHXGtMUi8e6f8njwPX0C6BvsZt1/uK13S4MIxIIgCEIbpjgsB1ip9yCKcvUolIoqiTxWHU4hJikPR62aN27tDIUXIaMsP37IsJaucr2JQCwIgiC0SZeOD9t1vBEAjwAHNNqKIccCnZH/rJeTdrxwY0e8nW3h/A75Rd8IcPBo2Uo3gAjEgiAIQpt09NAG3IvAqFagVwcB4HfZsqUFm8+QVaSnvacDjw8OlZ+8irqlQQRiQRAEoY1K27kJgNyOXlxMrLp++GxGEd/tTgDgX3d0xUatBEm6JBC3/YlaIAKxIAiC0EYpDsnjw6o+fchMLATkpUsgJxB6b81xTBaJ0V28GRHuLZ+UEw8FyaCygXaDWqXe9SUCsSAIgtDm5OvzCTorjw87dx+LxSxh56TB2dMWgH/iMth5JgsblZKZt3WtODF+q/wzcADYOLR0tRtEBGJBEAShzTm6fx2uxfL4sMm+A1CRyENnNPP+WnlW9NNDQwnxvCTgxm+Xf14l48MgArEgCILQBpWPD+eEeZFxQR4fLu+W/mZnPIk5Jfg62zJ1ZMeKkyzmihnTIhALgiAIQsMpD8stXnWf3qTHy13Uvu2dSc0r5cut5wB4c2xnHLSXJIhMPwq6PNA6g3/vlq5yg4lALAiCILQp+fp8AsvGh70H3EZxvgGlUoFXsDMfrT9JqdFM/xA3xvX0r3xi+WzpkBtAdfVkcBaBWBAEQWhTYqPX4VICBo0CXOSJWB6BjhxKzmPNkVSUCnh3XLeqGz9cZeuHy4lALAiCILQpFePD3tb1w96hzrxTlk/64QHt6OZ/2X7ERh0k7pPvt/H9hy8nArEgCILQppSPD2v69yb9nNxFHS8ZOZleiIudhpdvDq96UlIUmHTg6Ate1bzeholALAiCILQZBbqK8eGgIbeRlSTvuPTtyVQAXr65E+4ONlVPPF++bGk4VLNXcVsmArEgCILQZsRGr8O5FPQ2CjTevbBYJMxaJcl6I519nRg/oF31J16l48MAV8+0MkEQBOGal7bzb9yBnE4+WMrGh+MtRiiboKVWVdN+LM2D1MPy/atsfBhEi1gQBEFoQ8rHh236VawfTlFZuD3Cj8j2NWxpmLALJAt4hIFLQEtVtcmIQCwIgiC0CYW6AoLOFgAQPPx2LpzOBSDLVuKtsV1qPvEq7pYGEYgFQRCENuLovjU46kBno0AT2BtLiRkzEveMCsXf1a7mE0UgFgRBEITGu7jrHwBywn1YsfE8AHlaBc9cmk/6cvkpkH0GFEo5o9ZVSARiQRAEoU0oHx829Ygg7lgWAB06u2OrUdV8UvmyJf/eYOfazDVsHiIQC4IgCK2usDSfwLLx4c2a7vgY5fDUv69v7SeWb3t4Fc6WLicCsSAIgtDq1v3+KQ56KNUqWJ3jg7dZTsrh28Gl5pMk6aofHwYRiAVBEIRWdi7nLE5f/wZAVMdOeEsaVChwcLHByd225hMzT0FROqhtIWhgC9W26YlALAiCILQas8XMqvnTCE2XKLVVsajdQ4QpNQD4tnepusPSpcrHh9tFgqaWgN3GiUAsCIIgtJr/HVrKDWsuyPe7jiZf68RgNycAfNrX0i0N10S3NIhALAiCILSS5MJkUr+cj2sJpLg48VvgSPoEuaDKMQByi7hGZpOcUQuu6olaIAKxIAiC0AokSWL+H29wS5QRgEVd76dfR28+HxdBaaERpUqBVzvHmi+Qehj0BWDrCn49W6bSzaRBgfizzz7jnnvuISwsDBcXF7RaLcHBwUycOJHY2Ngqx7/77rsoFIoab2+88Uaj34ggCIJw9fj9zO9ErDyE2gLRvh0IuvUmlj05gOLUEgC82jmhrm39cHm3dOgwUNZy3FWgQbsv/fvf/6a4uJiIiAh69OgBwPHjx1m+fDkrV65k1apV3H777VXOGzJkCB07Vs2Q0rdv34ZUQxAEQbgKJRek8cePH/LGWQmTQoHu6Rl89kBPFAoFF8s2evANvcL48KX7D1/lGhSI//jjD/r27YutbeVZal999RVTp07l6aefJjk5GbW68uWffvppHn/88QZXVhAEQbi65Rbreeh/r/DOP3LLN/fWu3n2kVHW19PPy0k9fNo713wRQzEkRcn3249strq2lAZ1TQ8ZMqRKEAaYMmUKHTp04OLFi5w4caLRlRMEQRCuHYnZJdz27ZcMPhJDYDaYnJ0Y8t7r1teNejNZyUXAFSZqJe4FswFcgsC9fXNXu9k1+WQtjUZe/2VjY9PUlxYEQRCuUocSc7lr0UYkVvLATgsAga+8gsq5ouWbcaEAySLh4KqtPZHHpWkta1tnfJVoUNd0TZYvX86pU6cICwsjLCysyutbtmwhJiYGnU5HYGAgY8aMEePDgiAI17gNx9KYvjIGhffvPLanCAc92HTujOu991Y6Lr18fLi2bmm4ZtYPl2tUIJ4zZw7Hjx+nuLiYuLg4jh8/jr+/Pz/99BMqVdVZbMuXL6/0eNasWdx7770sXboUR8eap6nr9Xr0er31cUFBQWOqLQiCILQASZJYsus8H66LQ2l/ki66Q4yOkQDwe/stFJfFifR4+bO91m7p4mxIL1udEzqsWerd0hoViDdu3MjmzZutj4ODg/n++++rtHI7duzIp59+ypgxYwgODiY3N5cdO3bw2muv8dtvv2E2m/n9999rLOejjz7ivffea0xVBUEQhBZktkjMXnOcZXsvgFKHe7s/eOxHC0oJnMbcin3//pWOlyTpkhZxLYE4YQcggXdXcPJpxnfQcho1RvzPP/8gSZI1sIaFhTF8+HA+/PDDSsc98sgjvPzyy3Tt2hUHBwcCAwMZP348+/fvx8PDg9WrV7Nv374ay3nzzTfJz8+33pKSkhpTbUEQBKEZlRhMPLv8gByEgcH99tHzZDbdEyUUWi0+r75a5ZyspCJ0RUaUagVeQU41X/wa65aGJpqs5erqytChQ1m3bh19+/Zl1qxZ7N+//4rn+fn58cQTTwCwYcOGGo/TarU4OztXugmCIAhtT0aBjgcX7+OfuAy0aiUvj1NxMmc9j26RJ2h5PP00Gn//Sufoioxs/L9jALTr6oFKU0tougb2H75ck86a1mg0PPjgg0iSxJo1a+p0TvmkrrS0tKasiiAIgtDCTl8s5O6v9hCbko+7gw3fPdmLDekLuD1awjsf1L6+eDz9VKVzzCYL6xfHkp9ZipOHLSMf6VxzAbkXIPc8KFQQMqSZ303LafLlS56engBkZmbW6fjc3FwAHBwcmroqgiAIQgvZczaLexfuISWvlFBPB36fMpi9OSsoTL3APXvlCVrer76C0s7Oeo4kSWxfcYrUM3lobFXcNiUCe+dalr6WZ9MK7A/aWrqvrzJNHoi3b5d/UR06dLjisZIkWSdp9enTp6mrIgiCILSA3w4m89h30RTqTPQPcWPV5MEUSuf5/sT3TNhqQWuUsOvTB+exYyudd/jvROL2pKFQwC1Pd8cjoJZNHuCS8eFrp1saGhCId+/ezYYNG7BYLJWeNxqNLFiwgOXLl2NnZ8eDDz4IyC3jL7/8ksLCwkrHFxUVMXnyZKKiovD19eWee+5pxNsQBEEQWpokSfz3n9O8/MsRjGaJO3r6s/ypgTjaKvjXnn/RIcnMsOMSKBT4vPUWikuSb8QfzmTv6nMA3PBAGMHdPWovzGKpGB++hiZqQQOWL505c4YnnngCT09P+vbti4eHB1lZWcTGxpKWloatrS1Lly4lKCgIgOLiYqZNm8Ybb7xB//798fPzIzMzk0OHDpGdnY2rqyu//vor9vb2Tf7mBEEQhOZhMFl4Y9VRVh1KAWDKiA68cnM4SqWChTFfczbnNP/ZLAdel3vvwa57N+u5mYmFbPruOEjQY3gAESODrlxgxgkoyQKNPQT0a5b31FrqHYiHDx/OW2+9xfbt2zl69ChZWVnY2NgQEhLCfffdxwsvvFBphyUPDw9ef/119u3bx+nTp9mzZw8qlYrQ0FAef/xxXnrpJQICApr0TQmCIAjNJ7/UyHPLD7I3PhuVUsEHd3Xn4QHtADiTe4avY79mWKxEaKoZpYMD3i++aD23KFfPX18ewWSwENTVnRseqJqFsVrl3dLBQ0B9baVQrncgDg0NrbJOuDZOTk785z//qW8xgiAIQhuUlFPCk0v3cyajCAcbFV890pfhnbwAMFvMvLPnHdSlRh7fqQYMeE6ZgrpsEq9Rb2bdwqMU5xtw83Pglme6o1TVcYT0Glw/XK5Jc00LgiAI166jyXk8ufQAWUV6fJ1t+fbx/nT1r8jr8EPcD8RmxfJYlBqHAj02wcG4P/oIAJJF4p+lJ8hMLMTWUcNtUyLQ2tUxBJkMcGGPfP8am6gFIhALgiAIdfDPiYs8/9NhSo1mOvs68d0T/fFzqViKlFiQyBeHv8AnR2JMlAkA7zdeR1G2E9++P+OJP5yJUq1gzHM9cPGyq7acaqUcAGMx2HuCd7crH3+VEYFYEARBqNWyPQm8t+Y4FgmGdfLiy/G9cbLVWF+XJIl3976LzqzjX3tcUJpycLjhBhxHjADg5N40Dm2Q012OeqQz/h1d61cB62zp4aBs8lW3rU4EYkEQBKFaFovEh+viWLLrPAAP9Q/i/bu6o7lsXPfXM7+yP30/fS+o6RibAyoVPm++gUKhIPVMLlt/OAlA3zHBhEf61b8i5ePD11Bay0uJQCwIgiBUUWow89L/YthwPB2A124NZ/LwDpXWAgOkF6cz98BclBaJF3Y4AjrcJoxH26EDeRklrFsUi8Us0aGPNwPvaF//iugL5a5puCYnaoEIxIIgCMJlsor0PL3sADFJediolHz6QE/G9fSvcpwkSby/732KjcU8edoPu+RkVG5ueE2diq7YyF9fHkVfbMI72IkbH++CQqmoprQruLAHLCZwCwG34Ma/uTZIBGJBEATB6lxmEY9/F01STimu9hq+frQfA0Ldqz123fl17EjegatOxa3/5AHgNX06ODqxccER8i6W4OimZeyUCDQ2qoZV6BpetlROBGJBEAQBgKj4bCYtP0h+qZF27vZ890R/OnhVn/85R5fDf6LlHBHvnAiHwqNow8Nxue9edqw8TfLJXNRaFWOnRODgom14pa7RtJaXEoFYEARBYPfZLJ74bj8Gs4Xe7Vz5ZmI/PBxrDqD/ifoPefo8btAFEbBJ3kvY5623iN2exvGdqaCAm5/sildQI3ZJKrwIGcfl+yHDGn6dNk4EYkEQhOuc2SKxdPV6PlKuJCNwNE889Ty2NjWHh62JW1mfsB4lCp7f4QAWC0633EKmfXt2Lz0KwOB7OhLa06txFTu/Q/7pGwEOV9gU4iomArEgCMJ17u/9x3in8F0CVVlwcRcs3wA3vw9BA6ocW2Ao4IN9HwDwqm4EioObUNjYoH7sBdZ9cxxJgq5D/Og1ug4bOVzJ+W3yz2swm9alrr2V0YIgCEKdmYwGvP+eQqAiiyIbT1DbQdI+WHIT/DwRss9VOv6zA5+RUZpBB7sgBv4SB4D9Y5PY+GsaRr2ZgHBXhj0cXmWZU71JEpzbJt+/hseHQQRiQRCE69q5la/R13yUErQoJ66GFw5B70cABZz4A74cCOvfgJIc9qXt47czvwHwXlJ/TMnJKHwDiNL3pyhHj6uPPbdO6oFK3QShJSceCpJBZQPtBjX+em2YCMSCIAjXKVPsKsLPfQfA7m7vYR/YA5z94c4vYfJu6DgaLEaIWkjJ5714d8sMAB7zvgPtj2uRgLMjXyMjsQitvZrbpkRg66CppcR6KF+2FDgAbBya5pptlAjEgiAI16OMOKTVUwD4XjGOIXc+U/l1n27wyG/w6O/g04Mv7BWkmArxNUvc//tZpJISkiOf5EKaGqVSwZhne+DqY9909bsO1g+XE4FYEAThelOah2XlBDTmUnabu2Ee+S/sa5ol3WEUR+5ZwA8u8naHs0/kULIjlnTvfpyx7QvA8AnhBIS7NV39LGZI2CnfF4FYEARBuKZYLPD7cyhzzpEsefK+7Ss8PKjmHNAGs4F/7X0XCbij3a34Hu9IvnMoJ7vI+wz3Doyha1hB09Yx/SiU5oLWGfx7N+212yARiAVBEK4nO+bA6fXo0TDZ8CITbuyLrabm9JNfH/2a+Px43G3dmZbdh9w0M7E9nsWi0BBqG02k8X1YOAjWTJcTcDSF8m7pkBtAde2vshWBWBAE4XpxeiNs+wiAmcYnyHHpxoP9al7veyrnFEtilwDwdsTL5C/4lqPdn8OgccIzyJHRr96DsstYkCxwcCl83hu2/Qf0RY2rZ3lay2t028PLiUAsCIJwPcg+B6ueASR+UdzCL+YRvHBjR2xqWGpkspj4155/YZJM3NjuRiLWn+OI9ziKHQOwd7bhtikR2AR0god+hCc2QEA/MBbLgX5BHzkwm031r6dRB4l75fvXwfgwiEAsCIJw7TMUw/8eBV0+6c49eKt0AsEe9tzTJ7DGU74/8T0nsk/gZOPEGwFPELUtn2yPbqhUcNvUCBzdbCsODh4ET/8D9y+Vtyssuih3VS+6AU7/LSfnqKvkaDDpwNEXvMIb/JavJiIQC4IgXMskCf58HjKOY3Hw5tHCaRhRM/3GMDSq6kNAQn4CX8V8BcCr/V7lzH+3kOwvb7ow+slueAc7Vz1JoYBud8PUaLjlI7Bzg8w4WHE/fD8OUmPqVl/rsqXh8jWvAyIQC4IgXMv2fgnHfgOlmt/af8iZUic6eDlwZ6+Aag+3SBbe2fMOerOeQX6D6HrEi1hzdwD63eBCx74+tZen1sKgKfDCYRj8gpwZ6/wO+Ho4rJoEeUm1n38drR8uJwKxIAjCter8Dtj0LwBKR77P7FgXAF4c3QmVsvrW5s+nfuZQxiHs1Ha8GPwa2/4uRFKoaGefwYAJfepetp2bvHHEtAPQ4375uaP/gwV9YdM7oMuvek5pHqQelu9fJxO1QARiQRCENqFoxw4yPv2Uwn/+wZxfTZCqr/xk+OUJkMwQ8RBfFo+iUGeis68Tt/Xwq/aUtKI05h2cB8DznV8iemE8JqUW16IEbnnr5oZt5OAWDPd+A89shZChYNbD7v/C/F6wbxGYDBXHJuySZ2B7hIFL9S32a9G1v0BLaNMskoV9qfs4lHGIhzs/jIfdtbvnqCBUR5IkcpYsIePTuRVPKhRou3TGYcBA7AcOwL5fP1ROTnW/qFEnT84qyQLfHuSM+pjvPtsHwEs3dUJZTWtYkiTe2/ceJaYServ3wX5Te9J1xdiWZjLqJjtsPN0b90YD+sBja+D0BrmVnnUaNrwO0Yth9LvQZdx12S0NIhALrSRHl8Pqs6v55dQvJBclA3A8+zhf3fhV47dPq6fcYgNvr47lho5ejB/YrkXLFq5vktFI+uzZ5P3yKwAON9yAMTUVQ3w8+hNx6E/EkbN0KSiV2HbrhsPAAdgPHIhd7z6oHGvZCGH9q5B6SO4efvAHFu9Jo9hgpkeACzd3rTrGa7aYWXhkIbtTdqNRaLgnbQopCcWoTSX0L1iH74QlTfOGFQoIHwMdb4LD38PWj+Rdln6eCEEDIT9FPu4a33/4ciIQCy1GkiQOZxzmf6f+x6YLmzBajAA4aZwoNZeyK2UX25O3MyJoRIvWa+Yfx1gXm876Y+mEeNgzuKNni5YvtA2lRQZUaiU2ti3zsWguKCB5+nRK9u4DpRKfN9/E/VE5baQxI4OS6P2UREdTEhWF4cIFdLGx6GJjyf5mCahU2HXvjv3AshZznz4o7ezkCx/4Dg59Dwol3LuEDLUvy/ZuBWDGTZ2qfNHNLMnkzZ1vEpUeBcBzlrdJOVSMQjLT/fgSOnz2Ggp1E/9OVGro96Q8drz7c9j7BSTJ5aNQyhm1riMKSarPAq+2oaCgABcXF/Lz83F2rmYavdCmFBoKWRu/lp9P/czZvLPW57t7dOeB8Ae4JeQWvj76NUuOLSHAMYA/7voDrUrbInVbezSVaSsOWx97OWlZP30ono4tU77QuiRJIvlULke3JJMQm4Vao6TnjUH0vjkYrV3zBWRDcjJJzz6H4dw5FPb2BHw2F6cRI2o83pieTkl0NMVRUZRERWNMTq58gEaDXUQEDp0DsU9fhp17Ccqb34GhM3j3z+Ms3ZNA73aurJo8uFIg3pO6hzd3vkmOLgc7tR0vub5Dzho5oIef/onO3WwJXLCgOX4FlRWkwdYPIeZHCB8rJwm5ytUnTolALDSbE9kn+PnUz6w7v45SUykAdmo7xoaO5f7w++nm0c16bImxhDtW30FGSQZTe03luZ7PNXv9Mgv13DxvO7klRp4ZGsq2U5mcyShiWCcvlj7ev9pxNOHaYNSbORWVTuy2ZHJSi6u8rnVQ0+eWYCJGBKK2qTkPc0OUHD5M8tRpmHNyUPv4ELRoIbZdutTrGsaUFIqj5NZycXQ0prS0Sq8rVArs+vTD0qsPL51Sc9wliO8mDeGGMLm3x2Qx8WXMlyyJXYKERCeXTrzo8g4nVuVgMloITN5C+IU/ab/uL2yCak6B2eT0hfJyJ/XV/0VYBGKh1ZSaStlwfgM/n/qZY9nHrM93cOnAA+EPcHuH23G2qf7fbMP5Dby641W0Ki1/3PUHAY7NN2tSkiSe++EgG49fpLOvE39Ou4HzWcWM+2IXepOF12/tzOQRHZqtfKF1FGSVErs9hbjdqehL5PSLGq2KzoP86DEigNz0Evb9EU9umhycHVy19L8thC6D/VDWkPyiXuWvX0/q628gGQxou3YhaOFCND5XWJd7BZIkYbyQQMl/J1Icl0hJlgOm4sof6wa1Da79+uAQOZDSHh2YmbOUQzlHUVpUjFdNxv9MDwoydQB4lpyjR/Q8PCc9g/eMlxpVt+uZCMRCi4vPi+eX07/wx7k/KDQUAqBWqrkp+CYeDH+QPt59rjgJS5Iknvr7Kfan72d0u9HMGzmv2er7R0wK01fGoFYq+GPaELr5y+srV0Yn8saqWFRKBT8/G0nf4EbOFBVanSRJpJzO4+iWJBKOZlmzLTp72RExIpDOg/0qdUNbLBKno9KJWhNPUY4eAFcfewaOa0+H3l4oGtBTIkkS2Yu/JvO//wXAceRIAj6dg9KhlglX9bHhTdj3Fdg4IT29GUOxDSlbd7FpxTp6ZJ7F7bJNGEps1BzrcgN6r9sxmuSuaFsHDWGuF3H/aTZaD1far19f+4QwoVYiEAstwmg2sjlxMz+f/pn96futzwc6BnJ/+P3c2eHOei9HOpN7hvvX3I9ZMrN49GIGBwxu6mqTUaDjpnk7yC818tLoTkwfHWZ9TZIkpq+M4c8jqQS42vHXCzfgam/T5HUQmp/RYOZ0VDpHt1bufg7q6k7EyECCu3nUGlTNRgvHdqRwYH0CuiJ5YqFXOyci72pPUBf3Os/ulwwG0t55l/zffwfA/bHH8H7tVRSqJuryPvoLrHpavv/gj9DldgBe+/UIPx9I5oYOHiwa5sJfv31McXQMHvohZPiOxqCVv3za6PMJvriDjkEGjAeisBQX4/efj3C9666mqd91SgRioVmlFKXw6+lfWXVmFTm6HACUCiXDA4fzYPiDDPIfhFLR8G68j6M/5oe4HwhxDmHVuFVoVJqmqjqSJPHM9wf4Jy6D7gHO/D5lSJV8u4U6I7cv2MWF7BJu7urD4kf7tviSKqHhCrJLObYthROXdD+rtSo6R/rSY0Qg7n71a+UZdCaObE7i8KZEjDozAAHhrkTe1QHfUJdazzXn5ZH8wnRKoqNBqcR31kzcHn64YW+sOumx8M1NYCqFoa/AjbMASMgq5sbPtmO2SCx8vB3fn/gYTZw3EWkjsDM5AmBvY6KD6Rieh1ahyMu2XtI2IoKQlT+hUIp8T40hArHQ5MwWMztTdvLzqZ/ZlbILCfm/jbedN/d2upd7wu7B18G3ScoqNBRy+++3k6PLYUbfGTzR/YkmuS7AqkPJzPj5CBqVgrXPDyXct/okCcdS8rnnqz0YzBbevaMrjw8JbbI6CE1PkiRST+dxdGsy549kVnQ/e9oSMTKIzoN80drX/IVuR/IO5uyfg63alqd6PMXNwTdX+TJZWmjg4IYLxG5PxmKSCwjt6UnknR1w968a3A2JiSRNehZDQgJKe3sC/jsPx2HDmu5Nl+TA1yMg7wJ0uBEm/AJKuZX90v9i+P1wCv3aX8AjK5XwlEi0ZntA7pLve2sw4QN9UamVSGYz+lOnKI6KxhB/Do+nnsImJKTp6nmdEoH4KlNiLEFn1uFi44JK2bQzNBsrsySTVWdW8euZX0kvTrc+P8hvEA+GP8iwoGFolE3XYi33x9k/mLl7JvZqe/686098HBo3oQUgPV/HzfO2U6Az8eot4Uwd2bHW47/bfZ731pzARqVk1ZTBdA+ovfUjtDyjwcyZ6Isc3ZpEdsol3c9d3IgYGUS77h61zn5PL07n4+iP+Sfxn0rPd3DpwKSISdwSckuVv8nCHB3Ra89zam8aklSWoyLSl/63h+LsIY+3lhw8KM+MzstD7ecnz4wOb8It/Sxm+PF+OLcZXINh0jawl+cznM0o5M7PNjNQmUxEXgc0FnkGspOPDQPHdiSsn3eTTDwTaicC8VUktSiV+9fcT4GhAAUK3GzdcNO64W7nLv+0dbfe3GwrP3bWOjeqC7gmkiQRlR7Fz6d+ZmviVkyS3L3nqnXlro53cX+n+2nn3LwZqCyShYnrJ3Ik8whjQ8fy8bCPG3U9SZJ4cul+tp7KpGegC79NHoz6Ch9GkiQxaflBNp24SIiHPWtfGIqjVuTAaQsKc3Qc257M8V2p6IvLup9tlHSO9JO7n6tpoV7KZDGxIm4FX8Z8SYmpBJVCxaNdH8VeY8/yE8utEw5DnEOYFDGJMaFjUCsr/9vnpBUT9Wc88YczAVCqFfQYFkiY8hS5772FZDRi2707gV99icbbu2l/AVs+gB1zQG0HT28C3x7W38ucL7bjkQZqSf6CLHmUcvM9fQjr7dugiWZCw4hAfBV5edvL/H3h7wadq1KocNW64m7njru2crB2s3XDw9aj0mNnG+daxzrzdHn8ce4Pfj39KwkFCdbne3v35v5O93NzyM0tlmgD5HXID619CAmJ7275jn6+/Rp8rZ8PJPHar0exUSv56/kbCPOpW97evBIDt32+i5S8Usb19Gf+Q73EeHErkSSJtLN5HN2STHxM5e7nHiMC6TzID1uHK/fOHM08yuy9szmVewqAXl69mBk5k3B3ucVaaCjkp5M/8f2J78nXy5svBDkF8UyPZ7i9w+1VeoAuni9g7+qzpJzKA0Bl0tEuaTNdwiwEf/IhSnv7JvoNlIlbC/+bIN+/5/8g4gHyM0s5tDGBE3tSwSL//8xySmbgbe25ZfgQ8X+2FYhAfJXYn76fJzc+iVKh5KfbfsLb3pscXQ65ulxydDmVbuXP5epyydZlW7+x14daqba2si9vXScUJLDh/AYMFnknFAeNA7e3v537O91v/YBqDe/vfZ+fT/9MmFsYP9/+c5VWSV2k5pVyy7wdFOpNvDmmM88Or9/64IMXcnhg8T7MFomP7+3Bg/1FPuqWZDKYOb3/Ike3JJOdUrEMJ7Czmzz7uYdnnZKv5Ovz+fzQ5/xy+hckJJxtnJnRdwZ3h91dbc9SsbGYlSdXsuz4MnL1uQAEOAbwTI9nGNdhXKVJhGa9ntg353P0oheFTsEA2Dpq6DcmhG7D/FFrmmjIKesMfD0SDIUwcDI5vWZxaMMFTu9PR7LIh6Q4n+F04CkWPv0mXvZeTVOuUG/NHog/++wzdu3aRWxsLBkZGeh0Onx9fRk+fDivvvoqPXr0qPa8pUuX8tVXX3HixAlsbGyIjIxk5syZDB5cvyUq10IgNllMPLD2Ac7knuHB8AeZGTmzXucbzUZy9bnWwFxdsL70cZGx6MoXBTq7d+aB8AcYGzoWB03rryHM0+Vx++rbydfn88aAN5jQZUK9zpckiYnfRrPzTBa927ny63ODa9yHtTZfbTvLJxtOYatR8ue0G+hUxxa10HBy93MKx3elVHQ/a5SER/rSY2QgHv6OdbqOJEn8df4v5uyfY53lP67DOF7u9zLutldeJ15iLOHnUz/z3fHvrOf7OfjxdI+nuavjXSgLikl+/nlKDxxEUqkwPvcBx7J8ybtYAoCju5YBt4cSPtC3cWOz+kL4vxsh6xRZnndxQPMy52KyKJs3SaLrCQ76/0OSviNrJv6LTj5X52fjtaLZA7GnpyfFxcVEREQQECBnPzp+/DinT59Go9GwatUqbr/99krnvPjii8yfPx87OztuvvlmdDodmzdvRpIkfv31V+6qx5q1ayEQrzy5kg+jPsTZxpm/7v4LV1vXZi1Pb9ZXamlf3urWqrSM6zCOHp492lw31s+nfub9fe/jpHFizd1r6rU2+afoRN5cFYtWrWTd9KF08Kr64W0pLib/r7+wFBSASo1CrUahUYNKhUKtQaFWIymVLNiRQOzFYnzdHHj37p7Y2tnIx2vkc6zHa9TyGlG1GoVGg0Klkq+pVsvPiWUhNZK7n/M5ujWJ+JgsJIv88eTkIXc/dxlct+7ncufzz/Phvg+tGxqEuoQyK3IW/X3717tupaZSfj39K98e+5as0iwAupe48/rPJrRpOSgdHQn4739xvGEIFrOFk3vTiV57nuI8OSmIm689kXd2ILSXZ/3/xiQJfn6Ui0dOckD/CAnFEdaXEtxjORiwkTyHIvIvPMidnYfw2YO96v3+hKbV7IF49+7d9O3bF1tb20rPf/XVV0ydOhUfHx+Sk5NRl+3Y8c8//3DTTTfh4eHB3r17CQuTEyjs3buXESNGYG9vz/nz53F1dW3yN9gWXdrKe2vgWzzcuQnXFV6DzBYzD//1MHE5cdzd8W5mD5ldp/OSc0u4Zd4Oig1mZt7WhaeHtq983aJicn/8kZzvvsOcl9cMNa+BUlkRlMtvKhU2oaF4PDsJh8GDW/zLkGSRKMzRYTFLSJKEJMlBEYnL7ktlx196Xyobr5Wsz0sAl9yXLGXnV7ovWbtTJUlCV2TkxO5UspIqem8CwuXu55CIunU/l9Ob9XwT+w1LYpdgtBjRqrQ8G/Esj3d7vNHr0nUmHavOrGLb2q94+sdsnHSQ7aoi/d2nuH30ZGzVFZ+LJoOZ2O0pHNyQYG3Ve4c4M+juDgSGu9W5zNTfvubA9iKSDL3kJxRQGJTMetcfyHFIo5fHYHbuvRGV5MjmGcMJ8Wz93qzrXauOEXfs2JFz585x5MgRIiLkb21jx45l/fr1zJs3jxdffLHS8dOnT+fzzz/n008/5eWXX65TGVd7IP5g3wf879T/GjXueb2JyYjh0fWPAvDj2B+J8Iqo9XiLReKRJVHsOZdN/xA3Vk4aZO2SNhcVkfvDD+R8txRzvjwZRxPcDvvefZBMJiSTCcwmJKN8XzKboOx+YbGeCxn5qCxm/J1scFAhH192nvX88p8N+POy69cX7+nTse9f/1ZbfemKjZzcm0bstmQKsnTNXl5dqDVKOkX6EjEiEI+AunU/X2pPyh4+jPqQxMJEAIYEDOHtgW8T5NR0mxfkrV5N2sxZYDKREGjDh/eYyXdQ4GHrwRPdn+D+Tvdjr6mYpKUvNRGzKZGYfxIxGeRvH0Fd3Ym8sz3ewdV/hkmSRFJcDgdWHSGtbLMlhULCq5ctP9l+wRmOoVaqmdF3Buv3dGTP2Rwe7BfEx/fV/rchtIxWDcRdunTh5MmTxMXF0blzZ0pLS3Fzc0Ov15OUlERgYGCl43fu3MmwYcMYPnw427Ztq1MZV3MgPpVzigfWPoBFsvDtLd82qIusqaXH55OdUkSHPt716vZraTN3zeSPc3/Q1aMrK8auqHXN9fJ9F5i1+hi2GiUbpg8jxNMBc2EhuT/8QPbSZVjKArBNSAieUybjPHZsnfdc/ezvU3y+5SwONirWvjCU0FpaH5LZjGQ2g9FYFtTNSEYTmIzyfVNZwDfoyV+zhryV/0MylE2YGzwIrxdewK5Xr7r/kuooO6WIo9uSOR2Vbg0MSrUCtUaFQgEoQKFQlN2Xf1Y8ru218se1v6ZQKC67DihVSgLD3eh6g3+D/h9mlmQyZ/8c1iesB+RkM68PeJ2bgm9qsh4GSZLIWrCArK8WAuB0yy14fTibNal/803sN6QUyRvbu2ndeKzbYzzc+eFKAbmkwMCB9Qkc35GCxSx/9Hbo483AcaG4+TpYy0g4msWBdQlkXJAnZSox0jkoiXMjNHx57r+YJBOBjoF8OvxTCgt8eejrfWhUCra+MoJAtyaepS00SKsF4uXLl/PYY4/RsWNH4uLiUKlUxMTE0Lt3b7y8vMjIyKhyTnFxMY6Ojri5uZGTk1Oncq7WQHzppgY3Bd/EZyM+a9X6mIxm9q2O58jmJEBuiYQN8KHH8EC82rW9yUhZpVnc8fsdFBmLeGfQO9zX6b5qj0vMLuHW+TsoMZh5946uPBrhSc7335Oz7Ht5HBiwCQ2tCMD1zPlrMlsY/00U0edz6ObvzKopg9Gqm2ZWrDE9naxFi8j7bRUY5fzGjsOH4/nC89h163aFs2tnMVs4fzSL2K3JpJzOsz7vEeBAjxGBdBrgi0bbthLK1IXZYubn0z/z+aHPKTIWoVQoGd95PFN7TcXRpv4t6ppY9HrS3nqbgr/+AsDjmWfweulF65i/0WJk7bm1/F/s/5FUKP9NuWpdmdh1Ig93frhSXQqySolec55T0ekggUKpoMtgP/w7unB4U5J1drhaYaCb3QZC2p/lg07+7E7bC8CtIbfyr0H/wlHjyIOL9xGdkMMjke344K7qJ8oKLa/FAvGcOXM4fvw4xcXFxMXFcfz4cfz9/fnzzz/p27cvAH/++Sd33nknvXv35tChQ9Vex83Njby8PAoKCnByunIAuFoD8caEjbyy/RW0Ki1/3vUn/o7+rVaXzMRCNn13wrrdm7OjnoKiijXCPqHOdB8eQMe+3k239KIJ/HDiBz7e/zGuWlfW3r0WF23lbFcWi8TD/7ePqPM5DPezZY4yjtzlyysCcPv2eE6ZgvOYWxuVdD89X8eY+TvILTHy+OAQ3h3XuCB5OUNyClkLvyJ/9R9glvMbO900Gs9pz2Mb3qle1yotMnBiVyrHtqdQlCtPHFIoFbTv6UmPkYH4h7m2uQl6dXU8+zjv732f49nHAeju0Z1Zg2bR1aNrk5ZjyskhedrzlB46BGo1fu++g+t91X8RNFlMrDu/jq+Pfs2FggsAONk48WjXR5nQZUKlbUCzU4rY90c8CUezKl1Do1XRwz+WnkWfcNxdy+v+/mSWTap8Y8Ab3Bt2LwqFgp1nMnl0STQ2aiU7Xh2Jr0vleTtC62mxQDx69Gg2b95sfRwcHMz333/PsEvyqa5YsYIJEyYwZMgQdu3aVe11AgMDSUlJISUlBX//qsFJr9ej1+utjwsKCggKCrqqAnGpqZQ7V99JWnEak3tOZkqvKa1SD4vZwqGNiexfex6LRcJOq2eU3RyCtQdJtxlOrOOLnDutsHab2Tpo6DLYj27DAnDxsmuVOl/KZDFx/5r7OZt3ttplX0t3n+fT3w5wf8IuHkjcA0Vyy8KmYwc8J0/G+dbGBeBLbT2ZwRNL5V2nFj/al1u6NU2u7UsZEhLI/PIrCtaupTyfovOYMXhOm4a2fe35rzMTCzm6NYkz+zMwm+TuZ1tHDd1u8KfbsACc3K/eD+1CQyFfHP6CladWYpEsOGocmd5nOvd3ur/J08Tq4+NJevY5jElJKJ2cCPx8Pg6DBl3xPLPFzIaEDSw+upjz+ecBcNI4MaHrBB7p8kilL5Fp5/KJ+uMcOWnFdB8eSITLFjSbZ/C1qyuL3FywINHepT1zhs+hk5v8RUySJO7+ag8xSXk8OSSUf93RtF8+hMZp8a7pvLw8YmNjmT17Nv/88w8ffPABb7/9NtA0gfjdd9/lvffeq/L81RSIF8Ys5KsjX+Hr4Mufd/2Jnbrlg1rexRL+WXqCi+fl1mEHtziGaz7CTlkIDl5QLKfqK+n+HHG2T3JsT5Z1P1YUENzNg+7DA2jXrfb8vc3t0kQoK29bSRePLgCcj0/l+5f/w21nduJgkiceacM64jllCk633NIsy4b+vS6Or3fE42yrZt30oc02Pqc/c4bML76kcONG+QmlEpdx4/CcOgWboIpJSGazhfhDmRzdmkx6fL71ea92TkSMDKRjv7bVw1FfkiSx8cJGPon+hMxS+f/r2NCxvNr/VTztPJu8vOJ9+0h+YTqWggI0gYEELV6EtkP9EsKYLWY2JW5i8ZHFnM07C8gJc8Z3Hs+jXR/Fzfay2dMX9pLxwzje8HBlv538ZenujnfzxoA3Ko03bzl5kSeXHsBOo2LHayPxcmq5rHfClbXaGLHRaGTQoEEcOnSIqKgo+vfv3yRd01d7izi1KJVxq8ehN+uZM3wOt4bc2qLlS5LE8R0p7P7tLCaDBRstDHP+hk7Kv1DYusA9iyFkKPzzDuz/Rj7JJQjL7Z9zoaQHx7ankHiiYvze2dOWbkMD6DLEDzvH1tmr97Xtr7E+YT29vHrxXeTnZC9bRup3y7A1yAHYJiwMr6lTcLr55mZdt2swWbh/8V6OJOXRp50r/3t2UJVtFZuSLi6OzM8XULR1q/yEWo3rPfdg/+jTnD5t4tiOFEry5cleSpWCDn28iRgZiE9o7elNrwZJBUl8GPUhu1N3AxDsHMzbA99mkP+VW6cNkffbKtLeeQdMJux69SLwyy9Qe9Rvf+1LWSQLmxM3s+jIIk7nngbATm3HQ50f4rGuj8nr4wvS2PXdCN5yUpGrUmGntmNW5Czu6HBHpWtJksQdX+ziWEoBzw5vz5tjujTqvQpNr1VnTc+ZM4fXXnuNWbNmMXv2bDFZi4p80v18+vHtLd+26AdicZ6eLd/HWQNpgE8BN1pexkmVBb4R8MD34H5JF+f5HfDHNHlrNYC+j8NN75NXoOb4jhTi9qRZ93hVqZV07OtN9+EBLf5Bn16czvgVtzN6Twl3xmhQlsrBJ8HFn86vv0jIXbe1WOKMpJwSxn6+k0KdieeGd+CNMZ2bvczSo0fJmP85abEpJAeMIMOrN1LZMjh7Zxu6DQug21B/HFyu/laSwWzgu2Pf8X+x/4ferEej1PBMj2d4sseTzZL7XLJYyPzvfLK//hoA57Fj8Pv3v1HaNk1XvkWysC1pG4uOLCIuJw4AW5UtD4Tdi/LEapYq5XkbnV07MWfEXEJcQqpcY8OxdJ774SAONip2vj4Kd4fW+UIs1Kw+carJF7B6esrdQ5mZcrdReHg4Wq2WzMxMUlJSrJm4ypW3ksvXHF9r9qfv5+8Lf6NUKHljwBstGqzOHLjI9hWn0JeYUKkVDGq3k4jiz1CoJOj9KIydA5rLushDh8HkPbD5PYj+Gg4uhbObcR33OUPuG8XAce05c+AisdtSyEws5FRUOqei0vEMcqTH8EDC+vs0+8xbU24uym9X8PlyAyqdBBg47+rHD51u5o4pDxEaGdKs5V8uyN2eT+6NYPKPh1i0/RyDOngwvFPz5fg1Gc1cKPEituOzZGgqco4758cTdHE34Td3xWvwU6ivgSAcnRbN+/vet25CEukXydsD3642ODUFi05H6htvUrhhAwAezz2L1wsvNOmXOqVCyah2oxgZNJKdSdtYeHAexwrO8/3JH6GsmIeCx/LK0NnVftGwWCTmbZJb1E/eECqC8DWgyQPx9u3bAehQNo5iZ2fHqFGjWL9+Pb/88kuVhB6//vorAHfcUbnr5Vpgspj4KPojgBbdPEFXbGTHytOc2X8RAC8/FaNt38e9ZD9obOG2udD7kZovoHWUg3SXcfDnNMhNgOV3Q5/HUN/8AV0G+9NlsD8XEwo4tj2ZM/szyEoqYusPJ9n921m6DPKj+/AAXH2adrzUlJNDzrffkrPiJ6SSElRAip8NKwab2OPeif6uI3loYHCTlllXY3r48WhkMMv3XWDG/2JYN30oPs5NOxmqKFfOvXxidyqlhfLSJpVaSVh/bzp65CL9sJnS1Bjylu4j/+eVuD/6KB5PPI6qjhnr2pLs0mzmHpjLmvg1AHjYevBa/9cYEzqm2b7MmrKzSZ4yldIjR0CjwW/2bFzvvqtpC5EkyD4L8dtQxG9jWMIuhury2GNny2JXZ5LUGt7u+iSjB71S4yX+ik3j1MVCnGzVPH1D+xqPE64e9e6a3r17N4WFhdx8880oL/mWaDQaWbRoES+++CJarZZTp04RVDaJpLYUlyNHjsTOzu6aTHHZ0vmkAZJO5LD5+ziK8/QolAr69syl38UpqCyl4BYCDywHv3r0PhiK4Z/3IHqx/Ng5EMbNh46jrYfoiozE7Unj2I7K2ZkCO7vRY3ggIREejUp2b8rOJvvbb8ld8RNSaSkA2q5d8Jo2jY/02azJmA2SksWjfmRwu+4NLqexdEYzd3+1h7i0Aga19+CHpwc2aIOJS1m3/tuaXCn3sqOblu7DA+g6xB87JxvrscU7d5I5/3N0x+XlPEpHR9yfeBz3xx5D5dh0a2qbi0Wy8NuZ35h3cB6FhkIUKHgg/AFe6PNCpWU/jWXKyUF/+gz6M2fQnz0r/zx5EktJCUoXFwI//xyHgQOaprCCVIjfDue3yz8LUyu/rnWGkBsgdDhS2E0oPGqeDGYyW7j5vzuIzyxmxk2deOHGsKapo9DkmnWMeOnSpTzxxBN4enrSt29fPDw8yMrKIjY2lrS0NGxtbVm2bBkPPPBApfPKN32wt7fnpptuwmAwsGnTpmt204eWzidtNJjZ+9tZYrfLmX1cvW0ZHboWnwtfygeEj4W7FoKda8MKSNgFf0yVW8cgd23f8iHYVizBkCwSiXE5HNueQkJsxa4wjm5aug31p8uQ+o1ZmrKyyF7yLbkrV1oDsG23bnhOnYrjyBGczSjitgW7UPouReN0goG+A/m/m/+vVSclncss4o4FuygxmHlpdCemj27YB6XRYOZM9EWObq289V9AJ1d6jAgktKdnjV9uJEmiaPNmMj9fgP603IWpcnHB/emncJ8woen3x20ip3JOMXvfbI5mHgXkncD+Ffkveng1PEmFubAQ/ZmyQHumIvCas7OrPd4mJITAr7664tKwWpXkyH8v5YE3+0zl11VaaDcQQodD+xHg1wtUdeuc/O1gMi//cgRXew07XxuJk23bzYR3vWvWQHz+/Hm++eYbtm/fTnx8PFlZWdjY2BASEsKoUaN44YUX6NixY7XnLl26lC+++IK4uDjrNoizZs26JrdBbMl80unn89m8NM667VqPSCcGFb+KJvMwKJRw479g8HRo7DiXoRg2z4aoRfJj5wC443MIG13l0IKsUo7vTOXE7lR0RXI3qlKpoH0fL3oMD8CvY81JJEyZmRUBWCe3sG27d8dz2lQchw9HoVBgMlu4d+EejiTnMzgcTmveQW/W8+nwT7kl5JbGvc9GWnUomRk/H0GpgBXPRBLZvu4zbQuySondnkLc7lTrpLiG5l6WLBYKN2wg84svMcTHA6Dy8MDjmadxe+ihJpt81BD5+nzicuI4kX3CeivPRmWvtuf53s/zUOeH6vx3YykpQX8uvnIL98wZTOnpNZ6jCQpCGxaGtmNH+WenMLQdOtQ51amVoQQS91YE3rQjWL+Fgvw36NcL2g+Xg2+7yKpzM+rAaLZw49ztJOaU8PqtnZk8on7LqISW1aqzpltCUwbirSdSWRl1Hk9XZ3ydbfF1Kbs52+LjYouTVl3vFtal+aSX3LyEAX5N1MV1GbPZwoG/Eji44QKSRcLBVcuNI/IJOvws6AvktcH3fStPwGpKCbvLWsdykgJ6PwI3f1hta9tstHD2UAbHtieTHl9gfd7d34HuwwIIj/TFxlb+4DNmZJCzZAm5K/+HVLZczTYiAq+pU3AYNqzSv8OXW88yZ+MpnG3V/P3ScH4//x1fHfkKH3sf/rzrz0rrLVvDK78c4deDyfg4a1n3wlA8HGvuCSjO15Men8/JvemVehKcPW3pPrz+W/9dTjKbKVi7lswvvsSYVJbO1Nsbj+eexfW++1DaNO9knwJDAXHZctA9nn28UtC93E3BN/F6/9fxcfCp9nXJYEB/PqFS61Z/5oz8vmr4KFP7+MiB1nrriLZ9e5QODdyhyGyElEMVgTc5GsyGysd4hlcE3pAbGt4TdYmV0Ym8sSoWT0cbdrw2EnsbsVlMWyYCcT38/e8PabdyOeke7mx270u0RxfOugZiLsvOY2+jkoNyWZD2cbbF11lbcd/FFi9HLeqybsKWyiedk1bMP9+dIDNRnjUb1s+LYX6/Y7t/rnxAUCTcvxSc/ZqlfAwlsOV92LcQkMDJH8Z9DmE31XhKZmIhx3akcDq6YqMBtQbaB5ppV3IMy+plUBaA7Xr2xHPaVBxuuKHKF6GT6QXcsWAXRrPEZw/05J4+gehMOu764y5SilJ4psczvNDnheZ533VUYjBxx4JdnMssZkS4F98+1h+lUoHZZCEruYj0+HwuxueTfr6AwuzKux4FdXUnYkQg7bo3beIUyWgkb/Vqsr5aiCktDQC1vx9eU6bgcuedKDSN7+a8NOiWB96agm6AYwDdPLrR1aOr9VaebUoymTAkJqE/W96lLAdcw4ULYDJVez2VmxvaTp0qt3A7dkTV2F4zSYKMExXjvAm7wVBY+RjnwIrAGzqsyf/u9CYzoz7dTkpeabVbegptjwjE9XDhyZsp2VP5g8Ko1nDSI5QYtxCOe4Ry0i0YvbrmVoNSAZ6OcnBWO8Vyhq9QKWyYFvY1nT2D8XXR4uNs2yTjOZJF4ujWZPauPofZaEFrr2b4Pb6EnXkJLpRlLoucCje9B43cd7VOLuyRW8c5cten1HMC5sjXMRXoMF28iPHiRUwZGZguZsiPMzIozcwnRduJlIChlNhXpIVUG4twpgCfHkH49g/DM9ARdz8H1DYVy6GMZgt3f7WbYykFjO7iw/9N7GsN1FsStzB963Q0Sg2/3/k7wc6tM4O6XFxaARM+342nHu4O9sLHoCAjsRCz0VL5QAV4+DsQGO5Ot2H+1l14movFYCDvl1/IXrQYU9kyQ027dng8+SQqD3c58FgkyjcjliyWso2EpfKNiOX9g42lpBamkFaYSkpRCulFqeSU5qAAFFLZrey+q40Lvva++Nn74Gvvg4+dN7YqrfVaSCAZDRguXEB/5iyGc+esu1BdTunoWLWFGxbWqGQbVeQmVATe8zusWees7NzkJDjth0P7keDevmzLqeaxfG8Cs/44jo+zlu2vjsT2Ks6Odr0QgbgepNJidOu/pmTDCkrOZVKaqcVsqDyWKqnV6ELDyAztSoJ/GHEeoVwwqriYryOjUI+pbCYrCgMOHT5DqclDn3kjhqzKrUMHGxU+Zd3e5V3f5d3h/YLdau2+BCjM0bF5WRwpp3IBaNfNnVEji3HY8AQUXQQbJ7jzC+h2V6N+JzWx6PVlQVUOrsay4GpKT8V4+qB8v1SFZKnjB5JGQ0HwAJJ9BnFRE4xE1TFshQJcvO3xDHTEI8CRPdkFfBObjNJBzd8zhuHtVDHOKUkSk/+ZzO7U3dwQcANf3fhVi07cMhstZCYVcvF8Aenx+aSfz69IEXoJrYMa31AXfNs749PeBZ9gZ2zsWr6b0aLTkfvTSrL/7/8w1zGZTktS2NrKrdtLW7hhYah9fJrn3/XMPxD3hxyAyxPalNPYQ7tBFa1e34jGz7moI53RzPA5W7lYoOf9O7vx6KCQFilXaBwRiBtCkiApGmnPl+ij1lOaoaYk04aSbHtMxZcdq1Cg7dQJ+759se3bF13XHmRqnFkW9zUbU7/HQenJIO3HZBVKpOfrSC/QUairvjutnIudhoUT+jC4Y9V8uZIkcToqnR0rT2PQmVHbKBlyb0e6qX9H8c87IJnBqws8uBw86z9LV5IkzDk5ZcH14iWt17L7ZcHXnJdX52uqtGbU7s6oO0Sg8QtE7e2N2scbjY8P6rKbyrViwpbJaCY3rYSs5CKyU+RbVnKRdaLX5RQ2SnzbOeEZ4IhHWZB293cgRZ/EPX/eg8liYsGoBYwIGlHv30ddFeXqSI+Xg+7F8/lkJBZiMVX+c1IooNReyUmjgVJnNR893ZfA4LaVbtJSXEzOjyso2rEdLBJmyUKpuZRiU0nZrZhSsx5JUdYwVmC9b6u2xUHriJONE45aZ5xsnLHR2FC22bAcrKz7Dyup2JAYFJc+VipQKJVoAgKsLV1NQECTbdBRK2MprH8NDn1f8ZxSDQH9KgJvYD9Qt06ClCW7zvP+2hMEuNqx5ZXhTbblptC8RCBurLxEiP4/OLQMqTQfY7GKklwXSszhlKaaMCSmVDlFGRTAVveLHA+0cOe9b3LjoAmVPmxLDCZrUL5YoCM9X1/2U8fJ9AISsktQKRW8O64bj0ZWdKmWFhnY9uMp4g/LXWM+oc6MHh+E656XIU5OdkCPB+CO/4JN9V2aksmEMf0ixtQUjKmp1pspNRVjSirGtLQauwEvp9Bq5UDq7YXGuzyoXhJgXZ1Qxy1BuX8R8tixH9wxHzrVfyazJEmUFBjITi7iYlIhq7acx6bIjKekRFnd/1oFuHjakeuQxkHTXvDQMefu9/H0dkHRyLFWk9FMZmKRNeimxxdQnFe1tWvrqMG3vQs+oc74tnfBO9gJHRK3f76LxJwSbu3my8JH+rSpQAwQkxHDipMrOJF9wrp13+X8Hfzp5lk2pusuj+m2xNr4ZpV1Bn5+DDKOAwo5pWv4GAgeDNrW35O7xGBi2CdbySoy8J97evDQgHatXSWhjkQgbiqGYjjykzwhKVveNQWFElPAzZTYDqHkQiElBw6iP3myyoxNtZcX9v37Yde3L/b9+qENC6sxTZ7OaOaN346yOkZe6D9xUDCzbu9Kyokctiw/SWmBAaVSQf87QunTswjlrxMh5xwoNTDmP1i6jceYni4H1dSqN9PFi2CxVFv2pVQeHnJQvTzAenuj9vZB4+ON0sWlbkEkMQr+mFLxe+v5MNz6kTy21gCfbTrN55vP4O5gw/rnb0BVZJZbzmUt6KyUIutmB5fTaFV4BDjgESC3nD0CHfEMcKyxO1iSJApzdBVdzPEFZCUVWreGLKdQKvAMdLQGXd/2zjh72lX7+zmanMe9C/dgNEttqnvRIln4JvYbvoz5EotU8X/E38HfOoGqm0c3unh0qbpL0NUu9ldYMx0MRfIKg3v+DzqMbO1aVbJo+zn+s/4k7dzt2fzy8GbdUERoWiIQNzWLBc5thn1fwbktFc/79YSBk9lv58nnP75I1yS4qzgcRdxZJGPlLlWliwv2vXtj37+f3KXdrVulWaqSJLFw+znmbDyF2gIPaRzxzZI3hHfztmXYjY64nFmFcdt3GAstGA2OGDWhGLPy6zS+p9BoUPv7ofH3R+PnL/8svwX4o/HxQdHUy1iMpbDlA9j7JSCBo6/ccg8fU6/LHEvJ584vd2O2SHw5vg+3RVQ/I7W00EBWWXA+cvIU58+n4lbii1qqftKak4ctHgGO1klhhbkVwbe6oG7npCkLuHKL1zvYuV55tcu7GG1USn6fOphu/i5XPqkZZZdm8+bON9mbtheQtxMc12EcXT26XntB91JGHWx4Aw5+Jz8OGQr3fgNOTb+fdGMU6U0M/XgLuSVG5t7fk3v7BrZ2lYR6EIG4OWXEyQktjqwEkw4T8GBgIKc1Sh5sP46ZQz/EotNRevQopQcPUrL/ACUxMUglJZUuo7C1xa5XL+z79sW+X1+UdnYYU1OJ2pfMqVQfFGonkCSC0nfS/sxvqCy1jzErHRwqB9ZLAq3a3x+1p2eL7UZUxeWt44iH5NaxvfsVT9WbzIxbsJtTFwu5LcKPL8f3qVORkiTx5MYnOZh+iFvdxvGM/zQ5SJcF6qLcqt3Kl1IqFXgGOeJTNqnKt70LTh62KABMejCWyD0mlX6WyD+rPFcMhhIkYzEHz6RQVFiAm8ZId28NKmOJ/IXFWCynOgwaAEED5aQP3l2hiTe5L7c/fT+v73idzNJMbFW2vB35Nnd1vKtZympTss/JXdEXYwEFDHsFhr9R58xWLWnB5jPM3XSa9l4ObHppeKPTpQotSwTillCSAwe/Y+XRJXzoqMLZbOavtCxcu90Pkc+Bb0VaPslkQhcXR8mBg5QcPEDpgYNVJj5ZFGriQ28jMWg0KJTY6rLpcnI5bnlyejyV1ozGwYwmuCOaiJFoAgIqBVylc9uaAFSFsRS2fii3jiULOPrA7f+FzmNrPW3OxpN8ufUcno42/P3S8HrtNHM69zQPrHkAs2Rm8ejFDPbpB6U5UJKNLieb7KR8stN0ZGdI5OSqsdeU4OOUjq9jMl7aJDTmguqDqnTlbv4moXWWJwkFRcopEQP6yRtyNILZYubr2K9ZdGQRFslCB5cOfDr8Uzq6VZ8N75pybBX8+YK8BtjeQ+6K7nhja9eqWvklRm74ZAuFOhOfP9ybcT39W7tKQj2JQNxC8vX53LbqNvIN+bxlcuThpBMVL4YMhcgp8iSly1o1ksWCIT5eDswHDpBxPJmjPuMospWzCYU459Cls4HNxw9xl+V/eDgUYrBzRvvAEhS1JMy4KiRFw+opFfl3ezwAYz6utnV8JCmPu7/ajUWCRY/05dbul3QdGkuhJFv+QlQWXCnJqfL4Y0MiP6j1hBjNrEpOoUlXVqts5FSFGgewsZeXuNg4lP20r/55jT3nCyQ+255MkUXLxGFdGNkjRD62MFXuPUjaB8kH5LHLSylU4Nu9IjAHRYJLQLVVq05WaRZv7HyDqLQoAO7qeBdvDniz1bOQNTujDv5+G/Z/Iz9uNxjuWwLObTe4zf37FAu2nCXcx4n104c2aWIXoWWIQNxCPtz3IStPrazIJ51yWB5HPvGHvKQI5B2PBj4HvSaAbUVdjQYz8YcziduTZl0XbOuoYeQjnWkf4Q7bP0ba/gkKJGIs7ZlqmM6wAX2ZfWe3q3/ChrEUtn0EexbIrUsHbxj7ify7KsmGklyMRZn8tO0IlGTT3c1EHy/J+hol2WAqrVNRBUoFdwT6k6NSMSMnlycKiuUJY3bucqvI3l2+2bnJLdDagmilIGvfqIQp5Sk67TQq/pw2hDCfy2bomk3yTN6kaEjcB0lRkF9NhiqXILkrO2igHJx9ulfbnb0vbR9v7HiDbF02dmo7ZkXO4o4O197Wo1XkxMMvj5flfwZumAEj326TXdHlcooNDP14C8UGM4se6cOt3ZspO57QrEQgbgG15pPOT5aXPx1cCro8+TkbJ6Tej3LRbyJxxxScPXARg64sWCugQy8vhj0cjr2qEFY9bZ0UJvV7iiWOz/DhxngkCSLbu7NwQl/croXNwJMPwOrJkHW6Yecr1XIwtQbVywOs/Nrq/BPMivsOe7Udf975Bz6Orf/BZrFITPw2ml1nswj3ceKPaUOunC0pP0VuLZe3mtNjq3aT2zhW6s42+/dh0akfWXxkMRISHV07Mnf4XNq7XgcpEk/8AX9Mk/Ou27nDPV/XmoK1rfhofRyLt8fTzd+Ztc9XTfEqXB1EIG5mdc4nbSiGIysp3vUjp1KCOFl6I7nmipmPzh62dB7sR3ikL84ednJg+vkxKEgGtZ28/rbngwBsOXmRF36KoUhvop27PUse61e1FXU1Murk1vHhH+SECXbuFCid2JFsIVdyZEhEOO3bBVUOtuXBV+tUp7SCFsnCo+sf5WjmUcaGjuXjYR+3wBu7soxCHWPn7yKrSM/DA9rx0T313O5PXwQpByoCc9L+SjmQM1Qq3vDyYL+dnH3sXo/evB45C7sGJH25qpj08Pesij20gyLlzU/q0Y3fWjIL9Qz7ZCulRjPfPt6PUZ2r3/xCaPtEIG5mfyf8zcvbX0ar0vLnXX/i71h1rMlsspAQm8XJPWlcOJ5tbbio0dPBdg9d7Dbj306FYtBk6H6vnNVnw5tgMYJHR3hgOfh0rXTN0xcLeWrZfpJySnHSqvl8fG9Ghnu3xFtuMaUGM2M/38n5rGLu6RPAZw/0apLrHs8+zsNrH0ZC4rtbvqOfb78muW5j7TqTxaPfRiFJsODh3tzRmEk5FrO8OUHiPvac38ibJafIUYK9xcK/snK4rbhs5r5zQMXM7KCy7uw23FVbL7kJcld06mH58ZDpMGpWy+RdbwKz15zg293n6RXkyu9TBovW8FVMBOJmVGoq5c7Vd5JWnMbknpOZ0mtKpdezkos4uSeNU9HpldIz+rZ3octgPzoG52Nz5GuI+alinNPGsWJiTpdxcOeXlcaTL5VTbOC5Hw4SfT4HpQLeGtuFp24IvWb+YN9fe4Ilu87j46zl7xeH42LfdB+gs/fO5pfTv7TIHtH18enGU3yx9SwqpYKbuvgwIbIdQzp4NmiCjsli4quYr/gm9hskJMJd2vNp4G2EZJ6Tx5nTjlbMXyincYDAvhA8BLrfB55X6QzquDWweiro8+Ux/7sWQfitrV2rOkvP1zFszlYMJgvLnxrA0DCv1q6S0AgiEDejhTEL+erIV/g6+PLnXX9ip7ZDV2zkdPRFTu5Ns25LCGDvYkPnSD86D/KtuqNOSQ4cWiaPJRekyDNib35fnml9haBqMFmYtfoY/zsgT955oF8gH9zVAxv11T2JK/p8Dg9+vRdJgu8e78/Izk3b2s/T5XH76tvJ1+fzxoA3mNBlQpNev6FMZgvP/3SY9ccqNrFv527P+IHtuK9vIJ5X2Ayk3MXii7y24zUOZRwC4P5O9/Na/9ewVVdsjIGhGFIOVu7O1udXvlC7QdD7Ueh6Z6OXS7UIkwH+eUeeKAkQOEDuinYNat161YHJbOF4agH7E3JYezSNmKQ8BoS4879nI6+ZL9fXKxGIm0lqUSrjVo9Db9bzydA5dC3tz8k9acQfybQm+1eqFIT29KTzID/adXVHeaUZzmYjnP1H7i70i6hzXSRJ4rvdCXzw1wksEgwIcWfhI32uuINTW1ViMDFm/k4uZJfwQL9APrmvZ7OU8/Opn3l/3/s4aZxYc/caPOyacOu8RjqVXsiKqAusOpxi3SREo1JwSzdfJgwMJrK9e40fzrtSdvHWzrfI1efioHHgnUHvMCa0DhnMLBbIjJNnZp/eIP9fLB9HsXGEbndDn4kQ2L9Zt/lrsNwL8OsT8pcLgEHTYPS7bbYrWmc0czgxj/0JOexPyOHghVxKDBU9FBqVghXPRNI/5MrJboS2TQTiZvLytpeJOnmYESV30jGjX6Wk/55BjnQe5EenAT7YObbcjOZtpzJ4fsVhCvUmAt3s+OaxfnT2bb0lXQ317p/HWbonAT8XWza+NAznJti7uTpmi5mH/3qYuJw47u54N7OHzG6WchqjxGBi7ZE0foxO5EhSnvX59l4OjB8gt5Jd7eX/Y0aLkS8Of8G3x74FoIt7F+YMn9PwvZgLUiFmhTx5Lvd8xfOe4dD7Eej5EDi2kXkJJ9fB6udAlw+2LnJX9BUSxLS0/BIjBy7kEJ2Qw/7zOcSm5GO8LGe5s62a/iHu9A91Z1RnbzpdC5MwBRGIm5pBZ+KfLdHs2Xocv8IO1ue1Dmo6DfClyyA/vNq13h/P2YxCnlp2gAvZJTjYqJj/UG9Gd706Zlum5pWy6lAyn/4tL2H6/skBDOvUvGNjMRkxPLr+UQB+HPsjEV5174loacdS8lkRncgfh1MoLms52aiV3NbDj1t72vJD/IfEZMYA8FD4Q7zS/xW0qiboFZEkuLAHDi+H46sr5jMo1RB2C/R5FDre1DqTvMxG+Odd2PuF/DigL9z3Hbg18MtHE7pYoCP6vNzajT6fw6mLhZfvB4OPs5b+Ie4MDJWDbydvJ5Gw4xokAnETkCSJtLN5xO1J4+yhDEx6ubtOUkiEdJO7nkMjPFFp2sa4bG6xgSk/HmJvfDYKBbx+a2eeHda+TY4z5RQb+Cs2jTUxqUQnVGxY0aAlPA309q63+fPcn3T16MqKsStQNVNO56ZSpDfxR0wKK6ISOZ5agMrxJHZ+P6NQl2CjtGfWwHe5q1P9NtOoM10BHPtNbiWnHKh43tFH3lWr9yMN2ge7QfKS5K7o5P3y48gpMPo9ULf8unpJkkjILmH/ebnFG30+h8SckirHtfd0sLZ4B4S4E+Re/Q5dwrVFBOJGKMzRcWpfOif3ppGfWZG9Kc/2Igl+R3jvsRn4+7aRrrnLGM0W3v3zOD9GJQJwT58A/n13jysnimgBRXoTm06k80dMKrvOZGGyVPy3GxDqzl29AnigXyDqFsoallWaxR2/30GRsYh3Br3DfZ3ua5FyG8tgNjBrxxzWJa4EwFwaQGnKeLR4Ma6nP+MHBtMzsI5bVTZERpwckI+shJKsiueDIuVWcte7GjTBq1hv4lxmEWqlEhd7DS52GhxsVJXfx+mN8PuzUJoLWhe460vo0nLZwcwWibi0Auv4bvT5XLKKKm8eolRAFz9n+oe4MyDUnX4hbng72dZwReFaJgJxPZmMZs4fySJuTxpJcTlQ9hvRaFW06+3KIv1/OKc9xluRb/Fw54cbXV5z+35vAu+tOYHZItGnnSuLH+2Hl1PLT+LSm8xsO5XJn0dS2Rx3EZ2xIgtU9wBn7uwZwO09/fBzsWvxugEsP7GcT/Z/gqvWlbV3r8VF27rbEl5JalEqr+54laOZRwG4r+NDBEoP8PP+NE5drJit39XPmQmR7bizVwCO2mbqOjYZ4MxGOLQczm6qOsGr96PyTlLVfCHIKNRxIrWA46kFnEgr4ERqAQnZxVW6cNVKBc52GtxtFUy2rODe0t8ASLbrzF/hH4FbMM52ctC+9OZsp8FJq250d6/eZOZocr61q/lgQi6F+sq7oNmolPQMcrEG3j7Bbs02v0G4uohAXA9HtyYRveY8+pKKP7CATq50HuxHh97efHL4P5XzSbeRtadXsvNMJlN/PESBzoS/iy3/91i/Ftn/1myR2Hsumz+PpLD+WLp19i/IXXR39PRnXC9/Oni1/rIYo8XIA2se4GzeWR4Mf5CZkTNbu0o12pK4hVm7Z1FgKMBJ48TsIbMZHTwakLtIDyXm8uO+RNbGpmEwyUHRwUbFnb0DGD+gHd0DmvHfviANjvwkt5Rzzlmfljw7kRP2AAddb+ZwrtYafC9vRZYrX6ZVUGrEYJbfgy/ZLLBZQH+lPIfgO9MtfGQaj+EK23coFOCkVVtb15UCta2m2gDuZKsmKbdU7mo+n0NMcp71d1nOUaumb7AbA0Ld6R/iTkSgS5vocRLaHhGI6yFuTxpbvo/D0V1btubXDxcvuYVWaz7pq0B8ZhFPLztAfFYxdhoV8x7sVXkHoyYiSRIxSXn8eSSVtUfTyCys+KD1dbbljp5+3NkrgG7+bW+rxui0aJ76+ymUCiVLb11KL69ebaqORrORzw5+xg9xPwDQ3aM7c4bPIdCp+k3i80oM/HYohR+jLhCfWWx9vmeQKxMGtOP2nn7Y2zT9l0md0czp9AIyjm/D/dT/6Jq7BVvk/wcmSckWS29+No9gm6UnFoWa9l6OdPVzpqu/M938neni52wNxJIkoTNaKD2xAecNU1HrcjFpHDkQMZsTbqPILzWSX2qkQGekoOz+pbdLe14ay9PRRh7fLWvxdvFzFvsCC3UiAnE9GHQmLp4vIDDcDcUlf2B1zifdxuWXGJm64hC7zsrjea/eEs6UER2aJNicuVjIHzGp/HkktdIkFVd7DWN7+DGupz8DQtzb/IzQV7e/yoaEDQDYqe0Idg6mnVM7gp2Drbd2zu1w07q1aJBOLkzm1e2vciz7GACPdHmEGX1noKnDGllJkog6n8OPUYlsOJZmXTLjpFVzT58Axg8MJty3YTP980oMlbqWj6fmcy6zGPMl4/6OlHCbKoqH1dvopThjfd5o5wU9H0bT91Hw6lR9AWaTvHf1rrK/Ob+ecP9ScK/bRhV6k5mCUlNFwC4L2vmlRvJLKgdt+XmTNaC7OWgqZjSHuBPq6dCmvpgJVw8RiJtAXfJJXy1MZgsf/BXH0j0JAIzr6c8n90U0qEstKaeENUdT+TMmlZPpl2QRs1FxU1cf7uzlzw0dva6qLF8ZJRm8sv0VjmQewXL5bkaXcLJxItgpmGCXYPnnJUHayaZpl69tvrCZWbtnUWgsxMnGiQ+GfMCodqMadK2sIj2/Hkzmp+hELmRXfGHqF+zG+IHtGNvDr9r/C5IkkZxbWhZs5bHcE6n5pObrqi3H3cGGbv7OlVq6oZ6OqLJOycugqpvg1fsReUy5fIJXQSr8+hQk7pEf938abv4QNGLCk3B1EYG4kS7NJ/1cz+eY2mtqk5fRGn6MusA7fxzHZJHoGeTK/z3aF2/nK3/AZRXpWRebxh8xqRy8kGt9XqNSMLyTN+N6+TO6i3ezdHm2JKPZSHJRMhcKLlhviQWJXCi8QHpxeq3nutu6W1vSIS4h1hZ1O+d22KnrPhnNYDYw98BcVpxcAUCEVwRzhs1pki+CFovEnnPZ/Bh1gU0nLlpnrrvYabivbyA3d/UhObe0rKWbz4nUAgp0pmqvFexhLwdcP2e6BTjT1c8FH2dt7a1Hs1Ge+Xx4OZz5u2KCl8YBut8tp6bcPFsO1jZOMG6+vCGKIFyFRCBupOrySV8r9pzLYvIPh8gvNeLrbMv/t3fvYU1c6R/Av0kMF8O1gAqKXAQUCyLVVRekuPRxEanUIrTaVfHegtqt1nqhtWDVtk+lXS9YV9n+QFftLqXg4qPWy3ppUVi14Kog4oWbhSoi4SISLjm/PyhZYkhIADMmeT/Pk8dk5pyZd+ZE3syZMzN/ixrb5UCe+qYWHM+/j8z/VuD87YeybkceD5jgYoPXRjtgitcg2R2e9N2T1icory9HWV0ZSupK2hP0b8m6uqlaZd0B/QfA2cIZQy2Gtv/7W5IeYj4ERoL/7b/yunKs+nEVCqoLAADzXpyHd196F0J+34/CfVDXhNTL5fj2Yjl+ET9RWk4o4MFjoHl7wnWwwEgHS4ywN+/9yOC6SuDqP9oHeFXflp83yBuI3AvYDOu6LiE6gBJxL1Q2VCLsUBia2pqwJXALpjjrztNb1FXy8DEW7r2EO1WPYSLk48vI0QgdZY+mljacvfkA/7pSgX8XPpAbMeozxBLTfBwwzccBA9U4ijYkDc0NKK0vlUvOHQm7rrlOaT0+jw97kT2cLJzgYOaAH4p/QENLAyyNLbHZfzMCHQOfeextUoYfb1XhQE4Zrt4Tw8VW9Fu3siVG2lvAbYDZsz3NwFj7fa7z9gM3j7Z3Uwd/Sl3RROdRIu6FVedW4XjJcYwdOBb/F/x/ejtQo66pBcsP5uFcURUAINDDDrml8tdJDrMT4bXRgxHm4wBnW5GyRREVxE1ilNY/1dX92/vGVsW7MI22G40tgVswSNT3o9sJIdpDibiHLv16CQuOLwCfx0fqq6kY/sLwPlv286i1TYrPjhXim6z/3dzfwdIE00Y7IMzHASPtn7/LjfQFYwwPnzxsT8717UfP9iJ7RHhEPJOuaEKIdmmSp3R7dE0fapW24vOLnwNof46rvidhAOgn4GP9qyPh42iFq+ViBHsNwpih1s/95Ub6gMfjwa6/Hez622HsoLFch0MI4RAl4t98X/Q9imqKYGFkgWWjl3EdjlaF+bQfARNCCNE+3bnY8xmqldRix5UdAIBlvstgZWLFbUCEEEIMBiViAIl5iaiV1MLd2h2RHpFch0MIIcSAGHwiLqopQmpRKgBg7e/W6sxDHQghhOgHg0/EB28chJRJMdlpss491IEQQojuM/jDv48mfAQPaw9McpzEdSiEEEIMkMEn4n78fnjL8y2uwyCEEGKgNO6abmxsxKFDh7Bw4UIMHz4cJiYmEIlE8PHxwSeffIKGhgaFOvHx8eDxeEpfa9eu7ZONIYQQQnSNxkfEBw8exOLFiwEAnp6eCAsLQ11dHS5cuIC4uDh8++23OHfuHAYMGKBQ19/fH25ubgrTx4wZ04PQCSGEEN2ncSIWCoVYsmQJ3nvvPXh6esqmV1ZWIjQ0FHl5eXjvvfdw8OBBhbqLFi3CvHnzehUwIYQQok807pqOiorC7t275ZIwANjb22Pnzp0AgPT0dDQ3N/dNhIQQQoge69PLl3x8fAAAEokE1dWqn9FKCCGEkD4eNX337l0A7d3XL7zwgsL806dP48qVK2hqasKQIUMQEhJC54cJIYQYtD5NxNu2bQMATJkyBcbGxgrz//73v8t9Xr9+PWbMmIGUlBSYmZn1ZSiEEEKITuizrumjR4/im2++gVAoxMaNG+Xmubm5ISEhAfn5+WhoaEB5eTkOHDiAwYMH4/vvv8ecOXNULlsikaCurk7uRQghhOgDHmOM9XYhhYWF8PPzQ01NDbZu3Yo///nPatWrrKyEt7c3qqurkZ2djQkTJnRZLj4+Hhs2bFCYrs4DlwkhhBBtq6urg6WlpVp5qteJ+JdffoG/vz9KS0uxcuVKfPnllxrV/+CDD5CQkIC4uDjEx8d3WUYikUAikcg+19bWYujQoSgvL6dETAgh5LlTV1cHR0dHiMViWFpaqizbq3PEjx49wh//+EeUlpZi/vz5SEhI0HgZ7u7uANqPjpUxNjaWO+fc0TXt6Oio8foIIYQQbamvr392ibihoQEhISEoKChAeHg4kpKSwOPxNF5OTU0NAEAkEqldx8HBAeXl5TA3N+/ROom8jl9u1MPAHWoD7lEbcE+f2oAxhvr6ejg4OHRbtkeJWCKR4LXXXsPFixcRHByMb7/9FgKBoEeBZmRkAABeeukltevx+XwMGTJE4/UR1SwsLHT+y6/rqA24R23APX1pg+6OhDtoPGq6ra0Ns2bNwunTpxEQEID09HQYGRkpLV9VVYWdO3eivr5ebnpDQwOio6Pxn//8B4MGDUJ4eLimoRBCCCE6T+Mj4sTERNlRrK2tLWJiYrosl5CQAFtbWzx+/BjLli3D2rVr8bvf/Q729vaoqqpCbm4uqqurYWVlhbS0NPTv3793W0IIIYToII0Tccc5XQCyhNyV+Ph42NrawsbGBmvWrEFOTg6Kiopw4cIFCAQCuLi4YN68eVixYgUGDx7cs+hJnzA2NkZcXFyXN2Eh2kFtwD1qA+4Zahv0yXXEhBBCCOmZPn3oAyGEEEI0Q4mYEEII4RAlYkIIIYRDlIiJgtTUVISGhsLe3h6WlpZ4+eWXkZWVxXVYBiUlJQU8Hk/hdfbsWa5DMyh79+7FqFGjIBKJ4OzsjNWrV6OxsZHrsPTS5cuXMXfuXLi5uYHH4+Gjjz7qURld1KePQST6YevWrXB3d8fOnTthZmaG5ORkvPLKK7h48SJ8fHy4Ds+gZGVlyd0sZ+TIkRxGY1jS09Mxb948rF69GsHBwSgsLMS6detQW1uL3bt3cx2e3jl//jxycnIwceJEPHz4sMdldBGNmiYKqqurYWNjI/sslUrh7e0Nf39/7Nmzh8PIDEdKSgrmz5+PlpYW9OtHv5e58Oabb6KiogI//fSTbFp8fDx27NiB6upqDiPTT1KpFHx+eyets7MzZs+ejU2bNmlcRhdR1zRR0DkJA+23FPXy8kJxcTFHERGifa2trQq3WbS0tIRUKuUoIv3WkWB7W0YX6edWEZnGxkYcOnQICxcuxPDhw2FiYgKRSAQfHx988sknaGho6HYZbW1tuHTpEtzc3LQQsf7pTRsMHjwY/fr1w6hRo5CWlqbFqPVLT9ogKioKp06dQnp6Ourr63H58mXs2LED0dHRHGyBbumLvzsGhRG9lpSUxAAwAMzT05NFRkay4OBgZm5uzgCwESNGsPv376tcxtatW5lAIGBXr17VUtT6pSdt8MMPP7DNmzezU6dOscOHD7Pp06czAOzQoUMcbYVu6+n/g2+++YYJhUJZ3dmzZzOpVMrBFuiW3v7dcXJyYh9++KHKdahTRldQItZzKSkpbMmSJaygoEBuekVFBfP19WUA2KxZs5TWz8nJYSYmJiwuLu4ZR6q/etsGHSZOnMjGjRv3rMLUaz1pg1OnTjFzc3MWFxfHzp49y5KSkpidnR1btWqVNkPXSb39zlMiJgbjwoULDAAzNjZmEolEYX5xcTEbOHAgi4yMpKOAZ6S7Nuhsy5YtzMjISEuRGQ5lbeDj48MWLlwoV/bgwYNMIBCwiooKbYepN9T5zhtaIqZzxAas41IkiUSiMApULBYjNDQUzs7O2Lt3L3g8Hhch6j1VbUC0Q1kbFBUVKVyu5+Pjg7a2NpSUlGgzRL1C33lFdF2EAbt79y4AQCgU4oUXXpBNb25uRnh4OBobG3H69GmYmppyFaLeU9YGT2OMISMjA76+vtoKzWAoawNHR0fk5eXJlc3NzQUAODk5aS9APaPud96QUCI2YNu2bQMATJkyRe6xYzExMTh37hySkpJQXFwsu2zJ2NiYEkEfU9YGERERGDduHEaNGgWJRIK//e1vyM7ORmZmJleh6i1lbbBkyRKsWbMGDg4OCAoKQlFRET766COEhYXBwcGBq3B1nrL9XVVVhXPnzgFoH3VdWFiItLQ0iEQihISEqF1GJ3HdN064ceTIEcbj8ZhQKGRXrlyRm+fk5CQb8dj55eTkxE2wekpVG6xbt465u7szU1NTZmpqyvz8/NiRI0c4ilR/qWqD1tZW9tVXXzFPT09mamrKnJ2d2fLly5lYLOYoWt2nan+fOXOm27876pTRRZSIDdCNGzeYtbU1A8C2bt3KdTgGidqAe9QG2kX7WzlKxAbm3r17siPelStXch2OQaI24B61gXbR/laNErEBqa6uZiNHjmQA2Pz58+mSJA5QG3CP2kC7aH93jx76YCAaGhpkT1AKDw9Hamqq3FN9yLNHbcA9agPtov2tHkrEBkAikWDq1Kk4ffo0goODkZmZCSMjI67DMijUBtyjNtAu2t/qoxt66Lm2tjbMmjULp0+fRkBAANLT0+k/g5ZRG3CP2kC7aH9rhq4j1nOJiYnIyMgAANja2iImJqbLcgkJCbC1tdVmaAaD2oB71AbaRftbM5SI9VxNTY3sfcd/jK7Ex8fTf4hnhNqAe9QG2kX7WzN0jpgQQgjhEJ0jJoQQQjhEiZgQQgjhECViQgghhEOUiAkhhBAOUSImhBBCOESJmBBCCOEQJWJCCCGEQ5SICSGEEA5RIiaEEEI4RImYEDVMmjQJPB4PkyZN4joUg+Ts7Awej4d58+ZxHQohfY4SMeFcdnY2eDweRCIRWltbZdPFYjEEAgF4PB7Kysp6tY6SkhLweDz6Y86RjkT69EsoFMLW1hYTJ05EfHw8KioquA6VEK2jREw4d/78eQDA+PHj0a9fP7npUqkUjo6OGDp0KFfhkWeotbUV1dXVOH/+PDZs2ABPT0+VDwkgRB/R05cI5zoS8cSJE+Wm//TTT11O58LZs2e5DkEvODg44Pjx47LPLS0tKCkpQXJyMg4fPoy6ujrMnDkTOTk58PX1lZUrKSnhIFpCtIOOiAnnLly4AEAx4WZlZXU5neguoVAILy8v2cvX1xevv/46MjMzsXLlSgBAc3MzNm3axHGkhGgPJWLCqdu3b+PBgwcQCAT4/e9/L5ve1NSES5cuAaBEbCg2bNgAU1NTAMCJEycglUo5jogQ7aBETDjV0S09atQomJuby6ZfvHgRzc3NsLKygpeXF1fhyagaNd15IFhKSgoA4OTJk5g2bRoGDRoEY2NjuLi4IDo6Gvfu3VNrfWfOnEFUVBRcXV3Rv39/WFhYwNvbGx988EG3A5quX7+OTZs2ITg4GEOGDIGxsTHMzMzg7u6OqKgo5OTkqKwfHx8v2x4AqK2txcaNG+Hr6wsrKyu57exLZmZmGDlyJACgoaEBjx49ks1Td9T07du3sWLFCnh7e8PS0hKmpqZwdXXFvHnzcPnyZbXiKCkpwZo1azBmzBjY2NjIBpQFBAQgPj4ed+/eVVq3trYWn332Gfz9/WFnZwcjIyPY29tj2rRpSEtLQ3ePf8/IyMD06dNl7WZubg5XV1cEBARg/fr1uHjxolrbQHQMI0RLkpOTGYBev4qLizVed3Fxsax+VFSUxvUDAwMZABYYGKhy2cnJyWzt2rVKY7ezs2MFBQVK1/PkyRM2c+ZMldsvEolYZmZml/XPnDmj1j5cu3at0hji4uJk5YqKipizs7NC/eTkZI32n5OTEwPAnJycVJabMGGCbB2//vqrQn1VbbdlyxYmFAqVbjOPx2Pr169Xuf7ulqHsO8AYY6dOnWI2NjYq606dOpXV19cr1G1tbWWRkZHdttuYMWNUxk90Ew3WIqQPJSUl4cKFCwgMDMTbb78NDw8PiMVi7Nu3D/v27UNVVRUWLFiA7OxshbqMMURERODIkSMAgGnTpuGNN96Aq6sr+Hw+Ll68iC+//BJlZWWIiIjA+fPnMXbsWLlltLa2QiQSITQ0FEFBQRgxYgQsLCzw4MED5OfnY/v27SgtLcXnn38ODw8PzJ8/X+X2RERE4JdffsHy5csRFhYGa2tr3Lp1C05OTn230zrFXlhYCAAwMjKCjY2N2nW3bNmC1atXA2jvXYmOjoa7uzusrKxw8+ZNJCYmIjs7Gxs3boStrS3effddhWVs3LgRH3/8MQDAysoKMTEx+MMf/gAbGxuIxWLk5uYiPT1d1lPQ2fnz5xESEoKWlhYMHDgQy5cvh4+PDxwcHFBRUYF//vOf2L9/P44ePYqoqCh8//33cvV37dqF7777DkD7qZhFixZh2LBhEIlEqK6uxtWrV/HDDz+gtrZW7X1CdAjXvwSI4RCLxezGjRuyV+ejt6ysLNn0/Px8ZmJiwgCwtLQ0uTo3btxgzc3NGq9bW0fEANjixYuZVCpVKLdo0SJZmdzcXIX5e/bsYQCYUChkx44d6zKOR48esRdffJEBYP7+/grzq6qqWE1NjdLtkEgkbPLkybKj09bWVoUynY+I+Xw+O378uNLlqUudI+LExETZeoOCgrqs31Xb5efny45i4+Liutz3bW1tbPbs2QwAMzMzY48ePZKbn5uby/h8PgPAPDw8WHl5udI4y8rK5D43NzfLeg2mTJnCHj9+3GW9jvYFwE6cOCE3LyAggAFg48ePZy0tLUrXXV1drXQe0V2UiAlnUlNTGQDm4uIiN/3KlSsMADM1Ne1R0u2KthKxvb09a2pq6nIZhYWFsnLbtm2TmyeVStmwYcMYAPb++++rjOXo0aNyXcea6ti/ANjly5cV5ndOxAsWLNB4+V1RlohbWlrYrVu3WGxsLBMIBLL1Pv1DRFUiXrBgAQPAxo4d22US7lBTU8OMjY0ZALZnzx65ebNmzZJ1X3f1I0mVffv2MQDMxMSEPXjwQGXZcePGMQDsrbfekpvu7u7OALAVK1ZotG6iH2iwFuGMsuuEOwZwjR07FkKhUOtx9UZERASMjY27nDd8+HCYmZkBgMKAn4KCAty5c0e2DFVefvll2fuuurg7k0gkKCsrQ0FBAa5fv47r16/LDRj673//q7L+n/70J5XzNVVaWqpwZy13d3d8+umnaGtrA4/Hw6ZNmzBlyhS1l3n48GEAwIwZM7rsNu5gZWUFb29vAPL7TSqV4tixYwDaB+V1vn5ZHZmZmQCAwMBA2NnZqSzb0XZPt5u9vT2A9m15+PChRusnuo/OERPOKLtOuOO6Yn9/f63H1FsjRoxQOd/a2hoNDQ2or6+Xm955RG/ny7i68+uvvypMe/z4MbZv345//OMfyM/PR1tbm9L63f3RHzVqlNqx9IaFhQWCgoKwcuVKBAQEqF2vtLQUVVVVAIB169Zh3bp1atXrvN+Ki4shFosBQKN1d+hou+PHj6v8IaBs/QAQFRWFH3/8Ebdv34abmxvCw8MxefJkBAQEYMiQIRrHRHQLJWLCifr6ely9ehWA8iNiPz8/rcfVW/3791c5n89v74R6Ojk+ePCgR+trbGyU+1xSUoKgoCAUFxerVf/Jkycq51tbW/coLmWevrNWv379YGlpiUGDBqmdxDrri/3W+cdIx5Hps47h6f2+YMEC3LlzB1988QVqa2uRnJyM5ORkAMCwYcPw2muvYenSpXB1ddV4XeT5R4mYaIWzszNKS0u7nPfiiy92OT0sLEzuc1xcHOLj4/s6tOdC58R8+PBhODs7q1VvwIABcp/nzJmD4uJi8Hg8zJ8/HzNnzoSnp6fsmlYejwepVAqBQAAA3V7X2lGur3TcWauvdN5vH3/8MSIjI9WqJxKJ+jyGkJAQfPHFFz1ezubNm7FkyRIcOHAA//73v5GTk4PGxkbcuXMHX331FXbs2IHt27fjnXfe6avQyXOCEjEhz4HOl+r09CYmhYWFsu7+2NhYpbeJ7HyjDF3Xeb/1NMnb2trK3ldWVvYohoqKCjQ3N/f6R4aTkxNiY2MRGxuLlpYWXLp0Campqdi9ezeampoQExOD8ePHa3wemzzfaLAW0YoTJ07g2rVrsteYMWMAAB9++KHc9Ndffx1A+yChztOvXbuGmJgYLjfhmer8h7Wja15T+fn5svdvvvmm0nLq3mFKF7i6usLS0hJAz/ebi4sLrKysAAA//vijxvU72u7y5ctobm7uUQxdEQqF8PPzw9atW3Hw4EEA7T0YaWlpfbYO8nygREy0wsPDQ3aj/+HDh+PGjRsAgPDwcLmHANy8eRMA8Oqrr8pN9/LyUuiG1ScvvfSSbFDOnj170NTUpPEyOj/L+fHjx0rL/fWvf9U8wOeUQCDA1KlTAbT/2Ov4XmmCz+cjNDQUAHDu3Dnk5eVpVL/jFErHud1n4ZVXXpG9p1HV+ocSMdG6n3/+GY2NjTA3N4ePj49senV1tewPaedLdAwBn89HbGwsgPZLm+bOnQuJRKK0fF1dHRITE+Wmubu7y94ruxf0rl278K9//av3AT9H1q1bB4FAAKlUioiICJX3825ra8OBAwcUyqxatQp8Ph+MMcycOVPlMp6eFxUVBUdHR9lyujuqzsrKwrlz5+Sm7d+/X+6H1NNOnDghe+/i4qJy+UT30DlionUdf6j8/PzkBgNlZWWBMQY3Nzc4ODg8s/Xfvn1brYcWjBs3TvYQAm145513cPLkSWRkZOC7775Dbm4u3n77bYwbNw6Wlpaoq6tDYWEhzp49i8zMTJiYmGDZsmWy+r6+vvDy8sL169exe/du1NTUYM6cObC3t8e9e/ewf/9+pKWlwd/fv8fduM8jb29vJCQkYMWKFSgoKICXlxeWLFmCoKAgDBw4EE1NTSgpKUF2djbS0tJQWVmJa9euyV0WNHr0aGzYsAHr169HUVERvL29sXTpUrlbXF65cgXp6ekQCAQ4c+aMrK6xsTFSU1MxadIkNDQ0ICgoCDNnzsT06dPh4uICqVSKyspK/Pzzz8jIyMC1a9ewY8cOBAYGypYxZ84crFq1CuHh4fDz88OwYcNgYmKC+/fv4+TJk9i1axeA9gdj9PW13eQ5wOntRIhBCg0NZQDYpk2b5Ka///77fXo3p86evg2lOq+//OUvsvqaPPRBle4eXtDc3Myio6MZj8frNr6n70jGGGN5eXnM2tpaaR1vb29WUVEh+xwXF6ewjM531uor6j70obv6qu6KtmfPHta/f/9u95uRkRG7detWl8vYvHkz69evn8r6yh76kJ2dzRwdHdX6bu3du1eurjp1LC0tld76lOg2OiImWiWVSmVHY0/fPKHjTluG1i3dmVAoxNdff43o6GgkJSXh7NmzKCsrQ0NDA8zMzODi4oIxY8YgJCQEr776qkL90aNH48qVK/jss89w7NgxVFRUwNzcHG5ubnjjjTewdOlSmJiYcLBlz97ixYsRFhaG3bt348SJE7h58ybEYjGMjY0xePBgeHt7Y/LkyZgxY4bcSOnOYmNjERkZia+//hqnTp1CWVkZGhsbYW1tjZEjR2Ly5MmYO3dul3UnTJiAW7duISUlBYcPH0ZeXh4ePnwIPp8POzs7eHp6IjAwEDNmzMDw4cPl6l6/fh1HjhxBVlYW7ty5g/v370MsFsPc3BwjRoxAcHAwoqOjMXDgwD7fb4R7PMa6uZCQEEIIIc8MDdYihBBCOESJmBBCCOEQJWJCCCGEQ5SICSGEEA5RIiaEEEI4RImYEEII4RAlYkIIIYRDlIgJIYQQDlEiJoQQQjhEiZgQQgjhECViQgghhEOUiAkhhBAOUSImhBBCOESJmBBCCOEQJWJCCCGEQ/8Pp87BqDUNYi0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAAGBCAYAAABlx8hIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABstUlEQVR4nO3dd3wU1drA8d/sZrObHkgChBpKQu81QGiKCAgoggUUFQVB8MWL3qsgCAqKVy8iV0BREVDgWlApogLSpIUAoUovCSWUBEhvm+y8f2yyJmQTUneTzfP9uJ/szpw588yO7DNnyjmKqqoqQgghhHA4GnsHIIQQQoiyIUleCCGEcFCS5IUQQggHJUleCCGEcFCS5IUQQggHJUleCCGEcFCS5IUQQggHJUleCCGEcFCS5IUQQggHJUleCFHqZs6ciaIo9OrVy96hlCpH3S7huCTJCyGEEA5KkrwQQgjhoCTJCyGEEA5KkrwQQgjhoCTJC1FOtGzZEkVRWLBgQZ55e/fuRVEUFEVh2LBheeYbjUY8PDxQFIUtW7bkmmcymVi5ciUDBgygevXqODs74+fnxwMPPMD//vc/7jXa9PHjxxk7diyBgYG4urri7u5Oq1atePPNN4mJiSnWth46dIgaNWqgKAr9+vUjMTGxxOu8+6a4LVu2MHDgQPz8/DAYDDRt2pS3336b1NTUAmP77bff6Nu3L97e3ri7u9O6dWs++OADjEZjsbZVCLtShRDlwssvv6wC6iOPPJJn3uzZs1VABVQfHx/VZDLlmr9r1y4VUPV6vZqSkmKZfuvWLbVHjx6WZQHVy8sr1+fBgweraWlpVmP697//rWo0GktZV1dX1dnZ2fLZ399fDQ8Pz7PcjBkzVEDt2bNnnnmbN29WPTw8VEB96qmn1PT09FJf5wcffKAqiqIqiqJ6e3uriqJYlu/du7eakZFhdXuz68h+eXt7q05OTiqg9ujRQ50yZUq+2yVEeSRJXohy4qefflIBtWrVqmpmZmaueffdd58KqJ6eniqgHjp0KNf8WbNm5Uk+GRkZas+ePVVAbdOmjbp+/Xo1KSlJVVVVTUxMVJcvX65Wq1ZNBdRXXnklTzxffvmlCqju7u7qu+++q167ds1S74EDB9Q+ffqogFq7dm01ISEh17L5JflVq1ZZEvarr76a52ClNNbp7e2tajQadcqUKWp0dLSqqqoaFxenvvXWW5bkvWTJkjzbu3btWsv84cOHq5cuXVJVVVWTk5PVhQsXqs7Ozqq3t7ckeVGhSJIXopy4ffu2pQV78OBBy/TU1FTVxcVFdXV1VV977TUVUOfOnZtr2d69e6uAOnPmTMu0r7/+WgXUJk2aqLGxsVbXeeDAAVVRFNXZ2Vm9ceOGZXp8fLwlof3+++9WlzUajWr79u1VQJ03b16uedaS/Ny5cy2t67vjL811AuqMGTOsLj906FAVUO+///4885o1a2aJ+e6DLFVV1c8++8xSvyR5UVHINXkhyokqVarQunVrALZu3WqZHhoaSkpKCt26dePBBx/MMz8tLY29e/cC0Lt3b8v0JUuWADB+/Hi8vLysrrN9+/Y0b96c9PR0tm3bZpn+448/EhsbS9u2benXr5/VZZ2cnHjyyScB2LhxY77bpaoq//znP3n11VdxcnJixYoVTJ48OU+50lqnXq/ntddeszpvyJAhABw9ejTX9KNHj3LixAkApk2bhkaT96dxzJgx1KpVK5+tFKJ8crJ3AEKIv/Xp04dDhw6xdetWS6LKTuh9+vSha9eu6PV6du7cSWZmJlqtlj179pCamoqLiwtdunQBIDMzk9DQUMB8Q9p7772X7zpv374NQGRkpGXa7t27ATh58iQ1atTId9mUlJQ8y+ZkNBoZNWoUK1aswN3dnZ9++om+fftaLVta62zevDnu7u5W59WsWRP4e5uzHThwADAfRISEhFhdVqPR0KtXL1auXJlvbEKUN5LkhShHevfuzdy5c9m5cycZGRk4OTlZWth9+vSxJPIdO3awf/9+unTpYpnftWtXnJ2dAXMSS0tLA+DOnTuFWndycrLlfVRUFACpqan3vBv97mVz2rNnD3v27AFg6dKl+Sb40lynh4dHvss4OZl/8jIyMnJNv3nzJgC+vr7o9fp8l69du/Y94xKiPJHT9UKUIz169MDJyYnExETCwsJITk5m3759eHl50b59e8Cc7OHvFn7235yn6jMzMy3vf/vtN1Tz/TcFvmbOnJln+ccff7xQy0ZERFjdnpYtW9KqVSsAJk+ezPnz5/Pd9tJapxDib5LkhShHPDw8LMl869at7Nq1i/T0dHr06IFWqwX+TuZbt24lKSmJsLAw4O/kD+Dj42NpteZ3Wrsg2afLi7NsTlWrVmXr1q20adOGy5cv07NnT86cOVOm6yyOatWqARATE0N6enq+5a5evWqrkIQoFZLkhShncibxnKfqs3Xu3BlXV1f27NnDli1bMBqNuLu707FjR0sZnU5Hp06dAFi/fn2RY+jWrRsABw8e5Nq1a8XeFjAfcGzZsoV27dpx9epVevXqxenTp8t0nUXVoUMHwHwaf+fOnVbLmEwmtm/fbsOohCg5SfJClDPZCX3v3r389ttvuaYBODs7061bN1JSUiw31HXv3t3Scs82duxYAH799Vd+/fXXAtd5941ow4cPx9vbG6PRyOTJkwvsFc9kMhEbG1tg/VWrVmXLli107NiRa9eu0atXL06ePFmm6yyKVq1a0bRpUwDeffddTCZTnjJfffUVV65cKbV1CmELkuSFKGe6deuGs7MzqampHDlyBD8/P1q2bJmrTHbS37dvH5D7eny2p556ivvvvx9VVXnkkUeYPXu25eY2gKSkJLZt28aECRNo0KBBrmW9vb35+OOPAfj2228ZOHAg+/btsyQ/k8nEyZMnmTt3Ls2bN+eXX36553Z5e3uzefNmunTpwvXr1+nVqxfHjx8v03UWxbvvvgvAtm3bGDFihCWhp6am8tlnnzFx4kS8vb1LdZ1ClDkbPIsvhCiikJCQXL2v3S00NDRX96thYWFW64mLi1MfeuihXGU9PT3zdPXq5ORkdflPP/00V5eyer1e9fHxUXU6Xa46V6xYkWu5grq1jY+PV7t27aoCqq+vr3rkyJEyX2e2bdu2WZa35s0338y1jipVqli6tQ0JCZFubUWFIy15IcqhnC3znKfqs3Xo0AFPT08APD09adeundV6PD09Wb9+Pb/++iuPP/44devWJS0tjeTkZGrVqsUDDzzAnDlzrF4jBxg3bhynT5/mtddeo3Xr1uj1emJjY3F3d6dDhw68/PLLbN682dJBTWF4eHiwceNGQkJCiImJsfQNUJbrLKzZs2fzyy+/0KdPHzw9PUlLS6Np06a8//77bNmyxfKIohAVhaKq9xiCSgghhBAVkrTkhRBCCAclSV4IIYRwUJLkhRBCCAclSV4IIYRwUJLkhRBCCAclSV4IIYRwUDLU7F1MJhNRUVF4eHigKIq9wxFCCCFyUVWVhIQEatasiUZTcFtdkvxdoqKiqFOnjr3DEEIIIQp0+fJlateuXWAZSfJ38fDwAMxfXnaPYkIIIUR5ER8fT506dSz5qiCS5O+SfYre09NTkrwQQohyqzCXlOXGOyGEEMJBSZLPsnDhQpo1a0bHjh3tHYoQQghRKmSAmrvEx8fj5eVFXFycnK4XQghR7hQlT8k1eSGEEPnKzMzEaDTaO4xKx9nZ+Z6PxxWGJHkhhBB5qKrK9evXiY2NtXcolZJGo6F+/fo4OzuXqB5J8kIIIfLITvDVqlXD1dVVOgezoexO2a5du0bdunVL9N1LkhdCCJFLZmamJcH7+PjYO5xKyc/Pj6ioKDIyMtDpdMWuR+6uL2NJCQmoJpO9wxBCiELLvgbv6upq50gqr+zT9JmZmSWqR1ryZWjFtOmkXmmCR9BFHp86zd7hCCFEkcgpevspre9eWvJZyuI5+bSrzqQZ/Ek4XRNjenqp1SuEEEIUhiT5LBMmTODEiRPs37+/1OrsOq4Pmsw00lwC+G7mO6VWrxBCCOt69erFK6+8Yu8wyg1J8mWoaedu6AkFIDWqKQnxcXaOSAghRGm7du0aI0aMICgoCI1GY/UgY9myZSiKkutlMBjKPDZJ8mXs/n8+jjYjiTSDPz++Ncfe4QghhChlaWlp+Pn5MW3aNFq3bp1vOU9PT65du2Z5RUZGlnlskuTLWN2gZuh1+wBIj2vPzWtX7ByREEI4toyMDCZOnIiXlxe+vr5Mnz6dsuzBPSAggPnz5zNq1Ci8vLzyLacoCjVq1LC8qlevXmYxZZMkbwND3noJXXosRr0Pv8xaYO9whBCiyFRVJTk9wy6voibo5cuX4+TkRFhYGPPnz+ejjz7iyy+/zLf8zp07cXd3L/C1cuXKkn6FJCYmUq9ePerUqcOQIUP466+/SlznvcgjdDZQ1b8mBs9wjKl9MKYFc/HUceo3aWHvsIQQotBSjJk0e2ujXdZ94p1+uDoXPl3VqVOHefPmoSgKjRs35tixY8ybN48xY8ZYLd+hQwcOHz5cYJ0lbXU3btyYr776ilatWhEXF8d//vMfunbtyl9//UXt2rVLVHdBJMnbyPB3/smKSb+Rrq/G1rmreP6L9+wdkhBCOKQuXbrkes48ODiYuXPnkpmZiVarzVPexcWFRo0alWlMwcHBBAcHWz537dqVpk2bsnjxYmbNmlVm65UkbyMunl641ThF+p1qGNVuHA3dSasuIfYOSwghCsVFp+XEO/3stu6ytHPnTvr3719gmcWLFzNy5MhSW6dOp6Nt27acO3eu1Oq0RpK8DQ2fOYXlY78jzaU2+z/fLEleCFFhKIpSpFPm9rRv375cn0NDQwkMDLTaigfbnK6/W2ZmJseOHWPAgAGlWu/dKsYecxA6vR7vxlHcuFSbdG1Xdv+2hm79H7Z3WEII4VAuXbrE5MmTefHFFwkPD+eTTz5h7ty5+ZYvjdP12QcJiYmJREdHc/jwYZydnWnWrBkA77zzDl26dKFRo0bExsby4YcfEhkZyQsvvFCi9d6LJPksCxcuZOHChSUeDOBeHnn9nywb/RWpLg059e1BSfJCCFHKRo0aRUpKCp06dUKr1TJp0iTGjh1bputs27at5f3BgwdZtWoV9erVIyIiAoA7d+4wZswYrl+/TpUqVWjfvj179uyxHASUFUUty4cHK6D4+Hi8vLyIi4vD09OzTNbx68JPuHisOaiZNOxxmQdHji6T9QghRHGkpqZy8eJF6tevb5Ne2UReBe2DouQpeU7eDgZMeBlDyl+gaInaeKtMO2kQQghReUmSt5NG/bwBSHFtz88L59k3GCGEEA5Jkryd9BzxNC4p4QDcCdNhyjTZOSIhhBCORpK8HbV+ogmKKZNU1+Z8+37ZdYYghBCicpIkb0ft+z+EwWgevz7ldE1SUtPsHJEQQghHIknezrqO64UmM51U14Z8//ZMe4cjhBDCgUiSt7MmnbtiUM29MxmjmhIbe9vOEQkhhHAUDpvkjx07hpOTU5mO7lNa+v7rcbQZyaS51Oant+fYOxwhhBAOwmGT/CuvvIKPj4+9wyiU2kFNMOjM1+YzYztw9colO0ckhBDCEThkkl+zZg0XLlxg9OiK05PckLdexMkYT7rej9/f/cTe4QghRIXUq1cvXnnlFXuHUW44XJJPT0/ntdde4/3330ev19s7nEKr4l8TN49DAGSmBXP6xDE7RySEEKIwrl27xogRIwgKCkKj0eR7kBEbG8uECRPw9/dHr9cTFBTEr7/+WqaxFSvJHzx4kPfff5+hQ4dSu3ZtFEVBUZR7LpeSksJbb71FUFAQBoOBmjVrMnr0aK5evVqcMKz6+OOP8fPz4/HHHy+1Om3l0Vmv4pwWg9HZm53zVtg7HCGEEIWQlpaGn58f06ZNo3Xr1lbLpKen07dvXyIiIli9ejWnT5/miy++oFatWmUaW7FGoZs1axZr164t0jKpqan06dOH0NBQ/P39GTJkCBERESxdupRffvmF0NBQGjRoUJxwLG7cuMG7777L77//XqJ67MXFwxP3Gqe5fceXDLU7B3ZtpUP3PvYOSwghKpSMjAwmTpzIN998g06nY/z48bzzzjuFaowWR0BAAPPnzwfgq6++slrmq6++4vbt2+zZswedTmdZrqwVK8kHBwfTqlUrOnbsSMeOHQkICCAtreCOXGbPnk1oaCjBwcFs2rQJd3d3AD766CNeffVVRo8ezfbt2y3lY2NjuX79eoF1urq6UrduXcvnqVOn8uCDDxIcHFyczSoXhr39OsvHfk+aoSaHv9oiSV4IUT6oKhiT7bNunSsUIUEvX76c559/nrCwMA4cOMDYsWOpW7cuY8aMsVp+586d9O/fv8A6Fy9ezMiRI4sUdk7r1q0jODiYCRMmsHbtWvz8/BgxYgSvv/46Wq222PXeS7GS/Ouvv16k8unp6SxYsAAwj9ueneABJk+ezPLly9mxYwcHDx6kffv2AHz77beMHz++wHp79uxpOTA4fvw4K1asIDQ0lNjYWMB89kBVVWJjY3F1dcXZ2blIcduDztkZn8Aooi7XxKjtzrZffqT3Q4/aOywhRGVnTIb3atpn3VOjwNmt0MXr1KnDvHnzUBSFxo0bc+zYMebNm5dvku/QoQOHDx8usM7q1asXJeI8Lly4wNatWxk5ciS//vor586d46WXXsJoNDJjxowS1V0Qm9x4t3v3buLi4mjYsCFt27bNM3/YsGEArF+/3jJt3LhxqKpa4Ctny//cuXOkp6fTrl07qlSpQpUqVfj3v/9NVFQUVapUyfcUSnk0+I1X0adcxKTVc2H1cRmKVgghiqBLly65Ts0HBwdz9uxZMjMzrZZ3cXGhUaNGBb48PDxKFJPJZKJatWp8/vnntG/fnscff5w333yTzz77rET13kuxWvJFdeTIEQDatWtndX729KNHjxZ7Hd27d2fbtm25pi1btowNGzbwww8/EBQUZHW5tLS0XJca4uPjix1DadFqtdTulMb5Y5DmHMz6FV8y+GnrR6BCCGETOldzi9pe6y5Dtjhd7+/vj06ny3VqvmnTply/fp309PQyO9NskyR/6ZK5c5f8ep/Lnh4ZGVnsdfj6+tKrV69c07Zv345er88zPac5c+bw9ttvF3u9ZeXBCS+x5JmFpLo0JXrzLUwjVTSasrlpRAgh7klRinTK3J727duX63NoaCiBgYH5Xvu2xen6bt26sWrVKkwmExqN+ST6mTNn8Pf3L9NLyTY5XZ+YmAiYb5Szxs3N/D9OQkKCLcLJZcqUKcTFxVlely9ftnkM+Ql60BuAVJcO/LDgQ/sGI4QQFcSlS5eYPHkyp0+f5n//+x+ffPIJkyZNyrd8aZyuP3z4MIcPHyYxMZHo6GgOHz7MiRMnLPPHjx/P7du3mTRpEmfOnGHDhg289957TJgwodS22xqbtOTtZebMmcycObPAMnq9vtx2mhPy5EjObpxHiqE1iQecMWZkonMqu7swhRDCEYwaNYqUlBQ6deqEVqtl0qRJjB07tkzXmfN+s4MHD7Jq1Srq1atHREQEYL4ZcOPGjfzjH/+gVatW1KpVi0mTJhX5RvaiskmSz76bPjnZ+uMXSUlJACW+saEkFi5cyMKFC/O9McNe2j3RmN0/m0h1bcX/5rzDqOnl79KCEEKUFzlvyP70009ttt7C3CAdHBxMaGioDaL5m01O12c/y37lyhWr87On16tXzxbhWDVhwgROnDjB/v377RaDNW0eHIBL+kEAjGf9SUiy03OqQgghKhybJPnsbv7Cw8Otzs+e3qpVK1uEU+GEjO+BYjKS6hrE6tkz7R2OEEKICsImSb5bt254eXlx/vx5q3cwrl69GoBBgwbZIhyrFi5cSLNmzejYsaPdYshPYKdgXE1ZQ9FGNeNmzC07RySEEKIisEmSd3Z2ZuLEiYD5tHj2NXgwd2t79OhRevbsaentzh7K6+n6bP1eG4YmM5U0l7qsmz3b3uEIIYSoAIp1492GDRuYNWuW5XN6ejpg7mUo2/Tp0xk4cKDl87Rp0/jjjz/Ys2cPgYGBhISEEBkZyb59+/Dz86tQPdLZg3+TJrg6fU+i2h1iO3LxUgT16wbYOywhhBDlWLFa8tHR0ezbt8/yyr6rMOe06OjoXMsYDAa2bdvG9OnTcXV1Zc2aNURGRvLss88SHh5e4hHoKoPB05/HyZhAmqEGW97/r73DEUIIUc4pqnSMDuR+hO7MmTPExcXh6elp77DyWPnKO8SmdkeXfocukxrSqnUbe4ckhHAwqampXLx4kfr162MwGOwdTqVU0D6Ij4/Hy8urUHnKJtfkK4Lyfk0+2yNvT0KXfhujcxXCFqywdzhCCCHKMUnyFYyrlxde1U8DkGnqwe4dW+wckRBCiPJKknwFNHTGazinXidD587J5ZtlKFohhMjSq1cvXnnlFXuHUW5Iks9Snp+Tv5vOoMcv6BoARm0Pfl/7nZ0jEkKIyuvatWuMGDGCoKAgNBqN1YOMXr16oShKnlfOp9DKgiT5LBXlmny2Qa+/gj71EiatgatrTmAySWteCCHsIS0tDT8/P6ZNm2bp4fVuP/30E9euXbO8jh8/jlarZfjw4WUamyT5Ckqr1VK3QyoA6c7d+HH5YjtHJIQQ5UNGRgYTJ07Ey8sLX19fpk+fXqaXNQMCApg/fz6jRo3Cy8vLapmqVatSo0YNy2vz5s24urpKkhf56zvhRQwpZ1A1OuK33cKYabJ3SEIIB6WqKsnGZLu8ipqgly9fjpOTE2FhYcyfP5+PPvqIL7/8Mt/yO3fuxN3dvcDXypUrS/oV5rJkyRKeeOIJ3NzcSrXeuzn0ePKOTlEUmjzgyeGdkOrSme8/+TcjX5li77CEEA4oJSOFzqs622Xd+0bsw1XnWujyderUYd68eSiKQuPGjTl27Bjz5s1jzJgxVst36NDB6rgqOVWvXr0oIRcoLCyM48ePs2TJklKrMz+S5LOU1/Hk76XbyBGc3vRfUlxakBruTEpaBi562a1CiMqrS5cuKIpi+RwcHMzcuXPJzMxEq9XmKe/i4kKjRo1sFt+SJUto2bIlnTp1KvN1STbIMmHCBCZMmGDpSagiaft4Q/asNZHq2pZvP5jBc9PftXdIQggH4+Lkwr4R++y27rK0c+dO+vfvX2CZxYsXM3LkyBKvKykpiW+//ZZ33nmnxHUVhiR5B9B2wEAO//Ahyfr2mM7W5HZ8IlU93e0dlhDCgSiKUqRT5va0b1/ug5HQ0FACAwOttuLBtqfrf/jhB9LS0njqqadKpb57kSTvIELGdWfTkgRSXZvy05y3eGHOR/YOSQgh7OLSpUtMnjyZF198kfDwcD755BPmzp2bb/nSOF2ffZCQmJhIdHQ0hw8fxtnZmWbNmuUqt2TJEh5++GF8fHxKtL7CkiTvIBp1DmbXF3NI0nRGudqcSzeuU7d6DXuHJYQQNjdq1ChSUlLo1KkTWq2WSZMmMXbs2DJdZ9u2bS3vDx48yKpVq6hXrx4RERGW6adPn2bXrl1s2rSpTGPJSUahu0tRRvcpb66eOsm6uRGYtHqcDWsZ8/F8e4ckhKiAZBQ6+5NR6EpZRerWNj+1mjTF3ekgAEpsJ06dP2fniIQQQtiTJPksFa1b2/w89OZzaDOSSDP4s3Puf+0djhBCCDuSJO9gqtSuhYf7EfOHlO6EhVfsgxYhhBDFJ0neAT08cyJO6bGk63058ukqe4cjhBDCTiTJOyA3b2+qVD8DgMnUky1bNto5IiGEEPYgSd5BPTzjFZzTosnQeXJx5R8yFK0QQlRCkuQdlLPBQPVGUQBkaHqx7ic5bS+EEJWNJHkHNvD1/0OfeoVMJxdifjkhQ9EKIUQlI0k+iyM8J383rZOWeu1TADDqQlj91UI7RySEEMKWJMlncZTn5O9234QxGFLOY9I6k7zrDilpGfYOSQghykyvXr145ZVX7B1GuSFJ3sFpNBqa9DWPSJemD+a7hXPsHJEQQjiWa9euMWLECIKCgtBoNPkeZHz88cc0btwYFxcX6tSpwz/+8Q9SU1PLNDZJ8pVAt6eexCX1BKpGS+ZhZxJS0u0dkhBCOIy0tDT8/PyYNm0arVu3tlpm1apVvPHGG8yYMYOTJ0+yZMkSvvvuO6ZOnVqmsUmSryTaPlofgFSXdvz4pQxDK4QoGlVVMSUn2+VV1HHUMjIymDhxIl5eXvj6+jJ9+vQi11EUAQEBzJ8/n1GjRuHl5WW1zJ49e+jWrRsjRowgICCABx54gCeffJKwsLAyiwtkqNlKo+2ggYT/uJhUQyAZB+JJTMvAXS+7XwhROGpKCqfbtbfLuhuHH0RxdS10+eXLl/P8888TFhbGgQMHGDt2LHXr1mXMmDFWy+/cuZP+/fsXWOfixYsZOXJkkeLOqWvXrqxYsYKwsDA6derEhQsX+PXXX3n66aeLXWdhyK98JVK/kzMnj0KGriurv1/Gs0+/YO+QhBCi1NWpU4d58+ahKAqNGzfm2LFjzJs3L98k36FDBw4fPlxgndWrVy9RTCNGjCAmJobu3bujqioZGRmMGzeuzE/XS5KvRHq9+AznX/iedH010rcfJvExac0LIQpHcXGhcfhBu627KLp06YKiKJbPwcHBzJ07l8zMTLRabZ7yLi4uNGrUqMRxFmT79u289957LFq0iM6dO3Pu3DkmTZrErFmzmD59epmtV37hKxGNVkO1uje5cqMaSmZ3fvhtA889PMTeYQkhKgBFUYp0yrwiscXp+unTp/P000/zwgvmM6gtW7YkKSmJsWPH8uabb6LRlM0tcpLkK5kHJo9m+avbSTdUw7jxa5L6D8RNWvNCCAeyb9++XJ9DQ0MJDAy02ooH25yuT05OzpPIs+Mpy5sC5de9knHxcsfb7Sy30lpjSOzMD1v38mz/EHuHJYQQpebSpUtMnjyZF198kfDwcD755BPmzp2bb/nSOF2ffZCQmJhIdHQ0hw8fxtnZmWbNmgEwaNAgPvroI9q2bWs5XT99+nQGDRqU78FHaZAkXwn1mTiUH/5zhhS3xhg3fkpSn2BpzQshHMaoUaNISUmhU6dOaLVaJk2axNixY8t0nW3btrW8P3jwIKtWraJevXpEREQAMG3aNBRFYdq0aVy9ehU/Pz8GDRrEu+++W6ZxKWpZnieoQBYuXMjChQvJzMzkzJkzxMXF4enpae+wyszXYxeQoGmGIWkvPP0gzz9gn0djhBDlT2pqKhcvXqR+/foYDAZ7h1MpFbQP4uPj8fLyKlSeks5wsjhq3/X56fS4eSCeNJcO3Nz2EUnSp70QQjgcSfKVVJP7OuOSHomq0VEtyp//7T5l75CEEEKUMknylVjj7j4AZDiFcHn7x9KaF0IIByNJvhLrMmogOuNtMnQe1LmqsmrPOXuHJIQQohRJkq/EtE5aajdIBkDJ6M3ZPz8nOV1a80II4SgkyVdyvScOQ5OZSqpLTQJvRLBi70V7hySEEKKUSJKv5Fy8XPH1ugqANr43x3b8T1rzQgjhICTJC3qPHQCqiRT35rS8s5MVeyPsHZIQQohS4FBJftmyZeZBFO56bd++3d6hlWu+QbXw1EQCoI0OYd+f66U1L4QQDsChkny2Xbt2sXfvXsurXbt29g6p3Os83NzjXbpLJzokrWVl6CU7RySEEEXXq1cvXnnlFXuHUW44ZJLv3LkzXbp0sbwcuXva0hLYuzUuGdcwaZ1xutaaP3b8QUp6pr3DEkKIcu/atWuMGDGCoKAgNBqN1YMMo9HIO++8Q8OGDTEYDLRu3Zrff/+9zGNzyCQvik5RFJp19wNA1fakR/q3rNwXaeeohBCi/EtLS8PPz49p06bRunVrq2WmTZvG4sWL+eSTTzhx4gTjxo3jkUce4dChQ2UaW7GS/MGDB3n//fcZOnQotWvXtlz7vpeUlBTeeustgoKCMBgM1KxZk9GjR3P16tXihJGvWrVq4eTkRKtWrVi9enWp1u3IOoy8D6eMeIzO3uiu1WT99j3SmhdCAOYxz41pmXZ5FXUctYyMDCZOnIiXlxe+vr5Mnz69TMdsDwgIYP78+YwaNQovLy+rZb755humTp3KgAEDaNCgAePHj2fAgAEFDoFbGoo1vuisWbNYu3ZtkZZJTU2lT58+hIaG4u/vz5AhQ4iIiGDp0qX88ssvhIaG0qBBg+KEY+Hv78+7775L586dSUlJYcmSJQwfPpw1a9YwZMiQEtVdGTjptAQ0MnIuApzS7qdP+nes3NeVF0JKtl+EEBVfRrqJzyftsMu6x87viU5f+DHXly9fzvPPP09YWBgHDhxg7Nix1K1blzFjxlgtv3PnTvr3719gnYsXL2bkyJFFijuntLS0PKPJubi4sGvXrmLXWRjFSvLBwcG0atWKjh070rFjRwICAkhLSytwmdmzZxMaGkpwcDCbNm3C3d0dgI8++ohXX32V0aNH57oLPjY2luvXrxdYp6urK3Xr1rV87tevH/369bN8fuihhwgJCeG9996TJF9IPV4cwIXXd5LiVhfX2xl8vz2ckZ3r4eJc+H9gQghhT3Xq1GHevHkoikLjxo05duwY8+bNyzfJd+jQgcOHDxdYZ/Xq1UsUU79+/fjoo4/o0aMHDRs2ZMuWLfz0009kZpbt2dJiJfnXX3+9SOXT09NZsGABYB63PTvBA0yePJnly5ezY8cODh48SPv25ru8v/32W8aPH19gvT179rzn43FDhgzhzTffLFK8lZlLFTeqeUdzPb4WTrF96euzmpX72klrXohKzslZw9j5Pe227qLo0qVLrkvIwcHBzJ07l8zMTLTavA0WFxcXGjVqVOI4CzJ//nzGjBlDkyZNUBSFhg0b8txzz/HVV1+V6XptcuPd7t27iYuLo2HDhrRt2zbP/GHDhgGwfv16y7Rx48ahqmqBL3n+vWz0GH0/AMnurfBNimTFjuOkGuXavBCVmaIo6PRau7wKc89XSezcuRN3d/cCXytXrizROvz8/FizZg1JSUlERkZy6tQp3N3dS3yZ+l6K1ZIvqiNHjgDk+7x69vSjR4+W6npVVeXnn3+2emCRLS0tLdelhvj4+FKNoSLya+KPl3YLcZk1MV2/nz4u61m5ryXPd69v79CEEOKe9u3bl+tzaGgogYGBVlvxYJvT9dkMBgO1atXCaDTy448/8thjj5VKvfmxSZK/dMncsUrt2rWtzs+eHhlZske2hg0bRqdOnWjVqhVpaWl8+eWX7N27l3Xr1uW7zJw5c3j77bdLtF5H1PnR1mz6PhqjSzAN1Nf5dPtJRnaui0En1+aFEOXbpUuXmDx5Mi+++CLh4eF88sknBd7FXhqn67MPEhITE4mOjubw4cM4OzvTrFkzwHzgcfXqVdq0acPVq1eZOXMmJpOJf/3rXyVa773YJMknJiYC5hvlrHFzcwMgISGhROsJCgriyy+/5MqVKwC0bduWX375hQEDBuS7zJQpU5g8ebLlc3x8PHXq1ClRHI6gUe8W/Pm/H0h18iXpcg+61/mDVfuaMlpa80KIcm7UqFGkpKTQqVMntFotkyZNYuzYsWW6zpxnjA8ePMiqVauoV68eERERgPkJs2nTpnHhwgXc3d0ZMGAA33zzDd7e3mUal02SvK289957vPfee0VaRq/Xo9fryyiiiktRFFp1r0bYXhNaTW/aOb3FR9v7MUJa80KIciznvVqffvqpzdZ7r+fwe/bsyYkTJ2wUzd9scuNd9t30ycnJVucnJSUB4OHhYYtwrFq4cCHNmjWjY8eOdouhvGnzRHecMpNIM1Tl1tVWtE/exap90qe9EEJUFDZJ8tnPsmefRr9b9vR69erZIhyrJkyYwIkTJ9i/f7/dYihvdHonGjQ0AeCaej/3G9bw2fZzcqe9EEJUEDZJ8tl9+YaHh1udnz29VatWtghHFEHXF+5DMWWQ5N6A6zdqEJR8kP+FSWteCCEqApsk+W7duuHl5cX58+etPqaQ3b/8oEGDbBGOVXK63jo3X3dqVLkDgOvtvgxz/plPt5+X1rwQQlQANknyzs7OTJw4ETCfFs++Bg/mbm2PHj1Kz549Lb3d2YOcrs9ft2dCAEj2bMuNpAz8E//iW2nNC+HwynJQF1Gw0vrui3V3/YYNG5g1a5blc3p6OmDuSjDb9OnTGThwoOXztGnT+OOPP9izZw+BgYGEhIQQGRnJvn378PPzK/Ou/UTxVW9WEy+nP4nLqIbT1b48HbiWD3c054lOcqe9EI5Ip9MB5pulXVxc7BxN5ZSdV/PrwKewipXko6Oj8/QoBLl7GYqOjs41z2AwsG3bNubMmcOqVatYs2YNVatW5dlnn2XWrFn5dpQjyodOQ1qy+ccbZLh0J9H0E+4JF/hufyOe6Rpg79CEEKVMq9Xi7e3NzZs3AXMfJ2Xdtaz4m8lkIjo6GldXV5ycSvaku6LK+RjAfE1+4cKFZGZmcubMGeLi4vD09LR3WOWGalL5atzPpGq80SR/h1e9q8x3eYUd/+wtrXkhHJCqqly/fp3Y2Fh7h1IpaTQa6tevj7Ozc5558fHxeHl5FSpPSZK/S1G+vMpm/7KdhIUaMaTcwDPwdT5KnM24wT2kNS+EA8vMzMRoNNo7jErH2dkZjcb6bXNFyVMO1eOdKFutH+/CwT2bSHWpTkJEZ0bX2MCn22vxeMc60poXwkFptdoSXxcW9mOTu+uFY3B20dGoofm6XJXkPtR13UNqfDTfH7hs58iEEEJYI0k+izwnXzidnusBaiaJno05HhXIKO1mFm07T1qGPDcvhBDljST5LPKcfOF4VnOnprd5tEDfmPvp4voHcfGxfL9fWvNCCFHeSJIXRdb5aXN/CEme7dkbV5XHtdtZtF1a80IIUd5IkhdFVrNFTTyd7qBqdHhdvo8hLr8RHZfI9wesD0AkhBDCPiTJi2LpOKgpACaXEHYbNQzW7GHRtnPSmhdCiHJEknwWufGuaILub4JeTcDo7IFyIYRnXH7helyytOaFEKIckSSfRW68KxqNVkPLzr4AuNKbcE0892kO8am05oUQotyQJC+KrfUTndCY0kh2q8ntix14Sb+OqLgUfpDWvBBClAuS5EWxGVx1NGpg7hynWmIfLumj6KSckmvzQghRTkiSFyXScVRXUE3Eezfnr6uB/J9hPVFxqaw+KK15IYSwN0nyokS8a3ri750EQN0bfVD1p2iqRLJo23nSM0x2jk4IISo3SfJZ5O764uv4ZAcAEr06s+NOTV4xbOBqbIq05oUQws4kyWeRu+uLr3brmng6xWPSOuMf2ZPauv3UUW6wcNs5ac0LIYQdSZIXJaYoCu0GBAJgcunBOqM3k1x+l9a8EELYmSR5USqaPNAUZzWZdL03nueC6azdgS9x0poXQgg7kiQvSoXWSUOLTlUBcDP15ieNgQmum7kam8KP4dKaF0IIe5AkL0pNm8c6oFGNJHnUJfV8KwZrNuNBMgu2SmteCCHsQZK8KDUuHs40qGfuHKd2fG/W62GM6w6uxqbwk7TmhRDC5iTJi1LVYZR5rPnYKq24eLk+zzj9hp50Fmw7hzFTWvNCCGFLkuSzyHPypcOntic1vJJB0RAU1Ys/dck847qXK3ekNS+EELYmST6LPCdfetoPbwNAgncwu25XY4J+A1oy+WSrtOaFEMKWJMmLUlevfS08nJLIdDLQ+HwIfxHDY66HpDUvhBA2JklelDpFUWjTrwEAqmtP1qd78arrBkCVa/NCCGFDkuRFmWjWrwk6Ukk1+FD7VAdupV/gIdeTXL6dws/hV+0dnhBCVAqS5EWZcHLW0qydNwCept585+TJVM/fAfhk21lpzQshhA1Ikhdlpu3j7VHUDOK9GqI70xhNwiF6uUWYW/OHpDUvhBBlTZK8KDNuXnrq1zV3jhMQ25tvXT2YWWUzAAvkTnshhChzkuRFmeow0tzvwB2fttyMrIXvre10cLvJpdvJ0poXQogyJklelCm/AG+qeaaiKlpaXO3Bj+7uvOu3BYB5m89wITrRzhEKIYTjkiQvyly7R1sCkODdnfBbvtS/+RvtvZO4FpfKkAW72Xrqhp0jFEIIxyRJPot0a1t2GnSsjZtTChk6V9qe7cJmF2e+abafDvWqkJCWwfPLD7Bw2zlUVbV3qEII4VAkyWeRbm3LjqJRaH1/PQBMLj35Lc0Ll2MrWDUyiJGd66Kq8OHG00xYFU5SWoadoxVCCMchSV7YRPMHm+BEOimu1Wl6shVh2kycw7/k3Uda8t4jLdFpFX49dp2hi/YQeSvJ3uEKIYRDkCQvbMLZ4ETTNp4AeGX25nsnT9i7CGLOMaJzXb4d2wU/Dz2nbyQweMFu/jwTbeeIhRCi4pMkL2ym7WPtUFQTcd6N8TlZn7OmZFgxFBJv0r5eVX55uTtt6ngTl2Lk2aVhfP7neblOL4QQJSBJXtiMR1UDdWub3zeI7c1K7xoQGwmrHoP0JKp7GvjuxS481qE2JhXe+/UUk749TEp6pn0DF0KICkqSvLCpDk+2B+C2T3uSz3py0sMXog7BD89CZgZ6Jy3/frQV7wxpjpNGYd2RKB79dA9X7iTbN3AhhKiAJMkLm6rRqAq+HmmoGh3tIrsyrXZD0pwMcHYTbJgMqoqiKIwKDmDlC53xcXPmxLV4Bi/YzZ7zMfYOXwghKhRJ8sLm2j7cHID4KiEE7I5mQadhoGggfDn8+aGlXOcGPqx/uTsta3lxOymdp5eE8dWui3KdXgghCsnhkrzRaGT27Nk0aNAAvV5PQEAAc+bMsXdYIodGXWrjbsjA6OxByLkQVl/4k4M9J5lnbnsXDq20lK3p7cIP44J5pG0tMk0q7/xygld/OEKqUa7TCyHEvThckn/66adZvHgxU6dOZePGjcyYMQNFUewdlshBo9XQ+TFza/6Gf18e3a3jzVuhJHWdaC6w/v/g3B+W8gadlo8ea830h5qh1Sj8FH6VxxbvJSo2xR7hCyFEhaGoDnTuc8OGDTzyyCMcPXqUJk2aFKuO+Ph4vLy8iIuLw9PTs5QjFNlMJpVVU7YTF6dSL2IDC/pupEuXYcy8fhWOfQ/O7vDsBqjZJtdyu8/FMHFVOHeSjfi6O7NoZHs61a9qn40QQgg7KEqecqiW/LJly+jTp0+xE7ywHY1GoUtWa/5K7T48tc2FH8/9yJ8dnoD6PSE90fxo3Z3IXMt1a+TLuondaervSUxiOiO+COWb0Ei5Ti+EEFYUK8kfPHiQ999/n6FDh1K7dm0URSnUKfGUlBTeeustgoKCMBgM1KxZk9GjR3P1aumMKx4WFkZgYCAvvfQS7u7ueHh4MHLkSO7cuVMq9YvS1bCtH1WrOZPp5IJ3Zh/anjPxVugs7jz8CVRrDok3YOUwSL6da7k6VV35cXwwD7XyJ8OkMn3Ncab8dIy0DLlOL4QQORXrdP3DDz/M2rVr80wvqKrU1FR69+5NaGgo/v7+hISEEBERQVhYGH5+foSGhtKgQYOihpKLXq/H2dmZNm3a8OabbxITE8Orr75KcHAwa9asKVQdcrreti4ejeHXRUfRZKYRdGYWrz4TT58GDzC3zWSUrx6A+KtQpwuMWgs6Q65lVVVl8Z8X+OD3U5hUaFvXm8+eak91T0M+axNCiIqvKHnKqTgrCA4OplWrVnTs2JGOHTsSEBBAWlpagcvMnj2b0NBQgoOD2bRpE+7u7gB89NFHvPrqq4wePZrt27dbysfGxnL9+vUC63R1daVu3bqWzyaTCVVVWbNmDT4+PgAYDAaGDx/O2bNnCQwMLM7mijIU0NKHanXcuHkZktz7MPDgWtZpN/Nr3fsYOHI1fPUgXA6Fn8bA8GWg0VqWVRSFcT0b0tTfk5dXhXPoUiyDPtnFZ0+3p13dKvbbKCGEKCdK5cY7g8FAWlpavi359PR0qlWrRlxcHOHh4bRt2zbX/NatW3P06FEOHDhA+/bmHtE+++wzxo8fX+B6e/bsmevAoFq1ajRs2JC9e/dapsXExODn58fatWsZPHjwPbdFWvK2d/nEbdb99zAak5GOR95l0jO3Uat48tPgn6hx86y5f/vMdOg8Dh58H6xcGoqISWLsNwc4cyMRZ62Gd4Y054lOda2sTQghKrZyd+Pd7t27iYuLo2HDhnkSPMCwYcMAWL9+vWXauHHjUFW1wFfOBA/QtGnTfA80NBqHusfQodRuWoWajbwwaXRcqXYf48O8SUhP4K3db6EGdIeHPzUX3PcZ7F1otY4AXzd+eqkbDzavQXqmiTd+Osb0NcdJzzDZcEuEEKJ8sUnmO3LkCADt2rWzOj97+tGjR0u0ngEDBnDs2DFiYv7u/nTr1q0oikKLFi2sLpOWlkZ8fHyul7AtRVHoPMR8P0aUf1eaHVEIjHZi77W9fHf6O2g5DPrOMhfe9CYc/9FqPe56JxaNbMdrDwShKPBNaCRPfbmP6ISCLyUJIYSjskmSv3TpEgC1a9e2Oj97emRkpNX5hfXiiy/i7e3NkCFD+OWXX1i2bBkTJ07kqaeeIiAgwOoyc+bMwcvLy/KqU6dOiWIQxVMzsAp1mlVF1Wi5WPdB3thbDVSVjw5+RGR8JHR92Xy6HuDncRCxy2o9Go3CxD6BfDmqAx56J8IibjN4wS6OXom13cYIIUQ5YZMkn5iYCJhvlLPGzc0NgISEhBKtx9vbm61bt+Lq6spjjz3Ga6+9xrBhw/jss8/yXWbKlCnExcVZXpcvXy5RDKL4Og8yt+av1+iM5kIqT91oREpGCm/uepMMNRP6vQdNB5mvz387Am6ezLeu+5pWZ83EbjTwc+NaXCrDPtvLjwev2GpThBCiXHC4C9WNGzdm8+bNJCcnExMTw6JFi/I9uADzY3eenp65XsI+qtf3JKCVLygaLgYMZMjvsVTBjSPRR1j21zLznfVDvzA/UpcaByuGQXxUvvU19HNnzYRu3N+0GukZJl794Qhvr/8LY6ZcpxdCVA42SfLZj8slJ1sfEzwpKQkADw8PW4Rj1cKFC2nWrBkdO3a0WwwCOg+uD8DN6h1IiNfy7pXOACw8vJBTt0+BzgWe/B/4BEL8FVg5HFLzv4/C06Dj86c78H/3mR+fXLo7glFLwridlF72GyOEEHZmkySf/Sz7lSvWT5dmT69Xr54twrFqwoQJnDhxgv3799stBgG+tT1o1L4aABcCBuK3eieDPLuRYcpgys4ppGemg2tVeGo1uFWDG8fhu6cgI/+krdEoTO4bxOKn2+PmrGXvhVsM+mQXf0XF2WqzhBDCLmyS5Fu3bg1AeHi41fnZ01u1amWLcEQ51/Gh+igKxPi1Ic7JjzG7DFQ1VOVc7DkWHF5gLlQlAEb+ADo3uLgD1k2Ee3T50K95DX6e0I0AH1euxqbw6Kd7WHck/9P9QghR0dkkyXfr1g0vLy/Onz/P4cOH88xfvXo1AIMGDbJFOKKcq+rvRlDnGgBcqP8QqRs2Mtt7FADLji8j/EbWwWLNNvDY16Bo4eh3sOWde9YdVN2DtRO60zPIj1Sjif/73yHm/HqSTJMMcCOEcDw2SfLOzs5MnGgeK3zChAmWa/Bg7tb26NGj9OzZ09LbnT3INfnypePAADQahdtVmxPr1ZDaSzbxcIMhqKhM3TWVJGPW/0OB98Pg/5rf7/oI9n95z7q9XHV89WxHxvdqCMDiPy/w6Kd7mLH2OPP/OMuK0Eh+P36NsIu3OR+dSFyyUUa5E0JUSMXq1nbDhg3MmjXL8jksLAxVVencubNl2vTp0xk4cKDlc2pqKr169WLfvn2WAWoiIyPZt29fqQ1QUxqkW9vyY9vKU5zYGUWV+HO0DZ9H1dkzeZolXEu6xrCgYcwInvF34e3/hu3vgaKBx1dCkwGFWscvR6P45w9HSTEWPIKdk0ahqpszPu56fN2dze/d9Pi4O+OTNT3nezdnbaFGZhRCiKIqSp4qVpJftmwZzz33XIFlli5dyrPPPptrWkpKCnPmzGHVqlVcvnyZqlWr8uCDDzJr1qx8O8qxNUny5UfC7VRWvLUXU4ZKm8Pzqaa7w53ls3l+5wQAFt63kB61e5gLqyqs/z8I/xqcXOCZ9VCncGdlImKS2Hb6JrcS07mVlM6txLRcfxNSM4ocu95Jkyv5V3Vzxtddj49bjvfuWfPdnDHotPeuVAghsEGSd0QLFy5k4cKFZGZmcubMGUny5cTO785wdNsVvFOv0jb0PXxffJGl3dJYcXIFvi6+/Dz4Z7wN3ubCmRnw7ZNwdhO4+sDzm8GnYYljSMvI5HZSeu6DgHwOCGIS00g1Fv05fDdnLT7ueqq6OVPFVYdWo0FRQAE0ioKimP9iZZoCkON99jzzyzwtZ1klez4KGoW76s49zVx30c5IFPX8RVGqV4pcuxDly4s9G5T4oF6SfAlIS758SYpLY8W0vWQYTbQ6ugi/xLPUWvsjI49M5mLcRR4MeJAPe3749wJpibBsIFw7DFXqmxO9u59NY05Ozyj4gCDX9DSMmfJPUIjK4siMB/By0ZWoDknyJSBJvvzZ89M5Dm26hKfpNu3/nI5n377EzXiRkb+OJFPN5IMeH9C/fv+/F0i8CV/eD7GRULMdPPsLOLvZbwMKoKoqCWlZBwVZBwGxyemYVDCpKqoKalY5NZ9pKiomFct7Vc1Z/u/5qCoqueswZb1RAZMp93yy5xdpe4q4/RR+AfmlEo5g2sBmuDhLS95uJMmXP6mJRr6etgdjaiYtTnxJtZuHqLtsGV8bwll0ZBGezuax56u7Vf97oZhzsKQvpNyGwH7wxCrQOtlvI4QQopSUu/HkhSgJg7uO1veZRwe81OpJVBRuzJnD882epblPc+LT45mxZ0bux9x8G8GI78DJAGc3wobJ0hQUQlQ6kuSzyHPy5Vub++qgd3UiPsON6IAQ0k6fJumntbzX/T30Wj27o3bzw5kfci9UpxM8ugRQIHw57PyPXWIXQgh7kSSfRfquL9/0rjraPmAeAyGiyaOYFA3RH8+nnuLDK+1eAeA/B/7DpfhLuRds+hAMyLoxb+tsOLzKhlELIYR9SZIXFUbLXrVx8dCRmOpETMuHyIyNJWbRIkY0HUGnGp1IyUhh6q6pZJru6tim0xjo9or5/bqX4dwWm8cuhBD2IEleVBjOBifa9TOPVHixTj9MihO3V67CeOEis7vNxl3nzpHoIyz9a2nehe+bAS0fA1MGfD8Krh2xcfRCCGF7kuRFhdKiRy1cvZxJSoJbvZ6FjAxuvP9v/N39eaPTG4B57PnTt0/nXlCjgSELoX4PSE80j0MfeynvCoQQwoFIks8iN95VDE7OWjr0DwDgvFsHMvWuJO3cSeKOHQxuOJg+dfqYx57flTX2fO6F4fEVUK05JN6AFcMg+bbtN0IIIWxEknwWufGu4mjWrSYeVQ0kJ2Zy56H/A+DGnPfBaOSt4LeoaqjK2TtnWXh4Yd6FDV7mceg9a0HMafh2JBhTbbwFQghhG5LkRYWj1WnoMDAAgDOp9VH9/EmPiOD2ylX4uPjwVpe3AFj21zIO3TyUtwKvWjByNei94NIe+HksmIre37wQQpR3kuRFhdSkSw28/FxITcrg9pBXAYhZtIiMW7e4r959DG44GJNq4s1db5JsTM5bQfVm8MQK0DrDibXmznKuH5NWvRDCoUiSFxWSRquh06D6AJy66oG2eRtMCQlEz/8vAG90eoMabjW4nHCZuQfmWq+kfg94+FPz+4NL4bPu8J4/zG8DKx+DTdMg/Bu4HAYpsWW/UUIIUcqk7/q7SN/1FYfJpPLd7DBuRyXRuq0en3kvgKJQ/6cfMTRtyr5r+3hh0wsALLpvESG1Q6xXdOQ7OLAEok9Damz+K3SvDr5B4NcYfBuDX5D5r0eNIg/HKoQQxSUD1BSDjCdfMZ0/dJPfFx9Hp9dyv+Y30n5bi2vHjtT9ejmKovDvsH+z4uQK/Fz8+HnIz3jpvfKvTFUhKdqc7GNOQ/SZv/8mROW/nN4LfAOzkn/Q33+rBICmZKNNCSHE3STJl4C05CsWVVX5/r39xFxOpFVwVfzmPYeamkqtjz/G88F+pGak8tgvj3Ex7iL9A/rzQc8Pirei1HiIOZuV9E9DzBnz3zsXQc3npj2tHnwa/d3iz/7r0wh0huJvtBCiUpMkXwKS5CueiGMxbFh4FCedhv71T5H0+Xx0NWvS4NcNaAwGjscc56lfn7I+9nxJZaTBrfN5W/63zkJGPjfxKRrwrndXyz/rIMBQwJkGIYRAknyJSJKveFRV5acPD3L9QjwtQ2rg/8UEMq5fx++VSfiOGwfAosOL+PTIp3g6e/LzkJ+p5lqtbIMyZZp71Mtu8ec8CEiNy3859xrg0xCc9KBozQcEmqy/lvfaHNO05t78cpXNnq9YKVtQXTmm5Xqf3/0G+Uwv6v0JRalf7n0oQHn5biSlFKjxQHPHXCUgSb4EJMlXTFdO3Wbtx4fROCkM6ZlC3PRXUVxcaPj7b+iqV8doMvLUr09x4tYJutXqxqf3fYpij4Shqube9nKe8s8+AEi8bvt4hBC29XokuHiXqIqi5CmnEq1JiHKidpOq1GrszdXTsZxOq0/9du1ICQ/n5ty51PrgA3QaHXO6z2H4+uHsvmoee/6xxo/ZPlBFMd+N71EDGvTMPS8l1nzdPzbSPJCOKdN8vV/NzPHelPU+M/d7k8lK2ezpmVaWs1bWyjruHtHPIp+2Qb5thqKWL2HZSqe8fTfl5axCOWTjm3GlJX8XaclXXNfOxfLTf8LRaBSGjqzK7ReeBFUl4Nv/4dKmDQDfnPiGD/Z/gIuTCz8O+pE6nnXsG7QQQhRRUfKUdIYjHIZ/I2/qNvfBZFI5dlaH1yOPAHD9vTmoWd3Wjmw6ko41OpKSkcKbu9/MO/a8EEI4EEnyWWQUOsfQebC5F7wz+66jGzkOjasrqUePErduHQAaRcOsbrNw07lx6OYhlp9Ybs9whRCiTEmSzyKj0DmGavU8adDGD1WF8D1x+L40HoDouR9hSkoCoJZ7LV7v+DoACw4tyDv2vBBCOAhJ8sLhdBpUHxQ4d/AmmfcNRVe3LhnR0cR8/oWlzMONHqZXnV4YTUam7pqad+x5IYRwAJLkhcPxqeVOYIfqAOz/7QrVX/8XALeXLiX98mUAFEVhRvAMquircObOGRYdXmS3eIUQoqxIkhcOqdND9VEUiDgaQ1KDDrh1DUZNT+fmBx9ayvi6+DIjeAYAS44vYdDPg/hg/wfsjdorLXshhEOQR+juIo/QOY4tX5/k1J5r1GlWlQcedOXiI0MhM5O6y5bh1qWzpdzHBz9m+V/LyVAzLNNcnVzp4t+FkNohdK/VnRpuNeyxCUIIkYf0eFcCkuQdR3xMCivfCsVkUnnk1bZo/reAO6tWoW/cmPo/rkZx+rsvqIT0BPZG7WXn1Z3svLKTW6m3ctXVuEpjQmqHEFIrhFZ+rXDSSD9SQgj7kCRfApLkHcv2Vaf568+r+DfyYtDo+lzoPwBTXBw1Zs6gyhNPWF3GpJo4dfsUf175k51Xd3Is+hhqjh7FPJw96FazGz1q96BbrW5UNVS11eYIIYQk+ZKQJO9YEu+ksmJ6KJkZJgb/Xxvcwn/jxuzZaL29abjxd7Re9x717U7qHXZH7WbnlZ3sjtpNXNrfA8woKLTwbUFIrRBCaofQzKcZGkVudRFClB1J8iUgSd7x7Pr+LEe2XqZagCePvtqai488Qvq581R9ZhTVp0wpUl2ZpkyOxRzjzyt/suvqLk7ePplrflVDVbrX6k5I7RC61uyKp7P8PySEKF2S5EtAkrzjSY5P55tpe8hINzHgpVb4JZzm8vMvgJMTDdauQd+wYbHrvpl8k91Xd/PnlT/Ze20vScYkyzytoqW1X2t61O5BSO0QAr0D7TPynRDCoUiSL4aFCxeycOFCMjMzOXPmjCR5B7P35/OEb4zEp7Y7j0/tyJWJE0ncuhW3kBDqfvF5qazDmGnk0M1D7Ly6kz+v/MmFuAu55ld3rW65ea+Lfxdcda6lsl4hROUiSb4EpCXvmFKTjHzz5h7SUzPpN6YFdX2SOT9oMBiN1Fn8Ge49e967kiK6knCFXVd3sfPqTsKuhZGamWqZp9Po6FC9gyXpB3gFlPr6hRCOSZJ8CUiSd1xhv1xk/y8XqVLDlSfe6kz03P9we8lXOAcE0GDdWhRn5zJbd2pGKgduHODPK3/y55U/uZp4Ndf8uh51LQm/Q40O6LX6MotFCFGxSZIvAUnyjistJYNvpu0hLSmD+59tSqMWHpzv9yCZt25R7fXX8XnuWZvEoaoqEfER7Lyyk51Xd3LgxgEyTH93xOOkOKF30qPT6HDSOFn+5nyf39/s9zmnl6QeJ41TrqcFFP6+pyDn/QU5p+d+a71MvsvmkF0mv/n3kvOxx0KVt9NPYWndp1Hc70nYVgOvBmg12hLVIUm+BCTJO7bwjZHs/fk8nr4GRrzdhYQ1P3PtzWlo3N2pMX0angMH5uokxxaSjEmEXgu1JP2byTdtun4hhO3sfnJ3iZ+6kSRfApLkHZsxLZNvpu0hJcFIr5GNadbNn8gRI0k5fBgAXd26+L44Fq/Bg1F0OpvHp6oqN5JvkJ6ZToYpA6PJaPmb831BfwtTxphpJEO9q97saTn/mjKstohz/mzknJ/rfT5lcr8teNmitsbvVtTWbVk9/VDUn9mSbrcov3555Bc8nD1KVIck+RKQJO/4jmy5zK4fzuJeRc/Id7qgSU/l9spV3F66lMw7dwDQ1aqFz5gxeA19BE0ZXqsXQoiiKkqekq65RKXTvEdN3Lz1JN5J48SuKDRubviOHUOjLX9Q7V//Quvri/HqVa7PnMn5B/pxe8VKTGlp9g5bCCGKTJK8qHScdFo6DAgA4MBvkRjTMwHQuLriM/o5Gm3eRPWpU3CqVo2M69e5MXs25+/vy+3lyzGlpNgxciGEKBqHSvK9evVCURSrr2vXrtk7PFGONO3qj6evgZT4dI5tv5JrnsbFhaqjRtFw8yaqvzUdJ39/MqKjuTHnfc7d35dbS5ZgSkrKp2YhhCg/HOqa/IkTJ4iPj881beLEiRiNRo4cOVKoOuSafOVxau81tiw/icFNx9PvBuNssH5XvZqeTuyaNdz6/AuMV8wHBFpvb6o++yxVnhqJ1t3dlmELISo5ufEuy507d6hevTozZ85k6tSphVpGknzlYco08b93woi9kUznwfXpMKB+geVVo5G49b8Qs/gzjJGXANB4elJ11CiqPv1UoUa0E0KIkpIb77L8/PPPGI1GHn/8cXuHIsohjVZDp0HmxH5o82XuXC/4FLyi0+E99BEabthAzQ8/wLlBA0zx8cQsWMC5++7n5scfk5F1d74QQpQHxUryBw8e5P3332fo0KHUrl3bct37XlJSUnjrrbcICgrCYDBQs2ZNRo8ezdWrV++5bHF89913tG/fnoYlGGVMOLZG7arhW8ed9JQMfphzgLMHbtxzGcXJCa9Bg2iwfh21PpqLPjAQU2Iitz5bzPn77ufmf/5Dxq1bNoheCCEKVqzT9Q8//DBr167NM72gqlJTU+nduzehoaH4+/sTEhJCREQEYWFh+Pn5ERoaSoMGDYoaSr5iYmLw9/fnvffe45///Gehl5PT9ZVPUlwam5f8xdUzsQC07FWbbo82Qqsr3DGwajKR8McfxHz6GWknzePLKwYDVZ54gqqjn0NXrVpZhS6EqITK/Jr8v//9b5KSkujYsSMdO3YkICCAtLS0ApP8tGnTePfddwkODmbTpk24Z92s9NFHH/Hqq6/Ss2dPtm/fbikfGxvL9evXC4zD1dWVunXrWp23ePFixo0bR0REBPXq1Sv0tkmSr5xMmSbC1l/k4O+RAFQL8KTfmOZ4+rgUug5VVUnctp2YTz8l9dgxABRnZ7wfewyfF55HV6NGmcQuhKhcbH7jncFgKDDJp6enU61aNeLi4ggPD6dt27a55rdu3ZqjR49y4MAB2rdvD8Bnn33G+PHjC1zv3QcGOd13330kJyezd+/eIm2LJPnKLeJYDH8sPUFacgZ6Nyf6Ptecei18ilSHqqok7dpFzMJFlu5yFZ0Or0eH4jtmDLpatcogciFEZVHubrzbvXs3cXFxNGzYME+CBxg2bBgA69evt0wbN24cqqoW+Movwd+4cYMdO3bIDXeiyAJa+vLY1I5Uq+dBWlIGvyw4Quja85hMhT8WVhQF95AQ6v1vFXWXfoVrx46oRiOx337HuX4PEjVtGumXLpXhVgghhJlNknz2M+rt2rWzOj97+tGjR0tlfatXr8ZkMjF8+PB7lk1LSyM+Pj7XS1Runr4uDH2tPS16mlvcB3+LZN38wyTHpxepHkVRcAsOpt43X1P36+W4BneBjAziVv/I+f4DiHr9DdIuXCyLTRBCCMBGSf5SVquldu3aVudnT4+MjCyV9X333Xd0796dWoU4LTpnzhy8vLwsrzp16pRKDKJi0+o09HyyMX2fb4aTXsvV03f47t0wos4W7xE5t06dqLd0KfVWrcItJAQyM4lbu5YLDz3E1VdfI+3s2VLeAiGEsFGST0xMBMw3ylnj5uYGQEJCQonXFRUVxa5duwp9qn7KlCnExcVZXpcvXy5xDMJxBHWswfA3OlDF343kuHTWzDtM+MbIIg8dms21XVvqfvE5Ad9/h3vv3mAyEb9hAxcGD+HKpFdIPX26lLdACFGZWe/HswKrWbMmJpOp0OX1ej16vb4MIxIVXVV/N4a/0YHtK09xJuwGe38+z7Xzcdz3TFMMbsUbc96lVSvqfLqI1BMniPn0MxI2byZh40YSNm7ErWcP9AEBKC4uaAwuaFxdcr3XuGR9drHy3snh/kkLIUrAJr8I2Y/LJScnW52flDXYh4eHhy3CsWrhwoUsXLiQzMxMu8Ugyi+dXsv9zzXDv5E3O78/Q8TRGH6Ys59+Y1pQrV7xn8IwNGtG7U/+S+rpM9xa/Bnxv/1O0o4/SdrxZ7HqU3Q6FFdXNAaDOem7Zh0cuNx1sJDfPCsHD2i0KAqgKOYXOd8r5v+yP+d8ZcdkdZ6Su8676lUg7zJ3d7h199mUEn7Oc27mXsvnx1rHYFamWe0+rJDLWp12N2vxFnKa1S0tQX1lUaa4z4Xl+erunlDSz1jZtznLODkVqvO40mKTJJ/9LPuVK1eszs+eXpTn2UvbhAkTmDBhguXRBCHupigKLXrUolo9DzZ+cZz4mFR+/PAgIY8F0TykZon+4RoaB1Hro4/wnTCBhM1/YEpKxJScgik1BTUlJet9KqaUZNTkFEwp5s9qcrJ5+NusXzzVaESNi8MUF1damy2EKEVB+8PQ2rBBa5Mk37p1awDCw8Otzs+e3qpVK1uEI0SJVKvnyfApHdmy/CQRR2PYseo0187H0mtEE3R6bYnq1jdsiL6I3TCrqoqaloYpJeuAICUFU0oqaor5ACDvwUKO9ylZn7Pfp6SgpuaclwqZmX83m1TV3MpT1bwvIUS5Y/POcA4dOkSbNm1yzbfWGY6t5Txdf+bMGekMR9yTqqoc2nyJ0DUXUE0qVWu68eDYFlSp4Wbv0OxKtXYAkH1wYC6Qd575yMHqfDXHAca9TlPnOZtS4lOvSsGz72L9J7AEp7kLe3pdVfM/k1SU6UWtw/pFh4K/p4JmlsW8nEp6SSfvNZ2Cl7cyTePhUeLT9eWuxzv4u1vbrl27smnTJssd9fl1a2sv0uOdKKqos3fY+OVfJMel46TX0uepJgR2rG7vsIQQDqrMk/yGDRuYNWuW5XNYWBiqqtK5c2fLtOnTpzNw4EDL59TUVHr16sW+ffssA9RERkayb9++MhmgprgkyYviSI5PZ9OS41w9HQtAy5616DYssNCD3AghRGEVJU8V65p8dHQ0+/btyzM957To6Ohc8wwGA9u2bWPOnDmsWrWKNWvWULVqVZ599llmzZqVb0c5QlQErp7ODJ7UlrD1Fzj4WyTHdlzlRkQ8/ca0wNO38IPcCCFEaSqV0/WOQK7Ji9IScSyGP5adIC0pA72rE/c/14yAlr72DksI4SBsfk3ekcjpelEa4m+lsPHz49yMNPfi2O7BenQeVB+NVk7fCyFKptyNQidEZePpYx7kpmUv82Wo8N/Ng9wkxaXZOTIhRGUiSV6IMqLVaejxRBAPvNAcnV7L1TOxfP/ufq6eKd4gN0IIUVSS5LMsXLiQZs2a0bFjR3uHIhxMYIfqDJ/Sgao13UiOT2ftvEPmQW6KMEa9EEIUh1yTv4tckxdlxZiWyY5Vpzm97zoAAS19uO/ZZsUe5EYIUTnJNXkhyiGdXst9zzal18jGaJ00RBy7xffv7edmZLy9QxNCOChJ8kLYkKIoNA+pxaP/ao+nr4GEW+ZBbo7/ebXYY9QLIUR+JMkLYQd+dT14bGpH6rf2xZShsmPVaf5YeoL01Ax7hyaEcCCS5LPIjXfC1vSuOvqPa0nXoY1QNApnwm6w+v0D3L6WZO/QhBAOQm68u4vceCfsIepsLBu/PE5yXDpanQbvai4Y3J1xcdfh4q7D4GF+b8j67OLhjCHrs1Y62BGiUpEe70pAkrywF/MgN39x9XTRnqPXuzphcNPh4qH7+8DAQ4fBzTlrmg4X97/f6/TaEg91KYSwH0nyJSBJXtiTqqrcjkoiKS6N1EQjKQlGUpOMpCSkk5JozJqWTmqS+X1x/vVqnTTmxO+hyzo4yHGWwMPZcsDg4m4+W6B1UkBRLEN2KxrzewUFNOYRxRXzBIc6eFBVFVTzXxXABCqq+TvP+t6V7G3WmP8qDvYdiPKpzEehE0KUDUVR8Knljk8t93uWNZlU0pMzSElMNx8MJBrN7xONpCaY35unZb1PMJJhNJGZYSIpNo2k2LLpYlcxZ/2sv38nv+xpCuYDBbIOFBTN39t+r2VRs/Kr+neyzW6nqKasZJxrmjkxm6f9vZw5ad9VPmdCL2HTJ7/kryg5tr0w0zV3fXeK+fvK853mOK7I78Av13QrhfJfzvqM3PWR50PO+dnfvbVlLfWrOaqxVlbN2pd3rS9n3Tn3nbWolbve/P357y8wzzGapaySd1qessrdRXKUNb8Z/kYHnF1sl3olyQtRQWk0iuW6fJUahVvGmJaZK/mnZp0hyPk+54FBWlLR7/a3JNO/pxS5jopOzT5wMEFl3H6RP1v/3yBJPkvOoWaFcFQ6vRad3gVPn8KNca+aVExZySrnqWrV0pLOO+3vVnH2tBwtaVRUU1bdqpqnpZ2rRW2lXstZAMjT6r17mrUzBSjkW/7uSw65p5H7kkXWm7vjtWzT3dNNd383f5e79/S807LrzPVd5ZCrhWmtdZnvhNzbd3eZgpa31tJFyd1aztm6VXJ9yLFYju//7vqUnGVzru6ueHPVbZH3DMPdGdfaWQtr5a2dUbBeXs1TTOds2xtl5Zr8XeSavBBCiPJMurUVQgghhCR5IYQQwlFJkhdCCCEclCR5IYQQwkFJkhdCCCEclCR5IYQQwkFJks8io9AJIYRwNPKc/F3kOXkhhBDlmTwnL4QQQgjp1vZu2Sc24uPj7RyJEEIIkVd2firMiXhJ8ndJSEgAoE6dOnaORAghhMhfQkICXl5eBZaRa/J3MZlMREVF4eHhIeNCl6H4+Hjq1KnD5cuX5d6Hckz2U/kn+6hiKM39pKoqCQkJ1KxZE42m4Kvu0pK/i0ajoXbt2vYOo9Lw9PSUH6YKQPZT+Sf7qGIorf10rxZ8NrnxTgghhHBQkuSFEEIIByVJXtiFXq9nxowZ6PV6e4ciCiD7qfyTfVQx2Gs/yY13QgghhIOSlrwQQgjhoCTJCyGEEA5KkrwQQgjhoCTJi3Jh+fLldOjQAW9vb9zc3GjXrh3ffvutvcMSVhiNRmbPnk2DBg3Q6/UEBAQwZ84ce4clcli0aBENGzbEYDDQunVrfvnlF3uHVOkdOHCAUaNG0ahRIxRFYdq0aXnKfP/99wwcOBB/f3+8vLzo0aMHu3btKtF6pTMcUS7cuXOHhx9+mDZt2mAwGFizZg1PPvkkBoOBhx9+2N7hiRyefvppdu/ezYwZM2jUqBEXL17kxo0b9g5LZFmxYgUvv/wyb775Jt27d+d///sfjzzyCDt37qRLly72Dq/S2r17N6GhoXTv3p2YmBirZT7++GMCAwNZuHAh7u7uLF26lPvuu4+wsDBat25drPXK3fWi3OrevTv+/v788MMP9g5FZNmwYQOPPPIIR48epUmTJvYOR1gRFBREz549+eKLLyzTOnXqhK+vL7/++qsdI6vcTCaTpQvagIAAnnrqKWbPnp2rzK1bt/Dx8cm1TMuWLenWrRuff/55sdYrp+tFueXj44PRaLR3GCKHZcuW0adPH0nw5VRycjLnzp2jb9++uabfd999bNmyhbS0NDtFJu7VxzyQK8FnL9OiRQsuXrxY/PUWe0kh8pGcnMyaNWt4/vnnady4MQaDATc3N1q3bs0777xDYmJivstmZGQQHx/Pd999x+bNm3nxxRdtGHnlUpz9FBYWRmBgIC+99BLu7u54eHgwcuRI7ty5Y4ctcHxF3Uepqamoqoqzs3Ou6Xq9nvT09BIlC/G3kvzGFUVmZib79++nUaNGxa9EFaKUffHFFyqgAmrTpk3V4cOHq/369VM9PDxUQG3SpIl648aNPMtdu3bNspxWq1UXL15sh+grj+LsJ2dnZ9Xd3V3t3r27+ttvv6nffPONWq1aNXXIkCH22QgHV5x9VKVKFXXq1Km5pg0YMEAF1N27d9syfIdV3N+4bPXq1VPffPPNe67n448/VrVarXr06NFixypJXpS6ZcuWqWPHjlVPnDiRa3pUVJTatm1bFVCffPLJPMsZjUZ1//796tatW9V//etfqk6nU1evXm2rsCud4uwnJycn1c3NTY2JibFM++GHH1RAPXPmjE3irkyKs4/eeOMN1dPTU12/fr16+/ZtddGiRaqTk5MKqHv37rVl+A6ruL9x2QqT5ENDQ1WDwaDOmDGjRLFKkhc2tWfPHhVQ9Xq9mpaWVmDZF154QQ0MDLRRZCKn/PaTn5+f2qVLl1xlo6OjVUBdu3atrcOs1PLbR4mJieqQIUMsLc1atWqpM2bMUAH14sWL9gu4kijMb9y9kvzFixfV6tWrq8OHD1dNJlOJ4pFr8sKmsh8DSUtL49atWwWWbdOmDRcuXLBFWOIu+e2npk2boubzQE5hbiwSpSe/feTm5saaNWuIiori+PHjXLx4EQ8PD6pVq0ZAQICdoq08ivIbZ01sbCwDBw4kICCA5cuXoyhKieKRf5XCprKTtk6no2rVqgWW3bNnj/wo2Ul++2nAgAEcO3Ys13O+W7duRVEUWrRoYfM4K7N7/Vvy9/enefPmmEwmli5dyrPPPmvjCCunovzG3S09PZ2hQ4eSnJzM2rVrcXFxKXE80hmOsKn58+cD8OCDD+YacrF37948+uijNGnShNTUVNauXcuqVauK/WyoKJn89tOLL77If//7X4YMGcKUKVOIiYnhX//6F0899ZQckNlYfvto3bp1REVF0bhxY6Kiovj444/JyMhg6tSp9gq1Uslvv0RHR7Njxw7AfHf+qVOnWL16NW5ubvTv3x+Al156iR07dvDFF19w8eJFy9MQer2etm3bFi+gEp3sF6IINmzYoCqKoup0OvXw4cO55k2aNEkNCgpSXVxcVF9fX7VHjx7q+vXr7RRp5VbQflJVVT116pR6//33qy4uLqqPj486fvx4NSkpyQ6RVl4F7aNffvlFbd68uWowGFRfX1/1ueeeK/BOb1F6Ctov27Zts9wnkfNVr149S5l69erds0xRSZIXNnHy5Em1SpUqKqB+/PHH9g5H5EP2U/kn+6h8Kq/7RZK8KHNXrlyxHKFOnjzZ3uGIfMh+Kv9kH5VP5Xm/SN/1okzdvn2bkJAQTpw4wXPPPceSJUtKfLeoKH2yn8o/2UflU3nfL5LkRZlJTEy0jKA0dOhQvv/+e7Rarb3DEneR/VT+yT4qnyrCfpEkL8pEWloaAwYMYOvWrfTr149169bl6U9b2J/sp/JP9lH5VFH2izwnL0pdZmYmTz75JFu3biUkJISffvqpXP7PX9nJfir/ZB+VTxVpv8hz8qLULViwgJ9//hkAX19fXnrpJavl/vOf/+Dr62vL0EQOsp/KP9lH5VNF2i+S5EWpyznsaPY/BGtmzpxp938AlZnsp/JP9lH5VJH2i1yTF0IIIRyUXJMXQgghHJQkeSGEEMJBSZIXQgghHJQkeSGEEMJBSZIXQgghHJQkeSGEEMJBSZIXQgghHJQkeSGEEMJBSZIXQgghHJQkeSHsrFevXiiKQq9evewdSqUUEBCAoig8++yz9g5FiFInSV44tL1796IoCm5ubmRkZFimx8bGotVqURSFS5culWgdERERKIoiicJOspP03S+dToevry/du3dn5syZREVF2TtUIWxOkrxwaLt37wagc+fOODk55ZpuMpmoU6cOdevWtVd4ogxlZGRw69Ytdu/ezdtvv03Tpk0LHExECEcko9AJh5ad5Lt3755r+s6dO61Ot4ft27fbOwSHULNmTTZu3Gj5bDQaiYiIYOnSpaxfv574+HieeOIJQkNDadu2raVcRESEHaIVwjakJS8c2p49e4C8yXzXrl1Wp4uKS6fT0aJFC8urbdu2PPLII6xbt47JkycDkJ6ezuzZs+0cqRC2I0leOKxz585x8+ZNtFotwcHBlumpqans378fkCRfWbz99tu4uLgAsGnTJkwmk50jEsI2JMkLh5V9qr5Vq1Z4eHhYpoeFhZGeno63tzctWrSwV3gWBd1dn/OmvmXLlgGwefNmBg0aRI0aNdDr9dSvX5/x48dz5cqVQq1v27ZtPPPMMzRo0ABXV1c8PT1p2bIl//znP+95c9rx48eZPXs2/fr1o3bt2uj1etzd3QkMDOSZZ54hNDS0wOVnzpxp2R6AuLg4Zs2aRdu2bfH29s61naXJ3d2dZs2aAZCYmMjt27ct8wp7d/25c+f4xz/+QcuWLfHy8sLFxYUGDRrw7LPPcuDAgULFERERweuvv0779u3x8fGx3BwYEhLCzJkzuXDhQr7LxsXFMWfOHLp164afnx/Ozs74+/szaNAgVq9ejaqqBa77559/5uGHH7bsNw8PDxo0aEBISAjTp08nLCysUNsgKhhVCAewdOlSFSjx6+LFi0Ve98WLFy3LP/PMM0VevmfPniqg9uzZs8C6ly5dqr7xxhv5xu7n56eeOHEi3/WkpKSoTzzxRIHb7+bmpq5bt87q8tu2bSvUd/jGG2/kG8OMGTMs5c6cOaMGBATkWX7p0qVF+v7q1aunAmq9evUKLNelSxfLOq5fv55n+YL23YcffqjqdLp8t1lRFHX69OkFrv9edeT3/4Cqquoff/yh+vj4FLjsgAED1ISEhDzLZmRkqMOHD7/nfmvfvn2B8YuKSW68E6KC+OKLL9izZw89e/bkxRdfJCgoiNjYWL7++mu+/vproqOjGT16NHv37s2zrKqqDBs2jA0bNgAwaNAgHnvsMRo0aIBGoyEsLIy5c+dy6dIlhg0bxu7du+nQoUOuOjIyMnBzc2PgwIH06dOHJk2a4Onpyc2bN/nrr7/473//S2RkJO+//z5BQUE899xzBW7PsGHDuHr1Ki+//DKDBw+mSpUqnD17lnr16pXel5Yj9lOnTgHg7OyMj49PoZf98MMP+de//gWYzwqNHz+ewMBAvL29OX36NAsWLGDv3r3MmjULX19f/u///i9PHbNmzeKtt94CwNvbm5deeonevXvj4+NDbGws4eHh/PTTT5YzHDnt3r2b/v37YzQaqV69Oi+//DKtW7emZs2aREVF8d1337FixQp+/fVXnnnmGX788cdcy3/66af88MMPgPny1AsvvEDDhg1xc3Pj1q1bHD16lN9//524uLhCfyeiArH3UYYQpSE2NlY9efKk5ZWz1blr1y7L9L/++ks1GAwqoK5evTrXMidPnlTT09OLvG5bteQBdcyYMarJZMpT7oUXXrCUCQ8PzzP/888/VwFVp9Opv/32m9U4bt++rTZv3lwF1G7duuWZHx0drd65cyff7UhLS1P79u1raVVnZGTkKZOzJa/RaNSNGzfmW19hFaYlv2DBAst6+/TpY3V5a/vur7/+srS+Z8yYYfW7z8zMVJ966ikVUN3d3dXbt2/nmh8eHq5qNBoVUIOCgtTLly/nG+elS5dyfU5PT7ec7XjwwQfVpKQkq8tl719A3bRpU655ISEhKqB27txZNRqN+a771q1b+c4TFZckeeGQvv/+exVQ69evn2v64cOHVUB1cXEpVkK3xlZJ3t/fX01NTbVax6lTpyzl5s+fn2ueyWRSGzZsqALqq6++WmAsv/76a67T6UWV/f0C6oEDB/LMz5nkR48eXeT6rckvyRuNRvXs2bPq1KlTVa1Wa1nv3Qc5BSX50aNHq4DaoUMHqwk+2507d1S9Xq8C6ueff55r3pNPPmk5pW/tAKwgX3/9tQqoBoNBvXnzZoFlO3XqpALqiBEjck0PDAxUAfUf//hHkdYtHIPceCccUn7PwWffjNehQwd0Op3N4yqJYcOGodfrrc5r3Lgx7u7uAHlu3jpx4gTnz5+31FGQHj16WN5bO+2fU1paGpcuXeLEiRMcP36c48eP57r568iRIwUuP3LkyALnF1VkZGSeHu8CAwN57733yMzMRFEUZs+ezYMPPljoOtevXw/Ao48+avVUejZvb29atmwJ5P7eTCYTv/32G2C+wTLn8/mFsW7dOgB69uyJn59fgWWz993d+83f3x8wb0tMTEyR1i8qPrkmLxxSfs/BZz83361bN5vHVFJNmjQpcH6VKlVITEwkISEh1/Scd37nfJTwXq5fv55nWlJSEv/973/59ttv+euvv8jMzMx3+XsllFatWhU6lpLw9PSkT58+TJ48mZCQkEIvFxkZSXR0NABTpkxhypQphVou5/d28eJFYmNjAYq07mzZ+27jxo0FHmTkt36AZ555hj///JNz587RqFEjhg4dSt++fQkJCaF27dpFjklULJLkhcNJSEjg6NGjQP4t+a5du9o8rpJydXUtcL5GYz4xd3fivXnzZrHWl5ycnOtzREQEffr04eLFi4VaPiUlpcD5VapUKVZc+bm7xzsnJye8vLyoUaNGoRNkTqXxveU80MluUZd1DHd/76NHj+b8+fN88MEHxMXFsXTpUpYuXQpAw4YNGTJkCBMmTKBBgwZFXpco/yTJiwovICCAyMhIq/OaN29udfrgwYNzfZ4xYwYzZ84s7dDKhZxJf/369QQEBBRquWrVquX6/PTTT3Px4kUUReG5557jiSeeoGnTppZnthVFwWQyodVqAe753HZ2udKS3eNdacn5vb311lsMHz68UMu5ubmVegz9+/fngw8+KHY97777LmPHjmXlypVs2bKF0NBQkpOTOX/+PB999BGffPIJ//3vfxk3blxphS7KCUnyQji4nI+LFbcDoFOnTlkugUydOjXfrmFzdjJT0eX83op7AOHr62t5f+3atWLFEBUVRXp6eokPYOrVq8fUqVOZOnUqRqOR/fv38/3337N48WJSU1N56aWX6Ny5c5HvGxDlm9x4Jyq8TZs2cezYMcurffv2ALz55pu5pj/yyCOA+YavnNOPHTvGSy+9ZM9NKFM5f7SzL1cU1V9//WV5//jjj+dbrrA9v1UEDRo0wMvLCyj+91a/fn28vb0B+PPPP4u8fPa+O3DgAOnp6cWKwRqdTkfXrl35+OOPWbVqFWA+87J69epSW4coHyTJiwovKCjIMihJ48aNOXnyJABDhw7NNWDJ6dOnAXjooYdyTW/RokWeU9OOpF27dpYbrD7//HNSU1OLXEdGRoblfVJSUr7lPvvss6IHWE5ptVoGDBgAmA8ks/+/KgqNRsPAgQMB2LFjB4cOHSrS8tmXlbKvpZeF++67z/Je7r53PJLkhUM5ePAgycnJeHh40Lp1a8v0W7duWX6kcz4mVhloNBqmTp0KmB+vGzVqFGlpafmWj4+PZ8GCBbmmBQYGWt7n17f8p59+ytq1a0secDkyZcoUtFotJpOJYcOGFTg+QGZmJitXrsxT5rXXXkOj0aCqKk888USBddw975lnnqFOnTqWeu51NmDXrl3s2LEj17QVK1bkOki726ZNmyzv69evX2D9ouKRa/LCoWT/CHbt2jXXjV27du1CVVUaNWpEzZo1y2z9586dK9QAK506dbIMmGIL48aNY/Pmzfz888/88MMPhIeH8+KLL9KpUye8vLyIj4/n1KlTbN++nXXr1mEwGJg4caJl+bZt29KiRQuOHz/O4sWLuXPnDk8//TT+/v5cuXKFFStWsHr1arp161bsU9vlUcuWLfnPf/7DP/7xD06cOEGLFi0YO3Ysffr0oXr16qSmphIREcHevXtZvXo1165d49ixY7keTWvTpg1vv/0206dP58yZM7Rs2ZIJEybk6tb28OHD/PTTT2i1WrZt22ZZVq/X8/3339OrVy8SExPp06cPTzzxBA8//DD169fHZDJx7do1Dh48yM8//8yxY8f45JNP6Nmzp6WOp59+mtdee42hQ4fStWtXGjZsiMFg4MaNG2zevJlPP/0UMA/iU9p9F4hywK5d8QhRygYOHKgC6uzZs3NNf/XVV0u1l7Wc7u56tjCvefPmWZYvygA1BbnXQCvp6enq+PHjVUVR7hnf3T0FqqqqHjp0SK1SpUq+y7Rs2VKNioqyfJ4xY0aeOnL2eFdaCjtAzb2WL6i3ws8//1x1dXW95/fm7Oysnj171mod7777rurk5FTg8vkNULN37161Tp06hfp/a/ny5bmWLcwyXl5e+XZ3LCo2ackLh2EymSytyLs7HsnuAa+ynarPSafTsWjRIsaPH88XX3zB9u3buXTpEomJibi7u1O/fn3at29P//79eeihh/Is36ZNGw4fPsycOXP47bffiIqKwsPDg0aNGvHYY48xYcIEDAaDHbas7I0ZM4bBgwezePFiNm3axOnTp4mNjUWv11OrVi1atmxJ3759efTRR3PdUZ/T1KlTGT58OIsWLeKPP/7g0qVLJCcnU6VKFZo1a0bfvn0ZNWqU1WW7dOnC2bNnWbZsGevXr+fQoUPExMSg0Wjw8/OjadOm9OzZk0cffZTGjRvnWvb48eNs2LCBXbt2cf78eW7cuEFsbCweHh40adKEfv36MX78eKpXr17q35uwP0VV7/EwqxBCCCEqJLnxTgghhHBQkuSFEEIIByVJXgghhHBQkuSFEEIIByVJXgghhHBQkuSFEEIIByVJXgghhHBQkuSFEEIIByVJXgghhHBQkuSFEEIIByVJXgghhHBQkuSFEEIIByVJXgghhHBQkuSFEEIIByVJXgghhHBQ/w8iiDfh//f3eAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "benchmark_name = \"weekend\"\n", + "bits = 11\n", + "pieces = 4\n", + "plt.rcParams[\"figure.figsize\"] = [5.50, 3.50]\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=20)\n", + "plt.rc('legend', fontsize=10)\n", + "\n", + "def plot_fig8_time(benchmark_name, pieces, ylabel):\n", + " filehandle = open(\"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/\" + benchmark_name + \"/results.txt\")\n", + " lines = filehandle.readlines()\n", + " bits = int(float(lines[-1].split(\",\")[0]))\n", + " fig, ax = plt.subplots()\n", + " ax.set_xscale(\"log\", base=2)\n", + " # ax.set_yscale(\"log\")\n", + " ax.set_xlabel(\"# Linear Pieces\")\n", + " if ylabel:\n", + " ax.set_ylabel(\"Time (s)\")\n", + " ax.set_title(benchmark_name)\n", + " legend_list = []\n", + " for i in range(15, 20):\n", + " cur = []\n", + " for j in lines:\n", + " if int(float(j.split(\",\")[0])) == i:\n", + " cur.append(j)\n", + " \n", + " x = []\n", + " y = []\n", + " for j in cur:\n", + " cur_split = j.split(\",\")\n", + " x.append(int(float(cur_split[1])))\n", + " y.append((float(cur_split[-1])))\n", + " ax.plot(x, y)\n", + " legend_list.append(\"b = \" + str(i))\n", + " ax.legend(legend_list, loc=\"upper left\")\n", + " fig.savefig(benchmark_name + \" time.png\", dpi=300, bbox_inches=\"tight\")\n", + "\n", + "def plot_fig8_result(benchmark_name, pieces, ylabel):\n", + " filehandle = open(\"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/\" + benchmark_name + \"/results.txt\")\n", + " lines = filehandle.readlines()\n", + " bits = int(float(lines[-1].split(\",\")[0]))\n", + " fig, ax = plt.subplots()\n", + " ax.set_xscale(\"log\", base=2)\n", + " ax.set_yscale(\"log\")\n", + " ax.set_xlabel(\"# Linear Pieces\")\n", + " if ylabel:\n", + " ax.set_ylabel(\"Result (s)\")\n", + " ax.set_title(benchmark_name)\n", + " legend_list = []\n", + " for i in range(15, 20):\n", + " cur = []\n", + " for j in lines:\n", + " if int(float(j.split(\",\")[0])) == i:\n", + " cur.append(j)\n", + " \n", + " x = []\n", + " y = []\n", + " for j in cur:\n", + " cur_split = j.split(\",\")\n", + " x.append(int(float(cur_split[1])))\n", + " y.append(abs((float(cur_split[-2]))- gt[benchmark_name]))\n", + " ax.plot(x[1:], y[1:])\n", + " legend_list.append(\"b = \" + str(i))\n", + " ax.legend(legend_list, loc=\"upper right\")\n", + " fig.savefig(benchmark_name + \" result.png\", dpi=300, bbox_inches=\"tight\")\n", + "\n", + "plot_fig8_time(benchmark_name, pieces, False)\n", + "plot_fig8_result(benchmark_name, pieces, False)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Figure9" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (3227301697.py, line 1)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m Cell \u001b[0;32mIn [30], line 1\u001b[0;36m\u001b[0m\n\u001b[0;31m pip install seaborn\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.005785435, 0.0074041345, 0.0100424315, 0.01506725, 0.025126091, 0.044084032, 0.091392248, 0.175689231, 0.387366907, 0.8477628235, 1.887189813, 4.303584996, 9.015646818, 20.366195206]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh4AAAFgCAYAAAD0A3BmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaHUlEQVR4nO3deXxMZ/8//tdkm+yThIQkIiHWqCCWCkFKLa3bUlSr2lraWxG0qKWLWnun1dZSgvIhtIpvUdRStcatiCD21BZJEEsWssi+XL8//GZuYybJTGYyM5m8no/HPB7NOdc513WO08w71/I+EiGEABEREZEBWBi7AURERFRzMPAgIiIig2HgQURERAbDwIOIiIgMhoEHERERGQwDDyIiIjIYBh5ERERkMFbGbgCpKi0txf379+Hk5ASJRGLs5hARESkRQiA7OxteXl6wsNCuD4OBhwm6f/8+fHx8jN0MIiKict29exf16tXT6hgGHiYkIiICERERKC4uBvDsH9TZ2dnIrSIiIlKWlZUFHx8fODk5aX2shCnTTU9WVhZkMhkyMzMZeBARkcnR5XuKk0uJiIjIYBh4EBERkcEw8CAiIiKDYeBBREREBsNVLUREROYqPR4oyC57v9QJqOVvuPaAgQcREZF5So8HlgVVXG5irEGDDw61EBERmaPyejoqU05P2ONhZoqKilBSUmLsZhBRNWZpaQlra2tjN4PMFAMPM5GVlYW0tDQUFBQYuylEZAakUilq167NJIakdww8zEBWVhaSk5Ph6OiI2rVrw9rami+XI6JKEUKgqKgImZmZSE5OBgAGH6RXDDxMiPxdLdoOlaSlpcHR0RH16tVjwEFEOrOzs4OTkxPu3buHtLQ0Bh6kV5xcakLCwsIQFxeHM2fOaHxMUVERCgoKIJPJGHQQkd5IJBLIZDIUFBSgqKjI2M0hM8LAo5qT945wIhgR6Zv89wonrJM+MfAwE+ztICJ94++Vak6q4SvrNS2nJ5zjQUREZI5q+T9LDsbMpURERGQQBg4qNMGhFiIiIjIYBh5kdiQSicrH2toaXl5eGDx4ME6ePKn2uNDQUEgkEiQmJhq2wQBGjhwJiUSCqKgog9etzvr169Xexxc/ptLe6i4qKgoSiQQjR440dlOIqhyHWshsjRgxQvHf2dnZuHjxIn7//Xfs2LEDGzduxDvvvKPReSQSCXx9fY0SkBibv78/QkJCytxft25dA7bGMNavX49Ro0Zh9uzZmDNnjl7OOWfOHMydOxeRkZEMLqjGY+BBZmv9+vVKP5eWluLzzz/Ht99+i0mTJuHNN99UWob8888/Izc3F97e3gZuKRAeHo6ZM2eifv36Bq+7PCEhISr3kfSvQ4cO+OeffyCTyYzdFKIqx6EWqjEsLCwwb948WFlZIT09HVevXlXaX79+fTRr1swoOVE8PT3RrFkz2NvbG7xuMj57e3s0a9YMnp6exm4KUZVj4KFnZ8+exfvvv49GjRpBIpHgyy+/NHaT6Dk2NjaKvyqLi4uV9r04x0M+zwEAkpKSlOY2hIaGqj1GbsmSJZBIJJBKpcjNzVXa9+mnn0IikWDbtm2KbWXN8UhNTcXMmTMREBAAR0dHyGQyNGnSBO+//z5iYmJUru/x48f47LPPEBAQADs7O8hkMnTv3h179uzR9lZp5enTp4pnfu/evSr7f/31V0gkEgQGBiq9yFAikcDPzw+FhYWYPXs2/P39YWtri4YNG+Krr75Cfn6+2vqKi4uxcuVKBAcHw9nZGXZ2dmjdujWWLFmi8u8ql5OTg2+//Rbt2rWDs7MzHBwc0KxZM4SFheHGjRsAnv17jho1CgAwd+5cpX9zec+PEAKbN2/G22+/jSZNmsDBwQFOTk7o0KEDVqxYgdLSUqV6/fz8MHfuXADAqFGj1M6RKW+OR3FxMZYtW4a2bdvC0dERjo6O6NChA1auXKk2sdfzz+TOnTvRsWNHODg4wM3NDcOGDcO9e/fU3h8iQ+FQi56dOHEC0dHRCAkJQVpamrGbo3clpQIxCY+Rkp0PDydbdGjgBkuL6pNkKCEhAenp6bC2tkajRo3KLduoUSOMGDECGzZsgIODA4YMGaLY16xZMwBAt27dcOzYMURFRSl9aRw9ehQAUFhYiJMnT+LVV19V2ieRSNCtW7dy68/OzsbLL7+MhIQE+Pj4oGfPnrCyssKdO3ewZcsWNGzYEB06dFCUv3HjBl599VXcvXsXfn5+6N27N7KzsxEdHY1+/frhu+++w6effqrxvdKGo6MjNm7ciJCQEIwePRqXL1+Gh4cHgGdBW1hYGGxtbbFp0yZIpVKlY4UQGDx4MA4fPowePXqgdevWOHz4MObPn4+TJ0/ir7/+gqWlpaJ8Xl4e+vbti6NHj8LNzQ0dO3aEra0tTp8+jcmTJ+Po0aPYsWMHLCz+93fVgwcP0LNnT1y9ehWurq4IDQ2FVCrF7du3sWrVKjRu3BhNmjRBnz59UFxcjBMnTqBVq1Zo3bq14hzy56WgoADvvPMOatWqhYCAAAQFBSE9PR0nT55EWFgYYmJilIanhgwZgkOHDuHixYvo3Lmz0nNX0RyZkpISDBgwAPv27YOzszN69uwJIQSOHDmC8ePH4+DBg9i2bZvStcqtWLECixYtQpcuXfD666/j9OnT2LJlC86dO4eLFy/Czs6u4n9YoqogSK9KSkoU/+3r6yu++OILrc+RmZkpAIjMzMwKy+bl5Ym4uDiRl5endT3a+vPyfdHxP4eE74w9ik/H/xwSf16+X+V1awOAePHRzs7OFsePHxft2rUTAMSkSZNUjuvWrZsAIBISElTO5+vrq7auI0eOCABixIgRim0lJSXC1dVVtGjRQgBQegYyMjKEhYWFaNGihdJ5RowYIQCIo0ePKratW7dOABD9+/dXeq6EECIlJUVcvnxZ8XNxcbFo2bKlACAWLlyoVP7mzZuiQYMGwtLSUumY8kRGRqpclybmzJkjAIh//etfQohn96JLly4CgFiyZIlKefm/Vb169UR8fLzS9b300ksCgFi8eLHSMePHjxcAxFtvvSUyMjIU27OyssTrr78uAIiVK1cqHdOjRw8BQAwdOlRkZ2cr7UtISBAXL15UufbZs2ervcaioiKxY8cOUVhYqLQ9JSVF8XwdO3ZMad/s2bMFABEZGan2nEePHlV7v7///nsBQLRo0UI8fPhQsf3+/fuiadOmAoBYtmyZ0jHy59je3l6cPHlSsT0nJ0d06tRJABBr165V244XGfL3C1Uv2nxPvYhDLXqm7i8Pc7D/ygOM2xiLB5nKXd8PM/MxbmMs9l95YKSWle35Lm0nJyd06dIF169fx7Jly7BkyRK91BEcHAypVKo0RHLx4kU8efIE77//Pnx9fZX2/fe//0VpaWmFvR3As2EWAOjevbvKc+Xu7o6XXnpJ8fPu3btx+fJlDB48GNOmTVMq36hRI/zwww8oKSnBmjVrtLq+DRs2lLmU1sXFRaX8l19+ieDgYOzZswcrVqxAeHg4jh8/jl69emHSpEll1vPVV1+hYcOGStf33XffAQCWL1+u2J6SkoI1a9bAx8cHkZGRSpMxnZycsHbtWtjY2GDlypWK7TExMTh8+DA8PDzwf//3f3B0dFSq28/PD4GBgRrfEysrKwwcOFBlLpC7uzvCw8MBALt27dL4fOX58ccfAQCLFi1CnTp1FNs9PT0V92fp0qVqj508eTKCg4MVP9vb22PKlCkAnj2HRMZSo4Zazp07h4MHDyImJgYxMTFITk4G8Kyrtzx5eXkIDw/Hli1bcOfOHbi5uaFPnz6YP3++UVZAGFpJqcDc3XFQd5cEAAmAubvj0DOgrkkNuzy/nLagoABJSUk4ffo05s2bB39/f7z22ms612Fra4sOHTrg+PHjSExMhJ+fnyLQCA0NRVxcHDZv3ozc3FzY29sr7atI27ZtAQDfffcd6tSpg759+8LJSf07FQ4cOAAAGDRokNr9Xbp0AQC180LKU95yWnUTYS0tLbFx40a0bt0an376KYqLi1GrVi1ERkaW+96Pt99+W2Vbnz594Orqivj4eDx48ACenp6IiopCUVER+vTpo3aooG7dumjcuDEuX76MvLw82NnZ4dChQwCAYcOGlXn/KuPChQs4cOAAkpKSkJubCyEEsrOfpaa+efOmzue/c+cO7ty5A3d3d/Tq1Utl/7/+9S+4uLjg1q1bePjwocqwjbpjmjRpAuDZ0BORsdSowGP+/Pla/yWSn5+P7t27Izo6Gp6enhgwYAASExMRGRmJPXv2IDo6WukvNXMUk/BYpafjeQLAg8x8xCQ8RrB/LcM1rALqloGeP38e3bp1Q//+/XHlyhU0bdpU53pCQ0Nx/PhxxTyPqKgoODs7o23btggNDcWGDRsU8zzkgYcmPR49evTA5MmTsWTJEgwbNgxWVlYICgpCz549MXr0aKXnTj65dfjw4Rg+fHiZ59R23lFlltM2bNgQCxYswMcffwzg2VwDLy+vMsu7urqWGRD4+vriyZMnuH//Pjw9PRXXuWbNmgp7bx4/fgxvb2/cvXsXwLMgSh8KCwsxcuRIbN68ucwy8gBEF/fv3wfw7B6oI88vk5GRgeTkZJXAo169eirHyO/z8xN8iQytRgUewcHBCAwMRPv27dG+fXv4+flV+D/gggULEB0djeDgYBw4cEDRTbto0SJMnToVo0ePNvvsjSnZZQcdlSlnTG3atMFHH32E77//HitXrtTLkEtoaCjmz5+PqKgovP/++zh+/DhCQkJgaWmp6NmIiopC+/btceHCBTRv3lwx8bIiixYtwkcffYRdu3bh0KFDOHHiBGJiYrBw4UJs3rwZgwcPBgDFSoo+ffoodcm/qHbt2rpdrAZKS0uVVuycPXsWQ4cO1du5AaB169Zo1apVuWVfnMSqL4sWLcLmzZvRsmVLLFy4EEFBQXB1dYW1tTVu3LiBpk2bVtiLqi/l9SKZ67AvVX81KvCYMWOGVuULCwsV48sRERFKY8NTpkzBhg0bcOzYMZw7d07RLW6OPJxs9VrO2Bo0aABAP93hwLOA1sbGBlFRUYr5HfKAw8/PTzHP4+WXX0ZpaalGwyzPa9q0KaZPn47p06cjPz8fy5cvx7Rp0zBu3DhF4CH/6/bDDz9UbDOWb7/9FsePH0doaChu3bqFH374Aa+//nqZ1/3kyRNkZ2er7fW4c+cOACh6TOTXGRISgmXLlmnUHh8fHwBAfHy8tpei1o4dOwAAmzdvRosWLZT23b59Wy91AP+75qSkpDLLyPfVhCFfMh8Mictx4sQJZGZmwt/fH23atFHZL19euXv3bp3qKSgoQFZWltLHlHRo4AZPmS3K+ttKAsBT9mxpbXUg/3J4cZJhWaytrcvMDQEAdnZ26NChA5KSkhTDEq+88opif2hoKM6cOYN9+/Ypfq4sW1tbfPrpp/D09ERqaipSUlIAAD179gTwvy9FYzl37hxmz54NNzc3/Prrr1i/fj2EEHj//feRkZFR5nG//fabyrYDBw7g8ePHaNiwoSKx1iuvvAJLS0vs2bMHRUVFGrVJvpR58+bNePr0aYXlbWxsAKjmeZF78uQJAPVDGequQ5NzqlO/fn3Ur18fqampOHz4sMr+vXv34smTJ2jUqJFZpq43O+nxwP0LZX/S9RMYVwcMPMpx8eJFAEBQUJDa/fLtly5d0qme8PBwyGQyxUf+F5qpsLSQYHa/AABQCT7kP8/uF2BSE0vLcv78eaxevRoA8Prrr2t0jJeXFx49elTuF6c8mFi9ejVkMplSoBoaGorCwkJFUKLJ/A4A2LlzJ6Kjo1W2nzt3Do8ePYKjo6NiZcngwYMREBCAX3/9FfPnz1cZQhRC4MSJEzhx4oRGdVdGXl4e3n33XRQVFWH16tXw8vJCjx498Mknn+Du3bsYN25cmcfOnTtXKQlbWloapk2bBgAICwtTbPf29sbo0aORmJiIYcOG4dGjRyrnunXrFrZv3674uUOHDnjllVeQkpKCMWPGICcnR6l8YmIiLl++rPhZ3tNw/fp1tW2VT9BctWqV0vZt27bh559/VntMRecsy8SJEwE862GVr3ICgIcPHyruj3wuDZmw9HhgWRCwulvZn2VBNSb4qFFDLdqSd/Oq+8vm+e3Pd4Wmpqbi2LFjAIDc3Fxcu3YN27Ztg4ODQ5mrKD777DPFMjcAyMrKMrngo89Lnlj5bhDm7o5TmmhaV2aL2f0C0Ocl00v1/HxCr8LCQiQlJSE6OhqlpaXo168f3nvvPY3O079/fyxbtgxBQUHo1KkTbG1t0bRpU8UvfuBZMLFgwQLk5+ejR48eSgmv5EFJfn4+mjVrVu4cjOdFRUVh6dKl8Pb2Rps2beDs7Iz79+/j+PHjKC0txdy5cxV/SVtZWWHnzp3o3bs3vvrqKyxfvhyBgYHw8PBAWloaLly4gJSUFCxevBidO3fWqH4A+Pvvv8t9qdk777yjWD0xdepUXLt2DaNGjVIa7gkPD8ehQ4ewZcsW9O3bF++++67SOerXr4/AwEC0aNECPXr0gLW1NY4cOYKMjAy88sorKstwly5disTERGzfvh379+9H69atUb9+feTk5CAuLg63bt3CgAEDlNrwyy+/oEePHti8eTP++usvhISEQCqVIj4+HhcuXMAPP/yAli1bAgA6duwIDw8PbNu2DaGhoWjYsCEsLCwwevRodOrUCdOnT8f+/fsxc+ZMbN26FU2aNMHNmzdx9uxZfPrpp/j+++9V7lOvXr1ga2uLxYsX48qVK/Dy8oJEIsG0adPKneA8efJkHDlyBH/++ScaN26M7t27QwiBw4cPIzs7GwMHDsT48ePL/gck01Cg4WRjTctVd3rNKFLNSKVSlURTz/v3v/+tkgDqeTdv3hQAROPGjRXb5ImAXvyUlYBKHVNNICaEEMUlpeLkrTSx8/w9cfJWmiguKTVIvdpQd/8tLCyEm5ubCA0NFWvXrlVJyCVE2QnEnj59KiZMmCB8fHyElZWVACC6deumVCYnJ0fY2NgIAOK7775TObevr68AIMaOHau2zeoSiJ0/f15MnTpVtG/fXnh4eAipVCp8fX1Fv379xKFDh9SeJyMjQyxYsEAEBQUJR0dHYWtrK/z8/ETv3r1FRESESE1NLf/m/f/kSbQq+siTe+3du1cAEA0bNlRJ0CWEEJcuXRJSqVQ4Ozsr3V/5/xv5+fni888/F35+fsLGxkaRfC83N1dt+4qLi8WGDRtE9+7dhZubm7C2thZeXl4iODhYzJ07V1y/fl3lmKysLDFv3jwRGBgo7OzshKOjo2jWrJmYMGGCuHnzplLZM2fOiJ49ewqZTCYkEolK8q9Tp06J7t27C1dXV+Hk5CQ6deoktm/fLhISEtQ+H0II8ddff4nOnTsLR0dHxf2T/3uXlUBMiGcJy5YuXSratGkj7O3thb29vWjXrp2IiIgQxcXFKuXLeo6FEOW2Tx0mENOT5PNCzHau+JN83tgt1ZguCcQkQhho+rUJsrW1RUFBQZkz0MeMGYM1a9bgiy++wIIFC1T237p1C40bN0bjxo0V73rQh6ysLMhkMmRmZsLZ2bncsvn5+UhISECDBg1ga1s9JncSycmXhL74rhsyDfz9oif3LzwbTqnImGOAV+uqbo1eaPM99SLO8SiHfPLhiy/5kpOPFesrKVFERAQCAgLQvn17vZyPiIjI1DDwKEf9+vUBoMy3Ocq3l5XgR1thYWGIi4vDmTNn9HI+IiIiU8PAoxzyBEWxsbFq98u3a/OeByIiopqMgUc5OnfuDJlMppj5/iJ5dsZ+/frppT4OtVBNI4Tg/A6iGoaBRzlsbGwwYcIEAM+GQZ5f/79o0SJcunQJ3bp101vWUg61EBGZIamG8wA1LVfN1ag8Hnv37sX8+fMVPxcWFgJ4tm5fbtasWejbt6/i5y+//BKHDh3CyZMn0bhxY3Tp0kXxllN3d3esW7fOcBdARETVTy1/YGJs+Xk6pE7PytUANSrwSE1NxenTp1W2P7/t+eyAwLMlt0ePHkV4eDg2bdqEnTt3ws3NDSNHjsT8+fPLTC5GRESkUEOCCk3U6DwepiYiIgIREREoKSnBjRs3mMeDiIyKv1+oLMzjYSY4x4OIiMwdAw8iIiIyGAYeREREZDAMPIiIiMhgGHiYECYQIyIic8fAw4Rwcql+SCQSSCQSuLi4ICMjQ22Zb775BhKJBHPmzNG5vtDQUEgkEpPLwCm/D+V9Ro4caexmmg0/Pz9IJBJjN4PI5NWoPB5Us2RmZmLRokWYN2+esZtiVCNGjChzX0hIiAFbYjgSiQS+vr56CwYTExPRoEEDdOvWDVFRUXo5J1FNxcCDzJJEIoFUKsXSpUsxefJkuLq6VlldP//8M3Jzc+Ht7V1ldehi/fr1xm5CjXD48GEUFRUZuxlEJo+BB5klCwsLjBkzBj/++CO+//57fP3111VWV/369avs3FR9+PszM2W1kB7P1OVGxjkeJoSTS/Vr5syZsLOzw7Jly5Cenq7RMQ8ePMDChQvRrVs3eHt7w8bGBnXr1sWgQYPKnHvz4hyPlJQUWFlZwcvLC6WlpWqP2b17NyQSCQYNGqS0XQiBzZs3o3v37nB1dYWtrS2aN2+OOXPmIDc3V/OLr4QZM2ZAIpFg6NChKvvS0tLg5eUFS0tL/P3334rtI0eOhEQiQVRUFP7880+EhITA0dERrq6uGDRoEK5du1ZmfadPn8abb74JT09P2NjYoF69evjwww9x586dMo/Zv38/+vfvjzp16kAqlcLHxwf/+te/sH37dgDPenfk8yySkpKU5rOEhoYqznPhwgVMnz4dbdu2hbu7O6RSKRo2bIjx48fj/v37SnXOmTMHDRo0AAAcO3aszDky5c3xOHXqFAYMGKCoy8/PT21dz1/DnDlzcOfOHbzzzjtwd3eHnZ0d2rVrh927d5d5f6gC6fHAsiBgdbeyP8uCnpWjqiPI5GRmZgoAIjMzs8KyeXl5Ii4uTuTl5VVto9JuCZF8vuxP2q2qrV8LAISlpaUQQojJkycLAGLGjBlKZcLDwwUAMXv2bKXtK1euFABE06ZNRZ8+fcTQoUNFmzZtBABhbW0t/vrrL5X6unXrJgCIhIQExbY+ffoIAOLQoUNq2/jWW28JAGL79u2KbSUlJWLYsGECgHB0dBShoaHijTfeED4+PgKA6NChg8jNzdXqPmjzv3hBQYHiWtevX6+0b+DAgQKA+OKLL5S2jxgxQgAQ48ePFxKJRLRv3168/fbbIiAgQAAQMplMXLhwQaWuiIgIYWFhISwsLMTLL78s3nzzTREYGCgACHd3dxEXF6dyzJQpUwQAYWFhITp37iyGDRsmunXrJlxcXESrVq2EEEIcP35c0SYHBwcxYsQIxSc8PFxxrrfeektYWVmJoKAgMXDgQDFw4EDh5+cnAAhPT0+RnJysKLtjxw4xePBgAUDUqVNH6Zxr1qxRlPP19VV7v3/55RdhaWkpAIjOnTuLt99+WzRp0kRxvn/++UepfGRkpAAgRowYITw8PIS/v7946623RHBwsOL61T2HVcFgv18MJfm8ELOdK/4knzd2S02eNt9TL2LgYYJMLvBIu6XZ/6wmEnw8H3g8fPhQ2NvbCwcHB5GSkqIoU1bgcenSJXHlyhWVc+7fv1/Y2NgIf39/UVpaqrRPXeDxyy+/CABi9OjRKufKysoSdnZ2QiaTifz8fMX2hQsXCgAiNDRUPHjwQLG9oKBAfPDBB2oDqIrug7Z/W8TFxQk7Ozvh5OQkbt++LYQQYvXq1QKAaN++vSgqKlIqL/+SByBWr16t2F5aWipmzJghAIjWrVsrHXPq1ClhaWkpvL29xdmzZ5X2/d///Z8AIF5++WWl7fL76eXlJc6fP6+0Lzc3Vxw4cEDl2n19fcu8ziNHjoiHDx8qbSspKRFz584VAMSoUaOU9iUkJAgAolu3bmWeU13gcefOHWFnZycsLS3Frl27lOr65JNPBADRrl07pWPkgQcAMXXqVFFSUqLYt3jxYgFAdOnSpcx26BMDDyoLAw8zY3KBRzX7n/X5wEMIIaZOnar4JS5XVuBRnuHDhwsA4tKlS0rb1QUeT58+FQ4ODirBhRBCbNiwQQAQH3zwgWJbUVGRqF27tnBwcFD5QhTi2Zdr3bp1haurq9IXUXnkX17lfXbs2KFyXEREhAAggoODRVxcnHBwcBD29vbi+vXrKmXlgUenTp1U9hUWFop69eoJAOL48eOK7QMGDBAAxO7du9W2u3///gKAiI2NVWxr3ry5ACC2bNmi8bWXF3iUx9vbW9SqVUtpW2UDj6+++koAEMOGDVMpn5+fL7y8vAQA8ffffyu2ywOPBg0aiIKCAqVjioqKhKurq7C2tlbZVxUYeFBZdAk8OLmUzN6MGTOwatUqrFy5EtOmTUOdOnXKLV9QUID9+/cjJiYGqampKCwsBABcvnwZAHDz5k20bNmy3HM4ODhgwIAB2LRpE/bu3as0l+PXX38FALz77ruKbbGxsUhLS0PPnj3Vts/Ozg5t27bF3r17cfPmTTRt2lSzi0f5y2nVTYwdP3489u3bh71796Jjx47IycnBTz/9hCZNmpR5nrfffltlm7W1NYYMGYIlS5bg+PHjCAkJQWlpKQ4fPgx7e3v07t1b7bm6dOmCP/74AzExMWjTpg3u37+Pf/75By4uLmrnn1RWeno6/vjjD1y5cgUZGRkoKSkBABQVFSE9PR2PHz+Gm5ubTnUcP34cADB8+HCVfVKpFG+++SaWLl2K48ePo3Pnzkr7Q0NDYWNjo7TNysoKDRo0QGxsLNLT0+Hp6alT+4iMgYEHmT13d3eEhYVh4cKF+Oabb7B48eIyy16+fBn9+/cvN/9DdnY5M+KfM3z4cGzatAm//vqrIvB49OgRDh8+jHr16qFr166KsvL6Dh48WGESqrS0NK0Cj8osp127di38/PyQlZWF1157DWPGjCm3vK+vr9rtfn5+AKCYRJmWloanT58CgMqX6ovS0tIAAHfv3gUANGzYUG8JujZv3owxY8Yo2qJOdna2zoGH/Lrl9+FF8u3Jyckq++rVq6f2GCcnJwDPAmSi6oiBB9UI06ZNw4oVK7Bq1SpMnz5dbRkhBIYOHYrExESMHTsWY8eORcOGDeHo6AiJRILPP/8c4eHhEEJoVGevXr3g7u6OvXv3IjMzEzKZDFu2bEFJSQmGDRsGC4v/LSqTr35p1KiRyl++L6pVq5aGV115f/zxB/Lz8wEA169fx9OnT+Ho6KjzeeXX6ejoiMGDB5dbtkWLFjrXp05SUpJiNcqSJUvQt29feHt7w87ODgDQqVMnnDp1SuN/Z12UF0g9/3wQmRMGHiYkIiICERERii5f0p/atWtj4sSJCA8PR3h4OLy8vFTKXLt2DdeuXUO7du2wcuVKlf23b9/Wqk4rKyu89dZbWL58ObZv347Ro0erHWYB/vfXbbNmzYye8OvmzZuYPHky7O3t0adPH/z++++YNGkS1q1bV+YxSUlJ5W6X3+/atWvD1tYWFhYWiIyM1KgHw8fHB8Cz+y+E0LnXY9++fSgsLMSnn36Kjz/+WGW/tv/O5fHy8sL169eRlJSkNpCS93SZavI5oqrAkNqE8F0tVWvq1KlwcnLC6tWr1XZtP3nyBID6Lu4nT57g4MGDWtcpH9vftGkTbt68iTNnzuCll15CYGCgUrn27dtDJpPh2LFjePz4sdb16EtxcTHeffdd5OTkYNGiRdi4cSOaNWuGyMhIRa4MdX777Te155IfI0/NbmVlhdDQUGRlZeHw4cMatcnLywvNmzdHRkYGtm7dqtEx1tbWKC4uVruvvH/n//73v3j06JHKdvmwUFnnLEuXLl0APBvaeVFhYaHieuTlqIpJnfRbjiqFgQfVGLVq1cKkSZNQUFCAtWvXquxv1KgRLCwscOTIEdy8eVOxPT8/H2PHjq1UQNCxY0f4+/vj6NGj+P777wGUPdFw+vTpyM7OxqBBg9T+1Z2cnIxffvlF6zZoY968eYiJiUG/fv3w0Ucfwc7ODhs3boS1tTXGjBmjNuEVAPz9998qPSKzZ8/GnTt3EBgYqPTF+sUXX8DCwgKjRo1S+96Tp0+fYt26dcjLy1NsmzlzJgBgypQpuHTpklL5/Px8laDQy8sLjx49UvuSQPkk2Y0bNyInJ0exPTk5GWPHjlV7fbVr14a1tTXi4+O16pH84IMPYGdnhy1btmDv3r2K7aWlpfj888+RnJyMtm3bVji8RnpSyx+YGAuMOVb2Z2IsM5dWMQ61UMXM6K+EqVOnYtmyZcjKylLZ5+HhgQ8++ABr1qxBq1at0L17d9jZ2eH48eMoKSnByJEjKzUMMnz4cMybNw+rV6+GRCLBO++8o7bczJkzce3aNfzyyy9o3rw52rRpgwYNGqCwsBDXr19HXFwcAgMD8d5772lVf3lvoK1fv77iJXqnTp3Cf/7zH9SpU0cpMGvbti3mzJmDL774AiNHjsRff/2lMtwxbtw4fPjhh/jpp5/g7++PS5cu4erVq3B2dla5ZyEhIYiIiMCECRPwyiuv4KWXXkKTJk1gbW2NxMREXLhwAQUFBRg0aJBi3sX777+Ps2fPYtmyZQgKCkJwcDB8fHzw4MEDXLhwAb6+vrhw4YKijv79+yvKdurUCba2tmjatCmmTZuG/v37o0WLFjh79qxiTk1+fj6OHj2K1q1bo1OnTjh58qRSm21sbNCnTx/s3r0brVq1QlBQEGxsbNC5c2eMGjWq3Pv7008/YeTIkejXrx86d+4MHx8fxMbG4vr166hTpw42btxY3j8f6RuDCuPT89Je0gOTy+MhRLXNXKqOPLcC1OTxKC4uFj/88IMICAgQtra2ok6dOmL48OEiMTFRzJ49WwAQkZGRSseoy+PxvOvXryvq69q1a4Xt37Vrl+jbt6/w8PAQ1tbWwsPDQ7Rt21ZMnz5dnDt3rsLj5aBBHg95xs/s7GzRsGFDAUDs3btX5VwlJSUiJCREABCLFi1SbJfn8Th69KjYvXu3CA4OFvb29kImk4kBAwaIq1evltm+8+fPixEjRghfX19hY2MjXFxcRIsWLcTo0aPFnj17VBK1ye9N7969hZubm7CxsRH16tUT//rXv8Tvv/+uVO7p06diwoQJwsfHR1hZWank4Hj8+LEYN26c8PPzE1KpVDRs2FDMmDFD5OTklPnv+ejRI/Hee++JunXrKjKRjhgxQrG/rMylQghx4sQJ0a9fP1GrVi1hbW0t6tevL8aNGyfu3bunUlaex6OsHDMVPW/6ZHZ5PEhvdMnjIRHCAFO3SStZWVmQyWTIzMyEs7NzuWXz8/ORkJCABg0awNbW1kAtJHpm5MiR2LBhA44ePar0LhQyD/z9QmXR5nvqRZzjQURERAbDwIOIiIgMhoGHCYmIiEBAQADat29v7KYQERFVCc7xMEGc40FEpoC/X6gsnONBRERE1QIDDyIiIjIYBh5ERERkMAw8zASn6hCRvvH3ClUFBh7VnKWlJQCgqKjIyC0hInMj/70i/z1DpA8MPKo5a2trSKVSZGZm8q8TItIbIQQyMzMhlUphbW1t7OaQGeFL4sxA7dq1kZycjHv37kEmk8Ha2lrlJV5ERJoQQqCoqAiZmZl4+vQpvL29jd0kMjMMPMyAfA11WloakpOTjdwaIjIHUqkU3t7eWudo0Ep6PFCQXU4jnPg2WTPEwMNMODs7w9nZGUVFRSgpKTF2c4ioGrO0tKz64ZX0eGBZUMXlJsYy+DAzDDzMjLW1Ncdjicj0ldfTUZlyVG1wcqkJ4btaiIjI3OmtxyM1NRW3b9/Gw4cPkZOTA2tra7i4uKB+/fpo1KgRl2NpICwsDGFhYYoc+EREROam0oFHTk4Odu3ahT///BPHjh0rd1KjVCpFmzZt0KtXL7zxxhsIDAysbLVERERUjWkdeJw/fx7Lli3D1q1bkZubC6Di7Hb5+fk4deoUoqOjMW/ePLRo0QJhYWF47733YG9vX7mWExERUbWjceBx/vx5zJo1C3/++SeA/wUbdevWRYcOHdC2bVt4eHjAzc0Nrq6uyMvLw+PHj/HkyRPcuHEDZ86cwaVLl1BUVIQrV65g/PjxmDVrFqZPn46JEydCKpVWzRUSERGRydAo8Bg1ahR++eUXlJaWAgCCgoIwfPhwDB48GPXr19e4ssLCQvz3v//Fr7/+ih07diAtLQ0zZszAihUr8PPPPyMkJKRyV0FERETVgkarWjZs2AArKyv8+9//xrVr13D27FlMnjxZq6ADAGxsbPDqq68iMjISjx49ws8//4ymTZsiMTERR44cqdQFEBFRNSR10m85qjYkQoMXfEyYMAEzZsyAj4+P3hsghMDWrVtRUlKCYcOG6f381ZF8VUtmZmbVZg0kIjImZi6ttnT5ntIo8CDDYuBBRESmTJfvKSYQIyIiIoNh4EFEREQGU+WBx8WLFzFr1iyMGzcOCxcuNPu3p164cAFdunSBnZ0dGjRogOXLlxu7SURERCZDp5TpZ86cQVhYGKysrLBv3z64uLgo7f/pp58QFhamlGDs66+/xrZt29CzZ09dqjZJqamp6NmzJzp06IA9e/YgNjYWn3zyCWQyGd577z1jN4+IiMjodOrx2L17N86ePQtnZ2eVoCMhIQGTJk1CaWkphBCKT3Z2Nt566y2kpqbqUrVJWrVqFSQSCbZu3YoePXpg2rRpGDNmDObPn2/sphEREZkEnQKPqKgoSCQS9OnTR2VfREQEioqKYGdnh99//x2ZmZn47bffYGdnh8zMTKxatUqXqk3SX3/9hddff10pDfybb76Jmzdv4vbt20ZsGRERkWnQKfCQz9dQ99K3Xbt2QSKR4KOPPsLAgQPh5OSEIUOGYOzYsRBCYP/+/bpUrbVz587hm2++waBBg1CvXj1IJBJIJJIKj8vLy8NXX32FJk2awNbWFl5eXhg9erTauSo3btxAs2bNlLbJf75+/bp+LoSIiKga02mOh3y4pFatWkrbk5OTER8fD4lEgqFDhyrt69WrFxYvXoxr167pUrXW5s+fj127dml1TH5+Prp3747o6Gh4enpiwIABSExMRGRkJPbs2YPo6Gg0bNhQUf7JkycqQ06urq6KfURERDWdTj0ehYWFAICcnByl7cePHwcA2Nvbo3379kr76tSpAwDIzi4nW10VCA4OxqxZs/DHH3/gwYMHGr2UbsGCBYiOjkZwcDBu3LiB//f//h9Onz6NH374AampqRg9erQBWk5ERGQ+dOrxcHd3x/379xEfH49OnTopth88eBAA0LFjR1haWiodk5+fDwAqPQNVbcaMGVqVLywsVCyFjYiIgKOjo2LflClTsGHDBhw7dgznzp1D27ZtATzr3cjMzFQ6T0ZGhmIfERFRTadTj0e7du0ghMDatWsVb65NT0/H77//DolEgh49eqgcEx8fD+B/PR+m6sSJE8jMzIS/vz/atGmjsn/IkCEAnq3skWvSpInKEJL856ZNm5ZZV0FBAbKyspQ+RERE5kinHo/3338fu3btwvHjxxESEoJOnTph9+7dyMzMhLW1NYYPH65yzMmTJwEA/v6m/eKfixcvAgCCgoLU7pdvv3TpkmJb7969sXz5cuTl5cHOzg4AsG3bNjRu3FhpLsiLwsPDMXfuXH01nYhIO3xZGxmQToHHG2+8gSFDhmDbtm2Ijo7G6dOnFcnCpk+frvI225KSEkVvSEhIiC5VV7k7d+4AAOrVq6d2v3x7UlKSYtvYsWPx448/YujQofjkk09w/vx5/PTTT1i3bl25dX322WeYMmWK4uesrKwqeRMwEZGK9Hhgmfo/sJRMjGXwQXqhU+ABAFu2bMGKFSuwdetWPHz4EJ6enhgxYgRGjRqltuyjR48AAH379tW16ir19OlTAFDKyfE8BwcHAMqTZN3d3XHw4EFMmDABffv2RZ06dbBo0aIKs5ZKpVKNJrsSEeldeT0dlSlHVAGdAw8LCwtMmDABEyZMqLDs8OHD1Q6/mJPWrVvj77//NnYziIiITBLfTlsG+SqW3NxctfvlS4idnJz0VmdERAQCAgJUliATERGZCwYeZahfvz4A4N69e2r3y7f7+vrqrc6wsDDExcXhzJkzejsnERGRKdEo8Hjw4EFVtwMPHz6s8jq00apVKwBAbGys2v3y7erSxRMREZF6GgUe/v7+mDRpktr3k+jqt99+Q2BgIFavXq33c+uic+fOkMlkiI+Px4ULF1T2b9u2DQDQr18/vdXJoRYiIjJ3GgUexcXFiIiIQKNGjTBixAgcOHBAkTCsMu7evYuFCxeiefPmGDZsGK5cuQIbG5tKn68q2NjYKCbMhoWFKaWFX7RoES5duoRu3bopspbqA4daiIjI3EmEPPFGOW7cuIHJkyfjzz//VLzR1cPDAwMGDEDHjh3Rvn17BAQElPm217S0NJw5cwYxMTE4fPgwTp48CSEEhBDw9vbG3LlzMXLkSFhYVN2Uk71792L+/PmKn2NiYiCEwMsvv6zYNmvWLKVlvvn5+QgNDcXp06fh6emJLl26ICkpCadPn4a7u7vKS+L0JSsrCzKZDJmZmXB2dtb7+YmIFJjHgypBl+8pjQIPuZMnT2LBggX466+/IIRQCjRsbGxQq1YtuLq6wtXVFXl5eXj8+DGePHmi9P4SeXX16tXDxIkTMXHiRNja2mrV6MpYv3692twiz4uMjMTIkSOVtuXl5SE8PBybNm3C3bt34ebmhj59+mD+/PllJhfTFQMPIjIoZi4lLRks8JC7ceMG1q1bh61btyIhIUH1pBIJ1J1WKpWid+/e+Pe//43XXnutSns4qqOIiAhERESgpKQEN27cYOBBREQmyeCBx/Pu3LmD48eP4+TJk7h37x5SU1Px+PFj2Nrawt3dHe7u7mjZsiW6dOmCDh06mNxcDlPEHg8iIjJlRg08SP8YeBARkSnT5XuKYx1ERERkMAw8iIiIyGAYeJgQJhAjIiJzxzkeJohzPIiIyJRxjgcRERFVCww8iIiIyGAYeBAREZHBMPAwIZxcSkRE5o6TS00QJ5cSEZEp0+V7yqqK2kRERNriy9qoBmDgQURkCvh6eqoh9Bp45OXl4dy5c3j48CFyc3MxcOBADhUQEWmivJ6OypQjMlF6CTzu3r2Lzz//HFu3bkVRUZFie7t27RAQEKD4ee3atfjpp58gk8lw4MABSCQSfVRPRERE1YTOq1pOnz6NNm3aYNOmTSgsLIQQAmXNV+3Xrx8uXbqEI0eO4MCBA7pWbXa4qoWIiMydToFHRkYGBgwYgMePH6Nu3bpYsWIFLl++XGZ5Dw8PvPbaawCAvXv36lK1WQoLC0NcXBzOnDlj7KYQERFVCZ2GWn788UekpKSgdu3aOHXqFOrXr1/hMa+++ip27dqFmJgYXaomIiKiakinHo/du3dDIpFgypQpGgUdANCiRQsAQHx8vC5VExERUTWkU+Bx69YtAEDXrl01PsbV1RXAs+QjREREVLPoFHjk5+cDAKytrTU+JicnBwBgZ2enS9VEROZF6qTfckQmSqc5Hh4eHrh37x4SEhI0Xolx4cIFAICXl5cuVRMRmZda/s+SgzFzKZk5nQKPl19+Gffu3cOff/6JoUOHVlheCIE1a9ZAIpGgS5cuulRNRGR+GFRQDaDTUMvw4cMhhMCvv/6q6Mkoz9SpU3Hx4kUAwIgRI3SpmoiIiKohnQKPAQMG4JVXXkFxcTF69OiBlStXIiUlRbG/uLgY9+/fx9atW9GlSxcsXboUEokEgwYNQqdOnXRuvLlhAjEiIjJ3ElFWmlENZWRkoEePHjh//nyFKdCFEOjYsSMOHjwIBwcHXao1a7q8bpiIiKiq6fI9pXPKdBcXF5w6dQqfffYZnJ2dFSnTX/zY2dlh+vTpiIqKYtBBRERUQ+nc4/G8nJwcHDt2DGfPnkVKSgpKSkpQq1YttGnTBq+++ipkMpm+qjJr7PEgIiJTpsv3lF4DD9IPBh5ERGTKjDrUQkRERKQpBh5ERERkMDolEHteeno6Tp06hdu3byM7OxslJSUVHvPVV1/pq3oiIiKqBnSe4/Hw4UNMmTIF27dvR3FxsVbHahKc1ESc40FERKZMl+8pnXo8UlNT0alTJyQlJYFzVImIiKgiOs3xmD17NhITEyGEwJtvvokjR44gPT0dJSUlKC0trfBDRERENYtOPR579uyBRCLBe++9h/Xr1+upSURERpYez7fEElURnYdaAGD06NF6aUxNFxERgYiICM59ITKm9HhgWVDF5SbGMvggqgSdhlq8vLwAgCnQ9SQsLAxxcXE4c+aMsZtCVHOV19NRmXJEpESnwKNr164AgMuXL+ulMURERGTedAo8Pv30U1hbW+OHH35Afn6+vtpEREREZkqnwKNFixaIjIzE9evX0atXL9y4cUNf7SIiIiIzpHPm0mHDhqFx48bo27cvAgICEBgYiCZNmsDe3r7c4yQSCdauXatr9URERFSN6Bx43LhxA1OmTEFaWhoA4OLFi7h48WK5xwghGHgQERHVQDoFHnfu3EHXrl2RmpqqyFzq5OQEFxcXWFjw/XNERESkTKfAY968eUhJSYGFhQWmTp2K8ePHw8/PT09NIyIyAqmTfssRkRKdAo/Dhw9DIpHg448/xsKFC/XVJiIi46nl/yw5GDOXElUJnQKPR48eAQAGDx6sl8YQEZkEBhVEVUaniRienp4AABsbG700xlycPXsW77//Pho1agSJRIIvv/zS2E0iIiIyCToFHj179gQApvh+wYkTJxAdHY2QkBDIZDJjN4eIiMhk6Jy51MHBAd9++y0eP36srzZVexMnTsSNGzewfv16uLi4GLs5REREJkOnwKNRo0bYsWMHsrOz0blzZxw8eFBf7arWuJSYiIhIPZ0ml3bv3h0AULt2bVy/fh19+vSBi4sLGjdurFHm0sOHD+tSPc6dO4eDBw8iJiYGMTExSE5OBgBFTpGy5OXlITw8HFu2bMGdO3fg5uaGPn36YP78+fD29tapTURERFQ2nQKPqKgoSCQSxc9CCDx58gQxMTFlHiORSBSZS3U1f/587Nq1S6tj8vPz0b17d0RHR8PT0xMDBgxAYmIiIiMjsWfPHkRHR6Nhw4Y6t42IiIhU6RR4dO3aVS8BRGUFBwcjMDAQ7du3R/v27eHn54eCgoJyj1mwYAGio6MRHByMAwcOwNHREQCwaNEiTJ06FaNHj0ZUVJSifEZGBh4+fFjuOe3t7VG/fn2dr4eIiMjcSURF4xLViK2tLQoKCsocaiksLISHhwcyMzMRGxuLNm3aKO1v1aoVLl26hLNnz6Jt27YAgFWrVmHcuHHl1tutWzelYOV5fn5+ePfdd7FgwQKNryMrKwsymQyZmZlwdnbW+Dgis5Mez0ReRCZIl+8pnV8SV52cOHECmZmZ8Pf3Vwk6AGDIkCG4dOkSdu/erQg8xo4di7Fjx1ZpuwoKCpR6arKysqq0PqJqIT0eWBZUcbmJsQw+iKqRGrX8Qv7W3KAg9b/M5NsvXbpksDYBQHh4OGQymeLj4+Nj0PqJTFJ5PR2VKUdEJqFG9XjcuXMHAFCvXj21++Xbk5KSdKonNTUVx44dAwDk5ubi2rVr2LZtGxwcHPDaa6+plP/ss88wZcoUxc9ZWVkMPoiIyCxpFHjIv7ABKE2ifH57ZRh6QubTp08BoMylvg4ODgCA7Gzd/oK6evUq3nzzTcXP27dvx/bt2+Hr64vExESV8lKpFFKpVKc6iYiIqgONAo8GDRoAeLYUtri4WGV7Zbx4LnMSGhpaYS4RIiKimkijwKOsL9Hq9uUqXzqbm5urdn9OTg4AwMnJyWBtel5ERAQiIiJQUlJilPqJiIiqmkaBR2RkJACo5OyQb68u5EM79+7dU7tfvt3X19dgbXpeWFgYwsLCFMuUiIiIzI1GgceIESNgYWEBCwsLtGvXDgEBAYrt1UmrVq0AALGxsWr3y7cHBgYarE1EREQ1iVbLaavb0MqLOnfuDJlMhvj4eFy4cEFl/7Zt2wAA/fr1M3DLnomIiEBAQADat29vlPqJTIpUwyFPTcsRkUnQOHOphYUFJBIJLl++rOjxMDUVZS4FgC+//BJff/01OnXqhAMHDihWsshTppeXhdRQmLmU6P/HzKVEJqnGZi7du3cv5s+fr/i5sLAQANCxY0fFtlmzZqFv376Kn7/88kscOnQIJ0+eROPGjdGlSxckJSXh9OnTcHd3x7p16wx3AURUPgYVRGanWgceqampOH36tMr257elpqYq7bO1tcXRo0cRHh6OTZs2YefOnXBzc8PIkSMxf/78MpOLERERke7Maqilunt+Oe2NGzc41EJERCZJl6GWGvWuFlMXFhaGuLg4nDlzxthNISIiqhJaD7WMGjVKMSFTFxKJBIcPH9b5PERERFR9aB14nD17VudKhRAqyciIiIjI/GkdeFT3XB6mjCnTiYjI3HFyqQliHg8iIjJlnFxKRERE1QIDDyIiIjIYBh5ERERkMNU6cykRGRDfm0JEesDAw4RwVQuZrPR4YFlQxeUmxjL4IKJycajFhDBzKZms8no6KlOOiGosjXs8EhISAADe3t5V1hgiIiIybxoHHr6+vlXZDiIiIqoBONRCREREBsPAg4iIiAyGgYcJiYiIQEBAANq3b2/sphAREVUJBh4mhKtaiIjI3DHwIKKKSZ30W46IaiwmECOiitXyf5YcjJlLiUhHDDyISDMMKohIDzjUQkRERAbDwIOIiIgMhoEHERERGQwDDyIiIjIYTi41IREREYiIiEBJSYmxm0KmLD2eq0uIqNqSCCGEsRtByrKysiCTyZCZmQlnZ2djN4dMSXo8sCyo4nITYxl8EFGV0eV7ikMtRNVJeT0dlSlHRGRgDDyIiIjIYBh4EBERkcEw8CAiIiKDYeBBREREBsPAg4iIiAyGgQcREREZDAMPoupE6qTfckREBsbMpUTVSS3/Z8nBmLmUiKopBh5E1Q2DCiKqxhh4mBC+q4WIiKpCSalATMJjpGTnw8PJFh0auMHSQmKUtvBdLSaI72ohIjJPxggA9l95gLm74/AgM1+xzVNmi9n9AtDnJc9KnVOX7yn2eBARERlAVQQAmtQ5bmMsXuxheJiZj3EbY7Hy3aAqq7ssDDyIKouvpyciDRkjACgpFZi7O06lTgAQACQA5u6OQ8+AugYddmHgQVQZfD09UbVmyCEPYwUAMQmPlXpX1NX9IDMfMQmPEexfS2/1VoSBB1Fl8PX0RNWWoYc8jBUApGSXXWdlyukLE4gREZFRlZQKnIpPx64LyTgVn46S0qpb8yAf8ngxEJAPeey/8kDvdRorAPBwstVrOX1hjwcREQEwnxUXZTHWkIexAoAODdzgKbPFw8x8tdcsAVBX9uzf2ZAYeBARUY1YcWGsIQ9jBQCWFhLM7heAcRtjIQGU6paHVbP7BRg8nweHWoiIajhjDD9U1PsAPOt90Oewi7GGPOQBAPC/L3y5qg4A+rzkiZXvBqGuTLk3pa7M1ihLaQH2eBARmRyuuKia3gdjznmQBwAv9irVreJeJXndPQPqmkzmUgYeVeC3337Dhg0bEBsbi9zcXLRq1Qr/+c9/EBISYuymEZGJ44qLypXThLHnPBgzALC0kBh0yWx5ONRSBZYsWYLatWsjIiICW7duhbe3N3r06IGLFy8au2mkL3w9fY1gyNUWAFdc6FJOE8Yc8ni+DcH+tTCgtTeC/WsZrdfBmNjjUQV2796NWrX+F1m++uqraNmyJSIiIrB69Wojtoz0hq+nN3uG7nngigtlVdX7YMwhD3qGgUcVeD7oAAALCwu89NJLSEhIMFKLqEowqDBbxkhvzRUXynUCVTvh0pTmPNQ01Xqo5dy5c/jmm28waNAg1KtXDxKJBBJJxQ9OXl4evvrqKzRp0gS2trbw8vLC6NGjkZycXCXtLCkpwZkzZ9CoUaMqOX+Nlx4P3L9Q9ic93oiNI30w5JCHMVZbAFxx8TxDrLjgkIfxVOsej/nz52PXrl1aHZOfn4/u3bsjOjoanp6eGDBgABITExEZGYk9e/YgOjoaDRs21Gs7ly9fjjt37mD8+PF6PS+B70ypAWrKZEuuuGDvQ01RrQOP4OBgBAYGon379mjfvj38/PxQUFBQ7jELFixAdHQ0goODceDAATg6OgIAFi1ahKlTp2L06NGIiopSlM/IyMDDhw/LPae9vT3q16+vdt/p06cxc+ZMfPnll2jZsqV2F0gV4ztTzJoxhjyM1fPAFRemseKCql61DjxmzJihVfnCwkIsX74cABAREaEIOgBgypQp2LBhA44dO4Zz586hbdu2AIAtW7Zg3Lhx5Z63W7duSsGKXGJiIgYMGIB+/fph9uzZWrWVyFQZKsdETZtsaQpZJhkAkCFU6zke2jpx4gQyMzPh7++PNm3aqOwfMmQIgGerUuTGjh0LIUS5H3VBR0ZGBvr27Qs/Pz9s2LCh3LknBQUFyMrKUvoQmaL9Vx4g5NsjGLYmGh9vuYBha6IR8u2RKlnmqc2Qhz7Jex7K+j9WgmdDPVXR82CKWSaJ9K1a93hoS55HIyhI/ZwA+fZLly7pVE9hYSEGDRqE3NxcHDlyBHZ2duWWDw8Px9y5c3Wqk6iqGXrYw9iTLY3V88A5D2TualTgcefOHQBAvXr11O6Xb09KStKpnvHjx+PYsWNYs2YNEhISFMtopVKp2p6Wzz77DFOmTFH8nJWVBR8fH53aQObP3NNq19TJlgCHPMi81ajA4+nTpwCeTQZVx8HBAQCQna3bRMRDhw6htLQUH3zwgdJ2X19fJCYmqpSXSqWQSqU61Uk1S01Y6VGTJ1sSmbMaNcfDUBITE9XOBVEXdDwvIiICAQEBaN++vWEaStVSTUmrzfTWROapRvV4yFex5Obmqt2fk5MDAHByMs77NcLCwhAWFoasrCzIZDKjtEEn6fGGTyFuAu9MMfchD8B4wx7GHvIgIv2rUYGHPNfGvXv31O6Xb/f19TVYm8yGsRJ5GfmdKTVhyAMw7rAHhzyIzEuNCjxatWoFAIiNjVW7X749MDDQYG0yG8ZM5GWkjKQ1KbmVsVd6cLIlkfmoUXM8OnfuDJlMhvj4eFy4cEFl/7Zt2wAA/fr1M3DLnuEcj+rDWO/zMIWVHswxQUS6qFE9HjY2NpgwYQK+/vprhIWF4cCBA4qVLIsWLcKlS5fQrVs3RdZSQ6v2czyMzJBzLWrikAfAYQ8i0l21Djz27t2L+fPnK34uLCwEAHTs2FGxbdasWejbt6/i5y+//BKHDh3CyZMn0bhxY3Tp0gVJSUk4ffo03N3dsW7dOsNdAOmNoeda1NQhD3kbOOxBRJVVrYdaUlNTcfr0acVHiGe/hp/flpqaqnSMra0tjh49ilmzZsHe3h47d+5EUlISRo4cidjYWL2/mZaqnjGWl3LIg4iociRC/m1NRhcREYGIiAiUlJTgxo0byMzMhLOzs7GbpZn7F4DV3SouN+YY4NVab9WWlAqEfHukzGEP+dDD3zO667UXQF5vRUMe+q73xTZwyIOIjEE+JaAy31PVeqjF3Oh1jocxcmoYgbHmWnDIg4iochh4mCNj5NQwUiIvY821AJjcioioMhh4mCNj5NSo5Y//9t6PhX+cUxl6kP/NP71/W3TVcy+LMedaAFzlQUSkLQYeJuT5OR7VTUmpwIyoXDwQDdTulwCYEZWLv18Wev1SNvbyUoBDHkRE2qjWq1rMTVhYGOLi4nDmzBljN0Vr2sy10CdTeJEYERFpjoEH6YUpzLXg8lIiItPHoRYzVCIELPVYThOca0FERJpg4GGGriZnQZPX3F1NzkKgt37q5FwLIiLSBIdazNDj3EK9ltME51oQEZEmGHiYEH29nVYmc9VrOU1xrgUREVWEKdNNkC6paIFnS1vfDt+IvKeZZQ572DnKsOWzd6ukB4KpvImIzBtTppMSSwsJPhjwKsZtjAWgPp33ygFBVRYMcK4FERGVhUMtZorDHkREZIrY42HGuMSUiIhMDQMPM8dhDyIiMiUcajEh+lrVQkREZKq4qsUE6bqqhYiIqCrp8j3FHg8iIiIyGAYeREREZDAMPIiIiMhguKrFBMmn3WRlZRm5JURERKrk30+VmSbKwMMEZWdnAwB8fHyM3BIiIqKyZWdnQyaTaXUMV7WYoNLSUty/fx9OTk6QSIyX7CsrKws+Pj64e/cuV9dUgPdKM7xPmuO90hzvlWb0eZ+EEMjOzoaXlxcsLLSbtcEeDxNkYWGBevXqGbsZCs7OzvyfWUO8V5rhfdIc75XmeK80o6/7pG1PhxwnlxIREZHBMPAgIiIig2HgQWWSSqWYPXs2pFKpsZti8nivNMP7pDneK83xXmnGVO4TJ5cSERGRwbDHg4iIiAyGgQcREREZDAMPIiIiMhgGHjVAbm4udu7ciQ8++ABNmzaFra0tHBwc0KpVK8ybNw9Pnz7V6nx+fn6QSCRlfq5du1ZFV2IYoaGh5V7f/v37tTrfkydP8PHHH8PX1xdSqRS+vr745JNPkJGRUTUXYCBRUVHl3if5Z968eRqdr7o/V+fOncM333yDQYMGoV69eop2V2T9+vXo0KEDHB0d4ebmhtdffx0nT56sVBtKSkqwePFitGzZEnZ2dnB3d8fQoUPxzz//VOp8VUWbe1VaWorjx49j+vTpaNu2LZycnCCVSuHv74+xY8ciISFB6/pHjhxZ7rO2atUqXS9RL7R9pubMmVPudc2cOVPrNlTFM8UEYjXApk2b8O9//xsA0Lx5c/Tv3x9ZWVk4efIkZs+ejc2bN+PYsWPw8PDQ6rwjRoxQu72ySWVMzeDBg+Ho6Kiy3dvbW+NzpKWlITg4GLdu3ULDhg0xcOBAXL16FUuXLsWff/6JU6dOwc3NTZ/NNpi6deuW+QyUlJRg48aNAIAuXbpodd7q+lzNnz8fu3bt0uqYTz75BEuXLoWdnR169eqF/Px8HDx4EAcOHMC2bdswcOBAjc9VWlqKN998Ezt27ICLiwv69u2LtLQ0bNu2DXv37sXRo0fRoUMHLa+qamhzr27fvo2uXbsCePbMde/eHZaWloiJicFPP/2ETZs2Yd++fQgJCdG6Hb1790bdunVVtjdt2lTrc1WFyjxTANC5c2c0atRIZXvbtm21Ok+VPVOCzN769evFmDFjRFxcnNL2+/fvizZt2ggAYtiwYRqfz9fXV5jzo9OtWzcBQCQkJOh8ruHDhwsAYtCgQaKoqEixfeLEiQKAGDFihM51mKJ9+/YJAMLHx0eUlpZqdEx1f66++eYbMWvWLPHHH3+IBw8eCKlUWu71HDx4UAAQtWrVEjdu3FBsP3nypLCxsREuLi7iyZMnGte/Zs0aAUA0btxYPHz4ULF927ZtAoBo1KiR0jNoTNrcq1u3bomePXuKw4cPKz1L+fn5YuTIkQKAqF+/vigsLNS4/hEjRggA4ujRo7peSpXS9pmaPXu2ACAiIyP1Un9VPVPV9/9y0ouTJ08KAEIqlYqCggKNjqnuXxAV0Vfgcf/+fWFhYSFsbGyU/qcV4tkvTXd3d2FpaSkePXqkUz2m6J133hEAxMyZMzU+xtyeq4q+JF577TUBQCxevFhl36RJkwQA8f3332tcX/PmzQUAsWPHDpV9/fv3FwDEtm3bND6fIVV0r8qSm5srZDKZACCioqI0Pq66BB4vMnTgUVXPFOd41HCtWrUCABQUFCA9Pd3IrTEv+/fvR2lpKbp06YI6deoo7ZNKpejXrx9KSkqwb98+I7WwauTk5Ci6h9977z0jt8Y05eXl4ciRIwCAIUOGqOyXb9u9e7dG50tISMA///wDOzs79O3bV+fzVRd2dnZo0qQJAOD+/ftGbo15qcpninM8arjbt28DAKytrbWea/Ddd98hPj4eUqkULVq0wBtvvAF3d/eqaKZRrF27Funp6bCwsECTJk0wcOBA1K9fX+PjL168CAAICgpSuz8oKAjr1q3DpUuX9NJeU/H7778jJycHbdq0QUBAgNbHm/tzBQDXr19HQUEB3N3d1b4QUv7MaPpsyJ+1l156CdbW1jqfr7ooLS1FUlISAKidq1GR33//Hdu3b0dJSQkaNGiAfv36oVmzZvpupsEdOXIEFy5cQH5+PurVq4fXXntN6/kdVfpM6aE3hqqxDz/8UAAQ/fr10/gYeZf4ix97e3uxdu3aKmytYciHWl78WFtbi3nz5ml8njfeeEMAEEuXLlW7f+fOnYr5H+akV69eAoBYtGiRVseZ23NVXrf4rl27BADRpk2bMo93cXERAERWVlaFdS1dulQAEG+88Yba/RkZGQKAcHNz06zxBlbZoZaNGzcKAMLd3V3k5+drfJx8qOXFj0QiEePHjzeZuTAv0nSoRd1n8ODBIjs7W+O6qvKZ4lBLDbZv3z6sXbsW1tbWmD9/vsbH9e/fH7///juSkpKQm5uLK1euYMqUKSgoKMCHH35YqVnYpqRr16745ZdfEB8fj9zcXFy/fh1ff/01rKys8NVXX2Hp0qUanUe+TNne3l7tfgcHBwBAdna2fhpuAh48eIDDhw/D0tISw4YN0+pYc3+unlfRswFo93zUxGft7t27+OSTTwAA8+bN0+r9I23atMGqVatw48YN5Obm4vbt24iIiICLiwtWrFiBadOmVVGrq1ajRo3w/fff4+rVq3j69Cnu3r2LX3/9Fd7e3ti+fbtWQ59V+kxpHaqQWfjnn3+Eq6urACCWLFmil3OuXr1aABBNmzbVy/lMzV9//SUACBcXF5Gbm1th+Z49ewoAYs2aNWr3y1c19OzZU99NNZoffvhBABB9+vTR2zmr63NV3l+nv/76qwAgOnfuXObx3t7eAoBITk6usK6vv/5aABDDhw9Xu7+oqEjRa2eKtO3xePr0qWjXrp0AIAYOHKi3dly5ckXY2NgIKysrcefOHb2dV18q2zN0//59UatWLQFAnDp1SqNjqvKZYo9HDZScnIw+ffrgyZMnmDJlCj7++GO9nPeDDz6Ah4cHrl+/jsTERL2c05T06tUL7dq1Q0ZGBk6fPl1heXkOkNzcXLX7c3JyAABOTk76a6SRyXN36HNSqTk+VxU9G4B2z0dNetaKiorw5ptv4uzZswgJCcGmTZv0du4WLVqgf//+KC4uxuHDh/V2XmPz9PTEqFGjAEDjBIhV+Uwx8KhhHj9+jF69eiEpKQmjRo3C999/r7dzW1hYwN/fH8CzLndz1LhxYwCaXZ98Iuq9e/fU7pdv9/X11VPrjOuff/7B+fPn4ejoqFXiq4qY43NV0bORk5ODjIwMuLq6avSLvaY8a6WlpRgxYgT+/PNPtG7dGrt374adnZ1e69Dm//HqRNvrqspnioFHDfL06VO89tpriIuLw6BBg7BmzRqNUjpr48mTJwD+N/5nbrS5PvlS5djYWLX75dsDAwP11Drj+uWXXwAAgwYNKnfuQmWY23PVtGlTSKVSpKamIjk5WWW/ts+G/Fm7cuUKioqKdD6fqZo4cSI2b96MJk2a4K+//oKLi4ve6zC3Z01O2+uq0mdK68EZqpby8/NF9+7dBQDRu3dvjZOFaePKlStCIpEIe3v7Kjm/saWkpAgHBwcBQNy9e7fC8s8nEHsxSZi5JRArLS1VrEo5ePCgXs9dXZ8rJhDTnCZzF7744gtFltKkpKQqaUd+fr7w8fERAMTx48erpA5dVHaOR2lpqXj55ZcFAPHLL79ofFxVPVMMPGqA4uJixdLOLl26iJycnAqPWbZsmWjatKlK5sm9e/eKw4cPq5S/ePGi4iGdNGmS3tpuaCdOnBA7duwQxcXFStsTEhJE586dBQDRv39/pX1l3Ssh/pcyffDgwUpL9ORfLOaSMv3YsWMCgPD29hYlJSVllqtJz5UuKdOlUqnalOmnT58WTZs2Fd27d1c53/PprZ8PZrdv325yKdNfVNG9WrRokQAg6tatq3SvylPWvfrnn3/Ezz//rLL8NiUlRQwcOFAAEK1atdI41b8hlXefUlJSxPLly1WWX2dnZ4uPPvpIcf9e/P1vjGeKCcRqgOXLl2PHjh0AgNq1a2P8+PFqy33//feoXbs2gGcvN7t+/brKeGBMTAzmzp0LX19ftGrVCvb29rh9+zZiY2NRXFyM0NBQfPPNN1V7QVXoxo0bGDVqFOrWrYugoCC4uLggKSkJ586dQ35+Plq0aIE1a9YoHVPWvQKAJUuWIDo6Gtu3b0ezZs3Qrl07XL16FVeuXEHjxo2xaNEiQ11alZJPKn3nnXdgYVH2CK45P1d79+5VWpZeWFgIAOjYsaNi26xZsxRZIF999VV8/PHHWLp0KVq3bo2ePXuisLAQBw8ehBACkZGRKkMJ8uXd+fn5KvWPHj0a+/btw44dO9CsWTP06NEDaWlpOHbsGOzs7LBx40ZYWZnGr3xt7tWFCxcwdepUAECDBg3w9ddfqz3nhx9+qPSiuLLu1cOHD/H+++/j448/Rrt27eDu7o779+/j3LlzyM7ORr169fDbb7/pfRi6MrS5Tzk5OZgwYQJmzpyJ9u3bw9PTE6mpqYiNjUV6ejpcXFywbds2lWFQozxTWocqVO2Ul1Tm+c/z7yaRH/PiX+QnT54Uo0ePFi1bthS1atUSVlZWws3NTYSGhoo1a9ao9BRUN3FxcWLcuHEiKChIuLu7CysrKyGTyUTHjh3FDz/8oHYZbVn3Si49PV1MnDhR+Pj4CBsbG+Hj4yMmTZqk1QvATFl+fr5iafbFixfLLWvOz1VkZGSF/4+pe4dGZGSkaNu2rbC3txcuLi6iT58+4sSJE2rrOHr0qAAgfH191e4vLi4WP/zwg2jRooWwtbUVtWrVEkOGDBFXr17V45XqTpt7Jb9mbe9tWfcqOTlZfPLJJ6Jjx46ibt26wtraWjg6OoqgoCAxe/Zs8fjxY8PcBA1oc5+ysrLEjBkzRLdu3YS3t7eQSqXC3t5etGjRQkydOlXcu3dPbR3GeKYkQgihfbhCREREpD2uaiEiIiKDYeBBREREBsPAg4iIiAyGgQcREREZDAMPIiIiMhgGHkRERGQwDDyIiIjIYBh4EBERkcEw8CAiIiKDYeBBRGYnKioKEokEEokEUVFRxm4OET2HgQcRmYznAwZ1H0dHRzRp0gTvvfcejhw5YuzmElElMPAgomojJycHN2/exMaNG9GjRw+MGDECJSUlWp9nzpw5imCGiAzLNN6RTET0gnHjxmH8+PGKn4UQePz4MU6dOoXFixcjJSUFP//8M3x8fLBgwQKlY0NDQ8H3XxKZJgYeRGSSPDw88NJLL6ls79atG/r374+2bdsiPz8fP/74I7766ivY2NgYoZVEpC0OtRBRtRMQEIC+ffsCALKzs3Ht2jUjt4iINMXAg4iqpQYNGij+u6CgQGlfWata1q9fD4lEgrlz5yq2qZvEmpiYqHS+c+fO4YMPPkCTJk3g4OAAW1tb+Pj4oG3btggLC8Mff/zBoR0iDXGohYiqpaSkJMV/169fv8rqWbx4MT799FOUlpYqbb937x7u3buH2NhYrFixAtnZ2XB0dKyydhCZCwYeRFTtXLt2DXv27AEAdOzYEXXq1NHouIEDB6Jdu3ZYsWIFVq5cCQC4fPmySjlvb28AwKVLlxRBR4MGDTBhwgS0bt0abm5uyM7OxvXr13H06FHs2rVLT1dGZP4YeBCRSUpJScGVK1cUPwshkJGRoVjVkpeXB5lMhsWLF2t8ThcXF7i4uMDDw0OxTd0EVrlt27ahtLQUDg4OOHXqlEqA06VLF3z44YfIzMyEvb29FldHVHMx8CAik7Ry5UpFr8SLLCwsMHbsWEyePBlNmjSpsjY8fPgQANCkSZNye1VkMlmVtYHI3HByKRFVO6WlpdiyZQtWrlypMrFUnzw9PQEAcXFxiImJqbJ6iGoSBh5EZJJmz54NIYTSJzc3F5cuXcK0adPw9OlTLFmyBK+++ipyc3OrpA3Dhg2DtbU1CgoK0LlzZ/Tr1w+rVq3ClStXuIqFqJIYeBBRtWFnZ4eWLVti4cKFWLFiBQDg77//xn/+858qqa9Zs2bYvHkzXF1dUVxcjD179mDcuHFo2bIlPDw88N577+H48eNVUjeRuWLgQUTV0gcffAA3NzcAwLp166qsnsGDByMhIQE//fQTBg0aBHd3dwBAWloaNm7ciK5du2LkyJEqy22JSD0GHkRULVlYWKBx48YAgAcPHiA9Pb3K6pLJZBgzZgy2b9+OlJQUxMXFITw8HF5eXgCADRs2YNmyZVVWP5E5YeBBRNVWcXGx2v+uiK5vpW3evDlmzpyJ6OhoODg4AAB+++03nc5JVFMw8CCiaik3NxdxcXEAns39qF27tsbH2traKv5bl1UxPj4+iuW8aWlplT4PUU3CwIOIqqU5c+YgLy8PANC7d29YWlpqfKx8mSwAxMfHl1lu586dyMjIKHP/3bt3FS+oe/7dMURUNiYQIyKT9GLmUgDIz8/HzZs38fPPP2P//v0AnvVezJs3T6tzd+rUSfHfkydPxhdffAFPT0/FEIyfnx+srKywZMkSDB8+HH379kX37t3RvHlzyGQyPHnyBGfPnsWyZcsUwc/YsWN1uVyiGoOBBxGZpPIyl8q5u7tj48aNaNmypVbnbtSoEYYOHYrffvsNBw4cwIEDB5T2JyQkwM/PD8CzIZ2tW7di69atas9lYWGBuXPnYuDAgVq1gaimYuBBRNWGjY0N3Nzc0KJFC7z++usYNWoUXF1dK3WujRs3ol27dti2bRuuX7+O7OxslSWxmzdvxp49exAVFYW4uDg8fPgQaWlpsLW1ha+vL7p27YqxY8ciMDBQH5dHVCNIBNPvERERkYFwcikREREZDAMPIiIiMhgGHkRERGQwDDyIiIjIYBh4EBERkcEw8CAiIiKDYeBBREREBsPAg4iIiAyGgQcREREZDAMPIiIiMhgGHkRERGQwDDyIiIjIYBh4EBERkcEw8CAiIiKD+f8AOmpqaugvaTAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "filehandle = open(\"/space/poorvagarg/.julia/dev/Dice.jl/figures/exp_var.txt\")\n", + "lines = filehandle.readlines()\n", + "\n", + "plt.rcParams[\"figure.figsize\"] = [5.50, 3.50]\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=20)\n", + "plt.rc('legend', fontsize=15)\n", + "\n", + "x = []\n", + "y1 = []\n", + "y2 = []\n", + "y3 = []\n", + "y4 = []\n", + "for i in lines[1:]:\n", + " cur = i.split(\",\")\n", + " x.append(int(float(cur[0])))\n", + " y1.append(float(cur[1]))\n", + " y2.append(float(cur[2]))\n", + " y3.append(float(cur[3]))\n", + " y4.append(float(cur[4]))\n", + "\n", + "print(y3)\n", + "\n", + "fig, ax = plt.subplots()\n", + "# ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_xlabel(\"Bits\")\n", + "ax.set_ylabel(\"Time (s)\")\n", + "# ax.set_title(\"Speedup for expectation\")\n", + "legend_list = [\"Bitwise Expectation\", \"Naive Expectation\"]\n", + "# legend_list = [\"1\", \"2\", \"3\", \"4\"]\n", + "ax.scatter(x, y1, marker=\"o\")\n", + "# ax.plot(x, y2)\n", + "ax.scatter(x, y3, marker = \"s\")\n", + "# ax.plot(x, y4)\n", + "legend_list.append(\"b = \" + str(i))\n", + "ax.legend(legend_list, loc=\"upper left\")\n", + "fig.savefig(\"exp_results.png\", dpi=300, bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.005785435, 0.0074041345, 0.0100424315, 0.01506725, 0.025126091, 0.044084032, 0.091392248, 0.175689231, 0.387366907, 0.8477628235, 1.887189813, 4.303584996, 9.015646818, 20.366195206]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh4AAAFgCAYAAAD0A3BmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXQklEQVR4nO3deVzU1f4/8NeAMKwOICCIiAvu+74LuaJe0VwyM9O0ayqppaWVlSl26fot0xQ1/Zlmbhmm5pqmYqYiKm5IaiHgLosKyL6c3x8+Zq7jDDDD7MPr+XjMo+Z8zudzzmf4wLw9q0QIIUBERERkBDamrgARERFVHQw8iIiIyGgYeBAREZHRMPAgIiIio2HgQUREREbDwIOIiIiMhoEHERERGU01U1eAVJWWluLevXtwdXWFRCIxdXWIiIiUCCGQnZ2NWrVqwcZGuzYMBh5m6N69e/D39zd1NYiIiMp1+/Zt1K5dW6tzGHiYkcjISERGRqK4uBjAsx9o9erVTVwrIiIiZVlZWfD394erq6vW50q4ZLr5ycrKgkwmQ2ZmJgMPIiIyO7p8T3FwKRERERkNAw8iIiIyGgYeREREZDQMPIiIiMhoOKuFiIjIWmUkAgXZZR+XugI1GhivPmDgQUREZJ0yEoHl7SrONz3OqMEHu1qIiIisUXktHZXJpyds8bAyRUVFKCkpMXU1iKgSbG1tYWdnZ+pqEBkUAw8rkZWVhfT0dBQUFJi6KkSkA6lUCk9PTy4eSFaLgYcVyMrKwt27d+Hi4gJPT0/Y2dlxczkiCyOEQFFRETIzM3H37l0AYPBBVomBhxmR79WibVdJeno6XFxcULt2bQYcRBbM0dERrq6uuHPnDtLT0xl4kFXi4FIzEhYWhoSEBJw9e1bjc4qKilBQUACZTMagg8gKSCQSyGQyFBQUoKioyNTVIdI7Bh4WTt46wgFpRNZD/vvMgeJkjRh4WAm2dhBZD/4+k15INdyyXtN8esIxHkRERNaoRoNni4Nx5VIiIiIyCiMHFZpgVwsREREZDQMPsjoSiUTlZWdnh1q1amHEiBE4deqU2vOCg4MhkUiQnJxs3AoDmDBhAiQSCaKjo41e9vOysrLg6OgIGxsb3Lp1q8L806ZNg0QiwezZsw1Snw0bNkAikeDzzz83yPWJyPgYeJDVGj9+vOIVGhoKJycn/PLLL+jRowe2bNmi8XUkEgnq1q1ruIqakerVqyM0NBRCCGzevLncvEVFRdi+fTsAYNy4ccaoHhFZAYkQQpi6EqQsKysLMpkMmZmZFS4glJ+fj6SkJNSrVw8ODg5GqqF5k88IePHRLi0txccff4z//ve/qFGjBu7fv680DfnWrVvIzc1FgwYNlNIlEgkCAgIM2hJy//59ZGZmok6dOnBycjJYOZrYu3cvhgwZgubNmyM+Pr7MfL/++iuGDh2KFi1a4MqVKwapS2ZmJu7fvw9PT094enoapAxzxN9rMnfafE+9iC0eVGXY2Nhg4cKFqFatGjIyMnD16lWl43Xq1EGTJk1MsiaKr68vmjRpYvKgAwBCQkLg5eWFq1ev4sKFC2Xm27RpEwDg9ddfN1hdZDIZmjRpUqWCDiJrx8BDz86dO4c33ngDgYGBkEgk+OSTT0xdJXqOvb09ZDIZAKC4uFjp2ItjPOTjCwAgJSVFacxIcHCw2nPkli5dColEAqlUitzcXKVj77//PiQSCaKiohRpZY3xSEtLw4cffohmzZrBxcUFMpkMjRo1whtvvIHY2FiV+3v06BE++ugjNGvWDI6OjpDJZOjduzf27t2r8WdUrVo1jB49GgDK7G7JysrCnj17YGNjg7FjxwIALl68iDlz5qB9+/bw8vKCVCpF/fr1MW3aNNy7d0/lGsnJyYrPMisrC7NmzUK9evVgZ2eHd999F0DZYzzu37+PxYsXIygoCH5+frC3t4ePjw+GDx9e5sq/devWVfw8/9//+39o1aoVHB0d4ePjg7fffhtPnjxRe15RURFWr16NHj16wM3NDY6OjggMDMSbb76J8+fPq+T/66+/MGHCBPj7+0MqlaJmzZp49dVXVQJdoqqKgYeenTx5EjExMejRo4fiC86alJQKnE7MwO6Ld3E6MQMlpZbVU5eUlISMjAzY2dkhMDCw3LyBgYEYP348AMDZ2VlpzEhISAgAICgoCABUAoZjx44BAAoLC1UGsx47dgwSiURxblmys7PRuXNn/Pe//8XTp0/Rr18/9O/fH+7u7ti2bRv279+vlP/GjRto06YNvvzyS+Tl5WHAgAHo0KEDzpw5gyFDhuCrr74q/8N5jnzMxtatW1FaWqpyfMeOHcjPz0dwcDBq164NAPjyyy/xzTffAAB69OiBQYMGQQiBVatWoUOHDmqDDwDIy8tDUFAQNmzYgDZt2iA0NBTu7u7l1m/37t2YO3cuHj58iFatWuHll19GrVq1sHPnTnTv3h2HDh0q89w5c+YgLCwMvr6+GDhwIIQQWLNmjWJsy/NycnLQt29fTJ06FRcvXkSXLl0wdOhQeHp6YvPmzfjxxx+V8u/atQtt27bFDz/8AE9PT4SGhqJevXrYvn07OnXqhD/++KPc+yKqEgTpVUlJieL/AwICxLx587S+RmZmpgAgMjMzK8ybl5cnEhISRF5entblaOvAlXuiy39+FwFz9ypeXf7zuzhw5Z7By9YGAPHio52dnS1OnDghOnToIACIGTNmqJwXFBQkAIikpCSV6wUEBKgt6+jRowKAGD9+vCKtpKREuLu7i+bNmwsASs/AkydPhI2NjWjevLnSdcaPHy8AiGPHjinSvv/+ewFAhIaGKj1XQgiRmpoqrly5onhfXFwsWrZsKQCIxYsXK+X/+++/Rb169YStra3SORVp1KiRACAOHz6scqx3794CgFi/fr3SZ/HgwQOlfCUlJWLBggUCgHjzzTeVjiUlJSl+Vl27dhWPHz9WKWf9+vUCgJg/f75S+uXLl0V8fLxK/oMHDwp7e3vRoEEDUVpaqnQsICBAABA+Pj7i2rVrivS0tDQRGBgoAIgjR44onTNp0iQBQPTq1UukpqYqHXvw4IGIiYlRuh9nZ2fh4uKi8pkdOHBA2NnZCX9/f1FQUKBS7xcZ8/eaqDK0+Z56EVs89MzGxjo/0oPx9zF1UxzuZ+YrpT/IzMfUTXE4GH/fRDUr2/NdI66urujZsyeuX7+O5cuXY+nSpXopo2vXrpBKpUotHpcuXcLjx4/xxhtvICAgQOnYH3/8gdLS0gpbO4Bn3SwA0Lt3b5XnysvLCy1atFC837NnD65cuYIRI0bggw8+UMofGBiIr7/+GiUlJVi7dq3G9yZv9ZCP5ZC7e/cuoqOj4ejoiBEjRijSX3rpJdSsWVMpr42NDT777DP4+fnh119/LbOsb7/9Fm5ubhrXrWXLlmjevLlK+oABAzBq1CgkJiaWOTA2PDwcjRs3Vrz39PTElClTAECpReLevXvYsGEDpFIpNm7cCC8vL6Xr1KxZE507d1a8X7p0KXJychAREYG+ffsq5Q0JCcHUqVNx+/Zt7Nu3T+P7JLJGVWrl0vPnz+Pw4cOIjY1FbGws7t69C0B19sOL8vLyEBERgW3btuHWrVvw8PBASEgIwsPD4efnZ4yqm1RJqcCCPQlQ9ykJABIAC/YkoF8zH9jamM8eE/JuEgAoKChASkoKzpw5g4ULF6JBgwYYOHCgzmU4ODigU6dOOHHiBJKTk1G3bl1FoBEcHIyEhARs3boVubm5cHJyUjpWkfbt2wMA/u///g81a9bE4MGD4eqqfk8FedfC8OHD1R7v2bMnAKgdF1KWsWPH4rPPPsMvv/yCVatWwdHREcD/ul+GDh2qUp+MjAz8+uuviI+Px5MnTxSbnBUVFSEjIwOPHj2Ch4eH0jm+vr7o0KGDxvWSKygowMGDBxEbG4u0tDQUFhYCgGKGzd9//42WLVuqnNe/f3+VtEaNGgF4NnZELjo6GiUlJfjXv/6FgICACuujyc/g22+/RWxsLF5++eUKr0dkrapU4BEeHo7du3drdU5+fj569+6NmJgY+Pr6YujQoUhOTsb69euxd+9exMTEoH79+gaqsXmITXqk0tLxPAHgfmY+YpMeoWuDGsarWAU2bNigknbhwgUEBQUhNDQU8fHxSv/yrazg4GCcOHEC0dHRmDBhAqKjo1G9enW0b98ewcHB+OGHH3Dq1Cn07dtXEXho0uLRp08fvPfee1i6dCnGjBmDatWqoV27dujXrx8mTpyo9NzJB7eOHTtWMdhTnfT0dI3vq169eujevTv+/PNP/Prrr4oBp/IWkBfX7ti6dSsmT56Mp0+flnnN7OxslcCjTp06GtdJ7sqVKwgNDS13inN2tvr9KeRjUp4nD6AKCgoUabdv3wYANGig2ZLT8rpU9I8RbX4GRNaoSgUeXbt2RatWrdCxY0d07NgRdevWVfpDo86iRYsQExODrl274tChQ3BxcQEALFmyBLNnz8bEiRNNvtqkoaVmlx10VCafKbVt2xZvv/02vvrqK6xatUovXS7BwcEIDw9HdHQ03njjDZw4cQI9evSAra2tomUjOjoaHTt2xMWLF9G0aVN4e3trdO0lS5bg7bffxu7du/H777/j5MmTiI2NxeLFi7F161ZFV4d8AGhISIhKd8fztJ2WOm7cOPz555/YtGkTRo8ejatXr+LSpUvw9vZWajlISUnBhAkTADzrchg8eDD8/PwUrSTdunXD6dOn1bYuartOhRACr7zyCpKTkzFlyhRMmTIF9evXh4uLCyQSCT7++GNERESU2ZJpqO5Q+c/g+ZY2dZ7vniGqiqpU4DF37lyt8hcWFmLFihUAgMjISEXQAQCzZs3CDz/8gOPHj+P8+fOKZnFr5O2q2ReDpvlMrV69egCeNcXrQ9euXWFvb4/o6GjF+A55wFG3bl3FOI/OnTujtLRUo26W5zVu3Bhz5szBnDlzkJ+fjxUrVuCDDz7A1KlTFYGH/F/xb731ltK4C1298sormDFjBn777Tekp6crZnG8+uqrqFbtf38+9u/fj8LCQrz//vuYOXOmynVu3ryptzpdu3YN165dQ4cOHbBq1SqDleXv7w8ASExM1Ch/7dq1kZiYiK+//ho1aphPyx+RubHOkZB6cvLkSWRmZqJBgwZo27atyvGRI0cCeDawz5p1qucBX5kDyhq9IQHgK3NAp3oeZeQwL/IvpucDyfLY2dmprPnxPEdHR3Tq1AkpKSmK7p2XXnpJcTw4OBhnz55VTH/VNvB4noODA95//334+voiLS0NqampAIB+/foBAHbu3Fnpa6vj5uaGwYMHo6ioCNu2bcPWrVsBqHazPH78GID6bow//vgDDx8+1Fudyivr8ePHOHz4sF7KCQ4Ohq2tLX777TdFt0t5DPUzICuRkQjcu1j2K0OzANcaMPAox6VLlwAA7dq1U3tcnn758mWdyikoKEBWVpbSy5zY2kgwf0gzAFAJPuTv5w9pZlYDS8ty4cIFrFmzBgAwaNAgjc6pVasWHj58WOYCU8D/gok1a9ZAJpMpBarBwcEoLCxUBCWajO8Anq0JERMTo5J+/vx5PHz4EC4uLoqZICNGjECzZs2wefNmhIeHq3QhCiFw8uRJnDx5UqOynycPMhYsWIBbt26hSZMmKoNB5YMzN23ahJycHEX63bt3FTNG9CUwMBA2NjY4evSoUqtVfn4+pkyZgkePHumlnFq1auGNN95Afn4+xo8fj4yMDKXjqampOHPmjOL97Nmz4ejoiPfffx+//PKLyvUKCgoQFRWFO3fu6KV+ZEEyEoHl7YA1QWW/lrerMsFHlepq0ZZ8d051/7J6Pj0lJUWRlpaWhuPHjwMAcnNzce3aNURFRcHZ2bnMWRQRERFYsGCBPquudyEtfLHq9XZYsCdBaaCpj8wB84c0Q0gLXxPWTj35mAPgWbdZSkoKYmJiUFpaiiFDhmi8sVloaCiWL1+Odu3aoVu3bnBwcEDjxo3xwQcfKPIEBQVh0aJFyM/PR58+fWBra6s4Jg9K8vPz0aRJk3LHYDwvOjoay5Ytg5+fH9q2bYvq1avj3r17OHHiBEpLS7FgwQLY29sDeLba6K5duzBgwAB89tlnWLFiBVq1agVvb2+kp6fj4sWLSE1NxTfffIPu3btrVL7coEGD4OHhoRgUqe5zCw0NRfPmzXHu3DkEBgaie/fuyM/Px7Fjx9CmTRt069atzF2BteXt7Y1JkyZh7dq1aN26NXr37g1HR0ecOHECJSUlmDBhgtqBxZWxbNkyXL9+HceOHUNAQAB69eqF6tWrIyUlBXFxcZg6dapizEZgYCC2bt2K1157DSNGjEBgYCCaNm0KZ2dn3L17F3FxccjJycGFCxfK/JtCVqpA/UDnSuezcAw8yiEfnV/W/hnOzs4AlEfPX716FaNGjVK837FjB3bs2FHuJmMfffQRZs2apXiflZWl6F82JyEtfNGvmQ9ikx4hNTsf3q7PulfMtaXjhx9+UPy/jY0N3Nzc0KtXL4wbNw4TJkzQeJChfKDi7t278dNPP6G4uBhBQUFKgUe3bt1gb2+PwsJCla4U+TiPlJQUrbpZJkyYgGrVquGPP/5AbGwsMjMz4ePjg0GDBmHmzJno06ePUv6GDRviwoULWLFiBX755RfExMSguLgYPj4+aNu2LUJDQ/HKK69oXL6cvb09Ro8ejVWrVkEikaidNWNvb48TJ05g3rx5OHDgAPbu3Qs/Pz9Mnz4dn332mcatS5patWoVmjRpgnXr1uHIkSOQyWTo27cvvvjiC6xfv15v5bi6uuLYsWNYvXo1Nm/erAhuatWqhbFjx+KNN95Qyj906FBcvnwZS5YsweHDh3H48GHY2dmhVq1aGDJkCIYPH45mzZrprX5ElqhK707r4OCAgoKCMke/T548GWvXrsW8efOwaNEileP//PMPGjZsiIYNG+LGjRt6qxd3pyWq2vh7bWXuXXzWnVKRyceBWm0MXRu94O60BiIffPjiJl9y8r7sshZ10lZkZCSaNWuGjh076uV6RERE5oaBRznkCxuVNRhMnq7JqoaaCAsLQ0JCQpm7axIREVk6Bh7laN26NQAgLi5O7XF5eqtWrYxWJyIiIkvGwKMc3bt3h0wmQ2JiIi5evKhyPCoqCgAwZMgQI9eMiIjIMjHwKIe9vT3eeecdAM+6QZ5fn2DJkiW4fPkygoKC9LZqKcd4EBFZIamG4wA1zWfhqtSsln379iE8PFzxPjY2FkIIpb0TPv30UwwePFjxPj8/H8HBwThz5gx8fX3Rs2dPxS6nXl5eBtkkjrNaiKo2/l5boYzE8tfpkLoCNTTbkNAc6DKrpUqt45GWlqa00qDc82lpaWlKxxwcHHDs2DFERERgy5Yt2LVrFzw8PDBhwgSEh4dzISAiIqqYBQUVhlalWjwsBVs8iKo2/l6TueM6HlaCYzyIiMjaMfAwI1zHg4iIrB0DDyIiIjIaBh5ERERkNAw8zAjHeBARkbVj4GFGOMZDPyQSCSQSCdzc3PDkyRO1eb788ktIJBJ8/vnnOpcXHBwMiUSC5ORkna+lD6+99hokEonSmjVliY2NhUQiQc2aNVFcXGyQ+kgkEtStW9cg1yYiy8PAg6xWZmYmlixZYupqGN24ceMAAJs3b64w76ZNmwAAY8aMQbVqVWpZHyIyEQYeZJUkEgkcHBywbNkyPH782KBlbdy4EX/99Rf8/PwMWo6m+vfvj5o1a+L69evltp4VFxfjp59+AvC/YMUQ/vrrLxw5csRg1yciy8LAg6ySjY0NJk+ejKysLHz11VcGLatOnTpo0qQJ7OzsDFqOpmxtbTFmzBgA/2vRUOfQoUNITU1F06ZN9bbfkDpNmjRBgwZctZGInmHgQVbrww8/hKOjI5YvX46MjAyNzrl//z4WL16MoKAg+Pn5wd7eHj4+Phg+fHiZrQcvjvFITU1FtWrVUKtWLZSWlqo9Z8+ePZBIJBg+fLhSuhACW7duRe/eveHu7g4HBwc0bdoUn3/+OXJzczW+99dffx0A8NNPP6GkpERtHnlXjDzvkydPsHz5cgwYMAABAQGQSqWoUaMGQkJCcPjw4QrvfcuWLejSpQtcXV3h5uamyKNujIf8Pl999VU0atQIzs7OcHV1RadOnbBy5Uq1n9vnn38OiUSCDRs24MqVKwgNDYW7uzucnZ0RFBSEU6dOlfl5nDlzBq+++ir8/PwglUrh6+uLPn36YO3atSp5c3NzERERgbZt28LFxQUuLi7o0qULfvjhhzKvT0RaEGQ2VqxYIZo2bSoaNWokAIjMzMwKz8nLyxMJCQkiLy/PsJVL/0eIuxfKfqX/Y9jytQBA2NraCiGEeO+99wQAMXfuXKU8ERERAoCYP3++UvqqVasEANG4cWMREhIiXnnlFdG2bVsBQNjZ2YnffvtNpbygoCABQCQlJSnSQkJCBADx+++/q63j6NGjBQCxY8cORVpJSYkYM2aMACBcXFxEcHCwePnll4W/v78AIDp16iRyc3M1/hyaNm0qAIgDBw6oHHv69KlwdnYWEolEJCcnCyGEOHDggAAg6tatK/r16ydGjx4tunbtKiQSiZBIJGLdunVl3vvkyZOFjY2N6Nmzp3j11VdF9+7dFXkAiICAAKXz8vLyBABRo0YN0bNnTzF69GjRt29f4eTkJACI8ePHq5Q1f/58AUCEhYUJJycn0bJlSzF69GjRunVrAUA4ODiIK1euqJy3dOlSYWNjIwCI9u3bi1dffVX07dtXeHt7C5lMppT34cOHolWrVgKA8PHxEYMGDRIDBw4UMplMABDvvPOOBp+87oz2e10VWdDfMnOWmZmp8ffUixh4mCFtfqBG+QOV/o8Q86tX/DKTX9jnA48HDx4IJycn4ezsLFJTUxV5ygo8Ll++LOLj41WuefDgQWFvby8aNGggSktLlY6pCzx+/PFHAUBMnDhR5VpZWVnC0dFRyGQykZ+fr0hfvHixACCCg4PF/fv3FekFBQVi0qRJagOo8vznP/8RAMTYsWNVjm3cuFEAEEFBQYq0mzdvitOnT6vkjYuLE25ubqJ69eoiOztb7b07ODiI6OhotfVQF3gUFRWJnTt3isLCQqX01NRU0aFDBwFAHD9+XOmYPPAAIJYtW6Z07N133xUAxLhx45TSjx8/LiQSiXB1dVUJAouKisS+ffuU0gYNGiQAiJkzZyr9bB48eKCol7pATt8YeBiIhf0tM2e6BB7saqGKlbeVc2XyGVHNmjUxdepU5OTk4L///W+F+Vu2bInmzZurpA8YMACjRo1CYmIi4uPjK7zOyy+/DGdnZ+zYsQMFBQVKx3bu3Im8vDyMHDkSUqkUwLOBnosXL4azszO2bdsGHx8fRX57e3ssX74cPj4+WLNmTZndNy8aO3YsJBIJdu3ahZycHKVj8rEf8m4WAKhXrx66dOmicp22bdsiLCwMWVlZOHbsmNqyJk2ahKCgII3qBQDVqlXDsGHDVMbFeHl5ISIiAgCwe/duted2794dM2bMUEr75JNPAAB//PGHUvqXX34JIQTmzZuHPn36qNRh0KBBivcXL17E/v370bFjRyxZskTxswGePUdr1qwBAKxatUrj+yQzY8F/y6wJ58+R1Zs7dy5Wr16NVatW4YMPPkDNmjXLzV9QUICDBw8iNjYWaWlpKCwsBABcuXIFAPD333+jZcuW5V7D2dkZQ4cOxZYtW7Bv3z6lsRwvjq0AgLi4OKSnp6Nfv35q6+fo6Ij27dtj3759+Pvvv9G4ceMK77tOnTro1asXjh8/jl27dmHs2LEAgIcPH+LIkSNwcHDAqFGjlM4pKSnBkSNHcOrUKdy/f18RNP39999K/31RaGhohfVR5+LFizh06BBSUlKQm5sLIQSys7PLLat///4qaTVq1ICHhwfu37+vSCsuLkZ0dDQAYPLkyRXW5dChQwCAYcOGwcZG9d9k8jEfsbGxFV6LiMrGwIOsnpeXF8LCwrB48WJ8+eWX+Oabb8rMKx+0WN5iYPIvxoqMHTsWW7ZswebNmxWBh/xLv3bt2ujVq5cir7y8w4cPQyKRlHvd9PR0jQIP4Nk02ePHj2PTpk2KwGPr1q0oKSnB8OHDIZPJFHnv3LmDf/3rX7h06VKZ1yvr3uvUqaNRfeQKCwsxYcIEbN26VeuyateurTbd1dUVjx49UrzPyMhAXl4ePDw84O7uXmGd5D+DefPmYd68eWXmy8/Pr/BaRFQ2Bh5UJXzwwQdYuXIlVq9ejTlz5qjNI4TAK6+8guTkZEyZMgVTpkxB/fr14eLiAolEgo8//hgREREQQmhUZv/+/eHl5YV9+/YhMzMTMpkM27ZtQ0lJCcaMGaP0r2p590lgYCC6d+9e7nVr1Kih4V0DI0eOxDvvvIPff/8dqamp8Pb2VnSzvLh2x1tvvYVLly5hxIgRmDNnDho3bgxXV1fY2NhgzZo1ePvtt8u8dwcHB43rBABLlizB1q1b0bJlSyxevBjt2rWDu7s77OzscOPGDTRu3LjMstS1RuiD/GfQo0cPTv8lMiAGHlQleHp6Yvr06YiIiEBERARq1aqlkufatWu4du0aOnTooLYf/+bNm1qVWa1aNYwePRorVqzAjh07MHHiRLXdLMD//hXfpEkTbNiwQatyyiOTyRAaGort27dj69atGDBgAM6fPw9PT0+EhIQo8uXk5ODw4cOoWbMmfvrpJ9ja2ipdR9t7r8jOnTsBPGt9eXFMjb7K8vT0hKOjIx49eoQnT54oTfFVR/4zGDZsGGbPnq2XOhCRKg4uNSPcJM6wZs+eDVdXV6xZswZ3795VOS5f4VRdU/7jx4/LXMuiPPLujS1btuDvv//G2bNn0aJFC7Rq1UopX8eOHSGTyXD8+HGl7gJ9kAc5mzdvVgQ+o0ePVhrYmZmZidLSUvj6+qoEHUVFRYpAQV/K+6y3b9+ulzJsbW0RHBwMAIqBoeXp168fAOj9XolIGQMPM8JN4gyrRo0amDFjBgoKCrBu3TqV44GBgbCxscHRo0eVBjbm5+djypQplQoIunTpggYNGuDYsWOKFVTlwcjzpFIp5syZg+zsbAwfPlztv/rv3r2LH3/8Ues6hISEwNPTE2fPnsXq1asBqHazeHt7QyaTIT4+HidPnlSkl5SUYO7cubhx44bW5ZanUaNGAKCoj1xUVBQ2btyot3Lmzp0LiUSCL774QmVGTnFxMfbv369437lzZ/Tr1w8nT55UzOJ50aVLl3Dw4EG91Y+oKmLgQRWTuuo3nwnNnj0b1atXR15ensoxb29vTJo0CVlZWWjdujX+9a9/YdSoUahbty6OHj2KCRMmVKrMsWPHorS0FGvWrIFEIsFrr72mNt+HH36oGAzatGlTdOnSBWPGjMGIESPQokUL+Pv74+uvv9a6fDs7O7z66qsAng1MbdiwITp37qyUp1q1apgzZw6Ki4sRFBSE/v3749VXX0VgYCBWr16NsLAw7W+8HHPmzIGtrS0+/PBDdOjQAa+99ho6duyIUaNG4b333tNbOUFBQVi8eDGys7PRu3dvdOzYEa+99hr69+8PPz8/lZ/Fpk2b0LZtW6xcuRIBAQF46aWXMHbsWPzrX/9CnTp10KZNGwYelsyK/pZZMo7xoIrVaABMjyt/brvU9Vk+M+fu7o53330XCxcuVHt81apVaNKkCdatW4cjR45AJpOhb9+++OKLL7B+/fpKlTl27FhFeT179ixzBoiNjQ02btyIkSNHYs2aNTh79izi4uLg7u4Of39/fPDBBxg9enSl6jBu3DisWLECgOr4ErmPP/4YtWvXxtKlS3Hy5Ek4OjqiR48eWLhwIeLi4ipVbll69eqFP//8E/PmzcOFCxdw48YNtGzZEjt27EC7du30ur/O+++/j86dO+Obb77ByZMncenSJXh6eqJly5aKPW3kvL29cerUKaxduxbbtm3DhQsXcOrUKdSsWRP169fHjBkzFEEcWSAr+ltmySRC0yH6ZDRZWVmQyWTIzMxE9erVy82bn5+PpKQk1KtXT+uZBURknvh7TeZOm++pF7GrhYiIiIyGgQcREREZDQMPIiIiMhoGHmaE63gQEZG1Y+BhRriOBxERWTsGHkRERGQ0DDyIiIjIaBh4WAkux0JkPfj7TNaMgYeFk2/oVVRUZOKaEJG+yH+fX9ywj8gaMPCwcHZ2dpBKpcjMzOS/koisgBACmZmZkEqlSjsIE1kL7tViBTw9PXH37l3cuXMHMpkMdnZ2kEgkpq4WEWlBCIGioiJkZmbi6dOn8PPzM3WViAyCgYcVkK+Tn56ejrt375q4NkSkC6lUCj8/P633vyCyFAw8rET16tVRvXp1FBUVoaSkxNTVIaJKsLW1rVrdKxmJ3Cm2CmLgYWXs7Oyq1h8uIrJMGYnA8nYV55sex+DDynBwKRERGV95LR2VyUcWQ28tHmlpabh58yYePHiAnJwc2NnZwc3NDXXq1EFgYCCnhWkgMjISkZGR7CohIiKrVenAIycnB7t378aBAwdw/Pjxcgc1SqVStG3bFv3798fLL7+MVq1aVbZYqxYWFoawsDBkZWVBJpOZujpERER6p3XgceHCBSxfvhw///wzcnNzAVS8yl5+fj5Onz6NmJgYLFy4EM2bN0dYWBjGjRsHJyenytWciIiILI7GgceFCxfw6aef4sCBAwD+F2z4+PigU6dOaN++Pby9veHh4QF3d3fk5eXh0aNHePz4MW7cuIGzZ8/i8uXLKCoqQnx8PKZNm4ZPP/0Uc+bMwfTp0yGVSg1zh0RERGQ2NAo83nzzTfz4448oLS0FALRr1w5jx47FiBEjUKdOHY0LKywsxB9//IHNmzdj586dSE9Px9y5c7Fy5Ups3LgRPXr0qNxdEBERkUXQaFbLDz/8gGrVquHf//43rl27hnPnzuG9997TKugAAHt7e/Tt2xfr16/Hw4cPsXHjRjRu3BjJyck4evRopW6AiIiILIdGLR7Tpk3D3Llz4e/vr7eCpVIpXn/9dYwdOxY///wzZ3IQEVUlUlf95iOLIRHcWczsyGe1ZGZmctlkIrJeXLnUYunyPcWVS4mIyDQYVFRJXLmUiIiIjMbgLR6XLl1CVFQU0tPTUa9ePYwdO5bbPRMREVVROrV4nD17Fp06dUK3bt3w5MkTlePfffcd2rdvj//85z9Ys2YNPvroIzRr1gyHDx/WpVizdvHiRfTs2ROOjo6oV68eVqxYYeoqERERmQ2dAo89e/bg3LlzqF69Otzc3JSOJSUlYcaMGSgtLYUQQvHKzs7G6NGjkZaWpkvRZiktLQ39+vVD9erVsXfvXkybNg3vvvsufvzxR1NXjYiIyCzoFHhER0dDIpEgJCRE5VhkZCSKiorg6OiIX375BZmZmdi+fTscHR2RmZmJ1atX61K0WVq9ejUkEgl+/vln9OnTBx988AEmT56M8PBwU1eNiIjILOgUeMg3hlO36dvu3bshkUjw9ttvY9iwYXB1dcXIkSMxZcoUCCFw8OBBXYo2S7/99hsGDRqktP/MqFGj8Pfff+PmzZsmrBkREZF50CnwkHeX1KhRQyn97t27SExMBAC88sorSsf69+8PALh27ZouRWvt/Pnz+PLLLzF8+HDUrl0bEokEEomkwvPy8vLw2WefoVGjRnBwcECtWrUwceJEtbvx3rhxA02aNFFKk7+/fv26fm6EiIjIguk0q6WwsBAAkJOTo5R+4sQJAICTkxM6duyodKxmzZoAgOzschaNMYDw8HDs3r1bq3Py8/PRu3dvxMTEwNfXF0OHDkVycjLWr1+PvXv3IiYmBvXr11fkf/z4scpYF3d3d8UxIiKiqk6nFg8vLy8AULRuyMlnrXTp0gW2trZKx/Lz8wFA5Qva0Lp27YpPP/0Uv/76K+7fv6/RbriLFi1CTEwMunbtihs3buCnn37CmTNn8PXXXyMtLQ0TJ040Qs2JiIish06BR4cOHSCEwLp16xQ712ZkZOCXX36BRCJBnz59VM6RBynylg9jmTt3LhYuXIghQ4bAx8enwvyFhYWKqbCRkZFwcXFRHJs1axZatWqF48eP4/z584p0d3d3ZGZmKl1HPs1Y3vJBRERUlekUeLzxxhsAnnWt9OjRA++//z66deuGzMxMVKtWDWPHjlU559SpUwCABg3Me6nckydPIjMzEw0aNEDbtm1Vjo8cORLAsynFco0aNVIZuyJ/37hxYwPWloiIyDLoNMbj5ZdfxsiRIxEVFYWYmBicOXMG8j3n5syZo7KbbUlJiaI1pEePHroUbXCXLl0CALRr107tcXn65cuXFWkDBgzAihUrkJeXB0dHRwBAVFQUGjZsqDQW5EUFBQUoKChQvM/KytK5/kREROZI5yXTt23bhpUrV+Lnn3/GgwcP4Ovri/Hjx+PNN99Um/fhw4cAgMGDB+tatEHdunULAFC7dm21x+XpKSkpirQpU6bg22+/xSuvvIJ3330XFy5cwHfffYfvv/++3LIiIiKwYMECPdWciEhL3CWWjEgi5E0UVYyDgwMKCgpQ1u1PnjwZa9euxbx587Bo0SKV4//88w8aNmyIhg0b4saNG4r0ixcv4p133sG5c+dQs2ZNvP/++5g+fXq5dVHX4uHv71+p7YaJiLSSkQgsV9+yq2R6HIMPUsjKyoJMJqvU95TBN4mratq0aYM///xTq3OkUqlGs2yIiPSuvJaOyuQjqoBOg0utmXwWS25urtrj8rVLXF1d9VZmZGQkmjVrprL2CRERkbXQKPC4f/++oeuBBw8eGLwMbdSpUwcAcOfOHbXH5ekBAQF6KzMsLAwJCQk4e/as3q5JRERkTjQKPBo0aIAZM2aoXSZcV9u3b0erVq2wZs0avV9bF61btwYAxMXFqT0uT1e3Tw0RERGpp1HgUVxcjMjISAQGBmL8+PE4dOiQYsGwyrh9+zYWL16Mpk2bYsyYMYiPj4e9vX2lr2cI3bt3h0wmQ2JiIi5evKhyPCoqCgAwZMgQI9eMiIjIcmkUeMTHxyMkJAQFBQXYtGkTBg4cCD8/P0yZMgUbNmzA1atXy5wdAgDp6ek4cOAAFixYgF69eqFevXr46KOPcP36ddSqVQv/7//9P8yZM0dvN6UP9vb2eOeddwA86wJ5fj+aJUuW4PLlywgKCkL79u31VibHeBARkbXTajrtqVOnsGjRIvz2228QQijt7mpvb48aNWrA3d0d7u7uyMvLw6NHj/D48WOlZcTlxdWuXRvTp0/H9OnT4eDgoMdbUm/fvn0IDw9XvI+NjYUQAp07d1akffrpp0rri+Tn5yM4OBhnzpyBr68vevbsiZSUFJw5cwZeXl4qm8Tpiy7TlIiItHLvIrAmqOJ8k48DtdoYujZkIYw2nbZbt27Yv38/bty4ge+//x4///wzkpKSADxbi+LevXu4d+8eJBKJ2hYQqVSKAQMG4N///jcGDhwIGxvjTapJS0vDmTNnVNKfT0tLS1M65uDggGPHjiEiIgJbtmzBrl274OHhgQkTJiA8PLzMxcWIiCyGVMOZeZrmI6qAzguI3bp1CydOnMCpU6dw584dpKWl4dGjR3BwcICXlxe8vLzQsmVL9OzZE506dTK7sRzmiC0eRGRUXLmUtKTL91SVXbnUHEVGRiIyMhIlJSW4ceMGAw8iIjJLDDysDFs8iIjInOnyPcWVS4mIiMhoGHgQERGR0TDwICIiIqNh4GFGuIAYERFZOw4uNUMcXEpEROaMg0uJiIjIIjDwICIiIqNh4EFERERGw8DDjHBwKRERWTsOLjVDHFxKRETmzGi701YkLy8P58+fx4MHD5Cbm4thw4bxi5OISFPcrI2qAL0EHrdv38bHH3+Mn3/+GUVFRYr0Dh06oFmzZor369atw3fffQeZTIZDhw5BIpHoo3giIsuXkQgsb1dxvulxDD7Iouk8xuPMmTNo27YttmzZgsLCQgghUFbvzZAhQ3D58mUcPXoUhw4d0rVoIiLrUV5LR2XyEZkpnQKPJ0+eYOjQoXj06BF8fHywcuVKXLlypcz83t7eGDhwIABg3759uhRNREREFkinrpZvv/0Wqamp8PT0xOnTp1GnTp0Kz+nbty92796N2NhYXYomIiIiC6RTi8eePXsgkUgwa9YsjYIOAGjevDkAIDExUZeirRKn0xIRkbXTKfD4559/AAC9evXS+Bx3d3cAz6bikLKwsDAkJCTg7Nmzpq4KERGRQegUeOTn5wMA7OzsND4nJycHAODo6KhL0URERGSBdAo8vL29AQBJSUkan3Px4kUAQK1atXQpmoiIiCyQToFH586dAQAHDhzQKL8QAmvXroVEIkHPnj11KZqIyLpIXfWbj8hM6TSrZezYsYiKisLmzZsxc+ZMtGnTptz8s2fPxqVLlyCRSDB+/HhdiiYisi41GjxbHIwrl5KV0ynwGDp0KF566SUcO3YMffr0waJFizBixAjF8eLiYty7dw8nT57Et99+i1OnTkEikWD48OHo1q2bzpUnIrIqDCqoCtB5k7gnT56gT58+uHDhQoVLoAsh0KVLFxw+fBjOzs66FGvVuEkcERGZM12+p3ReMt3NzQ2nT5/GRx99hOrVqyuWTH/x5ejoiDlz5iA6OppBRxm4jgcREVk7nVs8npeTk4Pjx4/j3LlzSE1NRUlJCWrUqIG2bduib9++kMlk+irKqrHFg4iIzJku31N6DTxIPxh4EBGROTNpVwsRERGRphh4EBERkdHoNJ32eRkZGTh9+jRu3ryJ7OxslJSUVHjOZ599pq/iiYiIyALoPMbjwYMHmDVrFnbs2IHi4mKtztUkOKmKOMaDiIjMmS7fUzq1eKSlpaFbt25ISUkBx6gSERFRRXQa4zF//nwkJydDCIFRo0bh6NGjyMjIQElJCUpLSyt8ERERUdWiU4vH3r17IZFIMG7cOGzYsEFPVSIiIiJrpVOLR1paGgBg4sSJeqkMERERWTedWjxq1aqF5ORkLoFORNYlI5G7xBIZiE6BR69evZCcnIwrV66gffv2+qoTEZHpZCQCy9tVnG96HIMPokrQqavl/fffh52dHb7++mvk5+frq05VFjeJIzID5bV0VCYfESnRKfBo3rw51q9fj+vXr6N///64ceOGvupVJYWFhSEhIQFnz541dVWIiIgMQueVS8eMGYOGDRti8ODBaNasGVq1aoVGjRrBycmp3PMkEgnWrVuna/FERERkQXQOPG7cuIFZs2YhPT0dAHDp0iVcunSp3HOEEAw8iIiIqiCdAo9bt26hV69eSEtLU6xc6urqCjc3N9jYcP85IiIiUqZT4LFw4UKkpqbCxsYGs2fPxrRp01C3bl09VY2IiIisjU6Bx5EjRyCRSDBz5kwsXrxYX3UiIiIiK6VTf8jDhw8BACNGjNBLZYiITE7qqt98RKREpxYPX19fJCcnw97eXl/1ISIyrRoNni0OxpVLiQxCp8CjX79+WLt2Lc6ePYsOHTroq05ERKbFoILIYHReudTZ2Rn//e9/8ejRI33VyeKdO3cOb7zxBgIDAyGRSPDJJ5+YukpERERmQafAIzAwEDt37kR2dja6d++Ow4cP66teFu3kyZOIiYlBjx49IJPJTF0dIiIis6FTV0vv3r0BAJ6enrh+/TpCQkLg5uaGhg0barRy6ZEjR3Qp3mxNnz4dM2fOBABOLyYiInqOToFHdHQ0JBKJ4r0QAo8fP0ZsbGyZ50gkEsXKpdaKi6cRERGpp1Pg0atXL5MGEOfPn8fhw4cRGxuL2NhY3L17FwAUq6iWJS8vDxEREdi2bRtu3boFDw8PhISEIDw8HH5+fsaoOhERUZWkc4uHKYWHh2P37t1anZOfn4/evXsjJiYGvr6+GDp0KJKTk7F+/Xrs3bsXMTExqF+/voFqTEREVLXpvEmcKXXt2hWtWrVCx44d0bFjR9StWxcFBQXlnrNo0SLExMSga9euOHToEFxcXAAAS5YswezZszFx4kSlgOrJkyd48OBBudd0cnJCnTp1dL4fIiIia2fRgcfcuXO1yl9YWIgVK1YAACIjIxVBBwDMmjULP/zwA44fP47z58+jffv2AIBt27Zh6tSp5V43KCjI5K0/RERElsCiAw9tnTx5EpmZmWjQoAHatm2rcnzkyJG4fPky9uzZowg8pkyZgilTphi7qkQEABmJXEGUyMpoFHjcunVL8f/Pdyk8n14Zxu6euHTpEgCgXbt2ao/L0y9fvmy0OgFAQUGBUhdRVlaWUcsnMksZicBy9b+rSqbHMfggsiAaBR716tUD8GwqbHFxsUp6Zbx4LWOQB0q1a9dWe1yenpKSolM5aWlpOH78OAAgNzcX165dQ1RUFJydnTFw4ECV/BEREViwYIFOZRJZnfJaOiqTj4jMgkaBR1nTUyuatmpunj59CgBlLm7m7OwMAMjO1u0P2dWrVzFq1CjF+x07dmDHjh0ICAhAcnKySv6PPvoIs2bNUrzPysqCv7+/TnUgIiIyRxoFHuvXrwcAlTU75OmkLDg4WKugTCqVQiqVGrBGRERE5kGjwGP8+PGwsbGBjY0NOnTogGbNminSLYl8Fktubq7a4zk5OQAAV1dXo9XpeZGRkYiMjERJSYlJyiciIjI0rdb2trSulRfJB7PeuXNH7XF5ekBAgNHq9LywsDAkJCTg7NmzJimfiIjI0KrUpiKtW7cGAMTFxak9Lk9v1aqV0epERERUlVSpwKN79+6QyWRITEzExYsXVY5HRUUBAIYMGWLkmhERERlOSanA6cQM7L54F6cTM1BSaroejCq1gJi9vT3eeecdfPHFFwgLC8OhQ4cUM1mWLFmCy5cvIygoSLF4mLFxjAfRc6QajrXSNB9RFXUw/j4W7EnA/cx8RZqvzAHzhzRDSAtfo9dHIjQcuGFjYwOJRIIrV64oBpea2r59+xAeHq54HxsbCyEEOnfurEj79NNPMXjwYMX7/Px8BAcH48yZM/D19UXPnj2RkpKCM2fOwMvLyyw2icvKyoJMJkNmZiaqV69u0roQmRRXLiXSycH4+5i6KQ4vftHL56iuer1dpYIPXb6nLLrFIy0tDWfOnFFJfz4tLS1N6ZiDgwOOHTuGiIgIbNmyBbt27YKHhwcmTJiA8PDwMhcXIyITYFBBVqakVCA26RFSs/Ph7eqATvU8YGsjqfjESpa1YE+CStABAALPgo8FexLQr5mPweqgjtYtHh06dFB0T+hUsESCI0eO6Hwda8QWDyIi62PsLo/TiRkYszamwnxb/90FXRvU0OraRm3xOHfunLanqBBCqCxGRhzjQURkrcrq8niQmY+pm+Iq3eVRntTs/IozaZFPX7Se1SKE0PlF6nEdDyIi4zDmLI+KujyAZ10e+q6Dt6uDXvPpi9YtHvHx8WYzuJSIiEhbxu7yiE16pFTWiwSA+5n5iE16pHWXR3k61fOAr8wBDzLz1QY9EgA+smfjTIypSq3jQUREVZu8y+PFQEDe5XEw/r7eyzRVl4etjQTzhzxrKHhxcIP8/fwhzYw6sBRg4EFERFVEVezyCGnhi1Wvt4OPTPnaPjIHg4wr0YRFT6e1NhxcSkRVkbGmmFbVLo+QFr7o18zHaNN4K8LAw4yEhYUhLCxMMU2JiMjaGXO8ham7PKZuioMEUAo+jNXlYWsj0WswpQt2tRARkUkYe7wFuzzMA1s8iIjI6Eyxqia7PMyDxoFHUlISAMDPz89glSEiM8Z9U6yeMZfzNsV4C3Z5mAeNA4+AgABD1oPAwaVkxjISgeXtKs43PY7Bh4Uy9toWphpvIe/yePFefUy4W2tVw64WM8LBpWS2ymvpqEw+MiumWM7b1OMt2OVhOgw8iIiqMFPtYGrq8Rbs8jAdzmohIqrCtBlroU/muqomGR4DDyIiM2PMDcxMuYMpp5hWTexqISIyI8Ye5GnqHUw53qLqYeBBRGQmTDHI09RjLQCOt6hq2NViRiIjI9GsWTN07NjR1FUhIiMz1QZmHGtBxsbAw4yEhYUhISEBZ8+eNXVViJRJXfWbz0IYc6yFqQZ5AhxrQcbFrhYiqliNBs8WB6tCK5dWlQW15DjWgoyFgQcRacaKgoqKVLUFteQ41oKMgV0tRETPMdVYC/kgz7LaFyR41uJiyEGeRMbAwIOIzF5VGGvBQZ5UVbCrhYjMWlUaa8ENzKgqYOBBRGarKo614CBPsnYMPMxIZGQkIiMjUVJSYuqqEJlcVd28DOAgT7JuEiGE4TpLqVKysrIgk8mQmZmJ6tWrm7o6ZG4yEqvEtNbTiRkYszamwnxb/91F71/S8pYWAErBhzy84doWVNXp8j3FFg8iS5KRCCxvV3G+6XEWH3xwrAWRdWLgQWRJymvpqEy+SigpFUYZf8CxFkTWiYEHEWnMmDNMONaCyDpxHQ8i0oh83MOLa1zIZ5gcjL+v1/K4rgWRdWLgQUQVMtVqnty8jMj6sKuFiCqkzWqe+u6a4FgLIuvCwIOIKmTqnVM51oLIerCrhYgqZOoZJkRkPRh4EFkSqat+82mIO6cSkb6wq4XIgpS418erdiuQ+zRT7XEJAEcXGba514etHsuVzzCZuikOEqhfzZMzTIhIEww8iCxIbNIjnM32AFBOy0I2DDbIk6t5EpGuGHiYEW4SRxUx9SBPzjAhIl0x8DAjYWFhCAsLU2y+Q5bBWEuIA+YxyJMzTIhIFww8iHRgzCXEAfNYRpyISBcMPIgq6Y/Tp7Hi1/PwAODxXAOHJAtYsfkvOIW2R6+uXfVaJgd5EpGlkwgh9LvGMelM3tWSmZmJ6tWrm7o6pEZJ2j+wjWxfcb6w87D1CtR7+cZuaSEiep4u31Ns8SCqhKtJd9FK03wGCDw4yJOILBUDD6JKeJRbqNd8lcFBnkRkiRh4kNUw5uwSDyd7veYjIqoqGHiQVTD2mIfmfpr1aWqaj4ioquBeLWTxDsbfx9RNcSrbtj/IzMfUTXE4GH9f72XaSjRrSdE0HxFRVcHAgyxaSanAgj0Jate0kKct2JOAklJO3iIiMgcMPAxg+/btGDx4MHx9fSGTydCrVy/8+eefpq6WVYpNeqTS0vE8AeB+Zj5ikx4Zr1JERFQmBh4GsHTpUnh6eiIyMhI///wz/Pz80KdPH1y6dMnUVbM6Jtu7xETb0xMRWToOLjWAPXv2oEaN/01z7Nu3L1q2bInIyEisWbPGhDWzPibbu6RGA2B6HFCQXXYeqeuzfEREpMDAwwCeDzoAwMbGBi1atEBSUpKJamRcxpzWatK9SxhUEBFpzaIDj/Pnz+Pw4cOIjY1FbGws7t69CwCoaBX4vLw8REREYNu2bbh16xY8PDwQEhKC8PBw+Pn56b2eJSUlOHv2LAYMGKD3a5sbY09rtbWR4L/BTlj8618A1O9dMie4PVf0JCIyExa9V8uwYcOwe/dulfTybik/Px8vvfQSYmJi4Ovri549eyI5ORmxsbHw8vJCTEwM6tevr9d6Llu2DLNnz8aFCxfQsmXLCvNb6l4t8mmtL3768q/8Va+303/wkZEILG9Xcb7pcWyhICLSkyq7V0vXrl3RqlUrdOzYER07dkTdunVRUFBQ7jmLFi1CTEwMunbtikOHDsHFxQUAsGTJEsyePRsTJ05EdHS0Iv+TJ0/w4MGDcq/p5OSEOnXqqD125swZfPjhh/jkk080CjosVUXTWiV4Nq21XzMf/bY+lDfGojL5iIjIoCy6xeNFDg4OKCgoKLPFo7CwEN7e3sjMzERcXBzatm2rdLx169a4fPkyzp07h/btn+08unr1akydOrXccoOCgpSCFbnk5GR06dIFvXr1wk8//QSJhotJWWKLx+nEDIxZG1Nhvq3/7qLf/UXuXQTWBFWcb/JxoFYb/ZVLRFSF6fI9VaWm0548eRKZmZlo0KCBStABACNHjgTwbFaK3JQpUyCEKPelLuh48uQJBg8ejLp16+KHH34oN+goKChAVlaW0svSmGxaKxERWZQqFXjI19Fo1079mAB5+uXLl3Uqp7CwEMOHD0dubi52794NR0fHcvNHRERAJpMpXv7+/jqVbwomm9ZKREQWxaLHeGjr1q1bAIDatWurPS5PT0lJ0amcadOm4fjx41i7di2SkpIU02ilUqnalpaPPvoIs2bNUrzPysrSW/BhrKmtJp3WSkREFqNKBR5Pnz4F8GwwqDrOzs4AgOxs3QYi/v777ygtLcWkSZOU0gMCApCcnKySXyqVQiqV6lSmOsac2mprI8H8Ic0wdVMcJFA/rXX+kGac1kpEVMVVqa4WY0lOTlY7FkRd0GEoptixNaSFL1a93g4+MuXuFB+Zg2Gm0hIRkcWpUi0e8qmzubm5ao/n5OQAAFxdTbO/RmRkJCIjI1FSUqLTdUw2tTUjESEe2ej3hgeu3s3Co9xCeDjZo7lfddhKHgIZufpfS4N7phARWZQqFXjI19q4c+eO2uPy9ICAAKPV6XlhYWEICwtTTFOqLG12bNXb1NbnFvKyBdCqrHz6XsiLe6YQEVmUKhV4tG7dGgAQFxen9rg8vVWrMr82LYJJpraaciEvBhVERBajSo3x6N69O2QyGRITE3Hx4kWV41FRUQCAIUOGGLlmz0RGRqJZs2bo2LGjTtfh1FYiIjJXVSrwsLe3xzvvvAPgWbeGfEwH8GzJ9MuXLyMoKEixaqmxhYWFISEhAWfPntXpOvKprWWN3pDg2ewWTm0lIiJjs+iuln379iE8PFzxvrCwEADQpUsXRdqnn36KwYMHK95/8skn+P3333Hq1Ck0bNgQPXv2REpKCs6cOQMvLy98//33xrsBA+HUViIiMlcWHXikpaXhzJkzKunPp6WlpSkdc3BwwLFjxxAREYEtW7Zg165d8PDwwIQJExAeHl7m4mKWRj619cV1PHwMuEU9ERFRRaxqkzhL9/x02hs3bui2SVxGIlCQjRIh1Extleh/pgc3ayMiqjJ02STOols8rI2+ptOabGorERFRBarU4NIqwxRTW7mQFxERaYAtHqQfXMiLiIg0wMCD9IdBBRERVYBdLWZEXwuIERERmSsGHmZEXwuIERERmSsGHkRERGQ0DDyIiIjIaBh4WCNObSUiIjPFWS1m5PmVS3XCqa1ERGSmuGS6GdJlKVoiIiJD0+V7il0tREREZDQMPIiIiMhoGHgQERGR0TDwICIiIqNh4EFERERGw+m0ZkQ+nba4uBjAs1HDRERE5kb+/VSZibGcTmuG7ty5A39/f1NXg4iIqFy3b99G7dq1tTqHgYcZKi0txb179+Dq6gqJRGKyemRlZcHf3x+3b9/meiIV4GelGX5OmuNnpTl+VprR5+ckhEB2djZq1aoFGxvtRm2wq8UM2djYaB1BGlL16tX5y6whflaa4eekOX5WmuNnpRl9fU4ymaxS53FwKRERERkNAw8iIiIyGgYeVCapVIr58+dDKpWauipmj5+VZvg5aY6fleb4WWnGXD4nDi4lIiIio2GLBxERERkNAw8iIiIyGgYeREREZDQMPKqA3Nxc7Nq1C5MmTULjxo3h4OAAZ2dntG7dGgsXLsTTp0+1ul7dunUhkUjKfF27ds1Ad2IcwcHB5d7fwYMHtbre48ePMXPmTAQEBEAqlSIgIADvvvsunjx5YpgbMJLo6OhyPyf5a+HChRpdz9Kfq/Pnz+PLL7/E8OHDUbt2bUW9K7JhwwZ06tQJLi4u8PDwwKBBg3Dq1KlK1aGkpATffPMNWrZsCUdHR3h5eeGVV17BX3/9VanrGYo2n1VpaSlOnDiBOXPmoH379nB1dYVUKkWDBg0wZcoUJCUlaV3+hAkTyn3WVq9erest6oW2z9Tnn39e7n19+OGHWtfBEM8UFxCrArZs2YJ///vfAICmTZsiNDQUWVlZOHXqFObPn4+tW7fi+PHj8Pb21uq648ePV5te2UVlzM2IESPg4uKiku7n56fxNdLT09G1a1f8888/qF+/PoYNG4arV69i2bJlOHDgAE6fPg0PDw99VttofHx8ynwGSkpKsGnTJgBAz549tbqupT5X4eHh2L17t1bnvPvuu1i2bBkcHR3Rv39/5Ofn4/Dhwzh06BCioqIwbNgwja9VWlqKUaNGYefOnXBzc8PgwYORnp6OqKgo7Nu3D8eOHUOnTp20vCvD0OazunnzJnr16gXg2TPXu3dv2NraIjY2Ft999x22bNmC/fv3o0ePHlrXY8CAAfDx8VFJb9y4sdbXMoTKPFMA0L17dwQGBqqkt2/fXqvrGOyZEmT1NmzYICZPniwSEhKU0u/duyfatm0rAIgxY8ZofL2AgABhzY9OUFCQACCSkpJ0vtbYsWMFADF8+HBRVFSkSJ8+fboAIMaPH69zGeZo//79AoDw9/cXpaWlGp1j6c/Vl19+KT799FPx66+/ivv37wupVFru/Rw+fFgAEDVq1BA3btxQpJ86dUrY29sLNzc38fjxY43LX7t2rQAgGjZsKB48eKBIj4qKEgBEYGCg0jNoStp8Vv/884/o16+fOHLkiNKzlJ+fLyZMmCAAiDp16ojCwkKNyx8/frwAII4dO6brrRiUts/U/PnzBQCxfv16vZRvqGfKcn/LSS9OnTolAAipVCoKCgo0OsfSvyAqoq/A4969e8LGxkbY29sr/dIK8eyPppeXl7C1tRUPHz7UqRxz9NprrwkA4sMPP9T4HGt7rir6khg4cKAAIL755huVYzNmzBAAxFdffaVxeU2bNhUAxM6dO1WOhYaGCgAiKipK4+sZU0WfVVlyc3OFTCYTAER0dLTG51lK4PEiYwcehnqmOMajimvdujUAoKCgABkZGSaujXU5ePAgSktL0bNnT9SsWVPpmFQqxZAhQ1BSUoL9+/ebqIaGkZOTo2geHjdunIlrY57y8vJw9OhRAMDIkSNVjsvT9uzZo9H1kpKS8Ndff8HR0RGDBw/W+XqWwtHREY0aNQIA3Lt3z8S1sS6GfKY4xqOKu3nzJgDAzs5O67EG//d//4fExERIpVI0b94cL7/8Mry8vAxRTZNYt24dMjIyYGNjg0aNGmHYsGGoU6eOxudfunQJANCuXTu1x9u1a4fvv/8ely9f1kt9zcUvv/yCnJwctG3bFs2aNdP6fGt/rgDg+vXrKCgogJeXl9oNIeXPjKbPhvxZa9GiBezs7HS+nqUoLS1FSkoKAKgdq1GRX375BTt27EBJSQnq1auHIUOGoEmTJvquptEdPXoUFy9eRH5+PmrXro2BAwdqPb7DoM+UHlpjyIK99dZbAoAYMmSIxufIm8RffDk5OYl169YZsLbGIe9qefFlZ2cnFi5cqPF1Xn75ZQFALFu2TO3xXbt2KcZ/WJP+/fsLAGLJkiVanWdtz1V5zeK7d+8WAETbtm3LPN/NzU0AEFlZWRWWtWzZMgFAvPzyy2qPP3nyRAAQHh4emlXeyCrb1bJp0yYBQHh5eYn8/HyNz5N3tbz4kkgkYtq0aWYzFuZFmna1qHuNGDFCZGdna1yWIZ8pdrVUYfv378e6detgZ2eH8PBwjc8LDQ3FL7/8gpSUFOTm5iI+Ph6zZs1CQUEB3nrrrUqNwjYnvXr1wo8//ojExETk5ubi+vXr+OKLL1CtWjV89tlnWLZsmUbXkU9TdnJyUnvc2dkZAJCdna2fipuB+/fv48iRI7C1tcWYMWO0Otfan6vnVfRsANo9H1XxWbt9+zbeffddAMDChQu12n+kbdu2WL16NW7cuIHc3FzcvHkTkZGRcHNzw8qVK/HBBx8YqNaGFRgYiK+++gpXr17F06dPcfv2bWzevBl+fn7YsWOHVl2fBn2mtA5VyCr89ddfwt3dXQAQS5cu1cs116xZIwCIxo0b6+V65ua3334TAISbm5vIzc2tMH+/fv0EALF27Vq1x+WzGvr166fvqprM119/LQCIkJAQvV3TUp+r8v51unnzZgFAdO/evczz/fz8BABx9+7dCsv64osvBAAxduxYtceLiooUrXbmSNsWj6dPn4oOHToIAGLYsGF6q0d8fLywt7cX1apVE7du3dLbdfWlsi1D9+7dEzVq1BAAxOnTpzU6x5DPFFs8qqC7d+8iJCQEjx8/xqxZszBz5ky9XHfSpEnw9vbG9evXkZycrJdrmpP+/fujQ4cOePLkCc6cOVNhfvkaILm5uWqP5+TkAABcXV31V0kTk6/doc9Bpdb4XFX0bADaPR9V6VkrKirCqFGjcO7cOfTo0QNbtmzR27WbN2+O0NBQFBcX48iRI3q7rqn5+vrizTffBACNF0A05DPFwKOKefToEfr374+UlBS8+eab+Oqrr/R2bRsbGzRo0ADAsyZ3a9SwYUMAmt2ffCDqnTt31B6XpwcEBOipdqb1119/4cKFC3BxcdFq4auKWONzVdGzkZOTgydPnsDd3V2jP+xV5VkrLS3F+PHjceDAAbRp0wZ79uyBo6OjXsvQ5nfckmh7X4Z8phh4VCFPnz7FwIEDkZCQgOHDh2Pt2rUaLemsjcePHwP4X/+ftdHm/uRTlePi4tQel6e3atVKT7UzrR9//BEAMHz48HLHLlSGtT1XjRs3hlQqRVpaGu7evatyXNtnQ/6sxcfHo6ioSOfrmavp06dj69ataNSoEX777Te4ubnpvQxre9bktL0vgz5TWnfOkEXKz88XvXv3FgDEgAEDNF4sTBvx8fFCIpEIJycng1zf1FJTU4Wzs7MAIG7fvl1h/ucXEHtxkTBrW0CstLRUMSvl8OHDer22pT5XXEBMc5qMXZg3b55ildKUlBSD1CM/P1/4+/sLAOLEiRMGKUMXlR3jUVpaKjp37iwAiB9//FHj8wz1TDHwqAKKi4sVUzt79uwpcnJyKjxn+fLlonHjxiorT+7bt08cOXJEJf+lS5cUD+mMGTP0VndjO3nypNi5c6coLi5WSk9KShLdu3cXAERoaKjSsbI+KyH+t2T6iBEjlKboyb9YrGXJ9OPHjwsAws/PT5SUlJSZryo9V7osmS6VStUumX7mzBnRuHFj0bt3b5XrPb+89fPB7I4dO8xuyfQXVfRZLVmyRAAQPj4+Sp9Vecr6rP766y+xceNGlem3qampYtiwYQKAaN26tcZL/RtTeZ9TamqqWLFihcr06+zsbPH2228rPr8X//6b4pniAmJVwIoVK7Bz504AgKenJ6ZNm6Y231dffQVPT08AzzY3u379ukp/YGxsLBYsWICAgAC0bt0aTk5OuHnzJuLi4lBcXIzg4GB8+eWXhr0hA7px4wbefPNN+Pj4oF27dnBzc0NKSgrOnz+P/Px8NG/eHGvXrlU6p6zPCgCWLl2KmJgY7NixA02aNEGHDh1w9epVxMfHo2HDhliyZImxbs2g5INKX3vtNdjYlN2Da83P1b59+5SmpRcWFgIAunTpokj79NNPFatA9u3bFzNnzsSyZcvQpk0b9OvXD4WFhTh8+DCEEFi/fr1KV4J8end+fr5K+RMnTsT+/fuxc+dONGnSBH369EF6ejqOHz8OR0dHbNq0CdWqmceffG0+q4sXL2L27NkAgHr16uGLL75Qe8233npLaaO4sj6rBw8e4I033sDMmTPRoUMHeHl54d69ezh//jyys7NRu3ZtbN++Xe/d0JWhzeeUk5ODd955Bx9++CE6duwIX19fpKWlIS4uDhkZGXBzc0NUVJRKN6hJnimtQxWyOOUtKvP86/m9SeTnvPgv8lOnTomJEyeKli1biho1aohq1aoJDw8PERwcLNauXavSUmBpEhISxNSpU0W7du2El5eXqFatmpDJZKJLly7i66+/VjuNtqzPSi4jI0NMnz5d+Pv7C3t7e+Hv7y9mzJih1QZg5iw/P18xNfvSpUvl5rXm52r9+vUV/o6p20Nj/fr1on379sLJyUm4ubmJkJAQcfLkSbVlHDt2TAAQAQEBao8XFxeLr7/+WjRv3lw4ODiIGjVqiJEjR4qrV6/q8U51p81nJb9nbT/bsj6ru3fvinfffVd06dJF+Pj4CDs7O+Hi4iLatWsn5s+fLx49emScD0ED2nxOWVlZYu7cuSIoKEj4+fkJqVQqnJycRPPmzcXs2bPFnTt31JZhimdKIoQQ2ocrRERERNrjrBYiIiIyGgYeREREZDQMPIiIiMhoGHgQERGR0TDwICIiIqNh4EFERERGw8CDiIiIjIaBBxERERkNAw8iIiIyGgYeRGR1oqOjIZFIIJFIEB0dberqENFzGHgQkdl4PmBQ93JxcUGjRo0wbtw4HD161NTVJaJKYOBBRBYjJycHf//9NzZt2oQ+ffpg/PjxKCkp0fo6n3/+uSKYISLjMo89komIXjB16lRMmzZN8V4IgUePHuH06dP45ptvkJqaio0bN8Lf3x+LFi1SOjc4OBjc/5LIPDHwICKz5O3tjRYtWqikBwUFITQ0FO3bt0d+fj6+/fZbfPbZZ7C3tzdBLYlIW+xqISKL06xZMwwePBgAkJ2djWvXrpm4RkSkKQYeRGSR6tWrp/j/goICpWNlzWrZsGEDJBIJFixYoEhTN4g1OTlZ6Xrnz5/HpEmT0KhRIzg7O8PBwQH+/v5o3749wsLC8Ouvv7Jrh0hD7GohIouUkpKi+P86deoYrJxvvvkG77//PkpLS5XS79y5gzt37iAuLg4rV65EdnY2XFxcDFYPImvBwIOILM61a9ewd+9eAECXLl1Qs2ZNjc4bNmwYOnTogJUrV2LVqlUAgCtXrqjk8/PzAwBcvnxZEXTUq1cP77zzDtq0aQMPDw9kZ2fj+vXrOHbsGHbv3q2nOyOyfgw8iMgspaamIj4+XvFeCIEnT54oZrXk5eVBJpPhm2++0fiabm5ucHNzg7e3tyJN3QBWuaioKJSWlsLZ2RmnT59WCXB69uyJt956C5mZmXByctLi7oiqLgYeRGSWVq1apWiVeJGNjQ2mTJmC9957D40aNTJYHR48eAAAaNSoUbmtKjKZzGB1ILI2HFxKRBantLQU27Ztw6pVq1QGluqTr68vACAhIQGxsbEGK4eoKmHgQURmaf78+RBCKL1yc3Nx+fJlfPDBB3j69CmWLl2Kvn37Ijc31yB1GDNmDOzs7FBQUIDu3btjyJAhWL16NeLj4zmLhaiSGHgQkcVwdHREy5YtsXjxYqxcuRIA8Oeff+I///mPQcpr0qQJtm7dCnd3dxQXF2Pv3r2YOnUqWrZsCW9vb4wbNw4nTpwwSNlE1oqBBxFZpEmTJsHDwwMA8P333xusnBEjRiApKQnfffcdhg8fDi8vLwBAeno6Nm3ahF69emHChAkq022JSD0GHkRkkWxsbNCwYUMAwP3795GRkWGwsmQyGSZPnowdO3YgNTUVCQkJiIiIQK1atQAAP/zwA5YvX26w8omsCQMPIrJYxcXFav+/IrruStu0aVN8+OGHiImJgbOzMwBg+/btOl2TqKpg4EFEFik3NxcJCQkAno398PT01PhcBwcHxf/rMivG399fMZ03PT290tchqkoYeBCRRfr888+Rl5cHABgwYABsbW01Plc+TRYAEhMTy8y3a9cuPHnypMzjt2/fVmxQ9/zeMURUNi4gRkRm6cWVSwEgPz8ff//9NzZu3IiDBw8CeNZ6sXDhQq2u3a1bN8X/v/fee5g3bx58fX0VXTB169ZFtWrVsHTpUowdOxaDBw9G79690bRpU8hkMjx+/Bjnzp3D8uXLFcHPlClTdLldoiqDgQcRmaXyVi6V8/LywqZNm9CyZUutrh0YGIhXXnkF27dvx6FDh3Do0CGl40lJSahbty6AZ106P//8M37++We117KxscGCBQswbNgwrepAVFUx8CAii2Fvbw8PDw80b94cgwYNwptvvgl3d/dKXWvTpk3o0KEDoqKicP36dWRnZ6tMid26dSv27t2L6OhoJCQk4MGDB0hPT4eDgwMCAgLQq1cvTJkyBa1atdLH7RFVCRLB5feIiIjISDi4lIiIiIyGgQcREREZDQMPIiIiMhoGHkRERGQ0DDyIiIjIaBh4EBERkdEw8CAiIiKjYeBBRERERsPAg4iIiIyGgQcREREZDQMPIiIiMhoGHkRERGQ0DDyIiIjIaBh4EBERkdH8f/9oorTycXstAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "filehandle = open(\"/space/poorvagarg/.julia/dev/Dice.jl/figures/exp_var.txt\")\n", + "lines = filehandle.readlines()\n", + "\n", + "x = []\n", + "y1 = []\n", + "y2 = []\n", + "y3 = []\n", + "y4 = []\n", + "for i in lines[1:]:\n", + " cur = i.split(\",\")\n", + " x.append(int(float(cur[0])))\n", + " y1.append(float(cur[1]))\n", + " y2.append(float(cur[2]))\n", + " y3.append(float(cur[3]))\n", + " y4.append(float(cur[4]))\n", + "\n", + "print(y3)\n", + "\n", + "fig, ax = plt.subplots()\n", + "# ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_xlabel(\"Bits\")\n", + "ax.set_ylabel(\"Time (s)\")\n", + "# ax.set_title(\"Speedup for expectation\")\n", + "# legend_list = [\"Expectation from full distribution\", \"Querying Expectation directly\"]\n", + "# legend_list = [\"1\", \"2\", \"3\", \"4\"]\n", + "legend_list = [\"Bitwise Variance\", \"Naive Variance\"]\n", + "# ax.plot(x, y1)\n", + "ax.scatter(x, y2, marker=\"o\")\n", + "# ax.plot(x, y3)\n", + "ax.scatter(x, y4, marker=\"s\")\n", + "legend_list.append(\"b = \" + str(i))\n", + "ax.legend(legend_list, loc=\"upper left\")\n", + "fig.savefig(\"var_results.png\", dpi=300, bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: '/space/poorvagarg/.julia/dev/Dice/scratch/gaussian_var_results.txt'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/plotting.ipynb Cell 69\u001b[0m in \u001b[0;36m1\n\u001b[0;32m----> 1\u001b[0m filehandle \u001b[39m=\u001b[39m \u001b[39mopen\u001b[39m(\u001b[39m\"\u001b[39m\u001b[39m/space/poorvagarg/.julia/dev/Dice/scratch/gaussian_var_results.txt\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 2\u001b[0m lines \u001b[39m=\u001b[39m filehandle\u001b[39m.\u001b[39mreadlines()\n\u001b[1;32m 4\u001b[0m x \u001b[39m=\u001b[39m []\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/space/poorvagarg/.julia/dev/Dice/scratch/gaussian_var_results.txt'" + ] + } + ], + "source": [ + "filehandle = open(\"/space/poorvagarg/.julia/dev/Dice/scratch/gaussian_var_results.txt\")\n", + "lines = filehandle.readlines()\n", + "\n", + "x = []\n", + "y1 = []\n", + "y2 = []\n", + "for i in lines[1:]:\n", + " cur = i.split(\",\")\n", + " x.append(int(float(cur[0])))\n", + "\n", + " t1 = (cur[1][6:len(cur[1])-1])\n", + " if t1[-2] == \"m\":\n", + " y1.append(float(t1[:-3]))\n", + " else:\n", + " y1.append(float(t1[:-2])*1000)\n", + "\n", + " t2 = (cur[2][6:len(cur[2])-1])\n", + " ms = t2.split(\" \")[1][0] == \"m\"\n", + " t2 = t2.split(\" \")[0] \n", + " if ms:\n", + " y2.append(float(t2))\n", + " else:\n", + " # print(t2[:-4])\n", + " y2.append(float(t2)*1000)\n", + "\n", + "print(x, y1, y2)\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_xlabel(\"Bits\")\n", + "ax.set_ylabel(\"Time (s)\")\n", + "# ax.set_title(\"Speedup for expectation\")\n", + "legend_list = [\"Variance from full distribution\", \"Querying Variance directly\"]\n", + "ax.plot(x, y1)\n", + "ax.plot(x, y2)\n", + "legend_list.append(\"b = \" + str(i))\n", + "ax.legend(legend_list, loc=\"upper left\")\n", + "fig.savefig(\"var_resuts.png\", dpi=300, bbox_inches=\"tight\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Spike and Slab" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "ename": "IndexError", + "evalue": "list index out of range", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn [16], line 6\u001b[0m\n\u001b[1;32m 4\u001b[0m aqua_res \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnot supported\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice/benchmarks/\" + benchmark + \"/results.txt\", gt[benchmark], 1, None)\u001b[39;00m\n\u001b[0;32m----> 6\u001b[0m webppl_rej_res \u001b[38;5;241m=\u001b[39m WebPPL_accuracy(benchmark, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrejection\u001b[39m\u001b[38;5;124m\"\u001b[39m, gt[benchmark], \u001b[38;5;241m40\u001b[39m)\n\u001b[1;32m 7\u001b[0m webppl_mcmc_res \u001b[38;5;241m=\u001b[39m WebPPL_accuracy(benchmark, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMCMC\u001b[39m\u001b[38;5;124m\"\u001b[39m, gt[benchmark], \u001b[38;5;241m40\u001b[39m)\n\u001b[1;32m 8\u001b[0m aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res\n", + "Cell \u001b[0;32mIn [3], line 44\u001b[0m, in \u001b[0;36mWebPPL_accuracy\u001b[0;34m(benchmark, method, gt, upperlimit, suffix)\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[1;32m 42\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m i\u001b[38;5;241m.\u001b[39msplit()[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 43\u001b[0m \u001b[38;5;66;03m# print(float(i.split()[2][:-1]))\u001b[39;00m\n\u001b[0;32m---> 44\u001b[0m ans\u001b[38;5;241m.\u001b[39mappend(\u001b[38;5;28mabs\u001b[39m(\u001b[38;5;28mfloat\u001b[39m(\u001b[43mi\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msplit\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m]\u001b[49m[:\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]) \u001b[38;5;241m-\u001b[39m gt))\n\u001b[1;32m 45\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 46\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n", + "\u001b[0;31mIndexError\u001b[0m: list index out of range" + ] + } + ], + "source": [ + "benchmark = \"spike_and_slab\"\n", + "gt[benchmark] = 0.0\n", + "# aqua_res = AQUA_accuracy(benchmark, \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/\" + benchmark + \"/results.txt\", gt[benchmark])\n", + "aqua_res = \"not supported\"\n", + "# dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice/benchmarks/\" + benchmark + \"/results.txt\", gt[benchmark], 1, None)\n", + "webppl_rej_res = WebPPL_accuracy(benchmark, \"rejection\", gt[benchmark], 40)\n", + "webppl_mcmc_res = WebPPL_accuracy(benchmark, \"MCMC\", gt[benchmark], 40)\n", + "aqua_res, dice_res, webppl_rej_res, webppl_mcmc_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Kalman Filter" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "6.19320529588475 1.769594280211447\n", + "6.7652537489080995 1.7335318968533602\n", + "5.938554264326578 2.6830195225537645\n", + "6.408096517517377 2.162136863127377\n", + "6.855168671709163 1.1426214709703126\n", + "5.74291968181029 1.60923585015008\n", + "5.854525514956142 1.8826996990245322\n", + "5.490660619216021 1.4439637555717681\n", + "5.169204331998339 0.713198247138812\n", + "5.24569092085237 0.9748421241636175\n", + "3.9825648334728676 1.0023757645424933\n", + "3.6954986630047264 0.6908211521880956\n", + "3.6370540709906254 0.6042715188565944\n", + "3.432584597238853 0.7808585104146218\n", + "3.6107298475232708 0.4651457156278068\n", + "3.5479905469503232 0.333556034302815\n", + "40\n" + ] + }, + { + "data": { + "text/plain": [ + "('not supported', 3.432584597238853)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "benchmark = \"kalman_filter\"\n", + "gt[benchmark] = 0.0\n", + "# aqua_res = AQUA_accuracy(benchmark, \"/space/poorvagarg/PLDI2023/AQUA/benchmarks/new/\" + benchmark + \"/results.txt\", gt[benchmark])\n", + "aqua_res = \"not supported\"\n", + "# dice_res = Dice_accuracy(benchmark, \"/space/poorvagarg/.julia/dev/Dice/benchmarks/\" + benchmark + \"/results.txt\", gt[benchmark], 1, None)\n", + "# webppl_rej_res = WebPPL_accuracy(benchmark, \"rejection\", gt[benchmark], 15)\n", + "# webppl_mcmc_res = WebPPL_accuracy(benchmark, \"MCMC\", gt[benchmark], 15)\n", + "webppl_smc_res = WebPPL_accuracy(benchmark, \"SMC\", gt[benchmark], 40)\n", + "aqua_res, webppl_smc_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Conjugate gaussians plots" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import matplotlib.ticker as ticker\n", + "# from scipy.stats import norm\n", + "import statistics" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "smc_estimated = [2.7558463370784922,2.990986938896368,2.703210475552547,3.360961024009141,2.7931580088681036,2.624886204803354,3.40305539747362,3.4089165908407355,3.0276145971684896,3.452675947368662,3.2976003756136216,2.9389193994757306,3.0002135127923273,4.158105275403516,3.430505851116422,3.023295323153059,2.8325946817244914,3.938988236959654,3.2042123434361582,3.0552183614881216,3.348673092961723,3.054937093916795,2.811982249443659,3.207382857346975,2.7131233829905,2.8009439709507937,3.566784881698422,2.894646080317874,3.4491503273675423,3.5176311344205624,2.875438573687032,3.1666274776516135,2.545414215722122,3.1774894300766614,3.244235994454356,3.066603910537684,2.989436577338309,2.966805733475883,2.707614808206449,3.1331236419203923,3.0592460614579178,2.8998394668311205,2.978949234601138,2.8477092292589283,3.06092220487106,2.868197759245553,3.984625455324795,3.7899264901155068,3.2673247421088365,3.9115408234497306,3.214380566906509,3.3702840260849736,3.2447990885441005,3.101073268852784,3.2685719887448266,3.2577804902870446,3.344450608565412,3.533153843261163,3.006367489859353,3.190851154402331,2.595151956697722,3.19960918815586,3.157639340104149,2.86928928637418,2.8279402839765173,2.768225377772433,3.23262165409883,3.1529203671584773,2.993212821363848,3.984557534117639,2.9178464708257783,2.861152463667254,3.658463930750398,3.2842229609729707,4.093629985905284,3.149744458518286,3.0571755678848707,2.6231725647197353,3.0073351758785187,3.2071275451793406,2.5728569268349295,3.3800541361885674,2.8647524223523644,3.875371936794719,2.9938433322743685,3.131663296957691,3.159899967424137,3.1276404722274087,3.1217109176447115,2.854598374875191,3.1063948530280543,2.8774350078308406,3.608718231213417,3.385922045320633,2.8028879274523844,3.2318170321875526,3.06219076176166,3.5263002944127786,3.8395841411072804,2.752479524814495,3.145873638143196,2.868366131145331,3.43019950465532,2.610607213500915,3.10615201165342,3.3111557350704515,3.377794021987149,3.7644449467927408,3.961867228254585,3.0949337656226845,3.037230965874112,3.360015803322267,3.5479612092324873,3.3352231179473137,3.1461174894336894,3.058419667213556,3.483475212967329,3.2549746359757092,3.544694613009585,2.993089263418808,2.498885833639453,3.4219132645009127,2.9422185763520967,2.8542898266949672,3.2639169388325397,3.300887276170264,2.9758597162084293,3.055845534090779,3.4804022586673877,3.43132038392083,3.053425437346734,4.153760727349066,4.025484474386062,2.9322283890059655,3.1979403519494136,3.239429587560966,3.2957537961955317,2.873384896942121,3.4634806610231017,3.4574924244165794,2.7834225935629098,4.0088134572982295,3.184199794450372,3.0506931193001487,3.045729231054127,3.27961996977486,2.742011495043679,2.826360470256268,3.5075631277988446,3.609717290918666,3.7021580733600166,3.042914900029181,3.182678263870388,3.868037283155318,3.376336259157682,2.695221809408515,2.6547262884657004,3.712864656801785,3.247148956488671,2.534627999236935,3.2415984524692014,3.1273298796394666,3.313326636919549,2.3734640636698376,2.7360686008018162,3.232529441920787,2.807844258574541,2.4270563368889237,2.8501454072435015,2.9784588169433763,3.507659460977093,3.6695502423835333,3.1567175337024294,3.6084185284255765,3.922245666511571,3.168305474377142,3.069137965291958,3.4132560266754637,4.282383040720498,3.059484540833385,4.059829106733571,3.026023471163008,2.9398820035151374,3.216967604410346,3.888441177438346,3.0981724204751337,3.2995989936069807,3.0988588126745498,3.535414969096381,3.801238875189794,3.4754698384997247,2.9604348511514598,2.870036515006728,2.8292926352579677,4.003206317308386,3.0097935798937057,2.6796701818419915,3.4852578904554172,3.3462405568951037,3.174181278431469,3.1970854504768247,3.2056915393673924,3.7158916640832134,3.1347720287158323,2.858828805912749,3.281740993401819,3.61955693349888,2.914289031008176,3.169798202087808,3.1941844343802783,2.68884165749101,2.9039524300945527,3.0634681955290444,3.2060046239903226,2.7278962733592538,3.199411861218798,3.454610589819182,4.188099547640969,3.358814339758131,2.8919724208489317,3.452425357076344,3.5928723426739553,3.1851579121910256,3.478935510037528,2.9353468914984657,3.458471081788294,2.67758354887442,3.2739591967800497,2.9515151348703674,3.2894473322470668,3.1902361682369462,2.9047090093414702,3.311195801991849,3.3151016122716306,3.0944235152546486,3.142184299959576,2.4952121274635495,3.7247238641532032,3.267186333865062,3.522972416918941,2.8755187474176696,3.1946119895548364,3.9257245200899,2.8183233047534326,3.2060404032286063,3.583342895161186,3.3393066085706002,3.0343041344099797,3.131589223061234,3.8121410057832374,3.3934918092488218,3.5657757097793725,2.9529895620529283,3.098452184266693,3.7023598401936626,2.7370963577623675,3.125675007366002,3.4079144155591727,3.1924279321547493,3.2059360006911173,3.1620181381189525,3.3601315531179226,2.9709396628500837,3.5481514888915004,2.959356026956361,2.9797351112927517,3.543402176724636,2.8501096052474932,3.4863720630054527,3.457971517759461,2.91039249478174,3.30252121743968,2.9363547958460785,3.0336814034714368,3.4252278699120446,2.879490883923812,4.341453791368198,3.411269940531194,3.415366853659741,3.591799151023254,2.9707133587854355,2.9442540754434363,3.7474701127201593,2.8600317795920516,3.6908291341701607,3.050696310449213,3.230539370578553,4.409073716986133,3.637467156836896,3.1973148183656246,2.8280370711836675,2.508661508896588,3.6880935146275284,2.9064341692131292,3.3736092660379997,3.05498411964581,2.966165277891478,3.046274025214686,2.9208919092133727,3.143448124813301,2.910603725273437,3.2038368932864367,2.8024306499981186,3.18109769120665,2.8667608354863328,2.990771028893533,3.4177801298052892,2.8225953547057125,2.767476981289608,3.242350978167303,2.4285258829797316,3.276507799166243,3.0141788209939793,3.1611830627679303,3.3069920742008283,3.432525548016453,3.915844011639327,3.267504996360383,3.1406428538162903,2.969169615978388,3.779704523307002,4.00198967812196,2.5950683728943953,3.3596575949626133,2.8154297648668787,3.1558782452016696,2.8233529996836957,3.320134420913526,3.5054934376925067,2.8141701668044767,3.055304253081928,2.828464588018914,3.369678936383634,3.873408923453932,3.431923240531421,3.3771141383093966,3.0321418682776233,3.568604715920837,3.488587266466156,4.247726448664406,3.0696680565412016,4.0048942884748095,3.432890352085988,4.574628453904289,3.4108067166129463,4.084450907821242,2.6525033473902315,3.26612859592788,2.6981172736137986,3.2375774984580015,3.05961274805175,3.055407125767194,3.656557151368217,3.1839952711021904,3.434358665351968,2.6651986174510474,3.715721705524102,2.561392680459236,3.01873897343144,2.850643043250969,3.049100548694532,3.0213981937080057,3.7779208882577553,3.1573504362671363,2.6956291506362913,4.031423238457086,3.96567079100168,3.155018441378062,3.551984207708416,3.255879602020336,3.345461216157264,2.57991404392426,2.9081413658519977,3.3428350340229174,3.140790349863412,2.632933637496322,3.361092093264606,2.954810071114091,3.614471703081439,3.5222487622005403,3.277183920217342,3.817742014829255,2.9597891576860778,3.3601201406185894,3.1339542128407207,3.207478617067274,3.965910795042885,3.3381641901111734,2.9905889176943883,3.3603547051785796,2.887776459572908,3.9533255467855937,3.526160475457404,3.4599770925099924,2.793254742651831,3.6198740494219654,3.475106910790653,3.551451598137332,3.562114177329932,3.0576807688863226,2.6827135552401233,2.8426283409929383,3.05286306909571,2.7680745450325146,3.906421481329709,2.543038673813221,3.1983190346987116,3.9208050610765945,3.9722777802024303,3.1298051126821607,2.8480970776958565,3.4409564638795023,2.858366225033599,3.194138529730403,2.7379656093283398,3.628159401351237,2.5291859548243036,3.1811174713790527,2.9122077490800655,2.9198670316731117,3.958460928234847,3.5487306564924603,4.323861202783873,3.0127094259898475,3.875598866131948,3.3023898550778834,3.079783448426189,2.934644288278867,2.8963731404357937,3.0805752503571413,2.9752321738369334,3.2436436628751766,2.8808585037153622,3.309017470297911,2.993289457314843,3.096920857518193,2.8054073024452872,3.0545861918413375,2.8812296448195345,3.4891219265137674,3.516800596817585,3.425218435380802,3.413496512143827,3.2809072705160656,2.839011831342684,3.804055747890739,2.8335528337608196,2.900266625968833,3.1540081475095527,2.6895493023641386,3.016015100929607,3.077440625504809,3.369901332992465,2.874114994222326,2.8658287320821527,2.9138623945117996,3.6140943850766956,3.4187984004554575,2.8026485941964543,3.36006868974303,3.6295892683152613,2.776646751205711,3.0346099456214457,3.195011308309514,2.8797740538970067,3.3716821404602704,3.879182559016457,2.8823632726352164,3.2018645257720126,3.677718433808944,3.4476513635663504,2.737503844233104,3.12345773966795,3.1659221948732506,3.1866015090148587,2.893654793256365,2.5699673356932906,3.4329750325759227,2.609174668916338,2.66903814519494,3.0743212501372765,3.1014718208372023,3.4276098359867047,3.3844643741913476,3.7195160229583544,3.063345896038458,3.190709283780421,3.8112833042825165,3.404564327484221,3.428158826658617,2.9353812928365164,3.438207169466199,2.7637000686230846,3.9938796801242136,3.729775309305578,2.913644955414527,3.478369481481685,3.7242744703159407,3.2546250066510507,2.828548364800943,2.9212539676783136,3.573036737975078,2.834459650897374,2.855028457056859,3.131274333892502,3.6757538800988576,3.4285537601663187,3.058218334899203,2.90021663163377,2.974112350896064,2.978733072940968,3.269771055942122,3.019833563559797,2.6620968431182783,3.4122106716231144,2.88647596753425,3.0964541584784433,3.122482899999305,3.1537984927501674,2.8226699547024943,3.7857520682935863,2.898814868810434,2.915654860620015,3.4020406532944545,3.06306081291621,2.7535972095293673,2.705146198548464,3.2903024133985115,3.567672458568609,3.5715027461815163,2.9582682816480244,2.9696385931751985,3.786717808104472,2.883243251659874,2.9191620198616155,2.65147332336482,3.0801869245407176,2.68355298124555,3.3215325131463587,3.1899708972224943,3.1478521707632554,3.5388343589656968,3.9026652385950924,3.0821377091030993,3.2815218308364194,3.4564618425677667,3.5982060714790007,3.4871682919895792,3.164616781080373,2.7060774112291033,2.450604410296706,3.00872747173171,3.302937414455181,3.044708699836277,3.765795885886038,2.9530362137939465,3.099249460111467,3.0253149243389874,3.64016685087246,3.476463984961492,2.9811572758302414,3.1934754066133957,4.509538938407182,2.9669230112144156,3.5145277312296126,2.8156297895472027,3.018752280554943,2.948314533814404,3.752339331901387,2.7657268936034094,3.4842966778889815,3.0264904424913333,3.406420698761967,2.999904100412188,3.1852488322724657,3.083598866132254,3.309333060019757,2.895551531675397,3.0973448462021134,3.1150018990502923,3.4001637427055313,3.343400479830012,3.5205985932870942,3.4449955561846433,3.1602432144843426,3.5444020700466496,2.7775487461925223,3.350960764865197,4.050332937034412,3.517896910781995,2.612861234176555,3.4515482499383436,2.8209926947816673,3.275295111700842,2.856332105050718,3.5100497626085643,3.0706160849140445,2.9185656233200787,2.9172704717999287,3.762689199005505,3.465642108081962,2.912335437247787,3.890102800854292,2.8699844844386897,2.8050392427380393,3.256669102320079,3.5149875468532197,3.2517370937268866,3.4652838469375373,2.796030299230962,3.3905535497612465,3.025790810288834,3.2426285275118922,3.7895249499827393,3.3039505872359345,3.362368576250871,2.968584037013684,2.7048250765390107,3.360310407856567,3.1569402861062796,3.713069610649423,3.400932532405474,3.236389363039429,3.319750445869328,3.59158996095093,2.6701825657015426,3.4802656545719404,3.2204099801321773,2.6768702568096026,3.1736699716887378,2.815935369071472,4.134223771576028,3.442992616878821,3.2813468932368273,3.200217370726998,2.9922611594520263,3.2074412262846637,2.8204617521198814,2.7362534289088023,3.3888012797766542,3.1678631743930294,3.8034871726279653,3.1380255909710453,3.326230354529199,2.641214975036292,3.6968034218993586,3.4501394910383243,2.766126479845129,3.4543956134406413,3.212692750791441,4.3437486826642635,3.2474981385655792,3.1886921042347587,3.556593175912099,3.044610259877715,2.762830904693219,3.3195775427218166,3.6704199783800258,3.0382927769935937,3.6998223632369496,3.109066173029514,2.722770712137014,3.0776949571584082,2.9404781904121196,3.228758925495095,3.4059847979448916,3.407206381404646,2.9417631305936496,3.5593658121921044,3.09836218007199,3.089598100303738,2.886894641381356,3.1988473376043154,3.4136629752321626,2.495119758311601,3.4556148342583732,2.8850272536191257,2.878422160489474,3.2541827660075358,3.4250610419305,3.726927785425626,3.6126050560018803,4.321915780173927,3.72645102041657,3.0690284090941558,3.1187398629200422,3.279795135575769,3.3519796272752536,4.392046753911665,3.5205879000113085,2.6931830648692596,3.0603680246167446,2.851998757521168,2.389282900334034,3.0047280094353406,3.186055346866563,3.2482840783332967,3.687107410717886,3.385272217753083,3.125004464503081,2.662907884375142,3.4574671134408845,3.181507760679217,3.462864838018725,2.8911473321715575,3.1247363497582374,3.214325967476949,4.0638101073572725,3.074507944979114,3.5168070301764107,3.7682582180323276,3.0018913979391706,2.8914197916083775,3.3749931928877075,3.8548513655354517,3.25928534271932,3.385883536589862,2.4571570974829773,4.042566953245374,3.500761609248925,3.4823634094166938,3.478695450514212,3.7731405338040718,3.130970142352136,2.833870783023896,2.7085367410174577,3.0005798729699915,3.1066368456880338,2.9217875611808544,4.358996203751036,3.0150020552507666,2.6303386336007475,3.2755005691459766,3.43840569448587,3.9461406988308037,3.749624075179979,3.1729786718138056,2.6651522664500833,3.454777043687196,3.8682747642323605,2.935983826154033,2.5799709629384595,2.6379119250503718,2.69364145220515,2.9908168464104796,3.2992624545255596,2.9102953477276166,3.6065863024493194,3.2173555076584774,2.634618259510003,3.974077106630079,2.954535521810004,3.544368609364025,3.501517104752942,3.5133598747140184,2.7325379467588498,3.0064911373217456,3.8248172791829504,3.4144715499972,2.788997152084617,4.230705083702233,2.5861022001393748,2.726879737732682,3.0295256478400305,2.7044886805514885,3.332425000304444,3.2253524772220494,3.5223466449238656,2.9086480374053996,3.262163766806672,3.1283921683507963,3.2896380989227136,3.30100924322849,3.245446116831598,3.3280401431961506,2.900806421223668,3.558158190337908,3.534782832583779,2.8990815770587464,2.872412934711708,3.030849489209568,2.763184989211174,3.143063939588644,4.089688258175257,3.4497103481993023,3.224363525301146,3.114741840514266,3.8491280936888153,3.521523357546171,3.2573789170813177,3.416843215335257,2.864372667656097,3.123583069604903,3.543535468887345,3.0338396723557137,2.9717086075685826,2.791228152015874,3.896433717723258,3.4109249234077192,2.791693511777958,3.856614059359007,3.2242737161389265,2.8245782067577,2.685166315888216,3.7970107681143843,2.951894933959129,2.479096972534167,3.221784109221234,3.6381116830974323,2.660892816775149,3.0531291389768556,3.2997055913689572,2.986860995075764,3.4053130034719037,3.071143610370102,3.130418924046209,2.9583165328589014,3.1018737231538016,2.8174407895152354,2.755604725229847,2.731159757119471,3.3960009426622726,4.085007779766579,3.278775836423216,2.742204355361057,3.428176342026292,3.852947228519005,3.1644701213516226,3.5878986534490016,3.100642021393988,2.960960074830848,2.790682917259111,2.639359189232666,3.415545280087426,3.095928683199509,2.6225122478192384,3.1686415058818103,3.2860591821268517,2.9019867422086363,3.0632988951209597,2.597617391707829,3.213788466216457,3.301800037837536,3.3989838530615573,3.7199021213586576,2.7582309941751872,3.9340783821954344,3.272924249216745,3.06561985525495,3.0003520117665152,3.273035416980873,3.073980686172206,3.3694318596808843,3.1455298359091564,3.634305462327681,3.1816029761500833,2.715059627346943,3.065739111123889,3.4016393680062245,3.384780855463733,3.2316973545221415,3.0334426025082357,3.7849936533932054,3.574035204735712,2.51387684090977,2.954169223254638,3.853604680655649,2.9641585912712363,2.673874246743389,3.153947695730795,2.9339806856785566,2.9991233429530886,3.269630426977805,2.720840083975029,2.813079006964425,3.4776514727296592,3.4885039693938413,2.7851597270541397,3.296147967836002,2.939687353601462,2.6404291021125523,2.647662536390117,3.050024030726819,2.9724834807913707,3.0995195781159257,2.6747176001474915,3.4267558865201844,3.063520015366849,3.1375566238946084,2.8019204896592074,3.3842861846355587,2.7419253467472515,3.1205736104992066,3.3075821013113735,3.0556842774906916,2.755738148640691,3.7369511581578054,2.945079065115307,3.4036658802676603,3.542815916660677,3.2240725479594756,3.578734096445296,3.5288084938315825,4.299587652891658,3.18424674756755,3.3912086981952574,3.1807715515048915,3.0361755121353178,3.8081837351937913,2.751658260920648,3.084285279965843,3.0673554302502843,2.64848655156982,3.7346584094347843,2.9495541456894188,3.0064851764257394,3.054086832021411,2.9752966628621054,3.6662302104667166,2.971231913027733,3.63443628939452,2.879934070900794,3.292966690038098,3.058142717355922,3.562354049841197,3.1346649085162017,3.6338334237644005,3.6165443829644004,3.121228050020656,3.2426240127307753,3.366594553729612,3.470306295621436,2.9610870986889886,3.1029619754341438,3.3034358426898383,3.2826388167672222,3.4950681749643526,3.1270489156852204,3.00661733035738,3.457920329515891,2.9609941916870297,3.2996176515455686,3.587766259455069,3.1319917994590387,2.8940547525280995,3.614895918457417,3.452298068650049,2.809697529450547,4.135058140055092,3.3432710590748513,3.485347487214756,3.401775185685271,3.1916698648210247,3.1542767155566547,2.8462645815983385,3.5818203624703893,3.3028433752024537,3.34389136173514,3.12090204401937,3.554587470851715,2.7748264549845527,2.910062693485657,2.461165626452767,3.3203426198527226,2.984619047787032,3.434037018560736,3.189723827374155,3.1606037362518413,3.021092069073826,3.5583267897216206,2.835545523056565,3.188676646928596,3.4370350060854435,3.0250293552259557,3.669151539968411,3.655205957308987,3.566566971638866,3.6460296061658517,3.3642319061477166,3.3709822343965903,2.87437295604426,3.1494535204297094,2.9348072072644618,3.6731923341803605,2.985837150843019,2.7771613425621395,2.725410340300794,3.4959443967559616,2.727776567365812,2.7512150021520774,3.0861519022535853,3.568143453520895,2.801745190240046,3.576469976850126,2.673831934187922,2.977315743278322,2.8382638023136177,3.355520332578711,3.191666913170297,3.0423501198303757]\n", + "mcmc_estimated = [3.0788421115961544,3.2541301723742104,2.8972128129084584,3.3087542671597787,3.172075218694236,3.3197662185846863,3.659021985377051,3.710906806009668,3.086637692187856,2.8646894739303805,3.847639204842896,3.5811112612228326,4.779295972148944,3.7309771411661528,2.7937906596264965,3.233131915377386,3.0840431880653556,3.4408626583209347,3.0951836384780647,3.284851437011494,3.377310871512364,3.3133366447137433,3.271882457993928,3.127250674679146,3.2795431926822007,3.2468666327403826,3.0065361979094525,2.9988598058184825,3.422220643935119,3.913899990489644,3.068808196341294,3.153438820931388,3.0809232242200344,3.009290642826715,2.763309649883025,3.122412957856064,3.523091051112108,3.2154547359632017,3.0137582482484375,2.5309979598011365,3.6044682749369517,3.4654916822713404,3.683638093343447,3.708343436381134,3.3378020612855934,3.910115477163429,3.064437837231256,3.286191913405397,3.4317732854534047,3.134373495832081,3.033612461288379,3.2884742120902404,3.158035888430617,2.582306241090953,3.0384802513230933,3.370474862293195,3.826598793822853,3.1082843229912034,3.4088187260850695,3.24246260176626,2.9787414782107824,3.325411391266379,3.038918718418152,3.1418245982054382,3.9731863948585904,2.8249797836650425,3.5175557657680367,4.585177639373382,3.974379751585126,2.8414543416563567,3.3410691777529493,3.064293768888866,3.391016285942449,3.2200278077120577,3.0667618152789995,3.4503408943493583,3.1930999284151116,2.9441455143842377,3.158062455363241,4.209043492795538,3.450714166688196,3.103121350489094,3.4407875731158075,3.3122442274888053,3.0631987391141706,3.2736432802497846,2.852328032177013,3.8344272901834544,3.0742237677102366,3.391424196939086,3.1227393368420264,3.6465742811861266,3.1697682206210493,2.9256301838813026,3.227114451295287,3.0099778350714175,3.35917470778051,3.1135198401746176,2.705075867622447,3.8277718109825543,3.106799446928749,3.4349081624797275,4.029421334580307,3.44098029023115,3.16699769473773,3.5384381872952377,3.411837247547637,3.8522742492576842,3.06739703109849,3.535117596827952,3.57772684278823,3.7911843299723818,2.3479074994428086,3.5106432602330533,2.841013277837009,3.283991481696587,3.114952004547625,3.0794101636407274,3.4013053665021746,3.1407965291180564,3.6231683587143375,3.6216748418004876,2.897081338008046,2.803136998926013,3.349596767261599,3.4501971237418387,3.170977299704056,4.5530191119456775,3.266826400262839,2.837390574383726,2.9915125290311844,3.2323152634348125,3.3204756322811013,3.1901475730401656,3.885837420358381,3.1625692111792665,3.3774025138811052,3.1097089452660156,3.557804924710601,3.2666431059958,4.741405793260372,3.6660819788358374,3.1962193793210663,3.3311130298278306,3.683354406638494,3.384868840688018,3.7782840721461732,3.427624206460536,3.28585644725486,3.8670421039166385,3.073024013455612,3.221071427448383,4.359051167557815,3.7149806654722237,3.587850875189859,3.154764417411104,3.0217174095895016,3.2606370864097367,3.1515045469542176,2.958641806896433,3.20570519820534,3.0126955869155716,3.2115818225685713,3.041838966304702,3.8057514577879084,3.315329027743513,3.2427660745540607,3.059583618984992,3.0499267379677946,3.145441939759671,3.3448569049768846,2.8806265553437473,2.9013524009362412,3.746472400470914,3.2016148076813664,3.3084680628410763,2.886194780388372,3.6699278608660064,3.1518054654709644,3.5359628148901763,3.1173781480015466,3.0705492880880456,3.1134337095078974,3.419439417024257,3.836149633403664,3.8124525512519014,3.8488320355573493,3.5848050107468055,3.3551463689598435,3.7106903128435462,4.183369953762937,2.736353357392918,3.2147505523073883,2.994707928892747,3.533231954311745,3.446620706715487,3.321726803618731,3.42139145600992,3.011503629276327,3.1944172991715964,3.5526480863079577,3.5179646228937904,3.2481421599046327,3.460806769811079,3.151893153144287,3.6174010641385963,3.740384717108367,3.4069160362843576,3.943644000160052,3.160525512601385,2.6628414040375397,3.000955119585475,3.2513328425562302,3.3441023663758016,3.6843005422267563,3.3666669128058984,3.8896065173192604,3.24910177182553,3.598284504797461,3.669865378853002,3.1844576676962704,3.4999758932604967,3.6379622128992284,3.369902365305916,2.804011000442433,3.104456609956074,3.6248925498976883,2.8602943434187544,3.289570222867073,3.271172982855703,3.117929815411469,3.361582360114765,3.2451202977689566,2.6333647292773747,3.2178446619423,3.35700790783672,3.0800325486469915,3.4796556307906736,3.8850885283896823,3.222940047460475,3.2639446554086082,3.6910491553312275,3.118342075166542,3.0617250139708863,3.434670660381402,3.5660453665008474,3.195433923583413,3.4148931637524282,3.9139587281256336,3.685336934138344,3.239989862841822,3.0300821356155025,3.7229166422990976,3.0747934324688644,3.009163147168977,3.8181953318404216,3.565412464645673,3.6160820539067693,3.768033137867015,3.3805840338417075,3.593890107016201,3.28006318911331,3.3992471069719663,3.544735066399584,2.9966296106095767,3.533837294215199,3.238226539089195,3.040884349402993,3.810836033101739,3.322920937850109,3.627388962544589,3.2977679847220887,3.634632855842898,3.9194699700159283,3.1472745769033708,3.69345806152208,3.0121650182763138,3.4297824527341456,2.8770794730515337,3.085713777522281,2.724515244319769,2.987681723483596,3.4052846967841073,3.246071499229814,2.826555451002441,3.7978283434359965,3.6915299613878902,3.4034281691411628,3.5757488743847294,2.965725193479254,3.331668180447401,3.5015307175823924,3.867969153984494,3.3670454221456136,3.225186532831763,2.930377317466611,3.415066012389665,3.675378307350042,3.799554009240216,3.276250795063055,3.110137526570863,3.536534577713172,2.908322950207193,2.9917400347937924,3.784997330190474,2.7018449937596793,3.4822003009379663,3.362199450734923,2.9226479993158225,4.235068814266175,3.2384363532531397,3.9322752611667124,3.0396170968703373,3.1569910920256583,3.6275829034396834,3.6253406141092026,2.9383501835595456,2.9399560762653465,2.5237448841396595,3.3119382437506033,3.1562405376686744,3.538053350092921,3.2894697183314814,2.8003752913188085,3.4793339834300987,3.1688396055649934,4.015841600941336,2.889947780164844,3.1933463873208243,3.3154077225533554,3.0437444591121565,4.001601670105839,3.6220593335423423,3.1855303547300506,3.2262396640784186,3.570338586781224,3.507510628870739,2.788888115595891,3.065983041423207,3.1858408124948956,3.825913039151983,3.326457372919446,2.979301430293431,4.123764987301495,3.1996234429211126,3.28051150644159,3.541973321511051,3.010726117269455,2.8634900458861776,3.9537660046494714,3.0520750499590608,3.21984086833746,3.3740617870522374,4.038531798356624,3.5260433484421916,3.9021181705796932,3.5750255244274114,3.313448111548362,3.444500683226191,2.7252859209141373,3.901031057644014,3.7667784384858645,2.5212491899136875,2.670834956895623,3.3434336429868603,3.804531718439047,2.884400154595875,3.2611257458600265,3.4883093919065384,2.6754714305442495,3.3892644741662172,4.023234478116511,3.275424481843635,3.311714542225124,2.812039242642742,3.3412248514729472,3.2736208843159704,3.5000323513919063,3.5614665186649446,3.211954177146649,2.8376427517188345,4.073389942280849,2.650135029195392,4.042119546291582,3.526276220901098,3.471435877950488,3.168701017254996,3.1649455563662405,3.3966979025765305,3.3456845207146455,3.2141663286853372,2.9094915362815144,2.8715697275402348,3.542898463752802,3.1499920625104485,3.5063796025518297,2.9052540423568693,3.4186668517242245,3.1346100246159767,3.261029030558802,2.9534161081374783,3.2969455663644904,3.1255816656410835,3.5080404927369733,3.438553709778929,2.978327705750316,3.4497430778726192,3.6592855522827747,3.3685206057252937,2.829952951740272,3.493383065165668,3.2382854077588124,3.647400470653946,3.2077656231833984,3.3781488597620863,3.1307226082462254,3.136049718998925,3.2692879284017318,3.944222425334085,3.493662518847103,3.191592947071781,3.385918575482562,2.867615893786094,3.173026220003598,3.1019539632163466,3.6635780282786055,3.0249932370538173,4.047951597207347,3.0178461809428994,3.056583373523659,3.2267538629014143,2.9174211959411553,3.9090174750493136,3.6024097116022213,3.86615387570247,3.0015677839225297,3.07464321070739,3.8775287669217344,3.5066917286486596,3.2069467680783075,3.142283137073875,3.397300996536912,3.4478415702436336,3.1834738306694232,3.7834381210898744,3.700393488876508,2.583187973931605,3.285745583300563,3.6731120993147117,3.161533069105747,3.266431390444644,3.6883875657063467,2.858703508421678,3.3037435356334526,2.51667433284252,3.158180403235726,3.0652844759653655,3.1199861645970084,3.345641362429214,3.8190465955918347,2.929204411623125,3.271806948641043,3.370873996689934,3.606169214315311,3.371921368540988,4.114237159498122,3.860794936955083,3.105249143591396,3.3356861189783804,2.6259241529613853,2.925795729365895,3.5840393124059404,3.3783203169839364,3.344106395761373,3.672552038971664,3.709732128629824,3.209258159883122,3.285965576288651,3.610826064286551,3.009023340343967,3.5945287871662814,3.210636211336516,3.020065654222441,3.469646683260279,3.1443583681612437,3.38832173729656,3.6555074342128093,2.8829905612676763,3.636171537112328,2.9750111246922657,3.504948260243129,2.6817056324901993,3.719152194362719,3.903178818485688,3.05484961656526,3.205222350119582,4.284963811492041,3.739065369616982,3.6870111167387085,3.5401071214134094,3.0285571410809164,3.80135522429736,2.9820248179882944,3.2700786114325577,3.393538565504929,2.9068189521519563,3.7020205276584384,3.601094649152596,3.849907345276572,3.3614644829451086,3.071440441312917,3.479983064021225,3.2956669107748757,3.5409411213876143,3.690758174011739,3.610585234606177,3.554137162880435,4.144762972752129,3.2865956561414147,3.4120508147209723,4.370713194635103,3.153125582636524,3.6708946612365154,3.937013123727999,3.151726047014995,3.040575504355146,3.216050809284753,3.2432141513617005,3.308884891951555,3.315667255026398,2.7973060895018462,3.794275624618503,2.744508986172587,3.372470736449103,2.8879562017949474,3.194144071225788,4.036385381177204,3.067745918987984,3.471948349120651,3.243479491648924,3.012438422994513,3.025189301947793,3.287181756163072,2.9698631879740063,3.5147887029504368,3.202748230153672,3.513175486394367,3.1425233307193468,3.3131316711515852,3.5229256276612633,3.05189398667166,3.6550496534134185,3.537367755790792,3.0527046597786827,3.3488072942971905,2.8811216362895156,3.12474805571689,3.1658668018790412,3.1344114830409375,2.699430884702375,2.8367703880086195,3.335100400503904,3.8294458200272343,3.0211764367002756,5.22771458147637,3.470529172746416,3.606054000927334,3.3995665270802435,2.79757785733564,3.39505063284898,3.1059995444643804,3.4230039664784444,3.167052711607712,3.6722919690305975,3.1530247595771765,3.733752785107937,3.5232094148954687,2.8545264660982173,3.0486780652575396,3.9930887299418756,3.9681526475696227,3.3430639443456402,3.1471893955637307,3.512666465658987,3.363906937439748,3.356706682158055,3.418449613455867,2.774287037232888,2.876850117468062,3.1824936107605355,3.5532767669487355,3.7303131293706984,3.1766650648260044,3.1694989806413654,3.221695805570299,3.3024843067265484,3.0519946503721447,2.7124881365094904,3.1923621629733625,2.964109840311818,4.111842974322774,3.1862394354574572,3.0531368942502275,3.086305726822224,2.9175072960089308,3.4356470503503833,3.451017049730584,3.242461868239217,3.5328341228289033,3.1457803895354526,3.3361992609655466,3.3374395225082982,3.480993724836256,3.495219105881388,3.08169663281482,3.0486022598274722,3.9019733505721357,3.7224358485345883,3.282623272779737,2.8400363521402685,3.256515858613826,3.630000297510141,3.965658648833396,3.67155914565546,3.4021890656734475,3.960889998844471,3.08494025039928,3.5496833980122076,3.2625684753711224,2.951802136304086,3.2903053119687526,3.1857113160843404,3.0689099058735803,3.43210328944051,3.033361770856598,2.9119692634922476,3.8836932144996394,2.957158240406939,3.5528639011974343,3.115442160698407,3.1903162956993767,3.0127299246060564,3.5759011094992434,3.418423917656753,3.1395304722691812,2.990799290982558,2.979238395931467,3.4235266087053646,3.9136088834781027,2.906716415722131,3.3407199056870027,3.5172238090963526,3.4324994305562164,3.3917907364000683,3.0881445763662856,2.8721864977362386,2.9911972616872022,3.1590650449277335,3.0689888467101256,3.2365319570422173,2.874503147093616,3.4004444038911608,3.381097367324883,3.1993297337894893,2.882493785692424,3.3478944893263782,3.8114113975563906,4.179505530023278,3.6392014227780063,3.3799179861945228,3.234916608309561,3.7658698621367046,3.198190244907482,3.669619807874922,3.4537855347753883,3.044593941837546,3.2323251142790466,3.376198729375814,3.8902032749289575,3.732450455603489,3.3233700294006323,3.320406346074991,3.572627745413849,3.7058567386510077,3.7168890882841805,3.166617977918967,2.998634968851462,2.6520983718642728,3.4388744530034683,2.955510318526316,3.5437151759603465,3.44907114603609,3.4116815323575804,3.8452905285688943,3.7917461364717986,2.883264573302448,3.227161884516892,3.093813479377778,2.9611726870765613,3.350932687243625,3.3247630486872604,3.149265580967138,3.5227398825947236,3.3629723276742562,2.983661081671419,2.7942410810172134,3.263874662610877,3.3454068727861737,3.3924116246221203,3.4290948421408394,3.327768575555437,3.5004343092710952,3.548758764893063,2.9859659746318408,2.992299584151409,3.661815287248085,3.6648051960030137,3.1357823147367307,3.3655237752552454,2.874043939958928,3.082349194634468,3.5182025869218845,3.0688721945648973,3.6650631652342134,3.2632986053574595,3.435800601688091,3.538688234856746,3.4039548667781565,3.403456645534081,3.3601829838914132,2.9094202056589977,4.024835351192082,3.1023200324163946,3.758392724906062,3.1163518468992955,4.092272189085382,3.187721924086374,3.422067182503539,2.9441752033185775,3.6663546986534374,3.1099957640879765,2.9304802758340776,3.3438031908887096,3.0915594648761244,3.791983599123652,3.7951165500289705,3.15496955123974,3.351099940332628,3.4255747135843837,3.0683471298592506,3.125171157434487,2.9890477628366843,4.171922171627228,3.0480320572895674,3.1473022685358734,2.553767814327499,3.544563295878981,3.1949131476837724,3.0960031672383415,3.664235728479716,3.049294907784924,3.229606909899681,2.8964408066377554,3.468313581096141,3.510771491288466,3.398188320787398,3.2778927194538245,3.2504552841596763,4.031491551586828,2.5096133454603744,2.937978814672696,3.4536308070398873,3.2646203779429115,3.7820702169335623,2.5514358059203395,3.314918811178203,2.7522752364711067,3.735163038404085,3.274300846268997,3.1489757538051912,2.763899657173725,3.209227570340343,3.1112795749438207,3.1178752996858665,3.342320053211802,3.451071290781184,3.0731170370919783,3.123722548238381,2.9440125233840657,3.447531798337492,3.887474305440331,3.8963878994212893,3.2468097226281536,3.015678131936302,3.588909743730526,3.2529963332441976,3.4051032926348324,4.045653419956449,2.771690000893703,3.219050152362877,2.8073189668534964,3.692145978250622,3.1390500864605775,3.1879287904228297,3.829554464158985,3.123994016780019,3.0293736279215486,3.345297875881525,3.2776589857239653,3.2229505836096335,4.098664783336058,3.2391847960478444,3.293978446941572,3.590810765826776,3.101146790219796,3.698945680235256,3.598462504188362,4.042659707354968,3.7766152372075847,2.9229006880067856,3.112131474894925,3.914006066192655,3.2642277047585604,2.987646880728823,3.2092185091491285,3.137847711839287,3.408018441115148,3.4619147491431996,3.474398433895275,3.240549572921315,3.012499695042762,3.066964792295833,3.5179402025645863,3.3697877133557292,3.0906005527052884,3.4341080790229546,3.6138719390044307,3.0371019257597247,3.2949646493162033,4.293691704557947,3.806291393663766,3.062514838293001,3.6082685001992214,3.690737023634792,3.4535278925297233,3.195803900045047,3.432568816687081,3.794951510963649,2.968584483033322,3.7941383565521556,3.166737648352639,3.9536218699838592,3.2664616855112345,2.926096759275409,3.384197507279693,3.708818538331581,3.47229808844849,3.3242568009631333,3.706341201238505,3.8907660338639234,3.367461932311324,3.4900133870914454,2.88283021375044,3.549507952835058,3.26010424699409,2.737906169541331,3.184375920239755,3.107019200876932,3.4932132079971887,3.0962584653779657,3.197472588445659,3.2275657563000486,2.959167385138145,3.4427347565616238,2.9382311081252173,3.0467032354632377,2.7680426820218718,3.144178639093345,3.5052305359651914,2.5738029525122967,3.51330809171822,3.0375425506344076,3.39592558065764,2.9437010653660134,3.377809612736515,3.180940537288509,4.209935683773457,3.8097504047374926,3.7813087462295165,4.063470778277752,3.716787298255995,3.5531261260195417,3.182459115690672,3.12313306000793,3.192672501227347,3.650876402003137,3.46271288170781,3.3386406701397933,3.4458655859500498,4.179084385950602,4.0409402427163394,3.512030661170639,2.5679286044469913,3.5777933778199933,2.932760392288274,3.2167062276025993,3.224667498216163,4.146589931546898,3.7819223359073004,3.461898357812438,2.657808481539454,3.244555245541853,3.278074664193894,2.9721246025101866,3.208956281618825,3.330873211894785,3.4141868210351416,3.0672493534789784,3.2372188511425124,3.0216343665211953,2.818313190335163,3.1722293525429093,2.759595452051431,3.678546078870081,2.964017640242992,2.8603893187539415,2.851851932485816,3.2666449336138865,3.03835710949543,2.900587376664461,3.3361885957715494,3.0127066194457255,3.0388832478223664,3.2538795428737317,3.4529292476020834,2.9820905464984633,3.3958045060788073,3.1507842617687594,3.3544009765407075,3.3474092580262624,3.3821681508262205,2.9235568926154634,3.1171510270601988,3.003764590237754,3.4230892442043768,3.153255976135873,3.4277866944482818,3.3085582661615063,3.3147544445578965,3.310667933539898,3.524126821719298,3.9291866414745154,3.001667386087997,3.529787036561027,3.0702000655795136,4.112553558850722,3.0547022895122296,3.3838292922869053,3.060428640503987,2.8715189392472142,3.598766240476907,3.5360656964350543,3.0107671771430335,3.3001776096381628,3.4317713318053795,3.482261420040741,3.064581987778424,2.9659890985159767,3.0830042677593075,3.7656208886474904,3.624160527095248,3.7001471470942953,3.5799436552585004,4.43022156606081,3.1408488195385162,3.7756883236465217,3.7336453403824104,3.436970538126438,3.468861285482548,3.3002266745588957,2.835970521361661,3.981156616732329,3.4403592500881985,2.8901136166180716,3.1098110812227238,3.1717802156141133,3.6867699330325774,3.2862742008678287,3.2434678960339514,2.8922021016220105,4.127299108635512,3.7349514710825185,4.040981843877043,3.3221826879843968,3.013023779531007,3.5681344230807155,3.0443056170587597,3.7519265101223747,2.8237418977585302,3.24759476325038]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "39.82783727702899\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAGtCAYAAAAh7ySEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAADQJ0lEQVR4nOzdd1QU19vA8e/SUYq9oIgVOwErKgoSe8VeE9GYqFFTbLEk9oSoUWPvvfeCNTZQUbG3qBgVETtYKEpn3j98d3+uu1RXsTyfc/YcM3funWeGheyzt6kURVEQQgghhBBCCJEio6wOQAghhBBCCCE+dJI4CSGEEEIIIUQaJHESQgghhBBCiDRI4iSEEEIIIYQQaZDESQghhBBCCCHSIImTEEIIIYQQQqRBEichhBBCCCGESINJVgcg/ic5OZn79+9jbW2NSqXK6nCEEEIIIYT4pCmKQlRUFHZ2dhgZpd6nJInTB+T+/fvY29tndRhCCCGEEEJ8VkJDQylcuHCq50ji9AGxtrYGXv3gbGxssjgaIYQQQgghPm2RkZHY29trPoenRhKnD4h6eJ6NjY0kTkIIIYQQQrwn6ZkmI4tDCCGEEEIIIUQaJHESQgghhBBCiDRI4iSEEEIIIYQQaZDESQghhBBCCCHSIImTEEIIIYQQQqRBEichhBBCCCGESIMkTkIIIYQQQgiRBtnH6ROQkJBAUlJSVochhBCfLGNjY0xNTbM6DCGEEFlIEqePWGRkJOHh4cTFxWV1KEII8ckzNzcnT548skG5EEJ8piRx+khFRkZy7949rKysyJMnD6ampuna8VgIIUTGKIpCQkICERER3Lt3D0CSJyGE+AxJ4vSRCg8Px8rKisKFC0vCJIQQ75ilpSXW1tbcvXuX8PBwSZyEEOIzJItDfIQSEhKIi4vD1tZWkiYhhHhPVCoVtra2xMXFkZCQkNXhCCGEeM8kcfoIqReCkInKQgjxfqn/7sqCPEII8fmRxOkjJr1NQgjxfsnfXSGE+HzJHCchhBDiHfPz03/cw+N9RiGEEOJtSI+TEEIIIYQQQqRBEichhBBCCCGESIMkTuKToVKptF5GRkbkyJGD2rVrs3DhQhRFyVB7fn5+qFQqvL29303AGZSYmEjp0qWpVq2a1nF1nCqVCo9Uxv00atQIlUqFXwpjhg4fPoxKpWLWrFl6y319fXF3d8fGxgYbGxs8PDzYuXNnZm9HL39/f8aMGUPTpk3JmzcvKpWKokWLpnh+TEwMBQsWpEmTJnrLFUXBxcWFihUrkpycbNBYhRBCCPF5kTlO4pPTrVs34NWqVzdv3iQgIICjR49y4MAB1qxZk8XRZd68efO4fv16qsmKv78/Bw8exNPTM0NtK4rCoEGDKFy4MD179tQp//vvv/n5558xMTGhXr16mJub888//9CsWTNmzJhBv379Mnw/+vz4449cuHAh3edbWloyZMgQBgwYoPe+VSoVI0eOpHXr1ixdupQePXoYJE4hhBBCfH5USka/hhfvTGRkJLa2tkRERKS6uWJsbCzBwcEUK1YMCwuL9xjhh0292tWbb+l9+/bRpEkTEhMT8fX1pVmzZulq7+XLl9y5cwdbW1sKFixo8HgzIi4ujiJFilCgQAGdxMLPz4+6detiaWlJTEwMbm5uHDlyRKeNRo0asXfvXg4dOqTTM7VlyxZat27NlClT+Pnnn7XKgoKCKF++PCYmJhw6dIgaNWoAcP36dWrWrElERARXr16lZMmSb32fQ4YMwdbWlqpVq1K4cGHKly+Pg4MDt2/fTrFOTEwMdnZ2ODo6EhgYqFOuKArlypUjKiqK27dvY2Ii3xeJzMvs319ZHEIIIT5M6f38DR/5UL2YmBhGjhyJo6MjFhYW2NnZ0aNHD+7du5ehdjI6PCghIYF//vmHfv36UaFCBbJly4alpSVly5Zl0KBBhIWFveWdCUOqX78+X331FQBbt25Nd71s2bJRpkyZLE+aADZu3Mjjx4/5+uuvUzynRo0afPHFFxw9epR9+/ZlqP3Zs2djbGxM586ddcqmTZtGUlISvXv31iRNAI6OjowYMYLExESmTZuWoeulZOLEiYwYMYIGDRqQK1eudNWxtLSkTZs2nDx5knPnzumUq1QqunTpwr1799i+fbtB4hRCCCHE5+ejTZxiY2Px9PRk3LhxREdH07JlS+zt7VmyZAkuLi7cunUr3W39+OOPjB49ml27dhEeHp7m+f7+/jRs2JBZs2bx4sULGjduTP369QkPD2fy5Mk4OTkRFBT0NrcnDMzFxQWA0NBQzTF1ghwfH8/YsWMpU6YM5ubmeHl5AanPcUpMTGTGjBlUrlwZKysrrKysqFatGnPmzNG7MaaHhwcqlYrbt2+zevVqXF1dsba2JkeOHOmKf+HChahUKjp27JjiOSqVitGjRwMwatSodLULEBwczIEDB/D09CR//vw65eqhgW3bttUpUx/z9fVN9/XeBXXCN3/+/FTLFyxY8N5iEkIIIcSn5aNNnMaPH8+JEyeoUaMG169fZ926dQQGBjJ58mTCwsIyNJehQYMGjB8/nr179/Lvv/+meb6RkRHt27cnMDCQ4OBgNm3axPbt27lx4wYNGzbk4cOHdO/e/W1uTxhYVFQUAObm5lrHk5OT8fLyYuLEiZQoUYKWLVum2cOUlJREy5Yt+eGHH7hx4wb169enXr16XLt2je+//5527dqluBCBj48PX331FWZmZjRr1owKFSqkGXtkZCRHjhyhZMmSFCpUKNVzvby8qFSpEsePH2fPnj1ptg2wa9cuFEXRu7DE8+fPuXPnDvC/5PN19vb25MmTh5CQECIjI9N1vXehZs2amJqapjj/q3jx4tjb23Pw4EFiYmLec3RCCCGE+BR8lIP94+PjmTlzJgCzZs3CyspKUzZgwACWLVuGv78/Z86coXLlymm2N3HiRM2/Hz58mOb5np6eeiff29rasnjxYgoVKsTx48cJCQnBwcEhPbdkUIqiEJOg2+vxobI0NdbMT3oXFEVhx44dADg5OWmVhYaGYm5uTlBQUJpJidrff//Nrl27KF++PAcOHND00jx48IC6deuyZcsWZs+erXfBhOXLl3Pw4EHc3d3THf+xY8dISkqiatWq6Tp/9OjRtGjRglGjRtGoUaM0z1fPh9LXvjppypkzJ9mzZ9dbv3DhwoSHhxMSEkLFihXTFaOhWVhY4OTkxJkzZzTzT95UrVo1Nm3axIkTJ6hbt24WRCmEEEKIj9lHmTgFBAQQERFBiRIl9H4L3rZtWy5evIivr2+6EidDsrOzI2/evISFhXH//v0sSZxiEpIoN3Lve79uZl0Z25BsZoZ/KyYlJXHr1i3++OMPjh8/jrm5ud6eQB8fn3QnTQDTp08HYMqUKVpD2woWLMikSZNo0aIF06ZN05s4ffPNNxlKmgAuXrwIQOnSpdN1fvPmzalSpQonT55kx44daS6GkVr70dHRwKv5XilRJ1TqXr2sUqZMGc6cOcP58+f1Jk5lypQB4Pz585I4CSGEECLDPsqheupVxSpVqqS3XH1c/YHwfXr+/DnPnj0DoECBAu/9+uJ/+zmZmJjg6OjI0qVLsba2Zs2aNZQoUULn3ObNm6e77Tt37nDnzh3y5s1LgwYNdMqbNWtGjhw5uHHjht7eyxYtWmT4fh4/fgy86vVJrzFjxgBo5jwZuv0PkXoxiZQWZ0mrXAghhBAiNR9lj5N6+FDhwoX1lquPh4SEvLeY1GbNmkViYiIVK1bU+6336+Li4oiLi9P8t6HmiFiaGnNlbEODtPU+WJoaG7Q99T5ORkZG2NjYULFiRVq3bq03MciXL5/OvKfU3L9/HyDFnkSVSoWDgwPPnz/n3r17OslzkSJF0n0ttYiICACsra3TXadJkyZUq1aNkydPsm3bNlq2bJlm+68PeVVTH3v58mWK9V+8eJHh+N4F9RKiz58/z1S5EEIIIURqPsrEKa3hQ1k1dOjcuXOMHz8egAkTJqR5vo+Pj6ZnwJBUKtU7Gfr2sVi6dGm6z30X+2ClNl8rM9eztbUFMv5+HjNmDI0bN9bMeUqt/SdPnhAdHa2T/KgTvWfPnvHixQu985zu3r0LpJxMvi/qBDCllQrTKhdCCCGESM1HOVTvQ/To0SNat25NbGwsP/30E40bN06zzrBhw4iIiNC8Xl8qW3yY7OzsgNR7M9VlGZk3lZp8+fIB8PTp0wzVa9SoETVq1OD8+fNs2bIlU+3nyJFDkzzp2yMpNDSU8PBwHBwc0tw07l1TD5HNmzdvpsqFEEIIIVLzUSZOaQ0fet9Dh6KiomjSpAm3b9+mXbt2TJ48OV31zM3NsbGx0XqJD1uRIkUoUqQIYWFhHDhwQKd8586dPHv2jJIlSxpsjtsXX3wBkKm9wV6f66QoSqbab9q0KfBqE943qY9lZJ7Yu3L16lUAnJ2dM1UuhBBCCJGajzJxUn8Drh4i9Kb3OXQoNjaWFi1acPbsWRo0aMDKlSsxMvooH6tIp/79+wOvlr5/faGBhw8fMnjwYODVpsqGUrNmTYyNjTl16lSG69avXx83NzcuXbqkWXb8TbVr1wZIsf0ff/wRY2Nj5s6dy4kTJzTH//vvP37//XdMTEz03m/RokVRqVT4+fllOO6Mio2N5dKlS9jb26c4t/DkyZOYmZnh6ur6zuMRQgghxKfno/yEr/6G/OzZs3rL1cff3LPH0BITE+nQoQN+fn7UrFmTzZs3Y2Zm9k6vKbLezz//TOPGjbl48SKlSpWidevWtGrVCkdHR65evYqXlxfff/+9wa5nbW1N7dq1uXHjRopfFqRG3euU0savjRs3TjXBKV26NJMmTSIuLo7atWvTpEkTvLy8+OKLL3jy5AlTpkyhZMmSOvXUmwCbmpqmO9aFCxfi6uqKq6urpqfrwYMHmmOurq56f+8DAgJISEjQ1HnTzZs3uXv3Lp6enlhaWqY7HiGEEEIItY8ycapVqxa2trbcvHmT8+fP65S/j+FDiqLQvXt3tm/fjrOzMzt37kxxg1DxaTE2Nmb79u1MmzaN4sWLs3fvXv755x9Kly7NrFmz2Lhxo8F7Hb/99lsA1qxZk+G6np6e1KlTJ8XyYsWKUa9ePQ4dOpTiBtA///wz27dvp0aNGhw5coQDBw5QpUoVfH19NT1wr3vy5Al3797F0dExQz08d+/eJTAwkMDAQE2CFB8frzkWGBiod/XJ1atXA/97ThktF0IIIYRIk/KRGjFihAIoNWvWVKKjozXHJ0+erACKu7u71vkzZsxQSpcurQwdOjTVdh88eKAAioODQ6rn/fDDDwqglClTRnn8+HFmb0NLRESEAigRERGpnhcTE6NcuXJFiYmJMch1xYcvNjZWyZ8/v1KxYsV30v7WrVsVQPnrr78M0t6mTZsUQFm5cqVB2kvNy5cvlRw5cijVqlXTW56cnKyULl1aKVSokJKQkPDO4xGftsz+/T10SP9LCCFE1krv529FUZSPds3qX3/9lf3793Ps2DFKlSpF7dq1CQkJITAwkLx587J48WKt88PDwwkKCuLBgwc6bS1cuJCFCxcCkJCQAPxveJDa7NmzNRvrbtu2jenTpwNgb2+vmdfypqFDh1KmTJm3v1nx2TM3N2fkyJH07duXHTt20KxZM4O237JlS6pVq8bUqVPp169fhva20ufQoUOULVuWTp06GSjClM2dO5fnz5/j4+Ojt3zr1q0EBQWxaNEiTEw+2j95QgghhMhiH+2nCAsLCw4dOoSPjw+rV69m69at5MqVC29vb8aNG5fi5rj6qIcHvU49PEjt9eFB6mWNAfbt25diu97e3pI4CYP57rvvmDZtGmPGjDF44gQwadIk3N3dWbBgAf369XurtmbMmGGgqFIXExPDxIkTady4MZ6enjrliqIwduxYKlSogLe393uJSQghhBCfJpWipLBGsXjvIiMjsbW1JSIiItWlyWNjYwkODqZYsWLvZANXIYQQ+mX2729Ki0t6eBgkLCGEEJmU3s/f8BH3OAkhhBAfu9RW65ekSgghPiwf5ap6QgghhBBCCPE+SeIkhBBCCCGEEGmQxEkIIYQQQggh0iCJkxBCCCGEEEKkQRInIYQQQgghhEiDrKonhBBCfIBkxT0hhPiwSI+TEEIIIYQQQqRBepyEEEKId+38ef3HnZ3fZxRCCCHegvQ4CSGEEEIIIUQaJHESnwyVSqX1MjIyIkeOHNSuXZuFCxeiKEpWh/jOqVQqihYtmtVhaPTo0YPs2bPz+PFjrePqn1GOHDl4/vy53rp//vknKpWK0aNH6y1//vw5uXPnpl27dlrHb9++rfNeeP1VoECBTN/P1q1badSoEXnz5sXCwgJ7e3tatWrF0aNHU6xz+/ZtevfuTbFixTA3NydPnjzUqFGDSZMmZToOfQICAmjSpAm5cuXCysqKatWqsXz58gy3s3Tp0lSfX8eOHXXqeHt7p1pH/bpz546mzrlz51CpVEycOFFvHA8ePMDS0pLvv/8+w/cghBBCvAsyVE98crp16wZAUlISN2/eJCAggKNHj3LgwAHWrFnzXmLw8PDA39+f4ODgDyqReZ8uXbrEsmXLGDhwIPny5dN7TkREBFOmTGHs2LEZbv/333/n2bNnjBo1Sm95/vz5adSokc5xW1vbDF8rOTmZb7/9lsWLF5M9e3bc3NzIkSMHd+7cYdeuXVSuXBk3Nzedert376Zt27bExMRQqVIlXF1defLkCZcuXWLevHkMHjw4w7Hos2nTJjp06EBycjJ16tQhT548HDhwgG7dunHx4kX++uuvDLf5xRdf4KxnGFn16tV1jum7d7WgoCBOnDiBg4MD9vb2muMuLi60aNECHx8fevbsSa5cubTqFSxYkO+++47Zs2fz008/4ejomOF7EEIIIQxJEifxyVm6dKnWf+/bt48mTZqwdu1aunTpQrNmzbImsPfg6tWrmJqaZnUYAPz6668YGxszaNAgveUqlQpzc3OmTZvGzz//TM6cOdPd9oMHD5gxYwbNmzenQoUKes8pU6aMznshs8aOHcvixYtp3rw5S5cu1fqQ/+zZM8LDw3XqXLt2jdatW2Ntbc2+ffuoWbOmpiw5OZmzZ88aJLanT5/So0cPkpKS2LRpE61btwbg0aNHuLm5MXnyZJo1a4ZHBpdh8/LySrG37009e/akZ8+eess6dOjAiRMn6Nq1KyqVSqts2LBhbN++nQkTJjBhwgSdukOGDGHmzJn89ttvrFu3LkPxCyGEEIYmQ/XEJ69+/fp89dVXwKuhVp+yMmXKUKJEiawOg9DQUHbs2EHDhg1T7G0yMjLiu+++IzIyMsM9IosXLyYuLo6vv/7aEOGm6u7du/j4+FCkSBHWrVun0zOSM2dOSpUqpVNvwIABxMbGsnTpUq2kCV7de5UqVQwS38KFC4mMjKRly5aapAle9biph8FNnjzZINfKqMjISHx9fQE0v4Ovc3V1pWTJkixevJj4+Hid8kKFClG3bl22bNnCo0eP3nm8QgghRGokcRKfBRcXF+DVB/rXrVixAjc3N2xsbMiWLRtOTk74+PgQGxur00Z8fDyzZ8+matWq5M6dm2zZslG0aFGaNWvG2rVrgf/Nr/H39wegWLFiWnM8XqcoCmvWrMHT05OcOXNiYWFB2bJlGT16NC9fvtS5voeHByqVitu3b7N69WpcXV2xtrYmR44cmnNSm+O0a9cu6tevr7lW6dKlGTp0qN45RqNHj0alUrF06VJOnjxJs2bNyJ07NyqVivMprQ72msWLF5OcnEynTp1SPW/o0KFYWloyY8YMnjx5kma78Oq5LVq0CGtra5o2bZquOm9j2bJlxMfH07NnTywtLdNVJzQ0lL1791K8eHGaNGnyTuPbuXMnAG3bttUpa9q0KRYWFuzfv1/ve/pd27RpEzExMVStWpXSpUvrPadTp06Eh4ezZcsWveWdO3cmISHBYL2H75SfX8ovIYQQHz0Zqic+C1FRUQCYm5trjvXq1Yv58+djYWGBp6cn2bJlw8/Pj+HDh+Pr68v+/fvJli2b5vwuXbqwceNGrK2tqV27NjY2Nty7d4+jR48SHR1Nx44dsbKyolu3buzZs4dHjx7Rpk0brKysdOJJTk6ma9eurFmzBisrK6pUqULOnDk5ffo0Y8aMYffu3fj5+en9oO7j48PChQupVasWzZo100kG9fHx8WH48OGYmJjg7u5Onjx5CAgIYMKECWzZsoXDhw+TP39+nXqHDx/mu+++w9HRkQYNGnD//n2MjNL+vmXHjh0AaQ4PK1iwIL1792bq1KlMmjSJP//8M822r1y5QnBwMPXr18fCwiLF8x49esSoUaN48OABtra2VK9enRYtWmBmZpbmNV538OBBAGrWrMmDBw9YtWoVN27cwNbWlrp169KwYUOdpNjPz4/k5GRq1qxJYmIimzdvJiAggKSkJCpUqECHDh0yNDQxNRcuXACgUqVKOmVmZmZUqFCB06dPc/36dZycnNLd7pkzZxg8eDCRkZEUKFAAT09P3N3dMxTbypUrAejatWuK53h4eDBu3Dh27txJhw4d9JbDqwTxl19+ydD1hRBCCINSxAcjIiJCAZSIiIhUz4uJiVGuXLmixMTE6D8hOVlR4qI/nldyskGeH6Doe0snJycrNWrUUABlxIgRiqIoysaNGxVAsbOzU65fv6459/nz54qbm5sCKAMHDtQcv3XrlgIoDg4OSnh4uFb7MTExyrFjx7SOubu7K4ASHBysN9aJEycqgOLh4aE8ePBAczwuLk755ptvFED55Zdf9LZpYWGh+Pn5pfgMHBwctI6dPHlSMTIyUqysrJQTJ05ojsfGxirt2rVTAKVNmzZadUaNGqV5nhMmTNB7rZRERUUpxsbGip2dXYrnAIqxsbGiKIry8OFDJVu2bEr27NmVx48fa87x8fFRAGXUqFFadefMmaMAyvDhw/W2HRwcrIn9zVeRIkWUwMDADN1PgQIFFECZPn26Ymtrq9Omh4eH8uzZM606Q4cOVQCld+/eiqurq06dXLlyKQcPHsxQHPqo/2ak9nfDy8tLAZTt27enq80lS5ak+Pzc3d2Vhw8fpqudu3fvKkZGRoqJiYny6NGjVO/ByMhIKVKkSIrn5MmTRzE3N0/5b957lOrf30OHUnwdmnpO/yvlKqm+hBBCGEZ6P38riqJIj9OnKOEl/GGX1VGk3/D7YJbd4M0mJSVx69Yt/vjjD44fP465uTndu3cHYPr06QCMGjVKa36Kra0ts2bNwtnZmXnz5jF+/HgsLCwICwsDXg35y507t9Z1LCwsqFGjRrrjSkxMZOLEiWTPnp21a9dq9fSYmZkxY8YMdu7cyfz58/njjz90eni++eabDH3zP3PmTJKTk+nfv7/Wimjm5ubMnDmTHTt2sGXLFkJDQ7VWPQOoWLFihld+u3LlCklJSSkOzXpT/vz56dOnD5MnT2bChAlpzne6ePEiQIrtm5ub06dPHzp06EDZsmWxtLTk33//Zdy4cezatYuGDRty/vx5HBwc0hXfs2fPgFdzlmrUqMG0adMoWbIkJ0+e5Ntvv8XPz49vv/2WDRs26NRZuHAhVlZWrF69mkaNGhEWFsa4ceNYuXIlrVq14t9//6VQoULpikOf6Ohozb9f7x19Xfbsr3631L2uaSlYsCCjR4+mZcuWFC9enJiYGE6ePMmQIUPw9/enWbNmnDhxAmNj41TbWbVqFcnJyTRu3DjFeW4ANjY2FCxYkDt37vDs2TO9PXGlS5cmICCAq1evaobdCiGEEO+bzHESnxz1fCITExMcHR1ZunQp1tbWrFmzhhIlSpCQkMCJEyeAV8Pv3uTk5ISTkxPR0dGa+TxlypQhe/bs7Ny5k0mTJnH//v1Mx3f27FnCw8OpWbOm3uFxlpaWVK5cmWfPnvHff//plLdo0SJD1zty5Aig/17z5ctHgwYNSE5OJiAgQKe8WbNmOsPQ0qLesykjQ9F++eUXsmfPzpw5c9JcBCCt9gsWLMjs2bNxd3cnX758WFtb4+rqys6dO+ncuTPPnz/njz/+SHdsycnJmuvt3r0bFxcXrK2t+fLLL9m+fTsqlYqNGzdy/fp1nTqJiYnMmzePTp06kTNnThwdHVmxYgVVq1YlIiKC2bNnpzuO96Vhw4aMGjUKZ2dnbGxsyJ8/P82bN+fUqVM4Ojpy+vRp1q9fn2Y76mF6+haFeJN6wQ31FxQZLRdCCCHeB+lx+hSZZnvVi/OxMNX/TXlmqfdxMjIywsbGhooVK9K6dWvNB+0nT54QHx9Pnjx5NN/Gv6lo0aJcuHCBe/fuAa++FV+wYAHfffcdQ4YMYciQITg6OlK3bl2++uoratWqle74bt++DbxaJj2tpCQ8PFynZ6VIkSLpvhagSfJSWjRCfVx9r29zLXi1NxOAtbV1uuvkzZuXvn37MnHiRP7880+mTp1q0PbVhg8fzurVq9m7d2+661hZWfHs2TPatWun836pUKECVatW5eTJkxw+fFiz15B6XpuVlZXOBr0A3bt359SpU5pFRDLr9flzL1++xMbGRuecFy9eAJl7Xm9e64cffqBfv37s3bs31YU/Ll68yKVLl7CxsUlXoq+OO6XNkNMqF0IIId4HSZw+RSrVOxn69rEwxOpb+hKaTp06Ua9ePbZt28Y///yDv78/8+bNY968eQwYMCDdSz6reyNKliyZZsL15rBAINUFETIjteQtM9dSbzCb3qFhaoMHD2b27NnMnTuXIUOGGLx9QDMs88GDB+mu4+DgwLNnz1JNPE+ePKnpCVPXgVeJp77nq27r9TqZYWNjg62tLREREdy9e5dy5crpnHP37l2tmN5Gep+furepTZs26VqJUJ0Mv75CZEbKhRBCiPdBEifx2cmdOzdmZmaEh4fz4sULvb1O6l6hN+ef5M2bV7PZp6Io7N27lw4dOjBlyhR69OhB+fLl07x+4cKFAcNu0JoaOzs7goODCQkJ0fvBOqV7zSz1fJanT59mqF6ePHno378/Pj4++Pj4YGenf55eZtuH/809SqmnUR8XFxfOnz+vqfsmdRyv9/6o5+FkpE5mffHFFxw+fJizZ8/q/HwTEhK4fPkyFhYWmt6wt5Ge55ecnMyaNWuA9A3Te73dvHnzZqpcCCGEeB9kjpP47JiamuLq6gqg2X/pdZcvX+bChQtYWVnh7OycYjsqlYpGjRpp9hL6999/NWXqJa8TExN16lWtWhVbW1v8/f0z9eE/o2rXrg2g+TD7urCwMPbu3YtKpcrQcMPUlC9fHhMTE4KCgjJcd+DAgVhbWzN//ny9QwfhVaIAZKr9TZs2AfqX7k6JeqiZvmF10dHRnD17FkBr0YKaNWuSO3duHj58qDdOdVuGWOhA/f7buHGjTtmOHTuIjY2lXr16BumpTM/z8/Pz4+7du9jb26e5HD282iT3/v37FClSJMV5a9euXcPc3JyyZctmKm4hhBDCECRxEp+l/v37A682er1165bmeFRUFP369UNRFHr16qX5sHnu3Dk2b95MfHy8VjtPnz4lMDAQQGtFOnVvib4Pzebm5gwZMoSoqChat26tdX21e/fusWLFire8y1f69u2LkZER06dP5/Tp05rj8fHx9O/fn5iYGFq3bq2zol5mZc+eHRcXFx48eJBi8pOS3Llz88MPPxAXF8eiRYv0nqNOBE+dOqW3fMGCBVy7dk3n+ObNmxk6dCjw6pm86csvv6RMmTKcPHlS63jz5s0pW7Ysx44d01rMISkpiQEDBvD06VMqVKiAm5ubpszExIQBAwagKAp9+/YlMjJSU7Z//36WLl2KSqWiV69eWtfy8/NLdRNjfXr27ImNjQ3btm1j8+bNmuOPHz/WDHkcOHCgTr0yZcpQpkwZnZ+Rj48P4eHhWscSEhIYM2YMGzZswNLSUrM6pT7qYXpdunRJ18Iip06dQlGUFFeKvHnzJk+ePKFatWoGH6YqhBBCZIQM1ROfpbZt2/Ldd98xf/58KlSooLUBblhYGK6urowdO1ZzfkhICG3atMHW1pYqVapQoEABnj9/zuHDh4mKiqJ58+ZaS5K3aNGCZcuW0blzZxo0aKCZl7Nw4UIAhg4dyrVr11ixYgVly5bFxcWFYsWKER8fT1BQEFeuXMHJySndQ51SU61aNcaNG8eIESOoUaMGHh4emg1wQ0NDKVWqFLNmzXrr67yuadOmnDp1Cj8/P72r+aVm4MCBzJgxQyvZeF3ZsmUpVqwYgYGBxMbG6nyYXrVqFd999x1OTk44OjqSnJzMlStXNMnU4MGDadWqlU67N2/eJCQkhJcvX2odNzY2ZvXq1bi7u9O3b1/mz59PyZIlOXfuHLdu3SJ37tysXr1aJ0kYPHgwhw4dYv/+/Tg6OuLq6kp4eDgnTpwgKSmJ33//nWrVqmnVUc9/MzU1TffzypUrF4sXL6Z9+/a0bdsWDw8PcufOzf79+3n+/DkDBgzQ2/OjTuoTEhK0jg8fPpwxY8ZQpUoV7O3tiYyM5Pz589y/fx8LCwtWrlyZ4rDO2NhYTa9Uet+7fn5+wP96zjJa/iHxO58jq0MQQgjxDkmPk/hszZs3j+XLl+Pi4oK/vz++vr7ky5eP33//nYMHD2rti+Pq6sr48eOpXLkyQUFBbNiwgdOnT+Pk5MTixYs1HxbVWrduzdSpUylcuDC+vr4sWrRIqwfFyMiI5cuXs23bNurXr09wcDCbNm3i6NGjWFhYMHjwYBYvXmywex0+fDg7duzA3d2dU6dOsXnzZk3PV2BgoN5l0d9Gjx49NAlHRuXMmZOffvopxXKVSkXPnj2JiorC19dXp/zbb7+lbdu2vHz5kn/++QdfX18iIyNp3bo1+/btY+LEiRmOydnZmfPnz/P111/z6NEjtm/fTnx8PD179uTMmTNUrFhRp46pqSm7du1iwoQJ5MmTh71793Lp0iXc3d3x9fVl+PDhOnUuXLgAwNdff52h+Nq0acPhw4dp2LAh586dY9euXZQsWZKlS5eme9EStZEjR1KnTh1CQ0PZtm2b5nehV69enD9/ntatW6dYd/v27URGRuLi4qJ3Pp0+a9asIU+ePHqTWYDVq1djamqKt7d3hu5DCCGEMDSVoihKVgchXomMjNSskKVvWWG12NhYgoODKVasmAxdER+sVq1asWPHDkJDQylQoIBB23748CHFihWjXr16epOnj1WLFi0ICAjg9u3bb718+Mfg+PHj1KxZkyFDhjBhwgSd8rt37+Lg4EDbtm1Zt25dFkSoK7W/v35/n894g6nMo0xNOqaPCSGESIf0fv4G6XESQrwj48aNIzk5mb/++svgbRcoUID+/fuzc+dOLl26ZPD2s0JSUhKHDx9m0KBBn0XSBPDnn3+SI0cOfvnlF73lkyZNwsjISGvYrBBCCJFVJHESQrwTFSpUoFu3bsyZM+et9yvSZ/jw4eTMmZMxY8YYvO2sYGxszPPnzxk2bFhWh/JenDt3ju3btzNs2DBy5cqlU/7gwQPmz5/Pt99+q7MJtBBCCJEVZHEIIcQ7s3jxYoPO1Xpdjhw5ePLkyTtpW7x7Li4upDZSvGDBgsTExLzHiIQQQojUSY+TEEIIIYQQQqRBEichhBBCCCGESIMkTkIIIYQQQgiRBkmchBBCCCGEECINkjgJIYQQQgghRBo+u8QpJiaGkSNH4ujoiIWFBXZ2dvTo0YN79+5lqB1/f3/GjBlD06ZNyZs3LyqViqJFi76boIUQQgghhBBZ6rNajjw2NhZPT09OnDhBwYIFadmyJbdv32bJkiXs2LGDEydOULx48XS19eOPP3LhwoV3HLEQQgghhBDiQ/BZ9TiNHz+eEydOUKNGDa5fv866desIDAxk8uTJhIWF0aNHj3S31aBBA8aPH8/evXv5999/32HUQgghhBBCiKz22fQ4xcfHM3PmTABmzZqFlZWVpmzAgAEsW7YMf39/zpw5Q+XKldNsb+LEiZp/P3z40PABCyGEEEIIIT4Yn02PU0BAABEREZQoUQIXFxed8rZt2wLg6+v7vkMTQgghhBBCfOA+m8RJPR+pUqVKesvVxy9evPjeYhJCCCGEEEJ8HD6bxOnOnTsAFC5cWG+5+nhISMh7i0kYlkqlQqVSpXrO0qVLUalUeHt7G+x6r79MTU2xs7OjTZs2HDt2TG89Dw8PVCoVt2/ffusYPgR+fn4Ge6afgqJFi6b5PhT6yeqkQgghPmSfTeIUHR0NQLZs2fSWZ8+eHYCoqKj3FlNcXByRkZFaL/Hx6datm+bVokULsmXLxubNm3Fzc2P16tXpbudD/dA4evRoVCoVS5cuzepQMuxjjj0rfWrJvRBCCGEIn83iEB8iHx8fxowZk9VhiLf05ofy5ORkhg8fzoQJE/jhhx9o164dpqammvLly5fz8uVLChUq9J4jfTeqVavG1atXsbW1zepQxEfu6tWrWr8rQgghxIfks+lxUq+i9/LlS73lL168AMDa2vq9xTRs2DAiIiI0r9DQ0Pd2bfHuGBkZMXbsWExMTHjy5InOcvVFihShTJkyn8wHxGzZslGmTBkKFiyY1aGIj1yZMmUoUaJEVochhBBC6PXZJE5FihQB4O7du3rL1ccdHBzeW0zm5ubY2NhovcT7169fP1QqFfPnz0/xnNKlS2NkZMStW7fS1aaZmZmmByYxMVGr7M1hUOp5V/Bqjt3rc6Y8PDzSfR9Xr17F29sbe3t7zM3NyZ8/Px07dkxxn7Fdu3ZRv359ChUqhLm5OXZ2dri5uWn1ghYtWlTz3927d9eKzc/PD0h5jtPrw+TOnDlD48aNyZEjB7ly5aJ9+/aa37kXL14wZMgQihYtioWFBRUqVGDjxo068SqKwpo1a+jYsSOOjo5kz54da2trqlWrxuzZs0lOTtY6Pz2xqwUGBtKuXTsKFiyImZkZhQsXpmfPnpq5kW+KiYlhxIgRFCtWDAsLC0qUKMGoUaOIj4/X/8NJhbe3tyam3bt34+bmhpWVFTlz5qR169Zcu3YtxborVqzAzc0NGxsbsmXLhpOTEz4+PsTGxuqcGx8fz+zZs6latSq5c+cmW7ZsFC1alGbNmrF27VoAbt++jUqlwt/fH4BixYppPbfXqX8enp6e5MyZEwsLC8qWLcvo0aP1fkH1+vt+9erVuLq6Ym1tTY4cOTTnpDZcVf1+VV+rdOnSDB06lOfPn+uc+/p77+TJkzRr1ozcuXOjUqk4f/58is9TCCGESM1nM1Tviy++AODs2bN6y9XHnZyc3ltM4sPQq1cvZs2axYIFC/juu+90yv39/bl+/Tr16tWjePHi6WozODiYJ0+eYGpqSsmSJVM9t2TJknTr1o1ly5aRPXt2zdL48Oob+PTYunUrHTt2JC4uDmdnZ1xdXQkNDWX9+vX4+vqye/du6tSpozl/1qxZ9OvXD2NjY2rVqoW7uzvh4eFcvXqV0aNHM2rUKODVMv379+/nwoUL1KpVS+teChQokK7YAgMD6d27NxUqVKBhw4acPXuWDRs2cOHCBU6ePEn9+vUJCQmhTp06hIeH4+/vT/v27dm9ezcNGzbUtBMXF0fnzp3JnTs35cqVo1KlSjx58oRjx47Rt29fTp48qTVsMr2xz549m/79+wNQtWpVateuTVBQEIsWLWL79u34+/tTtmxZzfnx8fE0bNiQI0eOkDNnTpo2bUpcXByTJk3i3LlzKIqSrufypg0bNjBnzhyqVKlC8+bNuXjxIlu2bOHgwYP4+/tr/oap9erVi/nz52NhYYGnpyfZsmXDz8+P4cOH4+vry/79+7XmdHbp0oWNGzdibW1N7dq1sbGx4d69exw9epTo6Gg6duyIlZUV3bp1Y8+ePTx69Ig2bdpo7XmnlpycTNeuXVmzZg1WVlZUqVKFnDlzcvr0acaMGcPu3bvx8/PD0tJSp66Pjw8LFy6kVq1aNGvWLF097T4+PgwfPhwTExPc3d3JkycPAQEBTJgwgS1btnD48GHy58+vU+/w4cN89913ODo60qBBA+7fv4+R0WfzfaEQQghDUz4TcXFxiq2trQIo586d0yl3cnJSAOX06dMZbvvBgwcKoDg4OLxVjBEREQqgREREpHpeTEyMcuXKFSUmJkZveXJysvIi/sVH80pOTn6r56YGKGm9pZcsWaIASrdu3bSO16xZM8X3RpcuXRRAWbduXZrXi4qKUo4cOaJUqVJFAZQffvhBpz13d3cFUIKDg3Xay8x7KDg4WMmePbtiZWWl7Nu3T6ts9+7diqmpqWJvb6/ExcVpjhcpUkRRqVTKqVOntM5PTk5WDh06pHVs1KhRCqAsWbJE7/UPHTqk95mq6wHKnDlzNMfj4+OVevXqKYBSrlw5xdPTU4mOjtaUL1y4UAGUOnXqaLWXkJCgbNmyRYmPj9c6/vjxY83z9vf3z1Dsx48fV4yNjZVChQrp/O6r46hevbrW8T///FMBFBcXFyU8PFxz/L///lPs7OzS9T58Xbdu3TR15s+frzmenJys/PLLLwqgODs7a9XZuHGjAih2dnbK9evXNcefP3+uuLm5KYAycOBAzfFbt25p3l+vx6wor/6eHDt2TOtYSu9RtYkTJyqA4uHhoTx48EBzPC4uTvnmm28UQPnll1/0tmlhYaH4+fnpbVff78DJkycVIyMjxcrKSjlx4oTmeGxsrNKuXTsFUNq0aaNV5/X33oQJE/ReK7NS+/t7aOq5jL8OKZl6CSGEMIz0fv5WFEX5bHqczMzM6NevH7///jt9+/bln3/+0aykN2XKFC5evIi7uzuVK1fW1Jk5cyYzZ86kVatW+Pj4ZFXoGRaTGEP11dWzOox0C+wcSDZT/asdZkZmloLu3bs3x44dY8GCBcyaNUtz/NmzZ2zatIm8efPi5eWV7utZW1szY8YM+vbtm+FYMurvv//mxYsXzJgxg3r16mmVNWrUiD59+jB9+nR27txJq1atAAgLCyNHjhxUqVJF6/yMDg9MDzc3N3r37q35b1NTU/r378/+/fu5du0aW7Zs0fwuwquha0OHDuX48eMkJCRo5oKZmJjo/RnkzZsXHx8f6tevz7Zt27R61tLy559/kpSUxNy5c7V+9wG++eYbtm/fzvbt2zl37pxm4+zZs2cDMHnyZHLnzq05v2TJkvz222/06dMn3dd/Xc2aNfn22281/61SqRg3bhyrVq3i/PnzHD16FDc3NwCmT58OwKhRoyhVqpSmjq2tLbNmzcLZ2Zl58+Yxfvx4LCwsCAsLA8DFxUUrZgALCwtq1KiR7jgTExOZOHEi2bNnZ+3atVo9PWZmZsyYMYOdO3cyf/58/vjjD50enm+++QZ3d/d0X2/mzJkkJyfTv39/qlf/3981c3NzZs6cyY4dO9iyZQuhoaHY29tr1a1YsSKDBw9O97WEEEKI1HxWYxZ+/fVXqlevzrFjxyhVqhQdOnTA1dWVgQMHkjdvXhYvXqx1fnh4OEFBQTx48ECnrYULF+Lq6oqrqytNmzYF4MGDB5pjrq6uKQ4LFO/W68uDv/mqVauW3jrt2rUjd+7crFq1Smt+xsqVK4mNjaVbt26YmZmleb2OHTtSo0YNXrx4wdixY9mzZ887ucfX/fPPPwC0bt1ab3nt2rUBOHnypOZY5cqVefbsGd98802Kc6AMpUGDBjrH1EMeixYtiqOjo1aZsbExDg4OJCQkEB4erlP3/PnzTJw4kb59+9K9e3e8vb2ZM2cOAP/991+640pOTubAgQNky5ZNa0jg6958dnfu3OHOnTvky5ePunXr6pzfqVOndF//TR07dtQ5Zmpqqhm6eeTIEQASEhI4ceIE8Gr43ZucnJxwcnIiOjpaM5+nTJkyZM+enZ07dzJp0iTu37+f6TjPnj1LeHg4NWvW1Ds8ztLSUvP+0vfzaNGiRYaup75vffeaL18+GjRoQHJyMgEBATrlzZo1kz21hBBCGMxn0+MEr75ZPXToED4+PqxevZqtW7eSK1cuvL29GTduXIqb4+pz9+5dAgMDtY7Fx8drHcuqfZksTSwJ7ByY9okfCEsT3XkQbyO1PXuWLl2q9wOWhYUF3bp1Y8qUKWzYsIFu3boBrxJkgJ49e2boeufOncPd3Z0WLVpw+fJlSpcunbGbyAD1IhNpLW/+ehIya9YsvLy8WLx4MYsXLyZ//vy4u7vTunVr2rZti7GxscHi0xeXet5MSjGry+Pi4jTH4uPj8fb2Zs2aNSleKyP7sIWHh2v2d0spKX79XECTcKS0iIytrS05cuTQu2BBWlJqU71YgvraT548IT4+njx58mj11L1Z58KFC9y7dw8AGxsbzRy+IUOGMGTIEBwdHalbty5fffVVil8o6KN+v+3bty/NpCQ8PFznva9eqCe91Ped0qIR6uPqe32bawkhhBCp+awSJ3j1bejYsWMZO3ZsmueOHj2a0aNHZ7gsq6lUKoMOfftc9OrVi6lTp7JgwQK6devGyZMnuXjxInXq1Mlw4uPi4kKvXr3466+/mDNnDn///fe7CRo0q8mpk72UvD7MycnJiStXrrBnzx527dqFn58f69evZ/369dSoUQM/P780k4n0Sm0yfkYm6k+ZMoU1a9ZQsWJFJk6cSKVKlciZMyempqZcv36d0qVLZ2hhBvVzs7Kyok2bNqmeW758+XS3+yHQl9B06tSJevXqsW3bNv755x/8/f2ZN28e8+bNY8CAAUyePDldbaufW8mSJdNMuN4cFgivvqQwpNSSN0NfC4AXLyA2Fk6ehDdWcoQchr+eEEKID8ZnlzgJkRL1N/AHDx7k6tWrLFiwAEDvSnvpUaxYMSBjw8cyo3Dhwty8eVNnzk1aLCws8PLy0swb+vfff+ncuTPHjx9n4cKFfP/99+8o4szZsmULAGvWrNFJZNK7TPzr8uTJg4WFBUZGRixZsiRdQ7rUe1WFhIToLY+MjMxUb1NqbaqP29nZAa+SETMzM8LDw3nx4oXeXqeUeiHz5s1Lz5496dmzJ4qisHfvXjp06MCUKVPo0aNHuhJEdc98mTJlUu3dNRQ7OzuCg4MJCQmhXLlyOuXp7XEVQggh3tZnNcdJiLSoFzGYMmUKa9euJWfOnGn2RqRE/WFe33LO+piamurs+ZQe9evXB/6XWGRW+fLlNYtZXL58WXNc3fOUmdgM6dmzZwB6h9SuX79eb53UYjcxMcHDw4PIyEgOHDiQrhgcHBywt7fn8ePHmr2OXqfeDykz9N1DYmIimzZtAtAsDGFqaoqrq2uK17t8+TIXLlzAysoKZ2fnFK+nUqlo1KiRZo7m63PdUntuVatWxdbWFn9/f54+fZrOu8s89TwzfUM0w8LC2Lt3LyqVKkPDDT8Jfn76X0IIId4ZSZyEeI2XlxcFChRg4cKFREdH89VXX2VquM+5c+c0G+o2adIkXXXs7Ox49OhRhnssBg4ciKWlJYMGDWLz5s065XFxcWzcuFGz4ezLly+ZPn26znWSk5M1i1m8vjqZuqcjKCgoQ3EZmnoRiblz52od37hxI8uXL9dbJ63YR4wYgZGREd27d9fZFBcgOjqaxYsXExMTozmmXjVv4MCBWonDrVu30jUEOCVHjx7VWaBm1KhR3LlzBycnJ00CAWj2nRo9erRWb1tUVBT9+vVDURR69eqlee+eO3eOzZs362zQ+/TpU828zPT+zM3NzRkyZAhRUVG0bt1ab2/fvXv3WLFiRYbuPyV9+/bFyMiI6dOnc/r0ac3x+Ph4+vfvT0xMDK1bt9ZZUU8IIYQwNBmqJ8RrTE1N6dGjB3/88QeQvmF63t7emn/Hx8cTEhLCiRMnSE5Opnnz5nz11VfpunaLFi2YMWMGlSpVombNmlhYWFC6dOk0l1MuWbIka9asoXPnzrRp04aSJUtStmxZsmfPzr179zh79iwvXrzg3LlzFC5cmPj4eH788UcGDRpE5cqVKVq0KPHx8Zw6dYrQ0FCKFi2qdd8NGjTAwsKCqVOncvnyZezs7FCpVAwePPidLnrxpiFDhrBnzx6GDh3Khg0bcHR05L///uP06dMMGjSIv/76S6dOWrG7ublpNgOuW7cuFSpUwNHREVNTU27fvs358+eJi4ujdevWms1cBw4cyM6dOwkICKBkyZJ4enoSFxfHgQMH+PLLLzE2NubOnTsZvr8+ffrQs2dP5s2bR4kSJbh48SL//vsvNjY2OkPi2rZty3fffcf8+fOpUKGC1ga4YWFhuLq6aiVxISEhtGnTBltbW6pUqUKBAgV4/vw5hw8fJioqiubNm2stSd6iRQuWLVtG586dadCgAba2tsD/FksZOnQo165dY8WKFZQtWxYXFxeKFStGfHw8QUFBXLlyBScnp3S/91NTrVo1xo0bx4gRI6hRowYeHh6aDXBDQ0MpVaqU1hYCQgghxLsiPU5CvMHT0xOAGjVqpGvOx7JlyzSvdevWce3aNerUqcOiRYvYunVruhdA8PHxoV+/fiQmJrJu3ToWLVrEzp0701W3ZcuWXLx4ke+//x6VSsW+ffvYuXMnjx8/pnnz5qxfv14zP8TKyopZs2bRvHlzwsLC2L59OwcPHiRnzpyMGTOGM2fOaM2VsrOzY9u2bbi6ump6RRYtWqR3mf53qU6dOhw9ehRPT09u3brFjh07MDMzY9OmTSnul5We2Hv37s3p06fp1q0bUVFR7Nixg7179xIdHU2XLl3YsWOHJnGAV8PY/vnnH4YNG4a1tTW+vr5cvnyZn3/+mU2bNmV6+ev27duzfft2jI2N2bZtG3fv3qVly5YcP35cs4fU6+bNm8fy5ctxcXHB398fX19f8uXLx++//87BgwfJlu1/C8S4uroyfvx4KleuTFBQEBs2bOD06dM4OTmxePFizXBAtdatWzN16lQKFy6Mr68vixYtYtGiRZpyIyMjli9fzrZt26hfvz7BwcFs2rSJo0ePYmFhweDBg3V6z97G8OHD2bFjB+7u7pw6dYrNmzdrer4CAwP1LosuhBBCGJpKycgyVOKdioyMxNbWloiICGxsbFI8LzY2luDgYIoVK/ZuVo36zPXq1Yv58+ezZMkSrd4kId4Fb29vli1bxqFDhwy++bAwvNgnTwi+c4diUVFYvLGqnt/5HBlvMJV5aKnxwC+FAo9MtSeEEJ+r9H7+BulxEkJLSEgIK1asIE+ePHTo0CGrwxFCCCGEEB8ImeMkBDBp0iQuXrzIvn37iImJwcfHRzOnRQghhBBCCEmchAB27tyJv78/dnZ2jBo1ih9++CGrQxJCCCGEEB8QSZyEAL1LUQvxPixduvS9bCQrhBBCiLcjc5yEEEIIIYQQIg2SOAkhhBBCCCFEGmSonhBCCPGmqKisjiBVKS19LquRCyHEuyM9TkIIIYQQQgiRBkmchBBCCCGEECINkjgJIYQQQgghRBokcRJCCCGEEEKINMjiEEIIIURWOX8+5TJn5/cVhRBCiHSQHichhBBCCCGESIMkTuKTcujQIdq0aUOhQoUwMzMjZ86clC5dmnbt2jFz5kwiIiK0zvfw8EClUqFSqfDx8Umx3QcPHmBiYqI59/bt23rPS0hIYMGCBTRu3Bg7OzvMzc2xtbWlUqVKDBw4kKtXrxrydt+pokWLolKpsjqMD8Lo0aNRqVQsXbo0q0P56Hh7e6NSqfDz88vqUIQQQoi3IkP1PmUfwwcVA246MnbsWEaNGgVA2bJlqV69OqampgQFBbF582Y2btxIlSpVcHV11Vt/1apVDBs2TG/ZmjVrSEpKSvX6165do2XLlly/fh0zMzOqVauGu7s7L1684Pz580yZMoW///6bxYsX061bt7e72bd0+/ZtihUrhru7+0f3gfZjjj0rLV26lO7duzNq1ChGjx6d1eEIIYQQHx1JnMQn4cyZM4wePRpTU1PWr1+Pl5eXVvnDhw9ZuXIlOXLk0FvfxcWFc+fOcf78eZz1zCtYuXIlOXPmJEeOHAQHB+uU3717l9q1axMeHo63tzd//fUXuXPn1jrn4MGDDBo0SG/9D9GBAwdISEjI6jDER87Hx4ehQ4dSpEiRrA5FCCGEeCsyVE98EjZv3oyiKLRv314naQIoUKAAgwYNokyZMnrrd+nSBXjV6/Smq1evcu7cOdq1a4eZmZne+r169dIkTUuWLNFJmgA8PT05fvw4zZo1y8CdZZ0SJUqk+LyESK+CBQtSpkwZsmXLltWhCCGEEG9FEifxSQgLCwMgb968mapfvXp1SpYsyZo1a0hOTtYqW7FiBQBdu3bVW/fKlSvs2rULS0tLpkyZkup1zM3NqVKlSrrjevnyJT4+Pri4uGBlZYWVlRWurq4sW7ZM7/khISH06dMHR0dHsmXLRq5cuShfvjy9evUiKCgIeDVfp1ixYgD4+/tr5m2pVCq8vb01bemb43T79m1UKhUeHh68ePGCAQMGYG9vj6WlJZUqVcLX11dz7oYNG6hevTrZs2cnf/78/PDDD8TExOjEfP78eYYMGULlypXJmzcv5ubmFC9enO+//5779+9rnZve2AGePn3KsGHDKFeuHJaWltja2uLp6cmOHTtSfN7bt2+nRo0aZMuWjdy5c9OmTRuuX7+e4vkp8fPz08T04MEDvL29yZ8/v+Y5LV++PMW6V65coUuXLhQsWBAzMzMKFSrE119/rfn5venYsWN4eXnh4OCAubk5BQoUoFq1agwdOpTo6Gjg1Vy+7t27AzBmzBit5/bmvK2rV6/i7e2Nvb095ubm5M+fn44dO/Lvv//qXHvp0qWoVCpGjx7N9evX6dixI/nz58fIyIitW7cCqc9xCg0NpVevXprY8+XLR+vWrTl16pTOua+/9yIjIxkwYADFihXD1NSUn376KcXnKYQQQhiKDNUTnwR7e3sANm3axLBhw8iXL1+G2+jSpQtjxozBz88PT09PABRFYfXq1Tg4OODm5qa33q5duwBo1KgROXPmzOQd6Hr8+DH169fn4sWLFChQAHd3dxRF4dixY3h7e3P69GlmzJihOT80NJRKlSrx9OlTSpUqRZMmTUhKSiIkJIQFCxZQo0YNSpcujbOzM23atGHTpk3kz5+fRo0aadpI6R7fFB8fz5dffklwcDB16tQhPDycw4cP06pVK/bs2cOlS5cYMmQI7u7uNGzYkMOHDzNjxgyePHmi06v3559/smnTJpycnDTXP3/+PHPmzGHr1q2cPn0aOzs7gHTHfv36derVq0doaChFixalYcOGREVFceLECZo3b86kSZMYNGiQVhxz586lT58+qFQqateuTcGCBTlx4gTVqlWjefPm6fypaXv69Cmurq7ExcXh4eHBs2fPOHToEN26dePWrVs6c40OHDhA8+bNiYmJwcXFBQ8PD65du8aKFSvYsmULu3btonbt2przfX198fLyQlEUqlWrRs2aNXn+/Dn//fcfEyZMoHfv3lhZWdGoUSMSExMJCAjgiy++0BqOWrJkSc2/t27dSseOHYmLi8PZ2RlXV1dCQ0NZv349vr6+7N69mzp16ujcZ1BQEFWrViV37tzUrVuXZ8+eYWpqmuqzuXTpEp6enoSHh1O6dGlat27NnTt32LJlC76+vqxevZp27drp1IuJicHd3Z2QkBDc3d2pVKmSQX/vhBBCiJRI4iQ+CV26dMHHx4fQ0FBKlixJ69atcXNzo3Llyjg5OWFsbJxmG127dmXMmDGsXLlSkzgdPXqUkJAQhg0bluIKc+f/fx+WSpUqGex+ALp3787Fixf58ccfmTBhAubm5gA8evSIZs2aMXPmTJo2bapJHhYuXMjTp0/p16+fVkIFcOfOHc18JS8vL5ydndm0aRNlypTJ1Epxx48fx9PTk1u3bpE9e3bgf4sP9OnThydPnnD8+HFN79r9+/dxcXFh9erVjBs3juLFi2va6tWrF9OmTSN//vyaY8nJyYwfP55Ro0bx66+/snjx4nTHnpSURNu2bQkNDWXixIkMHDgQI6NXnes3btygQYMGDB06lEaNGlGhQgXgVU/dzz//jKmpKb6+vjRs2BB4tUpi9+7dWblyZYafEbxKbOrXr8+WLVs0z+nUqVN4enoybtw4WrRooXnfvHjxgi5duhATE8PMmTPp27evpp2pU6cyYMAAOnfuzH///YeFhQUAf/31F8nJyWzcuJE2bdpoXfvUqVOaIaNDhw6lQIECBAQE4OXlpXdxiNu3b9O1a1dMTU3ZsWMH9erV05Tt2bOHFi1a0LVrV27cuKEzZHXt2rX069ePv//+O12/a4qi0KVLF8LDwxkyZAh//vmn5vdr06ZNtG/fnh49euDm5kbBggW16p48eZIaNWpw69atFOcsCiGEEO+CDNUTn4TixYvj6+uLvb09UVFRLFu2jG+//ZZKlSqRJ08evv/+ex48eJBqGyVLlqRatWps2rSJ2NhYAM0H5pSG6QE8efIEyPwwQX3Onz/Prl27qFq1KlOmTNEkTQD58+dn/vz5AMyZM0dzXD1c8fUPvGpFihShRIkSBovPyMiIOXPmaJIBgK+//po8efJw48YN+vbtqzUk0c7OTjOP7PDhw1pt1a1bVytpUrc/cuRIChUqxPbt2zMUm6+vL5cuXaJNmzYMHjxYkzTBq5/x5MmTSUpKYsGCBZrjixcvJjY2lk6dOmmSJgBTU1OmTZuW6fk5RkZGzJgxQ+s5Va1alb59+5KcnMzs2bM1x9evX8+jR4+oUaOGVtIE8PPPP1O5cmXu3r3Lpk2bNMdT+5lXrVoVa2vrdMf6999/8+LFC3x8fHTaa9SoEX369CE0NJSdO3fq1M2bNy8TJkxIV9IEr4YyXrp0iSJFijB+/HitLyXatGmDl5cX0dHRmoT5TdOnT5ekSQghxHsniZP4ZHz55ZfcuHGDzZs307t3bypVqoSJiQnPnz9nzpw5ODs7pzhPRK1r165ERkbi6+tLfHw8GzZswMXFhXLlyr2nu3jln3/+AV71sLz+wV9NPefp5MmTmmOVK1cGYPjw4ezYsUOT/L0LRYsWxdHRUeuYkZERDg4OADRo0ECnjrqXSV8C++TJE5YsWcLAgQP55ptv8Pb2xtvbm4SEBJ48ecLTp0/THZv62bVu3VpvuXqo2+vP7siRIwB07NhR5/zcuXPrvZ/0cHZ2pnTp0jrHO3XqpHXd1/+tTjDfpE7eX6+j/pl/9dVXnDp1Smd+XkZk5rmp1atXL0PJpfoe2rdvr3dI31dffaV13usKFiyYoXmCQgghhKHIUD3xSTEzM6NVq1a0atUKgOfPn7N27VqGDx/O48eP6devH/v27UuxfseOHRkwYACrVq3CxMSEZ8+e8euvv6Z6TfVwKPW3/4ag3mB3xIgRjBgxIsXzXk+OvL29+eeff1i/fj3NmzfHwsKCqlWr0qhRI3r06EGBAgUMFl+hQoX0HreyskqxXF0WFxendXzNmjV89913moUM9ImKiiJXrlzpik397Lp06ZJiEgIQHh6u+bd6EQp14vemokWLpuvab0qrvdcXv1D/O6VrqY/fu3dPc+yPP/7g0qVL+Pr64uvrS86cOXFzc9MMq1MP6UsP9XNL6Wer9vpzU8voUuOZudfMXksIIYQwFEmcxCctR44c9O7dGzs7O1q2bMmhQ4d4+fJlit+O582bl/r167N7926ioqIwNjbW9A6kxNnZmVWrVnH27FmDxa3uOXBzc0v3EDtjY2PWrVvH0KFD2bZtGwcPHiQwMJAjR47w559/smfPHmrWrGmQ+PT1gmWkXC0kJESzGt7ff/9N06ZNKVSoEJaWlgDUrFmT48ePoyhKumNTP7tGjRrpDAF8XZ48edLd5odA3xw7e3t7Tp8+zcGDB9mxYwf+/v6aJGrixIkcP35c79L4+qifW1qbM1evXl3nWEYStPRIaT7hu7iWEEIIkV6SOInPgnqxh6SkJJ4/f57qsKKuXbuye/duDh48SP369XUmp7+pSZMmDB48mD179vDs2TODrPBVuHBh4NVQvYEDB2aorouLCy4uLowePZrIyEhGjx7N1KlT+emnn/QOs8pKu3btIj4+nkGDBvHjjz/qlN+6dSvDbaqfXc+ePXUWTEhJwYIFCQoKIiQkRO+wzJCQkAzHkVo99XH1aoGv/zulOin1CJmYmNCgQQPNcMKQkBB69OjBwYMHmTBhAhMnTkxXrIULF+bmzZtMnjw53clWZmX2XoUQQoisJHOcxCchrR6JGzduAK+G8qXV0+Dl5UXhwoXJnTu3zt5A+pQrV44mTZoQExOTZpITHx/P6dOn02yzfv36AGzZsiXNc1NjY2ODj48PKpWKy5cva46rV0VLTEx8q/bf1rNnz4D/JTuvO3z4MI8ePdI5nlbsmXl26vk769ev1yl7+vSpZv5PRp0/f57//vtP5/jatWsB7SXU1TGsWbNGb1vqhUpeX45cHwcHB3755ReADP3MDfWeSw/1PWzYsIGkpCSd8vTeqxBCCPE+SeIkPgm//fYbgwcP5ubNmzpl9+7do1evXgC0aNFCZynlN2XLlo3Q0FDCw8Pp3Llzuq4/b9488uTJw5IlS+jRo4dmpb3XHT58mJo1a6a6Aata9erVqV+/PgEBAfTt25fIyEidcy5cuMCePXs0/71ixQqtD8pqu3fvRlEUzV5X8GqYmqmpKTdv3tT7wfV9US8wsXLlSl68eKE5fu/ePXr37q23Tlqxt2nThnLlyrFq1SrGjRunM6dKURQCAgIICAjQHOvevTvm5uasWrWK/fv3a44nJCTw888/a8WWEcnJyfTv35+XL19qjp05c4aZM2eiUqno06eP5nj79u3Jnz8/R48e1ayaqDZ9+nROnz5NoUKFtHrRpk6dysOHD3Wuq95b7PWfubqXJ6UFUgYOHIilpSWDBg1i8+bNOuVxcXFs3LiRu3fvpufWU+Xh4UHFihW5ffs2I0eO1PriY8uWLWzevBkrKyt69Ojx1tcSQgghDEWG6olPQnR0NNOmTeOvv/7C0dGRcuXKYWFhwd27dwkMDCQhIYGSJUvy999/v5PrFy5cmCNHjtCiRQuWLFnCqlWrqF69OoULF+bFixdcuHCBkJAQjI2N+eGHH9LV5sqVK2nUqBGzZ89m9erVODs7Y2dnR0REBBcvXiQ0NJQff/xRs4/Tpk2b+PrrrylRogQVK1bE0tKS4OBgAgMDMTIyYvz48Zq2zczMaNSoEb6+vnzxxRdUqlQJMzMzatWqRffu3d/JM9KnRYsWlC9fntOnT1OyZElq1apFbGwshw4dwtnZmZo1a3Ls2DGtOmnFbmJiwtatW2nYsCEjR45k5syZODk5kS9fPsLDwzl//jyPHz9m6tSp1KpVC4BixYoxefJk+vXrR8OGDalTpw4FChTgxIkTPHv2jC5duuhs3JsezZo148KFC5QoUYI6deoQERHBwYMHSUhI4Ndff9VaHS579uysWrWK5s2b06tXL+bPn4+joyPXrl3j3LlzWFlZsWbNGq05PmPGjGHQoEF88cUXlCpVCkVRuHDhAtevXydXrlxam/y6urqSL18+Nm7ciIeHB8WLF8fIyIgePXpQs2ZNSpYsyZo1a+jcuTNt2rShZMmSlC1bluzZs3Pv3j3Onj3LixcvOHfunN4ewoxQqVSsWrWKunXr8scff7BlyxacnZ25c+cOAQEBmJiYsGjRojSHyQohhBDvkyROnzIPj6yO4L1Rfwjdu3cvFy5c4MiRI0RERGBjY0O1atVo2bIl33//vdZ+OoZWpkwZLl++zNKlS9m8eTPnz5/nxIkTWFhYULJkSdq1a8e3336rs4x3SvLly8exY8dYsGABa9eu5dy5cxw7doz8+fNTvHhxfvjhB63lswcMGEDhwoUJCAjgyJEjvHjxAjs7Ozp06MDAgQN1lnBeuHAhgwYNYt++faxevZqkpCQSExPfa+JkZmbGkSNHGDFiBLt372bHjh0UKlSI/v37M3LkSJo0aaK3XlqxlypVinPnzjFz5kw2b97MiRMnSExMpECBAri4uNCiRQvat2+v1Wbfvn0pVKgQf/75J4GBgVhYWFCnTh3+/PNPzdC6jMqdOzcnTpzgl19+Ye/evURGRlKuXDl++uknvcNAv/zyS06dOsXvv//OwYMHuXjxInny5KFr1678+uuvOkubz5gxgz179nDmzBl2794NvOplGjBgAAMGDNCaI2RhYcHOnTsZPnw4J0+e5PDhwyiKgpubm2bRkJYtW3Lx4kWmTJnCvn372LdvH6amptjZ2dG8eXNat25tsKX5K1asyNmzZxk/fjx79uxh48aN2Nra4uXlxbBhw6hWrZpBriOEEEIYikrJyHJV4p2KjIzE1tZW84E/JbGxsQQHB1OsWDFZYUqID5Cfnx9169alW7duLF26NKvDEZkRFaX3cGx8PMF37lAsKgqLN/bN8jufw7AxODunXHb+vN7DHj+lUkcIIYSO9H7+ho98jlNMTAwjR47E0dERCwsL7Ozs6NGjh969P9Ly7NkzfvzxRxwcHDA3N8fBwYGffvqJ58+fp1jn+vXrdO/eHQcHB8zMzLC2tqZq1apMnTqV+Pj4t7gzIYQQQgghxIfko02cYmNj8fT0ZNy4cURHR9OyZUvs7e1ZsmQJLi4uGVrGODw8nGrVqjF9+nRMTEzw8vLC2tqaadOmUb16dZ4+fapT59ixY7i4uLB06VKyZ8+Ol5cXNWvW5N9//2XAgAE0aNAgy1csE0IIIYQQQhjGR5s4jR8/nhMnTlCjRg2uX7/OunXrCAwMZPLkyYSFhWVoNaaffvqJGzdu0Lp1a4KCgli3bh2XL1+mf//+XL9+nQEDBujU6devHy9fvsTHx4crV66wfv169u7dy40bNyhevDj+/v6sWLHCkLcshBBCCCGEyCIf5Ryn+Ph48uXLR0REBGfPnsXFxUWr/IsvvuDixYucPn2aypUrp9rWgwcPKFy4MCYmJty5c4f8+fNryuLi4rC3t+fp06fcv3+ffPnyAa9WcLO2tiZbtmxERUVhZKSdf06dOpUBAwbQp08fZs+ene77kjlOQgjxgZA5TkII8Vn45Oc4BQQEEBERQYkSJXSSJoC2bdsC4Ovrm2Zbe/bsITk5mdq1a2slTQDm5uY0b96cpKQkzb4oAKampjrJkj65c+dO8xwhhBBCCCHEh++jTJwuXLgAQKVKlfSWq49fvHjxnbRlbm5OnTp1ePnyJRMnTtQ6//79+8yaNQtTU1O++uqrNK8vhBBCCCGE+PB9lInTnTt3AFLchFF9PCQk5J21NXfuXOzt7Rk2bBjlypWjffv2NGrUiJIlS6IoCjt37kz3fj1CCCGEEEKID9tHuQFudHQ0ANmyZdNbrt7kNCqFMeqGaKt06dIcPXqUVq1acfbsWa5evQqASqWibt26lC9fPs1rx8XFERcXp/nvyMjINOsIIYQQQggh3r+PssfpQ3Dw4EG++OILEhISOHjwIJGRkQQHBzNixAiWLFlCrVq1CAsLS7UNHx8fbG1tNS97e/v3FL0QQgghhBAiIz7KxMnKygqAly9f6i1/8eIFANbW1u+kradPn9KuXTsSEhLYvXs3devWxdramqJFizJu3Dj69u3L7du3+euvv1K99rBhw4iIiNC8QkND04xXCCGEEEII8f59lEP1ihQpAsDdu3f1lquPOzg4vJO2du7cydOnT/nyyy8pVKiQTp127doxY8YMDh8+nOq1zc3NMTc3TzNGIYQQIj38/FIu8/B4X1EIIcSn6aPscfriiy8AOHv2rN5y9XEnJ6d30pY6mbK1tdVbR3382bNnaV5fCCGEEEII8eH7KBOnWrVqYWtry82bNzmvZxPAjRs3AtC8efM022rUqBFGRkYcOXKEx48fa5XFxcXh6+uLsbExTZo00RwvUKAAAOfOnSMpKUmnzVOnTgFQtGjR9N6SEEIIIYQQ4gP2USZOZmZm9OvXD4C+fftq5iEBTJkyhYsXL+Lu7k7lypU1x2fOnEmZMmUYNmyYVlsFCxakU6dOxMfH8/3335OYmKgpGzJkCGFhYXTt2pV8+fJpjjdq1Ahzc3OCg4P57bffSH5t9/igoCBGjhwJ/G8jXvF+qFQqzev48eMpnrd+/XrNeaklt0+ePGHs2LHUqFGDvHnzYmpqSp48eXB3d2fixIk6i394e3tr2u3Vq1eK7cbFxZErVy7NuX4pjK1RFIV169bRunVr7O3tsbCwwNramvLly9OnTx9OnjyZ6vP4kHh4eKBSqbh9+3ZWh5Llli5dikqlYvTo0Vkdykdn9OjRqFQqli5dmtWhCCGE+Ax9lHOcAH799Vf279/PsWPHKFWqFLVr1yYkJITAwEDy5s3L4sWLtc4PDw8nKCiIBw8e6LT1999/c+LECTZt2kSZMmWoUqUK//77L5cvX6ZUqVJMmTJF6/yCBQvy119/8cMPP+Dj48O6detwcXHhyZMnHD9+nLi4OJo0aYK3t/e7fARpSm2s+4fiXY25X7VqFTVq1NBbtnLlyjTrb926lW7duhEZGUmOHDmoXr06uXLl4smTJ5w4cYLDhw/z+++/c+zYMb1Lz2/YsIEZM2ZgZmamU7Zz5840h3E+ePCAVq1aERgYiLGxMZUrV6ZmzZrEx8fz77//MnfuXObOncvYsWP57bff0ryfd02lUuHg4PBRJkYfc+xZxc/Pj7p169KtWzdJYoQQQnw2PsoeJwALCwsOHTrEb7/9RrZs2di6dSshISF4e3tz9uxZihcvnu628uTJw8mTJ+nfvz/x8fFs2bKFiIgIfvjhB06ePEmuXLl06vTr14+DBw/i5eXFy5cv2bZtG2fPnsXFxYVZs2axfft2TEw+2rz0o2VsbEzFihVZt26dVu+h2pMnT9izZw+VKlVKsY3du3fTpk0bXr58yeTJk3n8+DF79uxh9erV7N27l7CwMBYtWoSlpaXeJeddXFx49uwZu3bt0tv+ypUrMTY21syve1NUVBQeHh4EBgbStGlTbt26RWBgIOvWrWPLli1cv36dU6dOUbduXW7evJnOJ5O1li9fztWrV/UupiJEevXr14+rV6/SqlWrrA5FCCHEZ+ij/mRvaWnJ2LFjGTt2bJrnjh49OtWhMbly5WL69OlMnz493df38PDAQ5Yp+uB06dKFoUOHsnfvXpo2bapVtm7dOhISEujataveBUFevHhBt27dSE5OZvHixXTr1k3nHDMzM3r06EHDhg1JSEjQKe/UqRMXLlxg1apVeHl5aZU9f/6cXbt28eWXX6JSqbhw4YJO/aFDh3L9+nXq1avHtm3bMDY21jmnSpUq7N+/n8DAwLQexwdBvXqlEG8jT5485MmTJ6vDEEII8Zn6aHuchEhJ586dUalUeofkrVy5EisrK1q2bKm37vLlywkLC6N69ep6k6bXFSpUSO8cqYIFC+Lp6cmOHTuIiIjQKlu/fj1xcXF07dpVb5tPnz7VDDOdMWOG3qRJzcjIKMXhiPokJiYyZ84catSogY2NDZaWljg7O/P333/r7Z0LCwtj6NChlCtXDisrK2xtbXF0dOTrr7/WzK9Sz9cBCAkJ0Zpn9vqXCinNcVLPM0tMTGTcuHGULFkSS0tLypYty5IlSzTnHTx4kLp162JjY0POnDn5+uuvefLkiU7MN27cYPTo0dSoUYMCBQpgZmZG4cKF+frrr7l+/brWuemNHV7t8+bj44OLiwtWVlZYWVnh6urKsmXLUnzeAQEB1KtXD2tra3LkyEHDhg0zlejevn1bE1NkZCQ//vijZs5b2bJlmTp1qtY8y9eFhobSq1cvHBwcMDc3J1++fLRu3VqzgM2bLl++TNeuXSlevDgWFhbkzZsXZ2dnfvrpJ80wZ29vb+rWrQvAsmXLtJ7bm19OhYaG0q9fP0qUKIGFhQW5cuWiWbNmHDt2TOfafn5+qFQqvL29efjwIT179qRw4cKYmJjw999/A6nPcXry5AmDBw+mVKlSmms1atSIf/75R++9qt978fHxjB07ljJlymBubq7zZYcQQgih9lH3OAmhj729PXXq1GH79u1ER0drNjm+desWx48f56uvviJbtmx66+7cuRN4lXy9jS5durB//342bdpEjx49NMdXrVpFtmzZaNWqFatWrdKpd/DgQWJjY3FxcaFMmTJvFcPrYmJiaNq0KYcOHSJXrly4urpiYWFBYGAgP//8M4cOHWLLli0YGb36LiUqKorq1asTHByMvb099evXx8TEhDt37rB27VqKFy9OtWrVKFmyJN26dWPZsmVkz55da0GUjMTfvn17TXJUokQJ/P39Nc/N2tqaTp064erqSsOGDTl+/DgrVqwgODiYw4cPa5IfgIULFzJx4kQqVKhA1apVMTc358qVK6xYsYJt27Zx5MgRzdYC6Y398ePH1K9fn4sXL1KgQAHc3d1RFIVjx47h7e3N6dOnmTFjhtb97Nixg1atWpGYmEi1atUoXrw4Fy5coE6dOpme+xgXF4enpyc3b97E09OT+Ph4Dhw4wIABA7hw4YJOMnHp0iU8PT0JDw+ndOnStG7dmjt37rBlyxZ8fX1ZvXo17dq105x/5swZ3NzciI2NxcnJiZYtW/Ly5Utu3brFtGnT8PLyomDBgri5ufHw4UP27t1LiRIlcHNz07Th7Oys+ffx48dp2rQpz549o3Tp0jRt2pSwsDD27t3Lnj17WLVqFR06dNC5z7CwMKpWrUpiYqImnpR+X9Xu3btHnTp1uHXrFkWKFMHLy4uwsDD279/P3r17mTJlCj///LNOveTkZLy8vDh8+DDu7u44OTmRO3fudP5E3gM9q8YKIYTIOgZNnG7dusWZM2e4desWDx8+5MWLF5iampIjRw6KFClC+fLlqVSpUpr/ExTibXXt2hV/f382b97M119/DaBJVFLq7QE0y9unNgcqPdq0acP333/PypUrNQnAnTt3OHLkCB07dtQkc+/q+m8aNGgQhw4dokOHDsybN0+z11hUVBQdO3Zk+/btzJ8/n969ewOvlvQPDg6mRYsWWgkVvPpg++jRIwDc3Nxwc3Nj2bJl5MmTJ1MLBYSEhGBtbc1///1H3rx5ATh06BCenp6MGDGC+Ph4tm7dqhl2GRkZSc2aNTl69KhmkQI1Ly8vevXqRbFixbSusWTJEnr06MFPP/3EwYMHMxR79+7duXjxIj/++CMTJkzQbFr96NEjmjVrxsyZM2natCmNGjXSPNMePXqQmJjI4sWL6d69O/BqlcRhw4YxYcKEDD8jgBMnTuDk5MR///2nGa528+ZN6tSpw7Jly/Dy8tL0liiKQpcuXQgPD2fIkCH8+eefmgRz06ZNtG/fnh49euDm5kbBggUBmD59OrGxsfz1118MHDhQ69rXrl3TvGd69uxJyZIl2bt3L25ubnqfW2RkJG3atCEyMpKVK1fSpUsXTdnp06dp0KABPXv2xNPTU/MzV9u1axetWrVi9erVWFhYpOvZ9O7dm1u3btG5c2eWLFmiWZTl6NGjNGzYkMGDB1O3bl2txA5e9YiZm5sTFBQk8++EEEKk6a2H6h06dIjvvvuOIkWKUKpUKTp27Mjw4cOZPn06ixYtYu7cufz55598//33uLu7kytXLurWrcv06dN19k0SwlDatm2Lubm5Vq/OqlWrKFiwIF9++WWK9dTDv978MJdR1tbWNG/eHH9/f+7du6e5vqIoqSZuhrr+6x4/fsyCBQuwt7dnyZIlWhs3W1tbs2jRIszMzJgzZ47muHrRC09PT62kSR1bhQoVDBYfvFrZ8vV7rlu3Li4uLjx48IDGjRtrzVWzsbHhu+++A8Df31+rHVdXV52kCV4lP7Vq1cLPz09n+GRqzp8/z65du6hatSpTpkzRJE0A+fPnZ/78+QBaz27jxo2EhYVRp04dTdIEr4aGjRs3jsKFC6f7+m/666+/tOb4lChRQrOq4syZMzXH/fz8uHTpEkWKFGH8+PFavXJt2rTBy8uL6OhordVH1T/zevXq6Vy3TJkymgQrPRYvXsyDBw/46aeftJImeDU/77fffiM6OlrvcFpzc3NmzJiR7qTp1q1b7NixAysrK52VLN3c3OjduzdJSUnMmjVLb30fHx9JmoQQQqRLphKnmJgY/v77b0qWLEm9evVYtGgRd+/eRVGUNF/x8fH4+/vz888/Y29vT6dOnT6q/WjExyFHjhw0bdqUAwcO8PDhQ06dOkVQUBAdO3ZMdd6QIXXt2pXk5GRWr14NvEqc8uXLR4MGDd7L9dX8/PxISEigUaNGWFpa6pQXKFCAUqVKcenSJWJiYgA0e6BNmjSJtWvXEhUV9c7iMzU11bvIinplTH3PS12mb3uB6Oho1qxZwy+//MK3336Lt7c33t7ePHjwAEVRMrQSoXp+jJeXl04CCWjmPL3+N+zIkSMAdOzYUed8U1PTTO/vlitXLurXr69zvFOnTgAcO3ZMM9dJHUP79u0xNTXVqfPVV19pnQf/+5n37dsXPz8/vfPe0kv93Fq3bq23vHbt2gB6//ZXqlQpQ4nM0aNHgVf76+lbAVXfvaqpVKp0bZQuhBBCQAaH6iUlJTFjxgz+/PNPwsLCUBQFgGLFilG9enWqVatG5cqVyZcvH7ly5SJnzpzExMTw9OlTnj17pllG+eTJk5w6dYrY2FjWrVvH+vXrady4MRMnTqRcuXLv5EbF56dr165s3ryZtWvXEhwcrDmWmty5c3Pv3j3CwsIoXbr0W12/UaNG5M6dm1WrVlGvXj3+/fdf+vfvn+oy9er5FfqWOc8s9YIMCxYsYMGCBame+/TpUwoVKsSXX37Jzz//zN9//02nTp0wMTGhUqVK1K9fnx49emRouf+0FChQQG8yqx7OqO9DtLosLi5O6/jBgwfp2LFjqs8vI0mg+tmNGDGCESNGpHhebGys5t/3798HwMHBQe+5qW26nJqU2rO1tSVHjhw8f/6cZ8+ekTt3bk0MKV1LfVzdGwowePBgreGPVlZW1KhRg6ZNm+Lt7a3VU5kW9XOrVatWqueFh4frHMvoCoyZuVe1fPnyafUiCiGEEKnJUOJUvnx5/vvvPxRFoVChQnTo0IEuXbrg4uKSYh1ra2usra1xcHDA2dmZ9u3bA6++Fd68eTOrV6/mwIED7Nq1i3/++YfFixen+eFWiPRo0qQJOXLkYPny5dy/f5+yZcumOXfI2dmZe/fucfbsWa1J75lhampK+/btmTNnDsOHDwfSTtzUczD0LZWeWepeCGdn5xT3jlJ7/UPklClT6NWrF9u2bWP//v0EBARw8uRJJk6cyJo1a2jTpo1B4tPXk5ORcrXo6Gjat2/P06dPGTlyJB07dsTBwQFLS0tUKhWdO3dmzZo1mi980kP97Nzc3ChRokS6633oXh+6p2ZjY8PBgwcJCAjA19cXPz8/Dh48yL59+/Dx8eHIkSOUKlUqXe2rn1vbtm3Jnj17iufpW0AkvUP00kvfvb6rawkhhPi0ZShxun79OuXKlWPEiBF06NAh3R9o9LGysuLrr7/m66+/5s6dO/z+++8sW7aMW7duZbpNIV5nbm5Ou3btNL0sP/zwQ5p1mjZtys6dO1mzZk26zk9L165dmTNnDnv27MHR0ZFq1aqler6npycWFhacO3eOa9euGWRlPfWcGjc3N53V39JSunRphgwZwpAhQ4iNjWXmzJkMHjyYPn36GCxxMpQjR47w5MkT2rZty5gxY3TKM/O3Rf3svLy8dBZMSIl6LlBISIje8pSOp+XOnTt6j0dGRvL8+XMsLS3JkSMHAHZ2dqleS90j9GZvnkql0iyaAa/mx/3000+sWbOGESNGsH79+nTFWrhwYYKCghg6dKhmCOC7ktl7FUIIITIqQ5nP+vXruXTpEp06dXqrpOlNRYoUYd68edy4cUPvGH4hMuurr74id+7c5MmTR2eSuj5ff/01efPm5cSJE6nu0QOvhgi9uS/Rm2rWrMkXX3xB7ty5tZYlT0muXLk05/Xv35+kpKQUz1UUhRMnTqTZZt26dTE2NmbHjh16N+xNLwsLCwYNGkTBggUJCwvTWtzF1NT0rebEGMKzZ88A9C6+cOPGjRR78VKLXf33aMuWLemOQz1/R1+SkZiYyKZNm9Ld1uuePHnCgQMHdI6vXbsWgBo1amiGPKpj2LBhg973kHpRBvV5KcmXL59mb6bLly9rjqsXYDDkc8ssdZK3Z88enj9/rlOe3nsVQggh0pKh7Kdt27apDnt4W4ULF87Qhp5CpKV27dqEh4cTFhaW4hyR12XPnp2lS5diZGREz549mTp1qk6ykZiYyPLly6lcuXKaiRO8WpktPDycX375JV0x//nnn5QqVYr9+/fj5eVFaGiozjkXLlygQYMGzJ07N832ChUqRI8ePbh9+zadOnXSLCX+uhs3bmh9oN+6davepOzMmTM8evQIKysrTe8GvPrW/9GjR3o/uL4vjo6OAGzevFlrjtPz58/55ptvUkwaU4u9evXq1K9fn4CAAPr27UtkZKTOORcuXGDPnj2a/27Xrh25c+fGz89PK/lWFIVRo0al2HOUHoMGDdLa+Dc4OJixY8cCrxZ1UPPw8KBixYrcvn2bkSNHag1P3LJlC5s3b8bKykormZ87d65mLuDrdu3aBbzaH01N3csTFBSkN85evXqRL18+Jk6cyPz583U26E1MTGTv3r1ayVhmFS9enKZNmxIVFcWPP/6o9XM+fvw4c+bMwdjYWOv5CCGEEJkhG+AK8YYmTZqwceNGunXrxoABAxg7diyurq7kypWLJ0+eEBgYyPPnz8mRIwf58uUz+PWtra3x9/fHy8uLHTt2sHv3bqpUqULRokWJj4/nypUrmg+sv//+e7ranDZtGrdv32bTpk3s2bMHZ2dnihQpwosXL7hy5Qo3btygZcuWmuF3fn5+TJs2jUKFCuHi4oKNjQ3379/nyJEjJCcnM2bMGK1ln1u0aMGMGTOoVKkSNWvWxMLCgtKlSzN48GCDP5+UVKlShfr167Nv3z4cHR01K/X5+fmRJ08eWrZsybZt23TqpRX7ypUradSoEbNnz2b16tU4OztjZ2dHREQEFy9eJDQ0lB9//FGzj5N6ifc2bdrg7e3NnDlzNBvg/vfff3z77bdpLtKhj6urK/Hx8ZQsWRJPT08SEhI4cOAAL1++pGvXrlor2KlUKlatWkXdunX5448/2LJlC87Ozty5c4eAgABMTExYtGiR1hLjc+fOpU+fPpQrV46yZctiYmLCtWvXuHDhAhYWFowcOVJzbtGiRXFycuL06dNUq1aN8uXLY2xsTIsWLWjRogU5cuRg27ZtNG/enF69ejF+/HgqVKhAzpw5efjwIWfPnuX58+ds2bLFIEvbz5s3j9q1a7N8+XL8/f2pUaMGYWFh+Pn5kZSUxOTJk3X2cBJCCCEyynDj7TJJ33LCQmS1Vq1acevWLUaPHk3p0qU5efIk69ev5/Tp0zg5OTFp0iRu3rz5zlaBLFiwIMePH2fNmjU0b96cu3fvsmXLFv755x+MjY3p06cPp0+f1iw6kRZLS0t2797NsmXLqF69OlevXmXjxo2cPn2avHnzMmbMGCZOnKg539vbm4EDB2JnZ8fJkyfZtGkTwcHBNGnShP379zNgwACt9n18fOjXrx+JiYmsW7eORYsWsXPnToM+k/TYtm0bI0aMIG/evOzevZszZ87QsWNHTpw4odVD9rq0Ys+XLx/Hjh1j+vTplCtXjnPnzrFx40YuXrxI8eLFmTRpEoMGDdJqs2XLlhw6dIi6dety+fJldu7cScGCBfH396dmzZqZujdzc3MOHjxI586dOXHiBHv37sXe3p6//vpL7ya0FStW5OzZs3z77bdER0ezceNGgoKC8PLyIiAgQLNQj9q4cePo0aMHKpWKAwcO4OvrS0xMDD179uT8+fM6K+Rt2rQJLy8vbt26xfLly1m0aJHWcEhXV1cuXbrEkCFDsLGxwd/fn61btxISEoK7uztLly7Vu2dUZhQqVIhTp04xcOBATExM2Lx5M2fOnOHLL79k7969Ou9XIYQQIjNUSkaWmErBl19+yYoVKzTDN9Jr48aN9O7dW++StJ+jyMhIbG1tiYiIwMbGJsXzYmNjCQ4OplixYrIqlBCfuNu3b1OsWDHc3d3x8/PL6nA+HyksWx8bH0/wnTsUi4rC4o0hiH7nc7yHwNKQSs+anu3ShBDis5fez99goB6nQ4cO4eTkxIYNG9J1fnR0NN7e3nTo0EEzoVsIIYQQQgghPlQGSZxMTEx4+vQpHTt2pFu3bqluMBkQEICTkxMrVqxAUZR07wsihBBCCCGEEFnFIInT8ePHcXR0RFEUVq5cibOzM8eOHdM6JykpieHDh+Ph4cHt27dRFIWePXsadKNPIYQQQgghhHgXDJI4Va5cmXPnzvHdd9+hKArBwcG4u7vz22+/kZSURFBQENWrV2fChAkkJSWRJ08etm7dyvz588mWLZshQhBCiE9S0aJFURRF5jcJIYQQWcxgq+pZWloyd+5ctm3bRt68eUlKSuKPP/7A2dmZypUrc/bsWRRFoXHjxly6dIkWLVoY6tJCCCGEECKD7kffJyQyBAOsEybEZ8Hg+zg1b96cS5cu0blzZw4ePMiVK1dQFIVs2bIxceJEvv/+e0NfUgghhBBCpNPdqLvMODuDXbdfbXBtl60ANQu7UcuuFtUKVsPGLPWVxYT4XL2TDXDPnTvHv//+i0qlQlEUVCoViYmJREZGav5bCCGEEEK8P09jn7Lg4nzWXltLopIEgImicP/lQzZe38jG6xsxxoiKeSpSq7Ab7Uu3J5dFriyOWogPh0E3wI2Li+OHH36gSZMmPH78GJVKRbdu3bC1tSU+Pp4RI0ZQt25dQkNDDXnZz5Z0rQshxPul+bsrf3/FR+RlwkvmX5xPk40NWXl1FYlKEjViYlgXFkVAtAWzHj6mS0QUReMTSCKZ8+EXmHV+Ft18OxAeI3ttCqFmsMTp4sWLVK5cmVmzZqEoCvb29hw8eJAlS5Zw4cIF3N3dURSFI0eO4OTkxKpVqwx16c+OsbExAAkJCVkciRBCfF4SEhNBUTDO6kCESKdDdw7RbFMjZpybwYukWMrGxTPv8VPmF+tAuT5nyNbvNHV6n2Vo7fH45qzF3rAYRoU/oWBiIrdfPqTXrq+JiIvI6tsQ4oNgkMTpr7/+onr16ly9ehVFUejUqRMXLlygTp06AJok6s8//8TU1JSIiAi+/vprOnXqRESE/DJmlKmpKebm5kREREivkxBCvCeKohDx4gXmCQmYyt9e8RG48uQKg/x+IizuGYUSEvnz8RPW5qlLzW+PQ8PfIXvuVyfaFgKXrtB2EXYDrtO28x4WGtmTJzGJ69Gh9NntzYuEF1l7M0J8AFSKAT55Gxm9yr9sbW2ZNWsWnTt3TvHc8+fP06VLF65evYpKpaJw4cKEhIS8bQifhMjISGxtbYmIiMDGJvWJmZGRkdy7dw8rKytsbW0xNTWVuWNCCGEoL/73IVFRFBISE4l48YLoiAgKvXiBTVKSThW/8zneY4ApcHZOscjD471FIT4AEXERdNjSnHtxz/B48ZLJNi6Y1R8D+cunr4G4KG6saEp3o3CeGxtTJXcFZjdajKWJ5bsNXIj3LCOfvw2WONWpU4fly5dTpEiRNM+Pi4tj8ODBzJo1C3i1Oa7I2A9OfX54eDhxcXHvITohhPiMxMZq/7eiYJ6QQJ74eL1JE0jiJD4ciqLww95v8Ht0ikIJiawr1AzbxpMy3tDLp/y7vDE9zaOJNjLCLX8Vptefj6mxqeGDFiKLvPfEycfHh6FDh2a4x+Off/6he/fu3Lt3721D+CRkNHFSS0hIkORTCCEM6eTJ//37/+c0pTU8TxIn8aFYcmEeU87PxFRRWJGcj/Ld9kJmk53ox5xd1oBe2RKINTKifqHaTPScjonRO1mYWYj37r0nTm/j6dOn5MolS11C5hMnIYQQBubnl/EqkjiJD8Dph6foubcHScBvkQm073YIbAq+XaPPQzm2ojH9rCFBpaKFQ0PGuU/ESGXQxZmFyBIZ+fyd5e94SZqEEEIIId5eeEw4Qw70JwloFv2Cdk3nv33SBJDDnpqdtzEpMhFjRWF7yF42XFn59u0K8ZHJ8sRJCCGEEEK8naTkJH7Z9z1hiS8oGR/PbxV7oypex3AXyF2CLztsZmDUq3nVM89OIzI+0nDtC/ERyFDiNGXKFGJiYt5VLJw+fZo9e/a8s/aFEEIIIT5Fs05P5uSzq1gmJzM5e3my1R5s+IvkL0fHelMpHp/A8+R45gdmYsEJIT5iGUqcBg0aRPHixfnrr7948cJw6/kfP36cJk2aUL16dU6+PiFXCCGEEEKk6vi9Yyy4ugKAMTHGFG+1GN7RFiWmZZoy2OzVCsqrbm0jJFK2lBGfjwwlTrVr1+bRo0f88ssv5M+fny5durBz585Mreh269Ytxo8fT7ly5XBzc2PPnj3Y2NhQuXLlDLclhBBCCPE5SlaSmXxkBADto1/SuNVKsMzx7i6oUuHWeBq1XsaSiMLkw8Pf3bWE+MBkaC1Jf39/NmzYwMiRIwkKCmLt2rWsXbuW7NmzU6lSJapWrYqLiwv58uUjZ86c5MyZk5iYGJ4+fcqzZ8+4fv06p06d4uTJk9y5cwd4tdeAubk5ffv2ZcSIEeTMmfOd3KgQQgghxKdm/82dBMWFY5WczA8uP0JBp3d/0XxlGWznyYlnARx6cpHAe8epXqjGu7+uEFksU8uRK4rChg0bmDZtGsePH/9fY+nsFlZfskCBAnTv3p3evXtjb2+f0TA+ObIcuRBCfCBSWI78g1hyPDWyHPlnJSk5idZrPbiV8Jw+sfB9z7OZ368po1484fdlNVib3RxHi7ysb7cPYyPj93NtIQzonS9HrlKpaN++PQEBAVy9epUxY8bg4eGBhYUFiqKk+ipWrBjdunVj8+bNhIaG8vvvv0vSJIQQQgiRQbuvb+ZWwnNskpL4qsqA95c0AWTPzfdOvbFOSuZ6bBhbr655f9cWIosYdAPcxMREzp07x927dwkLC+Pp06dYWFiQN29e8ubNS8WKFSlY0AD7CXyipMdJCCE+EB9rj1MqPH5yzuoQhAElJifSck0d7iRG8UOcCd/2PA3vu8cnKYEVC6sy0SKJXEbm7Ozgh5WZ1fuNQYi3lGUb4JqYmFC1alVatWrFd999x9ChQ/npp5/o0qULDRo0MHjSFBMTw8iRI3F0dMTCwgI7Ozt69OjBvXv3MtzWs2fP+PHHH3FwcMDc3BwHBwd++uknnj9/nmq96OhoxowZg5OTE1ZWVtja2lKhQgX69u1LdHR0Ju9MCCGEECJlvlfXcCcxipxJSXSpPvj9J00AxqZ0dP8Dh4QEnibHseCkLE8uPm0f7Qa4sbGxeHp6Mm7cOKKjo2nZsiX29vYsWbIEFxcXbt26le62wsPDqVatGtOnT8fExAQvLy+sra2ZNm0a1atX5+nTp3rrBQcH4+TkxOjRo3nx4gWNGzfG3d2dhIQEZs+enWbSJYQQQgiRUQlJCcw9NxOAbxKzka1ixyyLxbRMEwaZOwCw4uYW7kbdzbJYhHjXDJI4GRkZYWJiwsSJEw3RXLqMHz+eEydOUKNGDa5fv866desIDAxk8uTJhIWF0aNHj3S39dNPP3Hjxg1at25NUFAQ69at4/Lly/Tv35/r168zYMAAnTpxcXE0btyYO3fuMHfuXG7evMmGDRvYvn07QUFBXLp0iVy5chnyloUQQohM8/NL+SU+Llv+XcH9pJfkSUyifc3hYJS134O7N5yGa0wsCShMOTwsS2MR4l0yyG+amZkZiqJQu3ZtQzSXpvj4eGbOfPVNy6xZs7Cy+t942gEDBuDk5IS/vz9nzpxJs60HDx6wZs0azMzMmD17NiYm/1uhfdKkSeTNm5eVK1fy+PFjrXrTpk0jKCiIAQMG0KtXL512K1SoQLZs2TJ7i0IIIYQQOuKS4ph3YQ4APRVrLMu3yuKIQJWvDIPt6mGkKOwLP89/T4KyOiQh3gmDJE52dnYAWknHuxQQEEBERAQlSpTAxcVFp7xt27YA+Pr6ptnWnj17SE5Opnbt2uTPn1+rzNzcnObNm5OUlMSuXbu0yhYsWABA//79M3sbQgghhBAZsuHCIh4nx1IgMZF2tUdDOreCedcc6/2OZ2wiAKtkrpP4RBkkcapTpw5Aunp4DOHChQsAVKpUSW+5+vjFixffSVuhoaHcuHGDwoULY29vT0BAAL/88gu9e/dmwoQJ3LhxI/03I4QQQgiRDjGJMSy8vAiA71S5MXNslMURvSZbLroWrgvAjscneR77PGvjEeIdMEji1L9/f4yNjfnrr7+IjIw0RJOpunPnDgCFCxfWW64+HhIS8k7aunLlCvCqp61v3764ubkxceJE5s2bx9ChQylbtiyTJ09O89pxcXFERkZqvYQQQggh9Fl7bi5PlHgKJSTiVWfsB9PbpFap1lDKxsUTh8LGs7OyOhwhDM4giVPlypWZMWMGISEhuLu7c+zYMUM0myL1Mt8pzSHKnj07AFFRUe+krWfPngFw9uxZ5s6dy+jRowkNDeXBgwdMmDABgEGDBrFz585Ur+3j44Otra3mJRsBCyGEEEKflwkvWXx1BQC9TfJjWtIziyPSpcrpQBerkgCsubGFhOSELI5ICMMyyKQk9Qp2pUuX5sKFC9SuXRt7e3ucnJzImTMnxsYp7y2gUqlYtGiRIcJ4b5KTk4FXG/726dOHUaNGacqGDBlCeHg4kyZN4o8//qBp06YptjNs2DCtFfsiIyMleRJCCCGEjh2Xl/NcSaBIQgLN6v2e1eGkqHGNX5hyqDePjeM4cH0rjcq0y+qQhDAYgyROS5cuRfX/3cUqlQpFUbhz5w6hoaGp1lMUJVOJk3oVvZcvX+otf/HiBQDW1tbvpK3XV/Hr3r27Tp3u3bszadIkAgMDiY2NxcLCQm/b5ubmmJubpxmjEEIIIT5fiqKw/upKADqa5sOkaK0sjihlZkVr00HJzhxiWXF+jiRO4pNikMSpSJEimsTpfShSpAgAd+/q32RNfdzBweGdtPX6v4sWLapTR30sKSmJp0+falYdFEIIIYTIqAsPTxOUEIF5cjItKn+f1eGkTqWi/Re9WHD5by7GhXHp0Tkq5tddAVmIj5FBEqfbt28bopl0++KLL4BXc4z0UR93cnJ6J22VKVMGCwsLYmNjefbsGXnz5tWq8/TpU82/X++dEkIIIYTIqA2npwHQKB5sy7fN4mjSlsf5KxqfmYKvhTErAycxocXqrA5JCIPI2q2mM6lWrVrY2tpy8+ZNzp8/r1O+ceNGAJo3b55mW40aNcLIyIgjR47obHIbFxeHr68vxsbGNGnSRHPc3Nychg0bAuCnZ8t1f39/AIoXL46NjU16b0sIIYQQQsvz2OfsefJq65T2Do3A+P3smflWTMzpUuzVZ7B/nl7i0YtHWRyQEIbxThOnxMREwsLCCAsLIzEx0WDtmpmZ0a9fPwD69u2rmYcEMGXKFC5evIi7uzuVK1fWHJ85cyZlypRh2LBhWm0VLFiQTp06ER8fz/fff68V55AhQwgLC6Nr167ky5dPq96QIUMAGDduHNevX9ccDw4O5rfffgOgd+/eBrpjIYQQQnyOtp2fT7wKysbFU7HGgLQrfCDK1xxEpdh4ElWw7tTfWR2OEAZh8K8trly5wty5c9m/fz/Xr19HURTg1aIRpUqVol69evTq1YsKFSq81XV+/fVX9u/fz7FjxyhVqhS1a9cmJCSEwMBA8ubNy+LFi7XODw8PJygoiAcPHui09ffff3PixAk2bdpEmTJlqFKlCv/++y+XL1+mVKlSTJkyRadOzZo1GTlyJGPHjsXFxYVatWphbGxMQEAAUVFRNG7cWGvFPCGEEEKIjEhWktnw3yYA2mUvhsq2UBZHlAFWeemS6wvOvrzKxpA99EoajbmxLIglPm4G63FKTk5m4MCBfPHFF8yaNYtr166RnJyMoigoikJycjJBQUHMnj0bFxcXfv75Z82y3plhYWHBoUOH+O2338iWLRtbt24lJCQEb29vzp49S/HixdPdVp48eTh58iT9+/cnPj6eLVu2EBERwQ8//MDJkyfJlSuX3npjxoxh06ZNVK5cmRMnTuDv70+JEiWYOnUq27dvT3UZdiGEEEKI1Jy8409I8kuyJyfTtOpPWR1OhnnWGk7BxESekciuf1dmdThCvDWVou4SeksdO3Zkw4YNmh6m8uXLU61aNfLnzw/Ao0ePOHXqFJcvX351YZWKtm3bsm7dOkNc/pMQGRmJra0tERERMjdKCCGykp75qwB+53O81zAMytk5xSIPj/cWhciAAVtasS/yBh3ijPi15zkw+vimpi9ZWpspqueUMrFhU+ej73UVZiHSIyOfvw0yVG/t2rWsX78elUrFF198wfz586latarec0+dOkXv3r05d+4cGzduZO3atXTs2NEQYQghhBBCfBIev3jEwYgboIL2pVp/lEkTQOsqPzDn1Gj+S4zk1N0jVLOvk9UhCZFpBvktnD9/PgCOjo4cPXo0xaQJoGrVqhw+fJjSpUujKArz5s0zRAhCCCGEEJ+MzWdmkqQCl7h4HKv3z+pwMs22XGtaJLz6uLn61NQsjkaIt2OQxOnChQuoVCp++eUXsmfPnub52bNn55dfftHUFUIIIYQQryQmJ7Lx9i4A2ueoANn0z7X+KBgZ08GxPQD+kTd4Gvs0jQpCfLgMkjjFx8cD6dtwVk19bkJCgiFCEEIIIYT4JBy5uYtHSjw5kpKoX31QVofz1kpV70f5uAQSVbDr/IKsDkeITDNI4uTg4ABAREREuutERkZq1RVCCCGEELD+/BwAvJKzYV7ENYujMQDLnLS0erXa8bab27M4GCEyzyCJU5s2bVAUhU2bNqW7zsaNG1GpVLRq1coQIQghhBBCfPTuRtwh4MVdANqV6wqfyCp0jZ2/w1RRuJYYybXHl7I6HCEyxSCJ04ABAyhevDjz5s1j/fr1aZ6/ceNG5s2bR7FixRg06OPvghZCCPER8vNL+SVEFtl4agqKCmrEJlCkyrdZHY7B5CjTHI/4V1vWbDs7M4ujESJzDJI42drasn//fipVqkSnTp3w8vJi69at3Lt3j4SEBBITE7l37x5bt26lVatWdOjQgUqVKnHgwAFsbW0NEYIQQgghxEctMTmRrff8AWifrxqYpb3g1kfDyBivgrUA2PkokIQkmeMuPj4G2cfJ2NhY829FUfD19cXX1zfF8xVF4fTp0xQvXjzFc1QqFYmJiYYITwghhBDig3fs5m6ekEiupCTcawzJ6nAMrma1n8m94yhPTODIDV88S7fO6pCEyBCD9DgpiqJ5vfnf+l7pOUd9nhBCCCHE52DHpcUANFayY1qgQhZHY3gm+cvSXGUNwLZLS7I4GiEyziA9TqNGjTJEM0IIIYQQn6Xo+GgORt4AFTQv0Tyrw3lnWji2YenNFRyOvs3TmCfkssyd1SEJkW6SOAkhhBBCZLF9l5YTp4JiCQmUq9Inq8N5Z0pV/o7yVxfzr5kpu84voGuNoVkdkhDpZpChekIIIYQQIvN8r28EoLl5IVRWebM4mnfIMgctrUoCsqeT+PhI4iSEEEIIkYUeRN3jVHwYAM3Kf5XF0bx7TdR7OiVFce3xxawOR4h0k8RJCCGEECIL7Tw7C4CqcYkUrNgxi6N592xLN6Wuek+nM7Knk/h4SOIkhBBCCJFFFEVh+539ADTPVQFMLbI4ovfAyJiWdnUA2Pn4pOzpJD4akjgJIYQQQmSRKw/PEJwcg3lyMvUrfZ/V4bw3Nav9RJ7EJJ6RxJEbKe/9KcSHRBInIYQQQogs4ntuDgCeiUZYFfPI0ljeJ5N8pWluZAPAtv/fv0qID50kTkIIIYQQWSAhOYHdYWcAaFbIHVSqLI7o/Wrh2A6Aw9EhPI15ksXRCJG2/2vvvsOjKBc2Dv9mN40UEkISeg1VSmhSpSiKFFFExINYAAFFUdFjr0fxHD5FUFEpNiyIYkeKDQWkJZQAoXcIECAJCeltd+f7I8KRQ0IoSWaTPPd17QXM7A7PwiaZZ8r7Fss8TiIiIlJ2LVtW8PJevUozRcWzeu8iknAS7HTS9cqHrI5T6hq1H0PLbe+z1duTnza9x/AuT1sdSeS8dMZJRERExAILtswGoL9RGY/QJhansYBPZW4IaAzA4v2LLA4jUjQVJxEREZFSlpabxtK0/QAMDL/J4jTWub71KGymSYwjhcOn9lsdR+S8dKmeiIjI/1i2KcjqCFLO/RYzm1wDwnPzaN5+rNVxLBPSbCCdVz3Lam87i6Nncu81r1kdSaRQOuMkIiIiUsoW7P4OgBt862L4VbU4jYXsHvQLiQBg8dFlmKZpcSCRwqk4iYiIiJSioymxrM87iWGa3NDybqvjWK5323vxcpnsd2WxO36z1XFECqXiJCIiIlKKFkW/C0DHXCfVW9xqcRrrBdTvSU9H/lDsizbOtDiNSOFUnERERERKiWmaLD6yFIABVduAh5e1gdyBYdC/RlcAfjqxFpfpsjiQSMFUnERERERKye74GPa5svBymVzb7j6r47iN7u0fwN/l4jh5bIxdbnUckQKpOImIiIiUksUbZwDQw2EQUL+HxWnch3eN1lzr8gZg8eYPLE4jUjAVJxEREZFS4DJd/HxiLQD9qncBw7A4kXvpV7c3AL8mbSXPlWdxGpFzqTiJiIiIlILNh1cQRx5+Lhc9OjxgdRy307HDeKo6nJwyXKzZs8DqOCLnUHESERERKQWnL0Hr7fLGp0aExWncj0eVevS1BwKweOunFqcROZeKk4iIiEgJc7gc/HoyBoB+da62OI376t9wIAB/pO0jMy/T4jQiZ1NxEhERESlhUfsWk2S4CHY66aTL9ArVqv291M5zkGXA8m1zrY4jchYVJxEREZEStnjLJwBcZ1TGM7ihxWncl+FXlf7eNQBYvOsri9OInE3FSURERKQEZTuy+T11NwADGva3OI37G9BsKAArs45xKivZ4jQi/1Wmi1NWVhYvvPACTZo0wcfHh5o1azJq1CiOHj160dtKTk7m4Ycfpl69enh7e1OvXj0mTJjAqVOnLuj1ubm5XHHFFRiGgYeHx0X//SIiIlI+/bljHhkG1HA4iGg/zuo4bq9hxF00zXXgMOC3ze9bHUfkjDJbnLKzs7nmmmuYOHEi6enp3HTTTdSpU4fZs2fTtm1b9u/ff8HbSkxMpGPHjkybNg0PDw8GDRpEQEAAb731Fp06dSIpKanIbfznP/9h586dl/OWREREpBz6acc8APp5hmHzD7U4TRng5Ut//3AAftq/0OIwIv9VZovTK6+8QmRkJF26dGH37t3MmzePqKgopkyZQkJCAqNGjbrgbU2YMIG9e/cyePBgdu3axbx589i6dSsPPvggu3fv5tFHHz3v63fs2MGkSZMYM2bM5b4tERERKUfSclL5M/MwAP2b3GJxmrKjX+u7AVifm8Tx1CMWpxHJVyaLU25uLu+88w4A7777Lv7+/mfWPfroo7Ru3Zrly5ezYcOGIrd17NgxvvjiC7y8vJg+ffpZl9lNnjyZ0NBQ5syZQ3x8fIGvN02TsWPHEhQUxP/93/9d5jsTERGR8uT3mNnkGhCe56BJmxFWxykzajS7mXa5TkzD4Ofo6VbHEQHKaHFatWoVKSkphIeH07Zt23PWDxkyBIAFC4qedfrnn3/G5XLRvXt3qlWrdtY6b29vBg4ciNPpZPHixQW+ftasWaxcuZIpU6ZQpUqVS3g3IiJSYpYtK/whUgoW7/0BgH6+dTF8KlsbpiyxezAguBUAiw//bnEYkXxlsjht3rwZgHbt2hW4/vTymJiYEt3WsWPHeOqpp+jduzd33HFH0cFFRESkwkjMiCcqJwGA/ldoP+Fi9Wl7Hx6myQ5XJvsTtlodR4QyOfxbbGwsALVr1y5w/enlhw4dKtFtjR8/nuzsbKZPv7RTyDk5OeTk5Jz5c2pq6iVtR+RyZOc5OZCYwb6EdI4mZ+EyC36ev7edhqH+hIf6U62yN4ZhlG5QEZEy5pfoGbgMg1a5Tuq0vM3qOGVOUINedPvDYLknLIqezoPX65I9sVaZLE7p6ekA+Pr6Frjez88PgLS0tBLb1vz58/nuu+948cUXadKkyYUF/x+TJk3ipZdeuqTXilyKE6nZLN+VwK4TaexLSGdfQjpHkrMwCylLhfHzshMell+iwkP9aFe3Clc2CMbTXiZPYouIlIifDv0KQL/ApuDhZXGaMsgw6F+tM8uTIll8PJLxpqmDdmKpMlmcrJaWlsb48eNp0qQJTz/99CVv5+mnnz5rxL7U1FTq1KlTHBFFgPzBS3afSOe37cf5bfsJNh9JKfB5gZU8aRTmT91gXzxsBf9QSs7MY39COoeSMsnIdRJzJIWYv20vsJInVzcN5borqtOzaSj+3vr2IiIV15FT+9nsTMUwTfq2vsfqOGVWrw4PUunn1Ryx5RFzeAURdXtYHUkqsDK5Z3N6FL3MzMwC12dkZAAQEBBQItt65plnOHLkCEuWLMHb2/vCg/8Pb2/vy3q9SGGiY5NZFHOM37afIDbp7M92mzpBtK9X5czZokZh/gT7eV3wUbxch4vYpAz2xudf3rf7RBor9iSSlJHLD5vi+GFTHF52G13Cq3LdFdUYGFGTwEqeJfE2RUTc1uIN7wLQMc8ktEk/i9OUXb41WnON6cMiclm8+T0VJ7FUmSxOdevWBeDIkYLH9T+9vF69eiWyrQULFuDj48PEiROZOHHiOa9xOp306tULgDfffJM2bdoUmUPkcjldJr9sO877K/azMfbUmeVeHja6Nwrh2iuq0bt5GGEBPpf193h52GgUFkCjsP8eTHC6TKJjk/lt+wl+236CA4kZLN+dwPLdCUxavIOhV9ZhVLcG1Aku+JJYEZHyxDRNFh1dDsCAkHZgs1ucqGzrX6c3i+J+4ueTW3jc5cDDViZ3X6UcKJOfvIiICACio6MLXH96eevWrUtsW9nZ2SxfvrzQ7Z5ed+rUqSIziFyOjBwHX68/zEerDp45u+RltzGgdQ2ub1GdHk1C8PUq2S91u83gyvrBXFk/mGf6N2dvfDq/bT/BDxuPsutEGrNXHeST1Qfp16oGY7o3pE2doBLNIyJipZ3H1rHfzMHLZXJt+wesjlPmdblyPFW+W0iSHaL2/Ei3poOtjiQVVJksTt26dSMwMJB9+/axadOmc87ofPPNNwAMHDiwyG317dsXm83GihUriI+PJyws7My6nJwcFixYgN1up3///meWHzx4sNDtGYaB3W7H4XBc3JsSuUiJ6Tl8tPIAn0fFkpKVB0AVX0/u7FyPO7vUJzTAustAG4X50yjMn/t6NuTPPYl8sGI/K/YksijmGItijtGxfjBjezSkd/Mw3egrIuXOwr8mbO3l9CCgTieL05R9nkF16WMPYh5pLN76qYqTWKZMDoHl5eXF+PHjAXjggQfO3IcEMHXqVGJiYujZsyft27c/s/ydd96hWbNm5wzmUKNGDYYNG0Zubi7333//WYXniSeeICEhgTvuuOOsQiVipVyHi/f/3M/Vk5cxfdk+UrLyaBDix8RBLVn9VG8e7dPU0tL0d4Zh0LNJKJ/d04mfHu7OLe1q42k3WHswidGfrucf70WyPU7D8ItI+eF0OfkpcRMAA2r3BB0cKhYDGuYfDF+Sto+svILvSxcpaWXyjBPAc889x5IlS1i9ejWNGzeme/fuHDp0iKioKEJDQ/noo4/Oen5iYiK7du3i2LFj52zrzTffJDIykm+//ZZmzZrRoUMHtm3bxtatW2ncuDFTp04trbclcl5Ld8YzceF29ifmHyxoVSuQB69pxLXNq2ErZDQ8d9G8RmWmDI3gib5Nmb3qILNXHSDqQBI3vL2CYR3r8s8+TQn203C9IlK2rdu3mATDSWWnk+4dH7Y6TrnRpv191Nr9KUc9PFi+7XP6thljdSSpgMrkGScAHx8fli5dyvPPP4+vry8//PADhw4dYsSIEURHR9OwYcML3lZISAhr167lwQcfJDc3l++//56UlBQeeugh1q5dS3BwcAm+E5Gi7UtIZ8TstYz8eB37EzMI8ffmtSGtmf9AN/q0qO72penvqlX24al+zfjjsV4MaF0DlwmfR8XSa/JSZq86QJ7TZXVEEZFLtnDLbACutwXiGXzh+yJyfoZvFfp51wRg8a6vLU4jFZVhmhc79aWUlNTUVAIDA0lJSaFy5cpWxxE3kJHj4I3fdvPx6oM4XCaedoNRVzVg/NWNCPApH0N8R+0/yUsLtrP9WP4le43D/HnpxhZ0bRRicTIpF5Ytu7SXbQoq1hhu4RJGeP1rgFi5QNl5WfT6vCMZBnzc4B+07/Gs1ZHKlT3r32fwtml4mCbLbltBYKUqVkeScuBi9r/L7BknkfJuw6Ek+k9bwQcrD+BwmfRuFsavj/Tk6X7Ny01pAujUsCoLHryK/9zcimA/L/bEp3P7B1H868dtZOU6rY4nInLBlm2bQ4YBNR1O2nYYZ3WccqdxxJ00yXPiMAx+2zTL6jhSAak4ibiZXIeLyb/s5NaZazh0MpOagT58PPJKPhxxJQ1C/KyOVyLsNoPbO9Vl6WO9uKNz/txqH68+yIC3VxBz5JS14URELtCinV8B0N+7BjZfXeZf7Dx96B/QCIBF+xdZHEYqIhUnETey+0QaN09fxbtL9+EyYXC7Wvz8SA96Na0YozoGVvLklUGt+GRUR8ICvNmfkMHg6at5a8keHLr3SUTc2Kmsk6zMzh+AakDzYRanKb/6tRoJwIa8ZI6nxFqcRiqaMjuqnkh54nKZfLTqAK/9sotch4sqvp785+ZW9GtVw+polujZJJRfH+nBsz9sZVHMMd5Yspulu+KZOjSChqH+VscTKZs2bSp8XSH3P53vFjHd/3S2X6Nn4DAMmuU5aRRxp9Vxyq2azW6k3arniPay8XP0u4y4+lWrI0kFojNOIhZLSMvhzo+ieGXRDnIdLq5uGsovE3pU2NJ0WpCvF+8Ma8tb/2hDgI8Hmw6fov+0FXy17rDV0UREzrHowE8ADKjcFDzcYy69cslmZ0BIGwAWHl5qbRapcFScRCwUHZvMwLdXsmrvSSp52vn3zS35aMSVhFX2sTqaWzAMg5va1OKXCT3o1qgq2Xkunvg2hqe/20KOQwNHiIh7OJq8j2hnKoZp0q/NaKvjlHvXtxuHp2myy8xiZ9xaq+NIBaLiJGIB0zSZE3mI22at4XhqNuGhfix4sBvDO9XD0Czz56gZVInPRnXisT5NMAz4Ym0sQ2dFEncqy+poIiIsXv82AB0dBtUa9bM4TfkXWLcbvZz5o8vO3/COxWmkIlFxEill2XlOnvgmhud+2Eqe06Rfy+rMH38VjcICrI7m1mw2g/HXNObjkR0JrOTJ5sOnGPj2SlbvS7Q6mohUYKZpsjBuJQADwjqATbtWJc4wuKnOtQAsPrmJPFeexYGkotBXt0gpOpyUyZCZq/l6wxFsBjzVrxnTh7fD31vjtFyonk1CWfjgVVxRozInM3K544Mo3vtzH5rLW0SssPNoFPvJwctlcm378VbHqTC6dn6EYKeTJMNk5fZ5VseRCkLFSaSUrNyTyMB3VrL1aCrBfl58dk8n7usZrkvzLkGdYF++u78rg9vVwmXCfxbvZPzcjWTmOqyOJiIVzKKNMwDoaXoRUKu9xWkqDs/KNbnBM3+qjh+3fWZxGqkoVJxESsEXa2O5e/ZaTmXm0bp2IAsevIpujUKsjlWm+XjamXJrBBNvaoGn3WDRlmPcNiuS+NRsq6OJSAXhdDn56eQmAAbUvtraMBXQjc1vB2BZ1lFOZZ20OI1UBCpOIiXI5TL5v5928vR3W3C6TAa1qclX93ahVlAlq6OVC4ZhcGeX+nwxpjPBfl5sOZrCoHdXsfN4qtXRRKQCWLXza+INF0FOJ92vfMjqOBVO0zYjaJ7nxGEYLF43zeo4UgGoOImUkOw8Jw9+sZGZy/cB8HDvxrxxWxt8PO0WJyt/OtQP5vv7u9Iw1I+4lGyGzFjD8t0JVscSkXLu+y2zAbjBIwSvKvUsTlMBeXhxY1BLAOYf+tniMFIRqDiJlIDE9ByGvR/Joi3H8LQbTB0awSPXNdH9TCWoXlU/vhvXlU4NgknPcTDq43XMjYq1OpaIlFNJGfEsyzoKwM0t7rQ4TcXVv8N4PEyT7a5M9hzfYHUcKedUnESK2d74NG6evoqNsacIrOTJZ/d0YnC72lbHqhCCfL349J6ODG5bC6fL5JnvtzDppx24XBpxT+S8Nm0q+CGFWrB2Kg7DoGWeiyZtRlgdp8IKrted7n/N6fTjX/NpiZQUFSeRYhS1/ySDp6/mcFIWdf8a+a1zw6pWx6pQvD3sTBkawYRrGwMwa/l+xn8RTXae0+JkIlJemKbJ97FLALi5ahuwe1obqCIzDG6qcw0ACxM34nBpdFUpOSpOIsXkl23HufOjtaRmO2hXN4jv7+9KeKi/1bEqJMMwmHBtE964LQJPu8HiLccZOXsdadmaJFFELt+W2GXsIwdvl4t+nR6zOk6F16PzowQ5nSQaLlbv+NrqOFKOqTiJFIN562IZN2cDuQ4X1zavxtwxnanq7211rArv5ra1+WRkR/y9PViz/yT/eC+ShLQcq2OJSBn33YZ3ALgOPwJqtrU4jXhWrsUAz1AAftz6icVppDxTcRK5DKZp8u7SvTz57RZcJgztUJuZd7TTyHlupGujEL4c25mqfl5si0tlyMzVxJ7MtDqWiJRRmbkZ/Jy6G4DB4TdZnEZOu7HZPwD4I+sIKVnJFqeR8krFSeQSuVwmLy/czuRfdgEwrlc4r97SGg+7vqzcTctagXwzriu1q1Ti0MlMbpm5mu1xmutJRC7ebxtnkmFAHYeTDh01d5O7aN5mFI3znOQZBr+s15xOUjK0hydyCXIdLh75ahOzVx0E4PkbruDJvs003LgbaxCSP1x5s+oBJKTlcNusNUTt10zzInJxvt/zHQCD/MMxfAIsTiOnGZ7e3BTUAoD5B3+yOI2UVypOIhcpM9fBmE/XM39THB42gzdva8M9VzWwOpZcgLDKPsy7twsd6weTluPgzo/W8tv2E1bHEpEy4lDCNjY4U7GZJje2e8DqOPI/BrR/ALtpEuPKYP+JTVbHkXJIxUnkIqRm53HXh2tZvjuBSp523r+7A4Pa1rI6llyEwEqefHpPR667ohq5Dhf3zdnADxuPWh1LRMqA79dOAaCr0071RtdbnEb+V0j9nnRzegDww7o3rQ0j5ZKKk8gFOpmew7D3Ill/KJkAHw/mjO7I1U3DrI4ll8DH086M4e24pV1tnC6TR77axJzIQ1bHEhE35nA5+DFhAwCDa18DujTb/RgGt9S9FoDvE6PJcWRbHEjKGxUnkQtwPCWbobPWsC0ulap+Xnw5tjPt6wVbHUsug4fdxuQhrbm7Sz1ME577YSszlu2zOpaIuKlV274gwXBRxemkV5fHrY4jhejR9UmqO5ycMkx+2TDd6jhSzqg4iRTh0MkMhsxczb6EDGoE+vDVfV1oUTPQ6lhSDGw2g3/d2ILxVzcC4NWfdzL5l52YpmlxMhFxN99ty58f6AavanhWrmlxGimMh18ot/qHAzBv91cWp5HyRsVJ5Dx2n0jj1plrOJKcRf2qvnx9XxfCQ/2tjiXFyDAMHru+KU/1awbAu0v38a8ft+FyqTyJSL7EtDj+zD4OwM0t77Y4jRRlcKfH8fhrkIhtsSusjiPliIqTSCFijpxi6Kw1xKfl0LRaAF/d14XaVXytjiUl5L6e4Uwc1BLDgE/WHOKxbzbjcLqsjiUibmDh2ik4DINWeS4at7rD6jhShJD6PbjOrATAV+umWpxGyhMVJ5ECrDuYxO3vR3EqM4+IOkHMu7czYQE+VseSEnZn53q8MbQNdpvBd9FHefCLjeQ6VJ5EKjKny8m8I38AcHPolWD3sDiRXIh/NBkKwOK0PaRkJlmcRsoLFSeR/7FiTwJ3fhhFeo6DTg2C+Xx0J4J8vayOJaVkUNtazBjeDi+7jZ+2HmfsZ+vJznNaHUtELPLnts85goMAp4sB3Z6xOo5coLYdH6RJnotsw2B+5KtWx5FyQsVJ5G9+3Xacez5eT3aei15NQ/lkVEf8vXV0saLp06I6H47ogI+njWW7Ehgxey3pOQ6rY4m4lWXLCn+UJ5/HvA/AEO/q+IY0sTiNXCjD04fbQjsA8NXhX3GZunpALp+Kk8hf5m86yrjPo8l1uujXsjrv3dkBH0+71bHEIt0bh/LpqE74e3sQuT+JOz6IIiUzz+pYIlKKdsetI8pxCptp8o8rH7U6jlykG7o9g7/LxSEcRO741uo4Ug6oOIkA89bFMmHeJpwuk8Fta/H2sLZ4eejLo6Lr2CCYuWM6EeTryabDp/jH+5EkpudYHUtESsncNZMA6O3yombj/hankYvlG9KUGz1CAJi3eZbFaaQ80J6hVHgfrTzAk99uwTRheKe6vH5rBB52fWlIvta1g5g3tgsh/t7sOJbKbbPWcDxFs9GLlHfJ6SdYmLYbgOFNh4FhWJxILsVtEWMBWJZznGNJey1OI2Wd9g6lwjJNk3f+2MPLC7cDMLZHQ14Z1BKbTT8c5WxNqwfw9X1dqBnow76EDG6dtZrYk5lWxxKREvTt6v+QYxg0z3PRruNDVseRS9Sw5TA6OQxchsHXf51BFLlUKk5SIZmmyf/9tJPXf80/mjjh2sY83a8Zho4oSiEahPjx1X1dqFfVl8NJWdw6azV7TqRZHUukZG3aVPijHMtz5vJF3DIAhte4CsPT29pAculsNm6rcx0A3yasI8+Ra3EgKcvKdHHKysrihRdeoEmTJvj4+FCzZk1GjRrF0aNHL3pbycnJPPzww9SrVw9vb2/q1avHhAkTOHXq1DnPzcvL49dff2X8+PG0bNkSX19fKlWqRPPmzXnsscdISEgohncnJcXlMnnuh63M+nM/AM8NaM6Ea5uoNEmRalfx5et7u9C0WgAnUnMYOmsNW46kWB1LRIrZ7xvfI95wEex00u+qF6yOI5epV7enCHM4STJMlkTPsDqOlGFltjhlZ2dzzTXXMHHiRNLT07npppuoU6cOs2fPpm3btuzfv/+Ct5WYmEjHjh2ZNm0aHh4eDBo0iICAAN566y06depEUtLZE6ctX76c66+/nnfffZeMjAz69evHddddR2JiIlOmTKF169bs2rWruN+yFIM8p4tHv9rE51GxGAZMGtyK0d0bWh1LypCwyj58ObYzEbUDSc7M4/b3I1l7QJMripQnc3bMAeA23wZ4BdayOI1cLk+/UIb4hwPw5a4vLU4jZVmZLU6vvPIKkZGRdOnShd27dzNv3jyioqKYMmUKCQkJjBo16oK3NWHCBPbu3cvgwYPZtWsX8+bNY+vWrTz44IPs3r2bRx89ewhSm83G0KFDiYqK4sCBA3z77bf8+OOP7N27l+uvv57jx48zcuTI4n7Lcpmy85zc/3k0P2yKw8Nm8NY/2jKsY12rY0kZVMXPizmjO9GxQTBpOQ7u+iiK5bt1plmkPNh68Hc2uzLwME2Gdnna6jhSTG7p+Bgepkm0K50dh1daHUfKKMM0TdPqEBcrNzeXsLAwUlJSiI6Opm3btmetj4iIICYmhvXr19O+ffvzbuvYsWPUrl0bDw8PYmNjqVat2pl1OTk51KlTh6SkJOLi4ggLCysyW1xcHLVq5R+dOnjwIPXq1bvg95WamkpgYCApKSlUrlz5gl8nRcvIcTD2s/Ws2nsSLw8bM4a3o3fzakW/UOQ8snKdjPt8A8t2JeBpN3h7WFv6tqxhdSz5u0ucjXXZpqBijVEutWlT6KpevUotRbF76qv+LMo6zEDTj/+MiLQ6jhSjp2Z3ZJEti+u8azD1H79aHUfcxMXsf5fJM06rVq0iJSWF8PDwc0oTwJAhQwBYsGBBkdv6+eefcblcdO/e/azSBODt7c3AgQNxOp0sXrz4grLVrFmT0NBQIL9EifVSMvO488MoVu09iZ+XnY9HXqnSJMWikped9+7swIBWNchzmtz/eTTfbDhidSwRuUQJKYf4JTMWgOGtLvzKFSkbRrd7EIAl2XHsPxZtcRopi8pkcdq8eTMA7dq1K3D96eUxMTGlui2AU6dOkZycDED16tUv6DVSck6kZjN01hqiY08RWMmTOaM70TU8xOpYUo54ediYNqwtQzvUxmXCY19v5oMVF36PpYi4j3krJ+IwDNo6oEXbe6yOI8WsUes76O30xDQMPlipQT/k4pXJ4hQbm380qHbt2gWuP7380KFDpbotgHfffReHw0GrVq1o0KDBeZ+bk5NDamrqWQ8pPgcSM7hlxmp2nUgjLMCbefd2pm3dKlbHknLIbjP4v8GtGX1V/tf8K4t28OrPOymDV0KLVFg5eVl8HR8FwPC6fcBmtziRFDvDYEzr/AlxF2cc5HDCdosDSVnjYXWAS5Geng6Ar69vgev9/PwASEsreo6V4tzWxo0beeWVVwB49dVXi3z+pEmTeOmll4p8nly8rUdTGDF7LYnpudSv6stn93SiTnDB/8cixcFmM3h2QHOq+nvz6s87mbFsH8kZubwyqCUe9jJ5jKrc031Ml+l8czn1alNaKYrNgsjJJNmgusNF727PWh1HSkiLdmPptnkmqzycfPTnc7x4y3dWR5IyRD/Ni8mJEycYPHgw2dnZTJgwgX79+hX5mqeffpqUlJQzj8OHD5dC0vJvzb6T/OO9SBLTc2lRszJf39dVpUlKhWEYjOsVzqu3tMJmwJfrDvPA3Giy85xWRxOR88h15DBr37cA3F2lNR6+wRYnkhJjszH2irsAmJ+2mxPJurRaLlyZLE7+/v4AZGZmFrg+IyMDgICAgFLZVlpaGv379+fgwYPceuutTJkypci/F/IHn6hcufJZD7k8v2w7zt2z15Ke46BTg2C+GNuZ0ADN+C6l67Yr6zJ9eHu8PGz8su0EI2evIy07z+pYIlKIb1a+zHHDRZjDya29X7c6jpSwdp0epr3DIM8w+Hi5zi7KhSuTxalu3fy5d44cKXj0qtPLL2Qo8MvdVnZ2NjfeeCPR0dH06dOHOXPmYLOVyX/WMm/euljGzdlArsNFnyuq8cmojlT28bQ6llRQfVtW55ORHfH39mDN/vyzoAlpOVbHEpH/kZ2byQcH8kfhHRtyJd6a8Lb8s9kZ2/hWAL45tYWTaUctDiRlRZncw4+IiAAgOrrgoSRPL2/dunWJbsvhcHDbbbexbNkyunbtynfffYeXl1fRb0CKlWmavPHbbp78dgsuE4Z2qM304e3w8dSNvWKtLuFV+XJsZ6r6ebEtLpXBM1axLyHd6lgi8jfzVrxAgs2kpsPF4N6vWR1HSkmXrk/S0mGSbRjM0VknuUBlsjh169aNwMBA9u3bx6YCbk795ptvABg4cGCR2+rbty82m40VK1YQHx9/1rqcnBwWLFiA3W6nf//+Z60zTZORI0fy448/0qZNGxYtWnRmIAkpPXlOF49/E8Nbv+8B4P5e4bx6S2vdjC9uo2WtQL4Z15V6VX05nJTFLTNWs/5gktWxRErUsmWFP9xJZk4aH8X+AsC9YV3x9NccfxWF4eHFmAb5+4lfJKwnJSPR4kRSFpTJvUsvLy/Gjx8PwAMPPHDmPiSAqVOnEhMTQ8+ePWnfvv2Z5e+88w7NmjXj6aefPmtbNWrUYNiwYeTm5nL//ffjcDjOrHviiSdISEjgjjvuICws7KzXTZgwgTlz5tCsWTN+/fVXgoKCSuCdyvmkZecx6uN1fLPhCDYD/nNzK57o2wzDMKyOJnKWBiF+fDuuKxF1gjiVmcftH0SxeMsxq2OJVHhzlz9Lkg3qOlwM7F30aLhSvvS66nkaO1xk2Ay++PM5q+NIGVAmhyMHeO6551iyZAmrV6+mcePGdO/enUOHDhEVFUVoaCgfffTRWc9PTExk165dHDt27s7Km2++SWRkJN9++y3NmjWjQ4cObNu2ja1bt9K4cWOmTp161vPnz5/PtGnTAKhTpw6PP/54gRmfeuopmjVrVkzvWP7ueEo2Iz9ex45jqVTytPPu8LZc00xHCsV9hfh78+WYzjz4xUaW7DjBA3OjebZ/c0Z3b2h1NJEKKS0ridlHl4IN7qvZC0+NpFfh2Lx8GVO7D08cX8Kc46u4KzsVXx8N1CWFK5NnnAB8fHxYunQpzz//PL6+vvzwww8cOnSIESNGEB0dTcOGF74zEhISwtq1a3nwwQfJzc3l+++/JyUlhYceeoi1a9cSHHz2N9Pk5OQzv//tt9/45JNPCnwcP3682N6v/Neu42ncPH0VO46lEuKfP7GtSpOUBZW87My6sz13damHaeZPlPvSgm04XZooV6S0zVn2FKk2aOhw0f/qSVbHEYv06fkS9RwuUmzw1YoXrI4jbs4wNbW920hNTSUwMJCUlBQNTV6IVXsTuW/OBtKyHTQM9eOTkR01R5OUOaZp8t6f+5n0004A+raozhu3taGSlwY0KXbnualGE+CWoDZtCl3Vq1eppShUSkY8fb+6hnSbweQafejb58KmEZHy6fvF9/FCwiqCXbDwtmUE+Fa1OpKUoovZ/y6zZ5yk4vlszUHu+mgtadkOrqxfhe/GaWJbKZsMw+DenuFMG9YWL7uNn7cdZ8jM1cSdyrI6mkiF8MnSJ0m3GTRxmPTpNdHqOGKxG3r9h/oOF0k2mPnbg1bHETem4iRuL8/p4tnvt/D8/PxLmm5uW4vP7ulEkK+Gfpey7caImnw+ptOZ4cpvfGcV0bHJRb9QRC5ZUupR5iSuA+D++gOxeekAXEXn6RvMk42GAjA3OYb9cessTiTuSsVJ3FpyRi53fhjF51GxGAY81a8ZU4dGaI4mKTeurB/M/PHdaFY9gMT0HP4xK5JvNxQ8IbeIXL6Plj5BlmFwhQOu6fEvq+OIm7iq+/P0dHriMAxeW/pPdCeLFKTMjqon5d/uE2mM/mQ9sUmZ+HnZmTasLb2baxAIKX9qV/Hl23FdeWTeJn7dfoJ/fr2Z3SfSeKJvM+w2Da9fJHebHEjc1pGEbXyZvBkMg/GNhmB4elsdSdyFzcYTV01k9eonWeVIZvmmD+nVdrTVqcTN6IyTuKU/dp5g8PTVxCZlUie4Et/d302lSco1P28PZt7RngevaQTArD/3M+bT9aRl51mcTKR8ME2TV34dR45h0NFh46puz1gdSdxM3SYDuNOnDgCvbX6b3LxsixOJu1FxErficpm8tWQP93yynvQcB50aBDP/gatoWj3A6mgiJc5mM/hnn6ZMG9YWbw8bf+yM56Z3V7H7RJrV0UTKvJ/WvcUqRzJeLpPnu72E4eFpdSRxQ2P7TCfU6eKw4eKzPx6zOo64GRUncRtJGbmM+HgdbyzZjWnC7Z3q8tk9nQj20yAQUrHcGFGTr+/rQvXKPuxPyOCmd1bx/Ubd9yRlyKZNhT8skJKRwKvbPgRgjF849ZsNsiSHuD+/4AZMqHkNAO/FLSMhaa/FicSdqDiJW4iOTWbAtBX8uTsBH08br98awX9uboWXhz6iUjG1rh3EooeuonvjELLynDwybzPPfL+F7Dyn1dFEypw3fhpDkg0aOFyM6v++1XHEzd3QezKtHQaZNoM3NTy5/I32SsVSpmkye9UBbpu1hmMp2TQM8eOHB7oxpH1tq6OJWK6qvzcfj+zIw70bYxgwNyqWITNXczgp0+poImXGhl3f823GPgBebDEaL/8wixOJu7N5+vB0u0cA+DH7CJt3/WhxInEXKk5imbTsPMbP3chLC7aT5zQZ0KrGX8Myn3/WZpGKxG4zeOS6Jnw8siNVfD3ZejSVAdNWsGT7Caujibi93LxsXl7zMgC3GEG07zTB2kBSZrRsO5JBtioA/F/kS7hcOtsvKk5ikU2HT3HjO6tYtOUYHjaDFwdewTu3tyXARzfrihSkZ5NQFj3UnbZ1g0jNdjD60/W8vGC7Lt0TOY+PljzMfsNBsNPFI31ngaHh/eXCPdz7TfxcLraSy3d/vmh1HHEDKk5SqhxOF28u2c0tM1ZzIDGDGoE+zLu3CyO7NcDQDzSR86oZVIl5Y7swomt9AD5adYAb31nJ9rhUa4OJuKGDcRt4/8QqAJ6s1YfAsCssTiRlTUjNdowLbgfAawd+4MCRSIsTidVUnKTUHEjMYMjMNby5ZA9Ol8kNrWvw88M9aF+vitXRRMoMLw8b/7qxBR+N6ECIvxe7T6Qz6N1VzFq+D6dLM92LQP79sxN/f5Bcw6Cry5N+1062OpKUUXf0m0UnpwdZNoPHltxPTm6G1ZHEQipOUuJM02RuVCz931rBpsOnCPDx4M3b2vD2sLYE+urSPJFLcU2zavw8oQfXNq9GrtPFpJ92cvv7kRxJ1sARIvNX/Zu1rjR8XC6e6/Eqht3D6khSRtm9fJl0/XsEO13sNvKYvOAOqyOJhQzTNHWI0k2kpqYSGBhISkoKlSuXjwESEtNzeOrbGJbsiAegc8NgpgxtQ62gShYnEykfTNNk3rrDvLxwO5m5TgK8PXh5UAsGtalVYS5/XfbmpkLX9WpzqvDXbQoq9ixyAdq0KXBxr17Fs/k9h1cyfMl9ZNkMJgRcwT2D5xXPhqVCW7ny/xi373MApja/h+s6TrA2kBSbi9n/1hknKRGmafLVusP0nrKcJTvi8bLbeKZ/M+aO7qzSJFKMDMPgHx3rsvivgSPSchw8Mm8zoz5ep7NPUuGkZJzg4SUPkGUz6OS0c7fmbJJictVVTzHSuw4AL277gKMnYixOJFbQGSc3Ul7OOO1PSOeZ77cQuT8JgOY1KjN1aATNa5Td9yRSFjicLqYv28c7f+wl1+mikqedf/Zpwoiu9fGwl9/jZOc74yRuqITOODmdDh74ohernCnUdLr4sv8XVKne+vI2KvI3edmpjJjbnRi7i9Z48/HwVXh6eFsdSy6TzjiJJXIdLqb9voe+b60gcn8SPp75Z5kWjO+m0iRSCjzsNh7q3ZjFD3enY4NgsvKcvLJoB4Omr2LLkRSr44mUqLcXjWKVMwUfl4u3Ojyj0iTFztOnMq9dM40Al4sYcnh70UirI0kpU3GSYrHuYBL9p61g6m+7yXW46NkklN8e6cnYHuHl+ki3iDtqFObPl2M68+otrajs48HWo6nc9O5KJi7cTkaOw+p4IsXul6g3+DB5IwAv1bqeZq2HW5xIyqta9Xvycv2bAZh9agsrN35ocSIpTbpUz42UxUv14k5lMfmXXXy/8SgAIf5ePH/DFdwYUbPC3Jgu4s4S0nKYuHA7P26OA6B6ZR8ev74pN7ethc1Wxr5Gly0reLEGeShbivlSvd2HlnHHH+PJshnc7VWLx/7xkya6lZJlmvx77rV86Ygn2GUyd8CX1ApraXUquUS6VE9KXHqOg9d/2cXVry87U5pu61CHJY/25KYKNJqXiLsLDfBm2rC2fDzySuoEV+J4ajb//HozN767kjX7TlodT+SypKTF8fAfD5FlM+js8mTC4G9UmqTkGQaPDfqSZk5Ishncs+h2jifutDqVlAIVJ7koDqeLuVGx9Jq8jHeW7iXH4aJTg2AWjL+KV4e0JsjXy+qIIlKAXk3D+O2RnjzVrxkB3vmX7w17P5Ixn65nf0K61fFELprT6eCJH4ZwxGZSy+li8g2f4+Htb3UsqSC8/UJ5t8+H1HGaHLWZjF5wGwnJ+6yOJSVMxUkuiGmaLNsVz4BpK3nm+y0kpudQv6ovs+5sz5djO9OqdqDVEUWkCD6edu7rGc6yx3txZ+d62G0Gv20/QZ83/uRfP27jZHqO1RFFLkieI4dnvx7AalcaPi6Ttzq9SFBoc6tjSQUTVrsjH/aeQU2ni0M2F2PmDyEp5bDVsaQE6R4nN+KO9zjlF6YE3vp9D5sOnwIgsJInD/duzB2d6+Hloe4tUlbtjU/jP4t38sfO/AmqK3naubNLPcZ0b0hogBsOsat7nMqHy7zHKSc3g8e/HsBSx0k8TJPJ9QZx7dWvFFs8kYt1eP8SRix7mHi7jaamJx/esojAgBpWx5ILdDH73ypObsSdipNpmizZEc+03/ew5Wj+MMbeHjbu7FyP8dc00iV5IuXIyj2JvPrzzjNf6z6eNm7vWI97ezakWmUfi9P9jYpT+XAZxSkzK5mHvulPlCsdL9NkasOh9OzxQrHGE7kUB3cvYsTKJzhpt9ECb94f8jMBfiFWx5ILoOJURrlDcXK5TH7dfpxpv+9l+7FU4L9HoUd3b0BYgBvtRIlIsSno7LKXh41hV9bhvl7h1AisZG1AUHEqLy6xOKWkH+P+bwcSQw6+LhdvXzGWjp0eLvZ4Ipdq745vGbXmBZLtNiKMSsy69Rf8KlWxOpYUQcWpjLK6OGXnObl5+mp2/FWY/Lzs3NW1PqOvakBVfze8bEdEip1pmqzYk8i03/ew/lAyAJ52g/6tajCia33a1rVwJ0DFqXy4hOKUmLSPe38cwm7DQWWXi5ltH6dVmxElkU7ksuza8gWj1r1Cqt1GO8OXaYO+I7ByLatjyXlczP63RyllkjLAx9NOw1A/jiRlMqJbfUZ1a0AVP12SJ1KRGIZBjyahdG8cwpr9J3lryR6iDiQxf1Mc8zfFEVE7kLu71mdA6xp4e9itjisVQNyJLYxZeDuxHhDidPFe0O00PlX/v0X6UieAEikBTVsN4z1HFqM3TSHalsnwb/rybq83qNfwWqujSTHQGSc3YvUZJ4DjKdlU8rQT6Otpyd8vIu5ny5EUPl59kAWb48h1uoD8ya6HdazL7Z3qlt5lfDrjVD5cxBmnqC2f8cz614i3QU2Hi/dDRlM3sG3RLxSx2J4d3/HAmhc4ZjcIdLp4s8mddLjqKatjSQF0qV4Z5Q7FSUSkMCfTc/hy3WHmRB7iWEo2kD/XaLfwEAa3q8X1Larj512CFzKoOJUPF1CcsrJTeGvRSD5P3wNAgzwX71V7iOoBTc//QhE3knhyNw8tvJ0t5OBhmrzk14wbB30Gnm5wz6icoeJURqk4iUhZ4HC6+HX7CT5ZfZCoA0lnllfytNO3ZXUGt6tF1/AQ7DajeP9iFafy7a9CdSL5Rz5Nep5Yj/yzmzfkhfF8nXH4ehcyQpmKk7ix7NxMnp0/lF8zDwEwJs+b8YO+wBbS2OJkcpqKUxml4iQiZc3hpEy+33iU76KPcPBk5pnl1Sp7069lDa67ohodGwTjaS+GOd9UnMo1R+tmrDk8hm/NjTgNgxCni3sq3UXtGk/Si2WFv1DFSdycy3TxztLHef/wrwD0zcxlYofH8Gk3EuwabsBqKk5llIqTiJRVpmmy8fApvos+woLNx0jJyjuzrrKPB1c3C+Pa5tXo1TSUAJ9LvIdSxancSiSSL/xmsNsr/yzTNRmVuCHnOTyNugD0anOq8BerOEkZ8cOWT3hpw+s4DGiWk8vreQHU6/0SNO2ff92zWELFqYxScRKR8iDH4eTP3Yn8tv04v++I52RG7pl1nnaDzg2rclWjELqGh3BFzcoXfkmfilO5c9xYzh/ec1lTKf9sZaDTxai0q2jouu+sHUkVJykv1h2N5J9LHyTZmY2fy8WLiUn0C24N170MdTtZHa9CUnEqo1ScRKS8cbpMNsYm89v2E/y2/QT7EzPOWl/Zx4PODavSNbwqXRuF0DjMH6OwI68qTuWCiUmc8Qu/+XzDBp8cAAzT5OpMX/pl/xMf27kDQKg4SXlyIuMETy5/jA0JmwAYkprGk0mn8Gk6AHq/CKFNrA1Ywag4laKsrCwmTZrEl19+SWxsLMHBwfTt25eJEydSq9bFTXim4iQi5d3e+HSW7Ypnzb6TrD2QRFqO46z1wX5eRNQOpE2dKkTUCSSidtB/55NTcSrTXKaTw7Yf+KXSQrZ45/+/202TazMr0yP3LirTudDXqjhJeeNwOZixeQbvx7yPiUmT3Fxej0+kQZ4TGvaCNsOh2QDw8rU6armn4lRKsrOzufrqq4mMjKRGjRp0796dgwcPsnbtWkJDQ4mMjKRhw4YXvD0VJxGpSBxOF1vjUlm9L5E1+06y7mAS2Xmuc55Xv6ovEXWCaJGVSBN/g2YBNqp5G2fOTKk4uS+X6eC47Te2efzBGp9jJHjk/595uUz6ZAZzVe5o/IzWRW5HxUnKq9Vxq3l6xdMkZSdRCRvPx8czMOOvgXa8AqDFoPwSVbez7oMqISpOpeS5557j3//+N126dOHXX3/F398fgKlTp/LPf/6Tnj17sqyQI6QFUXESkYosx+Fkx8JlbE5xsSnFyeZTLvZnFvwjqrIHNA2w0dTfBqf8qO7hQZjdg6p2O3btXFjKaeZy3PYLWzyWElkpnpP2//5/+LlcXJ9Rnc55Y6lkFDAn0yXoNaFNgcuXvbnpol8DhZ7YVD+TEpOQmcBTK55i7fG1APT0qclTJ+KonRT73ydVaQAtB0P97lCnI3j5WZS2/FFxKgW5ubmEhYWRkpJCdHQ0bduePZN5REQEMTExrF+/nvbt21/QNlWcRKTC+5+91lO5JjGpTjanuNiZ5mJXmosDmSbOQn5y2YEQu50wuwdhf5WpYLudKjY7Ve12Am02bCpWxSrLPMoJ2woO27ex3zOOnV45pP9twI8Ap4su2YFE5HahljkIuxFQrH+/ipOUB06Xk/e2vMd7m9/DYTrwtntzT+0+jEpOxnvHj5Cb/t8n2zygZjuo3w3qXZU/qIR38X5dVSQXs/+tweMv0apVq0hJSSE8PPyc0gQwZMgQYmJiWLBgwQUXJxEROVuQl0GPEA96/G3u0xyXyf4Mk11/Fak1cXbinQ7iHQ4cwAmnkxNOJ+TmnLM9GxBksxP8V4kKtNkJsNkItNsIsOUvq2yz4Wez4WvYdPbqb3JIII3tJBv7SbId4YjHMXZ7phLn+b//RgZBThddsoJp7ehGTddAbIbf6VUiUgC7zc64iHFcX+96/hP1H6KORzH90AIWBtTl6ds/4arUJNj7OxxcCalH4Mja/MfKN8CwQ9VG+YNKhDSBkKYQ0jj/997+Vr+1ckXF6RJt3rwZgHbt2hW4/vTymJiYUsskIlLWne9+pdP3uXjbDJoHGDQPyJ9Ud1lW/mtcpkmyy0m8w0m808EJp4NEp5Mkp5Nkp5NklxMXkORykuRyXlCeSoaBn82Gn3G6TBlUstnwMQx8DBuVDAOfM3828DIMvP/2q7dhw8sw8DQMPMDtzna5zDzyjGRyzBNkG8fINBLIME6SYZwizZZGii2d4/ZM4jwcpBQ4iXH++6mfZ9I4N5AGjgbUdLWnitkVm+H996eUmPOdWSqrzneVv858lW8Ngxryfp/3+eXgL0xeN5nYtFjGLX+Ea+teywNXP069ym/jmRoHB1fBoVVwcAWcioXEXfmP/xVQEyrXhIDq4F8t/9eA6uBfHfxCwCcQvCuDT2Xw8C79N1zGqDhdotjY/OtOa9euXeD608sPHTpUapmKxf7lkJ1idQoRt2SaJr8nb7c6RrkWa8QXus5x7NwzSPmv+dsOug28PaAO+Y+/MzHJMU2yXSZZpotcM//P5/yKC8d5LmLP+uvxd4Zpwlmv+e8f/tuVTGyY2Iz8M182DGzG6WVmfvzTv2JiGC4MwMCFYZhnfgVX/vZtTsCFiRMME9NwYuLCZThwGU6chhOn4cJpOHEYLvIMJ9mGi2ybSZbNJNMwyLnQObTIL03BDhfVHR4EO3wJcoQQkHcFRl4XTMIASAN2AwZOILPALRmF/P5//rEKfU1xyN56rNB1W48X9ppiDnEehWUo7RxipQgebPoevx2bw8oT37EkdglLYpdgYCPQK4SqXjUI9q5OlRZ3EUYlfLMSsGXFYWSfgOwEzNwknK4sHGTimbEH7/TdeJsmPqaJ11+/epjmWV9bLsMTp0clnHYfXHZvXDYPXDYvTMMDl80z//d2T0zDhml4/PWr/W8PGxg2wPhr3V/flA0D869l/2UDI/+7Yt1qrejT7c7S/ee9RCpOlyg9Pf9aU1/fgoeJ9PPLvywhLS2t0G3k5OSQk/PfHYGUlPzCkpqaWlwxL96Pz8CJLdb9/SJuzAQeqlfwwRIpJuc74FnYMR0dJL0w5l8P198X5KvkchHgBD+nDW+nJ55OL2xOH1wOf3LyQjmVV5sTOQ04YAZx4JwN5wFHS+ENFKMPj1z8a6KKP8YlcZccUkquwOZdFa+QX7D7HsKw5XEy6xgnKbz8A+BpBy71Mj3HXw8K+L5R/LoeXkXnVjeV3F9QhNP73Rcy7IOKk4UmTZrESy+9dM7yOnX+9zipiLiPHVYHEBERKTd2AB9OCLQ6BmlpaQQGnj+HitMlOj30eGZmwZciZGRkABAQUPgoJ08//TSPPvromT+7XC6SkpKoWrXqmflJSltqaip16tTh8OHDGtlPztDnQgqiz4UURJ8LKYg+F1IQd/hcmKZJWloaNWvWLPK5Kk6XqG7dugAcOVLw6f7Ty+vVq1foNry9vfH2Pvsak6CgoOIJeJkqV66sb2xyDn0upCD6XEhB9LmQguhzIQWx+nNR1Jmm0woaIkcuQEREBADR0dEFrj+9vHXromdEFxERERER96bidIm6detGYGAg+/btY9OmTees/+abbwAYOHBgKScTEREREZHipuJ0iby8vBg/fjwADzzwwJl7mgCmTp1KTEwMPXv2LHOT33p7e/Piiy+ecwmhVGz6XEhB9LmQguhzIQXR50IKUtY+F4Z5IWPvSYGys7Pp1asXUVFR1KhRg+7du3Po0CGioqIIDQ0lMjKShg0bWh1TREREREQuk4rTZcrKymLSpEnMnTuXw4cPExwcTN++fZk4cWKhk+OKiIiIiEjZouIkIiIiIiJSBN3jJCIiIiIiUgQVJzmvnTt38uqrr3L11VcTEhKCp6cn1atXZ/DgwaxYscLqeFLCsrKyeOGFF2jSpAk+Pj7UrFmTUaNGcfToUaujiQUyMzP54YcfuOeee2jatCk+Pj74+fkRERHByy+/THp6utURxQ2cPHmSsLAwDMOgUaNGVscRN5CQkMBjjz1G06ZNqVSpEsHBwbRr147HH3/c6mhigXXr1jF06FBq1qyJp6cnQUFBdO/endmzZ+PuF8LpUj05r9q1a3P06FH8/f3p3LkzwcHBbN++na1bt2IYBlOnTmXChAlWx5QSkJ2dzdVXX01kZOSZwU8OHjzI2rVrNfhJBfXBBx8wZswYAJo3b07Lli1JTU1l9erVpKWl0axZM5YvX05YWJjFScVKI0aM4NNPP8U0TcLDw9m7d6/VkcRCGzZs4Prrr+fkyZO0aNHizPeN7du3c+TIERwOh9URpRR9++233HbbbTidTtq1a0ejRo1ISEhgxYoVOBwObr/9dj7//HOrYxbOFDmP3r17m59++qmZlZV11vKZM2eagGm3281t27ZZlE5K0rPPPmsCZpcuXcy0tLQzy6dMmWICZs+ePa0LJ5b4+OOPzbFjx5rbt28/a3lcXJzZtm1bEzCHDRtmUTpxB0uWLDEBc+zYsSZghoeHWx1JLBQfH2+GhISYvr6+5vz5889ZHxUVZUEqsUpeXp4ZFhZmAubnn39+1rrt27ebwcHBJmD+8ccfFiUsms44ySW7/vrr+fXXX/nXv/7Fiy++aHUcKUa5ubmEhYWRkpJCdHQ0bdu2PWt9REQEMTExrF+/vszNVSYlY82aNXTt2hVvb29SU1Px8vKyOpKUsqysLFq1aoW3tzc//PADTZo00RmnCu7+++9nxowZvPvuu9x///1WxxGLbd26lVatWtG0aVN27tx5zvqHH36YadOm8eqrr/LEE09YkLBousdJLllERAQAcXFxFieR4rZq1SpSUlIIDw8/pzQBDBkyBIAFCxaUdjRxU6e/H+Tk5HDy5EmL04gVXnrpJfbv38/MmTPx9PS0Oo5YLCsrizlz5uDn58fIkSOtjiNu4EInua1atWoJJ7l0Kk5yyfbv3w9A9erVLU4ixW3z5s0AtGvXrsD1p5fHxMSUWiZxb6e/H3h6ehIcHGxxGiltMTExTJkyhZEjR9K9e3er44gbWL9+PWlpabRt25ZKlSrx008/8eijj3L//ffz5ptv6qBrBdSwYUPCw8PZtWsXc+fOPWvdjh07mDNnDlWqVOHmm2+2KGHRPKwOIGXTvn37WLhwIQA33nijxWmkuMXGxgIUOonz6eWHDh0qtUzi3t566y0A+vbte8FHFaV8cLlcjB49mqCgIF577TWr44ib2L59OwBhYWEMGjSI+fPnn7X+mWee4cMPP2TYsGFWxBML2O12PvnkE2644QaGDx/OlClTaNy4MfHx8axYsYIrrriCjz/+2K0PvumMk1w0h8PBiBEjyMnJ4bbbbtM9LuXQ6WGlfX19C1zv5+cHQFpaWqllEve1ePFiPvzwQzw9PZk4caLVcaSUvf3226xbt47Jkye79SU2UrqSk5MB+PHHH/n555959913iY+P5+DBgzz22GNkZWVx9913s2nTJmuDSqnq1q0by5cvp2HDhkRHRzNv3jyWLl2KzWbjuuuuc/vRenXGqZy7+eab2bFjx0W95tNPP6Vjx46Frn/ooYdYuXIlDRs2ZPr06ZcbUUTKsJ07d3LHHXdgmiaTJ08+c6+TVAyxsbE899xz9OzZkxEjRlgdR9yIy+UC8g+2/vvf/z5rcIjJkydz6NAhvv76ayZPnuzew09Lsfriiy8YOXIknTt35osvvqBFixbExcXx+uuvM2XKFJYuXcrq1avd9soFFady7sCBA+zateuiXpOZmVnoun//+9/MmDGDatWq8csvv7j16VS5dP7+/kDhn4WMjAwAAgICSi2TuJ+jR4/St29fkpOTefTRR3n44YetjiSl7IEHHiA3N5eZM2daHUXczOmfI0CBg0OMHDmSr7/+muXLl5dmLLHQnj17uPvuuwkLC2PhwoVnPiONGzdm1qxZxMXFsXDhQj766CPGjRtncdqCqTiVc8V5CnzmzJk899xzBAYG8vPPP2tG+HKsbt26ABw5cqTA9aeX16tXr9QyiXtJSkqiT58+HDp0iJEjR/L6669bHUkssHDhQoKCgrjvvvvOWp6dnQ3kl+tevXoB8OWXX2owoQrk9M8HX19fQkNDz1lfv359AOLj40szlljoyy+/JC8vj759+55VrE8bOnQoCxcu5M8//1RxkrLtyy+/5IEHHsDX15dFixbRpk0bqyNJCTp9uVV0dHSB608vb926dallEveRnp5Ov3792L59O4MHD+b999/HMAyrY4lFTp06VehZg+zs7DPrTpcpqRhOT2WRlZVFTk7OOZdeJSUlARS4Ay3l0+mDroGBgQWuP7389P1x7kiDQ0iRFi9ezF133YWHhwfff/893bp1szqSlLBu3boRGBjIvn37Cjxr+c033wAwcODAUk4mVsvJyeGmm25i7dq1XH/99XzxxRfY7XarY4lFTNMs8HHgwAEAwsPDzyw7fYZBKoa6desSERGBaZoFFuvTywqaK1DKp9NnnNevX1/g+nXr1gG49fcKFSc5r1WrVjFkyBBM02TevHn06dPH6khSCry8vBg/fjyQfw/D6XuaAKZOnUpMTAw9e/bUiIoVjNPpZNiwYfzxxx90796d7777Di8vL6tjiYibeuKJJwB47LHHOHbs2JnlmzZtYsqUKQDnXOYp5ddNN90EwJ9//smMGTPOWhcZGckbb7wBwJAhQ0o924UyTNM0rQ4h7qtKlSqcOnWKBg0a0KNHjwKfc9VVVzF69OhSTiYlLTs7m169ehEVFUWNGjXo3r07hw4dIioqitDQUCIjI91+2FApXm+99RYTJkwA8kfsrFy5coHPe/311wkJCSnFZOJuDh48SIMGDQgPD2fv3r1WxxELjRgxgk8++YSgoCC6du1KVlYWq1evJicnhzFjxvDee+9ZHVFK0eOPP37mntgWLVpwxRVXEBcXx5o1a3C5XIwdO5ZZs2ZZnLJwKk5yXhdy38Ldd9/Nxx9/XPJhpNRlZWUxadIk5s6dy+HDhwkODqZv375MnDix0Mlxpfz617/+xUsvvVTk8w4cOODWl1pIyVNxktNM0+SDDz5g1qxZ7NixA8MwaN26Nffeey9333231fHEAt9//z0zZ85kw4YNpKSkEBAQQJs2bRgzZozbT4is4iQiIiIiIlIE3eMkIiIiIiJSBBUnERERERGRIqg4iYiIiIiIFEHFSUREREREpAgqTiIiIiIiIkVQcRIRERERESmCipOIiIiIiEgRVJxERERERESKoOIkIiIiIiJSBBUnERERERGRIqg4iYiIiIiIFEHFSUREREREpAgqTiIiIiIiIkVQcRIRERERESmCipOIiIiIiEgRVJxEREQuwty5czEMA8MwuP/++wt9XmxsLFWqVMEwDJo3b05WVlYpphQRkeJmmKZpWh1CRESkLBk+fDhz584FYOHChQwYMOCs9S6Xi2uuuYbly5fj6elJZGQk7dq1syKqiIgUE51xEhERuUjTp0+nbt26AIwaNYr4+Piz1r/22mssX74cgJdfflmlSUSkHNAZJxERkUvw559/cvXVV+NyubjhhhtYsGABABs2bKBLly7k5eXRo0cPli5dis2m45QiImWdvpOLiIhcgh49evDkk08C+ZfrzZgxg8zMTIYPH05eXh6BgYF8+umnKk0iIuWEzjiJiIhcory8PLp06cKGDRuoVKkSffr0Yf78+QDMmTOH4cOHW5xQRESKi4qTiIjIZdi1axft2rUjMzPzzLJhw4adGTxCRETKB10/ICIichmaNm3K448/fubPoaGhTJ8+3cJEIiJSElScRERELkNqaiqffPLJmT8nJiYSHR1tYSIRESkJKk4iIiKXYfz48Rw8eBCAgIAATNNkxIgRnDp1ytJcIiJSvFScRERELtHXX3/NZ599BsDo0aPP3Nd0+PBhxo0bZ2U0EREpZhocQkRE5BIcPXqUVq1akZycTOPGjdm4cSN+fn6MGzeOmTNnAhpZT0SkPFFxEhERuUimaXLdddfx+++/4+HhwapVq+jYsSMAmZmZtGvXjl27dhEYGEhMTAx169a1OLGIiFwuXaonIiJykd544w1+//13AJ5//vkzpQnA19eXOXPm4OnpSUpKCnfddRcul8uqqCIiUkxUnERERC7Cli1beOaZZwDo0qULzz777DnP6dChAy+++CIAy5cv5/XXXy/VjCIiUvx0qZ6IiMgFysnJ4corr2TLli34+/uzadMmwsPDC3yu0+mkV69erFy5Ei8vL6KiomjTpk3pBhYRkWKj4iQiIiIiIlIEXaonIiIiIiJSBBUnERERERGRIqg4iYiIiIiIFEHFSUREREREpAgqTiIiIiIiIkVQcRIRERERESmCipOIiIiIiEgRVJxERERERESKoOIkIiIiIiJSBBUnERERERGRIqg4iYiIiIiIFEHFSUREREREpAgqTiIiIiIiIkVQcRIRERERESnC/wMEqCmsQ6+hKQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "plt.rcParams[\"figure.figsize\"] = [9.50, 4.50]\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=20)\n", + "plt.rc('legend', fontsize=15)\n", + "w = 0.1\n", + "\n", + "# Plot between -10 and 10 with .001 steps.\n", + "x_axis = np.arange(-2, 8.1, 0.1)\n", + " \n", + "# Calculating mean and standard deviation\n", + "mean = statistics.mean(x_axis)\n", + "sd = statistics.stdev(x_axis)\n", + "\n", + "def normal_pr(x):\n", + " return (statistics.NormalDist(mu=0.0, sigma=1.0).cdf(x + 0.1) - statistics.NormalDist(mu=0.0, sigma=1.0).cdf(x))*1000\n", + "import math\n", + "def normal_pos(x):\n", + " return (statistics.NormalDist(mu=17.0/3, sigma=1.0/math.sqrt(3)).cdf(x + 0.1) - statistics.NormalDist(mu=17.0/3, sigma=1.0/math.sqrt(3)).cdf(x))*1000\n", + "\n", + "print(normal_pr(0))\n", + " \n", + "ax.plot(x_axis, [normal_pr(x) for x in x_axis])\n", + "ax.plot(x_axis, [normal_pos(x) for x in x_axis])\n", + "# plt.show()\n", + "\n", + "\n", + "w = 0.1\n", + "ax.hist(smc_estimated, bins=np.arange(-2, 8 + w, w), alpha = 0.25, color = \"red\")\n", + "ax.hist(mcmc_estimated, bins=np.arange(-2, 8 + w, w), alpha = 0.25, color = \"blue\")\n", + "\n", + "file = open(\"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/conjugate_gaussians/conjugate_gaussians_16_2048.txt\", \"r\")\n", + "hybit_data = file.readlines()\n", + "hybit_data = [float(i)*1000 for i in hybit_data]\n", + "ax.plot([i/10 for i in range(10, 81, 1)], hybit_data)\n", + "\n", + "\n", + "\n", + "ax.legend([\"Prior (N(0, 1))\", \"Posterior (N(5.66, 0.57))\", \"HyBit estimated posterior\", \"SMC estimated posterior\", \"MCMC estimated posterior\"])\n", + "# ax.bar([8.0, 9.0])\n", + "\n", + "ax.set_xlabel(\"x\")\n", + "ax.set_ylabel(\"pr(x)\")\n", + "\n", + "scale_y = 1000\n", + "ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale_y))\n", + "ax.yaxis.set_major_formatter(ticks_y)\n", + "\n", + "fig.savefig(\"conjugate_gaussians.png\")\n", + "\n", + "# ax.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Multimodal - MCMC samples" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "x and y must have same first dimension, but have shapes (1024,) and (0,)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/plotting.ipynb Cell 81\u001b[0m in \u001b[0;36m3\n\u001b[1;32m 32\u001b[0m hybit_data \u001b[39m=\u001b[39m file\u001b[39m.\u001b[39mreadlines()\n\u001b[1;32m 33\u001b[0m hybit_data \u001b[39m=\u001b[39m [\u001b[39mfloat\u001b[39m(i)\u001b[39m*\u001b[39m\u001b[39m640\u001b[39m \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m hybit_data]\n\u001b[0;32m---> 35\u001b[0m ax\u001b[39m.\u001b[39mplot([i \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m np\u001b[39m.\u001b[39marange(\u001b[39m-\u001b[39m\u001b[39m8\u001b[39m, \u001b[39m8\u001b[39m, \u001b[39m0.015625\u001b[39m)], hybit_data, color\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mpurple\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 38\u001b[0m w \u001b[39m=\u001b[39m \u001b[39m0.1\u001b[39m\n\u001b[1;32m 39\u001b[0m ax\u001b[39m.\u001b[39mhist(mcmc_samples, bins \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39marange(\u001b[39m-\u001b[39m\u001b[39m6\u001b[39m, \u001b[39m6\u001b[39m \u001b[39m+\u001b[39m w, w), alpha \u001b[39m=\u001b[39m \u001b[39m0.25\u001b[39m, color\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mred\u001b[39m\u001b[39m\"\u001b[39m)\n", + "File \u001b[0;32m/space/poorvagarg/miniconda3/lib/python3.9/site-packages/matplotlib/axes/_axes.py:1662\u001b[0m, in \u001b[0;36mAxes.plot\u001b[0;34m(self, scalex, scaley, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1419\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 1420\u001b[0m \u001b[39mPlot y versus x as lines and/or markers.\u001b[39;00m\n\u001b[1;32m 1421\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1659\u001b[0m \u001b[39m(``'green'``) or hex strings (``'#008000'``).\u001b[39;00m\n\u001b[1;32m 1660\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 1661\u001b[0m kwargs \u001b[39m=\u001b[39m cbook\u001b[39m.\u001b[39mnormalize_kwargs(kwargs, mlines\u001b[39m.\u001b[39mLine2D)\n\u001b[0;32m-> 1662\u001b[0m lines \u001b[39m=\u001b[39m [\u001b[39m*\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_get_lines(\u001b[39m*\u001b[39margs, data\u001b[39m=\u001b[39mdata, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)]\n\u001b[1;32m 1663\u001b[0m \u001b[39mfor\u001b[39;00m line \u001b[39min\u001b[39;00m lines:\n\u001b[1;32m 1664\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39madd_line(line)\n", + "File \u001b[0;32m/space/poorvagarg/miniconda3/lib/python3.9/site-packages/matplotlib/axes/_base.py:311\u001b[0m, in \u001b[0;36m_process_plot_var_args.__call__\u001b[0;34m(self, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 309\u001b[0m this \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m args[\u001b[39m0\u001b[39m],\n\u001b[1;32m 310\u001b[0m args \u001b[39m=\u001b[39m args[\u001b[39m1\u001b[39m:]\n\u001b[0;32m--> 311\u001b[0m \u001b[39myield from\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_plot_args(\n\u001b[1;32m 312\u001b[0m this, kwargs, ambiguous_fmt_datakey\u001b[39m=\u001b[39;49mambiguous_fmt_datakey)\n", + "File \u001b[0;32m/space/poorvagarg/miniconda3/lib/python3.9/site-packages/matplotlib/axes/_base.py:504\u001b[0m, in \u001b[0;36m_process_plot_var_args._plot_args\u001b[0;34m(self, tup, kwargs, return_kwargs, ambiguous_fmt_datakey)\u001b[0m\n\u001b[1;32m 501\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39maxes\u001b[39m.\u001b[39myaxis\u001b[39m.\u001b[39mupdate_units(y)\n\u001b[1;32m 503\u001b[0m \u001b[39mif\u001b[39;00m x\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m] \u001b[39m!=\u001b[39m y\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m]:\n\u001b[0;32m--> 504\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mx and y must have same first dimension, but \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 505\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mhave shapes \u001b[39m\u001b[39m{\u001b[39;00mx\u001b[39m.\u001b[39mshape\u001b[39m}\u001b[39;00m\u001b[39m and \u001b[39m\u001b[39m{\u001b[39;00my\u001b[39m.\u001b[39mshape\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 506\u001b[0m \u001b[39mif\u001b[39;00m x\u001b[39m.\u001b[39mndim \u001b[39m>\u001b[39m \u001b[39m2\u001b[39m \u001b[39mor\u001b[39;00m y\u001b[39m.\u001b[39mndim \u001b[39m>\u001b[39m \u001b[39m2\u001b[39m:\n\u001b[1;32m 507\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mx and y can be no greater than 2D, but have \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 508\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mshapes \u001b[39m\u001b[39m{\u001b[39;00mx\u001b[39m.\u001b[39mshape\u001b[39m}\u001b[39;00m\u001b[39m and \u001b[39m\u001b[39m{\u001b[39;00my\u001b[39m.\u001b[39mshape\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n", + "\u001b[0;31mValueError\u001b[0m: x and y must have same first dimension, but have shapes (1024,) and (0,)" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAGMCAYAAABH49w2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAskUlEQVR4nO3de1xU9b7/8ffgZQQUKKWwQPACUqYYSXnJQk3d5sMbamVaXrb1qE4Kefb20t6UZh3dJ63Ymtse3TzH0mOpaIbWseziwxsllVu34k4NMfEnKA4COiis3x89YMcBlZGZwfn2ej4e88d8v2t912d9H7jerpm11tgsy7IEAICB/Bq6AAAAPIWQAwAYi5ADABiLkAMAGIuQAwAYi5ADABiLkAMAGIuQAwAYq3FDF3AtqKio0PHjx9WiRQvZbLaGLgcAjGZZls6ePaubbrpJfn6ePdci5CQdP35cERERDV0GAPym5ObmKjw83KPbIOQktWjRQtIvEx4UFNTA1QCA2YqKihQREVF17PUkl0Nu9+7d2rx5szIzM5WZmamff/5Z0i+nn7Wpy8d/ffr00ZYtW+q0/QkTJui//uu/Ltn/t7/9TU888USdxqpUWWNQUBAhBwBe4o2vh1wOublz52r9+vV1Xn78+PGX7MvIyFBBQYF69+7tahkaOHCgwsLCarR37NjR5bEAAGZyOeR69OihLl26KCEhQQkJCYqKipLT6bzk8suWLau1/cyZM/qf//kfSdK4ceNcLUMzZ85UYmKiy+sBAH47XA65GTNmuGXDH374oZxOp7p3767o6Gi3jAkAwK812H1y7733niTpkUceaagSAACGa5CrK48ePaqtW7eqSZMmevDBB69qjLVr12rNmjUqLy9X27ZtNWTIEMXGxrq5UgCAL2uQkHv//fdlWZYGDRqkli1bXtUYixYtqvZ+xowZevLJJ5WWlqbGjS+/W06ns9r3iEVFRVdVAwDg2tYgH1fW56PK22+/XUuXLtXBgwdVWlqqw4cP6/XXX1dISIiWLFmiP/7xj1ccY968eQoODq56cSM4AJjJZl3qBrc6atasmZxO5yXvk/u/srKydMcddygkJEQnTpyQ3W6vz+ar7Nu3T/Hx8aqoqNDhw4cvG1y1nclFRETI4XBwnxwAeFhRUZGCg4O9csz1+plc5Vnc6NGj3RZwktSpUycNHTpUFy9e1Oeff37ZZe12e9WN39wADgDm8mrIlZeX1+veuCupvBUhLy/P7WMDAHyPV0Pu888/V15eniIjI6/qKSdXUlhYKEkKDAx0+9gAAN/j1ZCr/Khy3Lhxbn9mmdPpVEZGhiQpPj7erWMDAHyT10KutLRU6enpkq58VWVmZqZiY2PVr1+/au0HDhzQ8uXLazxGLD8/Xw899JByc3MVFxenXr16ubd4AIBPcvk+uYyMDM2dO7fqfVlZmSSpe/fuVW2pqakaPHhwtfXWrVun4uJiJSQkXPEhyqWlpcrOztb58+ertZ84cUKPPvqokpOT1a1bN4WGhur48ePavXu3zp49q/DwcH3wwQf88CkAQNJVhFx+fr527dpVo/3Xbfn5+TX6f/1R5dWKiYlRSkqKdu7cqb///e86deqU7Ha7YmJiNGTIECUnJ+u666676vEBAGap931yJvDmPRsA8Ftn9H1yAAB4CyEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwlssht3v3bs2fP19JSUkKDw+XzWaTzWa75PKzZ8+uWqa218yZM10uury8XK+++qo6d+4sf39/hYaG6oEHHtD+/ftdHgsAYK7Grq4wd+5crV+/3uUN9erVSx06dKjRfscdd7g0TkVFhUaPHq309HSFhIRo8ODBKigo0OrVq5WRkaEvvvhCd955p8v1AQDM43LI9ejRQ126dFFCQoISEhIUFRUlp9N5xfUmT56sCRMmXE2N1bzzzjtKT09XdHS0tm7dqhtvvFGStGbNGo0aNUpjx47V/v371bixy7sGADCMy0kwY8YMT9RRZ6+88ook6T//8z+rAk6SRo4cqaFDh+qjjz7S+vXrNXLkyIYqEQBwjfCpC0+OHDmi/fv3y9/fX4MHD67RP2rUKEnShg0bvF0aAOAa5LXP9LZs2aLvv/9e58+fV3h4uAYNGuTy93E//PCDJOm2225TkyZNavTHx8dLkvbs2VP/ggEAPs9rIbd8+fJq71NTUzVy5EgtW7ZMzZs3r9MYR48elSSFh4fX2l/ZnpOTU49KAQCm8PjHlR06dNCCBQu0b98+FRcXKzc3V++//75uvvlmrVmzRo888kidxyouLpYkBQQE1NofGBgoSTp79uxlx3E6nSoqKqr2AgCYx+NncuPGjav2PjAwUA8//LD69Omjzp07a926ddq5c6e6d+/u6VKqzJs3T3PmzPHa9gAADaPBLjxp3bq1Jk6cKEn65JNP6rRO5ceapaWltfaXlJRIklq0aHHZcWbNmiWHw1H1ys3NrWvZAAAf0qA3k0VHR0uS8vLy6rR8mzZtJEnHjh2rtb+yPTIy8rLj2O122e32upYJAPBRDXoLQWFhoaR/fZd2JXFxcZKkvXv36sKFCzX6s7KyJEldunRxU4UAAF/WYCFnWZbS09Ml/evS/ytp27atbrnlFp07d04ZGRk1+levXi1JGjJkiPsKBQD4LI+GXH5+vl5//fUaVzsWFxfrySef1K5duxQWFqakpKRq/ZmZmYqNjVW/fv1qjDlt2jRJ0vTp03Xy5Mmq9rVr1+qjjz5Shw4dNGzYMA/sDQDA17j8nVxGRobmzp1b9b6srEySql0dmZqaqsGDB6ukpERPP/20Zs6cqYSEBLVu3Vr5+fnKysrSqVOnFBISotWrV9e4JaC0tFTZ2dk6f/58je1PmjRJGzduVHp6elUQFhQU6KuvvpK/v7/ee+89nlsJAJB0FSGXn5+vXbt21Wj/dVt+fr4kqWXLlpoxY4Z27typgwcPavv27WrUqJHatm2rCRMm6JlnntHNN9/s0vb9/Pz04YcfKi0tTe+8844+/vhjBQYGauTIkZozZ45uvfVWV3cJAGAom2VZVkMX0dCKiooUHBwsh8OhoKCghi4HAIzmzWOuTz2gGQAAVxByAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAY7kccrt379b8+fOVlJSk8PBw2Ww22Wy2WpetqKjQ1q1bNX36dN1xxx1q0aKF7Ha72rdvryeeeEJHjhxxueAJEyZUbbO219KlS10eEwBgpsaurjB37lytX7++TssePnxY99xzjyQpLCxMffv2VaNGjZSZmak33nhDK1as0MaNG3X33Xe7WoYGDhyosLCwGu0dO3Z0eSwAgJlcDrkePXqoS5cuSkhIUEJCgqKiouR0Omtd1mazqX///po5c6b69OlTdcbndDr1xBNPaNmyZRo7dqx+/PFHNWnSxKU6Zs6cqcTERFfLBwD8hrgccjNmzKjzsu3bt9f//u//1mi32+1asmSJ0tPTdfToUW3fvl333nuvq6UAAHBZDXbhib+/v2JiYiRJx48fb6gyAAAGc/lMzl0qKiqUk5MjSbV+t3Yla9eu1Zo1a1ReXq62bdtqyJAhio2NdXeZAAAf1mAht3LlSp08eVKhoaHq2bOny+svWrSo2vsZM2boySefVFpamho3brDdAgBcQxrk48rc3FylpKRIkl544QXZ7fY6r3v77bdr6dKlOnjwoEpLS3X48GG9/vrrCgkJ0ZIlS/THP/7ximM4nU4VFRVVewEAzGOzLMuqzwDNmjWT0+lUXYcpKSlRYmKivv32Ww0fPlzp6en12XyVffv2KT4+XhUVFTp8+LAiIiIuuezs2bM1Z86cGu0Oh0NBQUFuqQcAULuioiIFBwd75Zjr1TO5CxcuaPTo0fr222919913a8WKFW4bu1OnTho6dKguXryozz///LLLzpo1Sw6Ho+qVm5vrtjoAANcOr315VVFRofHjx2vTpk3q2rWrNmzYIH9/f7duIzo6WpKUl5d32eXsdrtLH5ECAHyT187kpkyZopUrVyomJkaffvqpQkJC3L6NwsJCSVJgYKDbxwYA+B6vhNyf//xnLVmyRG3atNHmzZt1ww03uH0bTqdTGRkZkqT4+Hi3jw8A8D0eD7lXX31VL730ksLCwvTZZ5+pTZs2V1wnMzNTsbGx6tevX7X2AwcOaPny5TUeI5afn6+HHnpIubm5iouLU69evdy6DwAA3+Tyd3IZGRmaO3du1fuysjJJUvfu3avaUlNTNXjwYH3//ff693//d0lS27Zt9dJLL9U65uTJk6s9pLm0tFTZ2dk6f/58teVOnDihRx99VMnJyerWrZtCQ0N1/Phx7d69W2fPnlV4eLg++OCDS/4qAgDgt8XlkMvPz9euXbtqtP+6LT8/X5J05syZqlsLduzYoR07dtQ6ZmJiYp1+iSAmJkYpKSnauXOn/v73v+vUqVOy2+2KiYnRkCFDlJycrOuuu87VXQIAGKre98mZwJv3bADAb52x98kBAOBNhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYLofc7t27NX/+fCUlJSk8PFw2m002m+2K6y1btkx33nmnmjdvruuvv17333+/tm/fflVFl5eX69VXX1Xnzp3l7++v0NBQPfDAA9q/f/9VjQcAMJPNsizLlRWGDx+u9evX12i/3DApKSlKS0uTv7+/BgwYoPPnz+vzzz+XZVlavXq1hg8fXuftV1RUaNSoUUpPT1dISIj69eungoICff311/L399cXX3yhO++805VdUlFRkYKDg+VwOBQUFOTSugAA13jzmOtyyP3lL39RSUmJEhISlJCQoKioKDmdzkuG3Geffab+/furZcuW2rFjh6KjoyVJO3bsUGJiogICAnTkyBGFhITUaftvvfWWHnvsMUVHR2vr1q268cYbJUlr1qzRqFGj1KFDB+3fv1+NGzeu8z4RcgDgPV495lr1ZLfbrcsNM2jQIEuS9eqrr9bomzp1qiXJWrBgQZ23d8stt1iSrPT09Bp9Q4cOtSRZq1evrvN4lmVZDofDkmQ5HA6X1gMAuM6bx1yPXnhy7tw5bdmyRZI0atSoGv2VbRs2bKjTeEeOHNH+/fvl7++vwYMH13s8AIDZPBpy2dnZcjqdCg0NVXh4eI3++Ph4SdKePXvqNN4PP/wgSbrtttvUpEmTeo8HADCbR0Pu6NGjklRrwElSYGCgQkJCVFhYqLNnz9Z7vMr2nJycqykXAGCYul+dcRWKi4slSQEBAZdcJjAwUGfOnNHZs2fVokWLeo0XGBgoSVcMTKfTKafTWfW+qKjosssDAHzTb/Jm8Hnz5ik4OLjqFRER0dAlAQA8wKMh17x5c0lSaWnpJZcpKSmRpCuexdVlvLqONWvWLDkcjqpXbm7uFbcNAPA9Hv24sk2bNpKkY8eO1dpfUlKiM2fO6LrrrqtTyF1pvMr2yMjIy45jt9tlt9uvuD0AgG/z6Jlcx44dZbfblZ+fr59//rlGf1ZWliSpS5cudRovLi5OkrR3715duHCh3uMBAMzm0ZDz9/dX3759JUkffvhhjf7Vq1dLkoYMGVKn8dq2batbbrlF586dU0ZGRr3HAwCYzeMXnkybNk2S9OKLL+qf//xnVfuOHTv0xhtvKCQkRL///e+rrZOZmanY2Fj169fvkuNNnz5dJ0+erGpfu3atPvroI3Xo0EHDhg3zxK4AAHyMy9/JZWRkaO7cuVXvy8rKJEndu3evaktNTa16Isl9992n5ORkpaWlqWvXrurfv7/Kysq0efNmWZald999t8ZzK0tLS5Wdna3z58/X2P6kSZO0ceNGpaenVwVhQUGBvvrqK/n7++u9995z6bmVAABzuZwG+fn52rVrV432X7fl5+dX63vttdfUtWtXLV68WJs3b1bTpk113333KTU1VT179nRp+35+fvrwww+Vlpamd955Rx9//LECAwM1cuRIzZkzR7feequruwQAMJTLv0JgIn6FAAC8x5vH3N/kzeAAgN8GQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsr4Tcl19+KZvNdsXXCy+8UKfxoqKiLjvOgQMHPLxHAABf0NgbGwkLC9P48eNr7SsvL9d7770nSerdu7dL415qzODgYNcKBAAYyWZZltWQBWzatEn333+/IiIilJOTI5vNdsV1oqKilJOTI3eVXlRUpODgYDkcDgUFBbllTABA7bx5zG3w7+Qqz+LGjh1bp4ADAKCuGjTkSkpKtH79eknSI4880pClAAAM5JXv5C5l7dq1Kikp0e23365bb73V5fVffvllHTp0SHa7XZ06ddKIESMUGhrqgUoBAL6oQUOu8qPKqz2Lmz59erX3zzzzjBYtWqRJkybVuzYAgO9rsI8r8/Ly9Pnnn6tRo0YaM2aMS+sOHTpUa9euVU5OjkpLS7V3715NmzZNTqdTkydPrvoI9FKcTqeKioqqvQAA5mmwkFu5cqXKy8vVv39/hYWFubTuX//6V40YMUJt2rSRv7+/OnXqpIULF+pvf/ubLMvSjBkzLrv+vHnzFBwcXPWKiIioz64AAK5RDXYLQXx8vL777ju9//77evjhh90yZkVFhVq3bq2TJ0/qyJEjioqKqnU5p9Mpp9NZ9b6oqEgRERHcQgAAXmD8LQT79+/Xd999p+bNm2v48OFuG9fPz0/t27eX9MvHoZdit9sVFBRU7QUAME+DhNzy5cslSUlJSQoICHDr2IWFhZKkwMBAt44LAPA9Xg85y7K0YsUKSe6/N27fvn3Kzs5WQECAYmNj3To2AMD3eD3ktm7dqpycHN18883q27fvJZdbvHixYmNjNWvWrGrtGzdu1JYtW2osv2fPHo0ePVqWZWny5Mlq2rSp22sHAPgWr98nV3lv3MMPPyw/v0tnbEFBgbKzs2t8t5aZmak5c+YoMjJScXFxCggI0OHDh5WVlaWLFy8qMTFR8+fP9+g+AAB8g1dDzul0avXq1ZKkcePGXdUYAwcOVG5urr755htt27at6uqcu+++W2PHjtXEiRPVqFEjd5YNAPBRDf4rBNcCfoUAALzH+FsIAADwBkIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLK+FXGJiomw22yVfn3zyiUvjFRYWKjk5WZGRkbLb7YqMjFRKSorOnDnjmR0AAPicxt7e4MiRI9W8efMa7TfffHOdxygoKFCPHj30448/ql27dho+fLj27duntLQ0bdq0STt27ND111/vzrIBAD7I6yG3YMECRUVF1WuMlJQU/fjjj0pKStKqVavUuPEvuzF16lQtWrRI06ZN07Jly+pfLADAp/ncd3J5eXlauXKlmjZtqiVLllQFnCS9/PLLCg0N1XvvvaeTJ082YJUAgGuBz4XcJ598ooqKCvXu3Vs33nhjtT673a4hQ4aovLxcGzdubKAKAQDXCq9/XPn222/r1KlT8vPzU0xMjIYPH642bdrUef0ffvhBkhQfH19rf3x8vN555x3t2bPHLfUCAHyX10PuxRdfrPb+D3/4g1JTU5Wamlqn9Y8ePSpJCg8Pr7W/sj0nJ6ceVQIATOC1jyvvueceLV++XIcOHVJpaamys7P10ksvqXHjxnruueeUlpZWp3GKi4slSQEBAbX2BwYGSpLOnj17yTGcTqeKioqqvQAA5vFayL3wwgsaN26c2rVrJ39/f8XExOjZZ5/VunXrJEmzZ8/WuXPnvFLLvHnzFBwcXPWKiIjwynYBAN7V4BeeDBgwQN26ddOZM2e0a9euKy5feY9daWlprf0lJSWSpBYtWlxyjFmzZsnhcFS9cnNzr6JyAMC1rsFDTpKio6Ml/XJ7wJVUXqRy7NixWvsr2yMjIy85ht1uV1BQULUXAMA810TIFRYWSvrX92mXExcXJ0nKysqqtb+yvUuXLm6qDgDgq2yWZVkNWUB+fr7atm2rkpIS5ebmXvKqyUp5eXkKDw9X48aNlZubqxtuuKGqz+l0KiIiQqdPn9bx48er9V1OUVGRgoOD5XA4OKsDAA/z5jHXK2dy27dv17p161ReXl6t/aefftKIESNUUlKioUOHVgu4xYsXKzY2VrNmzaq2TuvWrTVmzBiVlZXpqaee0sWLF6v6pk+frvz8fI0bN67OAQcAMJdX7pM7ePCgJk6cqLCwMMXHxyskJEQ5OTnavXu3zp8/r06dOunNN9+stk5BQYGys7Nr/Z7utdde086dO7VmzRrFxsaqW7du2rdvn/bu3avo6Gi98sor3tgtAMA1zitncnfddZeefPJJ3XTTTfrmm2/0wQcfaO/everatasWLlyob775xqUzr1atWikzM1NTpkxRWVmZ0tPT5XA4NHXqVGVmZvILBAAASdfAd3LXAr6TAwDvMe47OQAAGgIhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMJZXQq60tFTr1q3T73//e3Xs2FHNmjVTYGCg4uLi9MILL6i4uNil8aKiomSz2S75OnDggIf2BADgSxp7YyMrVqzQY489Jkm65ZZbNHToUBUVFWn79u16/vnntXLlSn311Ve64YYbXBp3/PjxtbYHBwfXu2YAgO/zSsg1adJEjz/+uFJSUnTLLbdUtefl5Wnw4MH67rvvlJKSohUrVrg07rJly9xcKQDAJDbLsqyGLGDHjh3q2bOn7Ha7ioqK1LRp0yuuExUVpZycHLmr9KKiIgUHB8vhcCgoKMgtYwIAaufNY26DX3gSFxcnSXI6nTp16lQDVwMAMIlXPq68nMOHD0v65SPN66+/3qV1X375ZR06dEh2u12dOnXSiBEjFBoa6okyAQA+qMFDLi0tTZL0u9/9Tna73aV1p0+fXu39M888o0WLFmnSpEluqw8A4Lsa9OPKjRs36u2331aTJk00d+7cOq83dOhQrV27Vjk5OSotLdXevXs1bdo0OZ1OTZ48WevXr7/s+k6nU0VFRdVeAADzNNiFJwcOHFDPnj1VWFio1157TcnJyfUe880339Tjjz+ujh07XvZeudmzZ2vOnDk12rnwBAA8z5sXnjRIyP3888/q1auXcnJyNG3aNC1cuNAt41ZUVKh169Y6efKkjhw5oqioqFqXczqdcjqdVe+LiooUERFByAGAFxh9deXp06c1YMAA5eTkaOLEiVqwYIHbxvbz81P79u0l/XIP3qXY7XYFBQVVewEAzOPVkCsuLtagQYP0j3/8Q0lJSXrzzTdls9ncuo3CwkJJUmBgoFvHBQD4Hq+FnNPp1LBhw5SZmamBAwdq5cqVatSokVu3sW/fPmVnZysgIECxsbFuHRsA4Hu8EnLl5eUaM2aMtmzZot69e2vt2rVXfLLJ4sWLFRsbq1mzZlVr37hxo7Zs2VJj+T179mj06NGyLEuTJ0+u05NTAABm88p9cosXL1Z6erokqVWrVnrqqadqXW7BggVq1aqVJKmgoEDZ2dk1vlvLzMzUnDlzFBkZqbi4OAUEBOjw4cPKysrSxYsXlZiYqPnz53t2hwAAPsErIVf5PZmkqrCrzezZs6tC7lIGDhyo3NxcffPNN9q2bVvV1Tl33323xo4dq4kTJ7r9Y1AAgG9q8Ac0Xwt4QDMAeI/RtxAAAOAthBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYXg25c+fO6bnnnlNMTIyaNWumm266SZMmTdLPP//s8liFhYVKTk5WZGSk7Ha7IiMjlZKSojNnzri/cACAT7JZlmV5Y0Pnz59Xnz59tHPnTrVu3Vq9e/fWTz/9pMzMTIWGhmrnzp1q165dncYqKChQjx499OOPP6pdu3bq1q2b9u3bp3379ikmJkY7duzQ9ddfX+faioqKFBwcLIfDoaCgoKvdRQBAHXjzmOu1M7kXX3xRO3fuVI8ePXTw4EGtWrVKu3bt0sKFC5Wfn69JkybVeayUlBT9+OOPSkpKUnZ2tlatWqW9e/dqypQpOnjwoKZNm+bBPQEA+AqvnMmVlZXphhtukMPhUFZWlm6//fZq/XFxcdqzZ4++/fZb3XHHHZcdKy8vT+Hh4WrcuLGOHj2qG2+8sarP6XQqIiJCp0+f1vHjx3XDDTfUqT7O5ADAe4w7k9u2bZscDofat29fI+AkadSoUZKkDRs2XHGsTz75RBUVFerdu3e1gJMku92uIUOGqLy8XBs3bnRP8QAAn+WVkPvhhx8kSfHx8bX2V7bv2bPHq2MBAMzmlZA7evSoJCk8PLzW/sr2nJwcr44FADBbY29spLi4WJIUEBBQa39gYKAk6ezZs14Zy+l0yul0Vr13OBySfvmcGADgWZXHWm9c3O+VkLvWzJs3T3PmzKnRHhER0QDVAMBv06lTpxQcHOzRbXgl5Jo3by5JKi0trbW/pKREktSiRQuvjDVr1qxqtxmcOXNGkZGROnr0qMcn3JcUFRUpIiJCubm5XHX6K8xLTcxJ7ZiX2jkcDrVp08al+5mvlldCrk2bNpKkY8eO1dpf2R4ZGemVsex2u+x2e4324OBg/hBrERQUxLzUgnmpiTmpHfNSOz8/z18W4pULT+Li4iRJWVlZtfZXtnfp0sWrYwEAzOaVkOvVq5eCg4N16NAhff/99zX6V69eLUkaMmTIFcf63e9+Jz8/P23dulUnT56s1ud0OrVhwwY1atRI999/v1tqBwD4Lq+EXNOmTfX0009Lkv7t3/6t6nszSXrllVe0Z88e3XvvvdWedrJ48WLFxsZq1qxZ1cZq3bq1xowZo7KyMj311FO6ePFiVd/06dOVn5+vcePG1flpJ9IvH18+//zztX6E+VvGvNSOeamJOakd81I7b86LVx/QnJiYqF27dlU9oDknJ0e7du2q9QHNs2fP1pw5czR+/HgtW7as2lgFBQXq3r27Dh06pPbt21c9oHnv3r2Kjo7Wzp07vfKFJgDg2ua1BzQ3a9ZMX3zxhVJTUxUQEKB169YpJydHEyZMUFZWVp1/gUCSWrVqpczMTE2ZMkVlZWVKT0+Xw+HQ1KlTlZmZScABACR58UwOAABv45fBAQDGMjLk+AXy2rljXs6cOaMVK1ZozJgxatu2rZo2baoWLVrorrvuUlpami5cuODBPXA/d/6t/No///lP+fv7y2az6b777nNTtd7j7nn56aef9MQTT6ht27ay2+1q1aqVevTooZdfftnNlXuWO+dl8+bNGjx4sEJDQ9WkSRO1bNlSAwYMUHp6ugcq95zdu3dr/vz5SkpKUnh4uGw2m2w221WP5/ZjrmWYc+fOWd27d7ckWa1bt7YeeOAB684777QkWaGhodahQ4fqPFZ+fr7VoUMHS5LVrl0764EHHrA6depkSbJiYmKsU6dOeXBP3Mtd8/KnP/3JkmTZbDbr9ttvtx588EGrb9++lt1utyRZd999t1VSUuLhvXEPd/6t/F+JiYmWzWazJFn9+vVzY9We5+552bhxoxUQEGDZbDbrjjvusB566CGrf//+VlhYmNW+fXsP7YX7uXNeXn311ap/Rz179rQefPBBq2fPnlV/M88++6wH98S9hg0bZkmq8boanjjmGhdylQfhHj16WGfPnq1qX7hwoSXJuvfee+s81tixYy1JVlJSknXhwoWq9ilTpliSrPHjx7uxcs9y17z8x3/8hzV9+nQrJyenWvvBgwetNm3aWJKsWbNmubN0j3Hn38qvvfXWW5Yk6/HHH/fJkHPnvOzfv99q1qyZFRoaam3btq1aX3l5ufXNN9+4q2yPc9e8nDx50rLb7VaTJk2sL7/8slrfV199Zdntdstms9XrP1neNH/+fCs1NdX66KOPrLy8vKr/8F4NTxxzjQo5p9NpBQcHW5KsrKysGv1dunSxJFnffvvtFcc6fvy45efnZzVt2tQ6ceJEtb7z589boaGhVqNGjaz/9//+n9vq9xR3zsvlrFixwpJkRUVF1Wscb/DUnJw4ccK67rrrrP79+1tffPGFz4Wcu+dl0KBBliQrIyPD3aV6lTvnZcOGDZYka+DAgbX2Dx061JJkrVq1qt51N4SrDTlPHXON+k6OXyCvnTvn5XIqH7l2/Pjxeo3jDZ6ak+TkZJ07d05LlixxS53e5s55yc3N1aeffqp27dr5/BOI3Dkvdb0BumXLlq4V6eM8dcw1KuT4BfLaeWtfDh8+LEkKCwur1zje4Ik52bhxo1atWqVnn31WHTp0qH+RDcCd8/Lll1+qoqJCPXv21MWLF/XBBx8oOTlZTz/9tJYuXarCwkL3Fe5h7pyXO++8UyEhIdqyZYu++uqran1ff/21Pv30U0VHR6t37971rNq3eOo4ZdTvyfEL5LXz1r6kpaVJkoYNG1avcbzB3XNSUlKip556Sh07dtSMGTPcU2QDcOe8/OMf/5D0y89j9e7dWzt37qzW/6c//UmrV69Wnz596lOyV7hzXoKDg/X222/r4YcfVp8+fdSzZ0+Fh4fr2LFj2r59u3r16qX//u//VtOmTd23Az7AU8cpo87krrVfIL9WeGNfli5dqs8++0whISGaOXPmVY/jLe6ekz//+c/KycnR0qVLffrg5M55qTxTe+utt3TgwAGtWLFCp0+fVnZ2tsaNG6fTp09rxIgR9b5dwxvc/feSlJSkTZs2qWXLltq2bZtWrVqlbdu2qUWLFhowYIBuvvlm9xTuQzx1nDIq5NAwtm7dquTkZNlsNr3zzju66aabGrokr/r222/117/+VY8++qgSExMbupxrRkVFhSTp4sWLeuONNzRmzBhdd911iomJ0fLly5WQkCCHw+Gz31/Wx8KFC3Xffffpnnvu0Z49e1RcXKw9e/aob9++eu6555SUlNTQJRrDqJC71n6B/FrhyX3Zu3evhg0bprKyMqWlpWnEiBFXX6gXuWtOLl68qMcee0whISFasGCBe4tsAJ74N9S8eXONHj26Rv/EiRMlqcb3Utcid87Ll19+qT/84Q/q2rWrPvzwQ3Xu3FmBgYHq3LmzVq9era5duyojI0ObNm1y3w74AE8dp4z6Tu5a+wXya4Wn9uXIkSMaMGCACgsLNXv2bE2ZMqV+hXqRu+bk2LFj+v777xUWFlbjQF75hIbdu3dXneF9+eWXV1+0F7jzb6VymTZt2tT6BIyoqChJqvG7kNcid87L8uXLJUkjRoyo8cvYjRo1UlJSkr7//nt9/fXXGjRoUH3K9imeOk4ZFXL8AnntPLEveXl56t+/v/Ly8pScnKznn3++/oV6kbvn5MSJEzpx4kStfWfOnPGJsxXJvfNSean9pa6iPH36tKR//Q/+WubOeak8WAcHB9faX9nuS1efuoPHjrku37F3Dfv1DZvfffddjf6rvRn8/9586Ms3g9d3XizLsk6fPm117tzZkmRNnDjRqqiocHPFnufuOamNr98MXt95uXDhgtWyZUvLZrNZBw4cqNH/2GOPWZKsSZMmuaN0j3LnvDz66KOWJOvRRx+ttX/cuHGWJGvevHn1LbtBuONmcHcec40KOcv616N3evbsaRUXF1e1X+rRO4sWLbI6duxozZw5s8ZYlY+YGTlyZLVHzEydOtVnH+tV33kpKSmxevToYUmyHnjgAevixYveKN8j3Pm3UhtfDDnLcu+8vPTSS1Vz4HA4qto3b95sNWnSxLLZbNauXbs8ti/u5K55Wbt2rSXJatSokbVhw4ZqfevWrbP8/PwsPz+/Wv9j4AuuFHLePuYaF3Lnzp2z7rrrrmoPUa18X9tDVJ9//vlLTl5+fr7Vvn17S5LVvn1768EHH7Ruu+02S5IVHR3tcw9odse8pKSkVP0Dffjhh63x48fX+vIF7vxbqY2vhpw756WsrMy67777LEnWjTfeaA0bNszq1auX1ahRI0uS9dJLL3lpr+rPXfNSUVFhjR49uupBxt26dbNGjx5tdevWrarNl+bl448/tu66666qV+VDpn/d9vHHH1ct7+1jrnEhZ1mWVVpaaqWmplrt27e3mjZtaoWFhVkTJkywcnNzayx7pQPXqVOnrClTplgRERFW06ZNrYiICGvq1KlWYWGhZ3fCA9wxL+PHj6/6h3i5l69w59/K/+WrIWdZ7p2XsrIy6y9/+YvVqVMnq1mzZlZQUJDVt2/fGmcxvsBd81JRUWG9/fbb1j333GOFhIRYjRs3tlq1amXdf//91qZNm7ywJ+7z7rvvXvF48O6771Yt7+1jLr8MDgAwllH3yQEA8GuEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFj/H6d8hpfLn9YDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file1 = open(\"/space/poorvagarg/cmdstan-2.28.2/benchmarks/multimodal/multimodal_samples_1.csv\", \"r\")\n", + "lines1 = file1.readlines(100000)\n", + "mcmc_samples = []\n", + "for i in range(-1, -101, -1):\n", + " mcmc_samples.append(float(lines1[i].split(\",\")[-2]))\n", + "\n", + "file2 = open(\"/space/poorvagarg/cmdstan-2.28.2/benchmarks/multimodal/multimodal_samples_2.csv\", \"r\")\n", + "lines2 = file2.readlines(100000)\n", + "mcmc_samples2 = []\n", + "for i in range(-1, -101, -1):\n", + " mcmc_samples2.append(float(lines2[i].split(\",\")[-2]))\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "# mcmc_samples = [-5.321316455131474,-5.355140579827021,-5.233490336767545,-6.067015095596283,-4.548800466991291,-5.703062072830024,-4.842569829129043,-5.081115804087283,-4.421406710010476,-4.161711303390016,-4.919536376809643,-4.846695263872425,-5.674426741967488,-5.294554675421254,-4.675151729688979,-4.346175046268987,-5.019901159626997,-5.238937963982364,-4.939731667595425,-4.61950330137317,-5.037857792375063,-4.876001284160546,-4.425722343068648,-6.244080868088658,-4.007556450309569,-5.39244419389785,-3.9130300163797673,-5.0432372920101685,-3.730240706987388,-6.281326999350051,-5.157141563493664,-5.008660329457878,-5.246187350204035,-5.30697120173472,-5.232961291989078,-4.638394171221466,-5.868002558649008,-4.955346419628353,-5.7325841694954685,-4.367123184199796,-5.781732005720217,-5.30369352247955,-5.529961146980136,-4.5501223513582305,-4.329346777699819,-5.595307871330695,-5.605970371569017,-5.593581008684544,-5.127018171131782,-4.8575581372950625,-5.546477707833224,-5.095876232028193,-4.427219439842593,-4.849227833570057,-5.292726468068822,-5.471435792732446,-4.672405031361396,-5.262095012311124,-4.578282396416381,-5.021868595147214,-4.942979120956043,-5.190938133270016,-5.064089249425432,-5.493751228124197,-5.48320140931662,-4.725561899428199,-5.178980767484936,-4.650467942970524,-4.125211732755207,-3.994294768299944,-4.391564144790965,-4.946782164528411,1.2988928671129178,-5.740806876243877,-5.104979943258394,-3.8573276248068398,-5.131200469931176,-4.780781821994093,-5.390843540221784,-5.495287333849501,-5.38586662787941,-4.094245216322156,-4.991655504926896,-6.3457096153307475,-5.390338988731538,-5.645048073577354,-4.826393051668881,-5.159839627390694,-4.075466638350983,-5.028836116447421,-5.64306486373272,-6.098157414352456,-5.306224151498137,-5.905402808069706,-4.945545099682993,-4.690125986811691,-5.977168120140098,-4.367123184199796,-3.4927494082391606,-5.926120163832372]\n", + "# mcmc_samples2 = [5.3116492784402105,4.96287658036718,4.693991376737534,4.978893880084266,4.807424112099266,5.043251037325479,5.002745713260297,5.128123885009591,5.236156857318935,4.964366725495933,5.045955044985327,4.534787351141534,4.848811198913965,5.101938474658217,4.5543078858271935,5.713174849187091,4.517491368358664,5.385364376960139,5.250225945883789,4.762606819723282,5.334472666462586,4.990184586242447,5.164334396044917,4.437320296889747,5.359799876411509,4.90485703102088,5.342092841875766,5.662058098167974,4.812412547378678,4.578121282412445,5.334472666462586,5.196537648598212,5.2647976336340285,5.487313588599507,5.019203854114686,5.0320044742685734,5.0433805086088395,5.4899005134725085,4.504103065811974,5.0790943510147075,5.013087850666883,5.253268239180125,5.42494892063007,5.129639063078916,5.859916124123895,5.366468610554215,5.80586120765038,4.867094368353411,4.917628691693704,5.026797167914664,5.043551017753835,4.650852575088083,4.011602618219986,5.210870559071634,5.2940441420411934,5.26663316577435,4.960208041002326,5.7731094597492385,4.733648478955986,5.2279532411414635,5.242556637955195,4.227032721216373,5.0645352359442555,5.693272327366622,4.777141880669607,5.7165904920596615,4.513469905512513,4.286172926297819,5.207536553408746,5.086598806147579,4.011602618219986,4.5854256656815835,4.860790040892319,5.207623888923657,4.757643360030338,5.0907380250272976,5.039537464575903,5.75443441893153,4.6864511105535,5.5958949477659345,5.0274767548348915,5.224168518417544,5.359412369964098,5.042543892611337,5.013756830185163,5.26751939973186,4.994800684862162,4.511301256802195,5.285257369014978,4.8475808364621304,4.874903496865409,5.122569224652865,5.590679634751843,5.466758761045749,5.4686370045862,5.352646367784651,4.8160419168025,5.248261996636317,5.436046349957406,5.011419895882324]\n", + "\n", + "import math\n", + "fig, ax = plt.subplots()\n", + "plt.rcParams[\"figure.figsize\"] = [4.5, 4.50]\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=20)\n", + "plt.rc('legend', fontsize=20)\n", + "plt.ylim(0, 18)\n", + "w = 0.1\n", + "\n", + "file = open(\"/space/poorvagarg/.julia/dev/Dice.jl/multimodal_6_256.txt\", \"r\")\n", + "hybit_data = file.readlines()\n", + "hybit_data = [float(i)*640 for i in hybit_data]\n", + "\n", + "ax.plot([i for i in np.arange(-8, 8, 0.015625)], hybit_data, color=\"purple\")\n", + "\n", + "\n", + "w = 0.1\n", + "ax.hist(mcmc_samples, bins = np.arange(-6, 6 + w, w), alpha = 0.25, color=\"red\")\n", + "ax.hist(mcmc_samples2, bins = np.arange(-6, 6 + w, w), alpha = 0.25, color=\"blue\")\n", + "\n", + "\n", + "\n", + "ax.legend([\"HyBit\", \"Stan HMC Run 1\", \"Stan HMC Run 2\"])\n", + "# ax.bar([8.0, 9.0])\n", + "\n", + "ax.set_xlabel(\"mu1\")\n", + "# ax.set_ylabel(\"pr(mu1)\")\n", + "\n", + "from matplotlib import ticker\n", + "\n", + "scale_y = 100\n", + "ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale_y))\n", + "ax.yaxis.set_major_formatter(ticks_y)\n", + "\n", + "fig.savefig(\"multimodal_mcmc_hmc.png\", bbox_inches='tight')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "MCMC- MH" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdcAAAG9CAYAAABH6zz9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxPUlEQVR4nO3deVyU5fr48c+w7ygKCIK4hFruu2aEejrqKcklLc0W5XROpzRzycxy1+Jblh1z+WmL2lExF8xSyzUhN1xAxaU0FxDEDcUBZIf5/THNJMLADMzCwPV+veYFPMv9XAPDXHMvz30rVCqVCiGEEEIYjY2lAxBCCCFqGkmuQgghhJFJchVCCCGMTJKrEEIIYWSSXIUQQggjk+QqhBBCGJkkVyGEEMLIJLkKIYQQRmZn6QBE1RQXF5Oamoq7uzsKhcLS4QghRI2mUqnIzMzE398fGxvd9VNJrlYuNTWVwMBAS4chhBC1SnJyMgEBATr3S3K1cu7u7oD6D+3h4WHhaIQQ1mL/fvXXkJDK7a+tMjIyCAwM1L736mLVyTUnJ4eIiAi+++47rl69ipeXF/3792fu3Lk0bNhQ73JiYmKIjo7m6NGjHD16lLS0NIKCgkhMTCzz+MTERJo0aVJhuaNHj2bFihXan1etWsXo0aN1Hv/CCy/w3Xff6R03oG0K9vDwkOQqhNCbq6v6q663jYr213YVdcNZbXLNzc2lT58+xMbG4ufnx8CBA0lMTGTlypVs27aN2NhYmjZtqldZb7/9NqdOndL72m5ubrz66qs6969fv57c3FxCdHzka9euHe3bty+1vVu3bnrHIIQQovqy2uQ6b948YmNj6dGjB7t27cLNzQ2ABQsWMGnSJMLDw4mOjtarrL59+zJs2DC6dOlCQEAArVq1Kvf4+vXrs2rVqjL3/fbbb3z77bc4Ozvz3HPPlXnMoEGDmDVrll6xCSGEsD5WmVzz8/NZvHgxAEuWLNEmVoCJEyfy7bffEhMTQ1xcHJ06daqwvE8++UT7/Y0bN6oU25o1awAYOHCgNNMKIUQtZZX3uR48eBClUkmzZs3o0KFDqf1Dhw4FYOvWrWaNS6VSERkZCcDLL79s1msLIYSoPqyy5qrpH+3YsWOZ+zXbExISzBYTwIEDB0hMTMTHx4e+ffvqPC4uLo7JkyeTkZFBgwYN6NOnD6GhoWaMVAghhClZZXK9evUqgM57jDTbk5KSzBYT/NUkPHz4cOzsdP9qt23bxrZt27Q/z5kzh9DQUNavX4+vr6/J4xRCCGFaVtksnJWVBYCLi0uZ+13/HEOemZlptpjy8vLYuHEjoLtJ2M/Pj1mzZnHixAmUSiU3btzgxx9/pGXLlsTExDBgwACKiooqvE5GRkaJhxBCiOrFKpNrdbR9+3bS09Np2bIlnTt3LvOYfv36MXPmTNq3b4+Hhwe+vr6EhYVx7NgxmjdvzvHjx9mwYUO514mIiMDT01P7kNmZhBCi+rHK5KoZHZydnV3m/vv37wNUOIOGMWmahCszkMnNzY1x48YBsHPnznKPnTp1KkqlUvtITk42PFghhBAmZZV9ro0aNQIgJSWlzP2a7UFBQWaJ5969e/z0008oFApGjhxZqTKCg4MBuH79ernHOTo64ujoWKlrCCGEMA+rTK7t2rUDID4+vsz9mu1t27Y1SzwbNmwgLy+PJ598stIJPT09Hfirv9jYVCoVBQUFFBcXm6R8IYR10Szokptbuf3WxsbGBjs7u3JXsjEmq0yuPXv2xNPTk0uXLnHy5MlSUwlu2rQJgLCwMLPEU5UmYY2oqChA9+1FlVVUVERaWhqZmZkUFBQYtWwhhPXS9JpduVK5/dbIxsYGFxcXPDw88PT0NOm1rDK5Ojg4MHbsWD788EPGjBnDrl27tDW+BQsWkJCQQGhoaInZmRYvXszixYsZPHgwERERRoslKSmJAwcO4OTkxLBhw8o9NiIign/961/Ur19fu62goICPPvqIjRs34uzsXO7E/oYqKioiOTmZvLw8PD09cXNzw9bWVtZ9FULw59AUdDWWVbTfmqhUKoqLi8nNzSUrK4vU1FRycnLw9fU12fuhVSZXgGnTprFnzx4OHTpEcHAwISEhJCUlceTIEby9vUusRgOQlpbG+fPny+zT/Prrr/n6668BtLW769ev0717d+0xS5cuLbNWuXbtWlQqFWFhYRV+Enr//feZPXs2nTt3JjAwkIyMDE6ePElqaipOTk6sWbPGoNV8KpKWlkZeXh6NGjXC2dnZaOUKIayfpiHLyaly+62Rq6sr9erVIz09nRs3buDg4ICXl5dJrmW1ydXJyYl9+/YRERFBZGQkW7ZswcvLi1GjRjF37txyF7F9WEpKCkeOHCmxLT8/v8Q2XfeTrl27FoCXXnqpwuvMmDGDw4cPc/78eeLj41GpVAQEBPD6668zYcIEWrRooXfMFVGpVGRmZuLp6SmJVQghHlC3bl3u37/PvXv3qFu3rklqrwqVSqUyeqnCbDIyMvD09ESpVJZYKCA/P59Lly4RGBhYYmEDIYQA0Myxo+uOxYr2W7vMzExSUlJ45JFHsLe31/s8Xe+5D7PK+1xFxTSjgm1tbS0ciRBCVD+aKWormhWvsiS51nAyeEkIIUoz9XujJFchhBDCyCS5CiGEEEYmyVUIIYQwMkmuQgghhJFJchVCVEihUKBQKJg1a5alQxHCKkhyFcIIoqOjDU5Ao0aN0p6TmJho9Jg0ZZf1cHZ2JjAwkLCwMP73v/9RWFho9OsLUZtJchWiFsrNzSUlJYVt27bx6quv0q1bN27evFmpsh78YBEdHW3cQIWwUlY7/aEQQj+dO3dm5cqVJbZlZWVx5swZFi9ezKlTp4iPj2fo0KHs37+/zDJkIjchDCPJVYgaztXVldatW5fa3r17d0aOHEnHjh35/fffOXDgAIcPH6ZHjx4WiFKImkWahYWoxZydnRkzZoz252PHjlkwGiFqDkmuQlQjaWlpODo6olAo+M9//lPh8Vu3btX2d27YsKFS12zSpIn2+7y8vDKPKWuwVmJiIgqFgt69e2u39e7du9TgqVWrVlUqLiGsmSRXIaqR+vXrM3DgQADWr19Pbm5uucdr+lK9vLy05xkqKSlJ+32jRo0qVYYQoiRJrkJUM6+99hoA9+7d4/vvv9d53O3bt9m2bRsAI0eOxNHR0eBr5eTksGTJEkDdN/vUU0/pfW7Dhg05ffo0K1as0G5bsWIFp0+fLvEYNGiQwXEJYe1kQJMQRnbr1i3OnDlT4XH37t0rc/tTTz1FUFAQSUlJrFy5khEjRpR53Jo1aygoKAAgPDxc53Xu379fKp7s7GxOnz7NkiVLOHfuHAqFgk8++YR69epVGLeGvb09rVu3Ji0tTbutSZMmZQ6eEqK2keRay6lUKgqyCywdhsnZu9ibbfm9//f//h//7//9v0qfb2NjQ3h4ODNnzmTv3r0kJycTGBhY6jhNk3CHDh1o3769zvKOHz9OmzZtdO7v27cv7733Xom+UyFE1UhyreUKsguIcIuwdBgmNzVrKg6uDpYOQ2/h4eHMnj2b4uJivv32W6ZNm1Zif1xcHKdPn9YeWxX79u3D1dWVRx55pMwkLoQwnPS5CmFkM2fORKVSVfh49dVXdZYREBBAv379AMocbauptTo6OjJy5Mhy4wkNDS117fz8fK5cucKSJUvw9PTk+++/p3v37vz++++Vf+JCCC2pudZy9i72TM2aaukwTM7exd7SIRjstdde4+eff+bSpUv8+uuvPPnkk4D6dpnIyEgABg0aRN26dQ0u297ensaNG/Pmm28SGhpKhw4dSE1N5bXXXuPAgQNGfR5C1EaSXGs5hUJhVc2ltUlYWBi+vr7cvHmTlStXapPrli1bSE9PB6reJAzQqlUrnn76aX744QcOHjzIhQsXaN68eZXLFaI2k2ZhIaope3t7XnnlFQA2btxIVlYW8FeTcKNGjQy6daY8LVu21H6v6csVQlSeJFchqjHNPa/3799n48aNpKSksHv3bgBeffVVbGyM8y/84JJzhi4/Z65R2EJYE2kWFqIaa968OSEhIezfv5+VK1eSmppKcXExCoWC0aNHG+06x48f135v6IhhJycn7fe6pk8UoraR5CpENffaa6+xf/9+9u/fz4ULFwDo1atXiTmBq2L79u3ExMQA6ukXu3btatD5fn5+2u8vXbpklJiEsHaSXIWo5oYNG8a4ceNQKpXaBc0NGchU1gxNBQUFXLt2je3bt/P1119rt0dERGBnZ9jbQqNGjQgICCAlJYVPP/2UgIAAWrRoga2tLQC+vr64u7sbVKYQ1k6SqxDVnLOzMy+++KJ21idPT0+ee+45vc+vaIYmUA+emjdvnraP11Dvv/8+b775JleuXCm1gMDKlSsZNWpUpcoVwlrJgCYhrMDLL7+s/X748OE4OztXqTxbW1u8vLzo2rUrU6ZM4dy5c7z77ruVLu+NN94gKiqKvn374uPjY3DtV4iaRv4DhDCCXr16oVKpDDpn1apVeq91+mCzrr5NwobGU9WyhgwZwpAhQ4x2TSGsmdRchbACmmXdWrdubfCAIyGE+UlyFaKa+/XXX4mNjQXgP//5j4WjEULoo9Yl15ycHGbMmEHz5s1xcnLC39+f8PBwrl27ZlA5MTExzJ49m2eeeQZvb28UCgWNGzcu95xRo0ahUCh0PpYtW1aFZyZqkqSkJC5cuMD333+vnaWpQYMGRpnuUAhherWqzzU3N5c+ffoQGxuLn58fAwcOJDExkZUrV7Jt2zZiY2Np2rSpXmW9/fbbnDp1qlJx9OvXjwYNGpTa3qJFi0qVJ2qe0NBQkpKSSmxbtGhRlQcyCSHMo1Yl13nz5hEbG0uPHj3YtWsXbm5uACxYsIBJkyYRHh5OdHS0XmX17duXYcOG0aVLFwICAmjVqpXecbz33nv06tWrEs9A1Dbu7u60bt2aDz74gGeeecbS4Qgh9FRrkmt+fj6LFy8GYMmSJdrECjBx4kS+/fZbYmJiiIuLo1OnThWW98knn2i/v3HjhvEDFrVaYmKipUMQQlRBrelzPXjwIEqlkmbNmtGhQ4dS+4cOHQrA1q1bzR2aEEKIGqbW1Fw1/aMdO3Ysc79me0JCgslj2bx5M1FRURQVFdGkSRPCwsJKLPklhBDCutWa5Hr16lUAAgICytyv2f7wIBJTWLRoUYmfp0yZwhtvvMHChQtlZhshhKgBak2zsGahaRcXlzL3u7q6ApCZmWmyGDp06MCyZcu4cOEC2dnZXL58mSVLllCnTh2WLl3K5MmTKywjLy+PjIyMEg8hhBDVS61JrtXB22+/zeuvv05wcDDOzs40adKEN998k/379+Pg4MDixYtJTk4ut4yIiAg8PT21D0PX3hRCCGF6tSa5akYHZ2dnl7n//v37ABZZGqtVq1Y8++yzFBYWsnfv3nKPnTp1KkqlUvuoKBkLIYQwv1rTwdeoUSMAUlJSytyv2R4UFGS2mB4UHBwMwPXr18s9ztHREUdHR3OEJIQQopJqTc21Xbt2AMTHx5e5X7O9bdu2ZovpQenp6cBffb9CCCGsV61Jrj179sTT05NLly5x8uTJUvs3bdoEQFhYmJkjUw9S2r59O6D7ViEhhBDWo9YkVwcHB8aOHQvAmDFjtH2soJ7+MCEhgdDQ0BKzMy1evJiWLVsyderUKl//999/Z/Xq1eTl5ZXYfvv2bYYPH05ycjLt2rWjZ8+eVb6WEEIIy6o1fa4A06ZNY8+ePRw6dIjg4GBCQkJISkriyJEjeHt7a9fM1EhLS+P8+fNl9oN+/fXXfP311wAUFBQA6v7S7t27a49ZunSptiZ648YNXnnlFd5++206d+6Mt7c3qampxMXFkZmZSUBAABs2bEChUJjq6QshhDCTWpVcnZyc2LdvHxEREURGRrJlyxa8vLwYNWoUc+fO1TnBRFlSUlI4cuRIiW35+fkltj14D2rz5s0ZP348sbGxnD59mjt37uDo6Ejz5s0JCwvj7bffpm7dulV/kkIIISxOoVKpVJYOQlReRkYGnp6eKJVKPDw8tNtzc3O5cuUKTZo0wcnJyYIRCiGqI818ObruPqxov7Wr7Hukrvfch9WaPlchhBDCXCS5CmEE0dHRKBQK7cPd3V3nhCUPysnJwdPTs8S5+qwpnJ+fz7p163jllVdo2bIl9erVw97envr169OpUyfeeOMN9uzZQ3FxcZnnN27cuMQ1//e//+n1PP/1r3+VOG/UqFF6nXf8+HGmTp1K9+7dadiwIY6Ojnh4eNCsWTOGDh3K8uXLuXfvnl5llWXUqFEl4goPD9frvLVr15Y4r3HjxhWWr+9ygJrjq7J288N/J81D87fu0aMHU6dOrXFLFBYWFnLixAmWL1/Oa6+9Rtu2bbGzszP4b2BJtarPVZRDz0XirZIFFqbPyspiy5YtvPjii+Ue98MPPxg8P/TmzZuZNGlSmW8wd+7c4c6dO8THx7Ns2TKaN2/OggULKlxofc2aNbzyyivlHpObm8vGjRsNijUpKYmxY8eybdu2Uvvy8/PJzMzk8uXLREVFMWHCBCZMmMC0adNwdnY26DoPi4qKYunSpRU2961evbpK17GUwsJC7d86NjaWhQsXsmzZsgr/htbiww8/ZNasWZYOo0qk5iqEkWne0PV549Yco2+fz9y5c3nuuee0ifXvf/87ixYtYu/evcTFxbF7924WL15Mv379sLGx4cKFC3zwwQcVxrp3715SU1PLvfbWrVtRKpV6x3r8+HG6deumTayNGzdm6tSpbN26laNHj3LgwAG+++47XnvtNerVq0dOTg4fffQR58+f16v88p5TRkYGP/zwQ7nH3bhxgz179mjPqc78/f05ffq09nH06FEiIyP5xz/+AahbQMLDwzl8+LCFIzWOB4cCOTk50b17d5o1a2bBiAwnyVUII3v22WcB2L17Nzdu3NB53K1bt9i1axcAAwcOrLDclStXMmPGDAB8fHyIjo5m165djB07lj59+tCxY0eeeuopxowZw44dOzh16hRPPfVUuWV27twZPz8/iouLiYyMLPdYzQcBfWK9ceMGAwYM4ObNm4D6Nrjz58/z0UcfMWDAALp06ULPnj154YUX+Oqrr7hy5QozZ87E3t6+wrIrovn9V/ThJjIykqKiIvz9/enSpUuVr2tK9vb2tG7dWvvo0qULI0aM4KeffmLixIkAFBUV8eGHH1o4UuPo0aMHy5YtIz4+nszMTA4fPswTTzxh6bAMIslVCCPr27cvDRo0oKioiHXr1uk8bt26dRQWFtKgQQP+/ve/l1vmtWvXtJOguLq6EhMTQ2hoaLnntG7dmp07d/LOO+/oPMbW1paRI0cC5SejtLQ0duzYAaBX0+Prr7+uTaxz585l7ty5ODg46Dze3d2dWbNmsXfvXjw9PSssvzya+Hbu3MmtW7d0Hqd5viNHjsTGxnrfCufOnaudb3zfvn06+9mtSb9+/Xj99dfp0KGD1a5xbb2vKCGqKVtbW0aMGAGUn7A0g4hefPFFbG1tyy3z888/1w6QmjNnDi1bttQrFhsbG1566aVyj3n55ZcBSEhIICEhocxj1q1bR0FBAT4+PvTt27fc8s6cOcOPP/4IQPv27Q2a4SwkJIQmTZrofXxZ+vXrh7e3N4WFhXz33Xc6Y9RMg6p5/tbKxcWFpk2bAupVv+7cuVNi/4OD7SoaLKc5rqz+zlmzZmn3g7oPfv78+XTs2BF3d3fc3d3p2rUrixcvprCw0CjPzZpJchXCBDRv2CdOnODs2bOl9p87d067WERFb+4qlYpvv/0WUNda//Wvfxk11rZt22oXrND1YUCzfcSIERXWJFauXKn9/q233qrwg4Ox2dnZVfjhRvPBpl27drRp08ZssZnKg60Cxmhar8jNmzfp0aMH7777LidOnCArK4usrCyOHTvGW2+9xZAhQ2pEDboqJLkKYQIdOnSgVatWQNlv8JptrVu3pn379uWWdfbsWdLS0gB1zc4Uaw5rEnxkZGSpN8Xz589z7NixEseVJyYmRvt9RaOUTUUT5/Hjx/n9999L7Huwf9naa62gHjn8xx9/AODp6UmdOnVMfs0hQ4Zw7tw5xo0bx+7du4mLiyMyMpJHH30UUA9+++qrr0weR3UmyVUIE9H0/UVGRpYY/ahSqVi7dm2JY8pz6tQp7fcPLixhTCNHjsTW1pbU1FT27t1bYp/mg8Bjjz2m1/U1TcsNGzbE19fX+MHqoXPnzto3+oc/3Pzyyy9cu3atRH+zIS5cuMCZM2cqfJjLF198oe0yGDp0qFmueezYMXbu3MnChQt56qmn6NixIyNGjODAgQPav/nSpUvNEkt1JclVCBPRDJRJTk4u0dcVHR1NcnIyNjY2Fd4HC5ToQ/Px8TFFqPj5+fG3v/0NUN/zqqFSqbQ/61PLy8jI0C5kYapY9aWJd+3atSU+3GiS7VNPPUWDBg0MLrdfv360adOmwocp5eTkcObMGSZPnsyUKVMA9e/7/fffN+l1Nd56660yJ8fw8vJi9OjRAJw+fRqlUmmWeKojSa5CmEjDhg3p3bs3ULL2pPm+T58+NGzYsMJyMjWTvKLuczUVTTLavHmztia0f/9+kpKSsLGx0auWZ65Y9TFy5EgUCgVJSUns378fUA/42bx5M2BdTcJJSUklZmhycXGhTZs2fPrppxQWFtKrVy/27dunHdhkauW9FjStGyqViitXrpglnupIkqsQJqRp9o2KiiInJ4ecnBw2bdpUYl9FHuxjfXAdYmMbMmQIbm5uZGVl8f333wN/Dfzp1asXgYGBFZZhrlj10ahRI23tSvOBZvPmzWRlZeHm5sbgwYMrVe6VK1dQqVQVPszF09OTMWPG8Nhjj5ntmuWNVvfy8tJ+/+CHrdpGkqsQJjRkyBBcXFy0MwZt2bKFzMxMXF1dGTJkiF5l1KtXT/u95t5RU3BxcdHGtHr1anJzc7UfBPSt5Xl4eGhHq5oyVn1p4t64cSO5ubnaJPvcc8/h4uJiydAM8vAMTb/88gsff/wxDRo0QKlU8vzzz7N+/XqzxVPe7+7Be4aLiorMEU61JMlVCBN6sIa0evVq7Zv74MGD9W42bdeunfZ7ze07pqJJRnv27GH58uUolUpcXFx47rnn9C5Dc1tPamqqxRPs0KFDcXZ2RqlU8uWXX2oHa1lTkzCUnqGpd+/evPvuu8TFxdGwYUNUKhX//ve/uXr1qqVDFX+S5CqEiWmaf3ft2sXu3btLbNNHq1atqF+/PqDuAzV0on9DaPqBi4qKeO+99wAYNGiQQbf/PDhz1Pbt240eoyHc3d0ZNGgQAFOmTKGoqIiAgABtX7i18/f3Z9myZYB6MFlZ80g/WJMs795TSzfj1zSSXIUwsb/97W/4+flRWFhIYWEh/v7+2pG5+lAoFLz66quA+g3w66+/NlWoJQYu5ebmAobX8h5chm7RokUWn0xAE7/m+Vj7dIcPGzBggHbe3cjISM6dO1di/4MfjNLT03WWc+HCBdMEWEvVnFeYENWUra0tL7/8Mo6Ojjg6OvLyyy8b/OY+YcIEbT/XjBkzSk2MoEtxcbH2nlp9PRhrYGBghfMeP6xNmzbayfNPnjzJRx99pPe5Bw4cMPoI0759+xIYGFji91/TTJ8+HVD/vR+evP/BNWqPHz+us4zy5sEWhpPkKoQZfPzxx+Tm5pKbm8v//d//GXx+w4YNWbx4MaCuvYaGhpaYCaks586do3///syfP9+ga7Vu3Vob69WrVys1feHy5cu1kwlMnz6dGTNmkJ+fr/P4+/fvM3v2bPr06WP0eyNtbW25evWq9jlpZs6qSfr27Uvnzp0BWL9+PRcvXtTuq1u3rrYffOXKldy9e7fU+QcOHGDhwoXmCbaWsM7lBoSohUaPHk1KSgozZszg1q1b9OrVi759+zJw4EAeffRR6tSpw927d7lw4QLbt29nx44dFBUVlRgQZS4NGjRg27Zt2mXn5s6dy+rVq3nxxRfp2bMnPj4+5Ofnc+3aNX755ReioqK4ffu22eOsST744AMGDx5MUVERERERfPPNN9p9Y8aM0a5UFBISwvTp0wkIaEF6+l327dvO0qVL6dy5M4cOHbLgM/hLVlaWdqS6xoMfGDZt2qQdhwDqBSIqmkbU3CS5CmFFpk+fTqtWrZg0aRKJiYns2rVLuyZsWVq1asUnn3xixgj/0rlzZ44cOcKYMWPYvn07iYmJ5TYRu7q6MnnyZO20hcIwAwcOpFWrVpw9e5bVq1czc+ZMGjVqBMBrr73Gzz//zJYtWzh37px2YQONNm3aEBUVhZ+fnyVCLyUtLU0701NZJk+eXOLnmTNnVrvkKs3CQliZIUOGcP78edauXctLL71EixYtqFu3LnZ2dnh5edGxY0fefPNNfvnlF06fPl3hEnGmFBQUxLZt2zh69ChTpkyha9eu+Pn54eDggJubG02bNmXo0KF8+eWXpKamMnPmTO3apMIwCoVCO/1hQUEBH3/8sXafjY0NmzZtYsmSJXTp0gVXV1dcXV1p3botH374IUeOHKnUVJBCN4XKnFOJCKPLyMjA09MTpVKJh4eHdntubi5XrlyhSZMmODk5WTBCIUR1pJk8SdddVhXtt3aVfY/U9Z77MKm5CiGEEEYmyVUIIYQwMkmuQgghhJFJchVCCCGMTJKrEEIIYWSSXIUQQggjk+QqhBBCGJkkVyGEEMLIrDq55uTkMGPGDJo3b46TkxP+/v6Eh4dz7do1g8qJiYlh9uzZPPPMM3h7e6NQKEqsJPGwgoICdu3axdixY2ndujUuLi44Ozvz6KOP8s477+icI3XVqlUoFAqdj+HDhxsUtxBCiOrJaucWzs3NpU+fPsTGxuLn58fAgQNJTExk5cqVbNu2jdjYWJo2bapXWW+//TanTp3S+9oxMTH069cPUC/n9I9//IOCggIOHz7MZ599xtq1a4mOjqZFixZlnt+uXbsy58Hs1q2b3jEIIYSovqw2uc6bN4/Y2Fh69OjBrl27cHNzA2DBggVMmjSJ8PBwoqOj9Sqrb9++DBs2jC5duhAQEFDhklQ2NjY8//zzTJo0ia5du2q3K5VKXnjhBXbu3Mno0aN1rjAxaNAgZs2apVdsQgghrI9VJtf8/Hzt2pZLlizRJlaAiRMn8u233xITE0NcXBydOnWqsLwHVw25ceNGhcf36dOHPn36lNru6enJihUraNiwIYcPHyYpKYmgoCB9npIQQogaxCr7XA8ePIhSqaRZs2Z06NCh1P6hQ4cCsHXrVnOHhr+/P97e3gCkpqaa/fpCCCEszyprrpr+0Y4dO5a5X7M9ISHBbDFp3Lt3j/T0dACdSzjFxcUxefJkMjIyaNCgAX369CE0NNScYQohhDAhq0yuV69eBSAgIKDM/ZrtSUlJZotJY8mSJRQWFtKmTRuaNGlS5jHbtm1j27Zt2p/nzJlDaGgo69evx9fX11yhCiGEMBGrbBbOysoCwMXFpcz9rq6uAGRqFiQ0kxMnTjBv3jyAEgsVa/j5+TFr1ixOnDiBUqnkxo0b/Pjjj7Rs2ZKYmBgGDBhAUVFRudfIy8sjIyOjxEMIIUT1YpXJtTq6efMmQ4YMITc3l/Hjx/OPf/yj1DH9+vVj5syZtG/fHg8PD3x9fQkLC+PYsWM0b96c48ePs2HDhnKvExERgaenp/YRGBhoqqckhBCikqwyuWpGB2dnZ5e5//79+wC4u7ubJZ7MzEyefvppEhMTGTZsGJ999plB57u5uTFu3DgAdu7cWe6xU6dORalUah/JycmVjlsIIYRpWGWfa6NGjQBISUkpc79muzlug8nNzeXZZ58lPj6evn37smbNGmxsDP/MEhwcDMD169fLPc7R0RFHR8dKxSqEEMI8rLLm2q5dOwDi4+PL3K/Z3rZtW5PGUVhYyAsvvEB0dDSPP/44mzdvxsHBoVJlaUYYa/qLhRBCWC+rTK49e/bE09OTS5cucfLkyVL7N23aBEBYWJjJYlCpVIwePZoff/yR9u3bs3379iolxqioKED37UWieouOji4xT7S7u7vObosH5eTk4OnpWeJcfWYWy8/PZ926dbzyyiu0bNmSevXqYW9vT/369enUqRNvvPEGe/bsobi4uMzzGzduXOKa//vf//R6nv/6179KnDdq1Ci9zjt+/DhTp06le/fuNGzYEEdHRzw8PGjWrBlDhw5l+fLl3Lt3T6+yyjJq1KgScYWHh+t13tq1a0ucp2tO8QfLT0xM1KtszfG9evXS70mU4eG/k+ah+Vv36NGDqVOn6h2TtVAqlaxdu5bRo0fTrl07PD09sbe3x9vbm969e/PZZ59V6fViDlbZLOzg4MDYsWP58MMPGTNmDLt27dImtgULFpCQkEBoaGiJ2ZkWL17M4sWLGTx4MBEREVWOYfz48axZs4aWLVuya9cu6tSpU+E5ERER/Otf/6J+/frabQUFBXz00Uds3LgRZ2dnRo8eXeXYKkPPmSKtUhXe2yotKyuLLVu28OKLL5Z73A8//GDwiO/NmzczadKkMt9Q79y5w507d4iPj2fZsmU0b96cBQsW8Mwzz5Rb5po1a3jllVfKPSY3N5eNGzcaFGtSUhJjx44tceuZRn5+PpmZmVy+fJmoqCgmTJjAhAkTmDZtGs7OzgZd52FRUVEsXboUJyenco9bvXp1la5jKYWFhdq/dWxsLAsXLmTZsmUV/g2twc8//8zgwYPJy8srtS8tLY3o6Giio6P59NNPiYyMpHfv3haIsmJWmVwBpk2bxp49ezh06BDBwcGEhISQlJTEkSNH8Pb2ZsWKFSWOT0tL4/z582X2aX799dd8/fXXgDrZgbrvs3v37tpjli5dqq1V/vDDD3zxxRcABAYGMnny5DJjfO+992jZsqX25/fff5/Zs2fTuXNnAgMDycjI4OTJk6SmpuLk5MSaNWto2LBhFX4rojpwcnIiNzeX1atXV5hcNW/umnMqMnfuXGbMmKH9+e9//zvPPvssjz32GHXq1OHu3bucP3+erVu3snv3bi5cuMAHH3ygM7lqrrt3715SU1Px9/fXee2tW7eiVCr1jvX48eMMGDCAmzdvAupa2IgRI3j88cfx9fUlPz+flJQU9uzZw/fff8+dO3f46KOPGDZsWJkLW+jLycmJjIwMfvjhB1544QWdx924cYM9e/Zoz9HnOVmKv79/icGOOTk5XLx4kdWrV/Pzzz+Tk5NDeHg4wcHB9OjRw4KRVt2dO3fIy8vDxsaGv//97/Tv35927dpRp04dUlJSWLt2LevXr+fGjRsMGDCAgwcPVun1YipWm1ydnJzYt28fERERREZGsmXLFry8vBg1ahRz587VOcFEWVJSUjhy5EiJbfn5+SW2PVi70PSPAuzevVtnuaNGjSqRXGfMmMHhw4c5f/488fHxqFQqAgICeP3115kwYYLOVXSEdXn22WfZsGEDu3fv5saNGzpn6rp16xa7du0CYODAgaxfv77ccleuXKlNrD4+PmzYsKHMmb2eeuopxowZw5kzZ5gwYYLOJRABOnfuzKVLl7h+/TqRkZG88847Oo/VfBDQJ1bNG58msU6bNo3p06eXOSbhhRdeYMGCBXz22Wd89NFH5ZarD83vf/Xq1eUm18jISIqKivD396dZs2bs37+/ytc2FXt7e1q3bl1iW5cuXRgxYgSTJk1iwYIFFBUV8eGHH5bZSmBN7O3tef3113n//fe1g1c1OnToQFhYGD179mTcuHFkZ2czceJEfvnlFwtFq5tV9rlqODs7M2fOHC5evEheXh7Xr19n5cqVZSbWWbNmoVKpWLVqlc595T0e7DcZNWpUhcc/fA7A7Nmz2bVrF0lJSWRnZ5OTk8Mff/zBsmXLJLHWIH379qVBgwYUFRWxbt06ncetW7eOwsJCGjRowN///vdyy7x27Rpjx44F1IPeYmJiKpwys3Xr1uzcubPchGlra8vIkSOB8ptI09LS2LFjB4BeTY+vv/66NrHOnTuXuXPnljvYz93dnVmzZrF37148PT0rLL88mvh27tzJrVu3dB6neb4jR46s1Aj/6mLu3LnaOwj27duns5/dWrzwwgssW7asVGJ90FtvvUXnzp0B9RKgaWlp5gpPb9b7ihLCEJmZ6ocZ2NraMmLECKD8hKUZRPTiiy9ia2tbbpmff/65doDUnDlzSrSIlMfGxoaXXnqp3GNefvllQD0Xt675uNetW0dBQQE+Pj707du33PLOnDnDjz/+CED79u2ZOnWqXrEChISE6Jw2VF/9+vXD29ubwsJCvvvuO50xagZDap6/tXJxcdGuXZ2dnc2dO3dK7H9wsF1Fg+U0x5W1JOasWbO0+0HdBz9//nw6duyIu7s77u7udO3alcWLF1NYWGiU51YeTeWluLiYK1eumPx6hpLkKoQJaN6wT5w4wdmzZ0vtP3funPaWsYre3FUqFd9++y2grrX+61//Mmqsbdu21d62puvDgGb7iBEjsLMrvzdp5cqV2u/feuutCj84GJudnV2FH240H2zatWtHmzZtzBabqTzYKmBvb2/y6928eZMePXrw7rvvcuLECbKyssjKyuLYsWO89dZbDBkyxOQ16AcHPJn7NaYPSa5CmECHDh1o1aoVUPYbvGZb69atKxyMcfbsWW2zV0hIiElmHtMk+MjIyFJviufPn+fYsWMljitPTEyM9vuKRimbiibO48eP8/vvv5fYV1xcTGRkZInjrFlhYSF//PEHoF5TWp87F6pqyJAhnDt3jnHjxrF7927i4uKIjIzk0UcfBdSD37766iuTxqB5ndnb2/PII4+Y9FqVIclVCBPR9P1FRkaiUqm021UqFWvXri1xTHk0SywCJW4vM6aRI0dia2tLamoqe/fuLbFP80Hgscce0+v6mqblhg0bWmyVp86dO2vf6B/+cPPLL79w7dq1Ev3Nhrhw4QJnzpyp8GEuX3zxhbbLYODAoWa55rFjx9i5cycLFy7kqaeeomPHjowYMYIDBw5o/+ZLly412fW3b9+ufZ3169cPDw8Pk12rsiS5CmEimoEyycnJJfq6oqOjSU5OxsbGpsJbdYASfWg+Pj6mCBU/Pz/+9re/Aep7XjVUKpX2Z31qeRkZGdrb2UwVq7408a5du7bEhxtNsn3qqad0juQuT79+/WjTpk2FD1PKycnhzJkzTJ48mSlTpgDg7e3DpEnvm/S6Gm+99VaZk2N4eXlp79U/ffo0SqXS6Ne+e/cuY8aMAdTNwXPmzDH6NYxBkqsQJtKwYUPtDe4P1p403/fp00ev+5ofXDrRlNNjapLR5s2btTWh/fv3k5SUhI2NjV61PHPFqo+RI0eiUChISkrS3maTnZ3N5s2bAetqEk5KSioxQ5OLiwtt2rTh008/pbCwkF69erF9+z6aNGlqlnjKey1oWjdUKpXRBxoVFRUxcuRI7Vrd06ZNo0OHDka9hrFIchXChDTNvlFRUeTk5JCTk6OdnlPf2XQe7GPVrPhkCkOGDMHNzY2srCy+//574K+BP7169dJreUNzxaqPRo0aaWtXmg80mzdvJisrCzc3NwYPHlypcq9cuaLXrXjm4unpyZgxY2jZ8jGzXbO80epeXl7a7429pvabb76pvSVswIABTJ8+3ajlG5MkVyFMaMiQIbi4uGhnDNqyZQuZmZm4uroyZMgQvcqoV6+e9nvNvaOm4OLioo1p9erV5Obmaj8I6FvL8/Dw0I5WNWWs+tLEvXHjRu2sWQDPPfccLi4ulgzNIP7+/pw+fVr7+OWXX/j4449p0KABSqWS559/nqio8if2MKbyfncP3jNcVFRktGtOnTqVL7/8ElAP7NuwYUO1HCWsYdQZmi5fvkxcXByXL1/mxo0b3L9/H3t7e+rUqUOjRo1o1aoVHTt2tKoXtRBVoakhrV27ltWrV2trNIMHD9a72VSzChToXgnKWF5++WX+97//sWfPHpYvX45SqcTFxYXnnntO7zLatm1LXFwcqamp3Lx502KDmgCGDh3KmDFjUCqVfPnll9rBWtbUJAxlz9DUu3dvXnrpJbp27cq1a9d4++1/07VrDx57TPfkC9bq448/5v/+7/8A9eIm27Ztq/L806ZW5eS6b98+1q1bx44dO7h27VqFx9vb29OjRw8GDx7M8OHDLT7oQQhTe+WVV1i7dq12qkPNNn21atWK+vXrk5aWxv79+8nIyDDZ6EhNP/C1a9d47733ABg0aJBBt/+EhoYSFxcHqEd16rtCjSm4u7szaNAg1q1bx5QpUygqKiIgIKDaTvZuKH9/f5YtW0ZYWBgZGRnMmfMB331XcnT0gzXJ8u49tXQzvi5Lly7VvhYfffRRdu7cWS1HBz+sUs3COTk5/Pe//+WRRx7hqaee4ptvviElJUWvfoj8/HxiYmKYMGECgYGBjBgxgqNHjxr7eQlRbfztb3/Dz8+PwsJCCgsL8ff3147M1YdCoeDVV18F1G+AmkUmTOHBgUuaiewNreU9uAzdokWLLD4dnyZ+zfOx9ukOHzZgwACeeOIJADZujOTcuXMl9j/4wejBedEfduHCBdMEWAWrV6/WTvvZtGlT9uzZU2JVserMoFdYUVER//3vf2nSpAmTJk3i8uXLqFQqGjduzPDhw1mwYAExMTH89ttv3Lx5k/z8fJRKJVeuXCE+Pp7vvvuOSZMmERISgqOjIwUFBaxfv54ePXowYMCAUi8KIWoCW1tbXn75ZRwdHXF0dOTll182+M19woQJ2u6UGTNmlJoYQZfi4mLtPbX6ejDWwMDACuc9flibNm149tlnATh58qRBk/EfOHDA6CNM+/btS2BgYInff02jGdhTXFzMhx9+WGLfg2vUHj9+XGcZ5c2DbQmbN29m9OjR2gVO9u7dW+6qTdWNQf/hrVq1YtKkSdy6dQt/f38mTpxIXFwcly5dIjIykvHjxxMSEkKLFi3w9vbGzs4Od3d3goKCaN++Pc8//zzz588nJiaGW7dusWrVKvr27YuNjQ0//fQT7du3L3GPnRA1xccff0xubi65ubnaviNDNGzYkMWLFwPq2mtoaGiJmZDKcu7cOfr378/8+fMNulbr1q21sV69erVSg0aWL1+u7WudPn06M2bMID8/X+fx9+/fZ/bs2fTp08fo90ba2tpy9epV7XPSzJxVk/Tt25cOHdQT2a9fv56LFy9q99WtW1c7veXKlSu5e/duqfMPHDjAwoULzROsHnbt2sWIESMoKirCx8eHPXv26FzIvroyqM/1woULPPbYY3zwwQe88MILVWpacXNz45VXXuGVV17h6tWrfPjhh3z77bdcvny50mUKUZONHj2alJQUZsyYwa1bt+jVqxd9+/Zl4MCBPProo9r1XC9cuMD27dvZsWMHRUVFJQZEmUuDBg3Ytm2bdtm5uXPnate37dmzJz4+PuTn53Pt2jV++eUXoqKiyl0aT1Rs8uQPePHFwRQVFREREcE333yj3TdmzBjtSkUhISFMnz6dgIAWpKffZd++7SxdupTOnTtz6NAhCz4DtdjYWAYPHkx+fj729vZ8/vnnFBQUlDvrVUBAgFmmfTSEQcl1w4YNPPfcc9pVEYylUaNGLF++nOnTp5OcnGzUsoWoSaZPn65tQUpMTGTXrl0lBko9rFWrVnzyySdmjPAvnTt35siRI4wZM4bt27eTmJhYbhOxq6srkydP1k5bKAzzzDMDefTRVvz221lWr17NzJkztcu2vfbaa/z8889s2bKFc+fOaRc20GjTpg1RUVH4+flZIvQSduzYoZ3EpKCgQK/JS1auXFmir786MKjqOXToUKMn1gcFBATQo0cPk5UvRE0wZMgQzp8/z9q1a3nppZdo0aIFdevWxc7ODi8vLzp27Mibb77JL7/8wunTpytcIs6UgoKC2LZtG0ePHmXKlCl07doVPz8/HBwccHNzo2nTpgwdOpQvv/yS1NRUZs6cqV2bVBhGoVBopz8sKCjg448/1u6zsbFh06ZNLFmyhC5duuDq6oqrqyutW7flww8/5MiRI5WaClLoplCZcyoRYXQZGRl4enqiVCpLDE/Pzc3lypUrNGnSBCcnJwtGWE1oZooxwYoyQlQHhr7EKzq+pv/LVPY9Utd77sNqznh0IYQQopqQ5CqEEEIYmcWS68GDBwkPD+ef//ynpUIQQgghTMJiyfXixYusWrWKVatWWSoEIYQQesrM/KsfVlRMmoWFEEIII5PkKoQQQhiZwavi/Prrr0a5sL5zowohhBDWxuDk2qtXL5NOJCGEEEJYu0qv5ypzTwghhBBlMzi5Ojg4UFBQQNu2bRk8eHClL3zy5El++OGHSp8vhBBCVFcGJ9e2bdty/Phx7O3tmTlzZqUv/O2330pyNQNpYRBCiNJM/d5o8GjhLl26AHD69Oly12cUlqVZDrC4uNjCkQghRPVTVFQEUKWlU8tjcKldu3YF1KsunDx50tjxCCOxs7PDxsaG3NxcS4cihBDVTnZ2Nra2ttjb25uk/EonV4Bjx44ZNRhhPDY2Nri4uJCVlWXpUIQQolpRqVRkZGTg7u5usrtfDE6uLVu2ZNWqVaxYsaJEojXUq6++SnFxsbZqXp3l5OQwY8YMmjdvjpOTE/7+/oSHh3Pt2jWDyomJiWH27Nk888wzeHt7o1AoaNy4sWmCBjw8PMjOziY9Pd1k1xBCCGuiUqlITU2loKAAT09Pk11H1nOtQG5uLr179yY2NhY/Pz9CQkJITEzk6NGjeHt7ExsbS9OmTfUqq3379pw6darEtqCgIBITEysdX0VrC964cYP09HTc3d3x9PTEzs6udt6nfP+++qurq2XjEMJEDH2JV3T8w/ut+V9IpVJRVFREdnY2GRkZFBQUEBAQgHslFqvVdz3XSt/nWlvMmzeP2NhYevTowa5du3BzcwNgwYIFTJo0ifDwcKKjo/Uqq2/fvgwbNowuXboQEBBAq1atTBi5mq+vLw4ODty7d4+UlBSTX6/a0vQ9y8LxooYy9CVe0fEP768J/0K2trbaioaLi4tJryU113Lk5+fj4+ODUqkkPj6eDh06lNjfrl07EhISOH78OJ06dTKo7Bs3buDn52fymquGSqWisLDQKprhTeLoUfXXKnRlCFGdGfoSr+j4h/db+7+QjY0N9vb2VW65k5qrERw8eBClUkmzZs1KJVaAoUOHkpCQwNatWw1OruamUCiwt7c32ci4ak9zS5I1f+wWohyGvsQrOv7h/fIvZBijJNerV69W6fxGjRoZIwyj0/SPduzYscz9mu0JCQlmi0kIIUT1Z5Tk2qRJk0qfq1AoKCwsNEYYRqf50BAQEFDmfs32pKQks8UkhBCi+jNKcq2p3baae0R1dXy7/jlsLjMz02wx5eXlkZeXp/05IyPDbNcWQgihH6Mk15UrV1Z4zP3797lw4QJRUVFcu3aNnj178tprrxnj8rVKREQEs2fPtnQYNYdmpHevXpaMQghRwxglub766qt6Hzt//nwmTJjA//t//4+ePXvyf//3f8YIwSQ0t91kZ2eXuf/+nzd+VeZeqcqaOnUqEydO1P6ckZFBYGCg2a4vhBCiYmYfLWxvb8/ixYv57bffmD9/Pr1796Zfv37mDkMvmoFWuu4P1WwPCgoyW0yOjo44Ojqa7XpCCCEMZ5rlAPTw+uuvo1KpWLRokaVCqFC7du0AiI+PL3O/Znvbtm3NFpMQQojqz2LJNTg4GIDjx49bKoQK9ezZE09PTy5dulTmCkCbNm0CICwszMyRCSGEqM4sllyVSmWJr9WRg4MDY8eOBWDMmDHaPlZQT3+YkJBAaGhoiQkkFi9eTMuWLZk6darZ4xVCCFE9WGyGpm+//RYAPz8/S4Wgl2nTprFnzx4OHTpEcHAwISEhJCUlceTIEby9vVmxYkWJ49PS0jh//jzXr18vVdbXX3/N119/DajXwwW4fv063bt31x6zdOlSnZNWCCGEsA5mT65//PEHn332Gd9++y0KhYKnn37a3CEYxMnJiX379hEREUFkZCRbtmzBy8uLUaNGMXfuXJ0TTJQlJSWFI0eOlNiWn59fYpvctyqEENbPKBP367PkWnFxMffu3dNOuKBSqfD19SU+Pr7a116rM30nka71dN3PKve5ihrC0JdyRcc/vF/+VdTMOnF/ZVZ16dGjBytWrJDEKoQQosYx2yQSNjY2uLu706RJE0JDQ2nfvr0xLi2EEEJUO2ab/lAIIYSoLSx2K44QQghRU0lyFUIIIYxMkqsQQghhZEa/z/XUqVPs37+fy5cvk5mZSVFRUbnHKxQKvvnmG2OHIYQQQliM0ZLrb7/9xj//+c9SkySUR6VSSXIVQghR4xgluV6+fJknnniCe/fuoZmTwt3dnTp16mBjIy3PQgghahejJNcZM2aQnp6OjY0N77zzDm+88QaNGzc2RtFCCCGE1TFKct2zZw8KhYLx48fz8ccfG6NIIYQQwmoZpc1WM9n8c889Z4zihBBCCKtmlOQaGBgIgJ2dxVawE0IIIaoNoyTXfv36AXD06FFjFCeEEEJYNaMk10mTJuHu7s78+fO5e/euMYoUQgghrJZRkmtQUBCbN2/m7t27PP744+zevdsYxQohhDCxa8eusbjFYn4Y/QNGWN5b/MlonaR9+vThxIkTPP744/Tv35+6devyyCOP4OLiUu55CoWCvXv3GisMIYQQeirOL2TLm1u4c+EOdy7cISg0iPaj2ls6rBrBaMn10KFDvPzyy6SlpaFSqbh79265fbAKhUI7Q5MQQgjzux1zjrTf0rQ///LBL7R7pR0KG3lfriqjJNdz587Rr18/srOzUalUODk5ERwcLDM0CSFENXbvVCIA3cZ34+SKk2SmZnL9xHX8O/lbNrAawCjJdfbs2dy/fx9HR0c+++wzwsPDcXJyMkbRQgghTESZcBWApn9ryu2zt7m8+zKpx1MluRqBUaqVBw8eRKFQ8P777/Pmm29KYhVCiGou/959cpLvABD4eCD+ndUJ9XrcdUuGVWMYJbmmp6cD0L9/f2MUJ4QQwsQyziQD4N3KG2cvZ21yTT2easmwagyjJNeAgACACtduFUIIUT0oz6ibhBs90QgAv05+ANw6c4vC3EKLxVVTGCW5hoWFAfDrr78aozghhBAmlp14GwC/juqk6tnIE5f6LhQXFHPz9E1LhlYjGCW5Tp48GR8fH+bPn09iYqIxihRCCGFCOSnq2fS8gr0A9e2Rmtrr9Xjpd60qoyRXX19fdu7ciYeHB926deOrr77i3r17xihaCCGEkRUVFJFzXT1Wpl5wPe32+o/WB+DuRZnGtqqMcitO06ZNAcjOzub27dv85z//4Y033qB+/fp6zdB06dIlY4QhhBBCD/cS70GxChtHO9z93bXb6zatq95/+R4+FoqtpjBKcn24KVilUqFSqbh161aF58oMTUIIYV53/1DXTJ0bepWYjaluE3VyTb+SLsm1ioySXF999VVjFCOEEMIM7vyhvr/VuWG9Ets1Ndf0y+lmj6mmMUpyXblypTGKEaK06Gj11169auf1hTABTfJ08q9bYnudxnUAyFPmUZCZg727s7lDqzFk4l8hhKhlMpIzAHDy9Syx3d7FHrcGbgDkpkrttSqsOrnm5OQwY8YMmjdvjpOTE/7+/oSHh3Pt2jWDy0pPT+ftt98mKCgIR0dHgoKCGD9+fJmjnhMTE1EoFBU+wsPDS5y3atWqco8fPnx4ZX8VQgiht4wUdXJ19PYotU/TNJx7XZJrVRhtyTlzy83NpU+fPsTGxuLn58fAgQNJTExk5cqVbNu2jdjYWO0o5oqkpaXRo0cPLl68SNOmTRk0aBBnz55l4cKF/Pzzzxw+fBgvLy/t8W5ubuX2M69fv57c3FxCQkLK3N+uXTvat29fanu3bt30ilcIIapCU3N19PEsta9OkzokH0om5/o9M0dVsxiUXBcsWMAbb7yBs7Np2uGPHz9OWlqaXnMUz5s3j9jYWHr06MGuXbtwc3PTxjhp0iTCw8OJ1vSXVWD8+PFcvHiRIUOGsH79euzs1L+WcePGsWjRIiZOnMiqVau0x9evX7/Ezw/67bff+Pbbb3F2dua5554r85hBgwYxa9YsvWITQghjKsovIutmFiA1V1MyqFn4nXfeoWnTpnz66afcv3/faEEcPnyYp59+mm7dupW7wLpGfn4+ixcvBmDJkiXaxAowceJE2rZtS0xMDHFxcRWWdf36ddatW4eDgwNLly7VJlaA+fPn4+3tzZo1a/S6rQhgzZo1AAwcOBAPj9IvXCGEsKTM1ExQgcLeFvs6pech8AxS12bzbinNHVqNYlByDQkJ4ebNm0yZMgVfX19GjhzJ9u3bKzVh/+XLl5k3bx6PPfYYTzzxBDt27MDDw4NOnTpVeO7BgwdRKpU0a9aMDh06lNo/dOhQALZu3VphWTt27KC4uJiQkBB8fX1L7HN0dCQsLIyioiJ++umnCstSqVRERkYC8PLLL1d4vBBCmJsyWZ00Hb09ypxnwN1PPalE/p0ss8ZV0xjULBwTE8PGjRuZMWMG58+f57vvvuO7777D1dWVjh070qVLFzp06ICPjw9169albt265OTkcPfuXdLT07lw4QLHjh3j6NGjXL2qXpFBpVLh6OjImDFj+OCDD6hbt24FUcCpU6cA6NixY5n7NdsTEhKMUtaKFSv0KuvAgQMkJibi4+ND3759dR4XFxfH5MmTycjIoEGDBvTp04fQ0NAKyxdCiKrS9reW0SQM4OanbgnMu5NptphqIoMHNA0bNoyhQ4eyceNGFi5cyOHDh8nKyuLXX39l//79epWhUqkAaNCgAaNHj+Y///kPgYGBesegScyape4eptmelJRk1rI0TcLDhw8v0bz8sG3btrFt2zbtz3PmzCE0NJT169eXqj0LIYQxaWuuZQxmgr9qrgXKbFRFxVj5TSUWU6nfmkKh4Pnnn+fgwYP89ttvzJ49m169euHk5KSd+lDXo0mTJrz66qts3ryZ5ORkPvzwQ4MSK0BWlrq5Qte8xa6urgBkZlb8yctYZeXl5bFx40ZAd5Own58fs2bN4sSJEyiVSm7cuMGPP/5Iy5YtiYmJYcCAARU2sefl5ZGRkVHiIYQQ+irvNhwAF28X9ZSIxSry7xlvbE1tU+VbcVq0aMH06dOZPn06hYWFnDhxgpSUFG7fvs3du3dxcnLC29sbb29v2rRpg5+fnzHirna2b99Oeno6LVu2pHPnzmUe069fP/r166f92cPDg7CwMHr37k2nTp04fvw4GzZsYMSIETqvExERwezZs40evxCidtBOIOFTdnK1sbXB1ceVrBtZf/a7upd5nCifUe9ztbOzo0uXLnTp0sWYxZaiGR2cnZ1d5n7NSGZ394pfFMYqS9MkXJmBTG5ubowbN46xY8eyc+fOcpPr1KlTmThxovbnjIwMg2v+QojaS5NcHXTUXEHd76pOrplAzawQmZpVTiLRqFEjAFJSUsrcr9keFBRklrLu3bvHTz/9hEKhYOTIkRVesyzBwcGA+tag8jg6OuLo6FipawghhKZZ2ElHnyuo+11vnLhB/l0ZMVxZRumptrGxwc7Ojk8++cQYxVWoXbt2AMTHx5e5X7O9bdu2Zilrw4YN5OXlERISoldCL0t6uvqGbU0frxBCGFthXiH3b6lb43T1ucJfI4YluVaeUZKrg4MDKpVK53R/xtazZ088PT25dOkSJ0+eLLV/06ZNAISFhVVYVv/+/bGxsWH//v2lJorIy8tj69at2Nra8vTTT+ssoypNwhpRUVGA7luChBCiqrJuqJOlrYMtdh66Z9rTTN6fL7fjVJpRkqu/vz9AubefGJODgwNjx44FYMyYMSVmi1qwYAEJCQmEhoaWmJBi8eLFtGzZkqlTp5Yoy8/PjxEjRpCfn8+bb75JYWGhdt+7777L7du3eemll/DxKXvp4KSkJA4cOICTkxPDhg0rN+6IiAjS0tJKbCsoKGD27Nls3LgRZ2dnRo8erd8vQQghDKSptbr6uJY5gYSG1FyrzijZ8Mknn2T16tXExcWZfDCTxrRp09izZw+HDh0iODiYkJAQkpKSOHLkCN7e3qxYsaLE8WlpaZw/f77MPs3//ve/xMbGEhUVpR3te/bsWc6cOUNwcDALFizQGcfatWtRqVSEhYXh6am7DwPg/fffZ/bs2XTu3JnAwEAyMjI4efIkqampODk5sWbNGho2bFi5X4gQQlQg+7Z64KaLd9m3HmpoZ2mS5FppRqm5vvXWW9ja2vLpp5+a7b5LJycn9u3bx/Tp03FxcWHLli0kJSUxatQo4uPj9V4RB9QT8R89epS33nqL/Px8vv/+e5RKJePGjePo0aMlVsR52Nq1awF46aWXKrzOjBkzePLJJ0lOTuaHH37gl19+wcXFhddff52TJ08yZMgQvWMWQghD3b/9Z83Vu/yxHdqaq0yBWGlGqbl26tSJRYsWMXbsWEJDQ1myZAmPP/64MYoul7OzM3PmzGHOnDkVHjtr1qxyV6Lx8vLiiy++4IsvvjAohrNnz+p9rNyfKoSwpAebhcujqbnm3clEpVKV24QsymaU5KpZFLxFixacOnWKkJAQAgMDadu2LXXr1sXW1lbnuQqFgm+++cYYYQghhCiHvs3CmgFNqoIicu/l4lzXNMuM1mRGSa6rVq3SfrJRKBSoVCquXr1KcnJyuedpPhFJchUmo2tNXz3X+hWiJnkwueqaaFX9r2GHnZsThVm5ZF3PkuRaCUZJro0aNZJmAyGEqOYebBauaHSMQz03dXK9kYX3Y96mD66GMUpyTUxMNEYxQgghTOjBAU0VJlcvd7KT0si8Lve6VoasJSSEELWEvn2uAA5e6n7XrOsyYrgyTJpcCwsLuX37Nrdv3y4xOYMQQgjz03e0MKibheGvWZ2EYYyeXM+dO8e4ceN47LHHcHJyokGDBjRo0AAnJyceffRR3nrrLc6cOWPsywohhChHQXYBBdkFQMX3uQLY11Efo6ntCsMYLbkWFxczadIk2rVrx5IlS/j9998pLi7WLpJeXFzM+fPnWbp0KR06dGDChAkUFxcb6/JCCCHKoelvtXWwxcHdocLjHeqom441tV1hGKNNBvziiy+yceNGVCoVAK1ataJr1674+voCcPPmTY4dO8aZM2coKiriiy++IDU1lfXr1xsrBCGEEDroO6+whqbmKsm1coySXL/77js2bNiAQqGgXbt2fPnllzrnGD527Bj/+c9/OHHiBJs2beK7775j+PDhxghDCCGEDoYMZgKwr/tncr0tybUyjNIs/OWXXwLQvHlzDhw4UO7k/V26dOHXX3+lRYsWqFQqli9fbowQhBBClEPfeYU1HB6ouWpaJIX+jJJcT506hUKhYMqUKXot9u3q6sqUKVO05wohhDAtQ0YKA9h7qmu4RXlF5GflmyyumsooyTU/X/2Lb9u2rd7naI4tKCgwRghCCCHKYWizsK2zAzZO9oD0u1aGUZJrUFAQAEqlUu9zNEvTac4VQghhOoYmVyjZNCwMY5Tk+txzz6FSqYiKitL7nE2bNqFQKBg8eLAxQhBCCFEOQ5uFAez/vB1H7nU1nFGS68SJE2natCnLly9nw4YNFR6/adMmli9fTpMmTXjnnXeMEYIQQohyGDqgCeR2nKowSnL19PRkz549dOzYkREjRjBo0CC2bNnCtWvXKCgooLCwkGvXrrFlyxYGDx7MCy+8QMeOHdm7dy+enp7GCEEIIUQ5KtMsrE2ucjuOwYxyn+uDi6GrVCq2bt3K1q1bdR6vUqk4fvw4TZs21XmMQqGQ+YiFEMJIKtMs/OAsTU4miarmMkpyffgeKH3uiZL7poQQwjwMnVdYQzu/8K1sSa4GMkpynTlzpjGKEUIIYQKGzius8WCzsJdJIqu5JLkKYUnR0eqvvXpZMgpRwxk6r7CGvUzeX2myWLoQQtRwlRnMBH/d55qdJrfiGEqSqxBC1HCVuQ0H/poCMft2toyTMZAkVyGEqOEqM1IYHphfOL+IohyZX9gQklyFEKKGq2yzsK2zA3bO6qE5BfekadgQklyFEKKGq2xyhb+akgvuyaAmQ0hyFUKIGq6yzcIALvXVCblAKTVXQ0hyFUKIGq6yA5rgr9quJFfDSHIVQogaTpqFzU+SqxBC1HBVaRZ2ru8MQL4MaDKIJFchhKjB8u/nV2peYQ3NOYXSLGyQWpdcc3JymDFjBs2bN8fJyQl/f3/Cw8O5du2awWWlp6fz9ttvExQUhKOjI0FBQYwfP5579+6VefyoUaNQKBQ6H8uWLavisxNCiJI0TcKGziusoWlKzpfkahCjzC1sLXJzc+nTpw+xsbH4+fkxcOBAEhMTWblyJdu2bSM2NrbcZfAelJaWRo8ePbh48SJNmzZl0KBBnD17loULF/Lzzz9z+PBhvLzKnuq6X79+NGjQoNT2Fi1aVOn5CSHEw7SDmQycV1hDO1pY+lwNUquS67x584iNjaVHjx7s2rULNzc3ABYsWMCkSZMIDw8nWjORegXGjx/PxYsXGTJkCOvXr8fOTv2rHDduHIsWLWLixImsWrWqzHPfe+89eslE7UIIM6jKYCZ4YECT1FwNUmuahfPz81m8eDEAS5Ys0SZWgIkTJ9K2bVtiYmKIi4ursKzr16+zbt06HBwcWLp0qTaxAsyfPx9vb2/WrFnDrVu3jP9EhBDCANrBTJXobwW5Faeyak1yPXjwIEqlkmbNmtGhQ4dS+4cOHQrA1q1bKyxrx44dFBcXExISgq+vb4l9jo6OhIWFUVRUxE8//WSc4IUQopIebBauDE2zcNH9PIrzC40WV01Xa5qFT506BUDHjh3L3K/ZnpCQYJSyVqxYobOszZs3ExUVRVFREU2aNCEsLIyWLVtWeF0hhDBUVZuFnes6o7BVoCpSUZCRA7gbMbqaq9Yk16tXrwIQEBBQ5n7N9qSkJJOXtWjRohI/T5kyhTfeeIOFCxeWaGIWQoiq0jQLVza5KmwUuNRz4f6t+38OapLkqo9a0yyclZUFgItL2S8wV1d1k0lmZqbJyurQoQPLli3jwoULZGdnc/nyZZYsWUKdOnVYunQpkydPrvDaeXl5ZGRklHgIIYQumpprZZuFQeYXrgypJpnR22+/XeLnJk2a8OabbxIaGkrHjh1ZvHgxEydOJDAwUGcZERERzJ4929Sh1j56jhLXeV51G/1dXeMSZleVeYU1dA1qkpeZbrWm5qoZHZydXfYnr/v31S9Ad/eKmzyMWRZAq1atePbZZyksLGTv3r3lHjt16lSUSqX2kZycrNc1hBC1U1WbhUHmF66MWlNzbdSoEQApKSll7tdsDwoKMmtZGsHBwYD6Np/yODo64ujoqHe5QojazRjNwjK/sOFqTc21Xbt2AMTHx5e5X7O9bdu2Zi1LIz09Hfirv1YIIaqqqvMKa8j8woarNcm1Z8+eeHp6cunSJU6ePFlq/6ZNmwAICwursKz+/ftjY2PD/v37S00UkZeXx9atW7G1teXpp5/WK7a8vDy2b98O6L69RwghDFXVeYU1tPMLS7Ow3mpNcnVwcGDs2LEAjBkzRtsvCurpDxMSEggNDaVTp07a7YsXL6Zly5ZMnTq1RFl+fn6MGDGC/Px83nzzTQoL/7qx+t133+X27du89NJL+Pj4aLf//vvvrF69mry8vBJl3b59m+HDh5OcnEy7du3o2bOnUZ+3EKL2quq8whp/9blKzVVftabPFWDatGns2bOHQ4cOERwcTEhICElJSRw5cgRvb29WrFhR4vi0tDTOnz9fZj/of//7X2JjY4mKiqJly5Z07tyZs2fPcubMGYKDg1mwYEGJ42/cuMErr7zC22+/TefOnfH29iY1NZW4uDgyMzMJCAhgw4YNVfoHEEKIB1V1AgmNv0YLS81VX7Wm5grg5OTEvn37mD59Oi4uLmzZsoWkpCRGjRpFfHy83iviANSvX5+jR4/y1ltvkZ+fz/fff49SqWTcuHEcPXq01Io4zZs3Z/z48bRo0YLTp0+zceNGjh8/TnBwMDNnziQhIYHmzZsb+ykLIWqxqs4rrKEZDCU1V/3VqporgLOzM3PmzGHOnDkVHjtr1ixmzZqlc7+XlxdffPEFX3zxRYVl+fv78/nnnxsSqhBCVElV5xXW0DYLZ2RTXFSMjW2tqpdVivyGhBCihjJWs7BzPfWtOKgg505OVcOqFSS5CiFEDWWMCSQAbO1tsXN3Upd5W/pd9SHJVQghaijtBBJV7HMFsK/jWqJMUT5JrkIIUUNp+1x9jZdcpeaqH0muQghRQ2lHC1dxQBOAQx1107LUXPUjyVUIIWoglUpl1ORq76lOrpoyRfkkuQohRA1UcL+Awhz17HFGSa7SLGwQSa5CCFEDaWqY9i72OLhWfl5hDRnQZBhJrkIIUQMZ6zYcDelzNYwkVyGEqIGM2d8KDzQLS5+rXiS5CiFEDWT05KoZ0CR9rnqR5CqEEDWQqWquOXdyUBWrjFJmTSbJVQghaiBT1VxVxSpy7sr8whWR5CqEEDWQsZOrjb0tdm5OJcoWuklyFUKIGsjYyRXAvo70u+pLkqsQQtRAJkmunnKvq74kuQohRA0kNVfLkuQqhBA1jKpY9ddyc0ZMrg5yr6veJLkKIUQNk3P3r9tlXOobZ4YmAHsvNwCybmQZrcyaSpKrEELUMJqapVNdJ2wdbI1WrmO9P5PrdUmuFZHkKoQQNYwp+lsBHKTmqjdJrkIIUcNk3VQnPzdfN6OW61DPXV2+1FwrJMlVCCFqGE3yc/MzcnJ9oOaqUskUiOWR5CqEEDVM5vVMANwamCa5FuUXkZuea9SyaxpJrkIIUcPcv6HuczV2zdXGwQ6nuuopEDUJXJRNkqsQQtQwpqq5Plim9LuWT5KrEELUMJrRvO5+7kYvW1OmjBgunyRXIYSoYUw1oOnBMqVZuHySXIUQogYpyi8iO0099aFJm4Wl5louSa5CCFGDaCaQsLGzwaWe8aY+1NDUXKXPtXx2lg5ACL1ER5f8uVcvS0QhRLWnaa519XVFYaPQbn/4X+jh7fr+S2n7XK9nUa9yIdYKVl1zzcnJYcaMGTRv3hwnJyf8/f0JDw/n2rVrBpeVnp7O22+/TVBQEI6OjgQFBTF+/Hju3btX6tiCggJ27drF2LFjad26NS4uLjg7O/Poo4/yzjvvcPv27TKvsWrVKhQKhc7H8OHDDY5bCCEeZMrBTCDNwvqy2pprbm4uffr0ITY2Fj8/PwYOHEhiYiIrV65k27ZtxMbG0rRpU73KSktLo0ePHly8eJGmTZsyaNAgzp49y8KFC/n55585fPgwXl5e2uNjYmLo168fAI0bN+Yf//gHBQUFHD58mM8++4y1a9cSHR1NixYtyrxeu3btaN++fant3bp1M/wXIYQQD9AOZjJBfyvIgCZ9WW1ynTdvHrGxsfTo0YNdu3bh5qb+gy9YsIBJkyYRHh5OtK52kIeMHz+eixcvMmTIENavX4+dnfrXMm7cOBYtWsTEiRNZtWqV9ngbGxuef/55Jk2aRNeuXbXblUolL7zwAjt37mT06NEcOnSozOsNGjSIWbNmVep5CyFEebT3uJpgpDD8lbTzlHkU5RVg62hvkutYO6tsFs7Pz2fx4sUALFmyRJtYASZOnEjbtm2JiYkhLi6uwrKuX7/OunXrcHBwYOnSpdrECjB//ny8vb1Zs2YNt27d0m7v06cP69evL5FYATw9PVmxYgUAhw8fJikpqUrPUwghDKVprjVVzdWpjhO2jupl7PLvStOwLlaZXA8ePIhSqaRZs2Z06NCh1P6hQ4cCsHXr1grL2rFjB8XFxYSEhODr61tin6OjI2FhYRQVFfHTTz/pFZu/vz/e3t4ApKam6nWOEEIYiynvcQVQKBTa/tz8O5JcdbHKZuFTp04B0LFjxzL3a7YnJCQYpawVK1boVRbAvXv3SE9PB6BBgwZlHhMXF8fkyZPJyMigQYMG9OnTh9DQUL3KF0KI8ph6QBOoa8X3Eu+Rf0f6XXWxyuR69epVAAICAsrcr9muT7OsMcsCdTN1YWEhbdq0oUmTJmUes23bNrZt26b9ec6cOYSGhrJ+/fpStWchhDBE5jXT9rk+WLY0C+tmlc3CWVnqP6iLS9k3SLu6ugKQmVnxpypjlnXixAnmzZsHwMcff1xqv5+fH7NmzeLEiRMolUpu3LjBjz/+SMuWLYmJiWHAgAEUFRWVe428vDwyMjJKPIQQAkBVVExmqvq9yjPQ02TXkeRaMatMrtXRzZs3GTJkCLm5uYwfP55//OMfpY7p168fM2fOpH379nh4eODr60tYWBjHjh2jefPmHD9+nA0bNpR7nYiICDw9PbWPwMBAUz0lIYSVybuTiapYhY2dDa6+ria7jmawlCRX3awyuWpGB2dnZ5e5//599fRf7u4V9zkYo6zMzEyefvppEhMTGTZsGJ999lmF1304hnHjxgGwc+fOco+dOnUqSqVS+0hOTjboWkKImivvphIA94bu2Nia7u3do6GH+nq3peVMF6vsc23UqBEAKSkpZe7XbA8KCjJ5Wbm5uTz77LPEx8fTt29f1qxZg42N4S/q4OBgQH1rUHkcHR1xdHQ0uHwhRM2nSXambBIG8Aj8M7nekuSqi1XWXNu1awdAfHx8mfs129u2bWvSsgoLC3nhhReIjo7m8ccfZ/PmzTg4OFT8BMqgGWGs6eMVQghD5d1S11w1yc9UPBt5aq+nUqlMei1rZZXJtWfPnnh6enLp0iVOnjxZav+mTZsACAsLq7Cs/v37Y2Njw/79+0tMFAHqwUNbt27F1taWp59+usQ+lUrF6NGj+fHHH2nfvj3bt2+vUmKMiooCdN8SJIQQFdHUJE2eXP+sGRfl5FOYlWvSa1krq0yuDg4OjB07FoAxY8Zo+0VBPf1hQkICoaGhdOrUSbt98eLFtGzZkqlTp5Yoy8/PjxEjRpCfn8+bb75JYWGhdt+7777L7du3eemll/Dx8Slx3vjx41mzZg0tW7Zk165d1KlTp8K4IyIiSEtLK7GtoKCA2bNns3HjRpydnRk9erTevwchhHhQrpmahe1d7HGpr77DQpqGy2aVfa4A06ZNY8+ePRw6dIjg4GBCQkJISkriyJEjeHt7a6ch1EhLS+P8+fNl9mn+97//JTY2lqioKFq2bEnnzp05e/YsZ86cITg4mAULFpQ4/ocffuCLL74AIDAwkMmTJ5cZ43vvvUfLli21P7///vvMnj2bzp07ExgYSEZGBidPniQ1NRUnJyfWrFlDw4YNq/qrEULUUuZqFgZ103B2Wvaf15T78x9mtcnVycmJffv2ERERQWRkJFu2bMHLy4tRo0Yxd+5cnZNClKV+/focPXqUWbNmsWXLFr7//nt8fX0ZN24cs2fPLlUr1fSPAuzevVtnuaNGjSqRXGfMmMHhw4c5f/488fHxqFQqAgICeP3115kwYYLOVXSEEEIf5hrQBOoEfj3+Orl/jlAWJVltcgVwdnZmzpw5zJkzp8JjZ82aVe5KNF5eXnzxxRfaGml5Ro0axahRowyIVG327NkGnyOEEPoozi+kIF3dRWaumitA3m1JrmWxyj5XIYQQJWlqrXZOdtr+UFPSJteb0udaFquuuQpRimYN3169yt8vRA2jSa4egR4oFIoK/xWqSpNcc29JzbUsUnMVQogaQDOYyRz9rfBgzfWeWa5nbSS5CiFEDZCTqh5oWadJHbNcT3OdvNsZFOYVln9wLSTJVQghagBNcvV6xMss13P1ccXW2QFUcC/xnlmuaU0kuQohRA2Qc+0uAHWb1TXL9RQKBU7+6mvdvXjXLNe0JpJchRCiBshNVSc4c9VcAZwbqq8lybU0Sa5CCGHl8jLyKLinXjbTq5n5k2v6pfQKjqx9JLkKIYSVu3tJXXO0r+OCo4f5lqR0lmZhnSS5CiGEldMkN01N0lycpFlYJ0muQghh5bTJ1d+8yVWTzO8l3qO4sNis167uJLkKIYSV0yRXp4bmGSms4VjfA4W9LcUFxdxLumfWa1d3klyFEMLK3T57GwDXIG+zXldho8ClUX11DOdum/Xa1Z0kVyGEsGKqYpU2ubo09jH79V3/vKYmBqEmyVUIIayY8qqS/Kx8FHY2OAeYt88VwLWJurZ868wts1+7OpPkKoQQVkyT1Fwa1cfGztbs13dp4lMiDqEmyVUIIazYrbPqpOZqgSZhANc/k2vab2kyYvgBklyFEMKK3T7zZ39rE8skVyffOti72lOUXyT3uz5AkqsQQlixm6dvAn/VIM1NYaPAp5U0DT9MkqsQQlipguwCbUJze6SBxeLwbe8LwLVj1ywWQ3VjZ+kAhKiU6GhLRyAqovkb9eplyShMzpJP83r8dVRFKtz83HD08TDLNcv61wvoHkD8l/FcOyLJVUNqrkIIYaVSYlMACOgWgEKhsFgcAd0CAEg9liqDmv4kyVUIIayUpqbYsHtDi8ZRv2V9HD0cSzRT13aSXEWNV1ykIu1qNucPpnF6z00uHL7D3Ws5qFQqS4cmRJVoa67dAywah8JGQcNu6gSviam2kz5XUWPdOnOL2E/P8/v+NHIyCkvt9/R1pHUfHzo/60+dBk4WiFCIylNeVZKRkoHCRoF/J38Sj1s2noDuAVzefZnkg8l0/k9nywZTDUhyFTWO8mYuu57fyLmN57Tb7J1sqB/ogpO7HTkZhdxOuo/yZh4H1yVzeGMKncL86PVqY1w87S0YuRD6u7T7EgANuzbEwc3BwtFA416N+XXur1zafQmVSmXRPuDqQJKrqDFUxSqOb73OnuWXyc8pAuCx0Pp0HuhPUNs62Nj+9c9ekFvExaN3ObollcQT9zj2fSrnom/z9NvBPBZq3pVFhKiMSzvVybVZv2YWjkQtsGcg9i723L95n5sJN2nQznK3BlUHklxFjZCZlsfmD38j8aQSUP+jP7P0GXzv/lbm8fZOtjz6pDePPunNlfh0fl50kduJ2WycdY72/2jA0+Mewd7J/PO0CqGP4sJiLu+5DFSf5GrnaEfj3o35Y/sfXNxxsdYnVxnQJKzelRPpLP93HIknldg72dD/rUcY/etofNv66nV+k451+ffyToS81AiFDZz8+QZfvRHP7aT7Jo5ciMq5su8Kuem5uNR3oWEXy44UflDwM8EA/BZV9ofa2kSSq7BaqmIV+9cksfqdBO6nF+Db1JXXv+pEtyENUdgY1t9j52BDn3824eVP2+Lm5cDtxGy++k88p3bdNFH0QlTe2fVnAXj0uUexsas+b+OPDnkUhY2C1GOppF9Ot3Q4FlV9/ipCGCBbWUDk+2f45ZtEVMXQvn8D/rm0A/UCXKpUbpMOdXn9q0406ViHgtxitkT8zo/zz1OQU2CkyIWomoKcAn7brK4ZtnqhlYWjKcnN143GvRsDkLA2wbLBWJgkVwvIyclhxowZNG/eHCcnJ/z9/QkPD+faNZk6TB/JZ5Us/3ccF4/cxc7BhrB3mjNwSgvsHY3TR+rm5cBLn7QldFQQKODETzf4pvs33LlwxyjlC1EVpyNPk5ueS53GdQh6MsjS4ZTSflR7AOKWx1FUUGTZYCxIkquZ5ebm0qdPH+bOnUtWVhYDBw4kMDCQlStX0qFDBy5fvmzpEKut4iIV+9deZdXbp8i4lYdXgDOvLe1Ax2f8jH4tG1sFvV5tzMvz2+Ja156bCTf5stOXnF53WiafEBZTXFRM7OexAHQZ2wUb2+r3Fv7YsMdw9XUl81omZzectXQ4FlP9/jI13Lx584iNjaVHjx5cuHCB9evXc+TIET777DNu375NeHi4pUOslm5duc83Y07wy9dXKC5S0bqPN/9e3hHfZm4mvW7TTupm4qDQIPKz8tn84mbWD15PRkqGSa8rRFkS1iRw++xtHD0d6RDewdLhlMnO0Y6ub3UFYN/0fRTmlZ7ApTaQ5GpG+fn5LF68GIAlS5bg5vZXYpg4cSJt27YlJiaGuLg4S4VY7WQrC9i55CLL/x1H6vlMnNzsGPReC4ZMexRHF/PcSeZez5FX9rxC6MxQbOxsOP/DeZY8uoRDnx2iMF8mKRfmkXUziz3v7gEg5IMQnOs6Wzgi3bqP746bnxv3rtwjZk6MpcOxCEmuZnTw4EGUSiXNmjWjQ4fSnzqHDh0KwNatW80dWrWTcS2DfTP28cXII8RuukZxoYoWj9fjzVWdadevgdlnf7Gxs6HXrF68fuJ1AnoEkJ+Vz+53dvPFyCMciUohV5lr1nhE7VKQU8Cm5zdx/9Z9fNr40O2tbpYOqVwOrg7844t/AHAg4gC/fV/7bs2RSSTM6NSpUwB07NixzP2a7QkJtXOUXU56Dhd3XOTcxnOc//E8qiJ132aDR9x46t9NaNq5rsWnVPNp7UP4gXBOrjpJzOwYlFeV7Fh8ib0rFtDqhVY8NvQxGvdqjL2LTKMojCPjWgZRI6K4uv8qDu4OPLfuOeycqv9b92NDH6PTfzoRtyyOTS9sou9nfek6tqvF/4fNpfr/hWqQq1evAhAQUPYKFprtSUlJZovJEooKisi8lonyqpI7f9zhetx1rsddJzUuVZtQAYKeDKJLb1cee7K+wfetmpLCRkGH8A60GdmGE1PWc2xLKreTsjm58iQnV57EzsmOgO4BNOjYAL8OftRrXg+PAA/cGrhVq+chqq+C7AKux1/n3KZzxH8VT0F2AQ7uDry47UV8WvlYOjy9Pb3oafIz8jkdeZod43ZwcuVJOv+nM4/0fwSPQI8anWgluZpRVlYWAC4uZd+L6erqCkBmZqbOMvLy8sjLy9P+rFSqp/vLyDB8gM2ts7eIWx6nHv2qQvtV872q+M/tlNxf1lftsQ/tKy4qJj8zn/ysPx+Z+WTfzdYZU/0W9XnkH4/Q6vlW6jeR/fvJzNF9vE6a38d9I82ypOP32+LvdWj+lCcpDk04+91ZLu++jDJFye/Rv/N79O8ljrWxtcHZyxkHdwccPRxxdHPENicDG1sFNj5XsLGzUT9s1Y/yOm10vilpNt+4of668kb5xz+g1Cjoh3+sYH+p42/+GcOXqQaXpSq9Qff5hpZdzv7KnJv25x1aV+pVreziomJy03PJvp2NMkWp/p/6U0C3AJ5e8jR1g+vq/F/XvNQffunr+6+g6zh9zi/v7edvS/+GZ1tPfp37K4knEkl8PREAR3dHPBt54lTHCUcPR+yc7FDYKrCxsUFhq0Bho1B/NUECdvV15ckPnqzUuZrff0V3DUhytTIRERHMnj271PbAwEALRGMC5/98/NfCcZhCEXD7z4cQhjgC1LRV3DIBS96p80nVTs/MzMTT01PnfkmuZqQZHZydXXZN7P6fHw3d3d11ljF16lQmTpyo/bm4uJi7d+9Sr169Gt3EYgwZGRkEBgaSnJyMh4eHpcOp1eRvUb3I30N/KpWKzMxM/P39yz1OkqsZNWrUCICUlJQy92u2BwXpnnXF0dERR0fHEtvq1KljnABrCQ8PD3kDqSbkb1G9yN9DP+XVWDXkVhwzateuHQDx8fFl7tdsb9u2rdliEkIIYXySXM2oZ8+eeHp6cunSJU6ePFlq/6ZNmwAICwszc2RCCCGMSZKrGTk4ODB27FgAxowZo+1jBViwYAEJCQmEhobSqVMnS4VYozk6OjJz5sxSzerC/ORvUb3I38P4FCqZhdyscnNz6dWrF0eOHMHPz4+QkBCSkpI4cuQI3t7exMbG0rRpU0uHKYQQogokuVpATk4OERERREZGkpycjJeXF/3792fu3Lk6J5gQQghhPSS5CiGEEEYmfa5CCCGEkUlyFbVWdHQ0CoVC56N79+6WDrHGycnJYcaMGTRv3hwnJyf8/f0JDw/n2rVrlg6t1unVq1e5r/8dO3ZYOkSrJpNIiFqvWbNmPPHEE2VuF8aTm5tLnz59iI2Nxc/Pj4EDB5KYmMjKlSvZtm2bDOazkOeee67E2tIaDRs2tEA0NYckV1HrPfHEE6xatcrSYdR48+bNIzY2lh49erBr1y7tG/qCBQuYNGkS4eHhREdHWzbIWujTTz+lcePGlg6jxpFmYSGEyeXn57N48WIAlixZUqKmNHHiRNq2bUtMTAxxcXGWClEIo5LkKoQwuYMHD6JUKmnWrBkdOnQotX/o0KEAbN261dyhCWES0iwsar0//viDqVOncufOHerXr88TTzxB//79sbGRz57GcurUKQA6duxY5n7N9oSEBLPFJNS++eYb7ty5g42NDc2bN2fQoEHaRUZE5UlyFbXeoUOHOHToUIltbdq0ISoqiuDgYAtFVbNcvXoVQOckKZrtSUlJZotJqM2bN6/Ez++88w7Tp09n+vTpFoqoZpCP5qLW8vT0ZPLkycTGxnLnzh3u3LnD3r176d69O6dPn6Zv374olUpLh1kjZGVlAeDi4lLmfldXV0C9ALUwjyeffJLVq1dz6dIlsrOzOX/+PB9++CF2dnbMmDGDhQsXWjpEqyYzNAmrNXjwYH777TeDzvnf//5H165dyz2mqKiI3r17s3//fj766COmTp1alTAF8O9//5uvvvqKDz74oFRNCeDixYsEBwcTHBzMhQsXLBCh0Ni1axf9+vWjTp06pKam4uzsbOmQrJI0CwurdeXKFc6fP2/QOdnZ2RUeY2try5QpU9i/fz87d+6U5GoEmtHBun7/mhWi3N3dzRaTKFvfvn3p3Lkzx48f58iRI/Tq1cvSIVklSa7CapW1Jq6xaPpar1+/brJr1CaaATIpKSll7tdsDwoKMltMQrfg4GCOHz8ur/8qkD5XIcqQnp4O/NUXKKqmXbt2AMTHx5e5X7O9bdu2ZotJ6Cav/6qT5CpEGaKiogDdt44Iw/Ts2RNPT08uXbpUZovDpk2bAAgLCzNzZOJht2/fZv/+/YC8/qtCkquotf773/+SnJxcYptKpWL58uV8/vnnKBQK3njjDQtFV7M4ODgwduxYAMaMGaPtYwX19IcJCQmEhobSqVMnS4VYqxw6dIgtW7ZQVFRUYntiYiKDBw/m/v37PPvss7K+dBXIaGFRazVu3JiUlBQ6duxIkyZNyM3N5fTp01y5cgUbGxsWLlyoTQii6nJzc+nVqxdHjhzBz8+PkJAQkpKSOHLkCN7e3jJxvxmtWrWK0aNH06BBAzp27EidOnVISkoiLi6O3NxcWrVqxS+//IKPj4+lQ7VaklxFrbVo0SJ27drF2bNnuXXrFgUFBdo3/XHjxtGlSxdLh1jj5OTkEBERQWRkJMnJyXh5edG/f3/mzp0rtSQz+u2331i0aBFHjhwhOTmZ9PR0XF1defTRRxk2bBhvvPGG3IJTRZJchRBCCCOTPlchhBDCyCS5CiGEEEYmyVUIIYQwMkmuQgghhJFJchVCCCGMTJKrEEIIYWSSXIUQQggjk+QqhBBCGJkkVyGEEMLIJLkKIYQQRibJVQghhDAySa5CCCGEkUlyFUIIIYxMkqsQQghhZJJchRBCCCOT5CqEEEIYmSRXIYQQwsgkuQohhBBGJslVCCGEMDJJrkIIIYSRSXIVQgghjEySqxBCCGFkklyFEEIII5PkKoQQQhiZJFchhBDCyCS5CiGs1sWLF1m3bh0TJkygZ8+euLi4oFAoUCgUrFq1ytLhiVrMztIBCCFEZcTExNCrVy9LhyFEmaTmKoSwSiqVSvu9jY0NrVq1omvXrhaMSIi/SHIVQlilhg0bMn/+fKKjo1EqlZw5c4Y33njD0mEJAUizsBDCSgUHB/POO+9YOgwhyiQ1VyEEALNmzdIOBgLIyMhg1qxZtGnTBjc3N3x8fHj66ac5dOhQifNu3brFtGnTaNWqFa6urtSrV4+BAwdy4sQJva6jS3R0tPa46OhoozxHIcxFaq5CiFKSk5N56qmnuHDhgnbb/fv3+fnnn9m1axfr1q1j2LBhJCQk8PTTT3Pt2jXtcdnZ2fz444/s3LmTn3/+md69e1viKQhhUVJzFUKUMmzYMFJSUpg6dSoxMTEcO3aMzz//HA8PD4qKivjnP//JlStXGDBgADk5OXz44YccOHCAI0eOMHv2bBwcHMjLy2PUqFHk5+db+ukIYXZScxVClHLy5EliYmLo1q2bdlvnzp0JDg5mwIABZGZm0q1bN1QqFUePHqVZs2ba47p27Ur9+vUZM2YMV69eZfv27QwePNgST0MIi5GaqxCilPHjx5dIrBrPPPMMQUFBANy+fZu5c+eWSKwao0ePxsnJCYD9+/ebNlghqiFJrkKIUoYPH65zX9u2bQFQKBS88MILZR7j7OxMcHAwAJcvXzZ+gEJUc5JchRClNG/eXOe+OnXqAFC/fn3q1q1b4XGZmZnGDE0IqyDJVQhRiouLi859NjY2FR7z4HFFRUXGC0wIKyHJVQghhDAySa5CCLPS1GgBiouLdR53//59c4QjhElIchVCmJW7u7v2+/T0dJ3HPTiBhRDWRpKrEMKsmjRpov3++PHjOo/77rvvzBGOECYhyVUIYVaPP/44dnbq+Ws+//zzEkvHacyfP5+jR4+aOzQhjEZmaBJCmJWPjw/Dhg1j3bp17Ny5k2effZYxY8bg6+vL1atXWb16NVFRUTz++OOlFgl42KZNm8jKytL+fODAgTK/B2jQoAH9+/c37pMRQgdJrkIIs/v88885fvw4f/zxB9u2bWPbtm0l9g8fPpzXXnuNp556qtxy3nnnHZKSksrc98033/DNN99ofw4NDZXkKsxGmoWFEGbn6+vLkSNHmDJlCsHBwTg6OuLl5cWTTz7JmjVrWLduHba2tpYOU4hKU6jK6vAQQgghRKVJzVUIIYQwMkmuQgghhJFJchVCCCGMTJKrEEIIYWSSXIUQQggjk+QqhBBCGJkkVyGEEMLIJLkKIYQQRibJVQghhDAySa5CCCGEkUlyFUIIIYxMkqsQQghhZJJchRBCCCOT5CqEEEIYmSRXIYQQwsj+P683gnAn0bwwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mcmc_samples = [-4.972877252229058,-5.8835831550427224,-5.043916188481671,-4.468301034065018,-5.8322011458449134,-5.9486775454141565,-4.810566990491992,-5.053578061057608,-3.9248329244224385,-6.093210935624584,-4.861111649362306,-3.9162389411845036,-4.7188927025004554,-5.904816719672374,-6.093210935624584,-4.7188927025004554,-4.741619976168469,-4.377026991830562,-5.053578061057608,-4.741619976168469,-5.904816719672374,-4.377026991830562,-5.059245041042267,-4.929152009281275,-4.56067504240393,-4.56067504240393,-4.741619976168469,-4.89569840525208,-4.7188927025004554,-3.9539137272230613,-3.136704800755594,-4.582268762348072,-2.0828998086453083,-4.810566990491992,-4.634296200074161,-4.369437153443351,-5.179852756819603,-3.9539137272230613,-4.377026991830562,-4.468301034065018,-5.730633562291203,-5.129795320337272,-3.136704800755594,-5.431181519193664,-5.529694022675031,-5.8322011458449134,-5.904816719672374,-5.010153766771048,-3.136704800755594,-5.904816719672374,-4.741619976168469,-5.129795320337272,-3.136704800755594,-5.053578061057608,-4.614990597711583,-4.614990597711583,-4.620012255281036,-3.136704800755594,-4.348010867355755,-4.634296200074161,-4.810566990491992,-5.904816719672374,-4.468301034065018,-5.129795320337272,-2.0828998086453083,-5.179852756819603,-4.810566990491992,-4.468301034065018,-2.0828998086453083,-4.377026991830562,-5.3035852997085655,-5.6099781618015,-5.904816719672374,-5.059245041042267,-5.904816719672374,-5.053578061057608,-5.059245041042267,-4.741619976168469,-4.58776212660127,-6.093210935624584,-5.053578061057608,-5.129795320337272,-4.468301034065018,-4.582268762348072,-5.3035852997085655,-3.136704800755594,-4.741619976168469,-5.053578061057608,-5.129795320337272,-5.730633562291203,-4.348010867355755,-5.730633562291203,-4.810566990491992,-2.0828998086453083,-2.0828998086453083,-4.377026991830562,-0.3020409801474395,-3.9539137272230613,-4.745225105713253,-5.010153766771048]\n", + "mcmc_samples2 = [5.265399110174624,5.184205653369311,4.663074888839699,5.765557613324706,4.207317011306248,5.265399110174624,9.60787906816039,4.980964864971945,4.865699916991435,2.5255828399193945,5.265399110174624,4.865699916991435,5.265399110174624,5.471676510075245,5.265399110174624,4.865699916991435,4.663074888839699,4.207317011306248,5.5213948614455575,4.865699916991435,5.1421889315307965,5.4833194496095885,5.4833194496095885,4.207317011306248,5.265399110174624,5.7807756422815935,4.865699916991435,4.879209032553675,5.265399110174624,5.265399110174624,5.265399110174624,4.233849470975329,5.4833194496095885,4.420450726938757,5.265399110174624,5.265399110174624,5.184205653369311,5.765557613324706,5.265399110174624,4.809331312678385,4.865699916991435,5.265399110174624,4.663074888839699,4.879209032553675,5.227529824207284,5.4833194496095885,4.865699916991435,4.865699916991435,4.207317011306248,4.233849470975329,5.184205653369311,5.265399110174624,4.865699916991435,5.265399110174624,5.485700381973434,5.184205653369311,4.225212924685245,5.265399110174624,4.207317011306248,4.865699916991435,5.661416558668549,4.758510653592122,4.233849470975329,5.4833194496095885,4.865699916991435,4.865699916991435,4.233849470975329,5.4833194496095885,5.7807756422815935,4.207317011306248,5.265399110174624,4.980964864971945,5.265399110174624,4.879209032553675,4.865699916991435,5.265399110174624,5.227529824207284,5.265399110174624,4.437167108420784,5.4833194496095885,4.879209032553675,5.227529824207284,5.265399110174624,5.471676510075245,5.184205653369311,4.207317011306248,5.265399110174624,5.265399110174624,4.7341938929857825,5.4833194496095885,5.265399110174624,4.879209032553675,4.710296136905853,5.184205653369311,5.265399110174624,4.865699916991435,5.265399110174624,5.265399110174624,5.7807756422815935,4.980964864971945]\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.rcParams[\"figure.figsize\"] = [4.50, 4.50]\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=20)\n", + "plt.rc('legend', fontsize=20)\n", + "plt.ylim(0, 18)\n", + "w = 0.1\n", + "\n", + "file = open(\"/space/poorvagarg/.julia/dev/Dice.jl/multimodal_6_256.txt\", \"r\")\n", + "hybit_data = file.readlines()\n", + "hybit_data = [float(i)*640 for i in hybit_data]\n", + "\n", + "ax.plot([i for i in np.arange(-8, 8, 0.015625)], hybit_data, color=\"purple\")\n", + "\n", + "\n", + "w = 0.1\n", + "# ax.hist(smc_estimated, bins=np.arange(-2, 8 + w, w), alpha = 0.25, color = \"red\")\n", + "# ax.hist(mcmc_estimated, bins=np.arange(-2, 8 + w, w), alpha = 0.25, color = \"blue\")\n", + "ax.hist(mcmc_samples, bins = np.arange(-6, 6 + w, w), alpha = 0.25, color=\"red\")\n", + "ax.hist(mcmc_samples2, bins = np.arange(-6, 6 + w, w), alpha = 0.25, color=\"blue\")\n", + "\n", + "\n", + "\n", + "\n", + "ax.legend([\"HyBit\", \"MCMC MH Run 1\", \"MCMC MH Run 2\"])\n", + "# ax.bar([8.0, 9.0])\n", + "\n", + "ax.set_xlabel(\"mu1\", labelpad=15)\n", + "ax.set_ylabel(\"pr(mu1)\")\n", + "\n", + "scale_y = 100\n", + "ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale_y))\n", + "ax.yaxis.set_major_formatter(ticks_y)\n", + "\n", + "fig.savefig(\"multimodal_mcmc_mh.png\", bbox_inches='tight')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "SMC" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAGtCAYAAAB6GFEoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRCElEQVR4nO3deVyU5f4//tcMywzrIInsoBJIHxfccslDGL+OmImaadmxBfn0OJ7U1DRLygzSc/i2WSZYn3PM5eRyXLPETLOEQ+pggohLaaIgiygYzLAN6/z+mGYCGWCGGWaG4fV8POYR3Pc91/0eU15c133d1y1QKpVKEBERWQmhuQsgIiIyJgYbERFZFQYbERFZFQYbERFZFQYbERFZFQYbERFZFQYbERFZFVtzF9BTNTc3o7i4GC4uLhAIBOYuh4jIqimVSlRWVsLHxwdCYcd9MgZbFxUXF8Pf39/cZRAR9SoFBQXw8/Pr8BgGWxe5uLgAUP0hu7q6mrkaIiLrJpfL4e/vr/nZ2xEGWxephx9dXV0ZbEREJqLLpZ8uTR6pra3F6tWrERISArFYDB8fH8TGxqKoqEivdtLS0pCQkIDHH38cHh4eEAgE6N+/f7vH5+XlQSAQdPqKjY1t9b6tW7d2ePycOXO68sdAREQWSO8em0KhQGRkJKRSKby9vTF9+nTk5eVhy5YtSElJgVQqxcCBA3Vqa8mSJTh//rzO53Z2dsYLL7zQ7v7du3dDoVAgPDxc6/6wsDAMHz68zfaxY8fqXAMREVk2vYNt7dq1kEqlGD9+PI4dOwZnZ2cAwLp167B8+XLExsYiNTVVp7YmTZqE2bNn48EHH4Sfnx8GDx7c4fF9+/bF1q1bte77+eefsW3bNjg4OODJJ5/UesyMGTMQHx+vU21ERNQz6RVs9fX1SEpKAgAkJydrQg0Ali1bhm3btiEtLQ2ZmZkYNWpUp+299957mq9LSkr0KaWN7du3AwCmT5/Oa15ERL2YXtfYTp48CZlMhqCgIIwYMaLN/lmzZgEADh06ZJzqdKRUKrFz504AwHPPPWfScxMRkWXRq8emvh42cuRIrfvV23NycgwsSz8//vgj8vLy0K9fP0yaNKnd4zIzM7FixQrI5XJ4eXkhMjISERERJqyUiIi6m17BdvPmTQBo9+Y49fb8/HwDy9KPehhyzpw5sLVt/yOlpKQgJSVF8/0777yDiIgI7N69G56enh2eo66uDnV1dZrv5XK5gVUTEVF30GsosqqqCgDg6Oiodb+TkxMAoLKy0sCydFdXV4e9e/cCaH8Y0tvbG/Hx8Th37hxkMhlKSkrw9ddfIzQ0FGlpaZg6dSqampo6PE9iYiIkEonmxVVHiIgsU49fBPnw4cMoLy9HaGgoRo8erfWYqKgovP322xg+fDhcXV3h6emJ6Oho/PTTTwgJCcHZs2exZ8+eDs8TFxcHmUymeRUUFHTHxyEiIgPpFWzqWZA1NTVa91dXVwOATkueGIt6GLIrk0acnZ2xePFiAMDRo0c7PFYkEmlWGeFqI0RElkuva2wBAQEAgMLCQq371dsDAwMNLEs3FRUV+OabbyAQCDB37twutREcHAwAuHXrljFL04tSqURDQwOam5vNVgORNjY2NrC1teUTLKhH0SvYwsLCAABZWVla96u3Dxs2zMCydLNnzx7U1dXh4Ycf7nKYlpeXA/jj+qAp1dTUQCaTobKystNrfETmIhKJ4Obmhj59+jDgqEfQK9gmTJgAiUSC3NxcZGdnt1meat++fQCA6OhooxXYEUOGIdX2798PoP1bGLpLZWUlCgsLYWdnBzc3Nzg5OUEoFPIHB1kMpVKJxsZGyGQy3L59G/X19fDy8jJ3WUSdU+rpzTffVAJQPvTQQ8qqqirN9g8//FAJQBkREdHq+A0bNigHDRqkXLlyZYft3rp1SwlAGRgYqFMdeXl5SoFAoBSLxcqKiooOj/3HP/6hLC0tbbWtvr5eGR8frwSgdHBwUBYWFup0XjWZTKYEoJTJZHq9T6lUKqurq5WXL19WFhYWKpubm/V+P5Gp/fbbb8rLly93+m+NqLvo8zNX77UiV61ahePHj+PUqVMIDg5GeHg48vPzkZGRAQ8PD2zevLnV8WVlZbhy5YrWa1ibNm3Cpk2bAAANDQ0AVNe6xo0bpzlm48aNWntTO3bsgFKpRHR0NCQSSYc1v/HGG0hISMDo0aPh7+8PuVyO7OxsFBcXQywWY/v27fD19dX3j6LLZDIZ7Ozs4OPjwx4a9Qh9+vSBXC6HXC7v9N8bkbnpHWxisRgnTpxAYmIidu7ciYMHD8Ld3R0xMTFYs2ZNp082bamwsBAZGRmtttXX17fa1t6N0Dt27AAAPPvss52eZ/Xq1Th9+jSuXLmCrKwsKJVK+Pn5Yf78+XjllVcwaNAgnWs2lPL3x5u7ubkx1KhHcXZ2RllZGZqbmyEU9vg7hciKCZRKpdLcRfRE6t9cZTKZXlP/6+vrkZubi4CAALNMWCHqqurqaty8eRNBQUGwt7c3dznUy+jzM5e/dpmYeko/f+Olnkb9d5a3pZCl409XM+EwJPU0/DtLPQWDjYiIrAqDjYiIrAqDjYiIrAqDjYiIrAqDjaiHEwgEEAgEiI+PN3cpRBaBwUZWLzU1Ve8f/jExMZr35OXlGb0mddvaXg4ODvD390d0dDT+/e9/o7Gx0ejnJ7JmDDYiC6NQKFBYWIiUlBS88MILGDt2LG7fvt2ltlqGempqqnELJbJQei+pRUTGM3r0aGzZsqXVtqqqKly8eBFJSUk4f/48srKyMGvWLKSnp2ttg4sHEbXGYCMyIycnJwwZMqTN9nHjxmHu3LkYOXIkfvnlF/z44484ffo0xo8fb4YqiXoWDkUSWSgHBwcsXLhQ8/1PP/1kxmqIeg4GG5GOysrKIBKJIBAI8Le//a3T4w8dOqS5vrVnz54unXPAgAGar+vq6rQeo21iTF5eHgQCAR555BHNtkceeaTNRJWtW7d2qS4iS8ZgI9JR3759MX36dADA7t27oVAoOjxefe3M3d1d8z595efna74OCAjoUhtEvQ2DjUgPL774IgCgoqICX375ZbvHlZaWIiUlBQAwd+5ciEQivc9VW1uL5ORkAKprcY8++qjO7/X19cWFCxdaPfh38+bNuHDhQqvXjBkz9K6LyNJx8gj1Knfu3MHFixc7Pa6iokLr9kcffRSBgYHIz8/Hli1b8Mwzz2g9bvv27ZqnwsfGxrZ7nurq6jb11NTU4MKFC0hOTsbly5chEAjw3nvv4b777uu0bjU7OzsMGTIEZWVlmm0DBgzQOlGFyNow2CyUUqlEQ02DucswCTtHO5M9EuXTTz/Fp59+2uX3C4VCxMbG4u2338b333+PgoIC+Pv7tzlOPQw5YsQIDB8+vN32zp49i6FDh7a7f9KkSVi5cmWra2VE1DEGm4VqqGlAonOiucswibiqONg79ZwnMsfGxiIhIQHNzc3Ytm0bVq1a1Wp/ZmYmLly4oDnWECdOnICTkxPuv/9+rQFKRG3xGhv1Km+//TaUSmWnrxdeeKHdNvz8/BAVFQUAWmcVqntrIpEIc+fO7bCeiIiINueur6/HjRs3kJycDIlEgi+//BLjxo3DL7/80vUPTtSLsMdmoewc7RBXFWfuMkzCztHO3CXo7cUXX8SRI0eQm5uL//73v3j44YcBqKbk79y5EwAwY8YM9OnTR++27ezs0L9/fyxYsAAREREYMWIEiouL8eKLL+LHH3806ucgskYMNgslEAh61PBcbxMdHQ1PT0/cvn0bW7Zs0QTbwYMHUV5eDsDwYUgAGDx4MKZMmYKvvvoKJ0+exNWrVxESEmJwu0TWjEORRF1gZ2eH559/HgCwd+9eVFVVAfhjGDIgIECv6fkdCQ0N1XytvnZHRO1jsBF1kfqeturqauzduxeFhYX47rvvAAAvvPAChELj/PNq+dgafR9hY6rZpkSWhEORRF0UEhKC8PBwpKenY8uWLSguLkZzczMEAgHmzZtntPOcPXtW87W+MyPFYrHm6/aW5CKyNgw2IgO8+OKLSE9PR3p6Oq5evQoAmDhxYqs1Hg1x+PBhpKWlAVAt6TVmzBi93u/t7a35Ojc31yg1EVk6BhuRAWbPno3FixdDJpNpHgaqz6QRbSuPNDQ0oKioCIcPH8amTZs02xMTE2Frq98/2YCAAPj5+aGwsBAffPAB/Pz8MGjQINjY2AAAPD094eLiolebRJaOwUZkAAcHB/zlL3/RrGYikUjw5JNP6vz+zlYeAVQTVdauXau5pqevN954AwsWLMCNGzfaLMa8ZcsWxMTEdKldIkvFySNEBnruuec0X8+ZMwcODg4GtWdjYwN3d3eMGTMGr7/+Oi5fvozXXnuty+299NJL2L9/PyZNmoR+/frp3esj6mn4N5ys3sSJE6FUKvV6z9atW3V+VlnLoURdhyH1rcfQtmbOnImZM2ca7ZxElow9NiIDqR8NM2TIEL0ndxCR8THYiAzw3//+F1KpFAB0eqo2EXU/kwZbbW0tVq9ejZCQEIjFYvj4+CA2NhZFRUV6tZOWloaEhAQ8/vjj8PDwgEAgQP/+/Tt8T0xMDAQCQbuvzz77zIBPRr1Jfn4+rl69ii+//FKz+oiXl5dRltAiIsOZ7BqbQqFAZGQkpFIpvL29MX36dOTl5WHLli1ISUmBVCrFwIEDdWpryZIlOH/+fJfqiIqKgpeXV5vtgwYN6lJ71PtEREQgPz+/1bYNGzYYPGmEiIzDZMG2du1aSKVSjB8/HseOHYOzszMAYN26dVi+fDliY2ORmpqqU1uTJk3C7Nmz8eCDD8LPzw+DBw/WuY6VK1di4sSJXfgERK25uLhgyJAhePPNN/H444+buxwi+p1Jgq2+vh5JSUkAgOTkZE2oAcCyZcuwbds2pKWlITMzE6NGjeq0vffee0/zdUlJifELJupAXl6euUsgog6Y5BrbyZMnIZPJEBQUhBEjRrTZP2vWLADAoUOHTFEOERFZMZP02NTXw0aOHKl1v3p7Tk5Ot9dy4MAB7N+/H01NTRgwYACio6NbPRaEiIh6NpME282bNwEAfn5+Wvert997Qb47bNiwodX3r7/+Ol566SWsX7++wxUZ6urqWq2OLpfLu61GIiLqOpMMRaofwujo6Kh1v5OTEwCgsrKy22oYMWIEPvvsM1y9ehU1NTW4fv06kpOT4ebmho0bN2LFihUdvj8xMRESiUTz0vfxIUREZBq95gbtJUuWYP78+QgODoaDgwMGDBiABQsWID09Hfb29khKSkJBQUG774+Li4NMJtO8OjqWiIjMxyTBpp4FWVNTo3V/dXU1AJjl8RmDBw/GtGnT0NjYiO+//77d40QiEVxdXVu9iIjI8pgk2AICAgAAhYWFWvertwcGBpqinDaCg4MBALdu3TLL+YmIyHhMEmxhYWEAgKysLK371duHDRtminLaKC8vB/DHtT4iIuq5TBJsEyZMgEQiQW5uLrKzs9vs37dvHwAgOjraFOW0UldXh8OHDwNo/3YEIiLqOUwSbPb29li0aBEAYOHChZpraoBqSa2cnBxERES0WnUkKSkJoaGhiIuLM/j8v/zyC7744otW0/UBoLS0FHPmzEFBQQHCwsIwYcIEg89FRETmZbK1IletWoXjx4/j1KlTCA4ORnh4OPLz85GRkQEPDw/NM63UysrKcOXKFa3XvTZt2oRNmzYBABoaGgCoro+NGzdOc8zGjRs1PbCSkhI8//zzWLJkCUaPHg0PDw8UFxcjMzMTlZWV8PPzw549eyAQCLrr4xMRkYmYLNjEYjFOnDiBxMRE7Ny5EwcPHoS7uztiYmKwZs2adm/e1qawsBAZGRmtttXX17fa1vIG6pCQECxduhRSqRQXLlzA3bt3IRKJEBISgujoaCxZsgR9+vQx/EMSEZHZCZTGfEZ9LyKXyyGRSCCTyfSa+q9QKHDjxg0MGDAAYrG4GyskMi7+3SVz0udnbq+5QZuIiHoHBhv1GtXV1fjss88wZcoU+Pr6QiwWQyQSwcPDAw8++CBiY2Pxr3/9S+uqMvc+gV3Xp2Xv2LGj1fs6e9K72s2bN/Hee+/hz3/+M/r37w8nJyc4ODjA19cXUVFRWLt2LW7cuKHPxyfqNTgU2UUmG4rU8eGrPZaJHvp6+vRpzJkzR7Mgd0c8PT3bPOcvJiYG27Zt03zv6uqK27dvd/r/cPLkyTh69Kjm+8DAwA6f56ZQKBAXF4dPP/20zSzeewkEAsyePRsffPCBSdYu5VAkmZM+P3NNNnmEyFyuXr2KqKgozSLb06ZNw6xZsxASEgJ7e3uUlZXh/Pnz+O6773DixIlO2xOLxZDL5fjqq6/w9NNPt3tcSUkJjh8/rnmPQqHosN2ysjJER0dDKpUCUC0x95e//AWRkZHw8/ODnZ0dSkpKcPLkSRw4cAC//vor9uzZg/Hjx2Pp0qU6/mkQWT8GG1m9N998UxNqW7ZsQUxMTJtj/vznP+PVV19FaWkp9uzZ02F706ZNw549e/DFF190GGw7d+5EU1MTfHx8EBQUhPT09HaPbW5uxlNPPaUJtalTp+Lzzz9Hv3792hwbHR2Nf/zjH9ixYwdeffXVDmsl6o14jY2sWlNTk2ZlmdGjR2sNtZY8PDywcOHCDo95/vnnAQBHjx7FnTt32j3uiy++AADMnTsXQmHH/9TWr1+v6S1GRUXhyy+/1BpqakKhEM899xwyMzPNthQdkaVisJFVKy0tRW1tLQDg/vvvN0qbUVFR8PDwQGNjI/7zn/9oPebixYua5eOee+65Dturr6/HBx98AEA1ZLl58+YOH3rbkp+fHyIjI3UvnqgXYLCRVbO3t9d8/fPPPxulTVtbWzzzzDMA/uiV3evf//43ANUC4EOHDu2wvaNHj6K4uBgAMHv2bPj4+BilTqLeisFGVs3d3V3zOKTz58/j3XffRXNzs8HtqnthZ8+exS+//NJqX3NzM3bu3NnquI6kpaVpvn788ccNro2ot2OwkdV7+eWXNV+vXLkSQUFBWLJkCXbv3t3le8FGjx6NBx54AEDbXtsPP/yAoqIi2NjYYO7cuZ22df78ec3XLRcCJ6KuYbCR1XvllVda3VCdl5eHTz75BHPmzMHAgQPh5eWFOXPm4NChQ9Dntk51b2zHjh2t3qcOukcffRReXl6dtnP37l3N1x1NGCEi3TDYyOoJhUJ8/vnnOHbsGCZPntxmYsbt27exe/duTJs2DWPGjEFubq5O7c6dOxcCgQD5+fmaqfw1NTU4cOAAAN2GIQFobkUA+LBbImNgsFGv8ec//xlHjhzB3bt38c033yAhIQHR0dGQSCSaY86ePYvw8HCtj0u6V0BAACb+vnKKupd24MABVFVVwdnZGU888YROdbm4uGi+bvmsQiLqGgYb9Tqurq547LHHsHr1anz99de4ffs2Nm/erHl00a1bt/DWW2/p1Ja6V7Z3714oFApNwD355JNwdHTUqY377rtP8/Xt27f1+ShEpAWDjXo9kUiEefPmYdeuXZptBw4c0Gn25KxZs+Dg4ACZTIZ//vOf+P777wHoPgwJqG4JUMvKytKjciLShsFG9LuoqCjNYsLl5eWtJnW0x8XFBTNmzAAAvP7662hqaoKfnx8eeeQRnc8bERGh+Vq9SgoRdR2DjaiFljdHCwQCnd6j7p2pFznWZQmtlqKiojTn3bt3L4qKinR+LxG1xWAj+l1NTQ0uX74MQHUdruW1r45MmjQJ/v7+EIlEEIlEeg1DAqrVUdSLGSsUCvzv//4vmpqadHpvUVERfvjhB73OR2TtGGxk1aqqqjB27FikpKR0eM2subkZL7/8cqtH2+jaY7OxscHNmzehUCigUCgwePBgvetcsmSJZvjy6NGjeOKJJ1BaWtru8UqlEjt37sSoUaOQk5Oj9/mIrBkfW0NW78yZM4iOjoavry9mzJiB8ePHIzAwEC4uLqioqMC5c+ewefNmXLhwAQAgkUiwZs0ak9YoFAqxZ88eTJ06FRkZGTh06BCCgoIwd+7cNs9jk0ql2L9/f5ulvIhIhcFGVs3W1hZeXl4oKSlBUVERkpOTkZyc3O7xwcHB2LVrF/r372+6In/Xt29fpKamYuXKlfj0009RWVmJzz77DJ999pnW4wUCAebOnYunnnrKxJUSWTYGm6X7/QZg6hqxWIyioiJIpVIcP34cUqkUV65cwe3bt6FQKODk5AQfHx+EhYVh+vTpePLJJ1s9EcAc9X788cdYtmwZdu3ahePHj+Pq1asoLS2FUqmEu7s7hgwZgoiICMydO1ezwDMR/UGg1GdxPNKQy+WQSCSQyWRwdXXV+X0KhQI3btzAgAEDIBaLu7FCIuPi310yJ31+5nLyCBERWRUGGxERWRUGGxERWRUGGxERWRUGGxERWRUGGxGROaSmql7tfU9dxmAjIiKrwmAjIiKr0qVgq62txerVqxESEgKxWAwfHx/Exsbq/biNtLQ0JCQk4PHHH4eHhwcEAkGHSxk1NDTg2LFjWLRoEYYMGQJHR0c4ODjggQcewKuvvtruorFbt26FQCBo9zVnzhy96iYiIsul95JaCoUCkZGRkEql8Pb2xvTp05GXl4ctW7YgJSUFUqkUAwcO1KmtJUuW4Pz58zqfOy0tDVFRUQCA/v3747HHHkNDQwNOnz6NDz/8EDt27EBqaioGDRqk9f1hYWEYPnx4m+1jx47VuQYiIrJsegfb2rVrIZVKMX78eBw7dgzOzs4AgHXr1mH58uWIjY1Fqo4XQCdNmoTZs2fjwQcfhJ+fX6eP+xAKhXjqqaewfPlyjBkzRrNdJpPh6aefxtGjRzFv3jycOnVK6/tnzJiB+Ph4nWrrblzJjHoa/p2lnkKvYKuvr0dSUhIAIDk5WRNqALBs2TJs27YNaWlpyMzMxKhRozpt77333tN8XVJS0unxkZGRiIyMbLNdIpFg8+bN8PX1xenTp5Gfn2+xi8Pa2NgAABobG81cCZF+1A8/1efp4ETmoNff0JMnT0ImkyEoKAgjRoxos3/WrFkAgEOHDhmnOj34+PjAw8MDAFBcXGzy8+vK1tYWIpEIMpnM3KUQ6aWyshJ2dnaws7MzdylEHdKrx6a+HjZy5Eit+9XbzfFE34qKCpSXlwMAvLy8tB6TmZmJFStWQC6Xw8vLC5GRkYiIiDBlmRAIBHBzc8Pt27dRXl6OPn36mPT8RF1RW1sLuVwONzc3nZ8sTmQuegXbzZs3AQB+fn5a96u35+fnG1iW/pKTk9HY2IihQ4diwIABWo9JSUlBSkqK5vt33nkHERER2L17Nzw9PTtsv66uDnV1dZrv5XJ5l2vt06cP6uvrUVJSArlcDmdnZ4jFYgiFQv7QIIuhVCrR1NSEyspKyOVyiEQi9O3b19xlEXVKr2CrqqoCADg6Omrd7+TkBEA1ZGFK586dw9q1awEA7777bpv93t7eiI+Px/Tp0zFw4EDU1tbizJkzeO2115CWloapU6dCKpVqrn9pk5iYiISEBKPUKxAI4OXlBQcHB8jlcpSVlaG5udkobRMZm52dHdzc3NC3b98O/40QWYoe/wTt27dvY+bMmVAoFFi6dCkee+yxNsdERUVpbhMAAFdXV0RHR+ORRx7BqFGjcPbsWezZswfPPPNMu+eJi4vDsmXLNN/L5XL4+/sbVLtEIoFEIkFzczMaGxsZbmRxhEIh7OzsOJJAPYpewaaeBVlTU6N1f3V1NQDAxcXFwLJ0U1lZiSlTpiAvLw+zZ8/Ghx9+qNf7nZ2dsXjxYixatAhHjx7tMNhEIhFEIpGhJWslFAphb2/fLW0TEfU2es2KDAgIAAAUFhZq3a/eboqp9gqFAtOmTUNWVhYmTZqE7du3d2kacnBwMADg1q1bxi6RiIjMQK8kCAsLAwBkZWVp3a/ePmzYMAPL6lhjYyOefvpppKam4qGHHsKBAwe63ONRz6RUXx8kIqKeTa9gmzBhAiQSCXJzc5Gdnd1m/759+wAA0dHRRilOG6VSiXnz5uHrr7/G8OHDcfjwYYNCaf/+/QDav4WBiIh6Fr2Czd7eHosWLQIALFy4UHNNDVAtqZWTk4OIiIhWq44kJSUhNDQUcXFxRil46dKl2L59O0JDQ3Hs2DG4ubl1+p7ExESUlZW12tbQ0ICEhATs3bsXDg4OmDdvnlHqIyIi89J7VuSqVatw/PhxnDp1CsHBwQgPD0d+fj4yMjLg4eGBzZs3tzq+rKwMV65c0XoNa9OmTdi0aRMAVdAAqmtd48aN0xyzceNGTW/qq6++wieffAIA8Pf3x4oVK7TWuHLlSoSGhmq+f+ONN5CQkIDRo0fD398fcrkc2dnZKC4uhlgsxvbt2+Hr66vvHwUREVkgvYNNLBbjxIkTSExMxM6dO3Hw4EG4u7sjJiYGa9asaffmbW0KCwuRkZHRalt9fX2rbS1vhFZfDwOA7777rt12Y2JiWgXb6tWrcfr0aVy5cgVZWVlQKpXw8/PD/Pnz8corr7T7NAAiIup5BEou2d0lcrkcEokEMpkMrq6u5i6HiHoa9VNQJk7U/j21os/PXC7TTUREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRoZLTVW9iIgsAIONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisisUHW21tLVavXo2QkBCIxWL4+PggNjYWRUVFerWTlpaGhIQEPP744/Dw8IBAIED//v27p2giIjIbW3MX0BGFQoHIyEhIpVJ4e3tj+vTpyMvLw5YtW5CSkgKpVIqBAwfq1NaSJUtw/vz5bq6YiIjMzaJ7bGvXroVUKsX48eNx9epV7N69GxkZGfjwww9RWlqK2NhYnduaNGkS1q5di6NHj+LSpUvdWDUREZmTxfbY6uvrkZSUBABITk6Gs7OzZt+yZcuwbds2pKWlITMzE6NGjeq0vffee0/zdUlJifELJiIii2CxPbaTJ09CJpMhKCgII0aMaLN/1qxZAIBDhw6ZujQiIrJgFhts6uthI0eO1LpfvT0nJ8dkNRERkeWz2KHImzdvAgD8/Py07ldvz8/PN0k9dXV1qKur03wvl8tNcl4iItKPxQZbVVUVAMDR0VHrficnJwBAZWWlSepJTExEQkKCSc5FRFYsNdU475s40cBCrJfFDkVamri4OMhkMs2roKDA3CUREZEWFttjU8+CrKmp0bq/uroaAODi4mKSekQiEUQikUnORUREXWexPbaAgAAAQGFhodb96u2BgYEmq4mIiCyfxQZbWFgYACArK0vrfvX2YcOGmawmIiKyfBYbbBMmTIBEIkFubi6ys7Pb7N+3bx8AIDo62sSVERGRJbPYYLO3t8eiRYsAAAsXLtRcUwOAdevWIScnBxEREa1WHUlKSkJoaCji4uJMXi8REVkGi508AgCrVq3C8ePHcerUKQQHByM8PBz5+fnIyMiAh4cHNm/e3Or4srIyXLlyBbdu3WrT1qZNm7Bp0yYAQENDAwDg1q1bGDdunOaYjRs3tntDOBER9QwWHWxisRgnTpxAYmIidu7ciYMHD8Ld3R0xMTFYs2ZNuzdva1NYWIiMjIxW2+rr61tt403XREQ9n0CpVCrNXURPJJfLIZFIIJPJ4Orqau5yzEt94yhvGCXqXHs3Wnf276iX36Ctz89ci73GRkRE1BUMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIiM8n+tgTfLv0WteW15i7Fqlj0g0aJiKxV/vkKfPXuFQBATVkNZr7obuaKrAd7bEREZnBkwzXN1xd2XMDNCzIzVmNdGGxERCZWWVaH27nVgAAIfjwYAHDpRKmZq7IeDDYiIhO7eVEOAPAKckbY82EAgMLLcnOWZFUYbEREJnYzRzXs6D/UFT6jfQAAt69Xoamh2ZxlWQ0GGxGRid28qAq2gCESuA1wg7iPGE0NSty5UW3myqwDg42IyITqqhtxO7cKABAwVAKBQACfUapeW/HVKnOWZjUYbEREJnTnRjWUzYBLX3u4eogAAN6jvAEAxVcqzVma1WCwERGZ0N1C1c3Yff0dNdvU19luXWWwGQODjYjIhH4rVgWbu5+DZpvnME8AQNnNGiiVSrPUZU0YbEREJvRbYdtgkwRKAAHQoGhGTVmNuUqzGgw2IiITUgfbfb5/BJutyBaufVXX28qvl5ulLmvCYCMiMhGlUom7RW17bADg5i0GAFTcqDB1WVaHwUZEZCI1pTWor2kCBEAf79bB1uf3YGOPzXAMNiKi7pCaqnq1ILupujHb2d0etvatf/yqe2zlNxhshmKwERGZiLxQtR6k5Pf711rq4/X7UOT1ClOWZJW6FGy1tbVYvXo1QkJCIBaL4ePjg9jYWBQVFendVnl5OZYsWYLAwECIRCIEBgZi6dKlqKioaHNsXl4eBAJBp6/Y2NhW79u6dWuHx8+ZM6crfwxERHqRFah6bK79tASbj2pokj02w+n9oFGFQoHIyEhIpVJ4e3tj+vTpyMvLw5YtW5CSkgKpVIqBAwfq1FZZWRnGjx+Pa9euYeDAgZgxYwYuXbqE9evX48iRIzh9+jTc3f94+J6zszNeeOGFdtvbvXs3FAoFwsPDte4PCwvD8OHD22wfO3asTvUSERlCXqDqsWkLNrffe2yymzI0NzZDaMsBta7SO9jWrl0LqVSK8ePH49ixY3B2dgYArFu3DsuXL0dsbCxS7xlXbs/SpUtx7do1zJw5E7t374atraqcxYsXY8OGDVi2bBm2bt2qOb5v376tvm/p559/xrZt2+Dg4IAnn3xS6zEzZsxAfHy8rh+ViMioNMGmZSjS5T572NgJ0NSghLxQDrf+biauznro9StBfX09kpKSAADJycmaUAOAZcuWYdiwYUhLS0NmZmanbd26dQu7du2Cvb09Nm7cqAk1AHj//ffh4eGB7du3486dOzrVtn37dgDA9OnT4erqqs/HIiIyCfVQpLZrbAKhAM7u9gCAyltcWssQegXbyZMnIZPJEBQUhBEjRrTZP2vWLADAoUOHOm3r22+/RXNzM8LDw+Hp6dlqn0gkQnR0NJqamvDNN9902pZSqcTOnTsBAM8995wuH4WIyOTUk0e0DUUCql4bAFTd4ir/htBrKPL8+fMAgJEjR2rdr96ek5NjlLY2b96sU1s//vgj8vLy0K9fP0yaNKnd4zIzM7FixQrI5XJ4eXkhMjISERERnbZPRGSo5qZmVBapemKSfmKtxzjfJwJQyR6bgfQKtps3bwIA/Pz8tO5Xb8/PzzdpW+phyDlz5rQa0rxXSkoKUlJSNN+/8847iIiIwO7du9v0Gu9VV1eHuro6zfdyOR/jTkS6q75djebGZgiE0Aw53ku9vaqEPTZD6DUUWVWl+sN2dHTUut/JyQkAUFnZ+W8bxmqrrq4Oe/fuBdD+MKS3tzfi4+Nx7tw5yGQylJSU4Ouvv0ZoaCjS0tIwdepUNDU1dXiexMRESCQSzcvf37/D44mIWlJfX3O5TwShjUDrMRyKNI4eP5/08OHDKC8vR2hoKEaPHq31mKioKLz99tsYPnw4XF1d4enpiejoaPz0008ICQnB2bNnsWfPng7PExcXB5lMpnkVFBR0x8chIivV0VR/NU2PjcFmEL2CTT0LsqZG+2MVqqurAQAuLi4ma0s9DNmVSSPOzs5YvHgxAODo0aMdHisSieDq6trqRUSkq45WHVHjrEjj0CvYAgICAACFhYVa96u3BwYGmqStiooKfPPNNxAIBJg7d26n59QmODgYgOr2AyKi7tLRqiNqHIo0Dr2CLSwsDACQlZWldb96+7Bhw0zS1p49e1BXV4fw8HCdwlSb8nLV8jXqa3pERN1BPSPSpW8HPbbfg636TjWam5pNUpc10ivYJkyYAIlEgtzcXGRnZ7fZv2/fPgBAdHR0p21NnjwZQqEQ6enpbW7Crqurw6FDh2BjY4MpU6a024Yhw5Bq+/fvB9D+bQdERMZQfUd1ecW5j127xzi52UMgFEDZrERNKZ+k3VV6BZu9vT0WLVoEAFi4cKHmOhigWlIrJycHERERGDVqlGZ7UlISQkNDERcX16otb29vPPPMM6ivr8eCBQvQ2Nio2ffaa6+htLQUzz77LPr166e1lvz8fPz4448Qi8WYPXt2h3UnJiairKys1baGhgYkJCRg7969cHBwwLx583T7QyAi6gJ1UDm6tR9sQhsBnPr9PiOc19m6TO+1IletWoXjx4/j1KlTCA4ORnh4OPLz85GRkQEPDw9s3ry51fFlZWW4cuWK1mtYH3/8MaRSKfbv36+Z1Xjp0iVcvHgRwcHBWLduXbt17NixA0qlEtHR0ZBIJB3W/MYbbyAhIQGjR4+Gv78/5HI5srOzUVxcDLFYjO3bt8PX11ffPwoiIp1Vl6o6Ak5u2u9hU3P2ckZVSZXqOlvbBZ5IB3pP9xeLxThx4gTeeustODo64uDBg8jPz0dMTAyysrJ0XtkfUC1qfObMGbz88suor6/Hl19+CZlMhsWLF+PMmTOtVva/144dOwAAzz77bKfnWb16NR5++GEUFBTgq6++wg8//ABHR0fMnz8f2dnZmDlzps41ExHpS9msRE2Zqsfm1EGPDQCcvVUzxtlj6zqBUqlUmruInkgul0MikUAmk3Hqv/ppDhMnmrMKIsvS4t9Fzd0avN/3fQDAqmPhsLFr0adQ/7v5/fivvpAhe3M2HlnzCB5e9XDb9u59Xy+hz8/cHn+DNlmB1NS2/2iJrIj6+ppIImodalq4eKvu3eWyWl3HYCMi6mbqGZHqiSEdUQ9F8l62rmOwERF1M83EEY/Og03dY+M1tq5jsBERdTPNVH8P7Yu+t+TsxR6boRhsRETdTD0UqVOwtZgVybl9XcNgIyLqZpqhSB2usamPaaprQn1VfbfWZa0YbERE3Uw9FKnLNTZ7J3vYOarudVP39Eg/DDYiom6mz1Ak8EevjcHWNQw2IqJupumx6TAU2fI4LoTcNQw2IqJups90f+CPnh17bF3DYCMi6kYt14nUeyiylMHWFQw2IqJuVFteC2WTato+e2ymwWAjIupGrdaJtLfR6T2aa2x3eI2tKxhsRETdSN/ray2P5VBk1zDYiIi6kT4LIKtxur9hGGxERN1In3Ui1dTHcrp/1zDYiIi6kXo4UZ9ga9lj43qR+mOwERF1oy4NRf5+ja25sRmKCkW31GXNGGxERN1In3Ui1WzFtrB3sW/1ftIdg42IqCtSU1WvTnTlGhvQYmYkJ5DojcFGRNSNujIUCbSYQFLGHpu+GGxERN2oK/extTye97Lpj8FGRNRNurJOpBqn/Hcdg42IqJvUVjZq1ol07KtnsPXlUGRXMdiIiLpJjawBgGqdSFuRrV7vZY+t6xhsRETdpLqiHoD+19davofX2PTHYCMi6ibV5aoem77X1wAORRqCwUZE1E3UQ5H6TvUHOBRpCAYbEVE3qa7oeo+NQ5Fdx2AjIuomhlxjUw9FNtY2oqGmwah1WTsGGxFRN6mp6PpQpL2LveaJ2+y16cekwVZbW4vVq1cjJCQEYrEYPj4+iI2NRVFRkd5tlZeXY8mSJQgMDIRIJEJgYCCWLl2KiooKrcfHxMRAIBC0+/rss88M/HRERK3VGDAUKRAIeJ2ti/S7scIACoUCkZGRkEql8Pb2xvTp05GXl4ctW7YgJSUFUqkUAwcO1KmtsrIyjB8/HteuXcPAgQMxY8YMXLp0CevXr8eRI0dw+vRpuLu7a31vVFQUvLy82mwfNGiQQZ+PiOhe6mtsXRmKBFTDkZVFlaqZkWJjVmbdTBZsa9euhVQqxfjx43Hs2DE4OzsDANatW4fly5cjNjYWqTqslA0AS5cuxbVr1zBz5kzs3r0btraqj7F48WJs2LABy5Ytw9atW7W+d+XKlZg4caIRPhERUcc019i6MBQJ3DOBxN9oZVk9kwxF1tfXIykpCQCQnJysCTUAWLZsGYYNG4a0tDRkZmZ22tatW7ewa9cu2NvbY+PGjZpQA4D3338fHh4e2L59O+7cuWP8D0JEpCNls1Iz3b8rQ5Et38ehSP2YJNhOnjwJmUyGoKAgjBgxos3+WbNmAQAOHTrUaVvffvstmpubER4eDk9Pz1b7RCIRoqOj0dTUhG+++cY4xRMRdUFtZSOUzaqv9V0nUk39Pk4e0Y9JhiLPnz8PABg5cqTW/ertOTk5Rmlr8+bN7bZ14MAB7N+/H01NTRgwYACio6MRGhra6XmJiPRhyDqRaq2fyeZqrNKsnkmC7ebNmwAAPz8/rfvV2/Pz87u9rQ0bNrT6/vXXX8dLL72E9evXtxrWvFddXR3q6uo038vl8k5rJaLey5B72NTU71UNRTLYdGWSociqqioAgKOj9u64k5Pqf15lZWW3tTVixAh89tlnuHr1KmpqanD9+nUkJyfDzc0NGzduxIoVKzo8b2JiIiQSiebl788ruUTUPkPWiVTTrBfJa2x66TU3aC9ZsgTz589HcHAwHBwcMGDAACxYsADp6emwt7dHUlISCgoK2n1/XFwcZDKZ5tXRsUREhqwTqdZ6KJJ0ZZJgU8+CrKnR/j+nulp1YdTFxcWkbQHA4MGDMW3aNDQ2NuL7779v9ziRSARXV9dWLyKi9hiyTqQa14vsGpMEW0BAAACgsLBQ63719sDAQJO2pRYcHAxAdSsBEZExGOMam3ooUlGuQFNjs1Hq6g1MEmxhYWEAgKysLK371duHDRtm0rbUysvLAfxxfY6IyFCGLKel5nCfAyBQfV0rbzRGWb2CSYJtwoQJkEgkyM3NRXZ2dpv9+/btAwBER0d32tbkyZMhFAqRnp7e5ibsuro6HDp0CDY2NpgyZYpOtdXV1eHw4cMA2r+FgIhIX4YsgKwmtBHCwd0BwB89QOqcSYLN3t4eixYtAgAsXLhQcx0MUC2plZOTg4iICIwaNUqzPSkpCaGhoYiLi2vVlre3N5555hnU19djwYIFaGz847eY1157DaWlpXj22WfRr18/zfZffvkFX3zxRavp+gBQWlqKOXPmoKCgAGFhYZgwYYJRPzcR9V7VMsPWiVTTTPmv4KNrdGWytSJXrVqF48eP49SpUwgODkZ4eDjy8/ORkZEBDw8PbN68udXxZWVluHLlitbrXh9//DGkUin279+P0NBQjB49GpcuXcLFixcRHByMdevWtTq+pKQEzz//PJYsWYLRo0fDw8MDxcXFyMzMRGVlJfz8/LBnzx4IBIJu/TMgot6julzVwzJkKBJQ9fjKfinTTEahzplsur9YLMaJEyfw1ltvwdHREQcPHkR+fj5iYmKQlZWl88r+ANC3b1+cOXMGL7/8Murr6/Hll19CJpNh8eLFOHPmTJuV/UNCQrB06VIMGjQIFy5cwN69e3H27FkEBwfj7bffRk5ODkJCQoz9kYmol2q5TqQhQ5FAiyn/MgabrkzWYwMABwcHvPPOO3jnnXc6PTY+Ph7x8fHt7nd3d8cnn3yCTz75pNO2fHx88NFHH+lTKhFRlykqFAavE6mmDjb22HTXa27QJiIyleo7qnkEIiebLq8Tqaa5l42TR3TGYCMiMjL1DdVObvYGt6UeyuTkEd0x2IiIjEy9tqOjm53BbWmusTHYdMZgIyIyMvVQpJMRgk0zFMnJIzpjsBERGdkfwWb4UCR7bPpjsBERGZkm2PoYr8dWI29Ac5PS4PZ6AwYbEZGRGXMoUnO7gBKolbPXpgsGGxGRkf3RYzN8KFJo23K9SAabLhhsRERGZsweG8DVR/TFYCMiMjJj9tiAljdpM9h0wWAjIjKi5sZm1N6tBWC8HtsfN2m3WH0kNVX1ojYYbERERlRTpro5GwLAwdW4Q5HssemGwUZEZETqYUhHiR2ENsZ5FBaDTT8MNiIiIzL2xBGADxvVF4ONiMiIjD1xBGg5K5Ir/OuCwUZEZETd0mPrx1mR+mCwEREZkTHXiVTjdH/9MNiIiIxI8yw2I6wTqebk+fs1NhnXi9QFg42IyIhq7qim+xtzKNKxryMEQgBKoLqc19k6w2AjIjKi7pg8IrQRatqrvMtg6wyDjYjIiKpKqgAYt8cGAC7uqmCr+o3B1hkGGxGRkSiVSk2wOd9nvB5by/YYbJ1jsBERGUmdrA6NikYAgLO7kYONPTadMdiIiIxE3VsTSUSwE9kYtW11j43X2DrHYCMiMpLKW5UAABdvF6O3zWtsumOwEREZSdWt36+veTkbvW0OReqOwUZEZCSaiSPe3RBs6skjHIrsFIONiMhI1EOR3dljq7xbB6WSq490hMFGRGQk1SWqm7O7o8fmcp8IANDUoERddZPR27cmDDbSHx9JT6RVd/bYbO2FEDvbqs5zt87o7VsTBhsRkZGoJ490x6xIoMUEEl5n61CXgq22tharV69GSEgIxGIxfHx8EBsbi6KiIr3bKi8vx5IlSxAYGAiRSITAwEAsXboUFRUVbY5taGjAsWPHsGjRIgwZMgSOjo5wcHDAAw88gFdffRWlpaVaz7F161YIBIJ2X3PmzNG7biKie2kmj3RDjw3g6iO6stX3DQqFApGRkZBKpfD29sb06dORl5eHLVu2ICUlBVKpFAMHDtSprbKyMowfPx7Xrl3DwIEDMWPGDFy6dAnr16/HkSNHcPr0abi7u2uOT0tLQ1RUFACgf//+eOyxx9DQ0IDTp0/jww8/xI4dO5CamopBgwZpPV9YWBiGDx/eZvvYsWP1/WMgImqlsa4Rtb/VAvj9GluZ8c+hvpetksHWIb2Dbe3atZBKpRg/fjyOHTsGZ2fVbybr1q3D8uXLERsbi1Qdr78sXboU165dw8yZM7F7927Y2qrKWbx4MTZs2IBly5Zh69atmuOFQiGeeuopLF++HGPGjNFsl8lkePrpp3H06FHMmzcPp06d0nq+GTNmID4+Xt+PTETUqerbqokjQjshHNwduuUcTryXTSd6DUXW19cjKSkJAJCcnKwJNQBYtmwZhg0bhrS0NGRmZnba1q1bt7Br1y7Y29tj48aNmlADgPfffx8eHh7Yvn077ty5o9keGRmJ3bt3two1AJBIJNi8eTMA4PTp08jPz9fnYxERGazlxBGBQNAt53DhvWw60SvYTp48CZlMhqCgIIwYMaLN/lmzZgEADh061Glb3377LZqbmxEeHg5PT89W+0QiEaKjo9HU1IRvvvlGp9p8fHzg4eEBACguLtbpPURExtLdE0cATh7RlV5DkefPnwcAjBw5Uut+9facnByjtLV582ad2gKAiooKlJeXAwC8vLy0HpOZmYkVK1ZALpfDy8sLkZGRiIiI0Kl9IqKOdOdUfzUuq6UbvYLt5s2bAAA/Pz+t+9XbdRkKNGZbgGpotLGxEUOHDsWAAQO0HpOSkoKUlBTN9++88w4iIiKwe/fuNr1GIiJ9yAvkAABXf9duO4d6KJKTRzqm11BkVZWqq+3o6Kh1v5OTEwCgsrLSpG2dO3cOa9euBQC8++67bfZ7e3sjPj4e586dg0wmQ0lJCb7++muEhoYiLS0NU6dORVNTx3fy19XVQS6Xt3oREamZItjUPTZFZSMa65u77Tw9XY+/Qfv27duYOXMmFAoFli5discee6zNMVFRUXj77bcxfPhwuLq6wtPTE9HR0fjpp58QEhKCs2fPYs+ePR2eJzExERKJRPPy9/fvro9ERD2QrEAGAJD4S7rtHGIXW9jYqSamcPWR9ukVbOpZkDU1NVr3V1erpru6uHR+8dQYbVVWVmLKlCnIy8vD7Nmz8eGHH3Z63ntrWLx4MQDg6NGjHR4bFxcHmUymeRUUFOh1LiKybrKbqmDrzh6bQCCApJ8YACC/w2Brj17X2AICAgAAhYWFWvertwcGBnZ7WwqFAtOmTUNWVhYmTZqE7du3QyjUvwMaHBwMQHX7QUdEIhFEIpHe7ROR9VM2KyEvVA1FSgK6r8cGAJJ+IvxWVAsZg61deiVBWFgYACArK0vrfvX2YcOGdWtbjY2NePrpp5GamoqHHnoIBw4cgL29fecfQAv1TEr1NT0iIn1V36lGc0MzIABcfLpvuj8ASDxVv2DLbiu69Tw9mV7BNmHCBEgkEuTm5iI7O7vN/n379gEAoqOjO21r8uTJEAqFSE9Pb3UTNqCaqHHo0CHY2NhgypQprfYplUrMmzcPX3/9NYYPH47Dhw8bFEr79+8H0P5tB0REnVFfX3PxdoGNnU23nsv196FIWSl7bO3RK9js7e2xaNEiAMDChQs118EA1ZJaOTk5iIiIwKhRozTbk5KSEBoairi4uFZteXt745lnnkF9fT0WLFiAxsZGzb7XXnsNpaWlePbZZ9GvX79W71u6dCm2b9+O0NBQHDt2DG5ubp3WnZiYiLKy1gu3NTQ0ICEhAXv37oWDgwPmzZun858DEVFLppgRqSbpp+qxyW8z2Nqj91qRq1atwvHjx3Hq1CkEBwcjPDwc+fn5yMjIgIeHh2ZpK7WysjJcuXJF6zWsjz/+GFKpFPv370doaChGjx6NS5cu4eLFiwgODsa6detaHf/VV1/hk08+AQD4+/tjxYoVWmtcuXIlQkNDNd+/8cYbSEhIwOjRo+Hv7w+5XI7s7GwUFxdDLBZj+/bt8PX11fePgogIgGlmRKqpg43X2Nqnd7CJxWKcOHECiYmJ2LlzJw4ePAh3d3fExMRgzZo17d5wrU3fvn1x5swZxMfH4+DBg/jyyy/h6emJxYsXIyEhoU1vTH09DAC+++67dtuNiYlpFWyrV6/G6dOnceXKFWRlZUGpVMLPzw/z58/HK6+80u7TAIiIdGHSHpvn70ORd3iNrT16BxsAODg44J133sE777zT6bHx8fEdrqjv7u6OTz75RNMT60hMTAxiYmL0qFQlISFB7/cQEenKlMHm6qHqsdVVN0FR1Qhxt5+x5+nxN2hTD5KaqnoRWZPUVMguqe5rNcVQpL2DDRxcVX0S9tq0Y7ARERlIfbO0KXpsADQ3acs4gUQrBhsRkQEa65shL1MFjFugm0nO6ealGo6sKGGPTRsGGxGRASpKFIASsHe2h5OnaRZ66OOrekL3b8W1JjlfT8NgIyIywG9FqnDpE9Sn256cfS93H1WwlRcx2LRhsBERGaD8916T+/3uJjunu6bHxqFIbRhsREQG+K1IFS59gvqY7Jx9fFSTR8qLa9HcxOey3YvBRkRkgN/M0GOT9BNDaCtAU4MSlUWdP4y5t2GwEREZQDMUGWS6YBPaCODmpeq1/Zb7m8nO21Mw2IiIuqi5SYnyW6qhSFP22IAW19muMdjuxWAjIuoieWkdmhuVsLETwMW3e5/Ddi/1dTYGW1sMNiKiLirNUz26y93XAUIb0/447evvCAAo+7mskyN7HwYbEVEX3bmhCrZ+A0xzY3ZL6nPeuXinkyN7HwYbEVEXlebVADBPsHn0V/XYKm5UoL663uTnt2QMNiKiLjJnj83JzR5OfewAAKWXS01+fkvGYCMi6oLmJiVK883XY2t5Xg5HtsZgIyLqgvJbtWisb4atSKi5p8zUGGzaMdiIiLrgzg1Vb80j0BFCG9MsfnwvTbBdYLC1xGAjIuqCW7+qlrLyHGieYciW5y45VwKlUmm2OiyNrbkLICLqiYouywEAvg/o+NTs1FSj1+AZ5AwbexvUlNWg/Hq5SZf1smTssRER6UnZrETRL6oem9//6Bhs3cDWXgivEV4AgEJpodnqsDQMNiIiPZX9Uoa66ibYiYVmmxGp5jfODwBQlFFk1josCYONup2yWYmauzVQVDXyOgBZBXXvyCfExWwTR9TUwcYe2x94jY26RdkvZcjZnoNfv/kVd6/cRUNNAwBA5GQD3/GFCJkWgmHPDoNDHwczV0qkP3WI+JpxGFJNHWwl50rQUNMAO0c7M1dkfgw2MqrSn0uR+nYqLu+9rHV/XXUTrh+/juvHr+P468cxdvFYTHhICQdX/mOknkGpVOL68esAgICh5g82SaAErn6ukBfKkZ+ej/uj7jd3SWbHYCOjaGpoRnpCKtL/no7mBtWj6kOmhmDwnMHwHeMLt0A3NP+QiruFtbghvw/ZW7Nx58IdnHz3JM5J7PDY4vsxOEIJgcC8wzpEnSnPLUfFjQoIbQUYMKKPucuBQCDAwEkDkb05G7nHchlsYLCREZRcq8KXib/gznXVunkhU0MQ+Y9IeA71bHWcjdgGXvc7w2vieIx7ZRyuplzF9yu/R+nlUuxf8zN+/mUfov8VDbHEPKs4EOni2tFrAICAIa6wd7AxczUq90fdrwq2o7nAh+auxvw4eYS6TKlUIvNfmdi0IAt3rlfDsa8jnvzPk5jz9Zw2oXYvgUCAQdGDMP/cfETEBEJoI8DlvZfxz5H/RHFmsYk+AZH+rhy8AgAIGmM594wNfHQgBDYClF4q5YNHwWCjLmpQNOGreV8h5a8paGpQIuSh+7Dg8gIMeXqIXsOJNvY2mPhCf8RuGA63/m4ov16OzQ9txpmkM5xBSRan+k41bvxwAwDwPw97mLmaPzi4O2BA5AAAwKU9l8xcjfkx2EhvZTdrsGnhOZzfdh4CoQD/318HYM6awXDy6Pr9PL4PuOKvWX9F6IxQNNU34cjLR7Dv6X1QyBRGrJzIMJf2XoKyWQmf0T5w97WsGb2Dnx4MALi462Kv/6WQwUZ6ufifi/jX31RDj06eTnj+++fxp2cCIBAaPunDoY8DnjrwFKI+ioLQVojLey/jX6P/hZLsEiNUTmQYpVKJs5+eBQAMnTvUzNW09cDMB2ArtsWdi3dQcLLA3OWYVa8LttraWqxevRohISEQi8Xw8fFBbGwsiop4135HGmoakPJSCvY/sx/1tU3oP1yCv2X/Df0n9jfqeQQCAcYtHYd5P86DJECC3679hk3jNiHzn5m9/rdQMq+8E3kovVQKO0c7DI8Zbu5y2nDo46AJ3Iz1GWauxrx6VbApFApERkZizZo1qKqqwvTp0+Hv748tW7ZgxIgRuH79urlLtEh5aXn4dNinyPwsExAA4c8F4LkPwuDs5dxt5/Qb64f55+YjZGoImuqakDI/Bbtn7IasQNZt5yRqj1KpxA+rfgAADJ83HGI3y5y5O3bJWADA5X2XcevcLTNXYz69KtjWrl0LqVSK8ePH4+rVq9i9ezcyMjLw4YcforS0FLGxseYu0aJU3a5Cyksp2DZxG8pzy+Hq54pnjz6LyNgBJllGyMHdAXO+moNH330UQjshrnx9BRv/ZyMyPslAU0NTt5+fSC1new4KTxfCztEO4W+Gm7ucdnkO9cTQv6h6bUdePoLmpmYzV2QevSbY6uvrkZSUBABITk6Gs/MfvY1ly5Zh2LBhSEtLQ2ZmprlKtBg1d2uQGp+KT4I+UfXSAIz860gsuLQAQX8OMmktAqEAE16bgPnn5sP/IX/UV9Xj2yXfIvmBZJz/4jwDjrpd6c+l+GbhNwCA8DfD4eLtYuaKOhb5j0jYO9uj4GQBUuNTzV2OWfSaYDt58iRkMhmCgoIwYsSINvtnzZoFADh06JCpS7MIzY3NyP9vPg7GHMQ633VIS0hDQ3UDfB70wQupLyD6/6IhchWZrb5+g/thXvo8PP7Z43Dq54Ty3HIcfP4gPg78GD+s+gF3f71rttrIepWcL8EXj36B+sp6BIQHYMLrE8xdUqfcAt0wZeMUAED62nSkJqRC2dy7rk/3mpVHzp8/DwAYOXKk1v3q7Tk5OSaryZwaahpwO+c2ijOLUXi6ENeOXEPtb7Wa/V4jvBD+RjgeePIBi1nmSiAUYPT80Rg2dxgyNmRA+pEUVbeqkP73dKT/PR3uwe64f/L98B3jC68RXug7qC+Etr3mdzcyovIb5Tj76VnVsHddEzz+xwNPH3gaQpue8fcp7LkwlOeWIy0hDWnxabj+3XU8/NbDGBA5ADZ2lrFaSnfqNcF28+ZNAICfn5/W/ert+fn5Jqkn91gu6irrVL9JKVUXpzv8b7Oy82OUylbtNdQ0oL6yHnWVdaivrIeiXAFZgQyymzLUlNa0qUncR4zQ6aEY9bdR8B3jazGBdi97Z3uEx4XjoeUP4crXV5D1ryzc+OEGfvv1N5z59YzmOKGdEK6+rnD1c4WLjwtEbiKIXEQQuYpg72wPoZ0QQtu2L4FQ0P5nb29zR39Wuvwx3vMLdZsZoErd9um935D3WlHb9VX1qL5TDXmhHCXnSlqt3hEyNQQzts2Ag7tl3bfWmYnxEyEJlOCbhd+g4GQBdkzeAbGbGN4jvXFf6H1w8nCC2E0Mexd7CG2EENgIVP8VCiCwERjlFh5tAiYEdOvEM6AXBVtVVRUAwNHRUet+JyfVzcWVlZVa99fV1aGurk7zvUymmp0nl8u7VM+BhQfMvvSNU18neI3wgtcIL/Sf2B9+Y/00PZz2/hwAANWqNSGh/uz3fq/r+zrbrgO/SX7wm+SHOnkd8tLykP/ffNw+fxt3Lt6BolqBmrwalOTxPjjSX/+H++PBRQ8iaFIQGgQNaJA3tD5A/fdWrbO/1/cef+/7Ovt30Nn7tQh6MggvjHsB0o+l+Hn/z6i4W4GKHyqAH9p9S7d7at9TXbpWr/5Zq8ttP70m2AyVmJiIhISENtv9/f3NUI2RlAH47vfXe2auhcjS/Pf3FxnV/5v1/wx6f2VlJSQSSYfH9JpgU8+CrKlpOwQHANW//zbk4qJ9xlNcXByWLVum+b65uRm//fYb7rvvPosdsrMkcrkc/v7+KCgogKur+Z9h1Zvx/4Xl4P8L3SmVSlRWVsLHx6fTY3tNsAUEBAAACgu1Pz5dvT0wMFDrfpFIBJGo9axANzc34xXYS7i6uvIfsIXg/wvLwf8Xuumsp6bWM6b4GEFYWBgAICsrS+t+9fZhw4aZrCYiIjK+XhNsEyZMgEQiQW5uLrKzs9vs37dvHwAgOjraxJUREZEx9Zpgs7e3x6JFiwAACxcu1FxTA4B169YhJycHERERGDVqlLlKtGoikQhvv/12m+FcMj3+v7Ac/H/RPQTKXrRkukKhwMSJE5GRkQFvb2+Eh4cjPz8fGRkZ8PDwgFQqxcCBA81dJhERGaBXBRugemxNYmIidu7ciYKCAri7u2Py5MlYs2ZNuzdvExFRz9Hrgo2IiKxbr7nGRkREvQODjcwiNTUVAoGg3de4cePMXaLV4dPjLcPEiRM7/Lv/7bffmrvEHq/X3KBNlikoKAh/+tOftG4n41E/PV4qlcLb2xvTp09HXl4etmzZgpSUFE6cMoMnn3yy1XMh1Xx9fc1QjXVhsJFZ/elPf8LWrVvNXYbVa/n0+GPHjml+oK5btw7Lly9HbGwsUlNTzVtkL/PBBx+gf//+5i7DKnEoksjK8enx1Nsw2IisHJ8eT70NhyLJrH799VfExcXh7t276Nu3L/70pz9h8uTJEAr5O5ex8Onxlunzzz/H3bt3IRQKERISghkzZmgWayfDMNjIrE6dOoVTp0612jZ06FDs378fwcHBZqrKulja0+NJZe3ata2+f/XVV/HWW2/hrbfeMlNF1oO/FpNZSCQSrFixAlKpFHfv3sXdu3fx/fffY9y4cbhw4QImTZqkeUo5GcbQp8eTcT388MP44osvkJubi5qaGly5cgV///vfYWtri9WrV2P9+vXmLrHH48oj1CVPPPEEfv75Z73e8+9//xtjxozp8JimpiY88sgjSE9Pxz/+8Q/ExcUZUiYB+Otf/4p//etfePPNN9v0EgDg2rVrCA4ORnBwMK5evWqGCgkAjh07hqioKLi5uaG4uBgODg7mLqnH4lAkdcmNGzdw5coVvd7T3tPLW7KxscHrr7+O9PR0HD16lMFmBIY+PZ5MY9KkSRg9ejTOnj2LjIwMTJw40dwl9VgMNuoSbc+0Mxb1tbVbt2512zl6E0OfHk+mExwcjLNnz/LvvoF4jY0sTnl5OYA/rv2QYfj0+J6Df/eNg8FGFmf//v0A2p+eTvrh0+N7htLSUqSnpwPg331DMdjILD7++GMUFBS02qZUKvF///d/+OijjyAQCPDSSy+ZqTrrwqfHW45Tp07h4MGDaGpqarU9Ly8PTzzxBKqrqzFt2jQ+G9JAnBVJZtG/f38UFhZi5MiRGDBgABQKBS5cuIAbN25AKBRi/fr1mh/GZDg+Pd4ybN26FfPmzYOXlxdGjhwJNzc35OfnIzMzEwqFAoMHD8YPP/yAfv36mbvUHo3BRmaxYcMGHDt2DJcuXcKdO3fQ0NCg+YG7ePFiPPjgg+Yu0erw6fHm9/PPP2PDhg3IyMhAQUEBysvL4eTkhAceeACzZ8/GSy+9xGn+RsBgIyIiq8JrbEREZFUYbEREZFUYbEREZFUYbEREZFUYbEREZFUYbEREZFUYbEREZFUYbEREZFUYbEREZFUYbEREZFUYbESkt2vXrmHXrl145ZVXMGHCBDg6OkIgEEAgEGDr1q3mLo96OT5Bm4j0kpaWhokTJ5q7DKJ2scdGRHppuW66UCjE4MGDMWbMGDNWRNQag42I9OLr64v3338fqampkMlkuHjxIh8KSxaFQ5FEpJfg4GC8+uqr5i6DqF3ssRGZWXx8vGbiBQDI5XLEx8dj6NChcHZ2Rr9+/TBlyhScOnWq1fvu3LmDVatWYfDgwXBycsJ9992H6dOn49y5czqdpz2pqama41JTU43yGYlMiT02IgtSUFCARx99FFevXtVsq66uxpEjR3Ds2DHs2rULs2fPRk5ODqZMmYKioiLNcTU1Nfj6669x9OhRHDlyBI888og5PgKR2bHHRmRBZs+ejcLCQsTFxSEtLQ0//fQTPvroI7i6uqKpqQn/+7//ixs3bmDq1Kmora3F3//+d/z444/IyMhAQkIC7O3tUVdXh5iYGNTX15v74xCZBXtsRBYkOzsbaWlpGDt2rGbb6NGjERwcjKlTp6KyshJjx46FUqnEmTNnEBQUpDluzJgx6Nu3LxYuXIibN2/i8OHDeOKJJ8zxMYjMij02IguydOnSVqGm9vjjjyMwMBAAUFpaijVr1rQKNbV58+ZBLBYDANLT07u3WCILxWAjsiBz5sxpd9+wYcMAAAKBAE8//bTWYxwcHBAcHAwAuH79uvELJOoBGGxEFiQkJKTdfW5ubgCAvn37ok+fPp0eV1lZaczSiHoMBhuRBXF0dGx3n1Ao7PSYlsc1NTUZrzCiHoTBRkREVoXBRtRLqHtyANDc3NzucdXV1aYoh6jbMNiIegkXFxfN1+Xl5e0e1/LmcKKeiMFG1EsMGDBA8/XZs2fbPe4///mPKcoh6jYMNqJe4qGHHoKtrWpNho8++qjV42fU3n//fZw5c8bUpREZFVceIeol+vXrh9mzZ2PXrl04evQopk2bhoULF8LT0xM3b97EF198gf379+Ohhx5qs+Dyvfbt24eqqirN9z/++KPWrwHAy8sLkydPNu6HIeoAg42oF/noo49w9uxZ/Prrr0hJSUFKSkqr/XPmzMGLL76IRx99tMN2Xn31VeTn52vd9/nnn+Pzzz/XfB8REcFgI5PiUCRRL+Lp6YmMjAy8/vrrCA4Ohkgkgru7Ox5++GFs374du3btgo2NjbnLJDKIQKltoJ2IiKiHYo+NiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisyv8PMlDY/cqjT4AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "smc_samples = [4.931763534677909,4.931763534677909,-4.9320891338890585,5.621259778630396,5.12465160042257,5.12465160042257,5.621259778630396,4.931763534677909,-4.6579432517491455,4.876504731477834,5.5838924471357245,5.12465160042257,5.771266945978422,4.585504931126646,-4.6579432517491455,-5.640631533190109,4.931763534677909,4.931763534677909,4.876504731477834,4.584621406564235,5.146053175145614,5.554477042788893,-5.447509490383438,4.585504931126646,-5.447509490383438,5.5838924471357245,4.876504731477834,5.621259778630396,4.149858974125451,5.621259778630396,4.931763534677909,5.771266945978422,5.771266945978422,5.621259778630396,5.554477042788893,4.163566109577072,5.621259778630396,-4.6579432517491455,4.931763534677909,-5.640631533190109,4.876504731477834,-4.6579432517491455,4.584621406564235,4.149858974125451,5.12465160042257,4.897173319391566,-5.447509490383438,-5.447509490383438,-5.447509490383438,-5.447509490383438,5.5838924471357245,5.5838924471357245,-5.447509490383438,-5.447509490383438,5.146053175145614,4.585504931126646,4.876504731477834,4.149858974125451,-5.447509490383438,5.146053175145614,-4.9320891338890585,5.5838924471357245,4.800049652986203,4.931763534677909,5.621259778630396,4.227752656874745,4.585504931126646,5.621259778630396,4.931763534677909,-4.6579432517491455,5.146053175145614,5.5838924471357245,-4.6579432517491455,4.931763534677909,-4.6579432517491455,4.876504731477834,5.146053175145614,5.5838924471357245,5.5838924471357245,-5.447509490383438,4.584621406564235,5.146053175145614,5.146053175145614,4.149858974125451,4.931763534677909,5.621259778630396,5.12465160042257,5.146053175145614,4.800049652986203,4.897173319391566,4.149858974125451,5.621259778630396,4.726788745240697,4.584621406564235,-5.447509490383438,4.931763534677909,4.931763534677909,5.771266945978422,-5.640631533190109,4.227752656874745]\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.rcParams[\"figure.figsize\"] = [4.50, 4.50]\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=20)\n", + "plt.rc('legend', fontsize=20)\n", + "plt.ylim(0, 18)\n", + "w = 0.1\n", + "\n", + "file = open(\"/space/poorvagarg/.julia/dev/Dice.jl/multimodal_6_256.txt\", \"r\")\n", + "hybit_data = file.readlines()\n", + "hybit_data = [float(i)*640 for i in hybit_data]\n", + "\n", + "ax.plot([i for i in np.arange(-8, 8, 0.015625)], hybit_data, color=\"purple\")\n", + "\n", + "\n", + "w = 0.1\n", + "# ax.hist(smc_estimated, bins=np.arange(-2, 8 + w, w), alpha = 0.25, color = \"red\")\n", + "# ax.hist(mcmc_estimated, bins=np.arange(-2, 8 + w, w), alpha = 0.25, color = \"blue\")\n", + "ax.hist(smc_samples, bins = np.arange(-6, 6 + w, w), alpha = 0.25, color=\"red\")\n", + "\n", + "\n", + "\n", + "ax.legend([\"HyBit\", \"SMC\"], loc=\"upper left\")\n", + "# ax.bar([8.0, 9.0])\n", + "\n", + "ax.set_xlabel(\"mu1\")\n", + "# ax.set_ylabel(\"pr(mu1)\")\n", + "\n", + "scale_y = 100\n", + "ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale_y))\n", + "ax.yaxis.set_major_formatter(ticks_y)\n", + "\n", + "fig.savefig(\"multimodal_smc.png\", bbox_inches='tight')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAGtCAYAAAB6GFEoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWcklEQVR4nO3de1yUZf4//teAwnAcRDkKIhpIaeIpDxmhbB81k3RNN1vbTdk+Xz8eUrOsaE2l3OXTlpZ5qM8vV61I11OZYKlZwqoIJoh4SlcCBAEBhRlOw2nu3x90j04MMCdmhuH1fDzmIXNf11z3ewDnzXW4r1siCIIAIiIiG2Fn6QCIiIhMiYmNiIhsChMbERHZFCY2IiKyKUxsRERkU5jYiIjIpjCxERGRTelh6QC6KpVKhaKiIri5uUEikVg6HCIimyYIAqqqquDv7w87u/b7ZExsBioqKkJgYKClwyAi6lYKCgoQEBDQbh0mNgO5ubkBaPkmu7u7WzgaIiLbplAoEBgYqP7sbQ8Tm4HE4Ud3d3cmNiIiM9Fl6segxSN1dXVYvXo1QkNDIZVK4e/vj5iYGNy6dUuvdlJSUhAXF4ennnoKXl5ekEgk6N+/f5v18/LyIJFIOnzExMRovG7nzp3t1p8zZ44h3wYiIrJCevfYlEoloqKikJaWBj8/P0yfPh15eXnYsWMHkpKSkJaWhgEDBujU1rJly3DhwgWdz+3q6ooXXnihzfI9e/ZAqVQiIiJCa3l4eDiGDRvW6viYMWN0joGIiKyb3olt3bp1SEtLw7hx43Ds2DG4uroCADZs2IBXXnkFMTExSE5O1qmtSZMmYfbs2XjkkUcQEBCAwYMHt1u/T58+2Llzp9ayq1ev4rPPPoOTkxOeeeYZrXVmzJiBtWvX6hQbERF1TXoltoaGBmzevBkAsGXLFnVSA4AVK1bgs88+Q0pKCjIyMjBy5MgO2/vHP/6h/rqkpESfUFpJSEgAAEyfPp1zXkRE3Zhec2ynT5+GXC7HwIEDMXz48Fbls2bNAgAkJiaaJjodCYKAXbt2AQD+9Kc/mfXcRERkXfTqsYnzYSNGjNBaLh7Pzs42Miz9nDp1Cnl5efD29sakSZParJeRkYGVK1dCoVDA19cXUVFRiIyMNGOkRETU2fRKbDdv3gSANi+OE4/n5+cbGZZ+xGHIOXPmoEePtt9SUlISkpKS1M/ffvttREZGYs+ePfDx8Wn3HPX19aivr1c/VygURkZNRESdQa+hyOrqagCAs7Oz1nIXFxcAQFVVlZFh6a6+vh779u0D0PYwpJ+fH9auXYvz589DLpejpKQEhw4dQlhYGFJSUjBt2jQ0Nze3e574+HjIZDL1g7uOEBFZpy6/CfLhw4dRUVGBsLAwjBo1SmudyZMnY82aNRg2bBjc3d3h4+OD6Oho/PTTTwgNDcW5c+ewd+/eds8TGxsLuVyufhQUFHTG2yEiIiPpldjEVZC1tbVay2tqagBApy1PTEUchjRk0YirqyuWLl0KADh69Gi7dR0dHdW7jHC3ESIi66XXHFu/fv0AAIWFhVrLxeNBQUFGhqWbyspKfPvtt5BIJJg7d65BbYSEhAAAiouLTRmaXgRBQGNjI1QqlcViINKFnZ0devbsyTtakFXTK7GFh4cDADIzM7WWi8eHDh1qZFi62bt3L+rr6/H4448bnEwrKioA3JsfNKfa2lrI5XJUVVV1OMdHZC3s7e3h5uYGmUzW5nw7kSXpldjGjx8PmUyGnJwcZGVltdqeav/+/QCA6OhokwXYHmOGIUUHDhwA0PYlDJ2lqqoKhYWF6NmzJzw8PODi4gI7Ozv+JUxWSxAEqFQq1NTUQKFQoLKyEgEBAWadeiDSiaCnv/71rwIA4dFHHxWqq6vVx9evXy8AECIjIzXqb9q0SRg0aJDwxhtvtNtucXGxAEAICgrSKY68vDxBIpEIUqlUqKysbLfu3//+d6GsrEzjWENDg7B27VoBgODk5CQUFhbqdF6RXC4XAAhyuVyv1wmCINTU1AhXrlwRCgsLBZVKpffriSxNpVIJhYWFwpUrV4SamhpLh0PdgD6fuXrvFblq1SocP34cqampCAkJQUREBPLz85Geng4vLy9s375do355eTmuXbumdQ5r27Zt2LZtGwCgsbERQMtc19ixY9V1tm7dqrU39eWXX0IQBERHR0Mmk7Ub85tvvom4uDiMGjUKgYGBUCgUyMrKQlFREaRSKRISEtC3b199vxUGk8vl6NmzJ/z9/dlDoy5JIpHA398fdXV1kMvlHJIkq6J3YpNKpThx4gTi4+Oxa9cuHDx4EJ6enpg3bx7eeeedDu9ser/CwkKkp6drHGtoaNA41taF0F9++SUA4Pnnn+/wPKtXr8aZM2dw7do1ZGZmQhAEBAQEYMGCBXj55ZcxaNAgnWM2lvDr7c09PDyY1KhLk0gkcHd3R2VlJXx9ffn7TFZDIgiCYOkguiKFQgGZTAa5XK7X0v+Ghgbk5OSgX79+FlmwQmRK1dXVKCgowMCBA+Hg4GDpcMiG6fOZ2+Uv0O5qxCX9dnb81lPXZ29vDwC8VIWsCj9dLYTDNmQL+HtM1oiJjYiIbAoTGxER2RQmNiIisilMbEREZFOY2Ii6OIlEAolEgrVr11o6FCKrwMRGNi85OVnvD/958+apX5OXl2fymMS2tT2cnJwQGBiI6OhofP7552hqajL5+YlsGRMbkZVRKpUoLCxEUlISXnjhBYwZMwa3b982qK37k3pycrJpAyWyUnpvqUVEpjNq1Cjs2LFD41h1dTUuXbqEzZs348KFC8jMzMSsWbNw8uRJrW1w8yAiTUxsRBbk4uKCIUOGtDo+duxYzJ07FyNGjMDPP/+MU6dO4cyZMxg3bpwFoiTqWjgUSWSlnJycsHjxYvXzn376yYLREHUdTGxEOiovL4ejoyMkEgn+53/+p8P6iYmJ6vmtvXv3GnTO4OBg9df19fVa62hbGJOXlweJRIKJEyeqj02cOLHVQpWdO3caFBeRNWNiI9JRnz59MH36dADAnj17oFQq260vzp15enqqX6ev/Px89df9+vUzqA2i7oaJjUgPL774IgCgsrISX3/9dZv1ysrKkJSUBACYO3cuHB0d9T5XXV0dtmzZAqBlLu6JJ57Q+bV9+/bFxYsXNW78u337dly8eFHjMWPGDL3jIrJ2XDxC3UppaSkuXbrUYb3Kykqtx5944gkEBQUhPz8fO3bswHPPPae1XkJCgvqu8DExMW2ep6amplU8tbW1uHjxIrZs2YIrV65AIpHgH//4B3r37t1h3KKePXtiyJAhKC8vVx8LDg7WulCFyNYwsVkpQRDQWNto6TDMoqdzT7Pd/uTjjz/Gxx9/bPDr7ezsEBMTgzVr1uCHH35AQUEBAgMDW9UThyGHDx+OYcOGtdneuXPn8PDDD7dZPmnSJLzxxhsac2VE1D4mNivVWNuIeNd4S4dhFrHVsXBw6Tp3X46JiUFcXBxUKhU+++wzrFq1SqM8IyMDFy9eVNc1xokTJ+Di4oIHHnhAawIlotY4x0bdypo1ayAIQoePF154oc02AgICMHnyZADQuqpQ7K05Ojpi7ty57cYTGRnZ6twNDQ3Izc3Fli1bIJPJ8PXXX2Ps2LH4+eefDX/jRN0Ie2xWqqdzT8RWx1o6DLPo6dzT0iHo7cUXX8R3332HnJwc/Pvf/8bjjz8OoGVJ/q5duwAAM2bMQK9evfRuu2fPnujfvz8WLVqEyMhIDB8+HEVFRXjxxRdx6tQpk74PIlvExGalJBJJlxqe626io6Ph4+OD27dvY8eOHerEdvDgQVRUVAAwfhgSAAYPHoypU6fim2++wenTp3H9+nWEhoYa3S6RLeNQJJEBevbsiT//+c8AgH379qG6uhrAvWHIfv366bU8vz1hYWHqr8W5OyJqGxMbkYHEa9pqamqwb98+FBYW4vvvvwcAvPDCC7CzM81/r/tvW6PvLWzMtdqUyJpwKJLIQKGhoYiIiMDJkyexY8cOFBUVQaVSQSKRYP78+SY7z7lz59Rf67syUiqVqr9ua0suIlvDxEZkhBdffBEnT57EyZMncf36dQDAhAkTNPZ4NMbhw4eRkpICoGVLr9GjR+v1ej8/P/XXOTk5JomJyNoxsREZYfbs2Vi6dCnkcrn6ZqD6LBrRtvNIY2Mjbt26hcOHD2Pbtm3q4/Hx8ejRQ7//sv369UNAQAAKCwvx/vvvIyAgAIMGDYK9vT0AwMfHB25ubnq1SWTtmNiIjODk5IQ//vGP6t1MZDIZnnnmGZ1f39HOI0DLQpV169ap5/T09eabb2LRokXIzc1ttRnzjh07MG/ePIPaJbJWXDxCZKQ//elP6q/nzJkDJycno9qzt7eHp6cnRo8ejddffx1XrlzBa6+9ZnB7CxcuxIEDBzBp0iR4e3vr3esj6mr4G042b8KECRAEQa/X7Ny5U+d7ld0/lKjrMKS+8Rjb1syZMzFz5kyTnZPImrHHRmQk8dYwQ4YM0XtxBxGZHhMbkRH+/e9/Iy0tDQB0uqs2EXU+sya2uro6rF69GqGhoZBKpfD390dMTAxu3bqlVzspKSmIi4vDU089BS8vL0gkEvTv37/d18ybNw8SiaTNxyeffGLEO6PuJD8/H9evX8fXX3+t3n3E19fXJFtoEZHxzDbHplQqERUVhbS0NPj5+WH69OnIy8vDjh07kJSUhLS0NAwYMECntpYtW4YLFy4YFMfkyZPh6+vb6vigQYMMao+6n8jISOTn52sc27Rpk9GLRojINMyW2NatW4e0tDSMGzcOx44dg6urKwBgw4YNeOWVVxATE4Pk5GSd2po0aRJmz56NRx55BAEBARg8eLDOcbzxxhuYMGGCAe+ASJObmxuGDBmCv/71r3jqqacsHQ4R/cosia2hoQGbN28GAGzZskWd1ABgxYoV+Oyzz5CSkoKMjAyMHDmyw/b+8Y9/qL8uKSkxfcBE7cjLy7N0CETUDrPMsZ0+fRpyuRwDBw7E8OHDW5XPmjULAJCYmGiOcIiIyIaZpccmzoeNGDFCa7l4PDs7u9Nj+eqrr3DgwAE0NzcjODgY0dHRGrcFISKirs0sie3mzZsAgICAAK3l4vHfTsh3hk2bNmk8f/3117Fw4UJs3Lix3R0Z6uvrNXZHVygUnRYjEREZzixDkeJNGJ2dnbWWu7i4AACqqqo6LYbhw4fjk08+wfXr11FbW4tffvkFW7ZsgYeHB7Zu3YqVK1e2+/r4+HjIZDL1Q9/bhxARkXl0mwu0ly1bhgULFiAkJAROTk4IDg7GokWLcPLkSTg4OGDz5s0oKCho8/WxsbGQy+XqR3t1iYjIcsyS2MRVkLW1tVrLa2pqAMAit88YPHgwnn76aTQ1NeGHH35os56joyPc3d01HkREZH3Mktj69esHACgsLNRaLh4PCgoyRzithISEAACKi4stcn4iIjIdsyS28PBwAEBmZqbWcvH40KFDzRFOKxUVFQDuzfUREVHXZZbENn78eMhkMuTk5CArK6tV+f79+wEA0dHR5ghHQ319PQ4fPgyg7csRiIio6zBLYnNwcMCSJUsAAIsXL1bPqQEtW2plZ2cjMjJSY9eRzZs3IywsDLGxsUaf/+eff8YXX3yhsVwfAMrKyjBnzhwUFBQgPDwc48ePN/pcRERkWWbbK3LVqlU4fvw4UlNTERISgoiICOTn5yM9PR1eXl7qe1qJysvLce3aNa3zXtu2bcO2bdsAAI2NjQBa5sfGjh2rrrN161Z1D6ykpAR//vOfsWzZMowaNQpeXl4oKipCRkYGqqqqEBAQgL1790IikXTW2yciIjMxW2KTSqU4ceIE4uPjsWvXLhw8eBCenp6YN28e3nnnnTYv3tamsLAQ6enpGscaGho0jt1/AXVoaCiWL1+OtLQ0XLx4EXfu3IGjoyNCQ0MRHR2NZcuWoVevXsa/SSIisjiJYMp71HcjCoUCMpkMcrlcr6X/SqUSubm5CA4OhlQq7cQIiToff5/JXPT5zO02F2gTEVH3wMRG3U5KSorG3dNTU1P1buPUqVNYtmwZwsPD4eXlBUdHR/Tt2xfjx4/H22+/jZycnA7b2LlzpzqGnTt36nTe++8Er+vtcyZOnKh+zaRJk3R6DVFXxsRG3c5nn32m8fzzzz/X+bWFhYWYNm0aIiIi8NFHHyE7Oxvl5eVoaGhAUVERUlNTsWbNGjz00ENYuXKlenGTpeTn5yMlJUX9/IcffkBRUZEFIyLqfExs1K3U1dWpr5sUt3rbu3dvq0tBtLl69SrGjRunvu4xNDQU8fHxOH78ODIyMvDtt9/ilVdegaenJxoaGvD+++/jqaee0ri8xdy++OILCIIAR0dH9OjRAyqVCgkJCRaLh8gcmNioW/n666/Vd5H46KOPALTsPNPRTW6rqqoQHR2t3v7t5ZdfxsWLF/HGG2/gd7/7HUaMGIEnn3wS77//Pq5evYqoqCgAwPfff4+FCxd24jtq3xdffAEAmDZtmnoYUjxGZKuY2KhbEYcdhw4divnz52PQoEEax9vy+uuvq+fNXnzxRWzYsAEODg5a63p7eyMxMVG9ldwXX3yBQ4cOmeot6CwtLQ3Xr18HAMydOxfPP/88AODSpUttbm9HZAuY2KjbKC4uxvHjxwFA/SEv/nvkyBGUlZVpfV1paal6AwEfHx+sX7++w3M5Ozvj//7v/9TP//d//9eo2A0hJutevXrhqaeewowZM9R30NBnXpGoq2Fio27jyy+/RHNzM+zs7PDHP/4RQEtPRiKRoLGxEbt379b6un/961/qObiYmBidr1scM2aMejecM2fO4OeffzbBu9BNQ0MD9uzZAwCYPXs2HBwc4OTkhJkzZwIAdu/ejaamJrPFQ2ROTGzUbYhzSxMmTEDfvn0BAMHBwXj00UcBtN2L+fe//63+Wt+Nup9++mn11ydPntTrtcZISkrC3bt3Adzrld7/dWlpKY4cOWK2eIjMiYmNAADNKgFncu7gm6xbOJNzB80q29qQJisrC9nZ2QA0P+jvf56RkYErV660eu2FCxcAAHZ2dhg2bJhe573/jhHmnNcSk3T//v3x2GOPqY9HRUXB399fow6RrWFiIxy5VIzH3v0Rz32ahmX/ysJzn6bhsXd/xJFLtnPjVfFD3MnJCc8884xG2R/+8Af1QhBtH/bl5eUAAHd3dzg5Oel1Xh8fn1btdLY7d+7g22+/BQD88Y9/1Njc+/5h2MTERFRWVpolJiJzYmLr5o5cKsbChEwUy5Uax0vkSixMyLSJ5NbU1IRdu3YBaBlK/O0cmaenJ6ZOnQqgZR5OpVJplIuXB4jXvenj/teYK4ns3r1bfWH4b3un9x9TKpXYt2+fWWIiMicmtm6sWSUgLvEKtA06isfiEq90+WHJo0eP4vbt2wC0f9Dff7ywsBAnTpzQKBNXElZXV+t97vtf4+joqPfrDSHurDJixAg8+OCDrcrDw8MxZMgQAByOJNvExNaNnc2926qndj8BQLFcibO5d80XVCcQP7x79+6NKVOmaK0zbdo0eHh4aNQX9enTB0DL7uJ1dXV6nVtMqPe3I7p/iFDXm2zcX0/b/QOvXr2Kc+fOAWg7iQPAn/70JwDA6dOnkZubq9O5iboKJrZurLSq7aRmSD1rJJfL1RdH37lzBw4ODhobIIsPqVSqHir86quvNLbBEi+0VqlU6oUkurp/wchve0/3z9fpmjDvj8vFxaVV+f1JecWKFVrfq0Qiweuvvw6gJVGy10a2homtG/N20+3+WbrWs0Z79+6FUqlfYq6ursZXX32lfv7444+rv9Z3B5H760dERGiUeXp6qr8uKSnRqT2xnkQiUfcwRSqVCl9++aVe8QHcYotsj9nuoE3WZ3SwJ/xkUpTIlVrn2SQAfGVSjA721FLaNYi9ET8/P2zYsKHD+itXrkRhYSE+//xz9XDdnDlz8Nprr6G+vh47duzAm2++qdNCkp9++glpaWkAgMDAQPXF2qKhQ4eqv87IyOiwvcbGRly8eBEA8NBDD6FHD83/vidOnEBBQQEA4KWXXlJfn9eW9PR0fPjhh8jJycHp06cxfvz4DmMg6gqY2LoxezsJ1kQ/hIUJmZAAGslNnL1ZE/0Q7O1az+V0Bbm5uTh9+jQA4JlnnsGcOXM6fE1aWho2btyIH3/8Ebdu3ULfvn3h7e2NmJgYfPzxxygpKcHKlSvx8ccft9tOXV0dFixYoH6+YsUK2NlpDpB4e3tjyJAhuHTpEn744QeUlpbC29u7zTYTExOhUCgAAL/73e9alYtJ3N7eHqtWrWq3LQB44oknsHnzZjQ1NeHzzz9nYiObwaHIbm7KED98/PwI+Mo0hxt9ZVJ8/PwITBniZ6HIjPf555+rF1vMmjVLp9eI9X57e5d3330XAwYMAAB88skn7d5rrby8HE8//TTOnz8PABg2bBgWL16ste5LL70EAKivr8df/vIXNDQ0aK1XWFiIFStWAGhJXL9tr6amRj18GhER0WFSA1oWs0RGRgLQ/dY9RF2CQAaRy+UCAEEul+v1urq6OuHKlStCXV1dJ0VmmKZmlZB6o1w4eL5QSL1RLjQ1qywdktEGDhwoABC8vb2F5uZmnV7T3Nws+Pn5CQCEwYMHa5RdvnxZCAgIENDSuRUGDRokvPvuu8KPP/4oZGRkCN99952wcuVKoXfv3uo6/v7+Qm5ubpvna2pqEiZMmKCuHxYWJnz44YfCyZMnhfPnzwvff/+9sGrVKsHT01Nd5+23327Vzueff64u37Rpk87fo61bt6pft3fvXp1fJ7LW32eyPfp85jKxGcjWEputOXXqlPoDe8GCBXq9dtGiRerXnjt3TqPs5s2bwpNPPqkub+8xbtw44ebNmx2eTy6XC9OnT++wPXt7e+Htt98WVKrWf3Q88cQTAgBBIpEIt27d0vm9lpSUCHZ2dgIAYdq0aTq/TsTfZzIXfT5zORRJNun+Jey/3UKrI/fX/+1S+MDAQHz77bc4efIkXnrpJQwZMgSenp6trilbtGgRTp8+jcDAwA7P5+7ujoMHDyI5ORl/+ctfEBYWBnd3d/To0QOenp4YNWoUVq5cievXr+Ott95qda5bt27hxx9/BACMGzdOvRekLnx8fNRza+3duoeoK5EIgo5XhpIGhUIBmUwGuVyu821MgJZtjHJzcxEcHAyptOsuo6fWcnNzMXbsWJSWlsLV1RUpKSkamyDbIv4+k7no85nLHhuRiQQHB+Obb76BVCpFdXU1pk6dil9++cXSYRF1O0xsRCY0duxYfP7555BIJLh9+zYmT56M0tJSS4dF1K3wOjYiE5s9ezZUKhWuXr0KoOXu2dOnT7dwVETdBxMbUSd49tlnLR0CUbfFoUgiIrIpTGxERGRTmNiIiMimMLEREZFNMSix1dXVYfXq1QgNDYVUKoW/vz9iYmJw69YtvdpJSUlBXFwcnnrqKXh5eUEikaB///5t1m9sbMSxY8ewZMkSDBkyBM7OznBycsKDDz6IV199tc1dE3bu3NnmDRclEolOu74TEVHXoPeqSKVSiaioKKSlpcHPzw/Tp09HXl4eduzYgaSkJKSlpal3Qe/IsmXL9LojcUpKCiZPngwA6N+/P5588kk0NjbizJkzWL9+Pb788kskJydj0KBBWl8fHh6OYcOGtTo+ZswYnWMgIiLrpndiW7duHdLS0jBu3DgcO3ZMfcPFDRs24JVXXkFMTAySk5N1amvSpEmYPXs2HnnkEQQEBGDw4MHt1rezs8Mf/vAHvPLKKxg9erT6uFwux7PPPoujR49i/vz5SE1N1fr6GTNmYO3atTrF1tm4kxnZAv4ekzXSK7E1NDRg8+bNAIAtW7Zo3EV4xYoV+Oyzz5CSkoKMjAyMHDmyw/b+8Y9/qL8Wb3nfnqioKERFRbU6LpPJsH37dvTt2xdnzpxBfn4+goKCdHlLZmdvbw8AaGpqsnAkRMYTf4/F32sia6DXHNvp06chl8sxcOBADB8+vFW5eJPGxMRE00SnB39/f3h5eQEAioqKzH5+XfXo0QOOjo6Qy+WWDoXIaHK5HI6OjujRg3s9kPXQ67dRnA9ra8dy8Xh2draRYemvsrISFRUVAABfX1+tdTIyMrBy5UooFAr4+voiKipKfQdhc5FIJPDw8MDt27dRUVGBXr16mfX8RKZSUVGBqqoq+Pj4tLqVDpEl6ZXYbt68CQAICAjQWi4ez8/PNzIs/W3ZsgVNTU14+OGHERwcrLVOUlISkpKS1M/ffvttREZGYs+ePfDx8Wm3/fr6etTX16ufKxQKg2Pt1asXGhoaUFJSAoVCAVdXV0ilUtjZ2fEDgqyWIAhQqVRQKpWorq5GbW0tevXqxT/OyOroldiqq6sBAM7OzlrLXVxcAABVVVVGhqWf8+fPY926dQCAd999t1W5n58f1q5di+nTp2PAgAGoq6vD2bNn8dprryElJQXTpk1DWlpau/ME8fHxiIuLM0m8EokEvr6+cHJygkKhQHl5OVQqlUnaJupsdnZ2cHZ2hr+/P2QymaXDIWqlyw+M3759GzNnzoRSqcTy5cvx5JNPtqozefJk9WUCQMsdi6OjozFx4kSMHDkS586dw969e/Hcc8+1eZ7Y2FisWLFC/VyhUOh0d+T2yGQyyGQyqFQqNDU1MbmR1bOzs0OPHj1gZ8e9Hch66ZXYxFWQtbW1WstramoAAG5ubkaGpZuqqipMnToVeXl5mD17NtavX6/X611dXbF06VIsWbIER48ebTexOTo6wtHR0diQtbKzs4ODg0OntE1E1N3o9WdXv379AACFhYVay8Xj5lhqr1Qq8fTTTyMzMxOTJk1CQkKCQX9FhoSEAACKi4tNHSIREVmAXpkgPDwcAJCZmam1XDw+dOhQI8NqX1NTE5599lkkJyfj0UcfxVdffWVwj0dcSSnODxIRUdemV2IbP348ZDIZcnJykJWV1ap8//79AIDo6GiTBKeNIAiYP38+Dh06hGHDhuHw4cNGJaUDBw4AaPsSBiIi6lr0SmwODg5YsmQJAGDx4sXqOTWgZUut7OxsREZGauw6snnzZoSFhSE2NtYkAS9fvhwJCQkICwvDsWPH4OHh0eFr4uPjUV5ernGssbERcXFx2LdvH5ycnDB//nyTxEdERJal96rIVatW4fjx40hNTUVISAgiIiKQn5+P9PR0eHl5Yfv27Rr1y8vLce3aNa1zWNu2bcO2bdsAtCQaoGWua+zYseo6W7duVfemvvnmG3z00UcAgMDAQKxcuVJrjG+88QbCwsLUz998803ExcVh1KhRCAwMhEKhQFZWFoqKiiCVSpGQkIC+ffvq+60gIiIrpHdik0qlOHHiBOLj47Fr1y4cPHgQnp6emDdvHt555502L97WprCwEOnp6RrHGhoaNI7dfyG0OB8GAN9//32b7c6bN08jsa1evRpnzpzBtWvXkJmZCUEQEBAQgAULFuDll19u824ARETU9UgEbs9tEIVCAZlMBrlcDnd3d0uHQ0Rk0/T5zOVVlkREZFOY2IiIyKYwsRERkU1hYiMiIpvCxEZERDaFiY2IiGwKExsREdkUJjYiIrIpTGxERGRTmNiIiMimMLEREZFNYWIjIiKbwsRGREQ2hYmNiIhsChMbERHZFCY2IiKyKUxsRERkU5jYiIjIpjCxERGRTWFiIyIim8LERkRENoWJjYiIbAoTGxER2RQmNiIisilMbEREZFOY2IiIyKYwsRERkU1hYiMiIpvCxEZERDaFiY2IiGwKExsREdkUq09sdXV1WL16NUJDQyGVSuHv74+YmBjcunVLr3ZSUlIQFxeHp556Cl5eXpBIJOjfv3/nBE1ERBbTw9IBtEepVCIqKgppaWnw8/PD9OnTkZeXhx07diApKQlpaWkYMGCATm0tW7YMFy5c6OSIiYjI0qy6x7Zu3TqkpaVh3LhxuH79Ovbs2YP09HSsX78eZWVliImJ0bmtSZMmYd26dTh69CguX77ciVETEZElSQRBECwdhDYNDQ3w9vaGXC5HZmYmhg8frlEeHh6O7OxsnDt3DiNHjtSr7ZKSEvj5+SEoKAh5eXkGxadQKCCTySCXy+Hu7m5QG0REpBt9PnOttsd2+vRpyOVyDBw4sFVSA4BZs2YBABITE80dGhERWTGrTWzifNiIESO0lovHs7OzzRYTERFZP6tdPHLz5k0AQEBAgNZy8Xh+fr5Z4qmvr0d9fb36uUKhMMt5iYhIP1bbY6uurgYAODs7ay13cXEBAFRVVZklnvj4eMhkMvUjMDDQLOclItvUrBJwJucOvsm6hTM5d9CsssrlDl2S1fbYrE1sbCxWrFihfq5QKJjciMggRy4VIy7xCorlSvUxP5kUa6IfwpQhfhaMzDZYbY/N1dUVAFBbW6u1vKamBgDg5uZmlngcHR3h7u6u8SAi0teRS8VYmJCpkdQAoESuxMKETBy5VGyhyGyH1Sa2fv36AQAKCwu1lovHg4KCzBYTEZExmlUC4hKvQNugo3gsLvEKhyWNZLWJLTw8HACQmZmptVw8PnToULPFRERkjLO5d1v11O4nACiWK3E29675grJBVpvYxo8fD5lMhpycHGRlZbUq379/PwAgOjrazJERERmmtKrtpGZIPdLOahObg4MDlixZAgBYvHixek4NADZs2IDs7GxERkZq7DqyefNmhIWFITY21uzxEhF1xNtNatJ6pJ1Vr4pctWoVjh8/jtTUVISEhCAiIgL5+flIT0+Hl5cXtm/frlG/vLwc165dQ3Fx68nXbdu2Ydu2bQCAxsZGAEBxcTHGjh2rrrN169Y2LwgnIjLW6GBP+MmkKJErtc6zSQD4yqQYHexp7tBsilUnNqlUihMnTiA+Ph67du3CwYMH4enpiXnz5uGdd95p8+JtbQoLC5Genq5xrKGhQeMYL7omos5kbyfBmuiHsDAhExJAI7lJfv13TfRDsLeTaHk16cpqN0G2dtwEmYgMxevY9KfPZ65V99iIiGzRlCF++K+HfHE29y5Kq5TwdmsZfmRPzTSY2IiILMDeToJxA3tbOgybZLWrIomIiAzBxEZERDaFiY2IiGwKExsREdkUJjYiIrIpTGxERGRTmNiIiMimMLEREZFNYWIjIiKbwsRGREQ2hYmNiIhsChMbERHZFCY2IiILaG5oxo9v/YhT/3sKgop3DzMl7u5PRGQBp949hZPrTgIAnPs4Y8SLIywcke1gj42IyMyqS6rVSQ0Avl/5PRqqGywYkW1hYiMiMrPcE7lobmiG9xBveAR7QFmpRM6xHEuHZTOY2IiIzOzmqZsAgOAngjFw8kAAQGFaoSVDsilMbEREZnbzZEti6/dYP/iP8gcAFGcUWzIkm8LFI0REZlRXUYfSS6UAWhJbdXE1AKAoowiCIEAikVgyPJvAHhsRkRkVnikEBMAzxBOuPq7wGuwFe0d71MvrUZFTYenwbAITGxGRGZVklQAA+o7uCwCw72kP33BfAEDRuSKLxWVLmNiIiMzo7n/uAgB6D+qtPuY3yg9Ay3AkGY+JjYjIjO785w4AoHfIvcTmM9SnpeznOxaJydYwsRERmZHYY/MM8VQf6xXcCwBQkcs5NlNgYiMiMpN6RT1qSmsAaPbYeg1oSWyVuZUQBO4baSwmNiIiM7l7o6W35uLtAkd3R/VxWT8ZIAEaaxvViY8Mx8RGRGQmYmLzfMBT47i9gz1kgTIAQMUvHI40FhMbEZGZyG/KAQCyIFmrMo9gDwAtw5FkHCY2IiIzURQqAADuge6tytQLSNhjM5pBia2urg6rV69GaGgopFIp/P39ERMTg1u3bundVkVFBZYtW4agoCA4OjoiKCgIy5cvR2VlZau6eXl5kEgkHT5iYmI0Xrdz585268+ZM8eQbwMRkV4UBS2JTRx2vJ/HAA8AXBlpCnrvFalUKhEVFYW0tDT4+flh+vTpyMvLw44dO5CUlIS0tDQMGDBAp7bKy8sxbtw43LhxAwMGDMCMGTNw+fJlbNy4Ed999x3OnDkDT897Y9Gurq544YUX2mxvz549UCqViIiI0FoeHh6OYcOGtTo+ZswYneIlIjKGvKBlKNI9oO0eW+UvleYMyTYJevrrX/8qABDGjRsnVFVVqY+vX79eACBERkbq3NbcuXMFAMLMmTOFxsZG9fGXXnpJACC88MILOrd15coVAYDg5OQkyOVyjbIdO3YIAIQ1a9bo3F5H5HK5AKDVuYiI2vK+3/vCWqwVbp271aos/1S+sBZrhQ/7f2iByKyfPp+5eg1FNjQ0YPPmzQCALVu2wNXVVV22YsUKDB06FCkpKcjIyOiwreLiYuzevRsODg7YunUrevS413l877334OXlhYSEBJSWluoUW0JCAgBg+vTpcHdv/dcQEZElNTc0o7qkZSd/bUORbv5uAICq4ipey2YkvRLb6dOnIZfLMXDgQAwfPrxV+axZswAAiYmJHbZ15MgRqFQqREREwMfHR6PM0dER0dHRaG5uxrffftthW4IgYNeuXQCAP/3pT7q8FSIis6oqqgKElqX9zn2cW5W7+bUktub6ZigrleYOz6boNcd24cIFAMCIESO0lovHs7OzTdLW9u3bdWrr1KlTyMvLg7e3NyZNmtRmvYyMDKxcuRIKhQK+vr6IiopCZGRkh+0TERnr/vk1iV3re671kPaA1EMKZaUS1SXVcOrlZO4QbYZeie3mzZa7vgYEBGgtF4/n5+ebtS1xGHLOnDkaQ5q/lZSUhKSkJPXzt99+G5GRkdizZ0+rXuNv1dfXo76+Xv1coVB0GBcRkai9pf4iVz/XlsRWXA2vB73MFZrN0Wsosrq6ZXzY2bl1NxoAXFxcAABVVVVma6u+vh779u0D0PYwpJ+fH9auXYvz589DLpejpKQEhw4dQlhYGFJSUjBt2jQ0Nze3e574+HjIZDL1IzAwsN36RET3a2+pv8jVt2XdQlVxx5+h1LYuf4H24cOHUVFRgbCwMIwaNUprncmTJ2PNmjUYNmwY3N3d4ePjg+joaPz0008IDQ3FuXPnsHfv3nbPExsbC7lcrn4UFBR0xtshIhslDkW6Bbi1WUecZ6surjZLTLZKr8QmroKsra3VWl5T07J5p5tb2z84U7clDkMasmjE1dUVS5cuBQAcPXq03bqOjo5wd3fXeBAR6aqqsKUX1m6PzY89NlPQK7H169cPAFBYWKi1XDweFBRklrYqKyvx7bffQiKRYO7cuR2eU5uQkBAALZcfEBF1FvXikQ7m2ACgpoQ7/BtDr8QWHh4OAMjMzNRaLh4fOnSoWdrau3cv6uvrERERoVMy1aaiomX7GnFOj4ioM1TdaumFufdtO7GJQ5HssRlHr8Q2fvx4yGQy5OTkICsrq1X5/v37AQDR0dEdtjVlyhTY2dnh5MmTrS7Crq+vR2JiIuzt7TF16tQ22zBmGFJ04MABAG1fdkBEZCxBJaCmrKUX5uLT9h/R4uIRzrEZR6/E5uDggCVLlgAAFi9erJ4HA4ANGzYgOzsbkZGRGDlypPr45s2bERYWhtjYWI22/Pz88Nxzz6GhoQGLFi1CU1OTuuy1115DWVkZnn/+eXh7e2uNJT8/H6dOnYJUKsXs2bPbjTs+Ph7l5eUaxxobGxEXF4d9+/bByckJ8+fP1+2bQESkJ2WlEkJzy24i2i7OFnGOzTT03gR51apVOH78OFJTUxESEoKIiAjk5+cjPT0dXl5e2L59u0b98vJyXLt2Tesc1ocffoi0tDQcOHBAvarx8uXLuHTpEkJCQrBhw4Y24/jyyy8hCAKio6Mhk7U9GQsAb775JuLi4jBq1CgEBgZCoVAgKysLRUVFkEqlSEhIQN++ffX9VhAR6UTsrTm6O6KHY9sfu+JQZL28Ho11jejp1NMs8dkavZf7S6VSnDhxAm+99RacnZ1x8OBB5OfnY968ecjMzNR5Z38A6NOnD86ePYuXXnoJDQ0N+PrrryGXy7F06VKcPXtWY2f/3/ryyy8BAM8//3yH51m9ejUef/xxFBQU4JtvvsGPP/4IZ2dnLFiwAFlZWZg5c6bOMRMR6aum9NdhSO/25/IdZY7oIW1JfOK+kqQ/icDdNg2iUCggk8kgl8u59J+I2nX1q6vY+8xeBIwLwF9S/9Ju3Y3BG1GZV4mY0zEIfJQbQYj0+czt8hdoExFZO/XCEa+OV19zns14TGxERJ2stqxlIwpn77YXjojUu49wKNJgTGxERJ1MPcemR4+NS/4Nx8RGRNTJ1D02r457bNwI2XhMbEREncyQOTb22AzHxEZE1Ml0Xe4PAK4+v24QX6Z9g3jqGBMbEVEn02coUqwjJkPSHxMbEVEnElQCastbEpsuQ5Fir66mrAa8zNgwTGxERJ1IWamEqkkFQLcem5jYmuqa0FjT2Kmx2SomNiKiTqTrPpEiBxcH9HDqofFa0g8TGxFRJ9Jnfk2kHo7kPJtBmNiIiDqRPisiReJcHBObYZjYiIg6kT7XsInEJMgl/4ZhYiMi6kSGDEVyyb9xmNiIiDqRusemz1DkfUv+SX9MbEREnai21PAem/ha0g8TGxFRJzJmjo09NsMwsRERdSJxjs2goUjOsRmEiY2IqBOJyUmv69i8uCrSGExsRESdRBD02ydSdP+qSO4XqT8mNiKiTqLvPpEiMQk2NzSjobqhU2KzZUxsRESdRByG1HWfSFFP557o6dwTAIcjDcHERkTUSQy5OFvk3OfX4UiujNQbExsRUScxZKm/SH0tWzl7bPpiYiMi6iSGLPUXcWWk4ZjYiIg6iSFL/UUcijQcExsRUScRk5JBiY1DkQZjYiMi6iTGDEWqExuHIvXGxEZE1EnUNxk1ZPFIHyY2QzGxERF1EmOW+6sXj3AoUm9MbEREncSQe7GJuHjEcGZNbHV1dVi9ejVCQ0MhlUrh7++PmJgY3Lp1S++2KioqsGzZMgQFBcHR0RFBQUFYvnw5KisrtdafN28eJBJJm49PPvnEyHdHRHSPIAj35tiMuY6NQ5F6032PFyMplUpERUUhLS0Nfn5+mD59OvLy8rBjxw4kJSUhLS0NAwYM0Kmt8vJyjBs3Djdu3MCAAQMwY8YMXL58GRs3bsR3332HM2fOwNPTU+trJ0+eDF9f31bHBw0aZNT7IyK6n6H7RIrEZFivqEdzQzPsHexNGp8tM1tiW7duHdLS0jBu3DgcO3YMrq6uAIANGzbglVdeQUxMDJKTk3Vqa/ny5bhx4wZmzpyJPXv2oEePlrexdOlSbNq0CStWrMDOnTu1vvaNN97AhAkTTPCOiIjaJva09N0nUiT1kEJiL4HQ3HKHADd/N1OHaLPMMhTZ0NCAzZs3AwC2bNmiTmoAsGLFCgwdOhQpKSnIyMjosK3i4mLs3r0bDg4O2Lp1qzqpAcB7770HLy8vJCQkoLS01PRvhIhIR8ZcnA0AEjsJnHtzns0QZklsp0+fhlwux8CBAzF8+PBW5bNmzQIAJCYmdtjWkSNHoFKpEBERAR8fH40yR0dHREdHo7m5Gd9++61pgiciMoAx+0SKOM9mGLMMRV64cAEAMGLECK3l4vHs7GyTtLV9+/Y22/rqq69w4MABNDc3Izg4GNHR0QgLC+vwvERE+jDm4myR+lo2LvnXi1kS282bNwEAAQEBWsvF4/n5+Z3e1qZNmzSev/7661i4cCE2btyoMaz5W/X19aivr1c/VygUHcZKRN2XMdtpicTeHoci9WOWocjq6moAgLOz9h+wi0vLD6+qqqrT2ho+fDg++eQTXL9+HbW1tfjll1+wZcsWeHh4YOvWrVi5cmW7542Pj4dMJlM/AgMDO4yViLovY+fY7n8thyL1020u0F62bBkWLFiAkJAQODk5ITg4GIsWLcLJkyfh4OCAzZs3o6CgoM3Xx8bGQi6Xqx/t1SUi4lCk5ZglsYmrIGtrtf9wampa/rJxc+t4Oasp2wKAwYMH4+mnn0ZTUxN++OGHNus5OjrC3d1d40FE1BZjLs4WscdmGLMktn79+gEACgsLtZaLx4OCgszaligkJARAy6UERESmYJKhSG6rZRCzJLbw8HAAQGZmptZy8fjQoUPN2paooqICwL35OSIiY5liuT/vom0YsyS28ePHQyaTIScnB1lZWa3K9+/fDwCIjo7usK0pU6bAzs4OJ0+ebHURdn19PRITE2Fvb4+pU6fqFFt9fT0OHz4MoO1LCIiI9KGxT6Qxc2xe7LEZwiyJzcHBAUuWLAEALF68WD0PBrRsqZWdnY3IyEiMHDlSfXzz5s0ICwtDbGysRlt+fn547rnn0NDQgEWLFqGpqUld9tprr6GsrAzPP/88vL291cd//vlnfPHFFxrL9QGgrKwMc+bMQUFBAcLDwzF+/HiTvm8i6p6M3SdSJPbY6u7UQVAJJomtOzDbXpGrVq3C8ePHkZqaipCQEERERCA/Px/p6enw8vLC9u3bNeqXl5fj2rVrWue9PvzwQ6SlpeHAgQMICwvDqFGjcPnyZVy6dAkhISHYsGGDRv2SkhL8+c9/xrJlyzBq1Ch4eXmhqKgIGRkZqKqqQkBAAPbu3QuJRNKp3wMi6h7E3pqDm4NB+0SKxDk2QSWg7m6d+jm1z2zL/aVSKU6cOIG33noLzs7OOHjwIPLz8zFv3jxkZmbqvLM/APTp0wdnz57FSy+9hIaGBnz99deQy+VYunQpzp4922pn/9DQUCxfvhyDBg3CxYsXsW/fPpw7dw4hISFYs2YNsrOzERoaauq3TETdlDH3YbufvYM9pB5SjTapYxJBENi/NYBCoYBMJoNcLufSfyLScPXrq9g7cy8CxgbgL2f+YlRbm0I34e5/7mJeyjwEPa77am9bo89nbre5QJuIyFzEoUhj5tdE6m21Stlj0xUTGxGRiZlqKPL+NjgUqTsmNiIiEzNlj427j+iPiY2IyMTEYUNT9Nh4LZv+mNiIiEzMlImNu4/oj4mNiMjEOqPHxsSmOyY2IiITM2mPzZurIvXFxEZEZEKCyjT7RIp4F239MbEREZlQ3d17+zqaYgss9VBkeS33i9QRExsRkQmJQ4ZOnk6w72lvdHvq/SKbBSgrlUa31x0wsRERmZAp59cAoIdjDzjKHFva5nCkTpjYiIhMyNSJDeC2WvpiYiMiMqHOSGxc8q8fJjYiIhMSE5uzt+nuncaVkfphYiMiMiH22CyPiY2IyIQ6ZY6NO/zrhYmNiMiE1InNqxN6bKXssemCiY2IyIRMueuIyNXHFQBQfbvaZG3aMiY2IiITaFYJOJNzB5XFVQAAqQl2HRG5+rUktrKbcnyTdQtncu6gmbuQtKmHpQMgIurqjlwqRlziFdy+W4sXqhoAALN3Z+DNZ8MxZYif0e1nVdUBAO4WKrDsX1kAAD+ZFGuiHzJJ+7aGPTYiIiMcuVSMhQmZKJYrIa1pAgCo7CQoaGjCwoRMHLlUbHT7b/z4HwCAY30z7BtVAIASudIk7dsiJjYiIgM1qwTEJV6BOCjoXNMIAKhz6QFBIgEAxCVeMXjYUGy/3tEeTfYt7Tn9eg6xRWPat1VMbEREBjqbexfF8nsbEztVtySdWpeeAFqST7FcibO5d41rXyJBnWtLm2JiM0X7toqJjYjIQKVVmrvti0lHTEJt1TOk/bpfk6VzdWO79YiJjYjIYN5uUo3nYtIRk1Bb9QxpX1uPzdj2bRUTGxGRgUYHe8JPJoXk1+di0hGHIiVoWb04OtjT6PbFNp3u67EZ276tYmIjIjKQvZ0Ea6IfAtCSZO4fihST3Zroh2BvJ9HegB7tq4cifz2HKdq3VUxsRERGmDLEDx8/PwK+Mqm6N1Xn0hO+Mik+fn6E0deZie07/LqtlngOU7VviySCIHCdqAEUCgVkMhnkcjnc3d0tHQ4RWVizSsD7gR9AWVSF0ftnYdLvTduT+jnxGvY8/S84PdgbEYnPYXSwZ7fqqenzmcudR4iITMBOAjSWt+wTOW5UX5MnHXd/NwCAfWU9xg3sbdK2bQ2HIomITEBZoURzQzMAwNXX1eTtu/m1JLaa2zVQNatM3r4tMSix1dXVYfXq1QgNDYVUKoW/vz9iYmJw69YtvduqqKjAsmXLEBQUBEdHRwQFBWH58uWorKxsVbexsRHHjh3DkiVLMGTIEDg7O8PJyQkPPvggXn31VZSVlWk9x86dOyGRSNp8zJkzR++4iYjuV13SsvO+tJcUPRxNPxjm4u0CSABBJaC2nLevaY/e332lUomoqCikpaXBz88P06dPR15eHnbs2IGkpCSkpaVhwIABOrVVXl6OcePG4caNGxgwYABmzJiBy5cvY+PGjfjuu+9w5swZeHreW8aakpKCyZMnAwD69++PJ598Eo2NjThz5gzWr1+PL7/8EsnJyRg0aJDW84WHh2PYsGGtjo8ZM0bfbwMRkYaqX3f1F3tWpmbXww4uXi6oKa1BdXG1+lY21JreiW3dunVIS0vDuHHjcOzYMbi6tnxzN2zYgFdeeQUxMTFITk7Wqa3ly5fjxo0bmDlzJvbs2YMePVrCWbp0KTZt2oQVK1Zg586d6vp2dnb4wx/+gFdeeQWjR49WH5fL5Xj22Wdx9OhRzJ8/H6mpqVrPN2PGDKxdu1bft0xE1KHq4pYem3iLmc7g6ufakthKeF+29ug1FNnQ0IDNmzcDALZs2aJOagCwYsUKDB06FCkpKcjIyOiwreLiYuzevRsODg7YunWrOqkBwHvvvQcvLy8kJCSgtLRUfTwqKgp79uzRSGoAIJPJsH37dgDAmTNnkJ+fr8/bIiIymphsOmN+TSS2LfYOSTu9Etvp06chl8sxcOBADB8+vFX5rFmzAACJiYkdtnXkyBGoVCpERETAx8dHo8zR0RHR0dFobm7Gt99+q1Ns/v7+8PLyAgAUFRXp9BoiIlMRk01n9tjEYU6xd0ja6TUUeeHCBQDAiBEjtJaLx7Ozs03S1vbt23VqCwAqKytRUVEBAPD19dVaJyMjAytXroRCoYCvry+ioqIQGRmpU/tERO1RD0V2Yo/Nxdel5VwcimyXXont5s2bAICAgACt5eJxXYYCTdkW0DI02tTUhIcffhjBwcFa6yQlJSEpKUn9/O2330ZkZCT27NnTqtdIRKQPRYECACALlHXaOdhj041eQ5HV1S3fTGdnZ63lLi4tf01UVXU8/mvKts6fP49169YBAN59991W5X5+fli7di3Onz8PuVyOkpISHDp0CGFhYUhJScG0adPQ3Nzc7jnq6+uhUCg0HkREInmBHADgHth5OxGJw5ycY2tfl79A+/bt25g5cyaUSiWWL1+OJ598slWdyZMnY82aNRg2bBjc3d3h4+OD6Oho/PTTTwgNDcW5c+ewd+/eds8THx8PmUymfgQGBnbWWyKiLkbVrELVrZZkY44eW1URE1t79Eps4irI2lrtFwfW1NQAANzcOr6OwxRtVVVVYerUqcjLy8Ps2bOxfv36Ds/72xiWLl0KADh69Gi7dWNjYyGXy9WPgoICvc5FRLaruqQaqiYVJPaSTl08IvYGFYUKCCpu89sWvebY+vXrBwAoLCzUWi4eDwoK6vS2lEolnn76aWRmZmLSpElISEiAnZ3+HdCQkBAALZcftMfR0RGOjo56t09Etk+cX3Pzd4OdfecNhLn5u0FiJ4GqUYXq29WddjF4V6fXTyA8PBwAkJmZqbVcPD506NBObaupqQnPPvsskpOT8eijj+Krr76Cg4NDx29AC3ElpTinR0SkL3F+rTOHIQHAvqc93H7dDFlMptSaXolt/PjxkMlkyMnJQVZWVqvy/fv3AwCio6M7bGvKlCmws7PDyZMnNS7CBloWaiQmJsLe3h5Tp07VKBMEAfPnz8ehQ4cwbNgwHD582KikdODAAQBtX3ZARNQRMcl05sIRkaxfS/KU35R3+rm6Kr0Sm4ODA5YsWQIAWLx4sXoeDGjZUis7OxuRkZEYOXKk+vjmzZsRFhaG2NhYjbb8/Pzw3HPPoaGhAYsWLUJTU5O67LXXXkNZWRmef/55eHt7a7xu+fLlSEhIQFhYGI4dOwYPD48O446Pj0d5ebnGscbGRsTFxWHfvn1wcnLC/Pnzdf4+EBHdzxwrIkXiOZjY2qb3XpGrVq3C8ePHkZqaipCQEERERCA/Px/p6enw8vJSb20lKi8vx7Vr17TOYX344YdIS0vDgQMHEBYWhlGjRuHy5cu4dOkSQkJCsGHDBo3633zzDT766CMAQGBgIFauXKk1xjfeeANhYWHq52+++Sbi4uIwatQoBAYGQqFQICsrC0VFRZBKpUhISEDfvn31/VYQEQEwzzVsIvbYOqZ3YpNKpThx4gTi4+Oxa9cuHDx4EJ6enpg3bx7eeeedNi+41qZPnz44e/Ys1q5di4MHD+Lrr7+Gj48Pli5diri4uFa9MXE+DAC+//77NtudN2+eRmJbvXo1zpw5g2vXriEzMxOCICAgIAALFizAyy+/3ObdAIiIdGGJoUjOsbVNIggC14waQJ/blBORbVvvvx7VxdX475/+G/6j/Dv1XNcOXcO/pv8L/qP88d8//Xennsua6POZ2+Uv0CYisqTmhmb13o1cPGIdmNiIiIxQVVQFCIC9oz1cvDr/siExedaU1qBJ2dRB7e6JiY2IyAgVuS1z/7J+MkjsJJ1+PidPJzi4tly3W5lX2enn64qY2IiIjFCR05LYPB/wNMv5JBKJ+lx3c+6a5ZxdDRMbEZER7t5oSS69BvYy2znFc4nnJk1MbERERjB3j+3+c4nnJk1MbERERhB7TZ4DzZfY2GNrHxMbEZGBBEG4l9gs0GNjYtOOiY2IyEC1ZbVoqG4AJIBHsIfZziv2DivzKqFqUpntvF0FExsRkYHEHpMsUIYejnrvUGgw9wB32DvaQ9WoUm/ATPcwsRERGUhcbm/OFZEAILGToFcw59nawsRGRGSgsitlAIDeg3qb/dziOcuvlndQs/thYiMiMlDZ5ZbE5j3Eu4Oapiees/RyaQc1ux8mNiIiA5VeakkqlkxsZZfKzH5ua8fERkRkgIbqBlTmVgIAvAdbsMd2qRS8+5gmJjYiIgOI82suPi5w7uNs9vP3Du0Nux52qFfUQ1HIm47ej4mNiMgA4tyWJYYhAcDewV69gESc66MWTGxERAaw5PyaSDz37Yu3LRaDNWJiIyIyQElmCQDA+2HLJTafoT4tsZwvsVgM1oiJjYhIT6pmFW79dAsAEDAmwGJx9B3dFwBQmFZosRisERMbEZGeyi6XobGmEQ5uDujzYB+LxeH/iD8gASpzK1FTWmOxOKwNExsRkZ7EHlLf0X1hZ2+5j1GpTAqvh7xaYkpnr03ExEadTlAJqL1Ti3pFPa+3IZugTmxj+lo4knsxcDjyHvNtR03dyu2Lt5GdkI2cIzm4c/0OmpRNAABpLykCxgZg0PRBePi5h+Ho7mjhSIn0JyaRgLGWm18TBYwNQNb2LBSmMrGJmNjIpEoulCB5dTKuHbqmtVxZocSN727gxnc38P3K7zFuxTiMWzGOCY66DMUtRcvGwxIg8NFAS4eDoIggAEDBmQI01jaip3NPC0dkeUxsZBJNyiYkr01G6nupEFQCJHYShM0Iw+BnB8NvpB9k/WRobmjGnWt3kPN9DrJ2ZOHOtTtIiUtB5qeZiP40GiFTQyz9Nog69Mv3vwAA/Ef5w7m3+Xcc+a3eg3rDPdAdigIF8v+djwemPGDpkCyOiY2MVpheiIMvHMSda3cAAA/NeggT101En0Gaq8Xse9rDb4Qf/Eb4YfzK8bhy4Ap+iP0BFTkV2PXULgybPwxPbnoSDi4OlngbRDrJOZoDABg4eaCFI2khkUgwcNJAnP/nedw4eoOJDVw8QkYQBAHpH6Vjx2M7cOfaHbj6uuLZr5/F7H2zWyW135LYSTB49mAszF6IsSvGAhIga0cWPn3kU/WODkTWpqm+Cf/57j8AYFUJRIzl2jfXuEALTGxkoPqqehyYcwBHlh2BqkmFh2Y/hEVXFiFsRphe7fR07onJ6ydjXvI8uPm7ofxqOT4d/SnO7zjfSZETGS7nWA7q5fVw83dD4DjLz6+JHnjyAfR07onK3EoUnSuydDgWx8RGert98TY+feRTXN57GXY97DBl4xTM2jMLTr2cDG4z6PEgLMhagIGTB6KprgmHYg7h4LyDaKhpMGHkRMa5tPsSAOChPzwEiZ3EwtHc4+DigNDoUAD3YuzOmNhIL+d3nMe2Mdtw59oduAe4Y96/52HM0jGQSIz/T+7i5YK5385F1N+iILGT4MJnF7Bt9Db17UGILKmmtAZXD1wFAAydO9TC0bQ29PmWmLJ2ZqGxttHC0VhWt0tsdXV1WL16NUJDQyGVSuHv74+YmBjcunXL0qFZtfqqenwz/xscijmEpromPDDlASw4v8DkwzESOwki3ozAn3/8M1z9XFF2pQyfPvIpLnxxwaTnIepIs0rAmZw7+CbrFs7k3MFPn5xDc0Mz+o7pC/9R/pYOr5UHnnwAHv09oKxQIvvL7FbxN6u6z9ybROhGM41KpRITJ05EWloa/Pz8EBERgby8PJw9exZeXl5IS0vDgAEDdGpLoVBAJpNBLpfD3d29kyO3rJzvc5D4YiLkN+WQ2Ekw8Z2JeOyNxzp9KKb6djW+fv5r/HK8ZXn1w3MfxuQPJsPFy6VTz0t05FIx4hKvoFiuBAA41jVh9v93ET2VzZi5ayYefu5hC0eo3ZkPzuDYimNw8HVB0sJw3Kq9N5TvJ5NiTfRDmDLEz4IRGk6fz9xu1WNbt24d0tLSMG7cOFy/fh179uxBeno61q9fj7KyMsTExFg6RKtSVVSFb2K+QcKkBMhvyuER7IE///hnRLwZYZb5BVcfV8w9MhcT4iYAEuDilxexJWwLzm8/D1WzqtPPT93TkUvFWJiQqU5qADAypRA9lc246+2Ewoc8LRhd+0b9zyg4+LigoaQGXsdyNcpK5EosTMjEkUvFForOfLpNj62hoQHe3t6Qy+XIzMzE8OHDNcrDw8ORnZ2Nc+fOYeTIkR22Z8s9tprSGqRtTEPaB2loqmvZCmv0S6Pxu7//Dg6ulrnGrDC9EEn/Lwm3s1tuqOg12AsT4iYgbEaYRTehJdNpVgk4m3sXpVVKeLtJMTrYE/bt/AHVGfWbVQIee/dHjaTW/+pdTDzUMmpwZE4oMNQbp16PavdcltKsEjBr7h4M+9c1qCTA0WdDURJ07/NJAsBXJm0VvzV87zuiz2dut7lA+/Tp05DL5Rg4cGCrpAYAs2bNQnZ2NhITE3VKbLamubEZN0/dxPl/nseVfVfQ3NAMoGXLoP96778svnVQwJgA/Pe5/0b6xnSc/NtJlF0uw75Z+yALkmHEiyMw9E9D4RHkYdEYyXC/HfoD2h8666z6Z3Pvaia1n+/i8cMtPZ+Lo31QHOQOyJU4m3sX4wb2Nu5Nd4KzuXdxPsgNroM98cDlu/jdVzeQPH0gbg2QAQAEAMW/id9avvem1G0S24ULLYsPRowYobVcPJ6dnW22mCypoaYBt7Nvo+hcEQpTC3HjyA0oK+/94vk/4o+INyMwaPogk6x4NAX7nvZ49NVHMeLFEUhdn4qfNv8Eeb4cJ946gRNvnYDXYC8MnDwQfR/pC78RfvB8wNOqlmSTduLQ32+HjsShs4+fH6HxAdiZ9UurlIAgoHdJLR5OL0HwtQoAQO6gXsiIvLfhcWmVEtZIjCt1Sn84VzfCP78Kk/b9B9cf7o0rj/igoo8TIJGo61nT996Uuk1iu3nzJgAgIED7btzi8fz8fLPEk3MsB/VV9RBUAiC07OLR7r8qoeM6gqDRXmNtIxqqGlCvqEdDVQPqKuqgKFBAXiBHbVltq5icejshbEYYRv3PKKtc9SWSekgR9U4UIt6MwNUDV5G5LRM3T95E2eUylF2+d2mAvYM93APc4R7oDjc/NzjKHOHo3vLo6dITdj3stD4kdpK2k3lbh9tL/rrk1t/8z9eYIWivzNhyE7ZtyGtVKgH/PPIzHqhrhETLpIgEwD+v/QjPSYNgZweoVMD2oz8jtE77cnYJgO1Xf0CvSaGwk0igEgRsP3Ydg+6r/9vz7Lh8HNLR/VBbWoPCy6V49mwRnGsa1W/h0hhfZDzeF8J9fyR5u0m1nt/SxLiae9jh+KwQPPJjAR48X4bQi3cQevEOqt0dcNfbGRVlTUjufwM7frqJB5pUECSAyk4CQQJAIoFK0vI7/Un8vxEw42H19/6TgxfRr41LCSRAh/UFCXAztBeEX+vHJV7Bfz3ka/Jh3W6T2KqrqwEAzs7aNy11cWlZaVdVVaW1vL6+HvX19erncrkcQMu4ryG+WvwV7t64a9BrTcXFywV+I/zgO9wX/Sf2R99H7t000dD3ZW79n+6P/k/3R93dOuSeyMXNUzdx+8JtlF4uhVKpRM0vNSj+xfYny7syXTam+vrgvYuOddmh8eChy3rVP5p0Rf21HYAaewkKBnrg8iM+qPRyBhrrALR8GHu7OyKsdw+r/D8S1rsHvBybUaqoRyOA1EgvXA9xwkPnSuGfJ0cPhRLeCgWu3SjBNQADfn2058tdWeqvH9QhhvbqqyQS5C27NxV0q7QWJ7LzMXpAxwtyxO+3LstCuk1iM1Z8fDzi4uJaHQ8MtJ5tdfRWBuDor4//tXAsRNakGcD1Xx+/cROA59tmjscIBQCsZoM6AcCHmof+60Mt9dpRVVUFmUzWbp1uk9hcXV0BALW1rYfgAKCmpgYA4ObmprU8NjYWK1asUD9XqVS4e/cuevfubTVzUNZMoVAgMDAQBQUFNreKtKvhz8J68GehO0EQUFVVBX//jqdJuk1i69evHwCgsFD7XWbF40FBQVrLHR0d4eioeTNMDw8P0wXYTbi7u/M/sJXgz8J68Gehm456aqJucwFQeHg4ACAzM1NruXh86FDr2wOOiIh0120S2/jx4yGTyZCTk4OsrKxW5fv37wcAREdHmzkyIiIypW6T2BwcHLBkyRIAwOLFi9VzagCwYcMGZGdnIzIysltenG0Ojo6OWLNmTavhXDI//iysB38WnaPbbKkFtGyCPGHCBKSnp6s3Qc7Pz0d6erremyATEZF16laJDWi5bU18fDx27dqFgoICeHp6YsqUKXjnnXfavHibiIi6jm6X2IiIyLZ1mzk2IiLqHpjYyOySk5MhkUjafIwdO9bSIdoc3jneekyYMKHd3/8jR45YOsQur9tcoE3WZ+DAgXjssce0HifTUSqViIqKUt85fvr06cjLy8OOHTuQlJTERVMW8swzz6h3RLpf3759LRCNbWFiI4t57LHHsHPnTkuHYfPuv3P8sWPH1B+mGzZswCuvvIKYmBgkJydbNshu6P3330f//v0tHYZN4lAkkQ1raGjA5s2bAQBbtmzR6CGsWLECQ4cORUpKCjIyMiwVIpHJMbER2TBd7hwPAImJieYOjajTcCiSLOY///kPYmNjcefOHfTp0wePPfYYpkyZAjs7/r1lKrxzvPX65z//iTt37sDOzg6hoaGYMWOGerN2Mg4TG1lMamoqUlNTNY49/PDDOHDgAEJCQiwUlW2xtjvH0z3r1q3TeP7qq6/irbfewltvvWWhiGwH/zQms5PJZFi5ciXS0tJw584d3LlzBz/88APGjh2LixcvYtKkSeo7lJNxjL1zPJne448/ji+++AI5OTmora3FtWvX8Le//Q09evTA6tWrsXHjRkuH2OVx5xHS2+9//3tcvXpVr9d8/vnnGD16dLt1mpubMXHiRJw8eRJ///vfERsba0yYBOD//b//h08//RR//etfW/UQAODGjRsICQlBSEgIrl/XcrtoMptjx45h8uTJ8PDwQFFREZycnCwdUpfFoUjSW25uLq5du6bXa9q6c/n97O3t8frrr+PkyZM4evQoE5sJGHvneDKfSZMmYdSoUTh37hzS09MxYcIES4fUZTGxkd603c/OVMS5teLi4k47R3di7J3jybxCQkJw7tw5/v4biXNsZFUqKioA3Jv7IePwzvFdC3//TYOJjazKgQMHALS9PJ30wzvHdx1lZWU4efIkAP7+G4uJjczuww8/REFBgcYxQRDwf//3f/jggw8gkUiwcOFCC0VnW3jneOuSmpqKgwcPorm5WeN4Xl4efv/736OmpgZPP/007w1pJK6KJLPr378/CgsLMWLECAQHB0OpVOLixYvIzc2FnZ0dNm7cqP4wJuPxzvHWY+fOnZg/fz58fX0xYsQIeHh4ID8/HxkZGVAqlRg8eDB+/PFHeHt7WzrULo2Jjcxu06ZNOHbsGC5fvozS0lI0NjaqP3CXLl2KRx55xNIh2hzeOd46XL16FZs2bUJ6ejoKCgpQUVEBFxcXPPjgg5g9ezYWLlzIZf4mwMRGREQ2hXNsRERkU5jYiIjIpjCxERGRTWFiIyIim8LERkRENoWJjYiIbAoTGxER2RQmNiIisilMbEREZFOY2IiIyKYwsRGR3m7cuIHdu3fj5Zdfxvjx4+Hs7AyJRAKJRIKdO3daOjzq5ngHbSLSS0pKCiZMmGDpMIjaxB4bEenl/n3T7ezsMHjwYIwePdqCERFpYmIjIr307dsX7733HpKTkyGXy3Hp0iXeGJasCociiUgvISEhePXVVy0dBlGb2GMjsrC1a9eqF14AgEKhwNq1a/Hwww/D1dUV3t7emDp1KlJTUzVeV1pailWrVmHw4MFwcXFB7969MX36dJw/f16n87QlOTlZXS85Odkk75HInNhjI7IiBQUFeOKJJ3D9+nX1sZqaGnz33Xc4duwYdu/ejdmzZyM7OxtTp07FrVu31PVqa2tx6NAhHD16FN999x0mTpxoibdAZHHssRFZkdmzZ6OwsBCxsbFISUnBTz/9hA8++ADu7u5obm7GX/7yF+Tm5mLatGmoq6vD3/72N5w6dQrp6emIi4uDg4MD6uvrMW/ePDQ0NFj67RBZBHtsRFYkKysLKSkpGDNmjPrYqFGjEBISgmnTpqGqqgpjxoyBIAg4e/YsBg4cqK43evRo9OnTB4sXL8bNmzdx+PBh/P73v7fE2yCyKPbYiKzI8uXLNZKa6KmnnkJQUBAAoKysDO+8845GUhPNnz8fUqkUAHDy5MnODZbISjGxEVmROXPmtFk2dOhQAIBEIsGzzz6rtY6TkxNCQkIAAL/88ovpAyTqApjYiKxIaGhom2UeHh4AgD59+qBXr14d1quqqjJlaERdBhMbkRVxdnZus8zOzq7DOvfXa25uNl1gRF0IExsREdkUJjaibkLsyQGASqVqs15NTY05wiHqNExsRN2Em5ub+uuKioo2691/cThRV8TERtRNBAcHq78+d+5cm/X+9a9/mSMcok7DxEbUTTz66KPo0aNlT4YPPvhA4/Yzovfeew9nz541d2hEJsWdR4i6CW9vb8yePRu7d+/G0aNH8fTTT2Px4sXw8fHBzZs38cUXX+DAgQN49NFHW224/Fv79+9HdXW1+vmpU6e0fg0Avr6+mDJlimnfDFE7mNiIupEPPvgA586dw3/+8x8kJSUhKSlJo3zOnDl48cUX8cQTT7Tbzquvvor8/HytZf/85z/xz3/+U/08MjKSiY3MikORRN2Ij48P0tPT8frrryMkJASOjo7w9PTE448/joSEBOzevRv29vaWDpPIKBJB20A7ERFRF8UeGxER2RQmNiIisilMbEREZFOY2IiIyKYwsRERkU1hYiMiIpvCxEZERDaFiY2IiGwKExsREdkUJjYiIrIpTGxERGRTmNiIiMimMLEREZFNYWIjIiKb8v8DF5gCBFxnvjUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "AQUA_x = [ 2.000000000000000000E0, 2.600000000000000000E0, 3.200000000000000000E0, 3.800000000000000300E0, 4.400000000000000000E0, 5.000000000000000000E0, 5.600000000000000000E0, 6.199999999999999000E0, 6.799999999999999000E0, 7.399999999999999000E0, 7.999999999999998000E0]\n", + "AQUA_y = [ 1.101774238963736600E-12, 1.834150538958005000E-8, 3.521285683062886000E-5, 7.796352435180525000E-3, 1.990698937241850200E-1, 5.861970452823937000E-1, 1.990698937241850200E-1, 7.796352435180525000E-3, 3.521285683062852000E-5, 1.834150538954174500E-8, 1.101774238778373800E-12]\n", + "from matplotlib import ticker\n", + "fig, ax = plt.subplots()\n", + "plt.rcParams[\"figure.figsize\"] = [4.50, 4.50]\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=20)\n", + "plt.rc('legend', fontsize=20)\n", + "w = 0.1\n", + "\n", + "file = open(\"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/multimodal/multimodal_6_256.txt\", \"r\")\n", + "hybit_data = file.readlines()\n", + "hybit_data = [float(i)*640 for i in hybit_data]\n", + "\n", + "ax.plot([i for i in np.arange(-8, 8, 0.015625)], hybit_data, color=\"purple\")\n", + "\n", + "ax.scatter(AQUA_x, [y*100/6 for y in AQUA_y])\n", + "\n", + "plt.ylim(0, 18)\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "ax.legend([\"HyBit\", \"AQUA\"], loc=\"upper left\")\n", + "# ax.bar([8.0, 9.0])\n", + "\n", + "ax.set_xlabel(\"mu1\")\n", + "# ax.set_ylabel(\"pr(mu1)\")\n", + "\n", + "scale_y = 100\n", + "ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale_y))\n", + "ax.yaxis.set_major_formatter(ticks_y)\n", + "\n", + "fig.savefig(\"multimodal_aqua.png\", bbox_inches='tight')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Waiting Times" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAAGpCAYAAACu6/hzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACP1UlEQVR4nOzdeVxU9f4/8NewDuuwC4goq4m454KIIC6hZi6VZT9vpi0309S0m9VNcetri3qvltfKunrL9N5yTStKwRUFUlTCFQQREGUfhmVYZs7vj4mJcYbVgWF5PR+PecR8zvmc854Jx3l5PufzEQmCIICIiIiIiKiTMDJ0AURERERERPrEkENERERERJ0KQw4REREREXUqDDlERERERNSpMOQQEREREVGnwpBDRERERESdCkMOERERERF1Kgw5RERERETUqTDkEBERERFRp9LlQs6mTZswY8YM+Pn5QSKRwNzcHD179sTzzz+P33//vd5+O3fuxLBhw2BtbQ0HBwdMmjQJZ8+ebfBcsbGxmDRpEhwcHGBtbY1hw4bh66+/brBPVlYW5s6dC3d3d4jFYvj7+yMyMhJyubzePhUVFVi5ciX8/f0hFovh7u6OefPmITs7u+E3g4iIiIioExIJgiAYuoi25OTkhLKyMvTv3x/du3cHAFy5cgU3b96Eqakp9u/fj8cff1yjz5IlS7B582ZYWFhgwoQJkMvliI6OhiAI2Lt3L6ZNm6Z1nn379uGZZ56BUqnE6NGj4eTkhOjoaBQXF2PZsmXYsGGDVp/U1FQEBQUhPz8fgYGBCAgIwPnz55GWlobg4GBER0fD3Nxco49cLseYMWMQFxcHNzc3hISE4Pbt20hISICzszPi4uLg7e2tvzeQiIiIiKi9E7qYM2fOCBUVFVrtW7duFQAI3bp1E6qrq9XtR48eFQAIjo6Ows2bN9XtZ8+eFczMzAQ7OzuhqKhI41gFBQWCra2tAEDYt2+fuv3evXuCr6+vAEA4fvy4Vg3BwcECAGHRokXqturqamH69OkCACEyMlKrz9///ncBgBAUFCTIZDJ1+8aNGwUAQmhoaBPeFSIiIiKizqPLXclpiK+vL27duoXLly+jf//+AIBJkybh559/xj/+8Q8sWbJEY//Fixdjy5Yt2LBhA5YtW6Zu/+ijj7B8+XJMnToVBw8e1Ohz4MABzJgxA48//jgOHz6sbk9ISMDw4cPh4uKCO3fuaFyxuX//Pnr06AFra2vk5ubCxMQEAFBVVQUXFxdIpVIkJiZi0KBBGucaMGAAkpKScP78eQwZMqTJ74NSqcTdu3dhY2MDkUjU5H5ERERERK1FEATIZDK4u7vDyKiRu24MHLLalUceeUQAIFy7dk0QBEEoLy8XzM3NBQBCZmam1v6nTp3SebVk9OjRAgDhm2++0epTWVkpiMViQSwWa1xRWrlypQBAePHFF3XWFh4ernUFKCYmRgAg+Pj46OyzZs2aeq8ANSQzM1MAwAcffPDBBx988MEHH+3uoet7+YNUlwQI33zzDW7cuAE/Pz/4+fkBAG7cuIHKyko4OzvDw8NDq8/gwYMBAElJSRrtly9f1thel5mZGQIDA3H+/HncvHlTfcWooT617TExMUhKSkJYWFiT++iqrzE2NjYAgMzMTNja2jarLxERERFRaygpKUGPHj3U31Ub0mVDzscff4wrV66grKwM165dw5UrV+Du7o49e/bA2NgYAHDnzh0A0BlwAMDKygp2dnYoKiqCTCaDjY0NSkpKIJVKG+zn4eGB8+fPIyMjQx1yGjtXbXtGRoa6rSV9mqJ2iJqtrS1DDhERERG1K025naLLhpxffvkF0dHR6uc9e/bE119/rXHvSmlpKQDA0tKy3uNYWVmhuLhYHXJq+zTUz8rKCgAgk8mafC599dGlsrISlZWV6uclJSUN7k9ERERE1J51uXVyah07dgyCIKCoqAinTp2Cn58fQkND8f777xu6tDa3fv16SCQS9aNHjx6GLomIiIiIqMW6bMipZWdnh5CQEPz0008YMmQIVqxYgd9++w0AYG1tDQAoLy+vt39ZWRmAP+9jqe3TUL8H+zTlXPrqo8s777wDqVSqfmRmZja4PxERERFRe9blQ04tU1NTPPPMMxAEQT21s6enJwAgKytLZ5+ysjIUFxfD3t5eHSRsbW0hkUga7Ffb3rNnT3VbY+fSVx9dzM3N1fff8D4cIiIiIuroGHLqcHJyAgDk5eUBAHr37g1zc3Pk5eUhOztba//ExEQAUE8eUGvAgAEa2+uqrq5GcnIyxGIx/P39m9SnvnO1pA8RERERUWfHkFPHyZMnAQA+Pj4AAAsLC4SHhwMAvv/+e6399+7dCwCYMmWKRvvkyZM1ttd15MgRyOVyjBs3DmKxWKvP4cOHNSYBAFSLgZ4+fRr29vYIDg5WtwcHB0MikeDWrVu4dOlSk+sjIiIiIurMulTIiY2NRVRUFJRKpUZ7dXU1PvnkE3zzzTewsLDAM888o962dOlSAMC6deuQkpKibj937hw+//xz2NnZ4cUXX9Q43ksvvQRbW1scOnQI+/fvV7fn5ubirbfeAgAsW7ZMo8+wYcMQHByM3NxcLF++XN1eU1OD1157DdXV1Vi0aBFMTU3V28zMzLBw4UIAwIIFC9T34ADApk2bkJSUhNDQUI0Z44iIiIiIOjuRIAiCoYtoKzt37sTcuXPh5OSEIUOGwNHREfn5+fj999+Rk5MDsViM//znP5g5c6ZGvyVLlmDz5s2wtLTE+PHjUVVVhaNHj0IQBOzduxfTpk3TOte+ffswc+ZMCIKAsLAwODo64tixYyguLsbSpUuxceNGrT4pKSkICgpCQUEB+vXrh4CAAPz2229IS0vDyJEjERMTA3Nzc40+crkcYWFhiI+Ph5ubG0JCQpCRkYH4+Hg4OzsjLi4O3t7ezXqfSkpKIJFIIJVKeX8OEREREQEAFEoBCemFyJXJ4WIjxjAvBxgbNb5mjb405ztqlwo56enp+PLLL3Hy5EmkpaUhPz8fZmZm6NWrF8LDw7Fo0SL4+vrq7Ltz5058+umnuHbtGszMzDBixAisWLECI0eOrPd8sbGxWLduHeLi4lBVVYWAgAAsXLgQc+bMqbdPZmYmVq5ciaioKBQWFsLT0xOzZs3Cu+++qzG8ra6KigqsX78eu3fvRmZmJhwcHBAREYG1a9fWu1BoQxhyiIiIiKiuqOQcrD58FTlSubrNTSJG5JQARAS6tUkNDDn0UBhyiIiIiKhWVHIO5u9KxIOhofYazrbZg9sk6DTnO2qXuieHiIiIiIiaTqEUsPrwVa2AA0DdtvrwVSiU7eu6CUMOERERERHplJBeqDFE7UECgBypHAnphW1XVBMw5BARERERkU53i8ubtF+urP4gZAgmhi6AiIiIiIjaF3m1Av/7LRP/PHazSfu72OieIMtQGHKIiIiIiAgAUFGlwO6EO/j85C3kylQL1BuJgPpuuREBcJWoppNuTxhyiIiIiIi6uPKqGuyKy8AXp9KQX1oFAHCXiDF/jC8kYhMs/u8lANCYgKB2drXIKQFtul5OUzDkEBERERF1UaWVNfjmXAa2n05DYZkq3HjYW2DBGF88OdgDZiaqW/jNTIy01slxbeN1cpqDIYeIiIiIqIspkVfj67O38eWZdBSXVwMAPB0ssXCML6YP7g5TY835ySIC3TA+wBUJ6YXIlcnhYqMaotberuDUYsghIiIiIuoipBXV2Bl7G1+dSUOJvAYA4OVkhYVjfDF1oDtMjOuffNnYSIQgH8e2KvWhMOQQEREREXVyxeVV+PeZdOyIvQ1ZpSrc+DhbYdFYPzze373dXpFpKYYcIiIiIqJOqrCsCl+eTsN/zt5GWZUCAODfzRqvh/thUj+3ThduajHkEBERERF1Mvmlldh+Og3fnMtA+R/h5hFXGywe64fH+rrCqJOGm1oMOUREREREHYxCKeicBCBXJscXJ9OwKz4D8molAKCvuy0WjfXD+D7dOn24qcWQQ0RERETUgUQl52hN5+xiY46+7rY4e6sAlTWqcDPAQ4JFY/0Q/ogLRKKuEW5qMeQQEREREXUQUck5mL8rUWNRTgDIlVUi90YeAGCQpx0Wj/VDqL9zlws3tRhyiIiIiIg6AIVSwOrDV7UCTl0OVmb4/q9BDU4F3RV07VdPRERERNRBJKQXagxR06WwrAq/3S5qo4raL4YcIiIiIqJ2Lj2/DP84drNJ++bKGg5CXQGHqxERERERtVOpuaXYejwVhy5lQ9nQOLU6XGzErVtUB8CQQ0RERETUzqTcl+GTmFQcTroL4Y9wM6a3M5KypCgsq9J5X44IgKtENZ10V8eQQ0RERETUTlzLKcGnMan4KTlHHW7GB3TDonA/9POQqGdXEwEaQad2DrXIKQEw7iJr4TSEIYeIiIiIyMCu3JViS3QKfrlyX90W0dcVr4/1RV93yZ9tgW7YNnuw1jo5rhIxIqcEICLQrU3rbq8YcoiIiIiIDCQpqxhbolNx7Joq3IhEwKR+bng93BePuNrq7BMR6IbxAa5ISC9ErkwOFxvVEDVewfkTQw4RERERURu7eKcIW6JTcPyPBTyNRMCUAe5YOMYXft1sGu1vbCRCkI9ja5fZYTHkEBERERG1kQsZhfjnsRScTskHoAo30wZ2x4JwX/g4Wxu4us6DIYeIiIiIqJXFpxVgS0wKYlMLAKiuxMwY1B0Lxviil5OVgavrfBhyiIiIiIhaSKEU6r03RhAEnEsrwOZjKYhPLwQAmBiJ8NQQD7wW5gtPR0tDlt6pMeQQEREREbVAVHKO1ixnbhIxVj4eAGuxCbZEp+C320UAAFNjEWY+2gPzw3zgYc9w09oYcoiIiIiImql2vZoHF+XMkcox/9tE9XMzEyPMGtoDfw31gbudRdsW2YUx5BARERERNYNCKWD14ataAedBc0b2xGthvuhmK26TuuhPRoYugIiIiIioI0lIL9QYolafiL5uDDgGwpBDRERERNQM90saDzgAkCtr2n6kfxyuRkRERETUBAqlgJ9+z8GGX683aX8XG17FMRSGHCIiIiKiBtQolDiSlINPYlJwK68MACAC6r0nRwTAVaKaTpoMo0sNVysvL8fBgwfx4osvonfv3hCLxbCyssKAAQOwZs0alJaWavVZtWoVRCJRvY+333673vPFxsZi0qRJcHBwgLW1NYYNG4avv/66wRqzsrIwd+5cuLu7QywWw9/fH5GRkZDL67/cWVFRgZUrV8Lf3x9isRju7u6YN28esrOzm/7mEBEREZGGGoUS+y5kYfw/TmHJ/y7hVl4ZJBamWDreHxtmDoAIqkBTV+3zyCkB6vVyqO11qSs5u3fvxssvvwwA6NOnD5544gmUlJTg7NmziIyMxJ49e3Dy5Em4uLho9Q0ODoavr69W+5AhQ3Sea9++fXjmmWegVCoxevRoODk5ITo6GnPmzEFSUhI2bNig1Sc1NRVBQUHIz89HYGAgQkJCcP78eaxZswbR0dGIjo6Gubm5Rh+5XI7w8HDExcXBzc0NU6dOxe3bt7Fjxw4cOXIEcXFx8Pb2bsnbRURERNQlVSuUOJCYjU+Pp+JOYTkAwN7SFC+FeOP5oJ6wEZsCAKzMjLXWyXGViBE5JQARgW4GqZ3+IHQhO3fuFF555RXh6tWrGu13794VBg0aJAAQZs2apbEtMjJSACDs2LGjyecpKCgQbG1tBQDCvn371O337t0TfH19BQDC8ePHtfoFBwcLAIRFixap26qrq4Xp06cLAITIyEitPn//+98FAEJQUJAgk8nU7Rs3bhQACKGhoU2uu5ZUKhUACFKptNl9iYiIiDqqymqF8G1chhD8QbTQc/kRoefyI8LgNb8K206kCjJ5tc4+NQqlcDY1Xzh4MUs4m5ov1CiUbVx119Gc76giQRAam+K7Szh37hxGjhwJc3NzlJSUwMzMDIBquNrq1auxY8cOvPDCC0061kcffYTly5dj6tSpOHjwoMa2AwcOYMaMGXj88cdx+PBhdXtCQgKGDx8OFxcX3LlzR+OKzf3799GjRw9YW1sjNzcXJiaqC3BVVVVwcXGBVCpFYmIiBg0apHGuAQMGICkpCefPn6/3ipMuJSUlkEgkkEqlsLW1bXI/IiIioo6oskaB785nYdvxVNz946qMk7U5Xg31xnPDPWFp1qUGP7VbzfmO2qXuyWnIgAEDAACVlZUoKCh4qGP9+OOPAICnnnpKa9vkyZMhFotx7NgxjftsavtMmTJFa0hat27dEBISgqKiIpw5c0bdHhsbC6lUCh8fH62AU/f8dcMUEREREanIqxXYGZuO0I9OYMXBZNyVytHN1hyRUwJwZvkYvBTizYDTQfH/2h/S0tIAAKampnBw0J4JIyYmBpcuXYJcLoeHhwcmTpxY79WRy5cvAwAGDx6stc3MzAyBgYE4f/48bt68if79+zfap7Y9JiYGSUlJCAsLa3IfAEhKStK5nYiIiKgrqqhS4Nv4DHx+Kg15skoAgJtEjPlhPpj5aA+ITY0NXCE9LIacP2zevBkAEBERoXUlBQC++eYbjecrVqzAk08+iZ07d8La2lrdXlJSAqlUCgDw8PDQeS4PDw+cP38eGRkZ6pBz586dRvsAQEZGhrqtJX2IiIiIuqqyyhrsisvA9tNpyC+tAgB0t7PAa2N88NQQD5ibMNx0Fgw5AH766Sd89dVXMDU1xdq1azW2+fr6YsOGDZg4cSJ69uyJoqIinDp1Cm+99Rb27dsHhUKBAwcOqPevOw21paWlzvNZWVkBAGQymVa/1u6jS2VlJSorK9XPS0pKGtyfiIiIqD1SKAUkpBciVyaHi41qnRpjIxFKK2vw9bnb+PJ0OgrLVOGmh4MFFo7xxfRBHjAz4R0cnU2XDznXr1/H7NmzIQgCPv74Y/W9ObVmz56t8dzKygrPPfccxowZg379+uHgwYOIi4vDiBEj2rJsvVq/fj1Wr15t6DKIiIiIWiwqOUdrOudutuYY3ssBp1LzUVxeDQDo5WiJBWN8MW1Qd5gaM9x0Vl36/2x2djYiIiJQVFSEpUuXYvHixU3u6+bmhrlz5wIAoqKi1O11h66Vl5fr7FtWplop18bGRqtfa/fR5Z133oFUKlU/MjMzG9yfiIiIqD2JSs7B/F2JGgEHAO6XVOKHpBwUl1fD29kK/3hmAI4tDcXTj/ZgwOnkuuz/3cLCQkyYMAEZGRmYO3euzsU5G+Pn5wcAyMnJUbfZ2tpCIpEAALKysnT2q23v2bOnus3T07NN+uhibm4OW1tbjQcRERFRR6BQClh9+CoaWhPFztIUUYtHY/ogD5gw3HQJXfL/cmlpKSZOnIirV69ixowZ2L59O0QiUbOPU1RUBODPe19q1Q55S0xM1OpTXV2N5ORkiMVi+Pv7N6lP3fbaiQpa2oeIiIioM0lIL9S6gvOg4vJqXMgoaqOKqD3ociGnsrISU6dORUJCAh577DHs2bMHxsbNn0lDEAT1hAMPTuE8efJkAMDevXu1+h05cgRyuRzjxo2DWCzW6nP48GGNSQAA1WKgp0+fhr29PYKDg9XtwcHBkEgkuHXrFi5duqR1rtrzT5kypdmvj4iIiKi9y5NV4svTaU3aN1fWcBCizqVLhRyFQoFZs2YhJiYGISEh2L9/P8zMzOrdPy8vD1u3btWanay0tBTz589HfHw8XF1dMWPGDI3tL730EmxtbXHo0CHs379f3Z6bm4u33noLALBs2TKNPsOGDUNwcDByc3OxfPlydXtNTQ1ee+01VFdXY9GiRTA1NVVvMzMzw8KFCwEACxYsUN+DAwCbNm1CUlISQkND613Ph4iIiKgjyi2RY+2Rqwj5KAbR13Ob1MfFRtz4TtRpiARBaGgIY6eyefNmLFmyBAAwffr0eu892bBhA5ycnHD79m14eXnB2toaQ4cOhZubG/Ly8pCYmIiCggLY2dnhyJEjGldXau3btw8zZ86EIAgICwuDo6Mjjh07huLiYixduhQbN27U6pOSkoKgoCAUFBSgX79+CAgIwG+//Ya0tDSMHDkSMTExWmv4yOVyhIWFIT4+Hm5ubggJCUFGRgbi4+Ph7OyMuLg4eHt7N+t9KikpgUQigVQq5f05RERE1G7kSCvw+ck07E64g6oaJQBggIcEdwrLUVxerfO+HBEAV4kYZ5aHw9io+bcnUPvRnO+oXSrkrFq1qklTJaenp6NXr16QyWR4//33ERcXh9TUVOTn58PY2BheXl6IiIjAG2+8ge7du9d7nNjYWKxbtw5xcXGoqqpCQEAAFi5ciDlz5tTbJzMzEytXrkRUVBQKCwvh6emJWbNm4d1339UY3lZXRUUF1q9fj927dyMzMxMODg6IiIjA2rVr610otCEMOURERNSeZBdXYNuJVHz3WxaqFKpwM6SnPRaP9UOInxN+uXIP83ep7kWu+8W2NtJsmz0YEYFubVs06R1DDj0UhhwiIiJqDzILy/GvE7ew90ImqhWqr6zDvBywZKwfgnwcNSaO0rVOjptEjMgpAQw4nURzvqN2+cVAiYiIiKh9ySgow9bjqdifmI0apSrcjPRxxKKxfhjh7aizT0SgG8YHuCIhvRC5MjlcbMQY5uXAIWpdFEMOEREREbULaXml+PR4Kg5dugvFH+EmxM8Ji8b6YWgvh0b7GxuJEOSjOwRR18KQQ0REREQGlZorw6cxqfjh8l38kW0wprczXh/rh8Ge9oYtjjokhhwiIiIiMogb92T4JCYFP/6eg9q7xMf1ccGisX7o72Fn0NqoY2PIISIiIiK9UiiFBu+NuXq3BJ/EpODn5Hvqtsf6dsPr4X4I7C4xRMnUyTDkEBEREZHeNDTLmYe9JbZEp+DXq/cBACIRMCnQDQvDfdHHjTO6kv4w5BARERGRXkQl52D+rkStRTlzpHK8+sc6NoAq3Dze3x2vh/vCv5tN2xZJXUKbhRxBEHDx4kVcu3YNhYWFkEqlUCqVeP7559GrV6+2KoOIiIiIWoFCKWD14ataAedB0wa6Y2G4H3xdrNukLuqaWj3kXL58GRs3bsShQ4dQWlqqtX3UqFE6Q85HH32E69evAwA8PT2xatWqVq6UiIiIiFoqIb1QY4hafZ4Z6smAQ62u1UJOVVUV3njjDXz22WcAVFdyHlR3ldoHubq64u2334ZIJIJIJMILL7zAKz5ERERE7VRuSeMBBwByZU3bj+hhGLXGQcvLyxEaGorPPvus2eGm1nPPPQdnZ2cIggBBEPDtt9+2RqlERERE9BAEQcCZlHxsO3GrSfu72IhbuSKiVgo5s2bNQnx8vPq5SCTC9OnTsW3bNhw5ckRn8HmQiYkJpk+frn7+888/t0apRERERNQCgiDg5M08PPXZOcz+Kh7X78sa3F8E1Sxrw7wc2qZA6tL0Plzt8OHDOHz4sPpqjZ+fH/bt24fAwECN/ZpyNWfKlCn44osvIAgCEhISUFFRAQsLC32XTERERERNJAgCjt/IxeboVFzOLAYAmJsYYdYwT/R2tcG7+39X7VenT+23vsgpARrr5RC1Fr2HnLVr1wJQ/QFwdXXFiRMn4Obm1qJjDR06VP2zQqHAtWvXMHjwYL3USURERERNJwgCjl69jy0xKUjOLgEAiE2NMHt4T7wy2hsutqphaPaWplrr5Lj+sU5ORGDLvhMSNZdeQ879+/dx4cIF9VWatWvXtjjgAICLiwucnZ2Rl5cHALhx4wZDDhEREVEbUioF/Hr1HjZHp+JajircWJoZ4y9BPfFyiDecrM019o8IdMP4AFckpBciVyaHi41qiBqv4FBb0mvIiY2NVd9vY2pqimefffahj+nk5KQOOfn5+Q99PCIiIiJqnEIp4OfkHHwSnYobf9xvY2VmjDkje+GlEG84WJnV29fYSIQgH8e2KpVIi15Dzr179wCo7rfx9fWFlZXVQx/T1tZW/bOudXaIiIiISH8USgFHku7ik5hUpOaqvnvZmJtgbnAvzBvlBTvL+sMNUXuh15AjlUrVP9cNJw+jrKxM/TMnHSAiIiJqHTUKJX64fBefxqQiLV/1/ctWbIIXR3njheBekFiYGrhCoqbTa8ixt7dX/1w38DyM2qtDAODoyMueRERERPpUrVDiwMVsbD2eioyCcgCAnaUpXhrlhedH9oKtmOGGOh69hpxu3boBUM2+kZ6ejqqqKpiZtfySZkpKisZ9OD169HjoGomIiIi6EoVS0DkJQFWNEvsTs7D1RCoyCysAAA5WZng5xBt/CeoJa3O9T8JL1Gb0+tv76KOPqn+uqqpCTEwMIiIiWny8b7/9Vv2zmZkZRowY8VD1EREREXUlUck52tM525pjzCMuOHUzH9nFqnDjZG2GV0Z7Y/aInrA0Y7ihjk+vv8U9evRAQEAArl27BgD48MMPWxxycnJy8Mknn6inox41ahTEYrHeaiUiIiLqzKKSczB/V6LGopwAcK+kEnsSMgEAzjbmeDXUB88N84SFmXHbF0nUSoz0fcCXX35ZPY30qVOn8P777zf7GDKZDE899RSKiorUx1qyZIk+yyQiIiLqtBRKAasPX9UKOHXZik1w4s0wvDjKiwGHOh29h5zXXnsNvXr1AqC6N2flypVYsGBBkyci+OWXXzBs2DDExcVBJBJBJBJh6NChmDx5sr5LJSIiIuqUEtILNYao6VIir0FSln4miiJqb/Q+6NLU1BR79uxBeHg45HI5BEHAZ599hq+//hpTpkzBkCFDAKgCkEgkwo8//ojExESkpqYiJiYGt27dUm8TBAEODg7Ys2ePvsskIiIi6pRKK2uwO/5Ok/bNlTUchIg6KpFQOx5Mzw4fPoxnn30WcrnqD09tcKn9WV3AH21122sDjkQiwYEDBxAWFtYaJVI9SkpKIJFIIJVK9bbeEREREbUumbwaX5/LwPbTaSgur25Snz0vj0CQD5fooI6hOd9RW236jClTpiAhIQHPPvssrly5ohFm6gs2dUNQ3759sW/fPvj7+7dWiUREREQdnrSiGjtjb+OrM2kokdcAALwcLVFYXo2Simqd9+WIALhKVNNJE3VGer8np66+ffvi0qVL2L17N4YNGwZAFWDqPmrVPu/bty/+85//4PLlyww4RERERPUoLq/Cpl9vYNQHMfjHsZsokdfAx9kKm58diGPLwvDhk/0AqAJNXbXPI6cEwNjowa1EnUOrDVfTpbCwEGfOnMG1a9dQUFCA4uJiWFpawsnJCV5eXhgzZgzc3d3bqhyqB4erERERtV+FZVX46kwa/nM2A6WVqis3vbvZ4PWxvpgY6KYRXHStk+MmESNySgAiAt3avHaih9Gc76htGnKoY2DIISIian/ySyux/XQavjmXgfIqBQDgEVcbLB7rh8f6usKonqsyCqWAhPRC5MrkcLFRDVHjFRzqiNrFPTlERERE9PByZXJ8cTINu+IzIK9WAgACu9tiUbgfxvXpVm+4qWVsJOLkAtTlMOQQERERtUP3S+TYduIW9iTcQWWNKtwM8JBg8Tg/jOntojGRExFp0nvI+frrr9U/W1tbY8aMGS0+1r179/Drr7+qnz///PMPVRsRERFRe3e3uAKfnbyF//6Wiao/ws1gTzssHueP0X5ODDdETaD3e3KMjIw0/vDNmjULO3bsgKmpabOPFR0djfHjx6uPp1Ao9FYn1Y/35BAREelfY/fGZBaWY9vJW/j+fCaqFaqvZ0N72WPxWH8E+zoy3FCX15zvqK02hXTtlNB79uzBhAkTIJVKH+pY+lBeXo6DBw/ixRdfRO/evSEWi2FlZYUBAwZgzZo1KC0trbfvzp07MWzYMFhbW8PBwQGTJk3C2bNnGzxfbGwsJk2aBAcHB1hbW2PYsGEaV7p0ycrKwty5c+Hu7g6xWAx/f39ERkaqF1XVpaKiAitXroS/vz/EYjHc3d0xb948ZGdnN/yGEBERUZuISs7BqA9jMGt7HBb/9xJmbY/DqA9jEJWcgzsF5Vi+NwljNpzA7vg7qFYIGOHtgD0vj8B3fw3CKF69IWq2Vr+SIwgCRCIR+vTpg59//hk9evRo8rFqr+QAqsVCH/ZKzpdffomXX34ZANCnTx8EBgaipKQEZ8+ehUwmwyOPPIKTJ0/CxcVFo9+SJUuwefNmWFhYYMKECZDL5YiOjoYgCNi7dy+mTZumda59+/bhmWeegVKpxOjRo+Hk5ITo6GgUFxdj2bJl2LBhg1af1NRUBAUFIT8/H4GBgQgICMD58+eRlpaG4OBgREdHw9zcXKOPXC7HmDFjEBcXBzc3N4SEhOD27dtISEiAs7Mz4uLi4O3t3az3iVdyiIiI9CcqOQfzdyXqXJQTAIxEgPKPjaN8nfB6uC+Ge3OiAKIHtYsrOQBgbGysDjxXr17FiBEjcPHixdY8ZYNMTU3xyiuv4OrVq7h69Sq+++47REVF4caNGxg0aBCuX7+OJUuWaPQ5duwYNm/eDEdHR1y+fBkHDx5EVFQUTp06BWNjY8ydOxfFxcUafQoLCzFv3jwoFArs3bsXJ06cwN69e3H9+nX4+vpi48aNOHHihFZ9L7zwAvLz87Fo0SL8/vvv+N///ocbN25g+vTpiI2Nxfr167X6rFu3DnFxcQgKCsLNmzfxv//9D/Hx8di4cSPy8vIwb948Pb6DRERE1BwKpYDVh6/WG3AAVcAZ7eeEffODsOul4Qw4RHrQqiFn27Zt8Pf3V1/NycnJQWhoKH7++efWPG295syZg88//xx9+vTRaHdzc8PWrVsBAPv370dVVZV626ZNmwAA7733Hvz8/NTtQUFBePXVV1FcXIyvvvpK43hffvklSkpKMHXqVI2JF7p164aPPvoIALBx40aNPgkJCYiNjYWLi4t6HwAwMTHBtm3bYGpqii1btqCmpka9raqqCp9++ikAYOvWrbC2tlZvW7p0Kfr374+TJ0/iwoULzXiXiIiISF8S0gs1FuKsz/wwXwzp6dAGFRF1Da0acry8vHDu3DmEhISog05paSmmTp2KL774ojVP3WwDBgwAAFRWVqKgoACA6l6XmJgYAMBTTz2l1ae27fDhwxrtP/74Y719Jk+eDLFYjGPHjmncZ1PbZ8qUKVpD0rp164aQkBAUFRXhzJkz6vbY2FhIpVL4+Phg0KBBTa6PiIiI2kaurPGA05z9iKhpWjXkAICdnR2OHj2KZ555Rh10ampqMH/+fLz77rutffomS0tLA6Aa0ubgoPqXlBs3bqCyshLOzs7w8PDQ6jN48GAAQFJSkkb75cuXNbbXZWZmhsDAQMjlcty8ebNJfeo7V0v6EBERUdu4cleKXXEZTdrXxUbcytUQdS2tHnIA1Rf7PXv24G9/+5s66AiCgA8//BCzZ89GdXV1W5TRoM2bNwMAIiIi1FdS7ty5AwA6Aw4AWFlZwc7ODkVFRZDJZABUN0TVziRXX7/a9oyMPz/4GjuXvvoQERFR60rKKsZL/zmPyVvO4LfbRQ3uKwLgJlFNJ01E+qP3xUAb8uGHH6JXr15YtGgRlEqleorp7OxsHDx4EBKJpC3LUfvpp5/w1VdfwdTUFGvXrlW3104pbWlpWW9fKysrFBcXQyaTwcbGRmMa6vr6WVlZAYA6GDXlXPrqo0tlZSUqKyvVz0tKShrcn4iIiLRdvFOELdEpOH4jD4Bq1rQnBrhjQA87rDl8FQA0JiConYs2ckqAxno5RPTw2jTkAMD8+fPh4eGBWbNmoaKiAoIg4NSpUwgODm72FNP6cP36dcyePRuCIODjjz9W35vTlaxfvx6rV682dBlEREQd0vnbhdgcnYLTKfkAAGMjEaYOdMeCMb7wcVZNCuQmEWP14asakxC4SsSInBKAiEA3g9RN1Jm1ecgBVDfXnzhxAlOmTEFubi6AP6eY/vHHHzFw4MA2qSM7OxsREREoKirC0qVLsXjxYo3ttbOVlZeX13uMsrIyAICNjY1Gn9p+uubwfrBPU86lrz66vPPOO1i6dKn6eUlJSZuHTSIioo4mPq0Am6NTcPaWasIiEyMRZgzujtfCfNHLyUpj34hAN4wPcEVCeiFyZXK42KiGqPEKDlHrMEjIAYBHH30UZ8+exaRJk3Djxg31FNOjR4/Gd999h4iIiFY9f2FhISZMmICMjAzMnTtX5+Kcnp6eAICsrCydxygrK0NxcTHs7e3VQcLW1la9SFFWVhYCAgK0+tUer2fPnhrnunjxYr3nqq9PQ/Xp6qOLubm51oxuREREpE0QBJy7pQo38emFAABTYxGeGuKB18J80cOh/iHuxkYiBPlwDRyittAmEw/Up3aK6VGjRmlMMf3EE09g+/btrXbe0tJSTJw4EVevXsWMGTOwfft29aKldfXu3Rvm5ubIy8tDdna21vbExEQAQP/+/TXaa4e81W6vq7q6GsnJyRCLxfD3929Sn/rO1ZI+RERE1HyCIODUzTw8/dk5PPdlPOLTC2FmbITZIzxx/M0wrJ/Rv8GAQ0Rty6AhB1BNMX3s2DHMnDlTY4rpV199FR988IHez1dZWYmpU6ciISEBjz32GPbs2QNjY2Od+1pYWCA8PBwA8P3332tt37t3LwDV8Lu6Jk+erLG9riNHjkAul2PcuHEQi8VafQ4fPqwxCQAA3L9/H6dPn4a9vT2Cg4PV7cHBwZBIJLh16xYuXbrU5PqIiIioaQRBwPEbuZix7Sye/3cCzmcUwczECC+M7IWTb4Vh3bR+8LBnuCFqdwQ9E4lEgpGRkWBkZCRER0c3q+/f/vY3df+6x6n9+WHV1NQI06dPFwAIISEhQllZWaN9jh49KgAQHB0dhZs3b6rbz549K5ibmwt2dnZCUVGRRp+CggLB1tZWACDs27dP3X7//n3B19dXACAcP35c61zBwcECAGHx4sXqturqamHGjBkCACEyMlKrz9///ncBgDBy5EihtLRU3b5x40YBgBAaGtroa3yQVCoVAAhSqbTZfYmIiDoDpVIpHL1yT5jyyWmh5/IjQs/lR4Te7/0krDl8RbgvrTB0eURdUnO+o4oEQRDqC0AtYWRkpB76dfToUfWVkKb617/+hcWLF6unmK5dU0ckEkGhUDxUbZs3b8aSJUsAANOnT9c5KQAAbNiwAU5OTurnS5YswebNm2FpaYnx48ejqqoKR48ehSAI2Lt3L6ZNm6Z1jH379qmvToWFhcHR0RHHjh1DcXExli5dio0bN2r1SUlJQVBQEAoKCtCvXz8EBATgt99+Q1paGkaOHImYmBite2fkcjnCwsIQHx8PNzc3hISEICMjA/Hx8XB2dkZcXBy8vb2b9T6VlJSo7yuq7z0iIiLqyBRKQeckAEqlgF+v3scnMSm4cle1pIKFqTH+EtQTL4d4w9mG97ASGUpzvqO2SsgBAJFI1KKQA6iGbNVOMQ1AbyFn1apVTZoqOT09Hb169dJo27lzJz799FNcu3YNZmZmGDFiBFasWIGRI0fWe5zY2FisW7cOcXFxqKqqQkBAABYuXIg5c+bU2yczMxMrV65EVFQUCgsL4enpiVmzZuHdd9/VGN5WV0VFBdavX4/du3cjMzMTDg4OiIiIwNq1a+tdKLQhDDlERNSZRSXnaE/nbCvGlAFuOJ2Sj+v3VOvLWZkZ4/mRvfDSKC84WjPcEBmaQUPOf/7zH/XPERER6NatW4uOc/78ebzwwgvqaZABVfig1seQQ0REnVVUcg7m70pEQ19+bMxN8EJwL8wL9oK9lVmb1UZEDTNoyKGOjyGHiIg6I4VSwKgPYzSu4DzI2twEp/42Bg7WDDdE7U1zvqMafHY1IiIioraQkF7YYMABgNLKGty4L2ujioiotTDkEBERUadXVaPED5e117zTJVfWcBAiovbPxNAFEBEREbWWyhoF9l7Iwr+O30J2cUWT+rjY6J7oh4g6DoYcIiIi6nTk1Qp8fz4T207cwt0/hqg5WZuhskaJUnmNzokHRABcJarppImoY2tyyFmzZo1W28qVK5u0n77oOh8RERFRLXm1AnsS7uCzk7dwv6QSANDN1hyvhvpg1jBPnLiRi/m7EiECNIKO6I//Rk4JgLGR6MHDElEH0+TZ1eou8llL17o1uvbTl4ddJ4eahrOrERFRR1NeVYPd8Xfw2ck05Jeqwo2bRIzXwnzw9KM9IDY1Vu+ra50cN4kYkVMCEBHo1ua1E1HTNOc7aouGq9UuztlW2vp8RERE1DGUVdbgm7gMbD+VhoKyKgBAdzsLLBjjiyeHdIe5ibFWn4hAN4wPcEVCeiFyZXK42KiGqPEKDlHn0ayQ09Qldbj0DhEREbUmmbwaX5/LwJen01BUXg0A6OFggYVjfDF9kAfMTBqeQNbYSIQgH8e2KJWIDKDJIef48eN63Y+IiIiouaQV1fjP2dv46kw6pBWqcNPL0RILw/0wdaA7TI25OgYRNeOeHOo6eE8OERG1N9Lyavw7Nh3/jk2HTF4DAPB2tsLr4b6Y0t8dJgw3RJ1eq9+TQ0RERKQPCqXQ4L0xRWVV+OpMOnaevY3SSlW48XOxxutj/TC5nxvvoyEinRhyiIiIyCAamuVsaC8HbD+djm/O3UZZlWp21UdcbbBorB8i+rrCiOGGiBrAkENERERtLio5B/N3JWotypkjlePVXYkwMzZClUIJAAhws8WisX6YENCN4YaImoQhh4iIiNqUQilg9eGrWgGnriqFEv2622LxWH+M7ePCpSSIqFnaRcjJysrC1q1bcebMGeTn58Pe3h5DhgzBvHnzMGjQIEOXR0RERHqUkF6oMUStPu9O6oMgH6c2qIiIOhu9h5z4+Hhs3bpV/XzlypXw9fWtd/+9e/dizpw5kMtVH3a1C3/Gx8fjs88+w/Lly7Fu3Tp9l0lEREQGkitrPOCo9qts5UqIqLPSe8j54osvsGvXLohEInh7ezcYcC5cuIDZs2ejqkq1QrFIJNK4HK1QKLB+/XqYmZlh5cqV+i6ViIiI2lhmYTkOXcpu0r4uNuJWroaIOiu9h5xffvlF/fNzzz3X4L5LlixBVVWVOtg8uGSPSCSCIAhYt24dnnzySfTt21ff5RIREVEbuJ1fhq3HU7H/YjYUyoaX6BMBcJWoppMmImoJva6clZWVhbt376qfT5o0qd59ExISEBsbqw44Xl5eOHbsGCoqKpCZmYnXX39dPXRNoVDg448/1mepRERE1AZu5ZVi6XeXMHbTSXx/IQsKpYAQPye8OcEfIqgCTV21zyOnBHANHCJqMb1eybl+/br6ZyMjIwwcOLDefXfv3g1AdfXG2NgYP/zwAwICAgAA3bt3x+bNm3H//n189913AIADBw5g+/btMDU11WfJRERE1ApS7svw6fFUHL58F7UXbsJ6O2PRWD8M9rQHAPi6WGutk+P6xzo5EYFuhiibiDoJvYac27dvA1ANM/P09IS5uXm9+9YOaxOJRJgwYYI64NT1zjvvqENOaWkpfv/9dwwePFifJRMREZEeXb9Xgk9iUvHT7zmoHYU+ro8LXg/3w4Aedhr7RgS6YXyAKxLSC5Erk8PFRjVEjVdwiOhh6TXklJSUqH+2t7evd7/79+/jxo0b6qFqM2bM0LnfgAEDYGdnh+LiYgDAlStXGHKIiIjaoSt3pfgkOhVRV+6p2x7r2w2vh/shsLuk3n7GRiIE+Ti2RYlE1IXoNeRUVFSof27oKs65c+cA/Dld9NixY+vdt1evXrh06RIAoKCgQD+FEhERkV78niXFlpgUHL16X902qZ8rFo7xQ4C7rQErI6KuTK8hx8LCQv1z3as6Dzp58qT6Z3d3d/Tq1avefcXiP6ePLC8vf7gCiYiISC8uZRZjS3QKYq7nAgBEIuDx/u5YOMYXvV1tDFwdEXV1eg05tUPUBEHA7du31VdqHvTrr78CUN2PM3r06AaPKZPJ1D83dHWIiIiIWt+FjCJsjk7BqZt5AAAjETB1YHcsGOMLXxdrA1dHRKSi15BTd/KA8vJyxMbGYtSoURr7JCcn49q1a+rwExYW1uAxc3Nz1T83dJ8PERERPRyFUqh3EoCE9EJsiU7BmdR8AKp7aaYN7I6F4b7wcrIyZNlERFr0GnIGDBgAKysr9bCy1atX4+jRoxr7rF27FsCf9+NMmDCh3uPdu3cPeXl56udeXl76LJeIiIj+EJWco3M652eH9kBcWgHi0goBACZGIjw52AOvjfFBT0eGGyJqn/QacsRiMaZPn45du3ZBJBIhJiYG48ePxyuvvAJTU1N8++232Ldvn/oqzqhRo9CzZ896jxcXF6fx/JFHHtFnuURERARVwJm/KxHCA+33pHL881gKAMDUWISnH+2B+aE+6OFg2fZFEhE1g15DDgBERkbi+++/R1VVFQRBQExMDGJiYjT2qb2K89577zV4rIMHD6p/7tGjB9zcuDAYERGRPimUAlYfvqoVcOqyNDPGL0tGM9wQUYdhpO8D+vj44IsvvgAA9RUbQRAg/LEiWG3bK6+8gvHjx9d7nIqKChw6dAgikQgikQihoaH6LpWIiKjLS0gv1Biipkt5lQJZRRUN7kNE1J7oPeQAwF/+8hdERUXhkUceUYcbQBV2bGxs8P7772Pbtm0NHmPHjh2QSqXq/o8//nhrlEpERNRlCYKA6Gv3G98RQK6s4SBERNSe6H24Wq3x48fjypUruHbtGm7evImKigq4u7tj+PDhTZoKuqamBosXL1Y/nzhxYmuVSkRE1KUolQJ+uXIPW2JScS2n/nXt6nKxETe+ExFROyES6l5qIYJqIVeJRAKpVApbW65WTUTUWSiUAn76PQefxKTg5v1SAIClqRFERiKUVSp09hFBNcvameXh6umkiYgMoTnfUVtluFp7duHCBXzwwQeYMWMGPDw81Pf81GfVqlXqfXQ93n777Xr7xsbGYtKkSXBwcIC1tTWGDRuGr7/+usH6srKyMHfuXLi7u0MsFsPf3x+RkZGQy+sfJlBRUYGVK1fC398fYrEY7u7umDdvHrKzsxt/Q4iIqNNTKAUcupSNx/55Cq/vuYib90thY26CReG+OPvOWGx8egBEUAWaumqfR04JYMAhog6l1YartVdr167FoUOHmt0vODgYvr6+Wu1DhgzRuf++ffvwzDPPQKlUYvTo0XByckJ0dDTmzJmDpKQkbNiwQatPamoqgoKCkJ+fj8DAQISEhOD8+fNYs2YNoqOjER0drTXUTy6XIzw8HHFxcXBzc8PUqVNx+/Zt7NixA0eOHEFcXBy8vb2b/XqJiKjjq1EocejSXWw9noq0/DIAgK3YBPNGeWHuSC9ILE0BABGBbtg2e7DOdXIipwQgIpCzmxJRx9LlQk5QUBD69++PoUOHYujQoejVqxcqKysb7ffSSy/hhRdeaNI5CgsLMW/ePCgUCuzbtw8zZswAANy/fx+jRo3Cxo0b8fjjjyMsLEyj3wsvvID8/HwsWrQImzdvBqC6N2nmzJk4cOAA1q9fj1WrVmn0WbduHeLi4hAUFIRff/0V1tbWAIBNmzZh2bJlmDdvHk6cONGkuomIqHOoVihxIDEbnx5PxZ1C1QLddpameGmUF54f2Qu2YlOtPhGBbhgf4IqE9ELkyuRwsRFjmJcDr+AQUYfU5e/JEYvFqKysRH1vw6pVq7B69Wrs2LGjySHno48+wvLlyzF16lSNtX4A4MCBA5gxYwYef/xxHD58WN2ekJCA4cOHw8XFBXfu3NG4YnP//n306NED1tbWyM3NhYmJKptWVVXBxcUFUqkUiYmJGDRokMa5BgwYgKSkJJw/f77eK0668J4cIqKOqapGiX2JWdh6PFU95bODlRleDvHGX4J6wtq8y/3bJhF1Irwnx8B+/PFHAMBTTz2ltW3y5MkQi8U4duyYxn02tX2mTJmiNSStW7duCAkJQVFREc6cOaNuj42NhVQqhY+Pj1bAqXv+umGKiIg6n8oaBb6Jy0DYx8fxzv7fkVVUASdrM7w76RGcfmsM5of5MOAQUZfCT7wmiomJwaVLlyCXy+Hh4YGJEyfWe3Xk8uXLAIDBgwdrbTMzM0NgYCDOnz+Pmzdvon///o32qW2PiYlBUlKSephbU/oAQFJSUhNfJRERdSTyagX+m3AHn51Mw70S1T+cOduY49VQHzw3zBMWZsYGrpCIyDAYcprom2++0Xi+YsUKPPnkk9i5c6f6PhhAdRlNKpUCADw8PHQey8PDA+fPn0dGRoY65Ny5c6fRPgCQkZGhbmtJHyIiav8USqHBe2MqqhTYnXAHn5+8hVyZ6r5SV1sx5of54JmhPSA2Zbghoq6NIacRvr6+2LBhAyZOnIiePXuiqKgIp06dwltvvYV9+/ZBoVDgwIED6v1LS0vVP1taWuo8ppWVFQBAJpNp9WvtPrpUVlZqTL5QUtK0heGIiEj/opJztGY5c/tjlrPR/s7YFZeBL06lIb+0CgDgLhFj/hhfzHzUA+YmDDdERABDTqNmz56t8dzKygrPPfccxowZg379+uHgwYOIi4vDiBEjDFThw1u/fj1Wr15t6DKIiLq8qOQczN+ViAenwrknlePVXYmwNjdBaWUNAMDD3gILxvjiycEeMDPhLbZERHXxU7GF3NzcMHfuXABAVFSUur3u0LXy8nKdfcvKVGsV2NjYaPVr7T66vPPOO5BKpepHZmZmg/sTEZH+KZQCVh++qhVwAKjbSitr4OlggY+e6o/jb4Zh1jBPBhwiIh34yfgQ/Pz8AAA5OTnqNltbW0gkEgBAVlaWzn617T179lS3eXp6tkkfXczNzWFra6vxICKitpWQXqgxRK0+/ze9H2Y+2gOmxvwrnIioPvyEfAhFRUUA/rz3pdaAAQMAAImJiVp9qqurkZycDLFYDH9//yb1qdteO1FBS/sQEVH7lCtrPOAAQEFZVStXQkTU8THktJAgCOoJBx6cwnny5MkAgL1792r1O3LkCORyOcaNGwexWKzV5/DhwxqTAACqxUBPnz4Ne3t7BAcHq9uDg4MhkUhw69YtXLp0SetcteefMmVKC14hERG1lcKyKsRcy23Svi424sZ3IiLq4hhyGpCXl4etW7dqzU5WWlqK+fPnIz4+Hq6urpgxY4bG9pdeegm2trY4dOgQ9u/fr27Pzc3FW2+9BQBYtmyZRp9hw4YhODgYubm5WL58ubq9pqYGr732Gqqrq7Fo0SKYmpqqt5mZmWHhwoUAgAULFqjvwQGATZs2ISkpCaGhofWu50NERIaVJ6vE+p+uYdSHMTh0+W6D+4qgmmVtmJdD2xRHRNSBiQRB0HWPY6f1448/Yu3aternCQkJEAQBw4cPV7etWLECkydPxu3bt+Hl5QVra2sMHToUbm5uyMvLQ2JiIgoKCmBnZ4cjR45oXF2ptW/fPsycOROCICAsLAyOjo44duwYiouLsXTpUmzcuFGrT0pKCoKCglBQUIB+/fohICAAv/32G9LS0jBy5EjExMTA3Nxco49cLkdYWBji4+Ph5uaGkJAQZGRkID4+Hs7OzoiLi4O3t3ez3qOSkhJIJBJIpVLen0NE1ApyS+T4/FQavo3PgLxaCQAI7G6LUb5O+PxkGgBoTEBQu0LOttmDERHo1rbFEhG1E835jtrlQs7OnTvVs6LVZ8eOHXjhhRcgk8nw/vvvIy4uDqmpqcjPz4exsTG8vLwQERGBN954A927d6/3OLGxsVi3bh3i4uJQVVWFgIAALFy4EHPmzKm3T2ZmJlauXImoqCgUFhbC09MTs2bNwrvvvqsxvK2uiooKrF+/Hrt370ZmZiYcHBwQERGBtWvX1rtQaEMYcoiIWsc9qRyfnbyFPQl3UFmjCjcDPCRYPM4PY3q7QCQSNbhODgMOEXVl7SbkSKVSpKenIycnB6WlpaiqqoK5uTmsra3h7u4Ob29vjSmXqX1gyCEi0q/s4gp8duIW/vdbJqoUqnAzyNMOi8f6IdTfGSKRSGN/hVJAQnohcmVyuNiohqgZG4l0HZqIqMtozndUvS4GKggCfvzxRxw8eBDHjx/H7du3G9xfJBLB29sbY8aMwfTp0xEREaHPcoiIiAwqs7Ac/zpxC3svZKJaofo3xaG97LF4rD+CfR21wk0tYyMRgnwc27JUIqJORW9Xcv79739jzZo16oUkm3PY2g/5Xr16YfXq1Zg9e7Y+SqIW4pUcIqKHk1FQhn8dv4V9iVmoUar+Phzh7YDFY/0xwtuh3nBDRET1a9Phavfv38esWbNw8uRJjWDTnA/wB/uNHz8eu3btgpOT08OURi3EkENE1DLp+WX4NCYVBy9lQ/FHuBnl64TXw30x3JtXZoiIHkabDVfLysrCmDFjkJaWBkEQNIJNS67k1PY7evQoRo8ejZiYGLi6uj5MiURERK0uNbcUW4+n4tClbPyRbRDq74xFY30xpCenfCYiamstDjlyuRxTp07FrVu3IBKJ1EFFEAS4uLhg8uTJGD58OIYMGQInJyfY2dnB2toaMpkMUqkUubm5uHDhAhISEvDjjz8iLy9PfRxBEHD9+nVMnz4dp06d0lgbhoiIqC01NAnAzfsyfBKTiiNJd1H7b3tjH3HB62P9MLCHneGKJiLq4lo8XO29997D//3f/2mEGy8vL0RGRuLZZ5+FmZlZk49VVVWF3bt3Y+3atUhPT1cHHZFIhMjISKxcubIlJVILcbgaEZFKfdM5vzjKC4l3ivDT7/fU7eMDumFRuB/6eUgMUSoRUafX6vfk3Lt3D15eXqiqqlKHkalTp2LHjh2QSFr+4S6VSvHCCy/g0KFD6qBjYWGBjIwM3p/ThhhyiIhUAWf+rkQ09pfkxEBXLAz3RV93hhsiotbUnO+oRi05wdatW1FZWQlAdT/N2LFjsX///ocKOAAgkUiwf/9+hIeHq+/pkcvl+Ne//vVQxyUiImoOhVLA6sNXGww4YlMj/LQoBNtmD2HAISJqZ1oUcr799lv1lRYnJyfs2bNHbwWJRCL897//hZOTk/ocu3bt0tvxiYiIGpOQXqgxRE0XebUS0orqNqqIiIiao9kh58qVK+pFPkUiEebPnw9HR/1Oi+nk5IT58+err+bcunUL169f1+s5iIiI6hOfVtCk/XJlDQchIiIyjGaHnNOnTwNQTTRgbGyMBQsW6L0oAFiwYAGMjY3VExucOnWqVc5DRERUKy6tAM9tj8M/o1OatL+LjbiVKyIiopZo9hTSSUlJAFRXcQIDA+Hs7Kz3ogDAxcUF/fr1w6VLlyASiXD58uVWOQ8REXVtgiDg3K0C/DM6BQnphQAAEyPA1MQYFVUKnX1EAFwlqumkiYio/Wl2yKk7bGzEiBF6LeZBI0aMwKVLlwAAN27caNVzERFR1yIIAk6n5GNLdArOZxQBAMyMjTBzqAdeDfVBcrYU83clqvat0692+erIKQHq9XKIiKh9aXbIycnJUf8cEBCg12IeVPf42dnZrXouIiLqGgRBwIkbedgcnYJLmcUAADMTIzw3zBN/DfWGm8QCAOBhb4ltswdrrZPjKhEjckoAIgLdDFE+ERE1QbNDTm5urvpnOzs7fdaipfb4giAgLy+vVc9FRESdmyAIOHYtF1uiU/B7thQAYG5ihP83vCdeDfWGi632/TURgW4YH+CKhPRC5MrkcLFRDVHjFRwiovat2SGnoqJC/XNbhRwAKC8vb9VzERFR56RUCvj16n1siU7B1ZwSAICFqTH+EtQTL4V4NTp5gLGRCEE++p1FlIiIWlezQ05lZaV6xjNLS0u9F1SXhYWF+ueqqqpWPRcREXUuSqWAn5Pv4ZOYFFy/JwMAWJkZ4/mRvfDSKC84WpsbuEIiImotzQ45giCoQ05bql0zh4iIqCEKpYAff8/BJ9EpSMktBQDYmJvgheBemBfsBXsrMwNXSEREra3ZIYeIiMgQFEqhwXtjahRKHE66i09iUpGWVwYAsBGbYF6wF+YFe0FiaWqo0omIqI0x5BARUbsXlZyjNcuZ2x+znI3t0w0HL2Zj6/FU3C5Q3b8psTDFS6O8MCe4F2zFDDdERF3NQ4UcQwxbIyKiriUqOQfzdyXiwUHL96RyvLorEU7WZsgvVd23aW9pipdHe+MvI3rChuGGiKjLanHIEQQB48aN02ctOolEIt6PQ0TURSmUAlYfvqoVcIA/F+jML62Cg6Up/hrqg9kjesLKnIMUiIi6uof6m6AtwgevFhERdV0J6YUaQ9Tqs+mZgQjr7dIGFRERUUfQ4pDD8EFERK0tV9Z4wAEAaUV1K1dCREQdSYtCDoePERFRayuvqsFvtwubtG9jC3oSEVHX0uyQk56e3hp1EBERAQDKKmvwTVwGtp9KQ0FZwwtBiwC4SlTTSRMREdVqdsjp2bNna9RBRERdnExeja/PZeDL02koKlcNP/N0sESovzN2xWUAgMYEBLWDpiOnBGisl0NERMQpaIiIyKCkFdX4z9nb+OpMuvreml6OllgY7oepA91hamyEYF9HrXVyXP9YJyci0M1QpRMRUTvFkENERAYhLa/Gv2PT8e/YdMjkNQAAb2crLAr3w+P93WBibKTeNyLQDeMDXJGQXohcmRwuNqoharyCQ0REujDkEBFRmyoqq8JXZ9Kx8+xtlFaqwo2fizVeH+uHyf3c6g0uxkYiBPk4tmWpRETUQTHkEBFRmygorcT20+n45txtlFUpAACPuNpg0Vg/RPR1hRGvyhARkZ60esgpLi5GTk4OSktLUVVVBXNzc1hbW8Pd3R22tratfXoiIjKwPFkltp9OwzfnMlBRrQo3fd1tsWisH8b36cZwQ0REeqf3kJOcnIyDBw/i+PHjuHjxIqRSab37Ojg4YNCgQRgzZgymT5+ORx55RN/lEBGRgdwvkePzk2n4Nj4DlTVKAEB/DwkWhfthbB8XLipNREStRiToaWXPmJgYrFy5EufOnVO3NeXQdf+SGz16NNauXYtRo0bpoyRqoZKSEkgkEkilUl5tIyKdFEqh3kkAcqQV+OzELez5LRNVf4SbgT3ssHicH8L8nRluiIioRZrzHdWowa1NUF5ejjlz5mD8+PE4d+4cBEFQhxuRSNToA4C6z8mTJxEaGopXXnkFcrm8odO22IULF/DBBx9gxowZ8PDw0KijITt37sSwYcNgbW0NBwcHTJo0CWfPnm2wT2xsLCZNmgQHBwdYW1tj2LBh+Prrrxvsk5WVhblz58Ld3R1isRj+/v6IjIxs8P2oqKjAypUr4e/vD7FYDHd3d8ybNw/Z2dmNvi4iouaKSs7BqA9jMGt7HBb/9xJmbY/DqA9j8G18Bt47+DtCPzqB/5zLQFWNEo/2tMc3Lw7DgddGYkxvXr0hIqK28VBXcoqLizFx4kQkJCRoBBugaVdx1EU80EckEiE4OBg//fQTrK2tW1qeTtOmTcOhQ4e02huqd8mSJdi8eTMsLCwwYcIEyOVyREdHQxAE7N27F9OmTdPqs2/fPjzzzDNQKpUYPXo0nJycEB0djeLiYixbtgwbNmzQ6pOamoqgoCDk5+cjMDAQAQEBOH/+PNLS0hAcHIzo6GiYm5tr9JHL5RgzZgzi4uLg5uaGkJAQ3L59GwkJCXB2dkZcXBy8vb2b9R7xSg4R1ScqOQfzdyWisU/44V4OWDzWD0E+jgw2RESkF835jtrikKNUKhEREYFjx46pDlQnqJiZmSE4OBjDhw/HkCFD4OTkBDs7O1hbW0Mmk0EqlSI3NxcXLlxAQkICYmNjUV1drXEMkUiESZMm4fDhwy0pr14ffvghysrKMHToUAwdOhS9evVCZWVlvSHn2LFjGD9+PBwdHXHu3Dn4+fkBAM6dO4ewsDBYWloiPT0ddnZ26j6FhYXw8vJCSUkJ9u3bhxkzZgAA7t+/j1GjRiE1NRXHjx9HWFiYxrlGjRqF2NhYLFq0CJs3bwYA1NTUYObMmThw4AAiIyOxatUqjT7vvfce3n//fQQFBeHXX39Vh8JNmzZh2bJlCA0NxYkTJ5r1HjHkEJEuCqWAUR/GaCzI+SAzEyPsfGEoRvo6tWFlRETUFbRJyPnHP/6BZcuWaQQTe3t7LF68GK+++ipcXFyafKz79+9j27Zt2LJlC4qLiyESidRB59NPP8X8+fNbUmKTiMXiBkPOpEmT8PPPP+Mf//gHlixZorFt8eLF2LJlCzZs2IBly5ap2z/66CMsX74cU6dOxcGDBzX6HDhwADNmzMDjjz+uEeASEhIwfPhwuLi44M6dOxpXbO7fv48ePXrA2toaubm5MDFRzRdRVVUFFxcXSKVSJCYmYtCgQRrnGjBgAJKSknD+/HkMGTKkye8JQw4R6XLuVgFmbY9rdL89L4/gejZERKR3rX5PjlQqxapVqzQCzrBhw3Dx4kWsXLmyWQEHALp164ZVq1bh4sWLGDp0qDrgCIKA9957D6WlpS0p86FVVFQgJiYGAPDUU09pba9te/Bq048//lhvn8mTJ0MsFuPYsWMa99nU9pkyZYrWkLRu3bohJCQERUVFOHPmjLo9NjYWUqkUPj4+WgGnofqIiFoiKau4SfvlylrnnkoiIqKmalHI+fzzzyGTydTPBw0ahFOnTsHT0/OhiunZsydOnTqFgQMHqtuKi4uxffv2hzpuS924cQOVlZVwdnaGh4eH1vbBgwcDAJKSkjTaL1++rLG9LjMzMwQGBkIul+PmzZtN6lPfuVrSh4ioua7fK8GC3YlY//P1Ju3vYiNu5YqIiIga1qKQ880336ivtFhbW2Pfvn0wMzPTS0Hm5ubYu3cvrKys1Of4z3/+o5djN9edO3cAQGfAAQArKyvY2dmhqKhIHfpKSkrUawPV16+2PSMjo8nn0lcfIqKmunq3BPN3XUDEP0/jx6QcAIC5Sf1/bYgAuElU00kTEREZUrNDTlpaGq5cuQJANdnAiy++iF69eum1KG9vb7z44ovq+2R+//133L59W6/naIraYXKWlpb17mNlZQUA6pBTd2hdff0e7NOUc+mrjy6VlZUoKSnReBBR1/V7lhQvf30ek7acxs/J9yASAZP7ueHnxSHY/OxAiKAKNHXVPo+cEqBeL4eIiMhQmh1yTp48CeDPGdAWLVqk96IA1U39ddewOXXqVKuch4D169dDIpGoHz169DB0SURkAJcyizFv52+Y8ukZHL16HyIR8MQAd/yyZDS2/r/B6ONmi4hAN2ybPRiuEs0haa4SMbbNHoyIQDcDVU9ERPQnk+Z2uHTpEgDVVZzevXvr/SpOrV69euGRRx7BtWvXIBKJkJiYiOeff75VzlWf2umYy8vL692nrKwMAGBjY6PRp7afrpkfHuzTlHPpq48u77zzDpYuXap+XlJSwqBD1IVcyCjClugUnLyZBwAwEgHTBnbHa2N84euivVZZRKAbxge4IiG9ELkyOVxsVEPUeAWHiIjai2aHnOvX/7zxdMSIEXot5kEjRozAtWvXtM7bVmonUsjKytK5vaysDMXFxbC3t1cHCVtbW/XUdllZWQgICNDqV3u8nj17apzr4sWL9Z6rvj4N1aerjy7m5uZaM7oRUeeXkF6ILdEpOJOaDwAwNhJh+qDuWDDGF15OVg32NTYScZpoIiJqt5o9XC07O1v9c//+/fVazIPqHr++L/KtqXfv3jA3N0deXp7G666VmJgIQPt9GDBggMb2uqqrq5GcnAyxWAx/f/8m9anvXC3pQ0RdmyAIOHsrH89+cQ4zPz+HM6n5MDES4dmhPXB8WRg2PD2g0YBDRETU3jU75OTm5qp/tre312sxD6o9viAIGudtKxYWFggPDwcAfP/991rb9+7dC0C1tk1dkydP1the15EjRyCXyzFu3DiIxWKtPocPH0ZlZaVGn/v37+P06dOwt7dHcHCwuj04OBgSiQS3bt1SDyNsSn1E1PUIgoAzKfl45vM4PLc9HnFphTA1FuG54Z448bcwfPBkf3g61j/JChERUUfS7JBTe58HANjZ2emzFi11j1/3vG2p9l6VdevWISUlRd1+7tw5fP7557Czs8OLL76o0eell16Cra0tDh06hP3796vbc3Nz8dZbbwEAli1bptFn2LBhCA4ORm5uLpYvX65ur6mpwWuvvYbq6mosWrQIpqam6m1mZmZYuHAhAGDBggUa79GmTZuQlJSE0NBQDBky5GHfBiLqoARBwIkbuXhy21nM/ioeCbcLYWZshOeDeuLk38bg/6b3g4c9ww0REXUuIqF2nuYmMjExUU/tfPToUfWVjtYQHR2N8ePHAwCMjY1RXV390Mf88ccfsXbtWvXzhIQECIKA4cOHq9tWrFihvrICAEuWLMHmzZthaWmJ8ePHo6qqCkePHoUgCNi7dy+mTZumdZ59+/Zh5syZEAQBYWFhcHR0xLFjx1BcXIylS5di48aNWn1SUlIQFBSEgoIC9OvXDwEBAfjtt9+QlpaGkSNHIiYmRuveGblcjrCwMMTHx8PNzQ0hISHIyMhAfHw8nJ2dERcXB29v72a9RyUlJer7inRNnEBE7YdCKeicAEAQBBy/kYvN0am4nFkMQLXGzXPDPfHX0T5as6MRERG1d835jtrsiQeUSqV6Wue2pFQq9XKcvLw8xMfHa7XXbcvLy9PY9s9//hMDBw7Ep59+iqNHj8LMzAzjxo3DihUrMHLkSJ3nefLJJ3Hq1CmsW7cOcXFxqKqqQkBAABYuXIg5c+bo7OPn54eLFy9i5cqViIqKwoEDB+Dp6YkVK1bg3Xff1Tk5gFgsxvHjx7F+/Xrs3r0bBw8ehIODA1544QWsXbu23oVCiajji0rOwerDV5EjlavbXCViTBvojjOp+UjOVq15JTY1wuzhPfFKqDdcbBhuiIio82v2lRwjIyN1yGnLKzkikQgKhaLVzkV/4pUcovYvKjkH83cloqEPcEszY/wlqCdeDvGGkzVnUCQioo6tVa/kEBGRYSmUAlYfvtpgwLE2N8bxN8fA2YbhhoiIup5mTzxARESGlZBeqDFETZfSSgVSc0vbqCIiIqL25aGu5MyePVtjGmR9k8sb/kuciKirqVEocSTpbpP2zZXxM5SIiLqmFoccQRBw7949fdaik0gkQjNvGyIi6nSqFUocuJiNrcdTkVFQ3qQ+nGSAiIi6qhaHHEPMsEZE1NVU1SixLzELW4+nIquoAgBgb2mKGoWA0soanffliKCaZW2Yl0Ob1kpERNRetCjk8MoKEVHrqqxR4LvzWdh2PBV3/7j/xsnaHH8d7Y3/N8ITp27mYf6uRIgAjaBT+89PkVMCYGzEf4wiIqKuqdkh5/jx461RBxERAZBXK/C/3zKx7cQt3CtRhRsXG3O8GuqDWcM8YWFmDACICHTDttmDda6TEzklABGBbgapn4iIqD1o9jo51PlxnRyitldRpcDuhDv4/OQt5MoqAQBuEjHmh/lg5qM9IDY11tlPoRSQkF6IXJkcLjaqIWq8gkNERJ0R18khIuogyqtqsCsuA1+cSkN+aRUAoLudBeaH+eDpRz1gbqI73NQyNhIhyMexLUolIiLqMBhyiIgMoLSyBl+fu40vT6ejsEwVbno4WGBBmC9mDPaAmQmXMSMiImophhwiojZUIq/G12dv48sz6SgurwYA9HS0xMIxvpg2qDtMjRluiIiIHhZDDhGRnjR0f4y0oho7YtPx7zPpKJHXAAC8naywMNwXTwxwhwnDDRERkd4w5BAR6UFUco7WTGduEjHenOCPjIJy7Ii9DVmlKtz4uljj9XBfPN7fnZMEEBERtQKDhpy4uDjExsYiMzMTlZWVcHFxgb+/PyZOnAgHBy5iR0QdQ1RyDubvStRamDNHKsey75PUz3t3s8GisX6YGOgKI4YbIiKiVqOXkHP//n0kJycjLy8PFhYW8PX1Rd++fevd/6effsKbb76JGzdu6NxuZGSEOXPm4P/+7//g4uKijxKJiFqFQilg9eGrWgGnLhMjEbY8OxARgW4MN0RERG3goULOhQsX8Oabb+L06dN4cLkdd3d3/O1vf8Prr78OkejPv9RXr16NNWvWAIBWn1oKhQI7duzA0aNHcezYMfj5+T1MmURErSYhvVBjiJouNUoB9lbmDDhERERtpMV3uu7atQsjRozAqVOnoFQqIQiCxiM7OxtvvPEGnnvuOXWfHTt2YPXq1epwIxKJNAJQ7XORSARBEJCZmYnx48dDJpM9xEskImo9Kfeb9vmUK2s4CBEREZH+tCjkxMXFYe7cuVAoFBAEod6wIggCvvvuO/z73/9GSUkJ3njjDY1tgiDAy8sLI0aMwJAhQ+Dk5KRurz1eZmYm3n77bf28WiIiPckursCKg8lYc+Rqk/Z3sRG3ckVERERUq0XD1V577TUoFAp1EBEEARKJBH5+fhCJREhJSUFxcbE6zGzcuBEymQwlJSUQiUQwMjLCW2+9hUWLFqFbt24ax7548SJWrFiBn376Sd1/x44dWLduHezt7R/+FRMRPYTMwnL868Qt7L2QiWqF6qq0mbEIVQrdw29FAFwlqumkiYiIqG00+0pOXFwcLl26pA4gVlZW+Prrr5Gfn4+EhATEx8cjPz8fu3fvhq2tLUQiEa5fv47PP/9cfYxdu3bh/fff1wo4ADBo0CAcOXIEc+fOVQ9rq6ysxHffffcQL5OI6OFkFJRh+d4kjNlwAnsS7qBaISDI2xH/fWUEtswaBBFUgaau2ueRUwI4VTQREVEbanbI2bdvHwCoh5R9//33mD17NoyNjf88qJERnn32Wezdu1cdVG7cuAGRSITJkyfjmWeeafQ8n3zyCezt7dVXi2JjY5tbKhHRQ0vPL8Oy7y4jfONJ/O98JmqUAkL8nPDdX4Ow55URGOHtiIhAN2ybPRiuEs0haa4SMbbNHoyIQDcDVU9ERNQ1NXu4WmJiIgDVfTcjR47EY489Vu++Y8eOxejRo3Hq1Cl1n+eff75J57G0tMSTTz6JL7/8EiKRCJcuXWpuqURELZaaW4qtx1Nx6FI2lH+MRAvr7YzXw/0wpKf20NmIQDeMD3BFQnohcmVyuNiohqjxCg4REVHba3bISUlJUf88ceLERvd/7LHH1CEHAB599NEmn2vYsGH48ssvIQgCcnNzm1coEVEL3LwvwycxqTiSdBe1s9yP6+OC18P9MKCHXYN9jY1ECPJxbP0iiYiIqEHNDjlSqVT9c+/evRvd39/fX+O5rvtw6lN337rnJSLSt2s5JfgkJgU//X5P3TYhoBsWjfVDYHeJASsjIiKi5mp2yCktLVXfJ2Nra9vo/g/uY2Fh0eRzWVpaqn+uqqpqcj8ioqZKzpZiS3QKfr16X902qZ8rFo7xQ4B7459xRERE1P40O+TUXcOm7mQD9TEyavF6o0REreZyZjE+iUnBsWuqobAiEfB4f3csHOOL3q42Bq6OiIiIHkaL1skhImrPFEqh3gkAEu8UYUt0Ck7cyAMAGImAJwa4Y2G4L3xdGG6IiIg6A4YcIupUopJzsPrwVeRI5eo2N4kY/2+4J+LTC3E6JR+AapKAaQO7Y8EYH3g7WxuqXCIiImoFDDlE1GlEJedg/q5ECA+050jl2PDrTQCAiZEITw72wGtjfNDT0artiyQiIqJWx5BDRJ2CQilg9eGrWgGnLkszY/y0KAS9nBhuiIiIOrOHCjmXL1+GiUnDh7h8+bLG89OnT0MQGvoaUn9fIqL6JKQXagxR06W8SoEcqZwhh4iIqJNrccgRBAFvvvlms/uEhYU1q49IJGpyKCKirkkQBJy40bQFg3NlDQchIiIi6vhaHHKaEz5qp5wG0OzAUrcvEVFdgiDg2LVcbIlOwe/ZTVsw2MVG3MpVERERkaE91HC1lgQQhhYielhKpYBfr97DluhUXM0pAQCITYxgbCRCWZVCZx8RAFeJajppIiIi6tyaHXI8PT27XFAJCwvDyZMn693+888/IyIiQqt9586d+Ne//oWrV6/CzMwMI0aMwHvvvYeRI0fWe6zY2Fi8//77iIuLQ1VVFQICArBw4UI8//zz9fbJysrCihUr8Msvv6CwsBCenp6YNWsW3nnnHYjF/Fdr6jyUSgE/J9/DJzEpuH5PBgCwMjPGnJG98OIoL/x2uxDzdyUCgMYEBLWfWJFTAtTr5RAREVHn1eyQc/v27VYoo2N48sknYW2tvZ5G9+7dtdqWLFmCzZs3w8LCAhMmTIBcLsfRo0fx66+/Yu/evZg2bZpWn3379uGZZ56BUqnE6NGj4eTkhOjoaMyZMwdJSUnYsGGDVp/U1FQEBQUhPz8fgYGBCAkJwfnz57FmzRpER0cjOjoa5ubmenn9RIaiUAo4knQXn8akIiW3FABgY26CF4J7YV6wF+ytzAAAEYFu2DZ7sNY6Oa4SMSKnBCAi0M0g9RMREVHbEgm8q79RtVdy0tPT0atXr0b3P3bsGMaPHw9HR0ecO3cOfn5+AIBz584hLCwMlpaWSE9Ph52dnbpPYWEhvLy8UFJSgn379mHGjBkAgPv372PUqFFITU3F8ePHtSZuGDVqFGJjY7Fo0SJs3rwZAFBTU4OZM2fiwIEDiIyMxKpVq5r1ektKSiCRSCCVSmFra9usvkT6VKNQ4ofLd/Hp8VSk5ZUBAGzFJpg3ygtzR3pBYmmqs59CKSAhvRC5MjlcbFRD1HgFh4iIqGNrzndUozaqqUvZtGkTAOC9995TBxwACAoKwquvvori4mJ89dVXGn2+/PJLlJSUYOrUqeqAAwDdunXDRx99BADYuHGjRp+EhATExsbCxcVFvQ8AmJiYYNu2bTA1NcWWLVtQU1Oj99dI1JqqFUp8fz4T4zadxNLvLiMtrwx2lqZ4c4I/zrwdjiXj/OsNOABgbCRCkI8jpg7sjiAfRwYcIiKiLoYhR88qKioQExMDAHjqqae0tte2HT58WKP9xx9/rLfP5MmTIRaLcezYMcjlcq0+U6ZM0RqS1q1bN4SEhKCoqAhnzpx5iFdE1HaqapT4b8IdhG88gb/tTcLtgnI4WJnhrYjeOLM8HAvD/WArrj/cEBEREQEPObtaV/PVV1+hoKAARkZG8Pf3x7Rp0+Dp6amxz40bN1BZWQlnZ2d4eHhoHWPw4MEAgKSkJI322oVPa7fXZWZmhsDAQJw/fx43b95E//79G+1T2x4TE4OkpKRmr09E1JYqaxTYeyEL/zp+C9nFFQAAJ2szvDLaG/9veE9YmfOjioiIiJqO3xyaYd26dRrP33zzTaxYsQIrVqxQt925cwcAdAYcALCysoKdnR2Kioogk8lgY2ODkpISSKXSBvt5eHjg/PnzyMjIUIecxs5V256RkdHUl0ikdw3dHyOvVuC785nYduKWeqIAZxtz/PWPcGNhZmzI0omIiKiDYshpgtGjR+Oll17CyJEj4ebmhszMTOzduxfr1q3DypUrYWtri8WLFwMASktVMz9ZWlrWezwrKysUFxerQ05tn4b6WVlZAQBkMpm6rbFz6eqjS2VlJSorK9XPS0pKGtyfqKmiknO0Zjpzk4jxzsRHkF9ahc9O3kKuTPW7183WHPNDffDsME+ITRluiIiIqOUYcppgzZo1Gs/9/f3x7rvv4tFHH8Vjjz2GVatW4ZVXXoGFhYWBKnw469evx+rVqw1dBnUyUck5mL8rEQ9O35gjlWPRfy+pn7tLxJg/xhdPD/FguCEiIiK94MQDD2HChAl49NFHUVxcjPj4eABQr6NTXl5eb7+yMtVUuDY2Nhp9Gur3YJ+mnEtXH13eeecdSKVS9SMzM7PB/Ykao1AKWH34qlbAqctYBLw/PRAn/jYGfxnRkwGHiIiI9IYh5yHVThGdk5MDAOqJCLKysnTuX1ZWhuLiYtjb26vDh62tLSQSSYP9att79uypbmvsXLr66GJubg5bW1uNB9HDSEgv1BiipotCALydrGFmwo8hIiIi0i9+u3hIRUVFAP68/6V3794wNzdHXl4esrOztfZPTEwEAPXkAbUGDBigsb2u6upqJCcnQywWw9/fv0l9GjoXUWvLKChr0n65soaDEBEREVFLMOQ8hLy8PJw+fRrAn9M4W1hYIDw8HADw/fffa/XZu3cvANXaNnVNnjxZY3tdR44cgVwux7hx4yAWi7X6HD58WGPiAAC4f/8+Tp8+DXt7ewQHB7fo9RE1V3F5FTYdvYnVh680aX8XG3HjOxERERE1E0NOI86ePYuDBw9CoVBotN++fRvTp09HWVkZnnjiCY1pnJcuXQpANeV0SkqKuv3cuXP4/PPPYWdnhxdffFHjeC+99BJsbW1x6NAh7N+/X92em5uLt956CwCwbNkyjT7Dhg1DcHAwcnNzsXz5cnV7TU0NXnvtNVRXV2PRokUwNeXiidS6Csuq8PEv1zHqw+PYEp2CimolTP6YJloXEVSzrA3zcmi7IomIiKjLEAmC0NC9wV3ezp07MXfuXLi6umLw4MGws7NDRkYGLly4ALlcjr59+yImJgYuLi4a/ZYsWYLNmzfD0tIS48ePR1VVFY4ePQpBELB3715MmzZN61z79u3DzJkzIQgCwsLC4OjoiGPHjqG4uBhLly7Fxo0btfqkpKQgKCgIBQUF6NevHwICAvDbb78hLS0NI0eORExMDMzNzZv1mktKSiCRSCCVSnl/DjUov7QSX55Ox9fnbqO8SvUPAY+42mDxWD8IArBgt2rIZN0Pmdros232YEQEurVtwURERNRhNec7KkNOI65du4ZPPvkE8fHxyMzMRFFREaysrNCnTx88/fTTmD9/fr1TR+/cuROffvoprl27BjMzM4wYMQIrVqzAyJEj6z1fbGws1q1bh7i4OFRVVSEgIAALFy7EnDlz6u2TmZmJlStXIioqCoWFhfD09MSsWbPw7rvvagxvayqGHGpMrkyO7afSsCvuDiqqVeGmr7stFo31w/g+3WD0x1Wc+tbJiZwSwIBDREREzcKQQw+FIYfqc79Ejs9O3sLu+DuorFECAPp7SLB4rB/CH3GBSKQ9RE2hFJCQXohcmRwuNqohasYNDGUjIiIi0qU531G5GCgRNSpHWoFtJ27hv79louqPcDPI0w6Lx/oh1N9ZZ7ipZWwkQpCPY1uVSkRERMSQQ0T1yyoqx7YTt/D9+SxUKVTh5tGe9lg8zg+jfJ0aDDdEREREhsKQQ0Ra7hSU418nUrH3QhZqlKoRrcO9HLB4nB+CvB0ZboiIiKhdY8ghIrXb+WXYejwV+y9mQ/FHuAn2dcTr4X4Y4c0hZ0RERNQxMOQQdRENTQBwK68UW2NScfBSNv7INhjt74xF4b54tBfXsiEiIqKOhSGHqAuobyrnl0O8cSmzGIeT7qJ2nsXwR1zwergvBnnaG6haIiIioofDkEPUyUUl52D+rkQ8OFd8jlSONUeuqp+P69MNi8f6oZ+HpG0LJCIiItIzhhyiTkyhFLD68FWtgFOX2MQI//trEAb0sGursoiIiIhalZGhCyCi1pOQXqgxRE0XeY0S5VWKNqqIiIiIqPUx5BB1YnFpBU3aL1fWcBAiIiIi6kg4XI2okxEEAeduFWBLTAri0gqb1MfFRtzKVRERERG1HYYcok5CEAScvJmHT2JScSGjCABgYgSYmhijop7haCIArhLVdNJEREREnQVDDlEHJwgCjl3LxacxKbicJQUAmJkY4dmhPfDXUB/8nlWM+bsSVfvW6Sf647+RUwLU6+UQERERdQYMOUQdlFIpIOrKPXwSk4prOSUAALGpEf7f8J54ZbQ3utmqhqB1t7PAttmDtdbJcZWIETklABGBbgapn4iIiKi1MOQQdTAKpYAjSXfxaUwqUnJLAQBWZsb4S1AvvBTiBSdrc60+EYFuGB/gioT0QuTK5HCxUQ1R4xUcIiIi6owYcog6iGqFEgcvZuNfJ24hPb8MAGAjNsHckb0wN9gL9lZmDfY3NhIhyMexLUolIiIiMiiGHKJ2rrJGgb0XsrDtxC1kFVUAAOwsTfHSKC88P7IXbMWmBq6QiIiIqH1hyCFqp+TVCvw34Q4+P5WmvpfGydoML4d4Y/aInrAy5x9fIiIiIl34LYnIABRKod77Y8qravBt3B18cToNebJKAEA3W3P8dbQPZg3zhIWZsSFLJyIiImr3GHKI2lhUco7WTGduEjHeeqw37krl+OpMOgrLqgCoZkZ7NcwHTw/xgNiU4YaIiIioKRhyiNpQVHIO5u9K1FivBgBypHK88d1l9XNPB0ssGOOD6YM8YGZi1LZFEhEREXVwDDlEbUShFLD68FWtgFOXsZEIH87oh2mDusPEmOGGiIiIqCX4LYqojSSkF2oMUdNFoRTQ3d6SAYeIiIjoIfCbFFEbqKhS4IfL2U3aN1fWcBAiIiIiooZxuBpRK7pxT4bd8RnYfzEbMnlNk/q42IhbuSoiIiKizo0hh0jP5NUK/Jycg2/j7uB8RpG63cNeDGl5DWSVusOOCICrRDWdNBERERG1HEMOkZ7cyivFnvg72JuYheLyagCqiQTG9+mG54Z7YpSvE369eg/zdyUCgMYEBKI//hs5JUC9Xg4RERERtQxDDtFDqKpR4pcr97A7/g7OpRWo290lYswa5omZQ3ugm+2fw88iAt2wbfZgrXVyXCViRE4JQESgW5vWT0RERNQZMeQQtcCdgnLsTriDvRcykV+qWrjTSASEP+KC54Z7ItTfpd4rMhGBbhgf4IqE9ELkyuRwsVENUeMVHCIiIiL9YMghaqJqhRLR1+7j2/g7OJ2Sr27vZmuOZ4Z64pmhPdDdzqJJxzI2EiHIx7G1SiUiIiLq0hhyqEtTKIVGr6hkF1fgvwl38L/fMpErqwQAiERAiJ8z/t9wT4x9xIXr2hARERG1Iww51GVFJedo3Rvj9se9MeMDXHH8ei52J9zBiRu5UP4xS4CTtRlmPtoDs4Z5ooeDpYEqJyIiIqKGMORQlxSVnIP5uxI1ZjgDgBypHK/uSoS9pSmK/pghDQCCfR3x3LCeGB/QDWYmvGpDRERE1J4x5FCXo1AKWH34qlbAqauovBp2FiaYOdQTs4Z5wsvJqs3qIyIiIqKHw3+S7iQqKiqwcuVK+Pv7QywWw93dHfPmzUN2drahS2tXBEFAVPI9jSFq9dk8axDendSHAYeIiIiog+GVnE5ALpcjPDwccXFxcHNzw9SpU3H79m3s2LEDR44cQVxcHLy9vQ1dpkHkyuT4PUuK37Ol+D1LiqRsKfL+mDygMcV1hqsRERERUcfBkNMJrFu3DnFxcQgKCsKvv/4Ka2trAMCmTZuwbNkyzJs3DydOnDBskU3QlJnOGlJQWqkRZn7PkuJeifYVGyMR1BMJNMTFRtz4TkRERETU7ogEQWjC1z1qr6qqquDi4gKpVIrExEQMGjRIY/uAAQOQlJSE8+fPY8iQIU06ZklJCSQSCaRSKWxtbVujbC0NzXQWEeimtX9xeRV+z5YiKUuqvlKTXVyhtZ+RCPB1sUa/7nbo190W/Tzs0LubDcb/4yTuSeU678sRAXCViHFmeTgX6CQiIiJqJ5rzHZVXcjq42NhYSKVS+Pj4aAUcAHjqqaeQlJSEw4cPNznktLX6Zjq7J5Vj/q5EbJg5AG62YvXVmaTsYmQWagcaAPB2tkL/7hL087BDfw8JAtxsYWWu/WseOSUA83clQgRonFdUZzsDDhEREVHHxJDTwV2+fBkAMHjwYJ3ba9uTkpLarKbmaGims9q2Zd9d1tm3l6OlKsx0l6CfhwR93W1hIzZt0nkjAt2wbfZgratHrg1cPSIiIiKijoEhp4O7c+cOAMDDw0Pn9tr2jIyMNqupORLSC5s005mzjRmG9XJEYHcJ+ntIEOgugcSyaYGmPhGBbhgf4PpQ9wERERERUfvDkNPBlZaWAgAsLS11breyUk1/LJPJ6j1GZWUlKiv/nHGspKREjxU2LFfWeMABgPcmB2DqwO56P7+xkQhBPo56Py4RERERGQ7XySGsX78eEolE/ejRo0ebnbupM5hxpjMiIiIiaiqGnA6udrro8vJyndvLysoAADY2NvUe45133oFUKlU/MjMz9V9oPYZ5OcBNIkZ9A8REUM2yNszLoc1qIiIiIqKOjSGng/P09AQAZGVl6dxe296zZ896j2Fubg5bW1uNR1sxNhIhckoAAGgFHc50RkREREQtwZDTwQ0YMAAAkJiYqHN7bXv//v3brKbmqp3pzFWiOSTNVSLGttmDOdMZERERETULFwPt4OouBnrx4kUMHDhQY3tHWQwUUE0nzZnOiIiIiEiX5nxH5ZWcDs7MzAwLFy4EACxYsEB9Dw4AbNq0CUlJSQgNDW23C4HWVTvT2dSB3RHk48iAQ0REREQtwis5nYBcLkdYWBji4+Ph5uaGkJAQZGRkID4+Hs7OzoiLi4O3t3eTj2eoKzlERERERPXhlZwuRiwW4/jx41ixYgUsLS1x8OBBZGRk4IUXXkBiYmKzAg4RERERUUfHKzmkhVdyiIiIiKi94ZUcIiIiIiLqshhyiIiIiIioU2HIISIiIiKiToUhh4iIiIiIOhUTQxdA7U/tXBQlJSUGroSIiIiISKX2u2lT5k1jyCEtMpkMANCjRw8DV0JEREREpEkmk0EikTS4D6eQJi1KpRI3btxAQEAAMjMzOY00PbSSkhL06NGDv0/00Pi7RPrE3yfSF/4utQ1BECCTyeDu7g4jo4bvuuGVHNJiZGSE7t27AwBsbW35h5X0hr9PpC/8XSJ94u8T6Qt/l1pfY1dwanHiASIiIiIi6lQYcoiIiIiIqFNhyCGdzM3NERkZCXNzc0OXQp0Af59IX/i7RPrE3yfSF/4utT+ceICIiIiIiDoVXskhIiIiIqJOhSGHiIiIiIg6FYYc0lBRUYGVK1fC398fYrEY7u7umDdvHrKzsw1dGnUwYWFhEIlE9T6ioqIMXSK1IxcuXMAHH3yAGTNmwMPDQ/170pidO3di2LBhsLa2hoODAyZNmoSzZ8+2QcXUnjX392nVqlUNfl69/fbbbVg9tRfl5eU4ePAgXnzxRfTu3RtisRhWVlYYMGAA1qxZg9LS0nr78rPJ8LhODqnJ5XKEh4cjLi4Obm5umDp1Km7fvo0dO3bgyJEjiIuLg7e3t6HLpA7mySefhLW1tVZ77VpMRACwdu1aHDp0qFl9lixZgs2bN8PCwgITJkyAXC7H0aNH8euvv2Lv3r2YNm1a6xRL7V5Lfp8AIDg4GL6+vlrtQ4YM0UdZ1MHs3r0bL7/8MgCgT58+eOKJJ1BSUoKzZ88iMjISe/bswcmTJ+Hi4qLRj59N7YRA9Ie///3vAgAhKChIkMlk6vaNGzcKAITQ0FDDFUcdTmhoqABASE9PN3Qp1AF88MEHwooVK4QffvhByMnJEczNzYWG/oo6evSoAEBwdHQUbt68qW4/e/asYGZmJtjZ2QlFRUVtUDm1R839fYqMjBQACDt27Gi7Iqnd27lzp/DKK68IV69e1Wi/e/euMGjQIAGAMGvWLI1t/GxqPxhySBAEQaisrBQkEokAQEhMTNTa3r9/fwGAcP78eQNURx0RQw49jMa+lE6cOFEAIPzjH//Q2rZo0SIBgLBhw4ZWrJA6EoYc0rezZ88KAARzc3OhsrJS3c7PpvaD9+QQACA2NhZSqRQ+Pj4YNGiQ1vannnoKAHD48OG2Lo2ISENFRQViYmIA/PnZVBc/r4iotQ0YMAAAUFlZiYKCAgD8bGpveE8OAQAuX74MABg8eLDO7bXtSUlJbVYTdQ5fffUVCgoKYGRkBH9/f0ybNg2enp6GLos6sBs3bqCyshLOzs7w8PDQ2s7PK2qpmJgYXLp0CXK5HB4eHpg4cSLvxyGd0tLSAACmpqZwcHAAwM+m9oYhhwAAd+7cAQCdfyjrtmdkZLRZTdQ5rFu3TuP5m2++iRUrVmDFihUGqog6usY+r6ysrGBnZ4eioiLIZDLY2Ni0ZXnUgX3zzTcaz1esWIEnn3wSO3fu1DmBCnVdmzdvBgBERETA3NwcAD+b2hsOVyMAUE+DaGlpqXO7lZUVAEAmk7VZTdSxjR49Gt988w1u3bqF8vJy3LhxA++//z5MTEywcuVK9V8QRM3V2OcVwM8sah5fX19s2LABV65cQWlpKTIzM/Htt9+ie/fu2LdvH/7yl78YukRqR3766Sd89dVXMDU1xdq1a9Xt/GxqX3glh4haxZo1azSe+/v7491338Wjjz6Kxx57DKtWrcIrr7wCCwsLA1VIRKQye/ZsjedWVlZ47rnnMGbMGPTr1w8HDx5EXFwcRowYYaAKqb24fv06Zs+eDUEQ8PHHH6vvzaH2h1dyCADUl+HLy8t1bi8rKwMAXlqlhzZhwgQ8+uijKC4uRnx8vKHLoQ6osc8rgJ9ZpB9ubm6YO3cuAHABY0J2djYiIiJQVFSEpUuXYvHixRrb+dnUvjDkEACobwTPysrSub22vWfPnm1WE3Vefn5+AICcnBwDV0IdUWOfV2VlZSguLoa9vT2/SNBD4+cVAUBhYSEmTJiAjIwMzJ07Fxs2bNDah59N7QtDDgH4cyrExMREndtr2/v3799mNVHnVVRUBODPsclEzdG7d2+Ym5sjLy8P2dnZWtv5eUX6xM8rKi0txcSJE3H16lXMmDED27dvh0gk0tqPn03tC0MOAQCCg4MhkUhw69YtXLp0SWv73r17AQBTpkxp48qos8nLy8Pp06cB1D9lOVFDLCwsEB4eDgD4/vvvtbbz84r0RRAEHDhwAAA/r7qqyspKTJ06FQkJCXjsscewZ88eGBsb69yXn03tjKFXI6X24+9//7sAQBg5cqRQWlqqbt+4caMAQAgNDTVccdShxMbGCgcOHBBqamo02tPT04Xg4GABgPDEE08YqDrqCBpbof7o0aMCAMHR0VG4efOmuv3s2bOCubm5YGdnJxQVFbVBpdQRNPT7lJubK3z66adCSUmJRrtMJhP++te/CgAEV1dXoaysrC1KpXakpqZGmD59ugBACAkJadLvAD+b2g+RIAiCwRIWtStyuRxhYWGIj4+Hm5sbQkJCkJGRgfj4eDg7OyMuLg7e3t6GLpM6gJ07d2Lu3LlwdXXF4MGDYWdnh4yMDFy4cAFyuRx9+/ZFTEwMXFxcDF0qtRM//vijxlSsCQkJEAQBw4cPV7etWLECkydPVj9fsmQJNm/eDEtLS4wfPx5VVVU4evQoBEHA3r17MW3atLZ8CdSONOf36fbt2/Dy8oK1tTWGDh0KNzc35OXlITExEQUFBbCzs8ORI0cQHBxsiJdCBrR582YsWbIEADB9+nTY2trq3G/Dhg1wcnJSP+dnUzthyIRF7U95ebmwYsUKwcfHRzAzMxNcXV2FF154QcjMzDR0adSBXL16VZg/f74wePBgwdnZWTAxMREkEokwYsQIYePGjUJ5ebmhS6R2ZseOHQKABh87duzQ2W/IkCGCpaWlYGdnJ0RERAixsbFt/wKoXWnO71NJSYmwfPlyITQ0VOjevbtgbm4uWFpaCn379hWWLVsmZGVlGfbFkMFERkY2+nsEQEhPT9fqy88mw+OVHCIiIiIi6lQ48QAREREREXUqDDlERERERNSpMOQQEREREVGnwpBDRERERESdCkMOERERERF1Kgw5RERERETUqTDkEBERERFRp8KQQ0REREREnQpDDhERERERdSoMOURERERE1Kkw5BARkcGdOHECIpFI/Vi1apWhS6JmuHfvHiIjIzFq1Ci4uLjA1NRU4//niRMnDF1is4WFhWm8BiLqWEwMXQARERF1XP/73/8wd+5cVFRUGLoUIiI1Xskhoi6vV69eGv9iKxKJ4OPjg+rq6oc+VnFxsf4LJmonzpw5g+eee67VA87t27e1/ozW9zAxMYG9vT18fHwwdepUvP/++7h161ar1kdE7Q9DDhGRDmlpafj3v/9t6DKI2rWlS5dCqVSqn4eEhGD79u34+eefcfToUfVjwIABbVaTQqFAcXEx0tLS8MMPP+C9996Dr68vnnzySWRlZbXKOTnckqj94XA1IqJ6rF27FnPmzIFYLDZ0KUTtzvXr1/Hbb7+pn4eFhSE6OhpGRu3z30/379+PU6dOITo6Gv379zd0OUTUyhhyiIjqkZ2djW3btuGNN94wdClE7c65c+c0nr/88sttGnCOHj2qs72qqgqFhYVISkrC/v37NYaq5efnY+LEibh+/TpsbGwaPH5HnCyBiP7EkENE1ID169fj5ZdfhrW1taFLIWpXbt68qfG8b9++bXr+cePGNbrP+vXr8eGHH+Lvf/+7uu3u3bvYsGEDVq9e3ZrlEZGBtc9rykREBjRy5Ej1z3l5efjnP/9puGKI2qkHJ9WwtbU1TCENMDY2xrvvvot58+ZptH/33XcGqoiI2gpDDhHRA9atW6exLsaGDRtQVFRkwIqI2h+5XK7xvD2vJfPqq69qPL9x4waqqqoMVA0RtQUOVyMiesCgQYPw5JNPYu/evQAAqVSKjz/+GP/3f/9n4MpaT0FBAc6ePYvs7GwUFhbCyckJw4YNw8CBAxvtm5qairi4ONy9excikQju7u4ICwtD9+7d9VZfTU0N4uLikJycjMLCQtja2qJHjx4ICwuDRCLRyzmKi4tx9uxZ5OTkIC8vD2KxGM7Ozhg0aBACAgL0co66kpOTce3aNeTk5KC0tBTdunXD888/D1NTU72fS6lUIiEhASkpKcjNzYVCoYCLiwu8vLwwcuTIFp1TEAS919laHvz/JwgC8vPz4e7ubqCKGlZdXY3ff/8dycnJKCgoQFlZGczNzWFjY4OePXvC398fPj4+hi6TqH0TiIi6uJ49ewoA1I+ioiLh6tWrgrGxsbrNyspKuHfvXouOVZ8dO3Zo7Ltjx45m1V23b2hoaIP7hoaGauxf69q1a8LTTz8tmJmZaWyvfQwaNEg4e/aszmPGxMQII0aM0NlPJBIJTzzxhJCRkdGk13L8+HGN/pGRkYIgCEJVVZXwwQcfCM7OzjrPY25uLjz77LNCVlZWk86jyw8//CCMHj1aMDEx0XkOAIKnp6ewadMmQS6XP9Trqa6uFrZs2SL07dtX53ka+n1pifv37wsLFiwQHB0d631tNjY2wvPPPy/cvn27Wa+pqY/jx48/9OtIT0/XOm5zlJWVafUvLCxssE99f2bqasn70dB7kpOTIyxYsECwt7dv9BhOTk7CzJkzhaioqGa9F0RdBYerERHp0KdPH8yePVv9vKysrNNdyTl06BAGDx6M77//vt6hOxcvXkRoaCgOHDig0b569WqMHTsWcXFxOvsJgoAffvgBw4cPx40bN1pUX3FxMcaMGYO3334beXl5OveprKzEf//7XwQEBODnn39u1vFzc3MxZswYPPHEEzh16hRqamrq3ffOnTtYunQp+vfv3+KFJYuKijBmzBgsWrQIV65cadExmuO7776Dr68vtm7dioKCgnr3k8lk+Prrr9G7d29s3bq11esyhGvXrmk8d3R0hL29vYGq0e3o0aN45JFHsHXr1iYNj83Pz8d3332HtWvXtkF1RB0PQw4RUT0iIyM1hvF8/vnnyMzMNGBF+hMbG4uZM2eqV6oXi8Xo06cPHn30UTg7O2vsW11djdmzZyMlJQUA8MEHH2DVqlXq4UoSiQT9+/fHwIEDtWahu3fvHmbMmIHq6upm1adUKvH0008jNjZW3ebo6IhBgwahT58+WmsXlZSUYMaMGTh+/HiTjp+SkoIRI0ZoTRMsEonQq1cvPProo+jXr5/W67l58yaCgoK0ZhZrTE1NDZ544gmcOXNG3WZvb4/+/fujf//+ehtyV2v79u2YNWsWZDKZRru1tTX69u2LgQMHws7OTmNbZWUlFi5ciDVr1ui1lvZg+/btGs+bMjNbW7py5QqmTJkCqVSq0W5ubo7evXtj2LBhGDJkCHx9fVtlOCNRp2ToS0lERIbW0BCz1157TWPbSy+91OJjPciQw9V69eolABDc3d2FnTt3CmVlZep9lUql8Msvvwienp4afZ566inhzJkzgpGRkQBAGDp0qHDs2DGhpqZG3Vculwv/+te/BHNzc42+W7ZsabC+B4dC1X0fBw8eLBw/flxQKpXq/WUymfD5558LdnZ2Gv1cXV0bHfJVVlYm9OnTR6Ofl5eX8Pnnn2sNYaqurhZ+/vlnYfDgwRr7Dxw4sMGhaw++nm7duql/HjdunBAbGysoFAqN9/zo0aNNHg7XkAsXLgimpqZaw+2+++47jePX1NQIUVFROofO/fTTT1rHLSwsFI4ePap+TJgwQaPPrl27NLbXPhobFtYULR2uplAohA0bNggikUjdz8jISPjtt98a7duU4Wq1r3HDhg0a+/7lL3/R+V7U955MmjRJ6/fryJEjQmVlpdY5q6qqhMTEROH9998X+vXrJwQHBzfpvSDqahhyiKjLayiY3L17V7CwsFBvMzExEW7evNmiYz3IkCEHgNC7d28hOzu73j43btzQCCvGxsaCn5+fOvBUVVU1+bUNGDCgwfrqu99j0qRJDZ7n5s2bgouLi0af1157rcFzvfrqqxr7T5kyRZDJZA32kcvlwvTp0zX6bdq0qdmvZ8mSJQ2e52EplUqhX79+Wu99Q7+HcrlcCA8P1+jj5uYmlJeXN3iuOXPmaPRJT0/X74upQ1fIqS9A/PTTT8KuXbuEt99+W+jdu7dGH5FIJPzzn/9s0jmbEnJq1XcPVlMUFxdr3A/2yCOPNPre13Xt2rUm70vUlTDkEFGX11gwefPNNzW2z5o1q8XHqsuQIcfU1FS4fPlyo+d4MBAAEHx9fTWu/OiiVCq1vmDevXu33v11hQI3NzehpKSk0RqjoqI0+llYWAjFxcU6971z547GF8r+/fs3+epJWVmZ+goYoLraVPcqVmOvZ+TIkRpXo1rDL7/8onFOS0vLJk3+UFxcLLi6umr0/fLLLxvsY+iQ05yHkZGREBYW1qxJENoq5Fy8eFGj7wcffNDkvkRUP96TQ0TUiLfffhs2Njbq5//73//w+++/G7Cih/f000+jf//+je73xBNPaLW9/fbbsLS0bLCfSCTS6nvx4sVm1fjee+9pvO/1eeyxxxAeHq5+XlFRgT179ujcd+vWrRoTDHz88ccwNzdvUj2WlpZ444031M8zMjJw/vz5JvUFgDVr1rT6WjJffvmlxvM33ngDnp6ejfaTSCRYtWqVRtsXX3yhz9IMKiwsDH/9618REhJi6FK01N4XV4v33BDpB0MOEVEjHB0dsXTpUvVzpVKJFStWGLCih/f00083ab/AwECN5yKRCDNmzGhS3379+mk8v3PnTtOKg+qL3rPPPtvk/efMmaPx/MEJBWr99NNP6p9dXV2bfQP6hAkTNJ6fPn26Sf26deumEcRay6lTpzSez507t8l9Z82aBQsLC/XzCxcuoLy8XG+1/f/27j+mqvKPA/j7AhOBwBtkhkMviBprUwuB/NG8GDqV2PoxYsAY9gOMptXUrZoylstyrSm2tK3YEmdJEUxhyVLsmj/GL9eNuo4ICO8dCgsVEAXrBpfvH83z5ZxzwXPuvcC91/dr44/n8TznfA7o5HOf5/k8U8lgMCAjIwMxMTFjVgScKtKzekpLS1UX6iAiOSY5REQKbNu2DWFhYUK7oqICDQ0NUxiRc5YuXaroutHvDABRUVGKS+9Kx/b39ysLDsDixYsRGhqq+PrExERR297Ppre3F5cuXRLasbGx8PFR99+gdFZEWpp4LHFxcRM+i2M2m/HXX38JbZ1Op+rAyJCQEMTFxQnt4eFhXLx40aUxutLIf0vuZV82mw03b97Eb7/9hs8++0w0Y9nW1ga9Xo8ffvhhCiMX0+l0WLBggdCur6/H+vXrUVNTM4VREXk+JjlERAqEhITgnXfeEfXt3LlziqJxnrRM9Fiky9KUjrM3VrosZzzSGaR7mTt3LkJCQoS2xWIRSlzf9ccff4j6qqqqoNFoVH0FBQWJ7tnT06MovqioKFXv4wiLxSJqK1mOKLVkyRJRW83sm7vQaDQICQnBokWL8Prrr8NoNOLNN98U/txqtSI9PR1Xr16dwijFpEsFDQYDVq5ciaioKOTl5aGkpET28yWi8THJISJSaMuWLQgPDxfap0+fHnNZlLuTnjMz0eMAyJKO8UhngZQYPfNjs9lkM0fjHYjpKOm5JmMZnYBNFOkBkg899JDqe0jHKDmU0t35+vpi//79WLFihdB38+ZNtzoPKDMzE++//75sts9sNuPzzz9HZmYmIiMjERkZiU2bNsFgMKj690R0P2KSQ0SkUEBAAPLz80V9njyb487uVdjAHuksy+3bt0Xtvr4+Z0Kyy2azKbpuMjaTS99X+v1QQjpGepiop9JoNKLZHAD4+uuv3WrvS35+Pmpra5GcnAxfX1+711gsFhQVFSEpKQmLFy9GdXX1JEdJ5Dn8pjoAIiJPkpOTg48//hhmsxkAUFNTgxMnTuCZZ56Z2sC8jCMb3gcGBkTtBx54QNSWJk6rV6/Gjh071Ac3itL9SZNB+r7S74cS0jFKqtt5itEzOcB/79rY2Ij4+PgpikjuySefxIkTJ9DV1YVTp07hp59+wrlz59De3i679tKlS1i3bh327t0rqvpHRP9hkkNEpMK0adPw3nvv4aWXXhL68vPzkZycrHpjuTMb0b2l6tVYrl+/rnrM6P0xPj4+siVi0qVY06dPV11dzZ1JEy5HludJv+/ulMQ56+GHH5b1dXR0uFWSc1d4eDg2btwoVA3s7OyEwWDA8ePHUVlZKcxAjYyMYPv27Vi+fDmWLVs2lSETuR0uVyMiUikrKwsxMTFCu7GxEWVlZarvI93fomZj/rVr11Q/z5OMroKmhMViEe3B0el0siRSuvm/ra3N8QDdkE6nE7V//fVX1feQjpHe05PZW5r2zz//TEEk6s2ePRtZWVkoKytDa2urKDEbGRlBYWHhFEZH5J6Y5BARqeTr6yvbtFxQUIDh4WFV95HONIwu/3sv7lza1xVMJpPiymUAcPbsWVE7ISFBdk1ERATmz58vtFtbW9HR0eF4kG4mMjISs2bNEtoWi8XuMqex3Lp1S3S4qZ+fn6iktKezVynO3uyOI6SlyCeyKIBOp8PRo0dFfRcuXJiw5xF5KiY5REQOSE1NxRNPPCG0m5ubceTIEVX3kH5K/ssvvyge++2336p6lqf5999/8c033yi+/vDhw6K2Xq+3e9369etF7QMHDqgPzo1J37u4uFjx2JKSEtFsYlxcnEMFINzVyZMnZX0LFy50yb2lBRsmejnp/PnzRQmtI8s7ibwdkxwiIgdoNBrs3r1b1Ldr1y5V1ZoeffRR0S+R1dXViiqAXbx4EceOHVP8HE+1e/duRdW9Tp48CYPBILQDAgKQkZFh99qtW7fCz+//21E//fRTGI1G54N1Ezk5OaL2vn37cOXKlXuO6+/vl53Vkpub68rQplRvby/27dsn6lu0aBHmzJnjkvtLD669fPmyS+47FqvVKlqe6U17p4hchUkOEZGDkpOTsXLlSqFtNpvR2dmpeLyvry/WrVsntO/cuYO333573DF//vkn0tLSVC+N80RdXV1IT08fN3Fsa2tDdna2qG/jxo3QarV2r583bx5effVVoX3nzh2kpKSgtrZWVWwGgwGbNm1SNWYyrFmzRnQI6MDAAJ599tlxz/OxWq148cUX0dXVJfSFh4cjMzNzQmOdLGazGRs2bJAle9u3b3fZM3Q6nai63Y8//qj4jKGjR49iz549qs4kOnjwoGjWbenSpcqDJbpPMMkhInLCBx984NR46aflRUVFeOWVV2TJUk9PD/bv34+EhASYzWZER0c79Vx3d3cpX1VVFZYvX46zZ8+K9jkMDAygqKgICQkJ6O7uFvpnzZqFDz/8cNx7FxYWipYadnV1YdWqVXj55ZdRV1eHoaEh2Zjbt2/jwoUL2LlzJ2JiYpCUlIRTp045+5oup9FocOjQIdG5PEajEY8//jjKy8thtVqFfpvNhurqasTFxcne5csvv3Tq4NfJcPr0abtf1dXVOHbsGAoLC/HCCy9g4cKFqK+vF41ds2aNLDl2ho+PD5KSkoR2X18fli1bho8++ggVFRWyGEcnNN3d3dixYwciIiKQmpqKkpISWCwWu89paWnBli1bZAmaN826EbkKS0gTETlBr9dj7dq1Dh/Kt2HDBqSkpOD7778X+g4dOoTi4mIsWLAAWq0WPT09aG9vFw6eDAoKQmlpqVd/epudnY26ujpUV1fj559/RmJiIsLCwqDT6fD333/j8uXLsmp0/v7++Oqrr+65dCcgIACVlZVITk6GyWQCAAwNDaG4uBjFxcUICgrCnDlzMGPGDAwODqK3txdXr171mBPmY2NjcfDgQeTl5Ql/Z8xmM1JTUxEcHIzIyEj4+vrCYrHYnT3YtWuXbO+SO1q7dq1D4/R6PY4fP+5UCXd7tm7disrKSuHvSUtLC95991271545cwaJiYmivsHBQZSXl6O8vBwAoNVq8cgjj0Cr1cJqtaKjo8NuVcX09HQ899xzLn0XIm/AmRwiIic5O5tz+PBh2VkdIyMjaGlpQUNDA9ra2oRfVkNDQ1FVVYXY2FinnunufHx88N133+Gpp54S+m7cuAGj0YimpiZZghMcHIyysjLF595ERESgtrYWWVlZsl92BwYG0NzcjPr6ephMJly5csVugjN37lwH3mxy5ObmoqSkRHaY561bt2AymdDY2ChLcPz9/XHgwAEUFBRMZqiTJiwsDHv37oXBYJAVCnAFvV6PTz75RDSL5oy+vj40Nzejrq4ORqPRboKTm5uruuAJ0f2CSQ4RkZPi4+Od+iQ1NDQUZ86cQX5+vuzU+rv8/PyQlZUFk8mEVatWOfwsTzJjxgwYDAbs2bNHdpDnXdOmTUNaWhqampqQkpKi6v5BQUE4cuQIGhsbkZGRMeY+ntFiYmLw1ltvoaamBufOnVP1vMmWlpaGtrY2bN68WbYxfrTg4GBkZ2ejubkZmzdvnsQIJ05gYCDCw8MRHx+PvLw8lJaWorOzE9u2bZOVe3alN954A7///jsKCgrw9NNPY/bs2QgMDBx31ui1115DRUUFcnJyRCXOx+Lv74/nn38e58+fxxdffCEqpEFE/6cZ8ZT5dyKi+4DVasX58+fR2tqKGzduYPr06YiOjoZer7+vKygNDQ2htrYWJpMJvb29CAkJQUREBFavXq0oOVHCZrPBaDSipaUF169fR39/PwIDA6HVahEdHY3HHnsMM2fOdMmzJtvw8DAaGhrQ2tqK7u5u2Gw2zJw5E/PmzcOKFStcNvtAzrt27RqamprQ3t6Onp4eDA4OIjAwEA8++CBiYmKwZMmSCZmJIvI2THKIiIiIiMircLkaERERERF5FSY5RERERETkVZjkEBERERGRV2GSQ0REREREXoVJDhEREREReRUmOURERERE5FWY5BARERERkVdhkkNERERERF6FSQ4REREREXkVJjlERERERORVmOQQEREREZFXYZJDRERERERehUkOERERERF5FSY5RERERETkVZjkEBERERGRV2GSQ0REREREXuV/CvYBMS1uQZwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "BDD = [84, 670, 1839, 3251, 4677, 6103, 7529, 8955, 10381, 11807, 13233, 14659, 16085, 17511, 18937, 20363, 21789, 23215, 24641, 26067, 27493, 28919]\n", + "\n", + "bits = [i for i in range(1, 23)]\n", + "\n", + "# plt.rcParams[\"figure.figsize\"] = [.50, 4.50]\n", + "\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=30)\n", + "plt.rc('legend', fontsize=10)\n", + "\n", + "fig, ax = plt.subplots()\n", + "fig.set_tight_layout(True)\n", + "ax.plot(bits, BDD, marker=\"o\")\n", + "ax.set_xlabel(\"Number of Bits\")\n", + "ax.set_ylabel(\"BDD size\")\n", + "\n", + "fig.savefig(\"waiting_time_BDD.png\")\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAAGpCAYAAACu6/hzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjrklEQVR4nOzdd3xT9f4/8NdJuvcuu+y995SCDIUvIghcnOBVvIr3XhG9V/GCgHh/DhDF7b0qqIhXQWSDgFJmGQWFshFKy2wL3Xvk8/vj9IQkTdukTXKS5vV8kEczzninnCZ55/N5v48khBAgIiIiIiKqJzRqB0BERERERGRLTHKIiIiIiKheYZJDRERERET1CpMcIiIiIiKqV5jkEBERERFRvcIkh4iIiIiI6hUmOUREREREVK8wySEiIiIionrFQ+0A3JFOp8P169cRGBgISZLUDoeIiIiIyOkJIZCbm4tGjRpBo6l+rIZJjgquX7+Opk2bqh0GEREREZHLuXLlCpo0aVLtMkxyVBAYGAhA/g8KCgpSORoiIiIiIueXk5ODpk2b6j9LV4dJjgqUKWpBQUFMcoiIiIiIrGBJuQcbDxARERERUb3CJIeIiIiIiOoVJjlERERERFSvMMkhIiIiIqJ6hUkOERERERHVK0xyiIiIiIioXmGSQ0RERERE9QrPk0NkSlcOpO8FCm8Avg2ByCGARqt2VERERERkISY5RIaurAWOPgcUXL1zn18ToNcyoOlE9eIiIiIiIotxuhqR4spaYO8k4wQHAAquyfdfWatOXERERERkFY7kEAHyFLWjzwEQZh4UACTg6Cyg8XhOXSMisgGdToeysjLodDq1QyEiB9BoNPD09IQkSQ7ZH5McIkCuwTEdwTEigIIr8nLRsY6Kioio3snOzkZOTg4KCgqY4BC5GU9PTwQGBiIiIgJarX2/NGaSQwTITQZsuRwRERkRQiA1NRWZmZnw8/NDREQEfHx8oNFoHPbNLhGpQwiB8vJy5OXlISsrC4WFhWjatKldEx0mOUSA3EXNlssREZGRzMxMZGZmokGDBggNDVU7HCJSQUBAAIKDg5GSkoJbt24hOjrabvti4wEiQG4T7dcEQFXfJkqAX1N5OSIisooQAllZWQgMDGSCQ+TmfH19ERQUhNzcXAhhrhbaNpjkEAFyM4Fey6pfptd7bDpARFQLZWVlKC4uRnBwsNqhEJETCAwMRGlpKUpLS+22DyY5RIqmE4EhawDJ0/h+rZ98P8+TQ0RUK+Xl5QAADw/Okici6Gtx7Nl8hEkOkaEGIwEhvxmj9V/kn16hQJMJ6sVEzi1xEbBKA5x8vXbrJS6yT1xETogNBogIcMxrAZMcIkPp+wHoAP8WQM+lgMYTKLwG5F1SOzJyRomLgMRXAQjgxDzLEx3D9RJfZaJDRERkY0xyiAyl7ZF/Rg8FPPyA8H4V98epFhI5KX2iYsCSRMfcekx0iIiIbIpJDpGhtN3yz8i75J9RsfLP1F2qhENOylyioqgu0aluPSY6RERENsMkh0hRVgBkHJGvRw+t+Bkr/0yNA+zY5pBcSHWJisJcomPJekx0iIiIbIJJDpHi1kFAVyqfL8e/hXxfxABA41VRl3NR3fhIfZYkKgrDRMea9ZjoEBHVSJIkSJKEBQsWqB0KOSkmOUQKw6lqStcPw7qc1DhVwiInYU2iojgxD/hlhPXrMdEhojqKi4uzOhGYPn26fp3Lly/bPCZl2+Yuvr6+aNq0KcaNG4evv/4aZWVlNt8/uRcmOUQKw6YDhpQpa2w+4N4S59duvdRfHLs/IiIXVFRUhKtXr2LTpk2YNm0a+vXrh9TU1FptyzDBi4uLs22g5DJ4Vi4iACgvBm4flK8rTQcUUbEAFt2py+F5HtxTl4XWj8jURdfXHLcvIiIH6t27N5YvX250X15eHk6ePIkPP/wQx48fx7FjxzBp0iTs3bvX7DYE62SpBkxyiADg9hGgvAjwiQaC2hk/FtH/Tl1O7h9AUBt1YiR1dZkn/3REotN1EdB5rv33Q0SkAn9/f3Tu3LnS/f3798fDDz+Mnj174uzZs9i3bx/i4+MxYMAAFaIkV8fpakTAnXqcqLsqj9TwfDmk6DIP6GLnERYmOETkxnx9ffHss8/qbx85ckTFaMiVMckhAiqfH8eUYStpcm/2THSY4BCRk7l16xa8vb0hSRKefvrpGpffuHGjvh7mhx9+qNU+W7Roob9eXFxsdhlzTRUuX74MSZIwbNgw/X3Dhg2r1ORgxYoVtYqLXAuTHCJdKXDrgHzdtOmAIrriBTMtjufLIfskOkxwiByuXCcQf/E21v9+DfEXb6Ncx9d3UxERERg/fjwA4Pvvv0dRUVG1yyu1NmFhYfr1rJWcnKy/3qxZs1ptg4g1OUQZx4CyfMArDAjuZH6ZcKUu5zrrckhmyxodJjhEDrft5A0s3HgaN7LvfGhvGOyD+eM64p7ODVWMzPk8+eSTWL16NbKysvDTTz/hwQcfNLtceno6Nm3aBAB4+OGH4e3tbfW+CgsL8dFHHwGQa3dGjBhh8bqNGzdGYmIijhw5gj//+c8AgC+//BJ9+vQxWq5JkyZWx0Wuh0kOkdI6OmoIIFUxuOnhKzcgSNsjj+YwySFATnTSdte+TTQANBjBBIfIwbadvIFnVh6D6bjNzewiPLPyGD55pGe9SnTS0tJw8uTJGpfLysoye/+IESMQExOD5ORkLF++vMokZ+XKlSgtLQUAfZJhTn5+fqV4CgoKkJiYiI8++ginT5+GJEl4++23ER4eXmPcCk9PT3Tu3Bm3bt3S39eiRQuzTQ6o/mOSQ6RvOlDFVDVFVKyc5KTGAa1n2DsqcgWJi+qW4ADAzZ3AydeZ6BBVEEKgsLTcbtsv1wnM33CqUoIDAAKABGDBhtMY1DoCWo39Thng66mF5KBTEnzyySf45JNPar2+RqPBn//8Z8yfPx+//PILrly5gqZNm1ZaTpmq1qNHD3Tv3r3K7SUkJKBLly5VPj5q1Ci8/PLLRrU1RNZikkPuTVcOpFf04I+qoumAIjoWOPkakLaL58shOcGxVTvpExVT35joEKGwtBwdX/1Ztf0LADdzitBlwXa77uf0a6Ph5+U6H8P+/Oc/Y+HChdDpdPjqq68wd67x69XRo0eRmJioX7Yudu3aBX9/f7Ru3dpsMkVkCTYeIPeWdQIozQE8AoGQ7tUvq6/LuQHkXnBIeOSkbJngKE7Mk0d0iIhsbP78+RBC1HiZNm1aldto0qQJRo8eDQBmu5Mpozje3t54+OGHq41n6NChlfZdUlKCpKQkfPTRRwgODsZPP/2E/v374+zZs7V/4uTWXOcrBCJ70LeOHgxotNUv6+ELRAyQ10mLA4La2j08ckL2SHAUHNEhgq+nFqdfG2237R9OysD05TWfe2XF433Qt0WY3eLw9azhPccJPfnkk9i6dSsuXryIPXv24K675BkQxcXFWLVqFQDg/vvvR2hoqNXb9vT0RPPmzTFz5kwMHToUPXr0wPXr1/Hkk09i3759Nn0e5B6Y5JB7U5oOVNU62lRUbEWheRzQ+il7RUXOyp4JjoKJDrk5SZLsOo1rSJtINAz2wc3sIrN1ORKABsE+GNIm0q41Oa5o3LhxiI6ORmpqKpYvX65PctatW4fMzEwAdZ+qBgCdOnXCmDFjsH79euzfvx/nz59H27b8YpGsw+lq5L6EDkhXOqtZmOQoJwXl+XLcjyMSHAWnrhHZjVYjYf64jgDkhMaQcnv+uI5McMzw9PTEY489BgBYvXo18vLyANyZqtasWTOrWj5Xp3379vrrSq0PkTWY5JD7yj4NFN8GtH5AWC/L1onoD2i8WZfjjhLnO3Z/JxyUUBG5oXs6N8Qnj/REg2Afo/sbBPvUu/bRtvbkk08CkNtAr169GlevXsWOHTsAANOmTYNGY5uPlmVlZWavW8JRXevIuXG6GrkvZapa5EBA42nZOlqfivPlsC7H7XRZWLuRnAYj5DbRtdkfEdnNPZ0bYmTHBjiclIG03CJEBfqgb4swjuDUoG3bthgyZAj27t2L5cuX4/r169DpdJAkCY8//rjN9pOQkKC/bm2HNR+fO8lrcXGxzWIi18KRHHJf+qYDNbSONhUVK/9M3WXTcMjJdZkHdHnNunW6LgKG77B+vS6vyfsjIrvSaiQMaBWO8d0bY0CrcCY4FlJGc/bu3YsPPvgAABAbG4sWLVrYZPubN2/G7t3ye3RERAT69u1r1foNG94Zibt48aJNYiLXw5Ecck9CWN90QBEdC5xcKDcf4Ply3IuSeFgyotPwnjvNA6xZjwkOETm5yZMn4+9//zuys7ORmpoKwLqGA/n5+Th58qTRfaWlpbh27Ro2b96Mzz//XH//G2+8AQ8P6z6uNmvWDE2aNMHVq1exZMkSNGnSBO3atYNWK3e0i46ORmBgoFXbJNfDJIfcU+4FoOimXF8Tbt03RPq6nKKbQO55IKidfWIk52RpwtL9TevXY4JDRC7A19cXDz30ED755BMAQHBwMB544AGL109ISECXLl2qXcbT0xOvv/66ftTIWq+88gpmzpyJpKQkjB8/3uix5cuXY/r06bXaLrkOTlcj96RMVYvoJ9fZWEPrI58vB5BHc8j91DR1zScKCDHzBl7dekxwiMiFPProo/rrU6dOha+vb522p9VqERYWhr59++Kll17C6dOn8c9//rPW23vmmWfw448/YtSoUYiKirJ6NIhcH//HyT2lWdk62lR0rNx4IC0OaPMXGwVFLsXcyEzUXfKxFT0CkKr4DsncekxwiMjGYmNjIaw81cGKFSuwYsUKi5Y1nG5m6VQ1a+Op67YmTpyIiRMn2myf5Fo4kkPuR4g7IzlRVjYdUOibD8TxfDnuTD8yI8lNBsqL5PsbjrR8PSY4ROSCvvzySwBA586drW4MQOQITHLI/eQnAwVXAMnjzrQza0X0u1OXk3POtvGRa+kyD3hIB7R9FsioaHnawIKT4SnrMcEhIhezZ88eHDx4EADw9NNPqxwNkXmcrkbuRxnFCe8DePjXbhtKXY4yZS24fU1rUH1381dA6ICg9oBfE7WjISKyqeTkZBQXF+PUqVN4/vnnAQANGjSwqqsakSO53UjO0qVLMXHiRLRp0wbBwcHw9vZGTEwMHnvsMSQmJla53ooVK9C3b18EBAQgLCwMY8aMwYEDBxwYOdlMXaeqKaJj5Z9sPkAAcFM+4zca1DBVjYjIBQ0dOhTt2rXDxIkTkZycDAD44IMP6txwgMhe3C7J+X//7/9h69atCAsLw913342xY8fCx8cH33zzDXr16oVNmzZVWmfWrFl4/PHHcfLkSYwYMQJ9+/bFjh07cNddd2HdunWOfxJUN3VtOqCIHlaxvTjW5RBwc6f8k0kOEdVjgYGBGDBgADZt2oRJkyapHQ5Rldxuutr69evRq1cv+PgYtw3++OOP8eyzz+LJJ5/E1atX9a0Gd+7ciWXLliE8PBzx8fFo06YNACA+Ph6xsbF4/PHHERsbi5CQEEc/FaqNgmtA3kW581XkoLptK7yvPG2tKFWuy+GUNfeVl1RxXGmtP7ksEZELuHz5stohEFnF7UZyBg0aVCnBAYCZM2eiVatWSE1NxenTp/X3L126FAAwd+5cfYIDAAMGDMDTTz+NrKwsfPHFF/YPnGxDGcUJ7QF4BtVtW4bny0mLq9u2yLUpU9Ui+tf9uCIiIqI6c7skpzqenp4AAC8vLwBAYWEhfv31VwAwOySr3Ldx40YHRUh1pq/HsdG37YatpMl93WA9DhERkTNhklPhm2++wblz59CmTRv9iM25c+dQXFyMyMhINGlSuVtSz549AQAnTpxwaKxUB7ZqOqBQmg+wLsd96cqBVPnLECY5REREzsHtanIUixcvxqlTp5Cfn48zZ87g1KlTaNSoEb777jtotVoAQEpKCgCYTXAAwN/fHyEhIcjMzERubi4CAwMdFj/VQlEakHNWvh45xDbbNKrLOQsEd7DNdsl1ZP4GlGQAHoFyW3IiIiJSnV2SnJycHCQkJOD48eO4fPkyrly5guzsbOTn5wOQk4Pg4GA0a9YMzZs3R9euXdG7d28EBTluLvvPP/+MX375RX87JiYGX3/9NXr16qW/Ly8vDwDg5+dX5Xb8/f2RlZVVbZJTXFyM4uJi/e2cnJy6hk+1odTjhHQBvMNss02lLid1V8X5cpjkuB2lHid6GKDxVDcWIiIiAmDDJGffvn3YtGkTtm3bVuX5ZkTFdB5Jksw+3qVLF4wePRpjx47FXXfZaDpRFXbulNu9ZmVlITExEa+99hqGDh2K119/Hf/6179suq833ngDCxcutOk2qRZs1TraVNQwOclJjQPaPGPbbZPzY+toIiIip1Onmpzk5GS88soraN68OYYOHYrFixfjxIkTEELoL4YkSaqU4Bgue+LECSxZsgTDhg1DTEwM5syZY/eWhSEhIRgyZAi2bNmCXr16Yd68eThy5AgAICAgAABQUFBQ5frK6FR1U9XmzJmD7Oxs/eXKlSs2fAZkMVs3HVCwLsd9lRUA6fvk6w1GqBsLERER6dUqyYmPj8fEiRPRunVrvPXWW0hJSalylMYwiTF3MaSsK4TAlStX8Pbbb6NNmzaYOHEi4uPjaxOqxTw9PfGnP/0JQgh9t7RmzZoBAK5evWp2nfz8fGRlZSE0NLTaJMfb2xtBQUFGF3Kw4gwgq2KE0Vb1OAp9XY5BzQ+5h7S9gK4E8GsCBLVTOxoiIiKqYNV0taNHj2LevHn4+eefAcjJiGFSI4RAYGAgunfvji5duqB9+/Zo1KgRGjZsiICAAPj5+UEIgcLCQuTl5eH69eu4fv06zp49i8TERBw/fhy5ublG+ywvL8f69euxfv16jB49GosWLTKqm7GliIgIAEB6ejoAoF27dvD29kZ6ejquXbuGxo0bGy1/7NgxAEDXrl3tEg/ZUPo+AAIIag/4Rtt221pvIGKg3GGLdTnu5aZB6+gqpuESERGR41mU5Ny8eRMvv/wyVq5cWWkERpIkDBw4EOPHj8ewYcPQo0cPaDS1mwWn0+lw7NgxxMXFYf369YiPjzfa388//4zt27fjkUcewZtvvokGDRrUaj9V2b1bns7UqlUrAICvry+GDx+OrVu3YvXq1Zg1a5bR8mvWrAEAjBs3zqZxkB3YunW0qahYOclJ3cW6HHfCehwiIiKnJAnTOWNmBAUFIT8/3yi56dChA5544gk8/PDDiI628TfjFdLS0rBy5Up8+eWXOH369J2gJQmBgYHIysqyanv79+9Hbm4uRo0aZZSIlZaW4tNPP8WsWbPg7e2Nc+fOoWnTpgDkBgUjR45EeHg44uPj9efQiY+Px7Bhw+Dr64ukpCSEhIRYHEdOTg6Cg4ORnZ3NqWuOsq0PkJEADPwWaP6Q7befthfYeRfgHQlMTOW3+u6gMBX4qeKLlompgE+UuvEQObGioiIkJSWhRYsW8PHxUTscIlJZbV8TrPkMbdFIjtJKWZIk3HvvvfjnP/9p9+5nABAVFYXZs2dj9uzZ2LNnD95++21s3boVQohK09osceHCBTz++OOIiIhAr169EB4ejlu3biExMRE3btyAj48PVqxYoU9wAGDEiBF47rnnsGzZMnTv3h0jR45ESUkJduzYASEEli9fblWCQyoozQEy5amFdhvJCe8LaH2B4nQg5wwQ3NE++yHnkVrRgj6kGxMcIiIiJ2PxvLLx48fj+PHj2LRpk0MSHFN33XUXNm3ahBMnTuC+++6r1TaGDh2KV155Be3atcOJEyewevVq7N+/H2FhYfjb3/6GxMRETJkypdJ67733HpYvX44OHTpgx44diI+Px4gRI7Bnzx7cf//9dXxmZHfp+wGhAwJaygXi9qDU5QByK2mq/5R6nIacqkZERORsLBrJOXDgAPr372/vWCzSqVMnrFu3DocOHbJ63RYtWuDf//53rfY7ffp0TJ8+vVbrksrsdX4cU9Gx8rf7aXFA25n23RepSwjW4xARmTF9+nR89dVXiImJsftpQIiqY9FIjrMkOIb69eundgjkKuzddEARFSv/TI3j+XLqu5xzQMFVQOMFRA5WOxoiokri4uL05yc0vfj5+SEmJgb3338/Vq1ahbKyMrXDJbK5Op0MlMjplRUAt+WTu9p9JCe8z526nOzTNS9PrkuZqhY5GPDwUzcWIiIrFRYWIiUlBevXr8fDDz+MgQMH4ubNm2qHRWRTTHKofrsVD4gywK8p4N/cvvsyrMtJi7PvvkhdnKpGRC7kmWeeQWJiov4SHx+PDz74AM2bNwcAHDlyBOPHj690kvbaWLFiBYQQnKpGqmOSQ/Wb4VQ1R7R1jo6Vf7L5QP2lK5XPhwQADUaoGwsRkQWioqLQuXNn/aV///7461//imPHjqF169YAgMOHD2PTpk0qR0pkO06T5JSWliI1NRUlJSVqh0L1iaOaDiiih1XsN451OfXV7cNAWS7gFQaE9lA7GiKiWgsNDcWcOXP0t7dt26ZiNES2pXqSs2bNGgwYMAB+fn5o1KgRfH190aVLF3zwwQc2GTYlN1ZeBNw6KF+3d9MBRZhSl3OLdTn11Y2KepwGdwMarbqxEBHVUd++ffXXk5OT9deLiorw/vvvIzY2FpGRkfD09ERYWBjatWuHe++9F0uXLjU7JW369OmQJEk/FY5ILRa1kLbUDz/8gBdffBGAfOLQ7du3o127dlUu/8ILL+C9994DAKOE5tSpU5g1axZ+/PFHbNmyBX5+LOylWrh9BNAVAz7RQGBbx+xT6wVEDpJrNtLigJBOjtkvOU4q63GI6g1dOZC+Fyi8Afg2BCKHuN2XF56envrr5eXlAIAbN25gxIgROH3a+Mu6zMxMZGZm4vz589i2bRuuX7+OJUuWODReIkvZNMlZuXIlrl69CgAYNGhQtQnO//73P7z77rsAoG9pKISAVFE3IYTA3r178cgjj2Dt2rW2DJPchaPrcRRRsXKSkxoHtH3Wcfsl+yvNuTM6yHocItd2ZS1w9Dm5HbzCrwnQaxnQdKJ6cTlYYmKi/nqjRo0AAH/729/0Cc4jjzyCiRMnolGjRtBqtbhx4wYSEhKwfv16VeIlspTNkhwhBPbs2aNPUiZNmlTlsmVlZXjllVcAQJ/c+Pv7o3Pnzrh16xYuXryov3/9+vXYunUr7r33XluFSu5Cn+Q4qB5HoTQfSIsDhA6QVJ8VSraSGgeIciCgFRDQQu1oiKi2rqwF9k4CYDItvuCafP+QNW6R6JSVleGdd97R346NjUVRURE2bNgAQJ5xY26kZty4cVi4cCEyMjIcFiuRtWz26evcuXPIycnRTzsbPXp0lctu27YNly9f1idEY8eOxbVr1xAfH48LFy7gxx9/hIeHh/7x999/31ZhkrvQlQLpB+Trjk5yWJdTfynnx+FUNSL7EQIoy7ffpSQHSPg7KiU48s7lHwnPycvZMw4V647z8/Oxe/dujBw5EgcPyqPTMTExmDJlCjIyMlBaWgoAuOuu6utZw8LC7B4rUW3ZbCTnjz/+0F/38fGpdqra999/DwD6EZyvvvoKQUFB+scnTJiAl156Ca+//joA4JdffkFOTo7RMkTVyjgKlBfIHbCCOzp234Z1OalxQEhnx+6f7Ec5P05DJjlEdlNeAPwQoGIAAii8CqwJtu9upuQBHv723UeFhQsXYuHChVU+HhUVhXXr1sHb2xvh4eHw8vJCSUkJvvnmG4wZMwYeHjatbiByCJuN5Fy5cgWAPP2sWbNm+lEYc3755Rd9Hc6kSZPMfhPw1FNP6a+Xl5fj999/t1Wo5A70raPvUme6mGEraaofCq4COWfl40n5/yUicmEtWrTAP/7xDyQmJqJ79+4AAG9vb/zpT38CIHfAbd26Nf75z39iy5YtyMrKUi9YIivZLDXPy8vTXw8Orvrbj/Pnz+PmzZv6JOi+++4zu1yTJk3QqFEjXL9+HQBw4cKFGodNifQMmw6oISr2Thysy6kflNbRYb0Br1B1YyGqz7R+8iiHvaTtAeLG1Lxc7Bb7vodoHdc59plnnsHMmTMByF9G+/j4ICIiosrPax9++CGysrKwceNGJCcnY/HixVi8eDE0Gg169uyJKVOm4Kmnnqr28x6R2myW5Fh6Es/4+HgA8lQ1jUaDoUOrrpcwTHL47QFZTFcOpO+Trzu6HkcR1lt+A1PqcjhlzfWxHofIMSTJvtO4GoySu6gVXIP5uhxJfrzBqHrTTjoqKgqdO1v+PhQUFIQNGzbg8OHD+OGHHxAXF4fff/8d5eXlSEhIQEJCApYsWYJ169ZhwIABdoycqPZs9vVyYGCg/np13Tbi4uIAyN8kdOjQodqiNY3mTnjFxcV1D5LcQ9ZxudWvZxAQ0k2dGJS6HECuyyHXJnR36nGY5BC5No1WbhMNADCdWl9xu9d79SbBqYu+fftiyZIlSEhIQGZmJjZs2ICJE+Wuc2lpaXjggQdQWFiocpRE5tksyYmMjAQgj9AkJyebPeiFENi2bZt+qlpN088MR294QlCymDJVLXKwum9S+lbSu9SLgWwjKxEoTpdH5yL6qx0NEdVV04lym2i/xsb3+zVxm/bR1goMDMS4cePw448/4u9//zsA+aSh+/btUzkyIvNsluR07doVgDxCU1ZWhk2bNlVaZseOHUhNTdW3mY6Nja12mzdu3NBfV5Ioohrpmw6oNFVNYVqXQ65LmaoWNRTQeqsbCxHZRtOJwH2Xgbt3AQNXyT/vS2KCY4G7775bf/3WrVsqRkJUNZslOR07dkTDhg0ByCM2r7zyCm7fvq1/PDc3F3PmzNHf9vLywqhRo6rc3oULF5Cbm6u/3apVK1uFSvWZ0Bl3VlNTeJ+KupzbQPYpdWOhumHraKL6SaOVR92bPyj/5BQ1XLp0Cbt37652me3bt+uvt2jBEyOTc7JZ4wFJkjBt2jS8+eabkCQJly5dQqdOnfDAAw/A09MTmzZtQlJSkn7ZiRMnVtuVY+/evUbb7tSpk61Cpfos+xRQkiEXrYb1UjcWjac8Ze7m9orz5XRRNx6qnfKiO4lzgxHqxkJEZGcpKSkYNmwYOnbsiAkTJqB3795o3Fie1nflyhV8//33+OGHHwAA3bt3R79+/dQMl6hKNj2705w5c/DVV1/h5s2bAOSitE8//RSAPLqj1OJ4eXlh/vz51W7rxx9/BHAnwTFsbEBUJeXDaMRAOclQW3SsnOSkxQHt/qZ2NFQb6QeA8kLApwEQzC55ROQeTp8+jdOnT1f5ePv27bF27dpqz4tIpCabJjmBgYHYsmUL7r77bmRkZBgd+JIk6dtGf/rpp2jbtm2V27lx4wZ27typX3/48OG2DJPqM7XPj2OK58txffrW0SPk1rZERPXYkCFDEBcXh59//hkHDx7ElStXkJqaiqKiIoSFhaFbt26YOHEipk+fDm9v1iiS87JpkgMA3bp1w+nTp7Fw4UL8+OOPSEtLAyCP3gwdOhTz5s3D4MGDq93G+++/j9LSUgBycjRu3Dhbh0n1kRDO03RAEd7buC6HU9ZcD1tHE5ELio2N1Td6soZWq8XQoUOrPY9hdVasWIEVK1bUal0iW7J5kgPIJ5366KOP8NFHHyE7OxuFhYWIiIiAh4dluxs1ahT697/TprW2f2jkZnLPA0WpgMZbLvp3BkZ1ObuY5Lia4ttAxlH5eoO7q1+WiIiInIZdkhxDwcHB1TYYMGfYsGF2iobqNWWqWkR/QOujbiyGlLqc1Dig3d/VjoaskforAAEEd6x8Pg0iIiJyWiwQoPrD2aaqKaIrknaeL8f13FDqcThVjYiIyJUwyaH6QQjnazqgCOslt7QuyQCyTqodDVmD9ThEREQuiUkO1Q/5l4GCq4DkAUQMUDsaY0pdDiC3kibXkHsRyE+SjylnS5yJiIioWkxyqH5QRnHC+wAefurGYo7SSjo1Ts0oyBpK6+iIAYAnz9NFRETkSpjkUP2gn6rmZPU4iuhY+SfrclzHTdbjEBERuSomOVQ/OGvTAYVRXU6i2tFQTXTlwM1f5esNmeQQERG5GiY55PoKrgJ5lwBJA0QOVDsa8wzrcjhlzfllHAVKswDPYCCst9rREBERkZWY5JDrU0ZxQnsCnkHqxlIdfSvpOFXDIAsoU9WihwEau59OjIiIiGyMSQ65PmdtHW1KaT7Auhznx9bRRERELo1JDrk+Z6/HUYT1BDwCgJJM1uU4s7J84NZ++XqDEerGQkRERLXCJIdcW2EqkHMWgAREDVE7muqxLsc1pO0BdKWAXzMgsI3a0RAREVEtMMkh15ZeMYoT0gXwClU3FkvoW0nvUjUMqsaNinqchiMBSVI3FiIiIqoVJjnk2lxlqppCX5ezh3U5ziqV9ThERESujkkOuTZXaTqgMKrLOaF2NGSq8Oadeqno4erGQkRERLXGJIdcV7HBiTVdJcnReAKRFbVDrMtxPkpXtdAegE+kurEQERFRrTHJIdeVvlf+GdQB8IlSNxZr6Oty4tSMgsxRzo/DqWpE9UviImCVBjj5eu3WS1xkn7iIyG6Y5JDrSnWxqWoK1uU4JyHujOQ0ZJJDVG8kLgISXwUggBPzLE90DNdLfJWJDpGLseupvMvLy3H06FEcO3YMV65cQXZ2NgoLCyGEsGo7kiThiy++sFOU5LLSXazpgMK0Lie0u9oREQDknAEKrwMabyBikNrREJEt6BMVAyfmyT87z7VuPeV2l3m2i68emj59Or766ivExMTg8uXLqsQgVXTGnD9/PhYsWKBKDKQ+uyQ5eXl5+Pe//40VK1YgLS2tTtsSQjDJocpKsoHM3+TrrjaSo/GQ63JubAVSdzHJcRZK6+ioIYCHr7qxEFHdmUtUFNUlOtWt5yKJTlxcHIYNG2b2MV9fX0RGRqJHjx6YMmUKpkyZAg8Pu37nbZHY2Fjs3r27TttYvnw5pk+fbpuAyOXZfLra8ePH0alTJ7z99ttITU2FEMLqkRuiGt06IE/1CmgF+DVWOxrrKXU5bD7gPG6ydTRRvVFdoqIwN3XNkvVcfOpaYWEhUlJSsH79ejz88MMYOHAgbt68qXZY5AKmT58OSZLQvHlztUOxiE1T95SUFIwcORK3bt0CIA8XKgkOEx2yKX3raBebqqaIrviGLW0PoCsHNFp143F3utI7jSCY5BC5NksSFYXhiI4167nIiA4APPPMM5g5c6b+dl5eHhISEvDOO+/g8uXLOHLkCMaPH4+DBw/qp3nVxYoVK7BixQqr11u+fDny8/PNPjZ37lysX78eAPDzzz+jUaNGZpdr0qQJAH7mJJlNk5yXXnoJt27d0v+RCCHQr18//OlPf0L37t0RFRUFf39/W+6S3JWrNh1QhPYAPAKB0iy5Liesh9oRubdbB4GyPMA7AgjtpnY0RFRb1iQqihPz5FH11F+s3JdrJDpRUVHo3Lmz0X39+/fHww8/jL59++KPP/7A4cOHsWnTJowbN06lKIEWLVpU+VhISIj+etu2bV1mJIHUZbMkJysrC2vWrNGP3nh5eeHLL7/EQw89ZKtdEMnK8oGMBPm6q47kaDzk2o/rW+QRBCY56lJaR0ffDUhsOknkshLn1249axMcw/05eZJTldDQUMyZMwdPPPEEAGDbtm2qJjlEtmazd/Pdu3ejvLwcgDxN7Y033mCCQ/ZxKx4QZYBfU8A/Ru1oak9pJc26HPWxdTRR/dBloWP31/U1x+7Pxvr27au/npycbPRYUVER3n//fcTGxiIyMhKenp4ICwtDu3btcO+992Lp0qVmu6c5Q92GJEmQJMlsZ7UVK1boH798+TJKSkqwdOlS9O7dG8HBwQgLC0NsbCw2b95stF5ubi7efvtt9OjRA0FBQQgJCcHIkSPxyy+WJch//PEHnn/+eXTp0gXBwcHw9fVFy5YtMX36dCQkJFi0jY0bN2LSpElo0qQJvL29ER4ejgEDBuDNN99EXl5elestWLBA/5yrExcXp18uLi6u0vpfffUVAPlYUZYzvDgbm43kXLlyBYA8Rc3HxwdPP/20rTZNZCzNoHW0E/5RWUx/UtDdrMtRU0k2cPuwfL3BCHVjIaK6UUZVrJ2yVhtdF1XfhtoFeHp66q8rX1QDwI0bNzBixAicPn3aaPnMzExkZmbi/Pnz2LZtG65fv44lS5Y4LF5by8nJwdSpU3Ho0CGj+3fv3o3du3dj6dKleP7555GSkoIxY8bg1KlTRsvt3LkTv/zyC7755hs8/PDDVe5nyZIleOWVV1BaWmp0f1JSEpKSkvD1119j7ty5eO0180lzUVERHnroIfz0009G92dkZODgwYM4ePAgPvjgA2zevBndu3e34jdQv9lsJCcnJweAnD23adMGvr5swUp24upNBxT6upxsIOu42tG4r9RdgCgHAtu49sggEcm6zAO62HmEpR4kOACQmJiov25YzP+3v/1Nn+A88sgjWLt2LQ4ePIgjR45gw4YNePXVV9Gtm+vXLz711FM4evQoZs6ciR07diAhIQGff/65/nfx4osv4uTJk5g4cSIuXbqEl19+GXFxcThy5Ajee+89BAcHQwiBZ555pspTpixevBj/+Mc/UFpaiq5du+KTTz7Bzp07kZCQgG+//RYDBgyAEAKLFi3C+++/b3Yb06ZN0yc43bp1w9dff40jR47g559/xuOPPw5JknD9+nXcfffduHbtms1/TzNnzkRiYiLGjx8PQD5WEhMTK12cjc1GcgyLwnx8fGy1WSJj5UXArYpvXFy16YDCsC4nNU4+SSg5nlKPw65qRPWHPUd06kmCU1ZWhnfeeUd/OzY2FoA8arBhwwYAwAsvvGB2pGbcuHFYuHAhMjIyHBKrvRw+fBhr167F/fffr7+vV69e6NOnD3r06AGdTofhw4cjJycHu3fvRr9+/fTL9e7dG23atMHYsWORm5uLb7/9Fs8//7zR9k+fPo1//etfAOQTk86fP99oWlevXr0wdepUTJs2DStXrsS//vUvPProowgNDdUvs3nzZvzwww8AgLvvvhtbtmyBl5eX/vFRo0ZhwIABeOqpp5CRkYHZs2fj+++/t+nvKSoqClFRUfrP+p6enpWaWTgjm43kGD7ZGzdu2GqzRMZuHwZ0xYBPA/mbd1enbyUdp2oYbo3nxyFyLkLIDWbqeukwG+hk42Sk8zyg/fO2iU+lNsf5+fnYvXs3Ro4ciYMHDwIAYmJiMGXKFADyFChlWtVdd1X/ZWJYWJh9g7WzKVOmGCU4iq5du2Lw4MEAgPT0dMyaNcsowVGMGTMGMTHyDIC9e/dWevydd95BaWkpevfuXSnBUWg0GnzwwQfw9vZGXl4e1qxZY/T4Rx99BEBOLJYvX26U4ChmzJiBESPk6dZr167l5/AKNhvJGThwIMLCwpCRkYFr164hKSmp2naARLVi2DraletxFErzAZ4vRx35KUDuebmjmlIjRUTqKi8AfghQOwrzTi6SL7YwJQ/wsP9pNRYuXIiFC6tuyBAVFYV169bB29sbABAeHg4vLy+UlJTgm2++wZgxY+DhYdMzjjiNqVOnVvlYt27dsGfPnhqX69q1K5KTk3Hp0qVKj23cuBEA8MADD1RbmB8SEoIuXbogISEB8fHxmDFjBgB5tG33bvlzz6hRo9C0adMqtzFjxgzs3LkTZWVliIuLw4MPPljlsu7CZiM5Hh4eeO655/S3ly1bZqtNE92RbtB0oD4I7Q54BrEuRy3KVLWwvoBXiKqhEBE5UosWLfCPf/wDiYmJRsXq3t7e+NOf/gQAWLNmDVq3bo1//vOf2LJlC7KystQJ1k7atm1b5WOm5+apabnc3Fyj+5OTk5Geng4AmDNnjtluZIYXpcPazZs39du4dOkSCgoKAMDsSJIhw8dPnjxZ7bLuwuYnA127di2OHz+OTz75BPfeey9Gjx5ty12QO9OVAukH5Ov1JcnReACRQ4Drm1mXo4YbFUkOW0cTOQ+tnzzKYSun3gROvV737XSeB3R8qe7bUWj9bLetajzzzDOYOXMmALk5lI+PDyIiIhAcHFzlOh9++CGysrKwceNGJCcnY/HixVi8eDE0Gg169uyJKVOm4Kmnnqp2G67Az6/q/wONRmPVcobd6QBU2YigJkpSA8Co5ikqKqra9Ro0aGB2PXdm0yTHy8sLmzdvxt13341z585hwoQJeOuttzBz5kxotZyGQ3V0O0GexuAdDgR3UDsa24mOrUhydslzyMkxhO7OCQBZj0PkPCTJdtO4EhfZJsEB5GlqGi+XazoQFRVldZF4UFAQNmzYgMOHD+OHH35AXFwcfv/9d5SXlyMhIQEJCQlYsmQJ1q1bhwEDBtgpctdmmPS8+uqrmDx5skXr+fubP/ad8Tw0zs6mSY4yd/HNN9/ECy+8gEuXLmHWrFlYvHgxJk6ciN69eyMqKqpW3ddqKn4jN6BMVYu8q36dlV6py0lnXY5DZR4Him/JH6bCq58GQEQuKHGR7burnajo2uZiiU5t9e3bV3/C0NzcXMTFxWHFihVYu3Yt0tLS8MADD+DixYs8bYgZ4eHh+uu17UZm2NghNTW12mUNp7mZNoQwHJXS6XRGtw3l5+dbHaMzs2mSExsba5RpSpIEIQSuXr2KDz74oNbblSQJZWVltgiRXJlh04H6RF+XkwNk/Q6E9VI7Iveg1ONExQLayt1qiMiF2SPBUbhZoqMIDAzEuHHjMG7cODz33HN4//33cePGDezbtw8jR3I03FTLli0RHByM7Oxs7N+/v9bb8PPzQ0FBQaUTlpo6fPiw/rppQhUYGKi/npmZaZSAGTp//ny1+3C10SS7fB0uDNoiKgVVyv21vZCb05UD6fvk6/WlHkeh8ZBHpwC5Loccg62jieoneyY4ihPzgJM2mgbngu6++2799Vu3bqkYifPSarUYM2YMAGD79u04c+aM1dvw8PDA0KHyZ54dO3bg6tWrVS77+eef69dRznmkMOx2rDQ4MOd///tftfEoM7GKi4urXc5Z2DzJURISJipkU1m/A2W5gGcwENJV7WhsT2lfzCTHMcqLgPSKcxqw6QBR/eGIBEdRTxOdS5cu6dsWV2X79u366zxdSNXmzJkDrVYLnU6HSZMmVZuklJeX49tvv620zLPPPgsAKCkpwRNPPKE/h5GhL7/8Uv9/MnHiRDRs2NDo8YEDB+rbgL/77rtmP5MvXrzYaDTIHGW7aWlplbrJOSObTlebP3++LTdHdIcyVS1ycP2sWVGSHNblOEb6PjnR8W0EBNWjJhZE7i7RwZ9DTrxa76atpaSkYNiwYejYsSMmTJiA3r17o3HjxgCAK1eu4Pvvv8cPP/wAAOjevXuNrY3dWZcuXbBkyRI8//zzOH36NDp37oynnnoKw4cPR3R0NIqKinD58mXEx8djzZo1uHHjBhITE9GkSRP9NsaOHYvJkydj9erV2L59O/r374/Zs2ejffv2yMzMxP/+9z98+eWXAORanKVLl1aKIyoqCpMnT8Z3332Hn3/+Gffddx+effZZREdHIyUlBd988w1+/PFHDBw4EAcOHKjy+QwcOBCAXNfz9NNP429/+xsiIiL0j7du3dpWvzqbYJJDrqG+nR/HVEh31uU4ktI6usGI+nFSWSKSdVlYu5GcBiPuTGG1dn/11OnTp3H69OkqH2/fvj3Wrl3rcnUajjZr1iz4+/tj1qxZyM7O1rfjNsfLy8tsc66vv/4aZWVl+Omnn3Ds2DE88sgjlZZp1KgRNm/erE9ITb377rtISEjAhQsXsGnTJmzatMno8alTp+LJJ5/EiBEjqnwuw4cPR//+/XHw4EGsWrUKq1atMnrc2WZt1aMWVVRvCR2QVjG1qL41HVBotAZ1ObvUjcUdsB6HqH7qMg/o8pp163RdBAzfYf16XV6T91fPDBkyBHFxcZgzZw6GDRuG1q1bIzAwEJ6enoiOjsaoUaPw6aef4vfff+dUNQvNmDEDly5dwsKFCzFo0CBERETAw8MD/v7+aNu2LR544AF8+umnuHbtmtnREB8fH6xduxYbNmzAxIkT0ahRI3h5eSE0NBT9+vXDG2+8gXPnzhmd1NVUdHQ0Dh06hJdeeglt2rSBt7c3wsLCcNddd2HlypX47rvvajzdi0ajwfbt2zF37lx069YNAQEBTp3kSsLZ0i43kJOTo++4ERQUpHY4zi8rEdjSVW71OykT0HiqHZF9nHkH+O1FoNFYIHZTzctT7RTdAtZGARDAhOuAb8MaVyGiuikqKkJSUhJatGhRq9NIWM3S2pyui4ynm1m6Xj1NcIgcpbavCdZ8huZIDjk/pR4nYlD9TXAAg7qcvYCOLdPtJvUXAAII7swEh6i+smRExzTBsXQ9JjhELoFJDjm/tHp6fhxTId3l7nGlOUDm72pHU38p58fhVDWi+q26hMVcgmPJekxwiFwGkxxybkLU/6YDCo32TiKXFqdqKPWWEHeaDrB1NFH9Zy5hqS7BqW49JjhELoVJDjm3nHNAURqg9QHC+6gdjf1Fxco/eb4c+8j9AyhIkac91veRQSKS6RMWybIEx9x6THCIXI5FLaRbtmxpdFuSJFy8eLHG5Wylqv1Zq6CgANu3b8fGjRuxb98+JCcnQ6vVonXr1njggQcwe/ZsBAQEmF13xYoV+Pjjj3H69Gl4eXmhf//+mDt3rr5nONmJMooT3h/QeqsbiyOY1uVobNrlnZSpahED5UYWROQeusyrXZJS2/WISHUWfYK6fPkyJEnS97+uql2c6XK2Yqv2dKtWrcKMGTMAAB06dMB9992HnJwcHDhwAPPnz8d3332H3bt3Iyoqymi9WbNmYdmyZfD19cWoUaNQVFSEHTt2YPv27VizZg3uv/9+m8RHZqS6ST2OIqRbRV1ONpD5m3uMXjkS63GIiIjcglXT1SxNNiRJstnFljw9PfHUU0/pT3D1ww8/YNu2bTh37hx69OiBs2fPYtasWUbr7Ny5E8uWLUN4eDiOHz+OdevWYdu2bdizZw+0Wi0ef/xxZGVl2TROqiCEQdOBel6PozCsy+GUNdvSld05BxGTHCIionrNopGcZs2aWZRwWLqcWqZNm4Zp06ZVur9hw4b46KOPMHDgQKxduxYlJSXw8vICACxduhQAMHfuXLRp00a/zoABA/D000/j/fffxxdffIEXXnjBMU/CneQnAYXX5PqJiP5qR+M40cOAaxvl5gMd/6F2NPVHRoI8QuYZAoT1UjsaIiIisiOLp6vZcjln1K1bNwBAcXExbt++jYYNG6KwsBC//vorAGDSpEmV1pk0aRLef/99bNy4kUmOPShT1cL6AB5+6sbiSErzgTTW5diU0lWtwXB5xIyIiIjqLXZXq3Dp0iUA8pS2sLAwAMC5c+dQXFyMyMhINGnSpNI6PXv2BACcOHHCcYG6E3dpHW0qpKs82lCWK9flkG2k7pR/cqoaERFRvcckp8KyZcsAAPfccw+8veUuXikpKQBgNsEBAH9/f4SEhCAzMxO5ubmOCdSduFvTAQXrcmyvNA+4FS9fZ5JDpBpbNyYiItfkiNcCJjkAtmzZgi+++AKenp5YtGiR/v68vDwAgJ9f1VOl/P3lNrTVJTnFxcXIyckxulAN8q/INTmSFogcpHY0jqe0klYK5alu0nYDulLAvzkQYJ9W90RUNY1G/rih0+lUjoSInIHyWqC8NtiD2yc5Z8+exSOPPAIhBBYvXqyvzbGlN954A8HBwfpL06ZNbb6PeietYqpaaE/AM1DdWNSg1OUo58uhujFsHe3EzVGI6itPT09otVrk5+erHQoROYGioiJoNBp4eNiv7titk5xr167hnnvuQWZmJmbPno3nnnvO6HHlxKAFBQVVbkN5wQ4MrPqD+Jw5c5Cdna2/XLlyxQbR13NpbjpVTaGvy8kDMo6pHY3ru1lRj9OQU9WI1CBJEgIDA5GTk8Mpa0SEvLw8+Pn5cSTHHjIyMjBq1CgkJyfj8ccfx5IlSyot06xZMwDA1atXzW4jPz8fWVlZCA0NrTbJ8fb2RlBQkNGFauCuTQcUGi0QXfHc0+JUDcXlFVwHsk8BkIDo4WpHQ+S2goODUVpaiuvXrzPRIXJjmZmZKCgosPvnYYvGiP70pz/h//2//4dWrVrZNRhL/fHHH/jXv/6F77//vlbr5+Xl4d5778Xp06cxceJE/Pe//zV7fp927drB29sb6enpuHbtGho3bmz0+LFj8jfsXbt2rVUcVIXCm0DOOQASEDVY7WjUExULXF0vNx/o+E+1o3FdyihOWE/AO1zdWIjcmJ+fH5o0aYKrV6+isLAQQUFB8PPzg1ardepz7BFR3QkhUFZWhuzsbOTm5iI0NBTBwcF23adFSc7q1auxbt06TJs2Df/4xz+MTorpSBcuXMDbb7+Nr7/+GmVltatTKC4uxvjx43H48GGMHj0a3333HbRa8+fM8PX1xfDhw7F161asXr0as2bNMnp8zZo1AIBx48bVKhaqglKPE9IV8ApVNxY1Kc0H0nm+nDoxrMchIlUFBgYiJiYG2dnZyMrKwu3bt9UOiYgcyNvbG9HR0QgNtf/nO0lYMGas0Wj037JIkoTx48fj6aefxsiRjvnQsGPHDnz88cfYuHEjhBAQQkCSJJSXl1u1nfLyckyePBk//fQThgwZgm3btlXbOQ0Adu7ciZEjRyI8PBzx8fH6BC8+Ph7Dhg2Dr68vkpKSEBISYnEcOTk5CA4ORnZ2NqeumXPkr8CFj4C2fwd6L1M7GvUIHfBjBFCSCYw6BET0VTsi1yME8FMjoOgmMPwX+USgROQUhBAoLS1lxzUiN6HVauHh4VGnkVtrPkNb9NXwE088geXLl0On00EIgXXr1mHdunWIiYnBww8/jIkTJ6JHjx61DticY8eOYe3atVi1ahWSk5MB3OmprdFo8MQTT1i9zQ8//BA//fQTACAiIgIzZ840u9ySJUsQEREBABgxYgSee+45LFu2DN27d8fIkSNRUlKCHTt2QAiB5cuXW5XgkAXcvemAQtLIv4Or64G0XUxyaiP7lJzgaH2AyIFqR0NEBiRJgpeXl9phEFE9ZdFIDgAkJCRg1qxZOHDggPEGKrKxxo0bY9iwYRg6dCh69+6NDh06wNPT06IgSkpKcPr0aRw9ehR79uzBrl27cO3aNQCVTxY0aNAgvPfee+jVq5dF2za0YMECLFy4sMblkpKS0Lx5c6P7VqxYgQ8//BBnzpyBl5cX+vfvj3nz5mHgQOs/OHEkpxrFt+XRCwCYmAb4RKobj9rOvgccex5oeA8wbKva0bies+8Cx2YDDUYBw39WOxoiIiKqA2s+Q1uc5Ci2bNmCV199VV90L0mSPhExHH7SarWIiYlBkyZN0LBhQwQEBMDX1xdCCBQVFSE3Nxc3btzA1atXkZKSYjT1zHB7yvVevXrhtddew7333mtNuE6JSU41rqwD9k4AgjoA/3da7WjUl/k7sLUH4BEATMoANJZ9cUAV4sYC17cAPRYDHV5UOxoiIiKqA5tPVzM0ZswYjBkzBjt37sSyZcuwdetWfY0McCdBKSsrw8WLF3Hp0qVqt2eaY0mSZJTcjB07FrNmzcLdd99tbajkivRT1dy0dbQppflCSaZ8vpyIfmpH5DrKS+4cT2w6QERE5FZqfZ6cESNGYOPGjbh06RL+/e9/o1OnTkYJi5Ks1MR0OSEEOnbsiH//+99ISkrCxo0bmeC4kzQ3Pz+OKUlz53fB8+VY51Y8UJYPeEcCIV3UjoaIiIgcqM49aZs1a4Y5c+Zgzpw5SElJwc8//4y9e/fi6NGjOHfuXI1dUzQaDdq1a4devXphyJAhGD16tP4knORmSrKBrN/l6+7edMBQVCxwdV3F+XJeUjkYF6JvHT1CThaJiIjIbdj0xBvNmjXDjBkzMGPGDAByQ4GUlBRcuXIF2dnZKCgoACCfECwkJARNmzZF06ZN2V2FZOn75bbJAa0Bv0ZqR+M89OfL2QfoSlmXYynlJKCcqkZEROR27Hp2QS8vL7Ru3RqtW7e2526ovmDraPNCuhjU5RwFIvqrHZHzK8kEMo7I1xuMUDcWIiIicjjO4SDnwaYD5hnW5aTGqRqKy0jdJY8KBrUD/JuqHQ0RERE5GJMccg6lefIoBQBEM8mpJCpW/snmA5a5odTjcKoaERGRO2KSQ87hVjwgygC/ZoB/jNrROJ/oYfJPpS6Hqsd6HCIiIrfGJIecA1tHVy+kM+AVJrdEVka8yLy8y0DeH4Ck5fFERETkppjkkHNg04HqsS7Hckrr6PB+gFewurEQERGRKpjkkPrKCoHbh+Tr/Oa9akor6dRdqobh9G6yHoeIiMjdMckh9d0+DOhKAN+GQCDbjVdJaT7AupyqCR1w8xf5ekMmOURERO6KSQ6pT5mqFnkXIEnqxuLMQjoD3uFAeQFwO0HtaJxT5m9ASQbgEQiE91U7GiIiIlIJkxxSn9J0gK2jq2dYl8NW0uYpraOjYwGNp6qhEBERkXqY5JC6ykuAWwfk65FsOlAjZcoamw+Yx9bRREREBCY5pLaMBKC8EPCOAII7qh2N81OaD7Aup7KyQvn3AjDJISIicnNMckhd+vPjsB7HIsGdWJdTlfS9gK4Y8G0MBLVTOxoiIiJSEZMcUpdh0wGqmVFdDltJG1FaRzccyYSZiIjIzTHJIfXoyoD0/fJ1Nh2wHOtyzGM9DhEREVVgkkPqyfwdKMsFPIOB4C5qR+M69HU5++XGDQQUpcnHEwBE361qKERERKQ+JjmkHv1UtSGARqtuLK4kuJPcqKG8QG7cQHdOABrSFfCNVjcWIiIiUh2THFIPz49TOzxfTmVKPQ6nqhEREREAD0fsRAiB3377DWfOnEFGRgays7Oh0+nw2GOPoXnz5o4IgZyN0MndsAA2HaiNqFjgyo9yXU6nV9SORl1CsB6HiIiIjNg1yTl+/DjeeecdrF+/Hnl5eZUeHzx4sNkk5+2338bZs2cBAM2aNcOCBQvsGSapIeskUJIJePgDYT3Vjsb1mNblaL1UDUdVueeBgiuAxguIGqJ2NEREROQE7JLklJSU4Pnnn8enn34KQB7JMSVV0+K1QYMGePnllyFJEiRJwvTp0zniU98o9TgRgwCNQwYU65fgjnJdTvEtIOMIEDlI7YjUc6NiqlrkIMDDT91YiIiIyCnYvCanoKAAQ4cOxaeffmp1cqN46KGHEBkZCSEEhBD49ttvbR0mqU1JcliPUzuGdTnu3ko6lVPViIiIyJjNk5wHH3wQhw4d0t+WJAkTJkzAJ598gk2bNplNfEx5eHhgwoQJ+ttbt261dZikJiHuNB2IYpJTa8r5cty5+YCuDEitOCkqkxwiIiKqYNN5Qhs3bsTGjRv1ozVt2rTBjz/+iM6dOxstZ8lozrhx4/Cf//wHQggcPnwYhYWF8PX1tWW4pJacs0BxOqD1AcJ6qx2N64oeJv9057qc24eB0hzAKxQI7aF2NEREROQkbDqSs2jRIgByDU50dDTi4uIqJTiW6tOnj/56eXk5zpw5Y5MYyQkoozgRAwCtt7qxuDKlLqe8UK7LcUdK6+jou3muJSIiItKzWZKTmpqKo0eP6psFLFq0CA0bNqz19qKiohAZGam/fe7cOVuESc5AfxJQto6uE0m6M2XNXetylNbRDTlVjYiIiO6wWZKzf/9+faMADw8PTJ06tc7bjIiI0F+/detWnbdHTsCwHodNB+pOaSXtjnU5pbnArYPyddbjEBERkQGbJTk3b94EINfbtG7dGv7+/nXeZlBQkP66ufPskAvKuwQUXgM0nkB4f7WjcX3KSE76fqC8WNVQHC41DhBlQEBLIKCF2tEQERGRE7FZkpOdna2/bpic1EV+fr7+OpsO1BPKVLXwvoAH/0/rzLAu57ab1eUo9TgcxSEiIiITNktyQkND9dcNE566UEaHACA8PNwm2ySVsXW0bRnW5bjblLWbPD8OERERmWezJCc6OhqA3FktKSkJJSUlddrehQsXjOpwmjZtWqftkZNg0wHbU1pJu1PzgYKrQM4ZABLQYLja0RAREZGTsVmS07v3nfOdlJSU4Ndff63T9r799lv9dS8vL/Tvz/oNl5efAuRfBiQtEDlQ7WjqD6X5wK0D7lOXo4zihPWWz5FDREREZMBmSU7Tpk3RsWNH/Yk+33rrrVpv68aNG/jggw/07agHDx4MHx8fW4VKalGmqoX1AjwD1Y2lPgnqAHhHulddzo2Kehy2jiYiIiIzbHoy0BkzZkAIAQDYs2cP/v3vf1u9jdzcXEyaNAmZmZn6bc2aNcuWYZJalKlqUZyqZlOSdGc0J3WXqqE4hBBAKutxiIiIqGo2TXJmzpyJ5s2bA5Brc1599VU8++yzFjci+Pnnn9G3b18cPHhQP4rTp08fjB071pZhklrYdMB+3Kn5QFYiUJQGaP2AiAFqR0NEREROyMOWG/P09MR3332H4cOHo6ioCEIIfPrpp/j6668xbtw49OrVC4CcAEmShM2bN+PYsWP4448/8Ouvv+LixYv6x4QQCAsLw3fffWfLEEkthTeA3PMAJCBysNrR1D+mdTlab1XDsSuldXTUXfX7eRIREVGt2TTJAYB+/frhf//7H6ZOnYqioiIA8vluvv/+e3z//ff65YQQeO+994xuA9AnOMHBwVizZg1atOBJ/uqFtL3yz9BugFeIqqHUS0EdAJ8oeYTj9mEgaojaEdkPW0cTERFRDWw6XU0xbtw4HD58GB07dtSPzCiUaWhKMmOY3Cj3derUCYcOHUJsbKw9wiM16OtxOFXNLgzPl1OfW0mXF985lth0gIiIiKpglyQHADp16oTff/8dq1atQt++fQFAn9QYJjeG93fq1AlfffUVjh8/jrZt29orNFIDmw7YnzJlrT7X5dw6IHeR84kGgjurHQ0RERE5KZtPVzOk1WoxdepUTJ06FRkZGdi3bx/OnDmD27dvIysrC35+foiIiECLFi0wbNgwNGrUyJ7hkFqKbgHZp+TrkfV4GpXalJGc+lyXo7SObjBCHr0iIiIiMsOuSY6hsLAw3HfffbjvvvsctUtyFukV9TjBHQGfSHVjqc+C2hvU5Ryqn6NmrMchIiIiC9htuhqRHltHO0Z9r8spzgAyEuTrDUaoGwsRERE5NSY5ZH9KPU5kPRxZcDb1uS4n9VcAQu4k59dY7WiIiIjIiTHJIfsqyQIyf5evR3Mkx+6ihsk/b8UD5UXqxmJryvlxOFWNiIiIasAkh+wrfT8AAQS2AXwbqh1N/RfUTu48Vl4kny+nPlHqcdg6moiIiGpg18YD5eXlSEhIwG+//YaUlBTk5OSgsLDQqH20JSRJwhdffGGnKMmu2DrasZS6nJTv5bqc+vJ7z7skXyQP1nYRERFRjeyS5GRnZ+P111/HN998g/T09DptSzmZKJMcF8WmA44XHSsnOWlxAF5VORgbUVpHR/QHPAPVjYWIiIicns2TnPj4eEyYMAHp6elGIzYSz2nhfkrz7nTDqi8jCq5A6bCWfkCetqb1UTUcm2A9DhEREVnBpjU5p06dwujRo5GWlqYfgVEIIWp1IRd26wAgygH/GPlCjqHU5eiKgVuH1I6m7nTlFZ3VwCSHiIiILGLTkZyZM2ciLy9Pn9wIITBq1CiMHz8eXbp0QXh4OPz8/Gy5S3JmnKqmDsO6nLQ41+9ql3kMKMkEPIOA8D5qR0NEREQuwGZJzsWLF7F3715IkgQhBEJDQ/Hjjz8iNjbWVrsgV8OmA+qJHnan+UCX+WpHUzfKVLXoYYDGrr1SiIiIqJ6w2XS1/fv3A7jTKOCzzz5jguPOygrvtDDmSI7jKScFrQ/ny1FaR3OqGhEREVnIZknOzZs39ddDQ0PxwAMP2GrT5IpuHwJ0JfK5cQJaqR2N+wlsC/g0cP26nLKCinMtgUkOERERWcxmSY5WqwUgd1Fr2bIlu6m5O/1UtaFyjQg5liTdGc1J3aVqKHWStkdOlv2ayieUJSIiIrKAzZKcZs2a6a8XFbn49BiqOzYdUJ/SSjotTs0o6sawdTSTZSIiIrKQzZKcgQMH6psOXL58GWVlZbbaNLma8hK5FgRg0wE16etyDrpuXQ7rcYiIiKgWbJbkNG7cGCNGjAAA5OfnY8uWLbbaNLmajASgvBDwjgCCOqgdjfsyqss5qHY01itMBbJOyNcb3K1uLERERORSbHoy0Lfeeguenp4AgJdeegn5+fm23Dy5CsPW0ZxipB5JktsuA3IraVejjOKEdgd8IlUNhYiIiFyLTZOc7t274+OPPwYAnD9/Hv/3f/+HtLQ0W+6CXIFh0wFSlzJlzRXrcgzrcYiIiIisYNMkBwCeeOIJrFy5Er6+vti9ezc6deqEBQsWIDExEUIIW++OnI2u7E7LXyY56lOaD7haXY4QrMchIiKiWpOEnTKPS5cuYdy4cThz5oy+nbSnpyfCwsLg4+NjXZCShIsXL9ojTFXk5OQgODgY2dnZCAoKUjsc27p9BPi5L+AZAjxwC9Bo1Y7IvQkBrGsMFN4A7v71zvQ1Z5d9BtjcEdB4A5MyAQ9ftSMiIiIilVnzGdrDHgHs378fs2fPxtmzZ/Ud1wCgpKTE6KShluI5d1yIvnX0ECY4zkCS5NGc5O/kuhxXSXKUqWqRg5ngEBERkdVsPl3tww8/RGxsLBISEvTJjSRJtb6QizFsOkDOwRXrcpSpag05VY2IiIisZ9ORnM2bN+O5556DEEKfpCiJjpeXF4KDg+Hn52fLXZIz0ZUDaXvl66zHcR5RFaM3tw4CZYXOPzKiK73TDY71OERERFQLNk1yZs2apU9whBCIiorC7Nmzcd9996Ft27bQaGw+cETOJPskUJoFeAQAoT3UjoYUga0B30ZA4XXg9kHnn7J26xBQlgt4h8vto4mIiIisZLOs4+DBg7h48aJ+ilnXrl1x6tQp/POf/0T79u2dJsE5evQo3nzzTUycOBFNmjSxeFrcihUr0LdvXwQEBCAsLAxjxozBgQMHHBCxC1GmqkUOAjR2Kfei2lDqcgDXOF+OUo8TfTcgOcfrBhEREbkWm30SPXbsGADoR3I+//xzhIeH22rzNrNo0SKsX7/eqnVmzZqFZcuWwdfXF6NGjUJRURF27NiB7du3Y82aNbj//vvtE6yr0Tcd4FQ1pxMdCySvco26HLaOJiIiojqyWZKTnZ2tv964cWP07t3bVpu2qQEDBqBr167o06cP+vTpg+bNm6O4uLjK5Xfu3Illy5YhPDwc8fHxaNOmDQAgPj4esbGxePzxxxEbG4uQkBAHPQMnJYRBksOmA07H8Hw5zlyXU5IN3D4kX2fTASIiIqolm80FiYyMBCB3UmvUqJGtNmtzL730El577TWMGzcODRo0qHH5pUuXAgDmzp2rT3AAOVl6+umnkZWVhS+++MJu8bqMnDNAcTqg9QXC+qgdDZlS6nJ0JcCteLWjqVpaHCDKgYDWgH+M2tEQERGRi7JZktO0aVP99ZycHFttVlWFhYX49ddfAQCTJk2q9Lhy38aNGx0al1NSRnEiBgBaL3VjocoM63KcecrajYp6HI7iEBERUR3YLMkZPHgwAgICIITAxYsX60Wic+7cORQXFyMyMhJNmjSp9HjPnj0BACdOnHB0aM6H58dxfkpXNWduPpDKehwiIiKqO5slOf7+/pg8eTIAoKysDF9//bWtNq2alJQUADCb4ADycw4JCUFmZiZyc3MdGZpzMarHYdMBp6WcFPT2IaCsQNVQzMq/AuSckzuqOXubayIiInJqNu3PumjRIn1Htfnz5+PcuXO23LzD5eXlAUC1JzD19/cHgGqTnOLiYuTk5Bhd6pW8i/I5WDReQHg/taOhqgS0AnwbV9TlHFQ7msqU1tFhfQCvEFVDISIiItdm0ySnUaNG2LBhA4KDg5GZmYlhw4Zhx44dttyFS3rjjTcQHBysvxjWL9ULylS18L7O27WL5LocZTTHGetylCSHU9WIiIiojmx6xsaUlBQ0btwYP/zwA5566ilcvnwZ99xzDwYOHIjJkyejV69eiIyMhI+Pj9XbbtasmS1DtUhAQAAAoKCg6qk9+fn5AIDAwMAql5kzZw5mz56tv52Tk1O/Eh1OVXMdUbHA5W+B1F1qR2JM6ICbv8jX2XSAiIiI6simSU7z5s0hSZL+tiRJEELgwIEDOHDgQK23K0kSysrKbBGiVZTE6urVq2Yfz8/PR1ZWFkJDQ6tNcry9veHt7W2XGJ0Cmw64DtO6HI+qp2I6VNYJuQW5hz8Q3l/taIiIiMjF2XS6mkIIob+uJD1CiDpd1NCuXTt4e3sjPT0d165dq/T4sWPHAABdu3Z1dGjOIz9ZvkhaIGKg2tFQTfR1OaXOdb4cpXV01FC2ICciIqI6s0uSA1ROalyRr68vhg8fDgBYvXp1pcfXrFkDABg3bpxD43IqylS1sF6AZ4C6sVDNJMk5W0nfZOtoIiIish2bTlebNm2aLTfnFGbPno2tW7fi9ddfx9ixY9GmTRsAQHx8PD777DOEhITgiSeeUDlKFemnqrEex2VExwKXVzpP84HyIiC9IllmkkNEREQ2YNMkZ/ny5bbcnF1s3rwZixYt0t8uKSkBAPTvf6cOYN68eRg7diwAYMSIEXjuueewbNkydO/eHSNHjkRJSQl27NgBIQSWL1+OkJAQhz4Hp8KmA64nKlb+6Sx1Oen75UTHtyEQ3FHdWIiIiKhesGmS4wrS09Nx6NChSvcb3peenm702HvvvYfu3bvjww8/xI4dO+Dl5YURI0Zg3rx5GDjQjetQCm8AuRcASEDkILWjIUsFtAT8mgAFV4FbB4AGI9SNR2kdHT1Cnk5HREREVEeScNWCGReWk5OD4OBgZGdnIygoSO1wai/5e2D/VCC0B3DvMbWjIWsceFSestbpX0C319WNZVtvIOMoMOBroMWj6sZCRERETsuaz9B2azxAboCto12Xs5wUtPg2kFGRIKs9okRERET1BpMcqj02HXBd+rqcw0BZvnpx3PwFgACCO8k1OUREREQ2wCSHaqcoHcg+LV+PHKJuLGS9gJaAX1P1z5ej1OOwqxoRERHZEJMcqp30vfLP4E6AT4S6sZD1JOnOaI5a58sRgkkOERER2YVF3dWUE2IqJEnCL7/8UuNytlLV/khFbB3t+qJjgcvfqFeXk3cRyE8GNJ6s6yIiIiKbsijJiYuLg1TR2lUIob9e3XK2Ut3+SEVsOuD6lOYDSl2Oh79j96+M4kQMADwDHLtvIiIiqtc4XY2sV5IJZB6Xr3Mkx3X5t7hTl5N+wPH7v8GpakRERGQfFic5Qggop9Sp7tQ6ynK2upATSt8PQACBbQHfBmpHQ7VlWJfj6ClrunIg9Vf5OpMcIiIisjGLpqvpdDqLNmbpcuTiOFWt/ogeJtflOLr5QEYCUJoNeAYDYb0du28iIiKq9yxKchSvvfYaALkRwKOPPormzZvbIyZydmw6UH+oVZej1ONEDwc0Wsfsk4iIiNyGVUnOggUL9E0ABg0axCTHHZXmAhlH5escyXF9/s0Bv2ZAQYpcl9PQQVPHbu6Ufzpqf0RERORWrG48wDoZN5d+ABDl8odj/2ZqR0N1JUl3RnMcVZdTmgfcqmh0wHocIiIisgOrkxy2c3Zz6ZyqVu/oTwq6yzH7S9sjd3TzjwECWjlmn0RERORW2EKarMOmA/WPvi7niDzKYm83DVpH80sTIiIisgMmOWS5skK5QB3gSE59otTliLI708jsSanH4VQ1IiIishMmOWS52wflaUa+jYCAlmpHQ7YiSXIracD+raQLbwDZJwFIcmc1IiIiIjtgkkOWS1Wmqg3lNKP6xlHNB5RRnNAegE+EffdFREREbotJDlmOTQfqL6X5gL3rcm5U1OOwdTQRERHZEZMcskx5MXArXr7OpgP1T0BzuduZKAPS99tnH0IAqazHISIiIvtjkkOWyUgAyosA70ggqL3a0ZA9KKM59pqyln1arsnR+gCRg+yzDyIiIiIAHrVd8YUXXkBoaKgtY6mSJEn45ZdfHLIvqoJh62jW49RP0bFA0lf2az6gtI6OHCInOkRERER2UqskRwiBEydO2DqWKvfFE5A6AcOmA1Q/KSM5GRV1OZ4Btt0+W0cTERGRg3C6GtVMVwbcqqjTYD1O/RXQXD5njii3fV1OecmdaXBsOkBERER2VuskRwjhkAs5gYxjQFk+4BUKhHRROxqyJ3u1kr59UD6GvCOBkK623TYRERGRiVpNV5MkCS+++CI6duxo63jIGSmtoyOHABIH/+q1qFjg0grb1+UoraMb3M1jiIiIiOyu1o0HRo8ejeHDecZyt5Bq0HSA6jel5irjCFCaC3gG2ma7rMchIiIiB+JXqlQ9XTmQvle+zqYD9Z896nJKsoCMw/L1BiNss00iIiKiajDJoeplJwKl2YBHIBDaXe1oyBFsXZeTugsQOiCwLeDfzDbbJCIiIqoGkxyqnjJVLXIQoKn17EZyJUoraVvV5Sjnx+FUNSIiInIQJjlUPaXpAKequQ9lJCcjQa7LqSulHoeto4mIiMhBmORQ1YQA0pQkh00H3IZ/DODfwjZ1OfnJQO4FQNLeGSEiIiIisjMmOVS1nDNA8S1A6wuE9VY7GnIkW9XlKK2jw/sCXsF12xYRERGRhZjkUNXSKupxIgYAWi91YyHH0tfl7KrbdliPQ0RERCpgkkNV058fh/U4bidaOV/OUaA0p3bbEDog9Rf5OpMcIiIiciCrkxwhBIQQ9oiFnIkQbDrgzmxRl5P5O1B8G/AIACL62TQ8IiIioupY1RM4KSlJf71BgwY2D4acSO4fQOENQOMl11OQ+4keBlxKkltJN7rX+vWVqWpRsYDG05aREREREVXLqiQnJibGXnGQs1FGccL7AR6+6sZC6oiOBS59WfvmA2wdTURERCphTQ6Zp6/HYetotxVVh7qcskIgba98nfU4RERE5GBMcsi8NDYdcHv+zYCAlnJdTto+69ZN3wfoigHfRkBQe/vER0RERFQFJjlUWX4yUJACSB5A5EC1oyE1Ka2krZ2yZtg6WpJsGRERERFRjZjkUGXKVLWwXoCHv7qxkLqUk4Kmxlm3nlKPw6lqREREpAImOVQZW0eTQhnJybSiLqcoHcj8Tb7eYIRdwiIiIiKqDpMcqoxNB0jh3xQIaCWf2NPSupybFScADekC+EbbLzYiIiKiKjDJIWMF14G8PwBJA0QOVjsacgbKlDVL63IM63GIiIiIVMAkh4ylVUxVC+kOeAWrGgo5CWXKmiV1OUIwySEiIiLVMckhY2mcqkYmlNqszKNASXb1y+ZeAAquABovIGqI/WMjIiIiMoNJDhlj0wEyZViXk15DXY4yihMxkJ35iIiISDVMcuiOonQg+7R8nfU4ZMjSuhwlyWnIqWpERESkHiY5dIdSjxPcGfCJUDcWci6W1OXoyoDUXfJ11uMQERGRipjk0B1pnKpGVVBGcjKPVV2Xc/uIfC4dr1AgtKfDQiMiIiIyxSSH7mDTAaqKXxMgoHX1dTnKVLXo4YBG67jYiIiIiEwwySFZSSaQdUK+ziSHzKmpLufmTvknp6oRERGRypjkkCxtHwABBLYFfBuoHQ05I31dzq7Kj5XmArfi5etsOkBEREQqY5JDMv1UNdbjUBWilfPl/AaUZBk/lrYbEGWAfwsgoKXDQyMiIiIyxCSHZGw6QDWpri7nBltHExERkfNgkkPyVKPMY/J11uNQdZS6HNNW0qmsxyEiIiLnwSSHgPQDgCiXpxr5N1U7GnJm0cPkn4bNBwquVZxEVpI7qxERERGpjEkOsXU0WS7KTF2O0lUtrBfgHaZKWERERESGmOS4oXKdQPzF21j/+zXEX7wNwaYDZCm/xkBgG+O6HOX8OJyqRkRERE7CQ+0AyLG2nbyBhRtP40Z2EQDARypCYufD8JRwp3uWmyvXCRxOykBabhGiAn3Qt0UYtBpJ7bCcR1QskHtBbiXdaOydkRw2HSAr8W+NiIjshUmOG9l28gaeWXkMwuC+Hn7n4CmV4UZJOI4n+eCeLqqF5xRMk0AAaBjsg/njOuKezg1VjMyJRMcCF/8rNx/IPgkUpQJaXyBioNqRORV+gK8e/9aIiFyHK76nMclxE+U6gYUbTxslOADQL+AkAOBQfme8tekMRnZq6PQHrb2YSwIB4GZ2EZ5ZeQyfPNKTH76AOycFzfwNSFldcd9dgNZbtZCcDT/AV49/a0RErsNV39OY5LiJw0kZRgenop+/nOQczu+MG9lFmPqfeEQF+kCSAK1GgkZSLvJtSZKg1QBaSbkuP6apWFYrSRXXYXDdZH2jbVWsX7Ef+X758Wr3UXG7uvUN79MvozFeX9megMD8DacqfegCAAFAArBw42mM7NjAbZNAPb9GEAFtIOVdQNmpxfAAoIsazgK/Cu7yAV6nEygXAuU6gTKdQHm5QJlOd+e2/qcOZTqBsnL5vuIyHf7108kq/9YAYP6GUxjSJhJ+XlpIknv/vbnit6eOxt9Rzfg7qh5/P1Vz5fc0JjluIi23coLjJZWih985APJIDgAcuZzp0LhchQBwI7sIo9/bjeggH/h5ecDPS6v/6e+lha+XB/y9tfD11MLf2wO+Xlr465erWNZbCz9PLTy0rpsS/Lb/C7TPuQJfDeAh5OMq89ibSMkKR49BT6gcnbpKynTVJssA8K+fTiLIxxMCuJMElIsqk4NygwRBn1SUmzyu/6kzWr7S/SbbM5+UVNxfLt/WCcMk5s7jOnNP0kZSc4rRaf7P0Gqkir8v+W8nwNvD4LYH/Cv+rvy9TX56afWP+3t76Nf39/KAj6fGZRInV/321JH4O6oZf0fV4++nalXNAgJc4wtgSQhhx7cqMicnJwfBwcHIzs5GUFCQQ/YZf/E2HvzvQaP7evudwprWLyG9NAR9znwDQMKfBzVH8wh/lOsEdEL+tlYn5A9Xuor7ynUCQrnPcBkdoBPK9WrWFxXrV1rGcFsComJZncm+DfdhvAwM9m2yvMG+dQaPq8XLQ3Pnw5phElTx4czPUysnREaJVEXi5K2Fr6fygU5rlHB5edg3efpt/xfodvlJSAAMPycqv8vjzT93ikRHVzFiUFRajqKychSX6u78LC3XP3ZnGR2KK24XG9wuKtWhuEz+WWk7FT+LDW6XlvPlVCMBHhoNtBoJHhoJWm3FT40ED40GRaXluJ1folp8kgT9352/UdKkNbq/csJkZhmDv1eNjd/gq/r2VNmLM3976ij8HdWMv6PqOevvRwj5PaykXIeSMoNLxe1ik9vydfm9qNplTLdRrkNJWbnZ5YrLdCgoKUNhqa7GeL+b0R8DWoU74Ddj3WdojuS4ib4twtAw2Ac3s4v0f8xKPc7h/E6QIKFBsA/+NbajU2bj9iDEnSQp/uItPPblkRrXeWFkWzQL90N+cTkKSspQUFJecSkz/llcjvySMhSWyD+V5corsgHlRSSroNSmz8mj4ptv/aiRSZKkT6j0iZRxkiWPSFWMRHne+RDo7aGBrrwcjS6+DGiNExxA/mCrE0DDi3NQ3m8atB7yS4uSbCiJgj5hMJNoVPppwTKG21QSFOWF25lFB3kj1M/rTiJgcDFKEDQSPLQStBqNQaJg+FNT8biZ+yttt6btaQweN3O/0foV90vGSYwyRbU65r5wMeeLab3RqVGw/PdTrPwdlen/9vQ/S8pRUFzxs6QMecXGtw3/VgFACCCvuAx5xWVAbrFN/j8B3PkbMjOaZO7+gEqjT3eSKG9PDRZscN1vTx3B1b9htiXlvUwnBATkY1xAHrFdUMM07AUbTmNgqwirfke2+irHlt+x12ZL5brqp6kDwLx1pxAd5INynZA/+JsmEGUVSYJBglBcRVKhXC8uM71dXml5V/vCzNxsIWfAJMdNaDUS5o/riGdWHoME+Q/YsB4HAOaPc58EBwAkSa7f0UDCoNaRlZJAo2UBNAj2wcxhrWv9OxJCoKRch4LichSUyh/ECkoMk6FyFFZ8KCssLUd+8Z3ESX5Mvk957M465foP9WU6gZyiMuQUldX+F2OGRgIGB53E1zG3ql2mgUc6/vzOuzhS2FX/jZLaPDQSfDzlRM3HUwtvTw28PbTw8dTcua/ip4+H/LjR8h4aeBstI9/W/zTY3smr2ZjxzdEaY3rvTz0c9q2XszH3hYsh5W8ttl2UTV+PdDoh/+0YJU13/s7yi8vkS0n1SZR+3Yqfyiim8kXGrTybhVwlZfrs4Dd/ha+3FsCdb54B6KfjGd9ncL3iEXOz9gyn8plbv6btGG2ymjjMxWt4v7n9GK6UW1hqts5UofyO7l22BwHeHgYf/uUrAhVJgbhzv/KhW0kSDO8XFRs1vK1PLCqOAWGSZNxZX17ZdHvyvqu4brA8qoinrjmCAHAzpwhdF26v24bqsfS8Ykz4+IDaYcBLq4GXR8Wliuve1T6mrXEZLw8NvE1un76eg9k/HK8xvqhAHwf8FqzHJMeN3NO5IT55pCcWbjyN9Ow89PI7AwC4KPVy+yFrc0mgQnlfrWsSKEkSvD208PbQIrQuwZpRWq6rNJJkONJkNKpUbH70yVySVVwmJyk6AYRIty2KJUCkI9dMkqXVSPAxSSq8TJMMowSkip8mCYjx+ibJiYfGofVPUYE+Fn2A79sizGExORtH/K2Zo9FIFdPQPIBA22xTmVIiJ0iWjzaZPp5nmGgZjPjW5EaOc3576kzOpzog66R6LcTXEyF+nmYSAy28tBr5i7NqEgcvbUVyob+trbSsd1W3K+5Tq46wTVQgFv98zmXf01iTY6HCwkK88cYb+N///oeUlBSEhYXhnnvuwaJFi9C4cWOrtqVGTY6hcp3A6cQd6HJqNEo9QqF5IB1ardbhcTgjFiAaK9cJeU5uSTnOHd+IIVem1LjOr43+h+adxhqPdjg42VCTMscbMP8B3t2/UFDwb808IQT2Xki3aPrs/HEd0alRsNG0H+Wa4Tu7gNENo+UMlzVcTlRexex+UMV+7oxuWLgdo2XNbMdkufOpuVj2ywXU5PkRbdG+YWBFHaGkryeUpIoRIvkfNBUj+xKUn6h47M5tSTK8Li9g9BhgtA1U3Da3bWvWN/eYEp9G/5jxMpCAhMsZeOKrhBp/R1893gd9W9Q8sqzG5+za7lM/+leNQ5du49EvD9e4nCPrTZyRs72nWfMZmkmOBYqKijBs2DAcPHgQDRs2xJAhQ3D58mUcPnwYkZGROHjwIFq2bGnx9tROcqArB448C1z8DIgYBIzYDWiY5CjYStK88rIy3FrVEJHaWzD369AJIK08EpEPXdfX5LgrfoC3DP/WzCvXCQx+69cavz3d99Jwt/198XdUM/6Oqsffj+Wc6T2NSY6NzZ07F//+978xYMAAbN++HQEBAQCApUuX4oUXXsDQoUMRFxdn8fZUTXKurAWOPgcUXL1zn18ToNcyoOlEx8ZCLkfprgbAKNFxtu5qzoAf4KkunO3bU2fE31HN+DuqHn8/lnOW9zQmOTZUUlKCqKgoZGdn49ixY+jRo4fR4926dcOJEyeQkJCAXr16WbRN1ZKcK2uBvZNQuQ9JxUE6ZA0THarRb/u/QKOLLyPa404TgptlkbjR6g0mOEQ25Ezfnjor/o5qxt9R9fj7cS1Mcmxo165dGD58OFq1aoU//vij0uOLFi3Cq6++ivnz52PBggUWbVOVJEdXDmxobjyCY0SSR3TuS+LUNapReVkZziZuRmHOVfgGNUH7LmPdfooakT04y7enzoy/o5rxd1Q9/n5cB8+TY0PHj8ut83r27Gn2ceX+EydOOCymWknfW02CAwACKLgiLxcd66ioyEVpPTzQqcd4tcMgqve0Gsmti54twd9Rzfg7qh5/P/WTe7Q7qoOUlBQAQJMmTcw+rtyfnJzssJhqpfCGbZcjIiIiInJSHMmpQV6e3GPfz8/P7OP+/v4AgNzc3Cq3UVxcjOLiO2fWzsnJsWGEFvK1cF6ppcsRERERETkpjuQ4wBtvvIHg4GD9pWnTpo4PInKIXHNTZe94CfBrKi9HREREROTCmOTUQGkXXVBQYPbx/Px8AEBgYNWn0J4zZw6ys7P1lytXrtg+0JpotHKbaACVE52K273eY9MBIiIiInJ5THJq0KxZMwDA1avmi/aV+2NiYqrchre3N4KCgowuqmg6UW4T7dfY+H6/JmwfTURERET1BmtyatCtWzcAwLFjx8w+rtzftWtXh8VUJ00nAo3Hy13UCm/INTiRQziCQ0RERET1BpOcGgwaNAjBwcG4ePEifv/9d3Tv3t3o8TVr1gAAxo0bp0J0taTRsk00EREREdVbnK5WAy8vL/z1r38FADz77LP6GhwAWLp0KU6cOIGhQ4eiV69eaoVIREREREQGJCGEUDsIZ1dUVITY2FgcOnQIDRs2xJAhQ5CcnIxDhw4hMjISBw8eRMuWLS3enjVnayUiIiIiIus+Q3MkxwI+Pj7YtWsX5s2bBz8/P6xbtw7JycmYPn06jh07ZlWCQ0RERERE9sWRHBVwJIeIiIiIyDocySEiIiIiIrfFJIeIiIiIiOoVJjlERERERFSv8Dw5KlDKoHJyclSOhIiIiIjINSifnS1pKcAkRwW5ubkAgKZNm6ocCRERERGRa8nNzUVwcHC1y7C7mgp0Oh2uX7+OwMBASJKkdjhkRk5ODpo2bYorV66wAx7VGo8jsgUeR2QLPI6orpzhGBJCIDc3F40aNYJGU33VDUdyVKDRaNCkSRO1wyALBAUF8c2A6ozHEdkCjyOyBR5HVFdqH0M1jeAo2HiAiIiIiIjqFSY5RERERERUrzDJITLD29sb8+fPh7e3t9qhkAvjcUS2wOOIbIHHEdWVqx1DbDxARERERET1CkdyiIiIiIioXmGSQ0RERERE9QqTHHIrBQUFWLduHZ544gm0a9cOPj4+8Pf3R7du3fDaa68hLy+vynVXrFiBvn37IiAgAGFhYRgzZgwOHDjgwOjJWd2+fRtRUVGQJAmtW7eudlkeR2QqPT0dL774Itq1awdfX1+EhYWhZ8+e+Mc//mF2+Y0bN2Lo0KH6Nq6xsbHYvHmzg6MmZ3LkyBFMmTIFjRo1gqenJ0JCQjBkyBAsX77c7Jnhy8vL8e6776JLly7w9fVFZGQkpkyZgjNnzqgQPTnK0aNH8eabb2LixIlo0qQJJEmy6HyNtXnf2r9/P8aMGYOwsDAEBASgb9+++Prrr231VCwjiNzIf//7XwFAABAdOnQQkydPFqNHjxaBgYECgGjfvr1ITU2ttN5zzz0nAAhfX18xfvx4MXr0aOHh4SG0Wq346aefHP9EyKlMmzZNSJIkAIhWrVpVuRyPIzKVkJAgwsPDBQDRqVMn8ac//Unce++9IiYmRmi12krLv/vuuwKA8PDwEPfcc48YP3688PX1FQDEBx98oMIzILWtWbNGaLVaAUD07NlTTJkyRQwbNkx4eHgIAOKhhx4yWr68vFxMmDBBABAhISHigQceEEOHDhWSJAk/Pz9x6NAhlZ4J2dv48eP1n4EML9WpzfuWckxKkiSGDh0qHnjgARESEiIAiBdeeMEOz8w8JjnkVlasWCGeeuopcfr0aaP7r1+/Lnr06CEAiAcffNDosR07dggAIjw8XJw/f15//4EDB4SXl5cICQkRmZmZjgifnNDOnTsFAPHUU09Vm+TwOCJTaWlpIiIiQvj5+Yn169dXetz0w+bZs2eFVqsV3t7e4sCBA/r7z507J8LDw4WHh4e4cOGC3eMm51FaWiqioqIEAPHtt98aPXb69GkRFhYmAIhff/1Vf7/yZV+bNm3EzZs39fevWbNGABCtW7cWpaWlDnsO5DhvvvmmmDdvntiwYYO4ceOG8Pb2rjbJqc371u3bt0VQUJAAIH788Uf9/Tdv3hStW7cWAMSuXbts/dTMYpJDVOHAgQMCgPD29hbFxcX6+++9914BQLz77ruV1vn73/8uAIglS5Y4MFJyFgUFBaJVq1aiY8eO4vz589UmOTyOyNQzzzwjAIiPPvrIquWfe+65So8tXbpUABB//etfbRwlObPExEQBQLRr187s48pry1tvvaW/r0OHDgKA2W/h77vvPgFArFmzxl4hkxOpKcmpzfvWW2+9JQCI8ePHV1pn7dq1AoD4v//7v7qGbhHW5BBV6NatGwCguLgYt2/fBgAUFhbi119/BQBMmjSp0jrKfRs3bnRQlORMFi5ciEuXLuHTTz+Fp6dnlcvxOCJThYWFWLlyJfz9/fH4449btI5Sd8NjiBSWnq8kPDwcAJCUlIQzZ87A19cXY8eOrbQcjyNS1PZ9q7rXqbFjx8LHxwc7d+5EUVGRrUOuhEkOUYVLly4BADw9PREWFgYAOHfuHIqLixEZGYkmTZpUWqdnz54AgBMnTjguUHIKJ06cwDvvvIPHH38cQ4YMqXZZHkdkKiEhAbm5uejRowd8fX2xdetWzJ49GzNnzsR7772H69evGy2flZWFlJQUAECPHj0qba9p06aIiIhAcnIycnJyHPIcSH0tW7ZEq1atcO7cOaxatcrosTNnzmDlypUIDQ3FhAkTAADHjx8HAHTu3NnsFzN8LSJFbd+3lGNMedyQl5cXOnfujKKiIpw/f94OURtjkkNUYdmyZQCAe+65R//tmPKhwtwfOAD4+/sjJCQEmZmZyM3NdUygpDqdTocnn3wSISEhePvtt2tcnscRmTp9+jQAICoqCvfffz/GjBmDd999F5988gmef/55tG7dGt99951+eeUYCg0Nhb+/v9ltKsdXcnKynaMnZ6HVavHVV18hJCQEDz/8MHr16oWpU6di+PDh6Nq1K5o0aYJffvlF/8VdTa9FPIZIUZv3rZycHGRnZ1e7niOPMSY5RAC2bNmCL774Ap6enli0aJH+fqWltJ+fX5XrKh84+OHUfXzwwQc4cuQIFi9erJ8GUh0eR2QqMzMTALBhwwZs27YNH330EdLS0nD58mW8+OKLKCwsxLRp0/D7778D4DFEVRs0aBB2796Nli1b4tixY/j++++xa9cuaDQajBw5Ei1bttQvW9NxxGOIFLV5zTE8DYczHGNMcsjtnT17Fo888giEEFi8eLG+NofInJSUFMydOxdDhw7F9OnT1Q6HXJROpwMAlJWV4bXXXsPMmTMRGRmJmJgYLF68GJMnT0ZpaSkWL16scqTk7L777jv07dsXTZs2xaFDh5CXl4fz589j+vTpeOeddzB8+HAUFxerHSaRwzHJIbd27do13HPPPcjMzMTs2bPx3HPPGT0eEBAAQD6JaFXy8/MBAIGBgfYLlJzGs88+i5KSEnz66acWr8PjiEwpxwQAs40HlPt2795ttDyPITJ04cIFTJs2DREREdi0aRP69u0Lf39/tGnTBp999hn+7//+D8eOHcOXX34JoObjiMcQKWrzmmP4uuYMxxiTHHJbGRkZGDVqFJKTk/H4449jyZIllZZp1qwZAODq1atmt5Gfn4+srCyEhobyTcFNbNq0CX5+fnj66acRGxurv0ydOhWAnDgr9928eRMAjyOqLCYmBoA8pSMyMrLS482bNwcApKWlAbhzDGVmZuo/JJhSji9l21T//e9//0NpaSnuueceow+YiilTpgAA9uzZA6Dm1yIeQ6SozftWUFAQgoODq13PkceYh933QOSE8vLycO+99+L06dOYOHEi/vvf/0KSpErLtWvXDt7e3khPT8e1a9fQuHFjo8ePHTsGAOjatatD4ibnkJWVpf+G3VRRUZH+MaVFJo8jMqV0SCssLERxcXGlVsAZGRkA7nwzGhISgmbNmiElJQW//fYbBg8ebLT8lStXcOvWLcTExCAoKMgBz4CcgfKBUflgaUq5X6kBU6Zjnzx5EqWlpZU6rPG1iBS1fd/q1q0b9uzZg2PHjqFjx45Gj5WWluLkyZPw8fFB27Zt7fsEwJEcckPFxcUYP348Dh8+jNGjR+O7776DVqs1u6yvry+GDx8OAFi9enWlx9esWQMAGDdunP0CJqci5JMoV7okJSUBAFq1aqW/T/k2nscRmWrWrBm6desGIYTZhFm5z7BdtHJeE+V4McRjyD01aNAAgNyS3JwjR44AuDMy2KJFC3To0AGFhYX685kY4nFEitq+b1X3OrVp0yYUFRVhxIgR8PHxsXXIlTnklKNETqKsrExMmDBBABBDhgwR+fn5Na6zY8cOAUCEh4eL8+fP6+8/cOCA8Pb2FiEhISIzM9OOUZMrSEpKEgBEq1atzD7O44hMffvttwKA6NKli7h+/br+/t9++02EhYUJAOKHH37Q33/27Fmh1WqFt7e3iI+P199//vx5ER4eLjw8PMSFCxcc+hxIXUePHhUABADx8ccfGz0WHx8v/P39BQCxY8cO/f3//e9/BQDRpk0bkZqaqr//xx9/FABE69atRWlpqcOeA6nH29tbVJcK1OZ96/bt2yIoKEgAED/++KP+/tTUVNG6dWsBQOzatcvWT8UsJjnkVt577z39G8KECRPEtGnTzF7S09ON1nvuuecEAOHn5yfGjx8v7r33XuHh4SG0Wq346aef1Hky5FRqSnKE4HFElU2bNk0AECEhIWLMmDFi2LBh+g8eM2bMqLT80qVLBQDh4eEh7r33XjF+/Hjh6+srAIj3339fhWdAanvxxRf172udOnUSkydPFoMGDRIajUYAEE899ZTR8uXl5fov+0JDQ8WkSZNEbGyskCRJ+Pr6ioMHD6r0TMjeNm3aJPr166e/SJIkABjdt2nTJqN1avO+tWbNGqHRaIQkSWLYsGFi0qRJIiQkRAAQs2fPdsAzlTHJIbcyf/58/ZtBdZekpKRK6y5fvlz06tVL+Pn5iZCQEHHPPfeI/fv3O/5JkFOyJMkRgscRGdPpdOI///mP/pjw9/cXAwYMECtWrKhynQ0bNoghQ4aIgIAAERAQIIYMGSI2btzowKjJ2axdu1aMGjVKP6IXGhoqhg0bJlatWmV2+bKyMvHOO++ITp06CR8fHxEeHi4mTZokTp065eDIyZGWL19e4+ef5cuXm13P2vetffv2iXvuuUeEhIQIPz8/0bt372pf1+xBEkIIm8+BIyIiIiIiUgkbDxARERERUb3CJIeIiIiIiOoVJjlERERERFSvMMkhIiIiIqJ6hUkOERERERHVK0xyiIiIiIioXmGSQ0RERERE9QqTHCIiIiIiqleY5BARERERUb3CJIdIZXFxcZAkSX9ZsGCB2iGRFW7evIn58+dj8ODBiIqKgqenp9H/Z1xcnGqxrVixwiiWFStWVLu84bKxsbEOiZHIXS1YsMBpXisU06dPN4rp8uXLdtnP5cuXjfYzffp0u+zHmY0cOVL//P/xj3+oGotOp0OnTp308bz//vuqxmMrTHKIiGrp+++/R8uWLfHaa69h//79SE9PR1lZmdphERGRE1u7di127twJAAgODsacOXNUjUej0eD111/X316wYAFu376tYkS2wSTHzTVv3tzo2xRJktCqVSuUlpbWeVtZWVm2D5jISezbtw8PPfQQCgsL1Q6FiIhcRElJCV588UX97RdeeAFhYWFGy5h+LrPHxXT0bMKECejduzcAIDMzE/Pnz7f778LemORQJZcuXcKXX36pdhhETm327NnQ6XT620OGDMF///tfbN26FTt27NBfunXrpmKU5Io4bZCo/vr888+RlJQEAPD398ezzz6rckR3/POf/9Rf/+9//4uUlBQVo6k7D7UDIOe0aNEiTJs2DT4+PmqHQuR0zp49iyNHjuhvx8bG4pdffoFGw++NiIjIvKKiIvy///f/9LeffPLJSqM4anrggQfQqlUrXLx4ESUlJXj99dfxn//8R+2wao1JDpl17do1fPLJJ3j++efVDoXI6cTHxxvdnjFjRr1IcIQQaodA5DYWLFjARjNuZuXKlbh27Zr+9jPPPGN2uR07dli0vePHjxtNfYuOjsbKlSstWrdRo0aV7tNoNJgxYwZefvllAMBXX32FRYsWITo62qJtOhsmOVSlN954AzNmzEBAQIDaoRA5lfPnzxvd7tSpk0qREBGRqzDsWjZkyBC0a9fO7HIjRoywaHseHsYf4318fCxetyrTp0/H3LlzUVZWhpKSEnz66acuW5/j+l89kk0NHDhQfz09PR3vvfeeesEQOSnTphpBQUHqBEJERC5h7969SExM1N9+9NFHVYymatHR0Rg1apT+9n/+8x+j+lNXwiSHjLz++uuQJEl/e8mSJcjMzFQxIiLnU1RUZHTb8G+GiIjIlOE0Mo1Gg/Hjx6sYTfUmTJigv379+nX8+uuvKkZTe5yuRkZ69OiBBx54AGvWrAEAZGdnY/HixUaFcvXN7du3ceDAAVy7dg0ZGRmIiIhA37590b179xrX/eOPP3Dw4EFcv34dkiShUaNGiI2NRePGjW0WX1lZGQ4ePIiTJ08iIyMDQUFBaNq0KWJjYxEcHGyTfWRlZeHAgQO4ceMG0tPT4ePjg8jISPTo0QMdO3a0yT4MnTx5EmfOnMGNGzeQl5eH6OhoPPbYY/D09LT5vnQ6HQ4fPowLFy4gLS0N5eXliIqKQosWLTBw4MBa7VPt2pWCggLExcUhOTkZGRkZCA4ORocOHTBo0CDVmoUkJyfjt99+w9WrV5GTkwNJkuDv74+GDRuiZcuW6NSpU51iy8/PR3x8PK5du4b09HSUlpYiKCgILVq0QNeuXdGkSZM6P4dr167h6NGjuH79Om7fvo2QkBBMmDDB7Nx1QwUFBdi/fz+uXbuGtLQ0aLVaREVFoWPHjujZs6fTJMGuEqetJSUl4dSpU0hJSUF2djY8PDwQFhaGmJgY9O/f3y5TsvPy8rB//35cv34dN2/ehI+PD4YOHYqePXvabB9Xr17FqVOnkJSUhOzsbABAWFgYGjdujAEDBiA0NNRm+1Lcvn0be/fuxaVLl1BUVIQGDRqgbdu2GDhwoCp1ifY8pgsLC3H8+HGcPn0amZmZKCwshK+vL4KCgtC8eXO0b98eTZs2tWhbpaWlWL16tf72gAEDEBUVVevY7O2+++7DU089pX+vW7VqVZ2nwalCkFuLiYkRAPSXzMxMcfr0aaHVavX3+fv7i5s3b9ZqW1VZvny50bLLly+3Km7DdYcOHVrtskOHDjVaXnHmzBkxefJk4eXlZfS4cunRo4c4cOCA2W3++uuvon///mbXkyRJ3HfffSI5Odmi57Jr1y6j9efPny+EEKKkpES8+eabIjIy0ux+vL29xdSpU8XVq1ct2o85GzZsEHfddZfw8PAwuw8AolmzZmLp0qWiqKioTs+ntLRUvP/++6JTp05m91Pd8VIbqamp4tlnnxXh4eFVPrfAwEDx2GOPicuXL1v1nCy97Nq1y6bPKSMjQ/zlL38R/v7+VT6ff/7znyIvL08IYf3fmTV/V0IIUV5eLj777DPRtWvXGn8XXl5eYsCAAWLJkiWioKDA4ue8ZcsWMXz48Cr/TpVLhw4dxIIFC8T169etfn6bNm0Sw4cPFxqNptJ2f/rppyq3t2/fPnHvvfcKb2/vKuOKiooS8+bNEzk5OdU+T9PXKUsvyt9XdWwZZ20cOXLEaF+DBw+u1XZWrFhhtJ1nn33W7HKFhYVizZo14qGHHhINGjSo9ven1WrFqFGjrP5brep95dSpU+LBBx8Ufn5+lfb13HPPGW1j/vz5Vr1elJaWiq1bt4onnnii0vut6UWSJDFgwADx008/CZ1OZ/HzmjZtmtF2kpKShBBCJCUlicmTJxt9NjC8NGrUSCxZskSUlZVZtJ+kpCSj9adNm2ZxjELY95i+cOGCePTRR6t8nTV93o8//riIj4+vdptxcXFG682dO9eqmKpi+t4UExNjk+0KIYzeq6Ojo606jpwFkxw3V1ViYvpC9/e//73W2zJH7SRn3bp1wtfXt8YXME9PT7F27Vqj7S1YsEBIklTjug0aNBBnz56t8bmYSwoyMzPFoEGDLPqQExQUJLZs2WLV7y81NVXExsZa9WGqbdu24o8//qjV88nIyBCDBw+udvu2THK+//57ERgYaPFz8/b2Fh9++KHFz8nSiy2TnCNHjtT4gU25dOjQQVy5csWuSU5GRobFx6jp5cKFCzU+3+vXr4u77rrL6m1X92HJ9PnpdDrx17/+tdrtmUty8vLyxOTJk62Kq0GDBuLw4cNVxmaPJMcecdZWx44d9fuQJElcunTJ6m0MGzbMKNaq4uzVq1etfpfPPvusKC0ttSgWc+8rK1eurDYZr2uS88ADD9TqeU2cOFH/xUdNzCU5v/76q8Wvp/369RO3b9+ucT+1TXLsfUx//fXX1SZOVV0efvjharc7Z84co+V37NhhUTw1sWeSM3PmTKNtHz161GbbdhTW5JBZ8+fPN5rG89lnn+HKlSsqRmQ7+/fvx5QpU/Rnqvfx8UGHDh3Qu3dvREZGGi1bWlqKRx55BBcuXAAAvPnmm1iwYIF+CDc4OBhdu3ZF9+7dK015uHnzJiZOnIjS0lKr4tPpdJg8eTL279+vvy88PBw9evRAhw4dKk35ycnJwcSJE7Fr1y6Ltn/hwgX0798fcXFxRvdLkoTmzZujd+/e6NKlS6Xnc/78eQwYMKBSZ7GalJWV4b777sO+ffv094WGhqJr167o2rWrzabcKf773//iwQcfRG5urtH9AQEB6NSpE7p3746QkBCjx4qLi/HXv/4Vr732mk1jsZWTJ09i9OjRuHnzptH9Xl5eaNeuHXr16mU09eHMmTMYM2aM/hi3NSEExo8fb3SMAtBP2ezZsyf69euHjh07VvpdWyIxMRF9+/bFnj17Kj0WGhqKTp06oU+fPmjTpk2dpji+8sor+PDDD/W3fX190b59e/Tq1QsNGjQwu05aWhqGDh1qNPVE0aRJE/Tq1Qvdu3evNFXo5s2biI2NNfo7sCdni3PatGn660IIfP3111atn5KSYvSa1aFDB/Tp08fssqY1c4DcLrdz587o378/unTpYvZ156OPPsJTTz1lVVyKLVu24LHHHkNJSQkAueaiVatW6NOnD2JiYqDVamu1XUPmnldkZCQ6duyIfv36oVu3boiIiKi0zNq1azF+/PhaFY+fPn0a9913n/71VJIktGjRAr1790ZMTEyl5Q8dOoTRo0dXev21BXsf0zt27MC0adNQXFxsdL+fnx86duyI/v37o0ePHmjevLnVU/P27t1rdLt3795Wra+GXr16Gd0293rs9FROskhl1Y2+mGbxTz75ZK23ZUrNkZzmzZsLQB5mXrFihcjPz9cvq9PpxM8//yyaNWtmtM6kSZPEvn379NNZ+vTpI3bu3Gk0NF9UVCQ+/vjjSt8Cvf/++9XGZ+6bGOV6z549xa5du4yGiXNzc8Vnn30mQkJCKn1bVdNoSH5+vujQoYPRei1atBCfffaZyMjIMFpWmRrRs2dPo+W7d+9e7dQ10+cTHR2tvz5ixAixf/9+UV5ebvQ737Fjh8XT4apz9OhR4enpabT/Zs2aiR9++MFo+2VlZWLbtm1mp86ZGxXLyMgQO3bs0F9GjRpltM7KlSuNHlcupr/T2igpKRFdunQx2l9gYKBYtmyZyMrKMlr24MGDRqMfyrFu6d+ZpX9XP/zwg9Gy/v7+YvHixVVOa01JSRFfffWVmDhxovDw8Kh2JCczM1O0aNHCaPsajUb8+c9/FgkJCZWmTBQWFoq9e/eKWbNmiYiICItHciIjI/V/z23atBGrV68WhYWFRssnJiaKixcv6m+Xl5dXGk2IjIwUixcvFjdu3DBat7y8XOzbt08MHz7caPkmTZqIW7duVYotISFBf9wYLt+1a1ezx5ZyMYzPEXHW1rVr14ymA7Zq1cqq9V9//XWj+N58880ql+3UqZNo1qyZeOGFF8Qvv/wisrOzKy2j0+nE8ePHxTPPPFNpCpbp6L05pu8ryutccHCweOedd0R6errR8jdv3hSHDh0yus/akZyxY8eKiIgIMXPmTLF58+ZK+1BcuHBBzJkzR/j4+Bhtf+nSpTU+L9ORHOX9SJIk8be//a3SNOw//vhDPP7445VeR59++ulq92PtSI4jjmnD0UYAYtiwYSIuLs7sFLyCggJx4MABMXfuXNGyZctqR3LKy8tFQECAfruNGzeu9rlaw54jOYcPHzbadk2jVc6ISY6bqy4xuX79utGULg8PD3H+/PlabcuUmkkOANGuXTtx7dq1Ktc5d+6cUbKi1WpFmzZtBCAnPCUlJRY/t27dulUbX1VTocaMGVPtfs6fPy+ioqKM1pk5c2a1+3r66aeNlh83bpzIzc2tdp2ioiIxYcIEi98sq3o+s2bNqnY/daXT6SolA926dav2OCwqKqr0RtiwYcMaa0aqmrduD2+99ZbRvkJDQ0ViYmKVy+t0OvHoo4+a/T+wVZJjOl3k119/tfj5pKSkVHvMTZ061WjbQUFBFm8/Pz+/2rnx5n4nQ4YMqfFvQPHmm28arduvXz+Rmppa7Trl5eWVpsTVNP3Xmtc3NeO01ujRo422v3fvXovXbdu2rX49jUZTbS3inj17LK4NEUKI7du3G73e9+3bt8Z1zL2vNGjQQJw5c8bi/Vqb5Bw4cKBSIl6d3377TYSFhRl9uK5pOp7paxsgJzjffPNNteu99957ldY5ePBglctbm+TY+5g+deqU0XLDhg0z+jKupv2cO3euyscvXLhgtO3hw4dbtF1L2DPJycnJMdp2586dbbZtR2GS4+ZqSkxefPFFo8cffPDBWm/LkJpJjqenpzh+/HiN+zBNCACI1q1bG438mKPT6US7du2M1quuGNpcUtCwYUOLiiW3bdtmtJ6vr2+lb/cVKSkpRg0GunbtavHoSX5+vtGoQExMTJUfIsw9n4EDB9q9aPHnn3822qefn59FzR+ysrIq1bp8/vnn1a7jqCSnrKxMNG7c2Ghfa9asqXG9kpKSSt9KWvJ3ZunfVbdu3fTLtW/f3spnVbUzZ84Y1btJkiS2bdtms+2b/j5CQ0MrfQtclfz8fKMPjA0bNrSo9kAI+f/RsFFJQEBAta+PdUlyHBmntVatWmX03GbMmGHRevHx8UbrjRo1ymYxKebOnWu0j1OnTlW7vLkkx9pj1dokpzY+//xzo31s3ry52uXNJTl//etfLdqX6RcU1X1esCbJccQx/dNPPxnF87///c+i7Vti+/btRtt+7LHHbLZteyY5QgijEajAwECbbtsRWJND1Xr55ZcRGBiov/39998bnczKFU2ePBldu3atcbn77ruv0n0vv/wy/Pz8ql1PkqRK6/72229WxTh37lyj33tVRo8ejeHDh+tvFxYW4rvvvjO77EcffYSysjL97cWLF8Pb29uiePz8/PD888/rbycnJyMhIcGidQHgtddes3t72s8//9zo9vPPP49mzZrVuF5wcDAWLFhgdN9//vMfW4ZWa9u3b8e1a9f0t/v06YMHHnigxvU8PT3t2vbdsNbHlm2/33//faP23I888ghGjx5ts+2bevbZZ6usvTH19ddfIyMjQ397wYIFCAsLs2hdrVaLOXPm6G/n5eXh559/ti5YCzlznPfff7/RiXNXr15tts7E1FdffWV027C+x1YeeeQRo9sHDhywav3Bgwfb9VitralTpxrVA1n7vHx8fLBw4UKLln3zzTeNalXWrl1b6cTJteGIY9q0ftGWr2um9cwNGza02bbtzTDW3Nxcm/x/OhKTHKpWeHg4Zs+erb+t0+kwb948FSOqu8mTJ1u0XOfOnY1uS5KEiRMnWrRuly5djG6npKRYFhzkF9epU6davLzpG75pQwHFli1b9NcbNGhgdc97wzMgA5ULKasSHR1tlIjZi2lR5OOPP27xug8++CB8fX31t48ePYqCggKbxVZbpv+Xjz32mMXrjh07tlIjDVsxPG/M6dOnrU7iq7J9+3aj23//+99tst2qPPjggxYva/j34+HhYdXfKADcfffdRh8ALf37sZYzx+nr64spU6bob2dlZWH9+vXVrlNcXIzvv/9efzsoKMjoRIW20qJFC6Pb1h7T1hxLjuTv72/UlMTa5zV27FiLE4qYmBgMHTpUf7u4uBgHDx60an/mOOKYNj0X1rfffmtllFVTzmGksMd5mezFNFbT5+LsmORQjWbPno3w8HD97fXr1+Pw4cMqRlQ3ph1DqmL4nAH5TdDSk6uZrpuTk2NZcAC6du1q8ZsKAMTGxhrdNvd/k5mZiZMnT+pv9+zZ0+ruMKajImfOnLFovd69e9t9FOfy5ctITU3V346JiUGrVq0sXj8oKMio2015eTmOHDli0xhrw/T/0vT/ujoeHh4YNGiQjSOSjRw5Un+9vLwc99xzDz7//PM6JYY3btzAxYsX9bejoqLs2oEoMDAQHTp0sGhZIYRRJ7m2bdsajUhYwt/f3+h1wdK/H2u4QpzTp083ul1Tl7WNGzciMzNTf3vy5MlGX0jU5PDhw3jllVcwZswYtGzZEmFhYfD09IQkSUYX01HtW7duWbwPAOjbt69Vy9fVqVOnsHDhQowfPx5t2rRBREQEvLy8Kj0vSZJw48YN/XrWPi9rXnPMLV/XzwqOOqb79etntN21a9diypQpNpm5Yvq6aM3xqzbTmSv5+fkqRVI7THKoRkFBQXjppZeM7vvXv/6lUjR1Z+m326Z/3NZ8K266rjWtfE1HkGrSrFkzoxfn5ORkoyk/AHDu3Dmj+7Zs2WL2zbC6i7+/v9E2DacPVMf0G1J7SE5ONrptyXREU926dTO6bc3om70kJSXpr2u1WrRv396q9U1HFG3l6aefRnR0tP52WloaZsyYgcjISIwfPx7vvfcejhw5YlX7dMMEB7D8y4jaiomJsTj5Tk1NNTreT58+bfXfjyRJSE9P12/D0r8fa7hCnIMGDULr1q31t7dv3270BYUp0yTI0qlqe/fuRbdu3dCvXz+88cYb2Lp1K5KSkpCZmWk0bbcq1k7LccTrHCC3Vx86dCg6d+6MBQsWYMOGDfjjjz9w+/Zti/7erH1e1r4fmS5v+BpWG446pn18fCp9zlm9ejW6du2Kjh07YtasWfjpp58qtfGvDdP3Z2fmSrGawySHLPLXv/7VaG7mzp07q5wW5exMzzNj7/UA614oTEeBLGE48qPT6SqNHN2+fdvqbdbE0mFra791qw3Db3oBmD1XRE1M1zHdphoMP5AEBwfDw8PDqvVrcyxZIiwsDJs2bao0t7ygoAAbNmzA888/j759+yIsLAxjxozB559/XuOHK9MPHoZTbOzBmuNSzb8fa7hKnIbTLsvKyqqcGpSeno6tW7fqb7ds2RKDBw+ucfufffYZhg4dihMnTtQ6RtNzpdTEEa9zmzZtQu/evet0vhJrn5e1ryGmy9e1hsORx/ScOXPMnifpzJkzWLZsGSZOnIiGDRuiffv2eO6553Do0CGL9mf6pacldWjOwvQLWtMvO50dkxyyiK+vL+bOnWt0nyuP5jizmhobmGP6wpOXl2d02x7FgpaeWM6WBZxVMX2+tXkhNl3HHiezs5bh87LFcWFLvXv3xsmTJ/GPf/yjyumVeXl52Lp1K2bMmIFmzZphwYIFVX7bbO7krfZkzXGp5t+PNVwlzkcffdRoFK2qKWurVq0yGnV57LHHahx927VrF5555hmjL5Y8PDwQGxuLl156CR9//DHWrFmDTZs2YceOHUaXurD369z58+cxadIk/clGAblOtF+/fnj++efxwQcfYPXq1di4cWOl52U46mota193anovspYjj2lJkvDZZ59h27Zt1SbT586dw/vvv4/+/ftj8ODBNTbhMT0hsjO8t1jK9P/P1ifvtjfrvhYkt/bkk09i8eLFuHz5MgC5S8vmzZsxduxYdQOrZ2pT12A6T9b0A6LpG9WwYcPwyiuvWB+cAUvrkxzB9PnWZt6w6TqWdLezN39/f/2onC2OC1sLCwvD22+/jddffx1xcXHYtWsXdu/ejYSEhErJTG5uLhYuXIidO3di+/btlY5J0993XT8c2ZJprB07dsSyZcvqtE17zMt3lTibN2+OoUOH6mcDHD9+HCdOnKg0zdSwq5okSRY13njhhReMEpyxY8fi008/RZMmTapdz9oRDkd7+eWXjWLs27cvvvrqK4umsNalJtLa152a3ouspcYxPXr0aIwePRpJSUnYvn074uLisGfPHly/fr3Ssvv378egQYOwcuXKKpsaNW3a1Oi2YY2UszOMNTAwsFLC5uyY5JDFvLy8sGDBAqPC0blz52LMmDFWv4g68kXX1VhbGAoYT/XRaDSVpk6YTsXy8fGxuruaMzNNuGozxcH09+4MSVxISIg+ycnOzkZpaalV3xjbY6qHOV5eXhg1apS+A19hYSEOHjyILVu2YNWqVUYfDvbv348XX3wRH3/8sdE2TEeD0tLS7B+4hUz/foQQTvn34ypxAnJtjeGU56+++grvvPOO/vbJkyeNOoENGTKkxrqX8+fPG63TuXNnrF27Fl5eXjXGY48aKVvJy8vD5s2b9bejo6Oxbds2i1+j6jL11tr3I9PXnLp+KFbzmG7RogX+8pe/4C9/+QsA4NKlS/jll1+wdu1abN++XT8iVFJSgsceewz9+vUze9qC5s2bG92+evWq3WO3hZycHKMvm0yfhyvgdDWyyiOPPGL0zdHvv/+ONWvWWL0d0/oWawrzDQsI6yPDLmiWSE5ONqrBMVdQbfrh4I8//qh9gE4oJibG6Pbx48et3obpOqbbVEPLli3118vLy3H27Fmr1q9LTUJd+Pr6YtiwYfqRX9OprZ9//nmlujHDYnRAbuPtLBo0aGD07W9ycrJVTRUcxVXiBIBJkyYZTW1atWoVysvL9bdrc24c03bFTz75pEUJDiB3K3NWx44dM5qm9uCDD1qc4Pzxxx91GqWy9v3ItBtZXRsyONMx3bJlS8yYMQNbt27F8ePHjV6fi4qK8NFHH1W5nuGxfu7cObvHagum7ze1aeijNiY5ZBWtVovXXnvN6L5XX33V6M3JEqYjDdV11zHlDK197SkxMdGqbxV3795tdNtcK9MmTZoYfYi8cOFCpROUubLmzZsbzTtPTk7GpUuXLF4/NzfXaF61h4eHXdsXW6pPnz5Gt03/r6tTVlZm1HpVLZ7/v707D4qy/AMA/l0WWAQWEAJBceSQWxBE0BaUmCzLwTEKIYqk5JgaM8qZyhoNaWjsZ4cj4oExaWMzkUNkBzbIBCoCo8SVoZyCEWIMxBGHK8f394fDDs9evO+yuxx9PzPvDO/6XO/67vu+3/d9n+cxMoL09HTmHffR0VGFTrv29vbg5uYmW+/q6uI14awuGRkZMcNxDw8Pc+50rImpNyn4DFqi73bOhLm5OTPv2L1792TzJI2PjzODEZiamnKa30z+POLh4cG5PUVFRZzT6ttsbhefY46y9DMdWnuu7tOrVq1SmDT66tWrStMaGBhAQECAbP3u3btz+snhJPmAdS6cE/miIIfwFhUVxfxg6+vr4ezZs7zKkL9LzmeCsqkTwy1Eo6OjkJOTwzm9/B3PqZOxTfXUU08x65mZmfwbN4fJb/eZM2c45/3mm2+Yp4lr167VqKO/tsnPOTHdnCJT5efna/Tqo67Iz9mjrG3y+2hGRoZO28SHfNuOHj2qs7qm3vXl+3quPts5U/Jz5kweywoLC5m+AJGRkZz6yMkHhFOffqgjlUrhyy+/5JR2Nmi6XYgIJ06cmFHd+fn5nC/I79y5wwQ5IpEI1q9fP6P6AebuPs3lmDZpw4YNzPpcelKtinwbN27cOEst0RwFOYQ3gUAA6enpzGdpaWm8HiF7eHgwF5GFhYWcRlGpqKiA77//nnM981V6ejqnEVgKCgqYO3WLFi1SOfP2W2+9xQxBfPToUaiqqpp5Y+eIxMREZv3zzz/n9O7zwMAAHDhwgPksKSlJm03T2ObNm2HZsmWy9YqKCvjuu++mzTc6OgrvvfeeLpvGG5c+T7t372Ymqf36669ld/dnW2JiItO/IDc3l+knoU1T+ydNDvTClT7bOVPh4eFMH4YffvgBBgYGNJ4bx97enllXdWdd3v79+3m9TaBvmm7XiRMnoKamZkZ1379/H1JTUzml3bt3LzNyWWRkpFY6qs/VfZpPP87Nmzcz6zMZBlxfpgasdnZ2zM3t+YKCHKKRLVu2MHcx2tralI48oopQKGR+9CMjI/DOO++ozdPS0gLR0dG8X42bjzo7O+H5559XGzg2NzcrjDYUHx+v8qTi4uICCQkJsvWRkRGIiIiA8vJyXm0rKipSOpfAbNu0aRPzzvDQ0BBs27ZN7TwfDx48gO3btzN3jR0cHOCFF17QaVu5EgqF8PrrrzOfJSUlqX1PHhEhMTFR6zPVTxoYGIAXX3yR19PXtrY2pu+egYEB+Pv7K6Rzc3NjvntEhO3bt3Oek2toaEihX4a2WFpaMpMFTkxMQGxsLPz444+8yqmsrISYmBi1aXx8fGR/d3d385qTTJ/tnCmBQAAvvfSSbP3+/fuQnZ0N58+fl322bNkyePzxxzmVJ5FImPWTJ09O2/8wKysLPv30U+6NngWBgYFM36K8vDwoKytTm+fnn3+GPXv2aKX+Y8eOqZzLaFJGRgbzBoJAIICUlBSt1K+PffrIkSNw7NgxXk9OP/nkE2Zd3QTGEomECYKKi4s51zMburq6mHPI008/PaMBo2YNkv+0FStWIADIlt7eXs55L126xOSVX6Yr68KFCwp5XnnlFezo6GDS9fT04OHDh9Ha2hoBAF1dXZk8YWFhausJCwtj0vPBp56piouLmbypqamc0079PwkMDMRLly7hxMSELP3g4CCeOnUKFy9ezORbsmQJ/vPPP2rbNTw8jAEBAUw+Q0NDfPnll7G8vBxHR0cV8vz7779YUlKC77//Pnp4eMjaqI1t17bKyko0MjJi6ndycsLc3FyUSqWydOPj43jx4kX09fVV2Ad/+eWXaeuJj49n8rS2tupsm6RSKXp7ezP1icVizMjIwP7+fibttWvXmP3dycmJyXf69Gm1dXHZ33t7e2Vp1q5dix9//DFWVlYy3++k/v5+zM7ORnt7e6bsbdu2qWxDX18furi4MOmFQiEmJCRgZWUl81tARBwZGcGSkhJ888030cbGBuPj42e0feqMj4/jli1bmHIEAgFGRkbir7/+ivfv31fIMzIygteuXcOPPvoI16xZw+k4dPjwYaYOKysrfPfdd/HcuXNYUFCAhYWFsqWlpWXW2qkNDQ0NTDtNTEyY9b179/Iq79FHH2XyOzg44Llz5xSObTU1NRgdHS1L5+XlpbfzyqTU1FSmjOLiYpVpY2NjmbQWFhaYlZWFIyMjTLrGxkZ87bXX0MDAAAEA7ezs0MbGhjm/qCN/bJs8HwkEAty9ezf++eefTPqWlhbcuXOnwnE0OTlZbT2tra1MenW/W0Td79MpKSkIAGhpaYk7duzAvLw8vHv3rtK01dXVGBMTw7TFwMAAf/vtN7XbkJSUxKT/+++/1abnQtn1gzZ88cUXTLkFBQVaKVffKMj5j5tJkIOI+MQTTygc3PiUFRERoZBPIBCgu7s7BgcH48qVK2UHawBAMzMzrKys1NvJSNOLopkEOfv371f4Xm1sbHDNmjXo7e2NixYtUvjORCIRFhYWcmpbe3u70ov7ye/X09MT161bh76+vujo6IgCgUAh3VwNchART506xewzk4tYLEZfX1/09/dXCBAnl7S0NE516DPIQUSsra1V2maRSISenp4YGBiIdnZ2zL/5+fnh8ePHmc+0HeRMXYyNjdHFxQUDAwMxODgYXV1dUSgUKqSztbVVuFCS98cff6Cjo6PSeqytrdHX1xeDg4PRzc1NIajVZZCD+DAIe+yxx5S2TSQSobu7O65btw5Xr16NK1asUPodTHcc6unpwUceeUTlsZXL70sf7dQW+cBk6nLr1i1eZZWWlirsEwCA5ubmGBAQgIGBgbhkyRKF415VVZXeziuT+AQ5zc3NaGFhobBdJiYm6Ofnh0FBQQq/GaFQiBcuXGDO83yDnPz8fBSLxbJ1gUCALi4uGBQUpHATZXIJCAhQuAEjj2+Qg6jbfXoyyFF2vPLx8cH169ejv78/WllZKU3HJRi/cuUKkycrK2vaPNPRVZAzNaB0cHDAsbExrZSrbxTk/MfNNMi5fv26ypMTl7J6enowKCiI08nc2toaL1++jIj8LlbmW5CTmpqKfX19GBoayul7EYvF+NNPP/HarsHBQYyLi1MawHBZNmzYoJVt15Vvv/2WOTFPt4hEIszMzORcvr6DHMSHT2nkAxlVi5eXF7a3t+Pp06eZz3UZ5HBZPD09saGhgdP2dnR0oEQi4V2HroMcRMTR0VHcs2cPGhoaavQ9LF++fNo6Ll++zOn/W93vSx/t1IaTJ08qrT84OFij8s6cOaM00FG2LF68WBZc8Nk/9B3kICIWFBSgubk5p+0yMTHBnJwcRMQZBTmtra1YVFSkNMBStgQFBWF3d/e0265JkIOou31aVZAz3SIUCvGDDz7g1HZExFWrVsnyhoaGcs6nii6CnHv37jHf72ycw7WF+uSQGQkKCoJnnnlG4/zW1tZQXFwM+/btUzkzsqGhIcTFxcGNGzfm5egemrC0tISioiI4ePCgwmRok4yNjSE6Ohpu3rwJERERvMo3MzODs2fPQk1NDcTGxnLqHOrp6QkpKSlQVlY25ztNRkdHQ3NzM+zatUthksmpxGIx7NixA+rr62HXrl16bCF/wcHBcOvWLUhKSlI58ptYLIa3334bKioqpp3hXVNWVlZQXV0NBw4cgJCQEBCJRNPm8fPzg4yMDPj999/B3d2dUz1Lly6F0tJSyMvLg5CQEBAKhSrTCgQC8Pf3h//973966V9haGgIn332GTQ0NEBycjLY2dlNm8fJyQmSk5Ph4sWLnAYT2LhxI9TX10NmZiZs3boVnJ2dQSwWMwMzzIV2akNMTIzC3GkAoNDnkKv4+Hi4cuWK2vOFiYkJ7Ny5E+rq6hRGMZyrnnzySaioqICtW7eqTGNoaAhRUVFQW1urtT5V4eHhUFtbC1FRUSp/hw4ODnDo0CEoLy8HGxsbrdSrjK726Q8//BBycnIgLi4Oli9fPm2Z5ubmEBcXB9XV1ZCWlsa5/VP7KV29epX33Gf68NVXX8HY2BgAPLzOePXVV2e5RZoTIPIYhJ8QHXrw4AGUlJRAU1MT9PT0gImJCbi6ukJYWNicmH1+toyNjUF5eTncuHEDent7wcLCAhwdHSE8PFwrI9cAPOzIWVVVBY2NjdDd3Q0DAwNgamoKVlZW4OrqCt7e3mBra6uVuvRtfHwcrl+/Dk1NTdDV1QUTExNga2sLLi4uIJFIwMjIaLabyNvQ0BAUFxfDnTt3oLe3FywtLcHLywtCQ0OVXizqklQqhZs3b0JzczN0dnbC4OAgCAQCsLCwACcnJ/D392dGiNNUb28vlJWVQWdnJ3R3d4NAIABLS0twdXWF1atXc7rY0RVEhLq6Oqirq4Pu7m7o6+sDkUgElpaW4OzsDN7e3rB06dJZa998a6c2tbW1QWlpKXR2doJUKgUrKyvw8PAAiUQyJ4aJ11RnZyeUlJTAX3/9BcPDw2BhYQErV64EiUSitfOCMt3d3VBSUgK3b98GqVQKdnZ24OHhASEhIbwCcG3R1T7d0dEB9fX10NraCr29vSCVSsHU1BRsbGzAx8cHfH19Od3gkSeVSsHV1RU6OjoAAOCNN96AI0eO8C5HVyYmJsDDw0M2YEdCQgJkZ2fPcqs0R0EOIYQQQgghenD8+HHZmwNmZmbQ3t4+Z27k5ubmyibeNTY2hsbGRoV5DecTel2NEEIIIYQQPUhMTARnZ2cAePhUfi5NzH3o0CHZ34mJifM6wAGgJzmEEEIIIYToTV5eHjz33HMA8LAP7u3bt9X2H9WH8+fPQ2RkJAA87HvZ1NSksk/wfEFPcgghhBBCCNGTZ599FjZt2gQAAP39/XDw4MFZbc/ExATs27dPtp6WljbvAxwAepJDCCGEEEIIWWDoSQ4hhBBCCCFkQaEghxBCCCGEELKgUJBDCCGEEEIIWVAoyCGEEEIIIYQsKBTkEEIIIYQQQhYUCnIIIYQQQgghCwoFOYQQQgghhJAFhYIcQgghhBBCyIJCQQ4hhBBCCCFkQaEghxBCCCGEELKgUJBDCCGEEEIIWVAoyCGEEEIIIYQsKBTkEEIIIYQQQhaU/wMR7fywDGauVgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x = [i for i in range(10, 101, 10)]\n", + "\n", + "psi_y = [0.279, 35.155, 1.122, 32.885]\n", + "\n", + "dice_y = [1.51, 1.425, 1.041, 1.326, 1.458, 1.056, 1.043, 1.078, 1.080, 1.315]\n", + "\n", + "plt.rcParams[\"figure.figsize\"] = [8.50, 4.50]\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=30)\n", + "plt.rc('legend', fontsize=20)\n", + "plt.tight_layout()\n", + "\n", + "fig, ax = plt.subplots()\n", + "fig.set_tight_layout(True)\n", + "ax.plot(x, dice_y, marker=\"o\")\n", + "ax.plot([i for i in range(10, 41, 10)], psi_y, marker = \"o\", color=\"orange\")\n", + "ax.plot([40], [32.885], marker = \"X\", color=\"orange\", markersize=20)\n", + "ax.set_xlabel(\"Number of discrete variables(T)\")\n", + "ax.set_ylabel(\"Time (in s)\")\n", + "\n", + "ax.legend([\"HyBit\", \"Psi\", \"Psi Timeout\"])\n", + "\n", + "fig.savefig(\"waiting_time_psi.png\")\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/benchmarks/plotting.ipynb b/benchmarks/plotting.ipynb index 21445746..02acabcf 100644 --- a/benchmarks/plotting.ipynb +++ b/benchmarks/plotting.ipynb @@ -5643,400 +5643,6 @@ "aqua_res, webppl_smc_res" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Conjugate gaussians plots" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import matplotlib.ticker as ticker\n", - "# from scipy.stats import norm\n", - "import statistics" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "smc_estimated = [2.7558463370784922,2.990986938896368,2.703210475552547,3.360961024009141,2.7931580088681036,2.624886204803354,3.40305539747362,3.4089165908407355,3.0276145971684896,3.452675947368662,3.2976003756136216,2.9389193994757306,3.0002135127923273,4.158105275403516,3.430505851116422,3.023295323153059,2.8325946817244914,3.938988236959654,3.2042123434361582,3.0552183614881216,3.348673092961723,3.054937093916795,2.811982249443659,3.207382857346975,2.7131233829905,2.8009439709507937,3.566784881698422,2.894646080317874,3.4491503273675423,3.5176311344205624,2.875438573687032,3.1666274776516135,2.545414215722122,3.1774894300766614,3.244235994454356,3.066603910537684,2.989436577338309,2.966805733475883,2.707614808206449,3.1331236419203923,3.0592460614579178,2.8998394668311205,2.978949234601138,2.8477092292589283,3.06092220487106,2.868197759245553,3.984625455324795,3.7899264901155068,3.2673247421088365,3.9115408234497306,3.214380566906509,3.3702840260849736,3.2447990885441005,3.101073268852784,3.2685719887448266,3.2577804902870446,3.344450608565412,3.533153843261163,3.006367489859353,3.190851154402331,2.595151956697722,3.19960918815586,3.157639340104149,2.86928928637418,2.8279402839765173,2.768225377772433,3.23262165409883,3.1529203671584773,2.993212821363848,3.984557534117639,2.9178464708257783,2.861152463667254,3.658463930750398,3.2842229609729707,4.093629985905284,3.149744458518286,3.0571755678848707,2.6231725647197353,3.0073351758785187,3.2071275451793406,2.5728569268349295,3.3800541361885674,2.8647524223523644,3.875371936794719,2.9938433322743685,3.131663296957691,3.159899967424137,3.1276404722274087,3.1217109176447115,2.854598374875191,3.1063948530280543,2.8774350078308406,3.608718231213417,3.385922045320633,2.8028879274523844,3.2318170321875526,3.06219076176166,3.5263002944127786,3.8395841411072804,2.752479524814495,3.145873638143196,2.868366131145331,3.43019950465532,2.610607213500915,3.10615201165342,3.3111557350704515,3.377794021987149,3.7644449467927408,3.961867228254585,3.0949337656226845,3.037230965874112,3.360015803322267,3.5479612092324873,3.3352231179473137,3.1461174894336894,3.058419667213556,3.483475212967329,3.2549746359757092,3.544694613009585,2.993089263418808,2.498885833639453,3.4219132645009127,2.9422185763520967,2.8542898266949672,3.2639169388325397,3.300887276170264,2.9758597162084293,3.055845534090779,3.4804022586673877,3.43132038392083,3.053425437346734,4.153760727349066,4.025484474386062,2.9322283890059655,3.1979403519494136,3.239429587560966,3.2957537961955317,2.873384896942121,3.4634806610231017,3.4574924244165794,2.7834225935629098,4.0088134572982295,3.184199794450372,3.0506931193001487,3.045729231054127,3.27961996977486,2.742011495043679,2.826360470256268,3.5075631277988446,3.609717290918666,3.7021580733600166,3.042914900029181,3.182678263870388,3.868037283155318,3.376336259157682,2.695221809408515,2.6547262884657004,3.712864656801785,3.247148956488671,2.534627999236935,3.2415984524692014,3.1273298796394666,3.313326636919549,2.3734640636698376,2.7360686008018162,3.232529441920787,2.807844258574541,2.4270563368889237,2.8501454072435015,2.9784588169433763,3.507659460977093,3.6695502423835333,3.1567175337024294,3.6084185284255765,3.922245666511571,3.168305474377142,3.069137965291958,3.4132560266754637,4.282383040720498,3.059484540833385,4.059829106733571,3.026023471163008,2.9398820035151374,3.216967604410346,3.888441177438346,3.0981724204751337,3.2995989936069807,3.0988588126745498,3.535414969096381,3.801238875189794,3.4754698384997247,2.9604348511514598,2.870036515006728,2.8292926352579677,4.003206317308386,3.0097935798937057,2.6796701818419915,3.4852578904554172,3.3462405568951037,3.174181278431469,3.1970854504768247,3.2056915393673924,3.7158916640832134,3.1347720287158323,2.858828805912749,3.281740993401819,3.61955693349888,2.914289031008176,3.169798202087808,3.1941844343802783,2.68884165749101,2.9039524300945527,3.0634681955290444,3.2060046239903226,2.7278962733592538,3.199411861218798,3.454610589819182,4.188099547640969,3.358814339758131,2.8919724208489317,3.452425357076344,3.5928723426739553,3.1851579121910256,3.478935510037528,2.9353468914984657,3.458471081788294,2.67758354887442,3.2739591967800497,2.9515151348703674,3.2894473322470668,3.1902361682369462,2.9047090093414702,3.311195801991849,3.3151016122716306,3.0944235152546486,3.142184299959576,2.4952121274635495,3.7247238641532032,3.267186333865062,3.522972416918941,2.8755187474176696,3.1946119895548364,3.9257245200899,2.8183233047534326,3.2060404032286063,3.583342895161186,3.3393066085706002,3.0343041344099797,3.131589223061234,3.8121410057832374,3.3934918092488218,3.5657757097793725,2.9529895620529283,3.098452184266693,3.7023598401936626,2.7370963577623675,3.125675007366002,3.4079144155591727,3.1924279321547493,3.2059360006911173,3.1620181381189525,3.3601315531179226,2.9709396628500837,3.5481514888915004,2.959356026956361,2.9797351112927517,3.543402176724636,2.8501096052474932,3.4863720630054527,3.457971517759461,2.91039249478174,3.30252121743968,2.9363547958460785,3.0336814034714368,3.4252278699120446,2.879490883923812,4.341453791368198,3.411269940531194,3.415366853659741,3.591799151023254,2.9707133587854355,2.9442540754434363,3.7474701127201593,2.8600317795920516,3.6908291341701607,3.050696310449213,3.230539370578553,4.409073716986133,3.637467156836896,3.1973148183656246,2.8280370711836675,2.508661508896588,3.6880935146275284,2.9064341692131292,3.3736092660379997,3.05498411964581,2.966165277891478,3.046274025214686,2.9208919092133727,3.143448124813301,2.910603725273437,3.2038368932864367,2.8024306499981186,3.18109769120665,2.8667608354863328,2.990771028893533,3.4177801298052892,2.8225953547057125,2.767476981289608,3.242350978167303,2.4285258829797316,3.276507799166243,3.0141788209939793,3.1611830627679303,3.3069920742008283,3.432525548016453,3.915844011639327,3.267504996360383,3.1406428538162903,2.969169615978388,3.779704523307002,4.00198967812196,2.5950683728943953,3.3596575949626133,2.8154297648668787,3.1558782452016696,2.8233529996836957,3.320134420913526,3.5054934376925067,2.8141701668044767,3.055304253081928,2.828464588018914,3.369678936383634,3.873408923453932,3.431923240531421,3.3771141383093966,3.0321418682776233,3.568604715920837,3.488587266466156,4.247726448664406,3.0696680565412016,4.0048942884748095,3.432890352085988,4.574628453904289,3.4108067166129463,4.084450907821242,2.6525033473902315,3.26612859592788,2.6981172736137986,3.2375774984580015,3.05961274805175,3.055407125767194,3.656557151368217,3.1839952711021904,3.434358665351968,2.6651986174510474,3.715721705524102,2.561392680459236,3.01873897343144,2.850643043250969,3.049100548694532,3.0213981937080057,3.7779208882577553,3.1573504362671363,2.6956291506362913,4.031423238457086,3.96567079100168,3.155018441378062,3.551984207708416,3.255879602020336,3.345461216157264,2.57991404392426,2.9081413658519977,3.3428350340229174,3.140790349863412,2.632933637496322,3.361092093264606,2.954810071114091,3.614471703081439,3.5222487622005403,3.277183920217342,3.817742014829255,2.9597891576860778,3.3601201406185894,3.1339542128407207,3.207478617067274,3.965910795042885,3.3381641901111734,2.9905889176943883,3.3603547051785796,2.887776459572908,3.9533255467855937,3.526160475457404,3.4599770925099924,2.793254742651831,3.6198740494219654,3.475106910790653,3.551451598137332,3.562114177329932,3.0576807688863226,2.6827135552401233,2.8426283409929383,3.05286306909571,2.7680745450325146,3.906421481329709,2.543038673813221,3.1983190346987116,3.9208050610765945,3.9722777802024303,3.1298051126821607,2.8480970776958565,3.4409564638795023,2.858366225033599,3.194138529730403,2.7379656093283398,3.628159401351237,2.5291859548243036,3.1811174713790527,2.9122077490800655,2.9198670316731117,3.958460928234847,3.5487306564924603,4.323861202783873,3.0127094259898475,3.875598866131948,3.3023898550778834,3.079783448426189,2.934644288278867,2.8963731404357937,3.0805752503571413,2.9752321738369334,3.2436436628751766,2.8808585037153622,3.309017470297911,2.993289457314843,3.096920857518193,2.8054073024452872,3.0545861918413375,2.8812296448195345,3.4891219265137674,3.516800596817585,3.425218435380802,3.413496512143827,3.2809072705160656,2.839011831342684,3.804055747890739,2.8335528337608196,2.900266625968833,3.1540081475095527,2.6895493023641386,3.016015100929607,3.077440625504809,3.369901332992465,2.874114994222326,2.8658287320821527,2.9138623945117996,3.6140943850766956,3.4187984004554575,2.8026485941964543,3.36006868974303,3.6295892683152613,2.776646751205711,3.0346099456214457,3.195011308309514,2.8797740538970067,3.3716821404602704,3.879182559016457,2.8823632726352164,3.2018645257720126,3.677718433808944,3.4476513635663504,2.737503844233104,3.12345773966795,3.1659221948732506,3.1866015090148587,2.893654793256365,2.5699673356932906,3.4329750325759227,2.609174668916338,2.66903814519494,3.0743212501372765,3.1014718208372023,3.4276098359867047,3.3844643741913476,3.7195160229583544,3.063345896038458,3.190709283780421,3.8112833042825165,3.404564327484221,3.428158826658617,2.9353812928365164,3.438207169466199,2.7637000686230846,3.9938796801242136,3.729775309305578,2.913644955414527,3.478369481481685,3.7242744703159407,3.2546250066510507,2.828548364800943,2.9212539676783136,3.573036737975078,2.834459650897374,2.855028457056859,3.131274333892502,3.6757538800988576,3.4285537601663187,3.058218334899203,2.90021663163377,2.974112350896064,2.978733072940968,3.269771055942122,3.019833563559797,2.6620968431182783,3.4122106716231144,2.88647596753425,3.0964541584784433,3.122482899999305,3.1537984927501674,2.8226699547024943,3.7857520682935863,2.898814868810434,2.915654860620015,3.4020406532944545,3.06306081291621,2.7535972095293673,2.705146198548464,3.2903024133985115,3.567672458568609,3.5715027461815163,2.9582682816480244,2.9696385931751985,3.786717808104472,2.883243251659874,2.9191620198616155,2.65147332336482,3.0801869245407176,2.68355298124555,3.3215325131463587,3.1899708972224943,3.1478521707632554,3.5388343589656968,3.9026652385950924,3.0821377091030993,3.2815218308364194,3.4564618425677667,3.5982060714790007,3.4871682919895792,3.164616781080373,2.7060774112291033,2.450604410296706,3.00872747173171,3.302937414455181,3.044708699836277,3.765795885886038,2.9530362137939465,3.099249460111467,3.0253149243389874,3.64016685087246,3.476463984961492,2.9811572758302414,3.1934754066133957,4.509538938407182,2.9669230112144156,3.5145277312296126,2.8156297895472027,3.018752280554943,2.948314533814404,3.752339331901387,2.7657268936034094,3.4842966778889815,3.0264904424913333,3.406420698761967,2.999904100412188,3.1852488322724657,3.083598866132254,3.309333060019757,2.895551531675397,3.0973448462021134,3.1150018990502923,3.4001637427055313,3.343400479830012,3.5205985932870942,3.4449955561846433,3.1602432144843426,3.5444020700466496,2.7775487461925223,3.350960764865197,4.050332937034412,3.517896910781995,2.612861234176555,3.4515482499383436,2.8209926947816673,3.275295111700842,2.856332105050718,3.5100497626085643,3.0706160849140445,2.9185656233200787,2.9172704717999287,3.762689199005505,3.465642108081962,2.912335437247787,3.890102800854292,2.8699844844386897,2.8050392427380393,3.256669102320079,3.5149875468532197,3.2517370937268866,3.4652838469375373,2.796030299230962,3.3905535497612465,3.025790810288834,3.2426285275118922,3.7895249499827393,3.3039505872359345,3.362368576250871,2.968584037013684,2.7048250765390107,3.360310407856567,3.1569402861062796,3.713069610649423,3.400932532405474,3.236389363039429,3.319750445869328,3.59158996095093,2.6701825657015426,3.4802656545719404,3.2204099801321773,2.6768702568096026,3.1736699716887378,2.815935369071472,4.134223771576028,3.442992616878821,3.2813468932368273,3.200217370726998,2.9922611594520263,3.2074412262846637,2.8204617521198814,2.7362534289088023,3.3888012797766542,3.1678631743930294,3.8034871726279653,3.1380255909710453,3.326230354529199,2.641214975036292,3.6968034218993586,3.4501394910383243,2.766126479845129,3.4543956134406413,3.212692750791441,4.3437486826642635,3.2474981385655792,3.1886921042347587,3.556593175912099,3.044610259877715,2.762830904693219,3.3195775427218166,3.6704199783800258,3.0382927769935937,3.6998223632369496,3.109066173029514,2.722770712137014,3.0776949571584082,2.9404781904121196,3.228758925495095,3.4059847979448916,3.407206381404646,2.9417631305936496,3.5593658121921044,3.09836218007199,3.089598100303738,2.886894641381356,3.1988473376043154,3.4136629752321626,2.495119758311601,3.4556148342583732,2.8850272536191257,2.878422160489474,3.2541827660075358,3.4250610419305,3.726927785425626,3.6126050560018803,4.321915780173927,3.72645102041657,3.0690284090941558,3.1187398629200422,3.279795135575769,3.3519796272752536,4.392046753911665,3.5205879000113085,2.6931830648692596,3.0603680246167446,2.851998757521168,2.389282900334034,3.0047280094353406,3.186055346866563,3.2482840783332967,3.687107410717886,3.385272217753083,3.125004464503081,2.662907884375142,3.4574671134408845,3.181507760679217,3.462864838018725,2.8911473321715575,3.1247363497582374,3.214325967476949,4.0638101073572725,3.074507944979114,3.5168070301764107,3.7682582180323276,3.0018913979391706,2.8914197916083775,3.3749931928877075,3.8548513655354517,3.25928534271932,3.385883536589862,2.4571570974829773,4.042566953245374,3.500761609248925,3.4823634094166938,3.478695450514212,3.7731405338040718,3.130970142352136,2.833870783023896,2.7085367410174577,3.0005798729699915,3.1066368456880338,2.9217875611808544,4.358996203751036,3.0150020552507666,2.6303386336007475,3.2755005691459766,3.43840569448587,3.9461406988308037,3.749624075179979,3.1729786718138056,2.6651522664500833,3.454777043687196,3.8682747642323605,2.935983826154033,2.5799709629384595,2.6379119250503718,2.69364145220515,2.9908168464104796,3.2992624545255596,2.9102953477276166,3.6065863024493194,3.2173555076584774,2.634618259510003,3.974077106630079,2.954535521810004,3.544368609364025,3.501517104752942,3.5133598747140184,2.7325379467588498,3.0064911373217456,3.8248172791829504,3.4144715499972,2.788997152084617,4.230705083702233,2.5861022001393748,2.726879737732682,3.0295256478400305,2.7044886805514885,3.332425000304444,3.2253524772220494,3.5223466449238656,2.9086480374053996,3.262163766806672,3.1283921683507963,3.2896380989227136,3.30100924322849,3.245446116831598,3.3280401431961506,2.900806421223668,3.558158190337908,3.534782832583779,2.8990815770587464,2.872412934711708,3.030849489209568,2.763184989211174,3.143063939588644,4.089688258175257,3.4497103481993023,3.224363525301146,3.114741840514266,3.8491280936888153,3.521523357546171,3.2573789170813177,3.416843215335257,2.864372667656097,3.123583069604903,3.543535468887345,3.0338396723557137,2.9717086075685826,2.791228152015874,3.896433717723258,3.4109249234077192,2.791693511777958,3.856614059359007,3.2242737161389265,2.8245782067577,2.685166315888216,3.7970107681143843,2.951894933959129,2.479096972534167,3.221784109221234,3.6381116830974323,2.660892816775149,3.0531291389768556,3.2997055913689572,2.986860995075764,3.4053130034719037,3.071143610370102,3.130418924046209,2.9583165328589014,3.1018737231538016,2.8174407895152354,2.755604725229847,2.731159757119471,3.3960009426622726,4.085007779766579,3.278775836423216,2.742204355361057,3.428176342026292,3.852947228519005,3.1644701213516226,3.5878986534490016,3.100642021393988,2.960960074830848,2.790682917259111,2.639359189232666,3.415545280087426,3.095928683199509,2.6225122478192384,3.1686415058818103,3.2860591821268517,2.9019867422086363,3.0632988951209597,2.597617391707829,3.213788466216457,3.301800037837536,3.3989838530615573,3.7199021213586576,2.7582309941751872,3.9340783821954344,3.272924249216745,3.06561985525495,3.0003520117665152,3.273035416980873,3.073980686172206,3.3694318596808843,3.1455298359091564,3.634305462327681,3.1816029761500833,2.715059627346943,3.065739111123889,3.4016393680062245,3.384780855463733,3.2316973545221415,3.0334426025082357,3.7849936533932054,3.574035204735712,2.51387684090977,2.954169223254638,3.853604680655649,2.9641585912712363,2.673874246743389,3.153947695730795,2.9339806856785566,2.9991233429530886,3.269630426977805,2.720840083975029,2.813079006964425,3.4776514727296592,3.4885039693938413,2.7851597270541397,3.296147967836002,2.939687353601462,2.6404291021125523,2.647662536390117,3.050024030726819,2.9724834807913707,3.0995195781159257,2.6747176001474915,3.4267558865201844,3.063520015366849,3.1375566238946084,2.8019204896592074,3.3842861846355587,2.7419253467472515,3.1205736104992066,3.3075821013113735,3.0556842774906916,2.755738148640691,3.7369511581578054,2.945079065115307,3.4036658802676603,3.542815916660677,3.2240725479594756,3.578734096445296,3.5288084938315825,4.299587652891658,3.18424674756755,3.3912086981952574,3.1807715515048915,3.0361755121353178,3.8081837351937913,2.751658260920648,3.084285279965843,3.0673554302502843,2.64848655156982,3.7346584094347843,2.9495541456894188,3.0064851764257394,3.054086832021411,2.9752966628621054,3.6662302104667166,2.971231913027733,3.63443628939452,2.879934070900794,3.292966690038098,3.058142717355922,3.562354049841197,3.1346649085162017,3.6338334237644005,3.6165443829644004,3.121228050020656,3.2426240127307753,3.366594553729612,3.470306295621436,2.9610870986889886,3.1029619754341438,3.3034358426898383,3.2826388167672222,3.4950681749643526,3.1270489156852204,3.00661733035738,3.457920329515891,2.9609941916870297,3.2996176515455686,3.587766259455069,3.1319917994590387,2.8940547525280995,3.614895918457417,3.452298068650049,2.809697529450547,4.135058140055092,3.3432710590748513,3.485347487214756,3.401775185685271,3.1916698648210247,3.1542767155566547,2.8462645815983385,3.5818203624703893,3.3028433752024537,3.34389136173514,3.12090204401937,3.554587470851715,2.7748264549845527,2.910062693485657,2.461165626452767,3.3203426198527226,2.984619047787032,3.434037018560736,3.189723827374155,3.1606037362518413,3.021092069073826,3.5583267897216206,2.835545523056565,3.188676646928596,3.4370350060854435,3.0250293552259557,3.669151539968411,3.655205957308987,3.566566971638866,3.6460296061658517,3.3642319061477166,3.3709822343965903,2.87437295604426,3.1494535204297094,2.9348072072644618,3.6731923341803605,2.985837150843019,2.7771613425621395,2.725410340300794,3.4959443967559616,2.727776567365812,2.7512150021520774,3.0861519022535853,3.568143453520895,2.801745190240046,3.576469976850126,2.673831934187922,2.977315743278322,2.8382638023136177,3.355520332578711,3.191666913170297,3.0423501198303757]\n", - "mcmc_estimated = [3.0788421115961544,3.2541301723742104,2.8972128129084584,3.3087542671597787,3.172075218694236,3.3197662185846863,3.659021985377051,3.710906806009668,3.086637692187856,2.8646894739303805,3.847639204842896,3.5811112612228326,4.779295972148944,3.7309771411661528,2.7937906596264965,3.233131915377386,3.0840431880653556,3.4408626583209347,3.0951836384780647,3.284851437011494,3.377310871512364,3.3133366447137433,3.271882457993928,3.127250674679146,3.2795431926822007,3.2468666327403826,3.0065361979094525,2.9988598058184825,3.422220643935119,3.913899990489644,3.068808196341294,3.153438820931388,3.0809232242200344,3.009290642826715,2.763309649883025,3.122412957856064,3.523091051112108,3.2154547359632017,3.0137582482484375,2.5309979598011365,3.6044682749369517,3.4654916822713404,3.683638093343447,3.708343436381134,3.3378020612855934,3.910115477163429,3.064437837231256,3.286191913405397,3.4317732854534047,3.134373495832081,3.033612461288379,3.2884742120902404,3.158035888430617,2.582306241090953,3.0384802513230933,3.370474862293195,3.826598793822853,3.1082843229912034,3.4088187260850695,3.24246260176626,2.9787414782107824,3.325411391266379,3.038918718418152,3.1418245982054382,3.9731863948585904,2.8249797836650425,3.5175557657680367,4.585177639373382,3.974379751585126,2.8414543416563567,3.3410691777529493,3.064293768888866,3.391016285942449,3.2200278077120577,3.0667618152789995,3.4503408943493583,3.1930999284151116,2.9441455143842377,3.158062455363241,4.209043492795538,3.450714166688196,3.103121350489094,3.4407875731158075,3.3122442274888053,3.0631987391141706,3.2736432802497846,2.852328032177013,3.8344272901834544,3.0742237677102366,3.391424196939086,3.1227393368420264,3.6465742811861266,3.1697682206210493,2.9256301838813026,3.227114451295287,3.0099778350714175,3.35917470778051,3.1135198401746176,2.705075867622447,3.8277718109825543,3.106799446928749,3.4349081624797275,4.029421334580307,3.44098029023115,3.16699769473773,3.5384381872952377,3.411837247547637,3.8522742492576842,3.06739703109849,3.535117596827952,3.57772684278823,3.7911843299723818,2.3479074994428086,3.5106432602330533,2.841013277837009,3.283991481696587,3.114952004547625,3.0794101636407274,3.4013053665021746,3.1407965291180564,3.6231683587143375,3.6216748418004876,2.897081338008046,2.803136998926013,3.349596767261599,3.4501971237418387,3.170977299704056,4.5530191119456775,3.266826400262839,2.837390574383726,2.9915125290311844,3.2323152634348125,3.3204756322811013,3.1901475730401656,3.885837420358381,3.1625692111792665,3.3774025138811052,3.1097089452660156,3.557804924710601,3.2666431059958,4.741405793260372,3.6660819788358374,3.1962193793210663,3.3311130298278306,3.683354406638494,3.384868840688018,3.7782840721461732,3.427624206460536,3.28585644725486,3.8670421039166385,3.073024013455612,3.221071427448383,4.359051167557815,3.7149806654722237,3.587850875189859,3.154764417411104,3.0217174095895016,3.2606370864097367,3.1515045469542176,2.958641806896433,3.20570519820534,3.0126955869155716,3.2115818225685713,3.041838966304702,3.8057514577879084,3.315329027743513,3.2427660745540607,3.059583618984992,3.0499267379677946,3.145441939759671,3.3448569049768846,2.8806265553437473,2.9013524009362412,3.746472400470914,3.2016148076813664,3.3084680628410763,2.886194780388372,3.6699278608660064,3.1518054654709644,3.5359628148901763,3.1173781480015466,3.0705492880880456,3.1134337095078974,3.419439417024257,3.836149633403664,3.8124525512519014,3.8488320355573493,3.5848050107468055,3.3551463689598435,3.7106903128435462,4.183369953762937,2.736353357392918,3.2147505523073883,2.994707928892747,3.533231954311745,3.446620706715487,3.321726803618731,3.42139145600992,3.011503629276327,3.1944172991715964,3.5526480863079577,3.5179646228937904,3.2481421599046327,3.460806769811079,3.151893153144287,3.6174010641385963,3.740384717108367,3.4069160362843576,3.943644000160052,3.160525512601385,2.6628414040375397,3.000955119585475,3.2513328425562302,3.3441023663758016,3.6843005422267563,3.3666669128058984,3.8896065173192604,3.24910177182553,3.598284504797461,3.669865378853002,3.1844576676962704,3.4999758932604967,3.6379622128992284,3.369902365305916,2.804011000442433,3.104456609956074,3.6248925498976883,2.8602943434187544,3.289570222867073,3.271172982855703,3.117929815411469,3.361582360114765,3.2451202977689566,2.6333647292773747,3.2178446619423,3.35700790783672,3.0800325486469915,3.4796556307906736,3.8850885283896823,3.222940047460475,3.2639446554086082,3.6910491553312275,3.118342075166542,3.0617250139708863,3.434670660381402,3.5660453665008474,3.195433923583413,3.4148931637524282,3.9139587281256336,3.685336934138344,3.239989862841822,3.0300821356155025,3.7229166422990976,3.0747934324688644,3.009163147168977,3.8181953318404216,3.565412464645673,3.6160820539067693,3.768033137867015,3.3805840338417075,3.593890107016201,3.28006318911331,3.3992471069719663,3.544735066399584,2.9966296106095767,3.533837294215199,3.238226539089195,3.040884349402993,3.810836033101739,3.322920937850109,3.627388962544589,3.2977679847220887,3.634632855842898,3.9194699700159283,3.1472745769033708,3.69345806152208,3.0121650182763138,3.4297824527341456,2.8770794730515337,3.085713777522281,2.724515244319769,2.987681723483596,3.4052846967841073,3.246071499229814,2.826555451002441,3.7978283434359965,3.6915299613878902,3.4034281691411628,3.5757488743847294,2.965725193479254,3.331668180447401,3.5015307175823924,3.867969153984494,3.3670454221456136,3.225186532831763,2.930377317466611,3.415066012389665,3.675378307350042,3.799554009240216,3.276250795063055,3.110137526570863,3.536534577713172,2.908322950207193,2.9917400347937924,3.784997330190474,2.7018449937596793,3.4822003009379663,3.362199450734923,2.9226479993158225,4.235068814266175,3.2384363532531397,3.9322752611667124,3.0396170968703373,3.1569910920256583,3.6275829034396834,3.6253406141092026,2.9383501835595456,2.9399560762653465,2.5237448841396595,3.3119382437506033,3.1562405376686744,3.538053350092921,3.2894697183314814,2.8003752913188085,3.4793339834300987,3.1688396055649934,4.015841600941336,2.889947780164844,3.1933463873208243,3.3154077225533554,3.0437444591121565,4.001601670105839,3.6220593335423423,3.1855303547300506,3.2262396640784186,3.570338586781224,3.507510628870739,2.788888115595891,3.065983041423207,3.1858408124948956,3.825913039151983,3.326457372919446,2.979301430293431,4.123764987301495,3.1996234429211126,3.28051150644159,3.541973321511051,3.010726117269455,2.8634900458861776,3.9537660046494714,3.0520750499590608,3.21984086833746,3.3740617870522374,4.038531798356624,3.5260433484421916,3.9021181705796932,3.5750255244274114,3.313448111548362,3.444500683226191,2.7252859209141373,3.901031057644014,3.7667784384858645,2.5212491899136875,2.670834956895623,3.3434336429868603,3.804531718439047,2.884400154595875,3.2611257458600265,3.4883093919065384,2.6754714305442495,3.3892644741662172,4.023234478116511,3.275424481843635,3.311714542225124,2.812039242642742,3.3412248514729472,3.2736208843159704,3.5000323513919063,3.5614665186649446,3.211954177146649,2.8376427517188345,4.073389942280849,2.650135029195392,4.042119546291582,3.526276220901098,3.471435877950488,3.168701017254996,3.1649455563662405,3.3966979025765305,3.3456845207146455,3.2141663286853372,2.9094915362815144,2.8715697275402348,3.542898463752802,3.1499920625104485,3.5063796025518297,2.9052540423568693,3.4186668517242245,3.1346100246159767,3.261029030558802,2.9534161081374783,3.2969455663644904,3.1255816656410835,3.5080404927369733,3.438553709778929,2.978327705750316,3.4497430778726192,3.6592855522827747,3.3685206057252937,2.829952951740272,3.493383065165668,3.2382854077588124,3.647400470653946,3.2077656231833984,3.3781488597620863,3.1307226082462254,3.136049718998925,3.2692879284017318,3.944222425334085,3.493662518847103,3.191592947071781,3.385918575482562,2.867615893786094,3.173026220003598,3.1019539632163466,3.6635780282786055,3.0249932370538173,4.047951597207347,3.0178461809428994,3.056583373523659,3.2267538629014143,2.9174211959411553,3.9090174750493136,3.6024097116022213,3.86615387570247,3.0015677839225297,3.07464321070739,3.8775287669217344,3.5066917286486596,3.2069467680783075,3.142283137073875,3.397300996536912,3.4478415702436336,3.1834738306694232,3.7834381210898744,3.700393488876508,2.583187973931605,3.285745583300563,3.6731120993147117,3.161533069105747,3.266431390444644,3.6883875657063467,2.858703508421678,3.3037435356334526,2.51667433284252,3.158180403235726,3.0652844759653655,3.1199861645970084,3.345641362429214,3.8190465955918347,2.929204411623125,3.271806948641043,3.370873996689934,3.606169214315311,3.371921368540988,4.114237159498122,3.860794936955083,3.105249143591396,3.3356861189783804,2.6259241529613853,2.925795729365895,3.5840393124059404,3.3783203169839364,3.344106395761373,3.672552038971664,3.709732128629824,3.209258159883122,3.285965576288651,3.610826064286551,3.009023340343967,3.5945287871662814,3.210636211336516,3.020065654222441,3.469646683260279,3.1443583681612437,3.38832173729656,3.6555074342128093,2.8829905612676763,3.636171537112328,2.9750111246922657,3.504948260243129,2.6817056324901993,3.719152194362719,3.903178818485688,3.05484961656526,3.205222350119582,4.284963811492041,3.739065369616982,3.6870111167387085,3.5401071214134094,3.0285571410809164,3.80135522429736,2.9820248179882944,3.2700786114325577,3.393538565504929,2.9068189521519563,3.7020205276584384,3.601094649152596,3.849907345276572,3.3614644829451086,3.071440441312917,3.479983064021225,3.2956669107748757,3.5409411213876143,3.690758174011739,3.610585234606177,3.554137162880435,4.144762972752129,3.2865956561414147,3.4120508147209723,4.370713194635103,3.153125582636524,3.6708946612365154,3.937013123727999,3.151726047014995,3.040575504355146,3.216050809284753,3.2432141513617005,3.308884891951555,3.315667255026398,2.7973060895018462,3.794275624618503,2.744508986172587,3.372470736449103,2.8879562017949474,3.194144071225788,4.036385381177204,3.067745918987984,3.471948349120651,3.243479491648924,3.012438422994513,3.025189301947793,3.287181756163072,2.9698631879740063,3.5147887029504368,3.202748230153672,3.513175486394367,3.1425233307193468,3.3131316711515852,3.5229256276612633,3.05189398667166,3.6550496534134185,3.537367755790792,3.0527046597786827,3.3488072942971905,2.8811216362895156,3.12474805571689,3.1658668018790412,3.1344114830409375,2.699430884702375,2.8367703880086195,3.335100400503904,3.8294458200272343,3.0211764367002756,5.22771458147637,3.470529172746416,3.606054000927334,3.3995665270802435,2.79757785733564,3.39505063284898,3.1059995444643804,3.4230039664784444,3.167052711607712,3.6722919690305975,3.1530247595771765,3.733752785107937,3.5232094148954687,2.8545264660982173,3.0486780652575396,3.9930887299418756,3.9681526475696227,3.3430639443456402,3.1471893955637307,3.512666465658987,3.363906937439748,3.356706682158055,3.418449613455867,2.774287037232888,2.876850117468062,3.1824936107605355,3.5532767669487355,3.7303131293706984,3.1766650648260044,3.1694989806413654,3.221695805570299,3.3024843067265484,3.0519946503721447,2.7124881365094904,3.1923621629733625,2.964109840311818,4.111842974322774,3.1862394354574572,3.0531368942502275,3.086305726822224,2.9175072960089308,3.4356470503503833,3.451017049730584,3.242461868239217,3.5328341228289033,3.1457803895354526,3.3361992609655466,3.3374395225082982,3.480993724836256,3.495219105881388,3.08169663281482,3.0486022598274722,3.9019733505721357,3.7224358485345883,3.282623272779737,2.8400363521402685,3.256515858613826,3.630000297510141,3.965658648833396,3.67155914565546,3.4021890656734475,3.960889998844471,3.08494025039928,3.5496833980122076,3.2625684753711224,2.951802136304086,3.2903053119687526,3.1857113160843404,3.0689099058735803,3.43210328944051,3.033361770856598,2.9119692634922476,3.8836932144996394,2.957158240406939,3.5528639011974343,3.115442160698407,3.1903162956993767,3.0127299246060564,3.5759011094992434,3.418423917656753,3.1395304722691812,2.990799290982558,2.979238395931467,3.4235266087053646,3.9136088834781027,2.906716415722131,3.3407199056870027,3.5172238090963526,3.4324994305562164,3.3917907364000683,3.0881445763662856,2.8721864977362386,2.9911972616872022,3.1590650449277335,3.0689888467101256,3.2365319570422173,2.874503147093616,3.4004444038911608,3.381097367324883,3.1993297337894893,2.882493785692424,3.3478944893263782,3.8114113975563906,4.179505530023278,3.6392014227780063,3.3799179861945228,3.234916608309561,3.7658698621367046,3.198190244907482,3.669619807874922,3.4537855347753883,3.044593941837546,3.2323251142790466,3.376198729375814,3.8902032749289575,3.732450455603489,3.3233700294006323,3.320406346074991,3.572627745413849,3.7058567386510077,3.7168890882841805,3.166617977918967,2.998634968851462,2.6520983718642728,3.4388744530034683,2.955510318526316,3.5437151759603465,3.44907114603609,3.4116815323575804,3.8452905285688943,3.7917461364717986,2.883264573302448,3.227161884516892,3.093813479377778,2.9611726870765613,3.350932687243625,3.3247630486872604,3.149265580967138,3.5227398825947236,3.3629723276742562,2.983661081671419,2.7942410810172134,3.263874662610877,3.3454068727861737,3.3924116246221203,3.4290948421408394,3.327768575555437,3.5004343092710952,3.548758764893063,2.9859659746318408,2.992299584151409,3.661815287248085,3.6648051960030137,3.1357823147367307,3.3655237752552454,2.874043939958928,3.082349194634468,3.5182025869218845,3.0688721945648973,3.6650631652342134,3.2632986053574595,3.435800601688091,3.538688234856746,3.4039548667781565,3.403456645534081,3.3601829838914132,2.9094202056589977,4.024835351192082,3.1023200324163946,3.758392724906062,3.1163518468992955,4.092272189085382,3.187721924086374,3.422067182503539,2.9441752033185775,3.6663546986534374,3.1099957640879765,2.9304802758340776,3.3438031908887096,3.0915594648761244,3.791983599123652,3.7951165500289705,3.15496955123974,3.351099940332628,3.4255747135843837,3.0683471298592506,3.125171157434487,2.9890477628366843,4.171922171627228,3.0480320572895674,3.1473022685358734,2.553767814327499,3.544563295878981,3.1949131476837724,3.0960031672383415,3.664235728479716,3.049294907784924,3.229606909899681,2.8964408066377554,3.468313581096141,3.510771491288466,3.398188320787398,3.2778927194538245,3.2504552841596763,4.031491551586828,2.5096133454603744,2.937978814672696,3.4536308070398873,3.2646203779429115,3.7820702169335623,2.5514358059203395,3.314918811178203,2.7522752364711067,3.735163038404085,3.274300846268997,3.1489757538051912,2.763899657173725,3.209227570340343,3.1112795749438207,3.1178752996858665,3.342320053211802,3.451071290781184,3.0731170370919783,3.123722548238381,2.9440125233840657,3.447531798337492,3.887474305440331,3.8963878994212893,3.2468097226281536,3.015678131936302,3.588909743730526,3.2529963332441976,3.4051032926348324,4.045653419956449,2.771690000893703,3.219050152362877,2.8073189668534964,3.692145978250622,3.1390500864605775,3.1879287904228297,3.829554464158985,3.123994016780019,3.0293736279215486,3.345297875881525,3.2776589857239653,3.2229505836096335,4.098664783336058,3.2391847960478444,3.293978446941572,3.590810765826776,3.101146790219796,3.698945680235256,3.598462504188362,4.042659707354968,3.7766152372075847,2.9229006880067856,3.112131474894925,3.914006066192655,3.2642277047585604,2.987646880728823,3.2092185091491285,3.137847711839287,3.408018441115148,3.4619147491431996,3.474398433895275,3.240549572921315,3.012499695042762,3.066964792295833,3.5179402025645863,3.3697877133557292,3.0906005527052884,3.4341080790229546,3.6138719390044307,3.0371019257597247,3.2949646493162033,4.293691704557947,3.806291393663766,3.062514838293001,3.6082685001992214,3.690737023634792,3.4535278925297233,3.195803900045047,3.432568816687081,3.794951510963649,2.968584483033322,3.7941383565521556,3.166737648352639,3.9536218699838592,3.2664616855112345,2.926096759275409,3.384197507279693,3.708818538331581,3.47229808844849,3.3242568009631333,3.706341201238505,3.8907660338639234,3.367461932311324,3.4900133870914454,2.88283021375044,3.549507952835058,3.26010424699409,2.737906169541331,3.184375920239755,3.107019200876932,3.4932132079971887,3.0962584653779657,3.197472588445659,3.2275657563000486,2.959167385138145,3.4427347565616238,2.9382311081252173,3.0467032354632377,2.7680426820218718,3.144178639093345,3.5052305359651914,2.5738029525122967,3.51330809171822,3.0375425506344076,3.39592558065764,2.9437010653660134,3.377809612736515,3.180940537288509,4.209935683773457,3.8097504047374926,3.7813087462295165,4.063470778277752,3.716787298255995,3.5531261260195417,3.182459115690672,3.12313306000793,3.192672501227347,3.650876402003137,3.46271288170781,3.3386406701397933,3.4458655859500498,4.179084385950602,4.0409402427163394,3.512030661170639,2.5679286044469913,3.5777933778199933,2.932760392288274,3.2167062276025993,3.224667498216163,4.146589931546898,3.7819223359073004,3.461898357812438,2.657808481539454,3.244555245541853,3.278074664193894,2.9721246025101866,3.208956281618825,3.330873211894785,3.4141868210351416,3.0672493534789784,3.2372188511425124,3.0216343665211953,2.818313190335163,3.1722293525429093,2.759595452051431,3.678546078870081,2.964017640242992,2.8603893187539415,2.851851932485816,3.2666449336138865,3.03835710949543,2.900587376664461,3.3361885957715494,3.0127066194457255,3.0388832478223664,3.2538795428737317,3.4529292476020834,2.9820905464984633,3.3958045060788073,3.1507842617687594,3.3544009765407075,3.3474092580262624,3.3821681508262205,2.9235568926154634,3.1171510270601988,3.003764590237754,3.4230892442043768,3.153255976135873,3.4277866944482818,3.3085582661615063,3.3147544445578965,3.310667933539898,3.524126821719298,3.9291866414745154,3.001667386087997,3.529787036561027,3.0702000655795136,4.112553558850722,3.0547022895122296,3.3838292922869053,3.060428640503987,2.8715189392472142,3.598766240476907,3.5360656964350543,3.0107671771430335,3.3001776096381628,3.4317713318053795,3.482261420040741,3.064581987778424,2.9659890985159767,3.0830042677593075,3.7656208886474904,3.624160527095248,3.7001471470942953,3.5799436552585004,4.43022156606081,3.1408488195385162,3.7756883236465217,3.7336453403824104,3.436970538126438,3.468861285482548,3.3002266745588957,2.835970521361661,3.981156616732329,3.4403592500881985,2.8901136166180716,3.1098110812227238,3.1717802156141133,3.6867699330325774,3.2862742008678287,3.2434678960339514,2.8922021016220105,4.127299108635512,3.7349514710825185,4.040981843877043,3.3221826879843968,3.013023779531007,3.5681344230807155,3.0443056170587597,3.7519265101223747,2.8237418977585302,3.24759476325038]" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "39.82783727702899\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAGtCAYAAAAh7ySEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAADQJ0lEQVR4nOzdd1QU19vA8e/SUYq9oIgVOwErKgoSe8VeE9GYqFFTbLEk9oSoUWPvvfeCNTZQUbG3qBgVETtYKEpn3j98d3+uu1RXsTyfc/YcM3funWeGheyzt6kURVEQQgghhBBCCJEio6wOQAghhBBCCCE+dJI4CSGEEEIIIUQaJHESQgghhBBCiDRI4iSEEEIIIYQQaZDESQghhBBCCCHSIImTEEIIIYQQQqRBEichhBBCCCGESINJVgcg/ic5OZn79+9jbW2NSqXK6nCEEEIIIYT4pCmKQlRUFHZ2dhgZpd6nJInTB+T+/fvY29tndRhCCCGEEEJ8VkJDQylcuHCq50ji9AGxtrYGXv3gbGxssjgaIYQQQgghPm2RkZHY29trPoenRhKnD4h6eJ6NjY0kTkIIIYQQQrwn6ZkmI4tDCCGEEEIIIUQaJHESQgghhBBCiDRI4iSEEEIIIYQQaZDESQghhBBCCCHSIImTEEIIIYQQQqRBEichhBBCCCGESIMkTkIIIYQQQgiRBtnH6ROQkJBAUlJSVochhBCfLGNjY0xNTbM6DCGEEFlIEqePWGRkJOHh4cTFxWV1KEII8ckzNzcnT548skG5EEJ8piRx+khFRkZy7949rKysyJMnD6ampuna8VgIIUTGKIpCQkICERER3Lt3D0CSJyGE+AxJ4vSRCg8Px8rKisKFC0vCJIQQ75ilpSXW1tbcvXuX8PBwSZyEEOIzJItDfIQSEhKIi4vD1tZWkiYhhHhPVCoVtra2xMXFkZCQkNXhCCGEeM8kcfoIqReCkInKQgjxfqn/7sqCPEII8fmRxOkjJr1NQgjxfsnfXSGE+HzJHCchhBDiHfPz03/cw+N9RiGEEOJtSI+TEEIIIYQQQqRBEichhBBCCCGESIMkTuKToVKptF5GRkbkyJGD2rVrs3DhQhRFyVB7fn5+qFQqvL29303AGZSYmEjp0qWpVq2a1nF1nCqVCo9Uxv00atQIlUqFXwpjhg4fPoxKpWLWrFl6y319fXF3d8fGxgYbGxs8PDzYuXNnZm9HL39/f8aMGUPTpk3JmzcvKpWKokWLpnh+TEwMBQsWpEmTJnrLFUXBxcWFihUrkpycbNBYhRBCCPF5kTlO4pPTrVs34NWqVzdv3iQgIICjR49y4MAB1qxZk8XRZd68efO4fv16qsmKv78/Bw8exNPTM0NtK4rCoEGDKFy4MD179tQp//vvv/n5558xMTGhXr16mJub888//9CsWTNmzJhBv379Mnw/+vz4449cuHAh3edbWloyZMgQBgwYoPe+VSoVI0eOpHXr1ixdupQePXoYJE4hhBBCfH5USka/hhfvTGRkJLa2tkRERKS6uWJsbCzBwcEUK1YMCwuL9xjhh0292tWbb+l9+/bRpEkTEhMT8fX1pVmzZulq7+XLl9y5cwdbW1sKFixo8HgzIi4ujiJFilCgQAGdxMLPz4+6detiaWlJTEwMbm5uHDlyRKeNRo0asXfvXg4dOqTTM7VlyxZat27NlClT+Pnnn7XKgoKCKF++PCYmJhw6dIgaNWoAcP36dWrWrElERARXr16lZMmSb32fQ4YMwdbWlqpVq1K4cGHKly+Pg4MDt2/fTrFOTEwMdnZ2ODo6EhgYqFOuKArlypUjKiqK27dvY2Ii3xeJzMvs319ZHEIIIT5M6f38DR/5UL2YmBhGjhyJo6MjFhYW2NnZ0aNHD+7du5ehdjI6PCghIYF//vmHfv36UaFCBbJly4alpSVly5Zl0KBBhIWFveWdCUOqX78+X331FQBbt25Nd71s2bJRpkyZLE+aADZu3Mjjx4/5+uuvUzynRo0afPHFFxw9epR9+/ZlqP3Zs2djbGxM586ddcqmTZtGUlISvXv31iRNAI6OjowYMYLExESmTZuWoeulZOLEiYwYMYIGDRqQK1eudNWxtLSkTZs2nDx5knPnzumUq1QqunTpwr1799i+fbtB4hRCCCHE5+ejTZxiY2Px9PRk3LhxREdH07JlS+zt7VmyZAkuLi7cunUr3W39+OOPjB49ml27dhEeHp7m+f7+/jRs2JBZs2bx4sULGjduTP369QkPD2fy5Mk4OTkRFBT0NrcnDMzFxQWA0NBQzTF1ghwfH8/YsWMpU6YM5ubmeHl5AanPcUpMTGTGjBlUrlwZKysrrKysqFatGnPmzNG7MaaHhwcqlYrbt2+zevVqXF1dsba2JkeOHOmKf+HChahUKjp27JjiOSqVitGjRwMwatSodLULEBwczIEDB/D09CR//vw65eqhgW3bttUpUx/z9fVN9/XeBXXCN3/+/FTLFyxY8N5iEkIIIcSn5aNNnMaPH8+JEyeoUaMG169fZ926dQQGBjJ58mTCwsIyNJehQYMGjB8/nr179/Lvv/+meb6RkRHt27cnMDCQ4OBgNm3axPbt27lx4wYNGzbk4cOHdO/e/W1uTxhYVFQUAObm5lrHk5OT8fLyYuLEiZQoUYKWLVum2cOUlJREy5Yt+eGHH7hx4wb169enXr16XLt2je+//5527dqluBCBj48PX331FWZmZjRr1owKFSqkGXtkZCRHjhyhZMmSFCpUKNVzvby8qFSpEsePH2fPnj1ptg2wa9cuFEXRu7DE8+fPuXPnDvC/5PN19vb25MmTh5CQECIjI9N1vXehZs2amJqapjj/q3jx4tjb23Pw4EFiYmLec3RCCCGE+BR8lIP94+PjmTlzJgCzZs3CyspKUzZgwACWLVuGv78/Z86coXLlymm2N3HiRM2/Hz58mOb5np6eeiff29rasnjxYgoVKsTx48cJCQnBwcEhPbdkUIqiEJOg2+vxobI0NdbMT3oXFEVhx44dADg5OWmVhYaGYm5uTlBQUJpJidrff//Nrl27KF++PAcOHND00jx48IC6deuyZcsWZs+erXfBhOXLl3Pw4EHc3d3THf+xY8dISkqiatWq6Tp/9OjRtGjRglGjRtGoUaM0z1fPh9LXvjppypkzJ9mzZ9dbv3DhwoSHhxMSEkLFihXTFaOhWVhY4OTkxJkzZzTzT95UrVo1Nm3axIkTJ6hbt24WRCmEEEKIj9lHmTgFBAQQERFBiRIl9H4L3rZtWy5evIivr2+6EidDsrOzI2/evISFhXH//v0sSZxiEpIoN3Lve79uZl0Z25BsZoZ/KyYlJXHr1i3++OMPjh8/jrm5ud6eQB8fn3QnTQDTp08HYMqUKVpD2woWLMikSZNo0aIF06ZN05s4ffPNNxlKmgAuXrwIQOnSpdN1fvPmzalSpQonT55kx44daS6GkVr70dHRwKv5XilRJ1TqXr2sUqZMGc6cOcP58+f1Jk5lypQB4Pz585I4CSGEECLDPsqheupVxSpVqqS3XH1c/YHwfXr+/DnPnj0DoECBAu/9+uJ/+zmZmJjg6OjI0qVLsba2Zs2aNZQoUULn3ObNm6e77Tt37nDnzh3y5s1LgwYNdMqbNWtGjhw5uHHjht7eyxYtWmT4fh4/fgy86vVJrzFjxgBo5jwZuv0PkXoxiZQWZ0mrXAghhBAiNR9lj5N6+FDhwoX1lquPh4SEvLeY1GbNmkViYiIVK1bU+6336+Li4oiLi9P8t6HmiFiaGnNlbEODtPU+WJoaG7Q99T5ORkZG2NjYULFiRVq3bq03MciXL5/OvKfU3L9/HyDFnkSVSoWDgwPPnz/n3r17OslzkSJF0n0ttYiICACsra3TXadJkyZUq1aNkydPsm3bNlq2bJlm+68PeVVTH3v58mWK9V+8eJHh+N4F9RKiz58/z1S5EEIIIURqPsrEKa3hQ1k1dOjcuXOMHz8egAkTJqR5vo+Pj6ZnwJBUKtU7Gfr2sVi6dGm6z30X+2ClNl8rM9eztbUFMv5+HjNmDI0bN9bMeUqt/SdPnhAdHa2T/KgTvWfPnvHixQu985zu3r0LpJxMvi/qBDCllQrTKhdCCCGESM1HOVTvQ/To0SNat25NbGwsP/30E40bN06zzrBhw4iIiNC8Xl8qW3yY7OzsgNR7M9VlGZk3lZp8+fIB8PTp0wzVa9SoETVq1OD8+fNs2bIlU+3nyJFDkzzp2yMpNDSU8PBwHBwc0tw07l1TD5HNmzdvpsqFEEIIIVLzUSZOaQ0fet9Dh6KiomjSpAm3b9+mXbt2TJ48OV31zM3NsbGx0XqJD1uRIkUoUqQIYWFhHDhwQKd8586dPHv2jJIlSxpsjtsXX3wBkKm9wV6f66QoSqbab9q0KfBqE943qY9lZJ7Yu3L16lUAnJ2dM1UuhBBCCJGajzJxUn8Drh4i9Kb3OXQoNjaWFi1acPbsWRo0aMDKlSsxMvooH6tIp/79+wOvlr5/faGBhw8fMnjwYODVpsqGUrNmTYyNjTl16lSG69avXx83NzcuXbqkWXb8TbVr1wZIsf0ff/wRY2Nj5s6dy4kTJzTH//vvP37//XdMTEz03m/RokVRqVT4+fllOO6Mio2N5dKlS9jb26c4t/DkyZOYmZnh6ur6zuMRQgghxKfno/yEr/6G/OzZs3rL1cff3LPH0BITE+nQoQN+fn7UrFmTzZs3Y2Zm9k6vKbLezz//TOPGjbl48SKlSpWidevWtGrVCkdHR65evYqXlxfff/+9wa5nbW1N7dq1uXHjRopfFqRG3euU0savjRs3TjXBKV26NJMmTSIuLo7atWvTpEkTvLy8+OKLL3jy5AlTpkyhZMmSOvXUmwCbmpqmO9aFCxfi6uqKq6urpqfrwYMHmmOurq56f+8DAgJISEjQ1HnTzZs3uXv3Lp6enlhaWqY7HiGEEEIItY8ycapVqxa2trbcvHmT8+fP65S/j+FDiqLQvXt3tm/fjrOzMzt37kxxg1DxaTE2Nmb79u1MmzaN4sWLs3fvXv755x9Kly7NrFmz2Lhxo8F7Hb/99lsA1qxZk+G6np6e1KlTJ8XyYsWKUa9ePQ4dOpTiBtA///wz27dvp0aNGhw5coQDBw5QpUoVfH19NT1wr3vy5Al3797F0dExQz08d+/eJTAwkMDAQE2CFB8frzkWGBiod/XJ1atXA/97ThktF0IIIYRIk/KRGjFihAIoNWvWVKKjozXHJ0+erACKu7u71vkzZsxQSpcurQwdOjTVdh88eKAAioODQ6rn/fDDDwqglClTRnn8+HFmb0NLRESEAigRERGpnhcTE6NcuXJFiYmJMch1xYcvNjZWyZ8/v1KxYsV30v7WrVsVQPnrr78M0t6mTZsUQFm5cqVB2kvNy5cvlRw5cijVqlXTW56cnKyULl1aKVSokJKQkPDO4xGftsz+/T10SP9LCCFE1krv529FUZSPds3qX3/9lf3793Ps2DFKlSpF7dq1CQkJITAwkLx587J48WKt88PDwwkKCuLBgwc6bS1cuJCFCxcCkJCQAPxveJDa7NmzNRvrbtu2jenTpwNgb2+vmdfypqFDh1KmTJm3v1nx2TM3N2fkyJH07duXHTt20KxZM4O237JlS6pVq8bUqVPp169fhva20ufQoUOULVuWTp06GSjClM2dO5fnz5/j4+Ojt3zr1q0EBQWxaNEiTEw+2j95QgghhMhiH+2nCAsLCw4dOoSPjw+rV69m69at5MqVC29vb8aNG5fi5rj6qIcHvU49PEjt9eFB6mWNAfbt25diu97e3pI4CYP57rvvmDZtGmPGjDF44gQwadIk3N3dWbBgAf369XurtmbMmGGgqFIXExPDxIkTady4MZ6enjrliqIwduxYKlSogLe393uJSQghhBCfJpWipLBGsXjvIiMjsbW1JSIiItWlyWNjYwkODqZYsWLvZANXIYQQ+mX2729Ki0t6eBgkLCGEEJmU3s/f8BH3OAkhhBAfu9RW65ekSgghPiwf5ap6QgghhBBCCPE+SeIkhBBCCCGEEGmQxEkIIYQQQggh0iCJkxBCCCGEEEKkQRInIYQQQgghhEiDrKonhBBCfIBkxT0hhPiwSI+TEEIIIYQQQqRBepyEEEKId+38ef3HnZ3fZxRCCCHegvQ4CSGEEEIIIUQaJHESnwyVSqX1MjIyIkeOHNSuXZuFCxeiKEpWh/jOqVQqihYtmtVhaPTo0YPs2bPz+PFjrePqn1GOHDl4/vy53rp//vknKpWK0aNH6y1//vw5uXPnpl27dlrHb9++rfNeeP1VoECBTN/P1q1badSoEXnz5sXCwgJ7e3tatWrF0aNHU6xz+/ZtevfuTbFixTA3NydPnjzUqFGDSZMmZToOfQICAmjSpAm5cuXCysqKatWqsXz58gy3s3Tp0lSfX8eOHXXqeHt7p1pH/bpz546mzrlz51CpVEycOFFvHA8ePMDS0pLvv/8+w/cghBBCvAsyVE98crp16wZAUlISN2/eJCAggKNHj3LgwAHWrFnzXmLw8PDA39+f4ODgDyqReZ8uXbrEsmXLGDhwIPny5dN7TkREBFOmTGHs2LEZbv/333/n2bNnjBo1Sm95/vz5adSokc5xW1vbDF8rOTmZb7/9lsWLF5M9e3bc3NzIkSMHd+7cYdeuXVSuXBk3Nzedert376Zt27bExMRQqVIlXF1defLkCZcuXWLevHkMHjw4w7Hos2nTJjp06EBycjJ16tQhT548HDhwgG7dunHx4kX++uuvDLf5xRdf4KxnGFn16tV1jum7d7WgoCBOnDiBg4MD9vb2muMuLi60aNECHx8fevbsSa5cubTqFSxYkO+++47Zs2fz008/4ejomOF7EEIIIQxJEifxyVm6dKnWf+/bt48mTZqwdu1aunTpQrNmzbImsPfg6tWrmJqaZnUYAPz6668YGxszaNAgveUqlQpzc3OmTZvGzz//TM6cOdPd9oMHD5gxYwbNmzenQoUKes8pU6aMznshs8aOHcvixYtp3rw5S5cu1fqQ/+zZM8LDw3XqXLt2jdatW2Ntbc2+ffuoWbOmpiw5OZmzZ88aJLanT5/So0cPkpKS2LRpE61btwbg0aNHuLm5MXnyZJo1a4ZHBpdh8/LySrG37009e/akZ8+eess6dOjAiRMn6Nq1KyqVSqts2LBhbN++nQkTJjBhwgSdukOGDGHmzJn89ttvrFu3LkPxCyGEEIYmQ/XEJ69+/fp89dVXwKuhVp+yMmXKUKJEiawOg9DQUHbs2EHDhg1T7G0yMjLiu+++IzIyMsM9IosXLyYuLo6vv/7aEOGm6u7du/j4+FCkSBHWrVun0zOSM2dOSpUqpVNvwIABxMbGsnTpUq2kCV7de5UqVQwS38KFC4mMjKRly5aapAle9biph8FNnjzZINfKqMjISHx9fQE0v4Ovc3V1pWTJkixevJj4+Hid8kKFClG3bl22bNnCo0eP3nm8QgghRGokcRKfBRcXF+DVB/rXrVixAjc3N2xsbMiWLRtOTk74+PgQGxur00Z8fDyzZ8+matWq5M6dm2zZslG0aFGaNWvG2rVrgf/Nr/H39wegWLFiWnM8XqcoCmvWrMHT05OcOXNiYWFB2bJlGT16NC9fvtS5voeHByqVitu3b7N69WpcXV2xtrYmR44cmnNSm+O0a9cu6tevr7lW6dKlGTp0qN45RqNHj0alUrF06VJOnjxJs2bNyJ07NyqVivMprQ72msWLF5OcnEynTp1SPW/o0KFYWloyY8YMnjx5kma78Oq5LVq0CGtra5o2bZquOm9j2bJlxMfH07NnTywtLdNVJzQ0lL1791K8eHGaNGnyTuPbuXMnAG3bttUpa9q0KRYWFuzfv1/ve/pd27RpEzExMVStWpXSpUvrPadTp06Eh4ezZcsWveWdO3cmISHBYL2H75SfX8ovIYQQHz0Zqic+C1FRUQCYm5trjvXq1Yv58+djYWGBp6cn2bJlw8/Pj+HDh+Pr68v+/fvJli2b5vwuXbqwceNGrK2tqV27NjY2Nty7d4+jR48SHR1Nx44dsbKyolu3buzZs4dHjx7Rpk0brKysdOJJTk6ma9eurFmzBisrK6pUqULOnDk5ffo0Y8aMYffu3fj5+en9oO7j48PChQupVasWzZo100kG9fHx8WH48OGYmJjg7u5Onjx5CAgIYMKECWzZsoXDhw+TP39+nXqHDx/mu+++w9HRkQYNGnD//n2MjNL+vmXHjh0AaQ4PK1iwIL1792bq1KlMmjSJP//8M822r1y5QnBwMPXr18fCwiLF8x49esSoUaN48OABtra2VK9enRYtWmBmZpbmNV538OBBAGrWrMmDBw9YtWoVN27cwNbWlrp169KwYUOdpNjPz4/k5GRq1qxJYmIimzdvJiAggKSkJCpUqECHDh0yNDQxNRcuXACgUqVKOmVmZmZUqFCB06dPc/36dZycnNLd7pkzZxg8eDCRkZEUKFAAT09P3N3dMxTbypUrAejatWuK53h4eDBu3Dh27txJhw4d9JbDqwTxl19+ydD1hRBCCINSxAcjIiJCAZSIiIhUz4uJiVGuXLmixMTE6D8hOVlR4qI/nldyskGeH6Doe0snJycrNWrUUABlxIgRiqIoysaNGxVAsbOzU65fv6459/nz54qbm5sCKAMHDtQcv3XrlgIoDg4OSnh4uFb7MTExyrFjx7SOubu7K4ASHBysN9aJEycqgOLh4aE8ePBAczwuLk755ptvFED55Zdf9LZpYWGh+Pn5pfgMHBwctI6dPHlSMTIyUqysrJQTJ05ojsfGxirt2rVTAKVNmzZadUaNGqV5nhMmTNB7rZRERUUpxsbGip2dXYrnAIqxsbGiKIry8OFDJVu2bEr27NmVx48fa87x8fFRAGXUqFFadefMmaMAyvDhw/W2HRwcrIn9zVeRIkWUwMDADN1PgQIFFECZPn26Ymtrq9Omh4eH8uzZM606Q4cOVQCld+/eiqurq06dXLlyKQcPHsxQHPqo/2ak9nfDy8tLAZTt27enq80lS5ak+Pzc3d2Vhw8fpqudu3fvKkZGRoqJiYny6NGjVO/ByMhIKVKkSIrn5MmTRzE3N0/5b957lOrf30OHUnwdmnpO/yvlKqm+hBBCGEZ6P38riqJIj9OnKOEl/GGX1VGk3/D7YJbd4M0mJSVx69Yt/vjjD44fP465uTndu3cHYPr06QCMGjVKa36Kra0ts2bNwtnZmXnz5jF+/HgsLCwICwsDXg35y507t9Z1LCwsqFGjRrrjSkxMZOLEiWTPnp21a9dq9fSYmZkxY8YMdu7cyfz58/njjz90eni++eabDH3zP3PmTJKTk+nfv7/Wimjm5ubMnDmTHTt2sGXLFkJDQ7VWPQOoWLFihld+u3LlCklJSSkOzXpT/vz56dOnD5MnT2bChAlpzne6ePEiQIrtm5ub06dPHzp06EDZsmWxtLTk33//Zdy4cezatYuGDRty/vx5HBwc0hXfs2fPgFdzlmrUqMG0adMoWbIkJ0+e5Ntvv8XPz49vv/2WDRs26NRZuHAhVlZWrF69mkaNGhEWFsa4ceNYuXIlrVq14t9//6VQoULpikOf6Ohozb9f7x19Xfbsr3631L2uaSlYsCCjR4+mZcuWFC9enJiYGE6ePMmQIUPw9/enWbNmnDhxAmNj41TbWbVqFcnJyTRu3DjFeW4ANjY2FCxYkDt37vDs2TO9PXGlS5cmICCAq1evaobdCiGEEO+bzHESnxz1fCITExMcHR1ZunQp1tbWrFmzhhIlSpCQkMCJEyeAV8Pv3uTk5ISTkxPR0dGa+TxlypQhe/bs7Ny5k0mTJnH//v1Mx3f27FnCw8OpWbOm3uFxlpaWVK5cmWfPnvHff//plLdo0SJD1zty5Aig/17z5ctHgwYNSE5OJiAgQKe8WbNmOsPQ0qLesykjQ9F++eUXsmfPzpw5c9JcBCCt9gsWLMjs2bNxd3cnX758WFtb4+rqys6dO+ncuTPPnz/njz/+SHdsycnJmuvt3r0bFxcXrK2t+fLLL9m+fTsqlYqNGzdy/fp1nTqJiYnMmzePTp06kTNnThwdHVmxYgVVq1YlIiKC2bNnpzuO96Vhw4aMGjUKZ2dnbGxsyJ8/P82bN+fUqVM4Ojpy+vRp1q9fn2Y76mF6+haFeJN6wQ31FxQZLRdCCCHeB+lx+hSZZnvVi/OxMNX/TXlmqfdxMjIywsbGhooVK9K6dWvNB+0nT54QHx9Pnjx5NN/Gv6lo0aJcuHCBe/fuAa++FV+wYAHfffcdQ4YMYciQITg6OlK3bl2++uoratWqle74bt++DbxaJj2tpCQ8PFynZ6VIkSLpvhagSfJSWjRCfVx9r29zLXi1NxOAtbV1uuvkzZuXvn37MnHiRP7880+mTp1q0PbVhg8fzurVq9m7d2+661hZWfHs2TPatWun836pUKECVatW5eTJkxw+fFiz15B6XpuVlZXOBr0A3bt359SpU5pFRDLr9flzL1++xMbGRuecFy9eAJl7Xm9e64cffqBfv37s3bs31YU/Ll68yKVLl7CxsUlXoq+OO6XNkNMqF0IIId4HSZw+RSrVOxn69rEwxOpb+hKaTp06Ua9ePbZt28Y///yDv78/8+bNY968eQwYMCDdSz6reyNKliyZZsL15rBAINUFETIjteQtM9dSbzCb3qFhaoMHD2b27NnMnTuXIUOGGLx9QDMs88GDB+mu4+DgwLNnz1JNPE+ePKnpCVPXgVeJp77nq27r9TqZYWNjg62tLREREdy9e5dy5crpnHP37l2tmN5Gep+furepTZs26VqJUJ0Mv75CZEbKhRBCiPdBEifx2cmdOzdmZmaEh4fz4sULvb1O6l6hN+ef5M2bV7PZp6Io7N27lw4dOjBlyhR69OhB+fLl07x+4cKFAcNu0JoaOzs7goODCQkJ0fvBOqV7zSz1fJanT59mqF6ePHno378/Pj4++Pj4YGenf55eZtuH/809SqmnUR8XFxfOnz+vqfsmdRyv9/6o5+FkpE5mffHFFxw+fJizZ8/q/HwTEhK4fPkyFhYWmt6wt5Ge55ecnMyaNWuA9A3Te73dvHnzZqpcCCGEeB9kjpP47JiamuLq6gqg2X/pdZcvX+bChQtYWVnh7OycYjsqlYpGjRpp9hL6999/NWXqJa8TExN16lWtWhVbW1v8/f0z9eE/o2rXrg2g+TD7urCwMPbu3YtKpcrQcMPUlC9fHhMTE4KCgjJcd+DAgVhbWzN//ny9QwfhVaIAZKr9TZs2AfqX7k6JeqiZvmF10dHRnD17FkBr0YKaNWuSO3duHj58qDdOdVuGWOhA/f7buHGjTtmOHTuIjY2lXr16BumpTM/z8/Pz4+7du9jb26e5HD282iT3/v37FClSJMV5a9euXcPc3JyyZctmKm4hhBDCECRxEp+l/v37A682er1165bmeFRUFP369UNRFHr16qX5sHnu3Dk2b95MfHy8VjtPnz4lMDAQQGtFOnVvib4Pzebm5gwZMoSoqChat26tdX21e/fusWLFire8y1f69u2LkZER06dP5/Tp05rj8fHx9O/fn5iYGFq3bq2zol5mZc+eHRcXFx48eJBi8pOS3Llz88MPPxAXF8eiRYv0nqNOBE+dOqW3fMGCBVy7dk3n+ObNmxk6dCjw6pm86csvv6RMmTKcPHlS63jz5s0pW7Ysx44d01rMISkpiQEDBvD06VMqVKiAm5ubpszExIQBAwagKAp9+/YlMjJSU7Z//36WLl2KSqWiV69eWtfy8/NLdRNjfXr27ImNjQ3btm1j8+bNmuOPHz/WDHkcOHCgTr0yZcpQpkwZnZ+Rj48P4eHhWscSEhIYM2YMGzZswNLSUrM6pT7qYXpdunRJ18Iip06dQlGUFFeKvHnzJk+ePKFatWoGH6YqhBBCZIQM1ROfpbZt2/Ldd98xf/58KlSooLUBblhYGK6urowdO1ZzfkhICG3atMHW1pYqVapQoEABnj9/zuHDh4mKiqJ58+ZaS5K3aNGCZcuW0blzZxo0aKCZl7Nw4UIAhg4dyrVr11ixYgVly5bFxcWFYsWKER8fT1BQEFeuXMHJySndQ51SU61aNcaNG8eIESOoUaMGHh4emg1wQ0NDKVWqFLNmzXrr67yuadOmnDp1Cj8/P72r+aVm4MCBzJgxQyvZeF3ZsmUpVqwYgYGBxMbG6nyYXrVqFd999x1OTk44OjqSnJzMlStXNMnU4MGDadWqlU67N2/eJCQkhJcvX2odNzY2ZvXq1bi7u9O3b1/mz59PyZIlOXfuHLdu3SJ37tysXr1aJ0kYPHgwhw4dYv/+/Tg6OuLq6kp4eDgnTpwgKSmJ33//nWrVqmnVUc9/MzU1TffzypUrF4sXL6Z9+/a0bdsWDw8PcufOzf79+3n+/DkDBgzQ2/OjTuoTEhK0jg8fPpwxY8ZQpUoV7O3tiYyM5Pz589y/fx8LCwtWrlyZ4rDO2NhYTa9Uet+7fn5+wP96zjJa/iHxO58jq0MQQgjxDkmPk/hszZs3j+XLl+Pi4oK/vz++vr7ky5eP33//nYMHD2rti+Pq6sr48eOpXLkyQUFBbNiwgdOnT+Pk5MTixYs1HxbVWrduzdSpUylcuDC+vr4sWrRIqwfFyMiI5cuXs23bNurXr09wcDCbNm3i6NGjWFhYMHjwYBYvXmywex0+fDg7duzA3d2dU6dOsXnzZk3PV2BgoN5l0d9Gjx49NAlHRuXMmZOffvopxXKVSkXPnj2JiorC19dXp/zbb7+lbdu2vHz5kn/++QdfX18iIyNp3bo1+/btY+LEiRmOydnZmfPnz/P111/z6NEjtm/fTnx8PD179uTMmTNUrFhRp46pqSm7du1iwoQJ5MmTh71793Lp0iXc3d3x9fVl+PDhOnUuXLgAwNdff52h+Nq0acPhw4dp2LAh586dY9euXZQsWZKlS5eme9EStZEjR1KnTh1CQ0PZtm2b5nehV69enD9/ntatW6dYd/v27URGRuLi4qJ3Pp0+a9asIU+ePHqTWYDVq1djamqKt7d3hu5DCCGEMDSVoihKVgchXomMjNSskKVvWWG12NhYgoODKVasmAxdER+sVq1asWPHDkJDQylQoIBB23748CHFihWjXr16epOnj1WLFi0ICAjg9u3bb718+Mfg+PHj1KxZkyFDhjBhwgSd8rt37+Lg4EDbtm1Zt25dFkSoK7W/v35/n894g6nMo0xNOqaPCSGESIf0fv4G6XESQrwj48aNIzk5mb/++svgbRcoUID+/fuzc+dOLl26ZPD2s0JSUhKHDx9m0KBBn0XSBPDnn3+SI0cOfvnlF73lkyZNwsjISGvYrBBCCJFVJHESQrwTFSpUoFu3bsyZM+et9yvSZ/jw4eTMmZMxY8YYvO2sYGxszPPnzxk2bFhWh/JenDt3ju3btzNs2DBy5cqlU/7gwQPmz5/Pt99+q7MJtBBCCJEVZHEIIcQ7s3jxYoPO1Xpdjhw5ePLkyTtpW7x7Li4upDZSvGDBgsTExLzHiIQQQojUSY+TEEIIIYQQQqRBEichhBBCCCGESIMkTkIIIYQQQgiRBkmchBBCCCGEECINkjgJIYQQQgghRBo+u8QpJiaGkSNH4ujoiIWFBXZ2dvTo0YN79+5lqB1/f3/GjBlD06ZNyZs3LyqViqJFi76boIUQQgghhBBZ6rNajjw2NhZPT09OnDhBwYIFadmyJbdv32bJkiXs2LGDEydOULx48XS19eOPP3LhwoV3HLEQQgghhBDiQ/BZ9TiNHz+eEydOUKNGDa5fv866desIDAxk8uTJhIWF0aNHj3S31aBBA8aPH8/evXv5999/32HUQgghhBBCiKz22fQ4xcfHM3PmTABmzZqFlZWVpmzAgAEsW7YMf39/zpw5Q+XKldNsb+LEiZp/P3z40PABCyGEEEIIIT4Yn02PU0BAABEREZQoUQIXFxed8rZt2wLg6+v7vkMTQgghhBBCfOA+m8RJPR+pUqVKesvVxy9evPjeYhJCCCGEEEJ8HD6bxOnOnTsAFC5cWG+5+nhISMh7i0kYlkqlQqVSpXrO0qVLUalUeHt7G+x6r79MTU2xs7OjTZs2HDt2TG89Dw8PVCoVt2/ffusYPgR+fn4Ge6afgqJFi6b5PhT6yeqkQgghPmSfTeIUHR0NQLZs2fSWZ8+eHYCoqKj3FlNcXByRkZFaL/Hx6datm+bVokULsmXLxubNm3Fzc2P16tXpbudD/dA4evRoVCoVS5cuzepQMuxjjj0rfWrJvRBCCGEIn83iEB8iHx8fxowZk9VhiLf05ofy5ORkhg8fzoQJE/jhhx9o164dpqammvLly5fz8uVLChUq9J4jfTeqVavG1atXsbW1zepQxEfu6tWrWr8rQgghxIfks+lxUq+i9/LlS73lL168AMDa2vq9xTRs2DAiIiI0r9DQ0Pd2bfHuGBkZMXbsWExMTHjy5InOcvVFihShTJkyn8wHxGzZslGmTBkKFiyY1aGIj1yZMmUoUaJEVochhBBC6PXZJE5FihQB4O7du3rL1ccdHBzeW0zm5ubY2NhovcT7169fP1QqFfPnz0/xnNKlS2NkZMStW7fS1aaZmZmmByYxMVGr7M1hUOp5V/Bqjt3rc6Y8PDzSfR9Xr17F29sbe3t7zM3NyZ8/Px07dkxxn7Fdu3ZRv359ChUqhLm5OXZ2dri5uWn1ghYtWlTz3927d9eKzc/PD0h5jtPrw+TOnDlD48aNyZEjB7ly5aJ9+/aa37kXL14wZMgQihYtioWFBRUqVGDjxo068SqKwpo1a+jYsSOOjo5kz54da2trqlWrxuzZs0lOTtY6Pz2xqwUGBtKuXTsKFiyImZkZhQsXpmfPnpq5kW+KiYlhxIgRFCtWDAsLC0qUKMGoUaOIj4/X/8NJhbe3tyam3bt34+bmhpWVFTlz5qR169Zcu3YtxborVqzAzc0NGxsbsmXLhpOTEz4+PsTGxuqcGx8fz+zZs6latSq5c+cmW7ZsFC1alGbNmrF27VoAbt++jUqlwt/fH4BixYppPbfXqX8enp6e5MyZEwsLC8qWLcvo0aP1fkH1+vt+9erVuLq6Ym1tTY4cOTTnpDZcVf1+VV+rdOnSDB06lOfPn+uc+/p77+TJkzRr1ozcuXOjUqk4f/58is9TCCGESM1nM1Tviy++AODs2bN6y9XHnZyc3ltM4sPQq1cvZs2axYIFC/juu+90yv39/bl+/Tr16tWjePHi6WozODiYJ0+eYGpqSsmSJVM9t2TJknTr1o1ly5aRPXt2zdL48Oob+PTYunUrHTt2JC4uDmdnZ1xdXQkNDWX9+vX4+vqye/du6tSpozl/1qxZ9OvXD2NjY2rVqoW7uzvh4eFcvXqV0aNHM2rUKODVMv379+/nwoUL1KpVS+teChQokK7YAgMD6d27NxUqVKBhw4acPXuWDRs2cOHCBU6ePEn9+vUJCQmhTp06hIeH4+/vT/v27dm9ezcNGzbUtBMXF0fnzp3JnTs35cqVo1KlSjx58oRjx47Rt29fTp48qTVsMr2xz549m/79+wNQtWpVateuTVBQEIsWLWL79u34+/tTtmxZzfnx8fE0bNiQI0eOkDNnTpo2bUpcXByTJk3i3LlzKIqSrufypg0bNjBnzhyqVKlC8+bNuXjxIlu2bOHgwYP4+/tr/oap9erVi/nz52NhYYGnpyfZsmXDz8+P4cOH4+vry/79+7XmdHbp0oWNGzdibW1N7dq1sbGx4d69exw9epTo6Gg6duyIlZUV3bp1Y8+ePTx69Ig2bdpo7XmnlpycTNeuXVmzZg1WVlZUqVKFnDlzcvr0acaMGcPu3bvx8/PD0tJSp66Pjw8LFy6kVq1aNGvWLF097T4+PgwfPhwTExPc3d3JkycPAQEBTJgwgS1btnD48GHy58+vU+/w4cN89913ODo60qBBA+7fv4+R0WfzfaEQQghDUz4TcXFxiq2trQIo586d0yl3cnJSAOX06dMZbvvBgwcKoDg4OLxVjBEREQqgREREpHpeTEyMcuXKFSUmJkZveXJysvIi/sVH80pOTn6r56YGKGm9pZcsWaIASrdu3bSO16xZM8X3RpcuXRRAWbduXZrXi4qKUo4cOaJUqVJFAZQffvhBpz13d3cFUIKDg3Xay8x7KDg4WMmePbtiZWWl7Nu3T6ts9+7diqmpqWJvb6/ExcVpjhcpUkRRqVTKqVOntM5PTk5WDh06pHVs1KhRCqAsWbJE7/UPHTqk95mq6wHKnDlzNMfj4+OVevXqKYBSrlw5xdPTU4mOjtaUL1y4UAGUOnXqaLWXkJCgbNmyRYmPj9c6/vjxY83z9vf3z1Dsx48fV4yNjZVChQrp/O6r46hevbrW8T///FMBFBcXFyU8PFxz/L///lPs7OzS9T58Xbdu3TR15s+frzmenJys/PLLLwqgODs7a9XZuHGjAih2dnbK9evXNcefP3+uuLm5KYAycOBAzfFbt25p3l+vx6wor/6eHDt2TOtYSu9RtYkTJyqA4uHhoTx48EBzPC4uTvnmm28UQPnll1/0tmlhYaH4+fnpbVff78DJkycVIyMjxcrKSjlx4oTmeGxsrNKuXTsFUNq0aaNV5/X33oQJE/ReK7NS+/t7aOq5jL8OKZl6CSGEMIz0fv5WFEX5bHqczMzM6NevH7///jt9+/bln3/+0aykN2XKFC5evIi7uzuVK1fW1Jk5cyYzZ86kVatW+Pj4ZFXoGRaTGEP11dWzOox0C+wcSDZT/asdZkZmloLu3bs3x44dY8GCBcyaNUtz/NmzZ2zatIm8efPi5eWV7utZW1szY8YM+vbtm+FYMurvv//mxYsXzJgxg3r16mmVNWrUiD59+jB9+nR27txJq1atAAgLCyNHjhxUqVJF6/yMDg9MDzc3N3r37q35b1NTU/r378/+/fu5du0aW7Zs0fwuwquha0OHDuX48eMkJCRo5oKZmJjo/RnkzZsXHx8f6tevz7Zt27R61tLy559/kpSUxNy5c7V+9wG++eYbtm/fzvbt2zl37pxm4+zZs2cDMHnyZHLnzq05v2TJkvz222/06dMn3dd/Xc2aNfn22281/61SqRg3bhyrVq3i/PnzHD16FDc3NwCmT58OwKhRoyhVqpSmjq2tLbNmzcLZ2Zl58+Yxfvx4LCwsCAsLA8DFxUUrZgALCwtq1KiR7jgTExOZOHEi2bNnZ+3atVo9PWZmZsyYMYOdO3cyf/58/vjjD50enm+++QZ3d/d0X2/mzJkkJyfTv39/qlf/3981c3NzZs6cyY4dO9iyZQuhoaHY29tr1a1YsSKDBw9O97WEEEKI1HxWYxZ+/fVXqlevzrFjxyhVqhQdOnTA1dWVgQMHkjdvXhYvXqx1fnh4OEFBQTx48ECnrYULF+Lq6oqrqytNmzYF4MGDB5pjrq6uKQ4LFO/W68uDv/mqVauW3jrt2rUjd+7crFq1Smt+xsqVK4mNjaVbt26YmZmleb2OHTtSo0YNXrx4wdixY9mzZ887ucfX/fPPPwC0bt1ab3nt2rUBOHnypOZY5cqVefbsGd98802Kc6AMpUGDBjrH1EMeixYtiqOjo1aZsbExDg4OJCQkEB4erlP3/PnzTJw4kb59+9K9e3e8vb2ZM2cOAP/991+640pOTubAgQNky5ZNa0jg6958dnfu3OHOnTvky5ePunXr6pzfqVOndF//TR07dtQ5Zmpqqhm6eeTIEQASEhI4ceIE8Gr43ZucnJxwcnIiOjpaM5+nTJkyZM+enZ07dzJp0iTu37+f6TjPnj1LeHg4NWvW1Ds8ztLSUvP+0vfzaNGiRYaup75vffeaL18+GjRoQHJyMgEBATrlzZo1kz21hBBCGMxn0+MEr75ZPXToED4+PqxevZqtW7eSK1cuvL29GTduXIqb4+pz9+5dAgMDtY7Fx8drHcuqfZksTSwJ7ByY9okfCEsT3XkQbyO1PXuWLl2q9wOWhYUF3bp1Y8qUKWzYsIFu3boBrxJkgJ49e2boeufOncPd3Z0WLVpw+fJlSpcunbGbyAD1IhNpLW/+ehIya9YsvLy8WLx4MYsXLyZ//vy4u7vTunVr2rZti7GxscHi0xeXet5MSjGry+Pi4jTH4uPj8fb2Zs2aNSleKyP7sIWHh2v2d0spKX79XECTcKS0iIytrS05cuTQu2BBWlJqU71YgvraT548IT4+njx58mj11L1Z58KFC9y7dw8AGxsbzRy+IUOGMGTIEBwdHalbty5fffVVil8o6KN+v+3bty/NpCQ8PFznva9eqCe91Ped0qIR6uPqe32bawkhhBCp+awSJ3j1bejYsWMZO3ZsmueOHj2a0aNHZ7gsq6lUKoMOfftc9OrVi6lTp7JgwQK6devGyZMnuXjxInXq1Mlw4uPi4kKvXr3466+/mDNnDn///fe7CRo0q8mpk72UvD7MycnJiStXrrBnzx527dqFn58f69evZ/369dSoUQM/P780k4n0Sm0yfkYm6k+ZMoU1a9ZQsWJFJk6cSKVKlciZMyempqZcv36d0qVLZ2hhBvVzs7Kyok2bNqmeW758+XS3+yHQl9B06tSJevXqsW3bNv755x/8/f2ZN28e8+bNY8CAAUyePDldbaufW8mSJdNMuN4cFgivvqQwpNSSN0NfC4AXLyA2Fk6ehDdWcoQchr+eEEKID8ZnlzgJkRL1N/AHDx7k6tWrLFiwAEDvSnvpUaxYMSBjw8cyo3Dhwty8eVNnzk1aLCws8PLy0swb+vfff+ncuTPHjx9n4cKFfP/99+8o4szZsmULAGvWrNFJZNK7TPzr8uTJg4WFBUZGRixZsiRdQ7rUe1WFhIToLY+MjMxUb1NqbaqP29nZAa+SETMzM8LDw3nx4oXeXqeUeiHz5s1Lz5496dmzJ4qisHfvXjp06MCUKVPo0aNHuhJEdc98mTJlUu3dNRQ7OzuCg4MJCQmhXLlyOuXp7XEVQggh3tZnNcdJiLSoFzGYMmUKa9euJWfOnGn2RqRE/WFe33LO+piamurs+ZQe9evXB/6XWGRW+fLlNYtZXL58WXNc3fOUmdgM6dmzZwB6h9SuX79eb53UYjcxMcHDw4PIyEgOHDiQrhgcHBywt7fn8ePHmr2OXqfeDykz9N1DYmIimzZtAtAsDGFqaoqrq2uK17t8+TIXLlzAysoKZ2fnFK+nUqlo1KiRZo7m63PdUntuVatWxdbWFn9/f54+fZrOu8s89TwzfUM0w8LC2Lt3LyqVKkPDDT8Jfn76X0IIId4ZSZyEeI2XlxcFChRg4cKFREdH89VXX2VquM+5c+c0G+o2adIkXXXs7Ox49OhRhnssBg4ciKWlJYMGDWLz5s065XFxcWzcuFGz4ezLly+ZPn26znWSk5M1i1m8vjqZuqcjKCgoQ3EZmnoRiblz52od37hxI8uXL9dbJ63YR4wYgZGREd27d9fZFBcgOjqaxYsXExMTozmmXjVv4MCBWonDrVu30jUEOCVHjx7VWaBm1KhR3LlzBycnJ00CAWj2nRo9erRWb1tUVBT9+vVDURR69eqlee+eO3eOzZs362zQ+/TpU828zPT+zM3NzRkyZAhRUVG0bt1ab2/fvXv3WLFiRYbuPyV9+/bFyMiI6dOnc/r0ac3x+Ph4+vfvT0xMDK1bt9ZZUU8IIYQwNBmqJ8RrTE1N6dGjB3/88QeQvmF63t7emn/Hx8cTEhLCiRMnSE5Opnnz5nz11VfpunaLFi2YMWMGlSpVombNmlhYWFC6dOk0l1MuWbIka9asoXPnzrRp04aSJUtStmxZsmfPzr179zh79iwvXrzg3LlzFC5cmPj4eH788UcGDRpE5cqVKVq0KPHx8Zw6dYrQ0FCKFi2qdd8NGjTAwsKCqVOncvnyZezs7FCpVAwePPidLnrxpiFDhrBnzx6GDh3Khg0bcHR05L///uP06dMMGjSIv/76S6dOWrG7ublpNgOuW7cuFSpUwNHREVNTU27fvs358+eJi4ujdevWms1cBw4cyM6dOwkICKBkyZJ4enoSFxfHgQMH+PLLLzE2NubOnTsZvr8+ffrQs2dP5s2bR4kSJbh48SL//vsvNjY2OkPi2rZty3fffcf8+fOpUKGC1ga4YWFhuLq6aiVxISEhtGnTBltbW6pUqUKBAgV4/vw5hw8fJioqiubNm2stSd6iRQuWLVtG586dadCgAba2tsD/FksZOnQo165dY8WKFZQtWxYXFxeKFStGfHw8QUFBXLlyBScnp3S/91NTrVo1xo0bx4gRI6hRowYeHh6aDXBDQ0MpVaqU1hYCQgghxLsiPU5CvMHT0xOAGjVqpGvOx7JlyzSvdevWce3aNerUqcOiRYvYunVruhdA8PHxoV+/fiQmJrJu3ToWLVrEzp0701W3ZcuWXLx4ke+//x6VSsW+ffvYuXMnjx8/pnnz5qxfv14zP8TKyopZs2bRvHlzwsLC2L59OwcPHiRnzpyMGTOGM2fOaM2VsrOzY9u2bbi6ump6RRYtWqR3mf53qU6dOhw9ehRPT09u3brFjh07MDMzY9OmTSnul5We2Hv37s3p06fp1q0bUVFR7Nixg7179xIdHU2XLl3YsWOHJnGAV8PY/vnnH4YNG4a1tTW+vr5cvnyZn3/+mU2bNmV6+ev27duzfft2jI2N2bZtG3fv3qVly5YcP35cs4fU6+bNm8fy5ctxcXHB398fX19f8uXLx++//87BgwfJlu1/C8S4uroyfvx4KleuTFBQEBs2bOD06dM4OTmxePFizXBAtdatWzN16lQKFy6Mr68vixYtYtGiRZpyIyMjli9fzrZt26hfvz7BwcFs2rSJo0ePYmFhweDBg3V6z97G8OHD2bFjB+7u7pw6dYrNmzdrer4CAwP1LosuhBBCGJpKycgyVOKdioyMxNbWloiICGxsbFI8LzY2luDgYIoVK/ZuVo36zPXq1Yv58+ezZMkSrd4kId4Fb29vli1bxqFDhwy++bAwvNgnTwi+c4diUVFYvLGqnt/5HBlvMJV5aKnxwC+FAo9MtSeEEJ+r9H7+BulxEkJLSEgIK1asIE+ePHTo0CGrwxFCCCGEEB8ImeMkBDBp0iQuXrzIvn37iImJwcfHRzOnRQghhBBCCEmchAB27tyJv78/dnZ2jBo1ih9++CGrQxJCCCGEEB8QSZyEAL1LUQvxPixduvS9bCQrhBBCiLcjc5yEEEIIIYQQIg2SOAkhhBBCCCFEGmSonhBCCPGmqKisjiBVKS19LquRCyHEuyM9TkIIIYQQQgiRBkmchBBCCCGEECINkjgJIYQQQgghRBokcRJCCCGEEEKINMjiEEIIIURWOX8+5TJn5/cVhRBCiHSQHichhBBCCCGESIMkTuKTcujQIdq0aUOhQoUwMzMjZ86clC5dmnbt2jFz5kwiIiK0zvfw8EClUqFSqfDx8Umx3QcPHmBiYqI59/bt23rPS0hIYMGCBTRu3Bg7OzvMzc2xtbWlUqVKDBw4kKtXrxrydt+pokWLolKpsjqMD8Lo0aNRqVQsXbo0q0P56Hh7e6NSqfDz88vqUIQQQoi3IkP1PmUfwwcVA246MnbsWEaNGgVA2bJlqV69OqampgQFBbF582Y2btxIlSpVcHV11Vt/1apVDBs2TG/ZmjVrSEpKSvX6165do2XLlly/fh0zMzOqVauGu7s7L1684Pz580yZMoW///6bxYsX061bt7e72bd0+/ZtihUrhru7+0f3gfZjjj0rLV26lO7duzNq1ChGjx6d1eEIIYQQHx1JnMQn4cyZM4wePRpTU1PWr1+Pl5eXVvnDhw9ZuXIlOXLk0FvfxcWFc+fOcf78eZz1zCtYuXIlOXPmJEeOHAQHB+uU3717l9q1axMeHo63tzd//fUXuXPn1jrn4MGDDBo0SG/9D9GBAwdISEjI6jDER87Hx4ehQ4dSpEiRrA5FCCGEeCsyVE98EjZv3oyiKLRv314naQIoUKAAgwYNokyZMnrrd+nSBXjV6/Smq1evcu7cOdq1a4eZmZne+r169dIkTUuWLNFJmgA8PT05fvw4zZo1y8CdZZ0SJUqk+LyESK+CBQtSpkwZsmXLltWhCCGEEG9FEifxSQgLCwMgb968mapfvXp1SpYsyZo1a0hOTtYqW7FiBQBdu3bVW/fKlSvs2rULS0tLpkyZkup1zM3NqVKlSrrjevnyJT4+Pri4uGBlZYWVlRWurq4sW7ZM7/khISH06dMHR0dHsmXLRq5cuShfvjy9evUiKCgIeDVfp1ixYgD4+/tr5m2pVCq8vb01bemb43T79m1UKhUeHh68ePGCAQMGYG9vj6WlJZUqVcLX11dz7oYNG6hevTrZs2cnf/78/PDDD8TExOjEfP78eYYMGULlypXJmzcv5ubmFC9enO+//5779+9rnZve2AGePn3KsGHDKFeuHJaWltja2uLp6cmOHTtSfN7bt2+nRo0aZMuWjdy5c9OmTRuuX7+e4vkp8fPz08T04MEDvL29yZ8/v+Y5LV++PMW6V65coUuXLhQsWBAzMzMKFSrE119/rfn5venYsWN4eXnh4OCAubk5BQoUoFq1agwdOpTo6Gjg1Vy+7t27AzBmzBit5/bmvK2rV6/i7e2Nvb095ubm5M+fn44dO/Lvv//qXHvp0qWoVCpGjx7N9evX6dixI/nz58fIyIitW7cCqc9xCg0NpVevXprY8+XLR+vWrTl16pTOua+/9yIjIxkwYADFihXD1NSUn376KcXnKYQQQhiKDNUTnwR7e3sANm3axLBhw8iXL1+G2+jSpQtjxozBz88PT09PABRFYfXq1Tg4OODm5qa33q5duwBo1KgROXPmzOQd6Hr8+DH169fn4sWLFChQAHd3dxRF4dixY3h7e3P69GlmzJihOT80NJRKlSrx9OlTSpUqRZMmTUhKSiIkJIQFCxZQo0YNSpcujbOzM23atGHTpk3kz5+fRo0aadpI6R7fFB8fz5dffklwcDB16tQhPDycw4cP06pVK/bs2cOlS5cYMmQI7u7uNGzYkMOHDzNjxgyePHmi06v3559/smnTJpycnDTXP3/+PHPmzGHr1q2cPn0aOzs7gHTHfv36derVq0doaChFixalYcOGREVFceLECZo3b86kSZMYNGiQVhxz586lT58+qFQqateuTcGCBTlx4gTVqlWjefPm6fypaXv69Cmurq7ExcXh4eHBs2fPOHToEN26dePWrVs6c40OHDhA8+bNiYmJwcXFBQ8PD65du8aKFSvYsmULu3btonbt2przfX198fLyQlEUqlWrRs2aNXn+/Dn//fcfEyZMoHfv3lhZWdGoUSMSExMJCAjgiy++0BqOWrJkSc2/t27dSseOHYmLi8PZ2RlXV1dCQ0NZv349vr6+7N69mzp16ujcZ1BQEFWrViV37tzUrVuXZ8+eYWpqmuqzuXTpEp6enoSHh1O6dGlat27NnTt32LJlC76+vqxevZp27drp1IuJicHd3Z2QkBDc3d2pVKmSQX/vhBBCiJRI4iQ+CV26dMHHx4fQ0FBKlixJ69atcXNzo3Llyjg5OWFsbJxmG127dmXMmDGsXLlSkzgdPXqUkJAQhg0bluIKc+f/fx+WSpUqGex+ALp3787Fixf58ccfmTBhAubm5gA8evSIZs2aMXPmTJo2bapJHhYuXMjTp0/p16+fVkIFcOfOHc18JS8vL5ydndm0aRNlypTJ1Epxx48fx9PTk1u3bpE9e3bgf4sP9OnThydPnnD8+HFN79r9+/dxcXFh9erVjBs3juLFi2va6tWrF9OmTSN//vyaY8nJyYwfP55Ro0bx66+/snjx4nTHnpSURNu2bQkNDWXixIkMHDgQI6NXnes3btygQYMGDB06lEaNGlGhQgXgVU/dzz//jKmpKb6+vjRs2BB4tUpi9+7dWblyZYafEbxKbOrXr8+WLVs0z+nUqVN4enoybtw4WrRooXnfvHjxgi5duhATE8PMmTPp27evpp2pU6cyYMAAOnfuzH///YeFhQUAf/31F8nJyWzcuJE2bdpoXfvUqVOaIaNDhw6lQIECBAQE4OXlpXdxiNu3b9O1a1dMTU3ZsWMH9erV05Tt2bOHFi1a0LVrV27cuKEzZHXt2rX069ePv//+O12/a4qi0KVLF8LDwxkyZAh//vmn5vdr06ZNtG/fnh49euDm5kbBggW16p48eZIaNWpw69atFOcsCiGEEO+CDNUTn4TixYvj6+uLvb09UVFRLFu2jG+//ZZKlSqRJ08evv/+ex48eJBqGyVLlqRatWps2rSJ2NhYAM0H5pSG6QE8efIEyPwwQX3Onz/Prl27qFq1KlOmTNEkTQD58+dn/vz5AMyZM0dzXD1c8fUPvGpFihShRIkSBovPyMiIOXPmaJIBgK+//po8efJw48YN+vbtqzUk0c7OTjOP7PDhw1pt1a1bVytpUrc/cuRIChUqxPbt2zMUm6+vL5cuXaJNmzYMHjxYkzTBq5/x5MmTSUpKYsGCBZrjixcvJjY2lk6dOmmSJgBTU1OmTZuW6fk5RkZGzJgxQ+s5Va1alb59+5KcnMzs2bM1x9evX8+jR4+oUaOGVtIE8PPPP1O5cmXu3r3Lpk2bNMdT+5lXrVoVa2vrdMf6999/8+LFC3x8fHTaa9SoEX369CE0NJSdO3fq1M2bNy8TJkxIV9IEr4YyXrp0iSJFijB+/HitLyXatGmDl5cX0dHRmoT5TdOnT5ekSQghxHsniZP4ZHz55ZfcuHGDzZs307t3bypVqoSJiQnPnz9nzpw5ODs7pzhPRK1r165ERkbi6+tLfHw8GzZswMXFhXLlyr2nu3jln3/+AV71sLz+wV9NPefp5MmTmmOVK1cGYPjw4ezYsUOT/L0LRYsWxdHRUeuYkZERDg4OADRo0ECnjrqXSV8C++TJE5YsWcLAgQP55ptv8Pb2xtvbm4SEBJ48ecLTp0/THZv62bVu3VpvuXqo2+vP7siRIwB07NhR5/zcuXPrvZ/0cHZ2pnTp0jrHO3XqpHXd1/+tTjDfpE7eX6+j/pl/9dVXnDp1Smd+XkZk5rmp1atXL0PJpfoe2rdvr3dI31dffaV13usKFiyYoXmCQgghhKHIUD3xSTEzM6NVq1a0atUKgOfPn7N27VqGDx/O48eP6devH/v27UuxfseOHRkwYACrVq3CxMSEZ8+e8euvv6Z6TfVwKPW3/4ag3mB3xIgRjBgxIsXzXk+OvL29+eeff1i/fj3NmzfHwsKCqlWr0qhRI3r06EGBAgUMFl+hQoX0HreyskqxXF0WFxendXzNmjV89913moUM9ImKiiJXrlzpik397Lp06ZJiEgIQHh6u+bd6EQp14vemokWLpuvab0qrvdcXv1D/O6VrqY/fu3dPc+yPP/7g0qVL+Pr64uvrS86cOXFzc9MMq1MP6UsP9XNL6Wer9vpzU8voUuOZudfMXksIIYQwFEmcxCctR44c9O7dGzs7O1q2bMmhQ4d4+fJlit+O582bl/r167N7926ioqIwNjbW9A6kxNnZmVWrVnH27FmDxa3uOXBzc0v3EDtjY2PWrVvH0KFD2bZtGwcPHiQwMJAjR47w559/smfPHmrWrGmQ+PT1gmWkXC0kJESzGt7ff/9N06ZNKVSoEJaWlgDUrFmT48ePoyhKumNTP7tGjRrpDAF8XZ48edLd5odA3xw7e3t7Tp8+zcGDB9mxYwf+/v6aJGrixIkcP35c79L4+qifW1qbM1evXl3nWEYStPRIaT7hu7iWEEIIkV6SOInPgnqxh6SkJJ4/f57qsKKuXbuye/duDh48SP369XUmp7+pSZMmDB48mD179vDs2TODrPBVuHBh4NVQvYEDB2aorouLCy4uLowePZrIyEhGjx7N1KlT+emnn/QOs8pKu3btIj4+nkGDBvHjjz/qlN+6dSvDbaqfXc+ePXUWTEhJwYIFCQoKIiQkRO+wzJCQkAzHkVo99XH1aoGv/zulOin1CJmYmNCgQQPNcMKQkBB69OjBwYMHmTBhAhMnTkxXrIULF+bmzZtMnjw53clWZmX2XoUQQoisJHOcxCchrR6JGzduAK+G8qXV0+Dl5UXhwoXJnTu3zt5A+pQrV44mTZoQExOTZpITHx/P6dOn02yzfv36AGzZsiXNc1NjY2ODj48PKpWKy5cva46rV0VLTEx8q/bf1rNnz4D/JTuvO3z4MI8ePdI5nlbsmXl26vk769ev1yl7+vSpZv5PRp0/f57//vtP5/jatWsB7SXU1TGsWbNGb1vqhUpeX45cHwcHB3755ReADP3MDfWeSw/1PWzYsIGkpCSd8vTeqxBCCPE+SeIkPgm//fYbgwcP5ubNmzpl9+7do1evXgC0aNFCZynlN2XLlo3Q0FDCw8Pp3Llzuq4/b9488uTJw5IlS+jRo4dmpb3XHT58mJo1a6a6Aata9erVqV+/PgEBAfTt25fIyEidcy5cuMCePXs0/71ixQqtD8pqu3fvRlEUzV5X8GqYmqmpKTdv3tT7wfV9US8wsXLlSl68eKE5fu/ePXr37q23Tlqxt2nThnLlyrFq1SrGjRunM6dKURQCAgIICAjQHOvevTvm5uasWrWK/fv3a44nJCTw888/a8WWEcnJyfTv35+XL19qjp05c4aZM2eiUqno06eP5nj79u3Jnz8/R48e1ayaqDZ9+nROnz5NoUKFtHrRpk6dysOHD3Wuq95b7PWfubqXJ6UFUgYOHIilpSWDBg1i8+bNOuVxcXFs3LiRu3fvpufWU+Xh4UHFihW5ffs2I0eO1PriY8uWLWzevBkrKyt69Ojx1tcSQgghDEWG6olPQnR0NNOmTeOvv/7C0dGRcuXKYWFhwd27dwkMDCQhIYGSJUvy999/v5PrFy5cmCNHjtCiRQuWLFnCqlWrqF69OoULF+bFixdcuHCBkJAQjI2N+eGHH9LV5sqVK2nUqBGzZ89m9erVODs7Y2dnR0REBBcvXiQ0NJQff/xRs4/Tpk2b+PrrrylRogQVK1bE0tKS4OBgAgMDMTIyYvz48Zq2zczMaNSoEb6+vnzxxRdUqlQJMzMzatWqRffu3d/JM9KnRYsWlC9fntOnT1OyZElq1apFbGwshw4dwtnZmZo1a3Ls2DGtOmnFbmJiwtatW2nYsCEjR45k5syZODk5kS9fPsLDwzl//jyPHz9m6tSp1KpVC4BixYoxefJk+vXrR8OGDalTpw4FChTgxIkTPHv2jC5duuhs3JsezZo148KFC5QoUYI6deoQERHBwYMHSUhI4Ndff9VaHS579uysWrWK5s2b06tXL+bPn4+joyPXrl3j3LlzWFlZsWbNGq05PmPGjGHQoEF88cUXlCpVCkVRuHDhAtevXydXrlxam/y6urqSL18+Nm7ciIeHB8WLF8fIyIgePXpQs2ZNSpYsyZo1a+jcuTNt2rShZMmSlC1bluzZs3Pv3j3Onj3LixcvOHfunN4ewoxQqVSsWrWKunXr8scff7BlyxacnZ25c+cOAQEBmJiYsGjRojSHyQohhBDvkyROnzIPj6yO4L1Rfwjdu3cvFy5c4MiRI0RERGBjY0O1atVo2bIl33//vdZ+OoZWpkwZLl++zNKlS9m8eTPnz5/nxIkTWFhYULJkSdq1a8e3336rs4x3SvLly8exY8dYsGABa9eu5dy5cxw7doz8+fNTvHhxfvjhB63lswcMGEDhwoUJCAjgyJEjvHjxAjs7Ozp06MDAgQN1lnBeuHAhgwYNYt++faxevZqkpCQSExPfa+JkZmbGkSNHGDFiBLt372bHjh0UKlSI/v37M3LkSJo0aaK3XlqxlypVinPnzjFz5kw2b97MiRMnSExMpECBAri4uNCiRQvat2+v1Wbfvn0pVKgQf/75J4GBgVhYWFCnTh3+/PNPzdC6jMqdOzcnTpzgl19+Ye/evURGRlKuXDl++uknvcNAv/zyS06dOsXvv//OwYMHuXjxInny5KFr1678+uuvOkubz5gxgz179nDmzBl2794NvOplGjBgAAMGDNCaI2RhYcHOnTsZPnw4J0+e5PDhwyiKgpubm2bRkJYtW3Lx4kWmTJnCvn372LdvH6amptjZ2dG8eXNat25tsKX5K1asyNmzZxk/fjx79uxh48aN2Nra4uXlxbBhw6hWrZpBriOEEEIYikrJyHJV4p2KjIzE1tZW84E/JbGxsQQHB1OsWDFZYUqID5Cfnx9169alW7duLF26NKvDEZkRFaX3cGx8PMF37lAsKgqLN/bN8jufw7AxODunXHb+vN7DHj+lUkcIIYSO9H7+ho98jlNMTAwjR47E0dERCwsL7Ozs6NGjh969P9Ly7NkzfvzxRxwcHDA3N8fBwYGffvqJ58+fp1jn+vXrdO/eHQcHB8zMzLC2tqZq1apMnTqV+Pj4t7gzIYQQQgghxIfko02cYmNj8fT0ZNy4cURHR9OyZUvs7e1ZsmQJLi4uGVrGODw8nGrVqjF9+nRMTEzw8vLC2tqaadOmUb16dZ4+fapT59ixY7i4uLB06VKyZ8+Ol5cXNWvW5N9//2XAgAE0aNAgy1csE0IIIYQQQhjGR5s4jR8/nhMnTlCjRg2uX7/OunXrCAwMZPLkyYSFhWVoNaaffvqJGzdu0Lp1a4KCgli3bh2XL1+mf//+XL9+nQEDBujU6devHy9fvsTHx4crV66wfv169u7dy40bNyhevDj+/v6sWLHCkLcshBBCCCGEyCIf5Ryn+Ph48uXLR0REBGfPnsXFxUWr/IsvvuDixYucPn2aypUrp9rWgwcPKFy4MCYmJty5c4f8+fNryuLi4rC3t+fp06fcv3+ffPnyAa9WcLO2tiZbtmxERUVhZKSdf06dOpUBAwbQp08fZs+ene77kjlOQgjxgZA5TkII8Vn45Oc4BQQEEBERQYkSJXSSJoC2bdsC4Ovrm2Zbe/bsITk5mdq1a2slTQDm5uY0b96cpKQkzb4oAKampjrJkj65c+dO8xwhhBBCCCHEh++jTJwuXLgAQKVKlfSWq49fvHjxnbRlbm5OnTp1ePnyJRMnTtQ6//79+8yaNQtTU1O++uqrNK8vhBBCCCGE+PB9lInTnTt3AFLchFF9PCQk5J21NXfuXOzt7Rk2bBjlypWjffv2NGrUiJIlS6IoCjt37kz3fj1CCCGEEEKID9tHuQFudHQ0ANmyZdNbrt7kNCqFMeqGaKt06dIcPXqUVq1acfbsWa5evQqASqWibt26lC9fPs1rx8XFERcXp/nvyMjINOsIIYQQQggh3r+PssfpQ3Dw4EG++OILEhISOHjwIJGRkQQHBzNixAiWLFlCrVq1CAsLS7UNHx8fbG1tNS97e/v3FL0QQgghhBAiIz7KxMnKygqAly9f6i1/8eIFANbW1u+kradPn9KuXTsSEhLYvXs3devWxdramqJFizJu3Dj69u3L7du3+euvv1K99rBhw4iIiNC8QkND04xXCCGEEEII8f59lEP1ihQpAsDdu3f1lquPOzg4vJO2du7cydOnT/nyyy8pVKiQTp127doxY8YMDh8+nOq1zc3NMTc3TzNGIYQQIj38/FIu8/B4X1EIIcSn6aPscfriiy8AOHv2rN5y9XEnJ6d30pY6mbK1tdVbR3382bNnaV5fCCGEEEII8eH7KBOnWrVqYWtry82bNzmvZxPAjRs3AtC8efM022rUqBFGRkYcOXKEx48fa5XFxcXh6+uLsbExTZo00RwvUKAAAOfOnSMpKUmnzVOnTgFQtGjR9N6SEEIIIYQQ4gP2USZOZmZm9OvXD4C+fftq5iEBTJkyhYsXL+Lu7k7lypU1x2fOnEmZMmUYNmyYVlsFCxakU6dOxMfH8/3335OYmKgpGzJkCGFhYXTt2pV8+fJpjjdq1Ahzc3OCg4P57bffSH5t9/igoCBGjhwJ/G8jXvF+qFQqzev48eMpnrd+/XrNeaklt0+ePGHs2LHUqFGDvHnzYmpqSp48eXB3d2fixIk6i394e3tr2u3Vq1eK7cbFxZErVy7NuX4pjK1RFIV169bRunVr7O3tsbCwwNramvLly9OnTx9OnjyZ6vP4kHh4eKBSqbh9+3ZWh5Llli5dikqlYvTo0Vkdykdn9OjRqFQqli5dmtWhCCGE+Ax9lHOcAH799Vf279/PsWPHKFWqFLVr1yYkJITAwEDy5s3L4sWLtc4PDw8nKCiIBw8e6LT1999/c+LECTZt2kSZMmWoUqUK//77L5cvX6ZUqVJMmTJF6/yCBQvy119/8cMPP+Dj48O6detwcXHhyZMnHD9+nLi4OJo0aYK3t/e7fARpSm2s+4fiXY25X7VqFTVq1NBbtnLlyjTrb926lW7duhEZGUmOHDmoXr06uXLl4smTJ5w4cYLDhw/z+++/c+zYMb1Lz2/YsIEZM2ZgZmamU7Zz5840h3E+ePCAVq1aERgYiLGxMZUrV6ZmzZrEx8fz77//MnfuXObOncvYsWP57bff0ryfd02lUuHg4PBRJkYfc+xZxc/Pj7p169KtWzdJYoQQQnw2PsoeJwALCwsOHTrEb7/9RrZs2di6dSshISF4e3tz9uxZihcvnu628uTJw8mTJ+nfvz/x8fFs2bKFiIgIfvjhB06ePEmuXLl06vTr14+DBw/i5eXFy5cv2bZtG2fPnsXFxYVZs2axfft2TEw+2rz0o2VsbEzFihVZt26dVu+h2pMnT9izZw+VKlVKsY3du3fTpk0bXr58yeTJk3n8+DF79uxh9erV7N27l7CwMBYtWoSlpaXeJeddXFx49uwZu3bt0tv+ypUrMTY21syve1NUVBQeHh4EBgbStGlTbt26RWBgIOvWrWPLli1cv36dU6dOUbduXW7evJnOJ5O1li9fztWrV/UupiJEevXr14+rV6/SqlWrrA5FCCHEZ+ij/mRvaWnJ2LFjGTt2bJrnjh49OtWhMbly5WL69OlMnz493df38PDAQ5Yp+uB06dKFoUOHsnfvXpo2bapVtm7dOhISEujataveBUFevHhBt27dSE5OZvHixXTr1k3nHDMzM3r06EHDhg1JSEjQKe/UqRMXLlxg1apVeHl5aZU9f/6cXbt28eWXX6JSqbhw4YJO/aFDh3L9+nXq1avHtm3bMDY21jmnSpUq7N+/n8DAwLQexwdBvXqlEG8jT5485MmTJ6vDEEII8Zn6aHuchEhJ586dUalUeofkrVy5EisrK1q2bKm37vLlywkLC6N69ep6k6bXFSpUSO8cqYIFC+Lp6cmOHTuIiIjQKlu/fj1xcXF07dpVb5tPnz7VDDOdMWOG3qRJzcjIKMXhiPokJiYyZ84catSogY2NDZaWljg7O/P333/r7Z0LCwtj6NChlCtXDisrK2xtbXF0dOTrr7/WzK9Sz9cBCAkJ0Zpn9vqXCinNcVLPM0tMTGTcuHGULFkSS0tLypYty5IlSzTnHTx4kLp162JjY0POnDn5+uuvefLkiU7MN27cYPTo0dSoUYMCBQpgZmZG4cKF+frrr7l+/brWuemNHV7t8+bj44OLiwtWVlZYWVnh6urKsmXLUnzeAQEB1KtXD2tra3LkyEHDhg0zlejevn1bE1NkZCQ//vijZs5b2bJlmTp1qtY8y9eFhobSq1cvHBwcMDc3J1++fLRu3VqzgM2bLl++TNeuXSlevDgWFhbkzZsXZ2dnfvrpJ80wZ29vb+rWrQvAsmXLtJ7bm19OhYaG0q9fP0qUKIGFhQW5cuWiWbNmHDt2TOfafn5+qFQqvL29efjwIT179qRw4cKYmJjw999/A6nPcXry5AmDBw+mVKlSmms1atSIf/75R++9qt978fHxjB07ljJlymBubq7zZYcQQgih9lH3OAmhj729PXXq1GH79u1ER0drNjm+desWx48f56uvviJbtmx66+7cuRN4lXy9jS5durB//342bdpEjx49NMdXrVpFtmzZaNWqFatWrdKpd/DgQWJjY3FxcaFMmTJvFcPrYmJiaNq0KYcOHSJXrly4urpiYWFBYGAgP//8M4cOHWLLli0YGb36LiUqKorq1asTHByMvb099evXx8TEhDt37rB27VqKFy9OtWrVKFmyJN26dWPZsmVkz55da0GUjMTfvn17TXJUokQJ/P39Nc/N2tqaTp064erqSsOGDTl+/DgrVqwgODiYw4cPa5IfgIULFzJx4kQqVKhA1apVMTc358qVK6xYsYJt27Zx5MgRzdYC6Y398ePH1K9fn4sXL1KgQAHc3d1RFIVjx47h7e3N6dOnmTFjhtb97Nixg1atWpGYmEi1atUoXrw4Fy5coE6dOpme+xgXF4enpyc3b97E09OT+Ph4Dhw4wIABA7hw4YJOMnHp0iU8PT0JDw+ndOnStG7dmjt37rBlyxZ8fX1ZvXo17dq105x/5swZ3NzciI2NxcnJiZYtW/Ly5Utu3brFtGnT8PLyomDBgri5ufHw4UP27t1LiRIlcHNz07Th7Oys+ffx48dp2rQpz549o3Tp0jRt2pSwsDD27t3Lnj17WLVqFR06dNC5z7CwMKpWrUpiYqImnpR+X9Xu3btHnTp1uHXrFkWKFMHLy4uwsDD279/P3r17mTJlCj///LNOveTkZLy8vDh8+DDu7u44OTmRO3fudP5E3gM9q8YKIYTIOgZNnG7dusWZM2e4desWDx8+5MWLF5iampIjRw6KFClC+fLlqVSpUpr/ExTibXXt2hV/f382b97M119/DaBJVFLq7QE0y9unNgcqPdq0acP333/PypUrNQnAnTt3OHLkCB07dtQkc+/q+m8aNGgQhw4dokOHDsybN0+z11hUVBQdO3Zk+/btzJ8/n969ewOvlvQPDg6mRYsWWgkVvPpg++jRIwDc3Nxwc3Nj2bJl5MmTJ1MLBYSEhGBtbc1///1H3rx5ATh06BCenp6MGDGC+Ph4tm7dqhl2GRkZSc2aNTl69KhmkQI1Ly8vevXqRbFixbSusWTJEnr06MFPP/3EwYMHMxR79+7duXjxIj/++CMTJkzQbFr96NEjmjVrxsyZM2natCmNGjXSPNMePXqQmJjI4sWL6d69O/BqlcRhw4YxYcKEDD8jgBMnTuDk5MR///2nGa528+ZN6tSpw7Jly/Dy8tL0liiKQpcuXQgPD2fIkCH8+eefmgRz06ZNtG/fnh49euDm5kbBggUBmD59OrGxsfz1118MHDhQ69rXrl3TvGd69uxJyZIl2bt3L25ubnqfW2RkJG3atCEyMpKVK1fSpUsXTdnp06dp0KABPXv2xNPTU/MzV9u1axetWrVi9erVWFhYpOvZ9O7dm1u3btG5c2eWLFmiWZTl6NGjNGzYkMGDB1O3bl2txA5e9YiZm5sTFBQk8++EEEKk6a2H6h06dIjvvvuOIkWKUKpUKTp27Mjw4cOZPn06ixYtYu7cufz55598//33uLu7kytXLurWrcv06dN19k0SwlDatm2Lubm5Vq/OqlWrKFiwIF9++WWK9dTDv978MJdR1tbWNG/eHH9/f+7du6e5vqIoqSZuhrr+6x4/fsyCBQuwt7dnyZIlWhs3W1tbs2jRIszMzJgzZ47muHrRC09PT62kSR1bhQoVDBYfvFrZ8vV7rlu3Li4uLjx48IDGjRtrzVWzsbHhu+++A8Df31+rHVdXV52kCV4lP7Vq1cLPz09n+GRqzp8/z65du6hatSpTpkzRJE0A+fPnZ/78+QBaz27jxo2EhYVRp04dTdIEr4aGjRs3jsKFC6f7+m/666+/tOb4lChRQrOq4syZMzXH/fz8uHTpEkWKFGH8+PFavXJt2rTBy8uL6OhordVH1T/zevXq6Vy3TJkymgQrPRYvXsyDBw/46aeftJImeDU/77fffiM6OlrvcFpzc3NmzJiR7qTp1q1b7NixAysrK52VLN3c3OjduzdJSUnMmjVLb30fHx9JmoQQQqRLphKnmJgY/v77b0qWLEm9evVYtGgRd+/eRVGUNF/x8fH4+/vz888/Y29vT6dOnT6q/WjExyFHjhw0bdqUAwcO8PDhQ06dOkVQUBAdO3ZMdd6QIXXt2pXk5GRWr14NvEqc8uXLR4MGDd7L9dX8/PxISEigUaNGWFpa6pQXKFCAUqVKcenSJWJiYgA0e6BNmjSJtWvXEhUV9c7iMzU11bvIinplTH3PS12mb3uB6Oho1qxZwy+//MK3336Lt7c33t7ePHjwAEVRMrQSoXp+jJeXl04CCWjmPL3+N+zIkSMAdOzYUed8U1PTTO/vlitXLurXr69zvFOnTgAcO3ZMM9dJHUP79u0xNTXVqfPVV19pnQf/+5n37dsXPz8/vfPe0kv93Fq3bq23vHbt2gB6//ZXqlQpQ4nM0aNHgVf76+lbAVXfvaqpVKp0bZQuhBBCQAaH6iUlJTFjxgz+/PNPwsLCUBQFgGLFilG9enWqVatG5cqVyZcvH7ly5SJnzpzExMTw9OlTnj17pllG+eTJk5w6dYrY2FjWrVvH+vXrady4MRMnTqRcuXLv5EbF56dr165s3ryZtWvXEhwcrDmWmty5c3Pv3j3CwsIoXbr0W12/UaNG5M6dm1WrVlGvXj3+/fdf+vfvn+oy9er5FfqWOc8s9YIMCxYsYMGCBame+/TpUwoVKsSXX37Jzz//zN9//02nTp0wMTGhUqVK1K9fnx49emRouf+0FChQQG8yqx7OqO9DtLosLi5O6/jBgwfp2LFjqs8vI0mg+tmNGDGCESNGpHhebGys5t/3798HwMHBQe+5qW26nJqU2rO1tSVHjhw8f/6cZ8+ekTt3bk0MKV1LfVzdGwowePBgreGPVlZW1KhRg6ZNm+Lt7a3VU5kW9XOrVatWqueFh4frHMvoCoyZuVe1fPnyafUiCiGEEKnJUOJUvnx5/vvvPxRFoVChQnTo0IEuXbrg4uKSYh1ra2usra1xcHDA2dmZ9u3bA6++Fd68eTOrV6/mwIED7Nq1i3/++YfFixen+eFWiPRo0qQJOXLkYPny5dy/f5+yZcumOXfI2dmZe/fucfbsWa1J75lhampK+/btmTNnDsOHDwfSTtzUczD0LZWeWepeCGdn5xT3jlJ7/UPklClT6NWrF9u2bWP//v0EBARw8uRJJk6cyJo1a2jTpo1B4tPXk5ORcrXo6Gjat2/P06dPGTlyJB07dsTBwQFLS0tUKhWdO3dmzZo1mi980kP97Nzc3ChRokS6633oXh+6p2ZjY8PBgwcJCAjA19cXPz8/Dh48yL59+/Dx8eHIkSOUKlUqXe2rn1vbtm3Jnj17iufpW0AkvUP00kvfvb6rawkhhPi0ZShxun79OuXKlWPEiBF06NAh3R9o9LGysuLrr7/m66+/5s6dO/z+++8sW7aMW7duZbpNIV5nbm5Ou3btNL0sP/zwQ5p1mjZtys6dO1mzZk26zk9L165dmTNnDnv27MHR0ZFq1aqler6npycWFhacO3eOa9euGWRlPfWcGjc3N53V39JSunRphgwZwpAhQ4iNjWXmzJkMHjyYPn36GCxxMpQjR47w5MkT2rZty5gxY3TKM/O3Rf3svLy8dBZMSIl6LlBISIje8pSOp+XOnTt6j0dGRvL8+XMsLS3JkSMHAHZ2dqleS90j9GZvnkql0iyaAa/mx/3000+sWbOGESNGsH79+nTFWrhwYYKCghg6dKhmCOC7ktl7FUIIITIqQ5nP+vXruXTpEp06dXqrpOlNRYoUYd68edy4cUPvGH4hMuurr74id+7c5MmTR2eSuj5ff/01efPm5cSJE6nu0QOvhgi9uS/Rm2rWrMkXX3xB7ty5tZYlT0muXLk05/Xv35+kpKQUz1UUhRMnTqTZZt26dTE2NmbHjh16N+xNLwsLCwYNGkTBggUJCwvTWtzF1NT0rebEGMKzZ88A9C6+cOPGjRR78VKLXf33aMuWLemOQz1/R1+SkZiYyKZNm9Ld1uuePHnCgQMHdI6vXbsWgBo1amiGPKpj2LBhg973kHpRBvV5KcmXL59mb6bLly9rjqsXYDDkc8ssdZK3Z88enj9/rlOe3nsVQggh0pKh7Kdt27apDnt4W4ULF87Qhp5CpKV27dqEh4cTFhaW4hyR12XPnp2lS5diZGREz549mTp1qk6ykZiYyPLly6lcuXKaiRO8WpktPDycX375JV0x//nnn5QqVYr9+/fj5eVFaGiozjkXLlygQYMGzJ07N832ChUqRI8ePbh9+zadOnXSLCX+uhs3bmh9oN+6davepOzMmTM8evQIKysrTe8GvPrW/9GjR3o/uL4vjo6OAGzevFlrjtPz58/55ptvUkwaU4u9evXq1K9fn4CAAPr27UtkZKTOORcuXGDPnj2a/27Xrh25c+fGz89PK/lWFIVRo0al2HOUHoMGDdLa+Dc4OJixY8cCrxZ1UPPw8KBixYrcvn2bkSNHag1P3LJlC5s3b8bKykormZ87d65mLuDrdu3aBbzaH01N3csTFBSkN85evXqRL18+Jk6cyPz583U26E1MTGTv3r1ayVhmFS9enKZNmxIVFcWPP/6o9XM+fvw4c+bMwdjYWOv5CCGEEJkhG+AK8YYmTZqwceNGunXrxoABAxg7diyurq7kypWLJ0+eEBgYyPPnz8mRIwf58uUz+PWtra3x9/fHy8uLHTt2sHv3bqpUqULRokWJj4/nypUrmg+sv//+e7ranDZtGrdv32bTpk3s2bMHZ2dnihQpwosXL7hy5Qo3btygZcuWmuF3fn5+TJs2jUKFCuHi4oKNjQ3379/nyJEjJCcnM2bMGK1ln1u0aMGMGTOoVKkSNWvWxMLCgtKlSzN48GCDP5+UVKlShfr167Nv3z4cHR01K/X5+fmRJ08eWrZsybZt23TqpRX7ypUradSoEbNnz2b16tU4OztjZ2dHREQEFy9eJDQ0lB9//FGzj5N6ifc2bdrg7e3NnDlzNBvg/vfff3z77bdpLtKhj6urK/Hx8ZQsWRJPT08SEhI4cOAAL1++pGvXrlor2KlUKlatWkXdunX5448/2LJlC87Ozty5c4eAgABMTExYtGiR1hLjc+fOpU+fPpQrV46yZctiYmLCtWvXuHDhAhYWFowcOVJzbtGiRXFycuL06dNUq1aN8uXLY2xsTIsWLWjRogU5cuRg27ZtNG/enF69ejF+/HgqVKhAzpw5efjwIWfPnuX58+ds2bLFIEvbz5s3j9q1a7N8+XL8/f2pUaMGYWFh+Pn5kZSUxOTJk3X2cBJCCCEyynDj7TJJ33LCQmS1Vq1acevWLUaPHk3p0qU5efIk69ev5/Tp0zg5OTFp0iRu3rz5zlaBLFiwIMePH2fNmjU0b96cu3fvsmXLFv755x+MjY3p06cPp0+f1iw6kRZLS0t2797NsmXLqF69OlevXmXjxo2cPn2avHnzMmbMGCZOnKg539vbm4EDB2JnZ8fJkyfZtGkTwcHBNGnShP379zNgwACt9n18fOjXrx+JiYmsW7eORYsWsXPnToM+k/TYtm0bI0aMIG/evOzevZszZ87QsWNHTpw4odVD9rq0Ys+XLx/Hjh1j+vTplCtXjnPnzrFx40YuXrxI8eLFmTRpEoMGDdJqs2XLlhw6dIi6dety+fJldu7cScGCBfH396dmzZqZujdzc3MOHjxI586dOXHiBHv37sXe3p6//vpL7ya0FStW5OzZs3z77bdER0ezceNGgoKC8PLyIiAgQLNQj9q4cePo0aMHKpWKAwcO4OvrS0xMDD179uT8+fM6K+Rt2rQJLy8vbt26xfLly1m0aJHWcEhXV1cuXbrEkCFDsLGxwd/fn61btxISEoK7uztLly7Vu2dUZhQqVIhTp04xcOBATExM2Lx5M2fOnOHLL79k7969Ou9XIYQQIjNUSkaWmErBl19+yYoVKzTDN9Jr48aN9O7dW++StJ+jyMhIbG1tiYiIwMbGJsXzYmNjCQ4OplixYrIqlBCfuNu3b1OsWDHc3d3x8/PL6nA+HyksWx8bH0/wnTsUi4rC4o0hiH7nc7yHwNKQSs+anu3ShBDis5fez99goB6nQ4cO4eTkxIYNG9J1fnR0NN7e3nTo0EEzoVsIIYQQQgghPlQGSZxMTEx4+vQpHTt2pFu3bqluMBkQEICTkxMrVqxAUZR07wsihBBCCCGEEFnFIInT8ePHcXR0RFEUVq5cibOzM8eOHdM6JykpieHDh+Ph4cHt27dRFIWePXsadKNPIYQQQgghhHgXDJI4Va5cmXPnzvHdd9+hKArBwcG4u7vz22+/kZSURFBQENWrV2fChAkkJSWRJ08etm7dyvz588mWLZshQhBCiE9S0aJFURRF5jcJIYQQWcxgq+pZWloyd+5ctm3bRt68eUlKSuKPP/7A2dmZypUrc/bsWRRFoXHjxly6dIkWLVoY6tJCCCGEECKD7kffJyQyBAOsEybEZ8Hg+zg1b96cS5cu0blzZw4ePMiVK1dQFIVs2bIxceJEvv/+e0NfUgghhBBCpNPdqLvMODuDXbdfbXBtl60ANQu7UcuuFtUKVsPGLPWVxYT4XL2TDXDPnTvHv//+i0qlQlEUVCoViYmJREZGav5bCCGEEEK8P09jn7Lg4nzWXltLopIEgImicP/lQzZe38jG6xsxxoiKeSpSq7Ab7Uu3J5dFriyOWogPh0E3wI2Li+OHH36gSZMmPH78GJVKRbdu3bC1tSU+Pp4RI0ZQt25dQkNDDXnZz5Z0rQshxPul+bsrf3/FR+RlwkvmX5xPk40NWXl1FYlKEjViYlgXFkVAtAWzHj6mS0QUReMTSCKZ8+EXmHV+Ft18OxAeI3ttCqFmsMTp4sWLVK5cmVmzZqEoCvb29hw8eJAlS5Zw4cIF3N3dURSFI0eO4OTkxKpVqwx16c+OsbExAAkJCVkciRBCfF4SEhNBUTDO6kCESKdDdw7RbFMjZpybwYukWMrGxTPv8VPmF+tAuT5nyNbvNHV6n2Vo7fH45qzF3rAYRoU/oWBiIrdfPqTXrq+JiIvI6tsQ4oNgkMTpr7/+onr16ly9ehVFUejUqRMXLlygTp06AJok6s8//8TU1JSIiAi+/vprOnXqRESE/DJmlKmpKebm5kREREivkxBCvCeKohDx4gXmCQmYyt9e8RG48uQKg/x+IizuGYUSEvnz8RPW5qlLzW+PQ8PfIXvuVyfaFgKXrtB2EXYDrtO28x4WGtmTJzGJ69Gh9NntzYuEF1l7M0J8AFSKAT55Gxm9yr9sbW2ZNWsWnTt3TvHc8+fP06VLF65evYpKpaJw4cKEhIS8bQifhMjISGxtbYmIiMDGJvWJmZGRkdy7dw8rKytsbW0xNTWVuWNCCGEoL/73IVFRFBISE4l48YLoiAgKvXiBTVKSThW/8zneY4ApcHZOscjD471FIT4AEXERdNjSnHtxz/B48ZLJNi6Y1R8D+cunr4G4KG6saEp3o3CeGxtTJXcFZjdajKWJ5bsNXIj3LCOfvw2WONWpU4fly5dTpEiRNM+Pi4tj8ODBzJo1C3i1Oa7I2A9OfX54eDhxcXHvITohhPiMxMZq/7eiYJ6QQJ74eL1JE0jiJD4ciqLww95v8Ht0ikIJiawr1AzbxpMy3tDLp/y7vDE9zaOJNjLCLX8Vptefj6mxqeGDFiKLvPfEycfHh6FDh2a4x+Off/6he/fu3Lt3721D+CRkNHFSS0hIkORTCCEM6eTJ//37/+c0pTU8TxIn8aFYcmEeU87PxFRRWJGcj/Ld9kJmk53ox5xd1oBe2RKINTKifqHaTPScjonRO1mYWYj37r0nTm/j6dOn5MolS11C5hMnIYQQBubnl/EqkjiJD8Dph6foubcHScBvkQm073YIbAq+XaPPQzm2ojH9rCFBpaKFQ0PGuU/ESGXQxZmFyBIZ+fyd5e94SZqEEEIIId5eeEw4Qw70JwloFv2Cdk3nv33SBJDDnpqdtzEpMhFjRWF7yF42XFn59u0K8ZHJ8sRJCCGEEEK8naTkJH7Z9z1hiS8oGR/PbxV7oypex3AXyF2CLztsZmDUq3nVM89OIzI+0nDtC/ERyFDiNGXKFGJiYt5VLJw+fZo9e/a8s/aFEEIIIT5Fs05P5uSzq1gmJzM5e3my1R5s+IvkL0fHelMpHp/A8+R45gdmYsEJIT5iGUqcBg0aRPHixfnrr7948cJw6/kfP36cJk2aUL16dU6+PiFXCCGEEEKk6vi9Yyy4ugKAMTHGFG+1GN7RFiWmZZoy2OzVCsqrbm0jJFK2lBGfjwwlTrVr1+bRo0f88ssv5M+fny5durBz585Mreh269Ytxo8fT7ly5XBzc2PPnj3Y2NhQuXLlDLclhBBCCPE5SlaSmXxkBADto1/SuNVKsMzx7i6oUuHWeBq1XsaSiMLkw8Pf3bWE+MBkaC1Jf39/NmzYwMiRIwkKCmLt2rWsXbuW7NmzU6lSJapWrYqLiwv58uUjZ86c5MyZk5iYGJ4+fcqzZ8+4fv06p06d4uTJk9y5cwd4tdeAubk5ffv2ZcSIEeTMmfOd3KgQQgghxKdm/82dBMWFY5WczA8uP0JBp3d/0XxlGWznyYlnARx6cpHAe8epXqjGu7+uEFksU8uRK4rChg0bmDZtGsePH/9fY+nsFlZfskCBAnTv3p3evXtjb2+f0TA+ObIcuRBCfCBSWI78g1hyPDWyHPlnJSk5idZrPbiV8Jw+sfB9z7OZ368po1484fdlNVib3RxHi7ysb7cPYyPj93NtIQzonS9HrlKpaN++PQEBAVy9epUxY8bg4eGBhYUFiqKk+ipWrBjdunVj8+bNhIaG8vvvv0vSJIQQQgiRQbuvb+ZWwnNskpL4qsqA95c0AWTPzfdOvbFOSuZ6bBhbr655f9cWIosYdAPcxMREzp07x927dwkLC+Pp06dYWFiQN29e8ubNS8WKFSlY0AD7CXyipMdJCCE+EB9rj1MqPH5yzuoQhAElJifSck0d7iRG8UOcCd/2PA3vu8cnKYEVC6sy0SKJXEbm7Ozgh5WZ1fuNQYi3lGUb4JqYmFC1alVatWrFd999x9ChQ/npp5/o0qULDRo0MHjSFBMTw8iRI3F0dMTCwgI7Ozt69OjBvXv3MtzWs2fP+PHHH3FwcMDc3BwHBwd++uknnj9/nmq96OhoxowZg5OTE1ZWVtja2lKhQgX69u1LdHR0Ju9MCCGEECJlvlfXcCcxipxJSXSpPvj9J00AxqZ0dP8Dh4QEnibHseCkLE8uPm0f7Qa4sbGxeHp6Mm7cOKKjo2nZsiX29vYsWbIEFxcXbt26le62wsPDqVatGtOnT8fExAQvLy+sra2ZNm0a1atX5+nTp3rrBQcH4+TkxOjRo3nx4gWNGzfG3d2dhIQEZs+enWbSJYQQQgiRUQlJCcw9NxOAbxKzka1ixyyLxbRMEwaZOwCw4uYW7kbdzbJYhHjXDJI4GRkZYWJiwsSJEw3RXLqMHz+eEydOUKNGDa5fv866desIDAxk8uTJhIWF0aNHj3S39dNPP3Hjxg1at25NUFAQ69at4/Lly/Tv35/r168zYMAAnTpxcXE0btyYO3fuMHfuXG7evMmGDRvYvn07QUFBXLp0iVy5chnyloUQQohM8/NL+SU+Llv+XcH9pJfkSUyifc3hYJS134O7N5yGa0wsCShMOTwsS2MR4l0yyG+amZkZiqJQu3ZtQzSXpvj4eGbOfPVNy6xZs7Cy+t942gEDBuDk5IS/vz9nzpxJs60HDx6wZs0azMzMmD17NiYm/1uhfdKkSeTNm5eVK1fy+PFjrXrTpk0jKCiIAQMG0KtXL512K1SoQLZs2TJ7i0IIIYQQOuKS4ph3YQ4APRVrLMu3yuKIQJWvDIPt6mGkKOwLP89/T4KyOiQh3gmDJE52dnYAWknHuxQQEEBERAQlSpTAxcVFp7xt27YA+Pr6ptnWnj17SE5Opnbt2uTPn1+rzNzcnObNm5OUlMSuXbu0yhYsWABA//79M3sbQgghhBAZsuHCIh4nx1IgMZF2tUdDOreCedcc6/2OZ2wiAKtkrpP4RBkkcapTpw5Aunp4DOHChQsAVKpUSW+5+vjFixffSVuhoaHcuHGDwoULY29vT0BAAL/88gu9e/dmwoQJ3LhxI/03I4QQQgiRDjGJMSy8vAiA71S5MXNslMURvSZbLroWrgvAjscneR77PGvjEeIdMEji1L9/f4yNjfnrr7+IjIw0RJOpunPnDgCFCxfWW64+HhIS8k7aunLlCvCqp61v3764ubkxceJE5s2bx9ChQylbtiyTJ09O89pxcXFERkZqvYQQQggh9Fl7bi5PlHgKJSTiVWfsB9PbpFap1lDKxsUTh8LGs7OyOhwhDM4giVPlypWZMWMGISEhuLu7c+zYMUM0myL1Mt8pzSHKnj07AFFRUe+krWfPngFw9uxZ5s6dy+jRowkNDeXBgwdMmDABgEGDBrFz585Ur+3j44Otra3mJRsBCyGEEEKflwkvWXx1BQC9TfJjWtIziyPSpcrpQBerkgCsubGFhOSELI5ICMMyyKQk9Qp2pUuX5sKFC9SuXRt7e3ucnJzImTMnxsYp7y2gUqlYtGiRIcJ4b5KTk4FXG/726dOHUaNGacqGDBlCeHg4kyZN4o8//qBp06YptjNs2DCtFfsiIyMleRJCCCGEjh2Xl/NcSaBIQgLN6v2e1eGkqHGNX5hyqDePjeM4cH0rjcq0y+qQhDAYgyROS5cuRfX/3cUqlQpFUbhz5w6hoaGp1lMUJVOJk3oVvZcvX+otf/HiBQDW1tbvpK3XV/Hr3r27Tp3u3bszadIkAgMDiY2NxcLCQm/b5ubmmJubpxmjEEIIIT5fiqKw/upKADqa5sOkaK0sjihlZkVr00HJzhxiWXF+jiRO4pNikMSpSJEimsTpfShSpAgAd+/q32RNfdzBweGdtPX6v4sWLapTR30sKSmJp0+falYdFEIIIYTIqAsPTxOUEIF5cjItKn+f1eGkTqWi/Re9WHD5by7GhXHp0Tkq5tddAVmIj5FBEqfbt28bopl0++KLL4BXc4z0UR93cnJ6J22VKVMGCwsLYmNjefbsGXnz5tWq8/TpU82/X++dEkIIIYTIqA2npwHQKB5sy7fN4mjSlsf5KxqfmYKvhTErAycxocXqrA5JCIPI2q2mM6lWrVrY2tpy8+ZNzp8/r1O+ceNGAJo3b55mW40aNcLIyIgjR47obHIbFxeHr68vxsbGNGnSRHPc3Nychg0bAuCnZ8t1f39/AIoXL46NjU16b0sIIYQQQsvz2OfsefJq65T2Do3A+P3smflWTMzpUuzVZ7B/nl7i0YtHWRyQEIbxThOnxMREwsLCCAsLIzEx0WDtmpmZ0a9fPwD69u2rmYcEMGXKFC5evIi7uzuVK1fWHJ85cyZlypRh2LBhWm0VLFiQTp06ER8fz/fff68V55AhQwgLC6Nr167ky5dPq96QIUMAGDduHNevX9ccDw4O5rfffgOgd+/eBrpjIYQQQnyOtp2fT7wKysbFU7HGgLQrfCDK1xxEpdh4ElWw7tTfWR2OEAZh8K8trly5wty5c9m/fz/Xr19HURTg1aIRpUqVol69evTq1YsKFSq81XV+/fVX9u/fz7FjxyhVqhS1a9cmJCSEwMBA8ubNy+LFi7XODw8PJygoiAcPHui09ffff3PixAk2bdpEmTJlqFKlCv/++y+XL1+mVKlSTJkyRadOzZo1GTlyJGPHjsXFxYVatWphbGxMQEAAUVFRNG7cWGvFPCGEEEKIjEhWktnw3yYA2mUvhsq2UBZHlAFWeemS6wvOvrzKxpA99EoajbmxLIglPm4G63FKTk5m4MCBfPHFF8yaNYtr166RnJyMoigoikJycjJBQUHMnj0bFxcXfv75Z82y3plhYWHBoUOH+O2338iWLRtbt24lJCQEb29vzp49S/HixdPdVp48eTh58iT9+/cnPj6eLVu2EBERwQ8//MDJkyfJlSuX3npjxoxh06ZNVK5cmRMnTuDv70+JEiWYOnUq27dvT3UZdiGEEEKI1Jy8409I8kuyJyfTtOpPWR1OhnnWGk7BxESekciuf1dmdThCvDWVou4SeksdO3Zkw4YNmh6m8uXLU61aNfLnzw/Ao0ePOHXqFJcvX351YZWKtm3bsm7dOkNc/pMQGRmJra0tERERMjdKCCGykp75qwB+53O81zAMytk5xSIPj/cWhciAAVtasS/yBh3ijPi15zkw+vimpi9ZWpspqueUMrFhU+ej73UVZiHSIyOfvw0yVG/t2rWsX78elUrFF198wfz586latarec0+dOkXv3r05d+4cGzduZO3atXTs2NEQYQghhBBCfBIev3jEwYgboIL2pVp/lEkTQOsqPzDn1Gj+S4zk1N0jVLOvk9UhCZFpBvktnD9/PgCOjo4cPXo0xaQJoGrVqhw+fJjSpUujKArz5s0zRAhCCCGEEJ+MzWdmkqQCl7h4HKv3z+pwMs22XGtaJLz6uLn61NQsjkaIt2OQxOnChQuoVCp++eUXsmfPnub52bNn55dfftHUFUIIIYQQryQmJ7Lx9i4A2ueoANn0z7X+KBgZ08GxPQD+kTd4Gvs0jQpCfLgMkjjFx8cD6dtwVk19bkJCgiFCEEIIIYT4JBy5uYtHSjw5kpKoX31QVofz1kpV70f5uAQSVbDr/IKsDkeITDNI4uTg4ABAREREuutERkZq1RVCCCGEELD+/BwAvJKzYV7ENYujMQDLnLS0erXa8bab27M4GCEyzyCJU5s2bVAUhU2bNqW7zsaNG1GpVLRq1coQIQghhBBCfPTuRtwh4MVdANqV6wqfyCp0jZ2/w1RRuJYYybXHl7I6HCEyxSCJ04ABAyhevDjz5s1j/fr1aZ6/ceNG5s2bR7FixRg06OPvghZCCPER8vNL+SVEFtl4agqKCmrEJlCkyrdZHY7B5CjTHI/4V1vWbDs7M4ujESJzDJI42drasn//fipVqkSnTp3w8vJi69at3Lt3j4SEBBITE7l37x5bt26lVatWdOjQgUqVKnHgwAFsbW0NEYIQQgghxEctMTmRrff8AWifrxqYpb3g1kfDyBivgrUA2PkokIQkmeMuPj4G2cfJ2NhY829FUfD19cXX1zfF8xVF4fTp0xQvXjzFc1QqFYmJiYYITwghhBDig3fs5m6ekEiupCTcawzJ6nAMrma1n8m94yhPTODIDV88S7fO6pCEyBCD9DgpiqJ5vfnf+l7pOUd9nhBCCCHE52DHpcUANFayY1qgQhZHY3gm+cvSXGUNwLZLS7I4GiEyziA9TqNGjTJEM0IIIYQQn6Xo+GgORt4AFTQv0Tyrw3lnWji2YenNFRyOvs3TmCfkssyd1SEJkW6SOAkhhBBCZLF9l5YTp4JiCQmUq9Inq8N5Z0pV/o7yVxfzr5kpu84voGuNoVkdkhDpZpChekIIIYQQIvN8r28EoLl5IVRWebM4mnfIMgctrUoCsqeT+PhI4iSEEEIIkYUeRN3jVHwYAM3Kf5XF0bx7TdR7OiVFce3xxawOR4h0k8RJCCGEECIL7Tw7C4CqcYkUrNgxi6N592xLN6Wuek+nM7Knk/h4SOIkhBBCCJFFFEVh+539ADTPVQFMLbI4ovfAyJiWdnUA2Pn4pOzpJD4akjgJIYQQQmSRKw/PEJwcg3lyMvUrfZ/V4bw3Nav9RJ7EJJ6RxJEbKe/9KcSHRBInIYQQQogs4ntuDgCeiUZYFfPI0ljeJ5N8pWluZAPAtv/fv0qID50kTkIIIYQQWSAhOYHdYWcAaFbIHVSqLI7o/Wrh2A6Aw9EhPI15ksXRCJG2/2vvvsOjKBc2Dv9mN40UEkISeg1VSmhSpSiKFFFExINYAAFFUdFjr0fxHD5FUFEpNiyIYkeKDQWkJZQAoXcIECAJCeltd+f7I8KRQ0IoSWaTPPd17QXM7A7PwiaZZ8r7Fss8TiIiIlJ2LVtW8PJevUozRcWzeu8iknAS7HTS9cqHrI5T6hq1H0PLbe+z1duTnza9x/AuT1sdSeS8dMZJRERExAILtswGoL9RGY/QJhansYBPZW4IaAzA4v2LLA4jUjQVJxEREZFSlpabxtK0/QAMDL/J4jTWub71KGymSYwjhcOn9lsdR+S8dKmeiIjI/1i2KcjqCFLO/RYzm1wDwnPzaN5+rNVxLBPSbCCdVz3Lam87i6Nncu81r1kdSaRQOuMkIiIiUsoW7P4OgBt862L4VbU4jYXsHvQLiQBg8dFlmKZpcSCRwqk4iYiIiJSioymxrM87iWGa3NDybqvjWK5323vxcpnsd2WxO36z1XFECqXiJCIiIlKKFkW/C0DHXCfVW9xqcRrrBdTvSU9H/lDsizbOtDiNSOFUnERERERKiWmaLD6yFIABVduAh5e1gdyBYdC/RlcAfjqxFpfpsjiQSMFUnERERERKye74GPa5svBymVzb7j6r47iN7u0fwN/l4jh5bIxdbnUckQKpOImIiIiUksUbZwDQw2EQUL+HxWnch3eN1lzr8gZg8eYPLE4jUjAVJxEREZFS4DJd/HxiLQD9qncBw7A4kXvpV7c3AL8mbSXPlWdxGpFzqTiJiIiIlILNh1cQRx5+Lhc9OjxgdRy307HDeKo6nJwyXKzZs8DqOCLnUHESERERKQWnL0Hr7fLGp0aExWncj0eVevS1BwKweOunFqcROZeKk4iIiEgJc7gc/HoyBoB+da62OI376t9wIAB/pO0jMy/T4jQiZ1NxEhERESlhUfsWk2S4CHY66aTL9ArVqv291M5zkGXA8m1zrY4jchYVJxEREZEStnjLJwBcZ1TGM7ihxWncl+FXlf7eNQBYvOsri9OInE3FSURERKQEZTuy+T11NwADGva3OI37G9BsKAArs45xKivZ4jQi/1Wmi1NWVhYvvPACTZo0wcfHh5o1azJq1CiOHj160dtKTk7m4Ycfpl69enh7e1OvXj0mTJjAqVOnLuj1ubm5XHHFFRiGgYeHx0X//SIiIlI+/bljHhkG1HA4iGg/zuo4bq9hxF00zXXgMOC3ze9bHUfkjDJbnLKzs7nmmmuYOHEi6enp3HTTTdSpU4fZs2fTtm1b9u/ff8HbSkxMpGPHjkybNg0PDw8GDRpEQEAAb731Fp06dSIpKanIbfznP/9h586dl/OWREREpBz6acc8APp5hmHzD7U4TRng5Ut//3AAftq/0OIwIv9VZovTK6+8QmRkJF26dGH37t3MmzePqKgopkyZQkJCAqNGjbrgbU2YMIG9e/cyePBgdu3axbx589i6dSsPPvggu3fv5tFHHz3v63fs2MGkSZMYM2bM5b4tERERKUfSclL5M/MwAP2b3GJxmrKjX+u7AVifm8Tx1CMWpxHJVyaLU25uLu+88w4A7777Lv7+/mfWPfroo7Ru3Zrly5ezYcOGIrd17NgxvvjiC7y8vJg+ffpZl9lNnjyZ0NBQ5syZQ3x8fIGvN02TsWPHEhQUxP/93/9d5jsTERGR8uT3mNnkGhCe56BJmxFWxykzajS7mXa5TkzD4Ofo6VbHEQHKaHFatWoVKSkphIeH07Zt23PWDxkyBIAFC4qedfrnn3/G5XLRvXt3qlWrdtY6b29vBg4ciNPpZPHixQW+ftasWaxcuZIpU6ZQpUqVS3g3IiJSYpYtK/whUgoW7/0BgH6+dTF8KlsbpiyxezAguBUAiw//bnEYkXxlsjht3rwZgHbt2hW4/vTymJiYEt3WsWPHeOqpp+jduzd33HFH0cFFRESkwkjMiCcqJwGA/ldoP+Fi9Wl7Hx6myQ5XJvsTtlodR4QyOfxbbGwsALVr1y5w/enlhw4dKtFtjR8/nuzsbKZPv7RTyDk5OeTk5Jz5c2pq6iVtR+RyZOc5OZCYwb6EdI4mZ+EyC36ev7edhqH+hIf6U62yN4ZhlG5QEZEy5pfoGbgMg1a5Tuq0vM3qOGVOUINedPvDYLknLIqezoPX65I9sVaZLE7p6ekA+Pr6Frjez88PgLS0tBLb1vz58/nuu+948cUXadKkyYUF/x+TJk3ipZdeuqTXilyKE6nZLN+VwK4TaexLSGdfQjpHkrMwCylLhfHzshMell+iwkP9aFe3Clc2CMbTXiZPYouIlIifDv0KQL/ApuDhZXGaMsgw6F+tM8uTIll8PJLxpqmDdmKpMlmcrJaWlsb48eNp0qQJTz/99CVv5+mnnz5rxL7U1FTq1KlTHBFFgPzBS3afSOe37cf5bfsJNh9JKfB5gZU8aRTmT91gXzxsBf9QSs7MY39COoeSMsnIdRJzJIWYv20vsJInVzcN5borqtOzaSj+3vr2IiIV15FT+9nsTMUwTfq2vsfqOGVWrw4PUunn1Ryx5RFzeAURdXtYHUkqsDK5Z3N6FL3MzMwC12dkZAAQEBBQItt65plnOHLkCEuWLMHb2/vCg/8Pb2/vy3q9SGGiY5NZFHOM37afIDbp7M92mzpBtK9X5czZokZh/gT7eV3wUbxch4vYpAz2xudf3rf7RBor9iSSlJHLD5vi+GFTHF52G13Cq3LdFdUYGFGTwEqeJfE2RUTc1uIN7wLQMc8ktEk/i9OUXb41WnON6cMiclm8+T0VJ7FUmSxOdevWBeDIkYLH9T+9vF69eiWyrQULFuDj48PEiROZOHHiOa9xOp306tULgDfffJM2bdoUmUPkcjldJr9sO877K/azMfbUmeVeHja6Nwrh2iuq0bt5GGEBPpf193h52GgUFkCjsP8eTHC6TKJjk/lt+wl+236CA4kZLN+dwPLdCUxavIOhV9ZhVLcG1Aku+JJYEZHyxDRNFh1dDsCAkHZgs1ucqGzrX6c3i+J+4ueTW3jc5cDDViZ3X6UcKJOfvIiICACio6MLXH96eevWrUtsW9nZ2SxfvrzQ7Z5ed+rUqSIziFyOjBwHX68/zEerDp45u+RltzGgdQ2ub1GdHk1C8PUq2S91u83gyvrBXFk/mGf6N2dvfDq/bT/BDxuPsutEGrNXHeST1Qfp16oGY7o3pE2doBLNIyJipZ3H1rHfzMHLZXJt+wesjlPmdblyPFW+W0iSHaL2/Ei3poOtjiQVVJksTt26dSMwMJB9+/axadOmc87ofPPNNwAMHDiwyG317dsXm83GihUriI+PJyws7My6nJwcFixYgN1up3///meWHzx4sNDtGYaB3W7H4XBc3JsSuUiJ6Tl8tPIAn0fFkpKVB0AVX0/u7FyPO7vUJzTAustAG4X50yjMn/t6NuTPPYl8sGI/K/YksijmGItijtGxfjBjezSkd/Mw3egrIuXOwr8mbO3l9CCgTieL05R9nkF16WMPYh5pLN76qYqTWKZMDoHl5eXF+PHjAXjggQfO3IcEMHXqVGJiYujZsyft27c/s/ydd96hWbNm5wzmUKNGDYYNG0Zubi7333//WYXniSeeICEhgTvuuOOsQiVipVyHi/f/3M/Vk5cxfdk+UrLyaBDix8RBLVn9VG8e7dPU0tL0d4Zh0LNJKJ/d04mfHu7OLe1q42k3WHswidGfrucf70WyPU7D8ItI+eF0OfkpcRMAA2r3BB0cKhYDGuYfDF+Sto+svILvSxcpaWXyjBPAc889x5IlS1i9ejWNGzeme/fuHDp0iKioKEJDQ/noo4/Oen5iYiK7du3i2LFj52zrzTffJDIykm+//ZZmzZrRoUMHtm3bxtatW2ncuDFTp04trbclcl5Ld8YzceF29ifmHyxoVSuQB69pxLXNq2ErZDQ8d9G8RmWmDI3gib5Nmb3qILNXHSDqQBI3vL2CYR3r8s8+TQn203C9IlK2rdu3mATDSWWnk+4dH7Y6TrnRpv191Nr9KUc9PFi+7XP6thljdSSpgMrkGScAHx8fli5dyvPPP4+vry8//PADhw4dYsSIEURHR9OwYcML3lZISAhr167lwQcfJDc3l++//56UlBQeeugh1q5dS3BwcAm+E5Gi7UtIZ8TstYz8eB37EzMI8ffmtSGtmf9AN/q0qO72penvqlX24al+zfjjsV4MaF0DlwmfR8XSa/JSZq86QJ7TZXVEEZFLtnDLbACutwXiGXzh+yJyfoZvFfp51wRg8a6vLU4jFZVhmhc79aWUlNTUVAIDA0lJSaFy5cpWxxE3kJHj4I3fdvPx6oM4XCaedoNRVzVg/NWNCPApH0N8R+0/yUsLtrP9WP4le43D/HnpxhZ0bRRicTIpF5Ytu7SXbQoq1hhu4RJGeP1rgFi5QNl5WfT6vCMZBnzc4B+07/Gs1ZHKlT3r32fwtml4mCbLbltBYKUqVkeScuBi9r/L7BknkfJuw6Ek+k9bwQcrD+BwmfRuFsavj/Tk6X7Ny01pAujUsCoLHryK/9zcimA/L/bEp3P7B1H868dtZOU6rY4nInLBlm2bQ4YBNR1O2nYYZ3WccqdxxJ00yXPiMAx+2zTL6jhSAak4ibiZXIeLyb/s5NaZazh0MpOagT58PPJKPhxxJQ1C/KyOVyLsNoPbO9Vl6WO9uKNz/txqH68+yIC3VxBz5JS14URELtCinV8B0N+7BjZfXeZf7Dx96B/QCIBF+xdZHEYqIhUnETey+0QaN09fxbtL9+EyYXC7Wvz8SA96Na0YozoGVvLklUGt+GRUR8ICvNmfkMHg6at5a8keHLr3SUTc2Kmsk6zMzh+AakDzYRanKb/6tRoJwIa8ZI6nxFqcRiqaMjuqnkh54nKZfLTqAK/9sotch4sqvp785+ZW9GtVw+polujZJJRfH+nBsz9sZVHMMd5Yspulu+KZOjSChqH+VscTKZs2bSp8XSH3P53vFjHd/3S2X6Nn4DAMmuU5aRRxp9Vxyq2azW6k3arniPay8XP0u4y4+lWrI0kFojNOIhZLSMvhzo+ieGXRDnIdLq5uGsovE3pU2NJ0WpCvF+8Ma8tb/2hDgI8Hmw6fov+0FXy17rDV0UREzrHowE8ADKjcFDzcYy69cslmZ0BIGwAWHl5qbRapcFScRCwUHZvMwLdXsmrvSSp52vn3zS35aMSVhFX2sTqaWzAMg5va1OKXCT3o1qgq2Xkunvg2hqe/20KOQwNHiIh7OJq8j2hnKoZp0q/NaKvjlHvXtxuHp2myy8xiZ9xaq+NIBaLiJGIB0zSZE3mI22at4XhqNuGhfix4sBvDO9XD0Czz56gZVInPRnXisT5NMAz4Ym0sQ2dFEncqy+poIiIsXv82AB0dBtUa9bM4TfkXWLcbvZz5o8vO3/COxWmkIlFxEill2XlOnvgmhud+2Eqe06Rfy+rMH38VjcICrI7m1mw2g/HXNObjkR0JrOTJ5sOnGPj2SlbvS7Q6mohUYKZpsjBuJQADwjqATbtWJc4wuKnOtQAsPrmJPFeexYGkotBXt0gpOpyUyZCZq/l6wxFsBjzVrxnTh7fD31vjtFyonk1CWfjgVVxRozInM3K544Mo3vtzH5rLW0SssPNoFPvJwctlcm378VbHqTC6dn6EYKeTJMNk5fZ5VseRCkLFSaSUrNyTyMB3VrL1aCrBfl58dk8n7usZrkvzLkGdYF++u78rg9vVwmXCfxbvZPzcjWTmOqyOJiIVzKKNMwDoaXoRUKu9xWkqDs/KNbnBM3+qjh+3fWZxGqkoVJxESsEXa2O5e/ZaTmXm0bp2IAsevIpujUKsjlWm+XjamXJrBBNvaoGn3WDRlmPcNiuS+NRsq6OJSAXhdDn56eQmAAbUvtraMBXQjc1vB2BZ1lFOZZ20OI1UBCpOIiXI5TL5v5928vR3W3C6TAa1qclX93ahVlAlq6OVC4ZhcGeX+nwxpjPBfl5sOZrCoHdXsfN4qtXRRKQCWLXza+INF0FOJ92vfMjqOBVO0zYjaJ7nxGEYLF43zeo4UgGoOImUkOw8Jw9+sZGZy/cB8HDvxrxxWxt8PO0WJyt/OtQP5vv7u9Iw1I+4lGyGzFjD8t0JVscSkXLu+y2zAbjBIwSvKvUsTlMBeXhxY1BLAOYf+tniMFIRqDiJlIDE9ByGvR/Joi3H8LQbTB0awSPXNdH9TCWoXlU/vhvXlU4NgknPcTDq43XMjYq1OpaIlFNJGfEsyzoKwM0t7rQ4TcXVv8N4PEyT7a5M9hzfYHUcKedUnESK2d74NG6evoqNsacIrOTJZ/d0YnC72lbHqhCCfL349J6ODG5bC6fL5JnvtzDppx24XBpxT+S8Nm0q+CGFWrB2Kg7DoGWeiyZtRlgdp8IKrted7n/N6fTjX/NpiZQUFSeRYhS1/ySDp6/mcFIWdf8a+a1zw6pWx6pQvD3sTBkawYRrGwMwa/l+xn8RTXae0+JkIlJemKbJ97FLALi5ahuwe1obqCIzDG6qcw0ACxM34nBpdFUpOSpOIsXkl23HufOjtaRmO2hXN4jv7+9KeKi/1bEqJMMwmHBtE964LQJPu8HiLccZOXsdadmaJFFELt+W2GXsIwdvl4t+nR6zOk6F16PzowQ5nSQaLlbv+NrqOFKOqTiJFIN562IZN2cDuQ4X1zavxtwxnanq7211rArv5ra1+WRkR/y9PViz/yT/eC+ShLQcq2OJSBn33YZ3ALgOPwJqtrU4jXhWrsUAz1AAftz6icVppDxTcRK5DKZp8u7SvTz57RZcJgztUJuZd7TTyHlupGujEL4c25mqfl5si0tlyMzVxJ7MtDqWiJRRmbkZ/Jy6G4DB4TdZnEZOu7HZPwD4I+sIKVnJFqeR8krFSeQSuVwmLy/czuRfdgEwrlc4r97SGg+7vqzcTctagXwzriu1q1Ti0MlMbpm5mu1xmutJRC7ebxtnkmFAHYeTDh01d5O7aN5mFI3znOQZBr+s15xOUjK0hydyCXIdLh75ahOzVx0E4PkbruDJvs003LgbaxCSP1x5s+oBJKTlcNusNUTt10zzInJxvt/zHQCD/MMxfAIsTiOnGZ7e3BTUAoD5B3+yOI2UVypOIhcpM9fBmE/XM39THB42gzdva8M9VzWwOpZcgLDKPsy7twsd6weTluPgzo/W8tv2E1bHEpEy4lDCNjY4U7GZJje2e8DqOPI/BrR/ALtpEuPKYP+JTVbHkXJIxUnkIqRm53HXh2tZvjuBSp523r+7A4Pa1rI6llyEwEqefHpPR667ohq5Dhf3zdnADxuPWh1LRMqA79dOAaCr0071RtdbnEb+V0j9nnRzegDww7o3rQ0j5ZKKk8gFOpmew7D3Ill/KJkAHw/mjO7I1U3DrI4ll8DH086M4e24pV1tnC6TR77axJzIQ1bHEhE35nA5+DFhAwCDa18DujTb/RgGt9S9FoDvE6PJcWRbHEjKGxUnkQtwPCWbobPWsC0ulap+Xnw5tjPt6wVbHUsug4fdxuQhrbm7Sz1ME577YSszlu2zOpaIuKlV274gwXBRxemkV5fHrY4jhejR9UmqO5ycMkx+2TDd6jhSzqg4iRTh0MkMhsxczb6EDGoE+vDVfV1oUTPQ6lhSDGw2g3/d2ILxVzcC4NWfdzL5l52YpmlxMhFxN99ty58f6AavanhWrmlxGimMh18ot/qHAzBv91cWp5HyRsVJ5Dx2n0jj1plrOJKcRf2qvnx9XxfCQ/2tjiXFyDAMHru+KU/1awbAu0v38a8ft+FyqTyJSL7EtDj+zD4OwM0t77Y4jRRlcKfH8fhrkIhtsSusjiPliIqTSCFijpxi6Kw1xKfl0LRaAF/d14XaVXytjiUl5L6e4Uwc1BLDgE/WHOKxbzbjcLqsjiUibmDh2ik4DINWeS4at7rD6jhShJD6PbjOrATAV+umWpxGyhMVJ5ECrDuYxO3vR3EqM4+IOkHMu7czYQE+VseSEnZn53q8MbQNdpvBd9FHefCLjeQ6VJ5EKjKny8m8I38AcHPolWD3sDiRXIh/NBkKwOK0PaRkJlmcRsoLFSeR/7FiTwJ3fhhFeo6DTg2C+Xx0J4J8vayOJaVkUNtazBjeDi+7jZ+2HmfsZ+vJznNaHUtELPLnts85goMAp4sB3Z6xOo5coLYdH6RJnotsw2B+5KtWx5FyQsVJ5G9+3Xacez5eT3aei15NQ/lkVEf8vXV0saLp06I6H47ogI+njWW7Ehgxey3pOQ6rY4m4lWXLCn+UJ5/HvA/AEO/q+IY0sTiNXCjD04fbQjsA8NXhX3GZunpALp+Kk8hf5m86yrjPo8l1uujXsjrv3dkBH0+71bHEIt0bh/LpqE74e3sQuT+JOz6IIiUzz+pYIlKKdsetI8pxCptp8o8rH7U6jlykG7o9g7/LxSEcRO741uo4Ug6oOIkA89bFMmHeJpwuk8Fta/H2sLZ4eejLo6Lr2CCYuWM6EeTryabDp/jH+5EkpudYHUtESsncNZMA6O3yombj/hankYvlG9KUGz1CAJi3eZbFaaQ80J6hVHgfrTzAk99uwTRheKe6vH5rBB52fWlIvta1g5g3tgsh/t7sOJbKbbPWcDxFs9GLlHfJ6SdYmLYbgOFNh4FhWJxILsVtEWMBWJZznGNJey1OI2Wd9g6lwjJNk3f+2MPLC7cDMLZHQ14Z1BKbTT8c5WxNqwfw9X1dqBnow76EDG6dtZrYk5lWxxKREvTt6v+QYxg0z3PRruNDVseRS9Sw5TA6OQxchsHXf51BFLlUKk5SIZmmyf/9tJPXf80/mjjh2sY83a8Zho4oSiEahPjx1X1dqFfVl8NJWdw6azV7TqRZHUukZG3aVPijHMtz5vJF3DIAhte4CsPT29pAculsNm6rcx0A3yasI8+Ra3EgKcvKdHHKysrihRdeoEmTJvj4+FCzZk1GjRrF0aNHL3pbycnJPPzww9SrVw9vb2/q1avHhAkTOHXq1DnPzcvL49dff2X8+PG0bNkSX19fKlWqRPPmzXnsscdISEgohncnJcXlMnnuh63M+nM/AM8NaM6Ea5uoNEmRalfx5et7u9C0WgAnUnMYOmsNW46kWB1LRIrZ7xvfI95wEex00u+qF6yOI5epV7enCHM4STJMlkTPsDqOlGFltjhlZ2dzzTXXMHHiRNLT07npppuoU6cOs2fPpm3btuzfv/+Ct5WYmEjHjh2ZNm0aHh4eDBo0iICAAN566y06depEUtLZE6ctX76c66+/nnfffZeMjAz69evHddddR2JiIlOmTKF169bs2rWruN+yFIM8p4tHv9rE51GxGAZMGtyK0d0bWh1LypCwyj58ObYzEbUDSc7M4/b3I1l7QJMripQnc3bMAeA23wZ4BdayOI1cLk+/UIb4hwPw5a4vLU4jZVmZLU6vvPIKkZGRdOnShd27dzNv3jyioqKYMmUKCQkJjBo16oK3NWHCBPbu3cvgwYPZtWsX8+bNY+vWrTz44IPs3r2bRx89ewhSm83G0KFDiYqK4sCBA3z77bf8+OOP7N27l+uvv57jx48zcuTI4n7Lcpmy85zc/3k0P2yKw8Nm8NY/2jKsY12rY0kZVMXPizmjO9GxQTBpOQ7u+iiK5bt1plmkPNh68Hc2uzLwME2Gdnna6jhSTG7p+Bgepkm0K50dh1daHUfKKMM0TdPqEBcrNzeXsLAwUlJSiI6Opm3btmetj4iIICYmhvXr19O+ffvzbuvYsWPUrl0bDw8PYmNjqVat2pl1OTk51KlTh6SkJOLi4ggLCysyW1xcHLVq5R+dOnjwIPXq1bvg95WamkpgYCApKSlUrlz5gl8nRcvIcTD2s/Ws2nsSLw8bM4a3o3fzakW/UOQ8snKdjPt8A8t2JeBpN3h7WFv6tqxhdSz5u0ucjXXZpqBijVEutWlT6KpevUotRbF76qv+LMo6zEDTj/+MiLQ6jhSjp2Z3ZJEti+u8azD1H79aHUfcxMXsf5fJM06rVq0iJSWF8PDwc0oTwJAhQwBYsGBBkdv6+eefcblcdO/e/azSBODt7c3AgQNxOp0sXrz4grLVrFmT0NBQIL9EifVSMvO488MoVu09iZ+XnY9HXqnSJMWikped9+7swIBWNchzmtz/eTTfbDhidSwRuUQJKYf4JTMWgOGtLvzKFSkbRrd7EIAl2XHsPxZtcRopi8pkcdq8eTMA7dq1K3D96eUxMTGlui2AU6dOkZycDED16tUv6DVSck6kZjN01hqiY08RWMmTOaM70TU8xOpYUo54ediYNqwtQzvUxmXCY19v5oMVF36PpYi4j3krJ+IwDNo6oEXbe6yOI8WsUes76O30xDQMPlipQT/k4pXJ4hQbm380qHbt2gWuP7380KFDpbotgHfffReHw0GrVq1o0KDBeZ+bk5NDamrqWQ8pPgcSM7hlxmp2nUgjLMCbefd2pm3dKlbHknLIbjP4v8GtGX1V/tf8K4t28OrPOymDV0KLVFg5eVl8HR8FwPC6fcBmtziRFDvDYEzr/AlxF2cc5HDCdosDSVnjYXWAS5Geng6Ar69vgev9/PwASEsreo6V4tzWxo0beeWVVwB49dVXi3z+pEmTeOmll4p8nly8rUdTGDF7LYnpudSv6stn93SiTnDB/8cixcFmM3h2QHOq+nvz6s87mbFsH8kZubwyqCUe9jJ5jKrc031Ml+l8czn1alNaKYrNgsjJJNmgusNF727PWh1HSkiLdmPptnkmqzycfPTnc7x4y3dWR5IyRD/Ni8mJEycYPHgw2dnZTJgwgX79+hX5mqeffpqUlJQzj8OHD5dC0vJvzb6T/OO9SBLTc2lRszJf39dVpUlKhWEYjOsVzqu3tMJmwJfrDvPA3Giy85xWRxOR88h15DBr37cA3F2lNR6+wRYnkhJjszH2irsAmJ+2mxPJurRaLlyZLE7+/v4AZGZmFrg+IyMDgICAgFLZVlpaGv379+fgwYPceuutTJkypci/F/IHn6hcufJZD7k8v2w7zt2z15Ke46BTg2C+GNuZ0ADN+C6l67Yr6zJ9eHu8PGz8su0EI2evIy07z+pYIlKIb1a+zHHDRZjDya29X7c6jpSwdp0epr3DIM8w+Hi5zi7KhSuTxalu3fy5d44cKXj0qtPLL2Qo8MvdVnZ2NjfeeCPR0dH06dOHOXPmYLOVyX/WMm/euljGzdlArsNFnyuq8cmojlT28bQ6llRQfVtW55ORHfH39mDN/vyzoAlpOVbHEpH/kZ2byQcH8kfhHRtyJd6a8Lb8s9kZ2/hWAL45tYWTaUctDiRlRZncw4+IiAAgOrrgoSRPL2/dunWJbsvhcHDbbbexbNkyunbtynfffYeXl1fRb0CKlWmavPHbbp78dgsuE4Z2qM304e3w8dSNvWKtLuFV+XJsZ6r6ebEtLpXBM1axLyHd6lgi8jfzVrxAgs2kpsPF4N6vWR1HSkmXrk/S0mGSbRjM0VknuUBlsjh169aNwMBA9u3bx6YCbk795ptvABg4cGCR2+rbty82m40VK1YQHx9/1rqcnBwWLFiA3W6nf//+Z60zTZORI0fy448/0qZNGxYtWnRmIAkpPXlOF49/E8Nbv+8B4P5e4bx6S2vdjC9uo2WtQL4Z15V6VX05nJTFLTNWs/5gktWxRErUsmWFP9xJZk4aH8X+AsC9YV3x9NccfxWF4eHFmAb5+4lfJKwnJSPR4kRSFpTJvUsvLy/Gjx8PwAMPPHDmPiSAqVOnEhMTQ8+ePWnfvv2Z5e+88w7NmjXj6aefPmtbNWrUYNiwYeTm5nL//ffjcDjOrHviiSdISEjgjjvuICws7KzXTZgwgTlz5tCsWTN+/fVXgoKCSuCdyvmkZecx6uN1fLPhCDYD/nNzK57o2wzDMKyOJnKWBiF+fDuuKxF1gjiVmcftH0SxeMsxq2OJVHhzlz9Lkg3qOlwM7F30aLhSvvS66nkaO1xk2Ay++PM5q+NIGVAmhyMHeO6551iyZAmrV6+mcePGdO/enUOHDhEVFUVoaCgfffTRWc9PTExk165dHDt27s7Km2++SWRkJN9++y3NmjWjQ4cObNu2ja1bt9K4cWOmTp161vPnz5/PtGnTAKhTpw6PP/54gRmfeuopmjVrVkzvWP7ueEo2Iz9ex45jqVTytPPu8LZc00xHCsV9hfh78+WYzjz4xUaW7DjBA3OjebZ/c0Z3b2h1NJEKKS0ridlHl4IN7qvZC0+NpFfh2Lx8GVO7D08cX8Kc46u4KzsVXx8N1CWFK5NnnAB8fHxYunQpzz//PL6+vvzwww8cOnSIESNGEB0dTcOGF74zEhISwtq1a3nwwQfJzc3l+++/JyUlhYceeoi1a9cSHHz2N9Pk5OQzv//tt9/45JNPCnwcP3682N6v/Neu42ncPH0VO46lEuKfP7GtSpOUBZW87My6sz13damHaeZPlPvSgm04XZooV6S0zVn2FKk2aOhw0f/qSVbHEYv06fkS9RwuUmzw1YoXrI4jbs4wNbW920hNTSUwMJCUlBQNTV6IVXsTuW/OBtKyHTQM9eOTkR01R5OUOaZp8t6f+5n0004A+raozhu3taGSlwY0KXbnualGE+CWoDZtCl3Vq1eppShUSkY8fb+6hnSbweQafejb58KmEZHy6fvF9/FCwiqCXbDwtmUE+Fa1OpKUoovZ/y6zZ5yk4vlszUHu+mgtadkOrqxfhe/GaWJbKZsMw+DenuFMG9YWL7uNn7cdZ8jM1cSdyrI6mkiF8MnSJ0m3GTRxmPTpNdHqOGKxG3r9h/oOF0k2mPnbg1bHETem4iRuL8/p4tnvt/D8/PxLmm5uW4vP7ulEkK+Gfpey7caImnw+ptOZ4cpvfGcV0bHJRb9QRC5ZUupR5iSuA+D++gOxeekAXEXn6RvMk42GAjA3OYb9cessTiTuSsVJ3FpyRi53fhjF51GxGAY81a8ZU4dGaI4mKTeurB/M/PHdaFY9gMT0HP4xK5JvNxQ8IbeIXL6Plj5BlmFwhQOu6fEvq+OIm7iq+/P0dHriMAxeW/pPdCeLFKTMjqon5d/uE2mM/mQ9sUmZ+HnZmTasLb2baxAIKX9qV/Hl23FdeWTeJn7dfoJ/fr2Z3SfSeKJvM+w2Da9fJHebHEjc1pGEbXyZvBkMg/GNhmB4elsdSdyFzcYTV01k9eonWeVIZvmmD+nVdrTVqcTN6IyTuKU/dp5g8PTVxCZlUie4Et/d302lSco1P28PZt7RngevaQTArD/3M+bT9aRl51mcTKR8ME2TV34dR45h0NFh46puz1gdSdxM3SYDuNOnDgCvbX6b3LxsixOJu1FxErficpm8tWQP93yynvQcB50aBDP/gatoWj3A6mgiJc5mM/hnn6ZMG9YWbw8bf+yM56Z3V7H7RJrV0UTKvJ/WvcUqRzJeLpPnu72E4eFpdSRxQ2P7TCfU6eKw4eKzPx6zOo64GRUncRtJGbmM+HgdbyzZjWnC7Z3q8tk9nQj20yAQUrHcGFGTr+/rQvXKPuxPyOCmd1bx/Ubd9yRlyKZNhT8skJKRwKvbPgRgjF849ZsNsiSHuD+/4AZMqHkNAO/FLSMhaa/FicSdqDiJW4iOTWbAtBX8uTsBH08br98awX9uboWXhz6iUjG1rh3EooeuonvjELLynDwybzPPfL+F7Dyn1dFEypw3fhpDkg0aOFyM6v++1XHEzd3QezKtHQaZNoM3NTy5/I32SsVSpmkye9UBbpu1hmMp2TQM8eOHB7oxpH1tq6OJWK6qvzcfj+zIw70bYxgwNyqWITNXczgp0+poImXGhl3f823GPgBebDEaL/8wixOJu7N5+vB0u0cA+DH7CJt3/WhxInEXKk5imbTsPMbP3chLC7aT5zQZ0KrGX8Myn3/WZpGKxG4zeOS6Jnw8siNVfD3ZejSVAdNWsGT7Caujibi93LxsXl7zMgC3GEG07zTB2kBSZrRsO5JBtioA/F/kS7hcOtsvKk5ikU2HT3HjO6tYtOUYHjaDFwdewTu3tyXARzfrihSkZ5NQFj3UnbZ1g0jNdjD60/W8vGC7Lt0TOY+PljzMfsNBsNPFI31ngaHh/eXCPdz7TfxcLraSy3d/vmh1HHEDKk5SqhxOF28u2c0tM1ZzIDGDGoE+zLu3CyO7NcDQDzSR86oZVIl5Y7swomt9AD5adYAb31nJ9rhUa4OJuKGDcRt4/8QqAJ6s1YfAsCssTiRlTUjNdowLbgfAawd+4MCRSIsTidVUnKTUHEjMYMjMNby5ZA9Ol8kNrWvw88M9aF+vitXRRMoMLw8b/7qxBR+N6ECIvxe7T6Qz6N1VzFq+D6dLM92LQP79sxN/f5Bcw6Cry5N+1062OpKUUXf0m0UnpwdZNoPHltxPTm6G1ZHEQipOUuJM02RuVCz931rBpsOnCPDx4M3b2vD2sLYE+urSPJFLcU2zavw8oQfXNq9GrtPFpJ92cvv7kRxJ1sARIvNX/Zu1rjR8XC6e6/Eqht3D6khSRtm9fJl0/XsEO13sNvKYvOAOqyOJhQzTNHWI0k2kpqYSGBhISkoKlSuXjwESEtNzeOrbGJbsiAegc8NgpgxtQ62gShYnEykfTNNk3rrDvLxwO5m5TgK8PXh5UAsGtalVYS5/XfbmpkLX9WpzqvDXbQoq9ixyAdq0KXBxr17Fs/k9h1cyfMl9ZNkMJgRcwT2D5xXPhqVCW7ny/xi373MApja/h+s6TrA2kBSbi9n/1hknKRGmafLVusP0nrKcJTvi8bLbeKZ/M+aO7qzSJFKMDMPgHx3rsvivgSPSchw8Mm8zoz5ep7NPUuGkZJzg4SUPkGUz6OS0c7fmbJJictVVTzHSuw4AL277gKMnYixOJFbQGSc3Ul7OOO1PSOeZ77cQuT8JgOY1KjN1aATNa5Td9yRSFjicLqYv28c7f+wl1+mikqedf/Zpwoiu9fGwl9/jZOc74yRuqITOODmdDh74ohernCnUdLr4sv8XVKne+vI2KvI3edmpjJjbnRi7i9Z48/HwVXh6eFsdSy6TzjiJJXIdLqb9voe+b60gcn8SPp75Z5kWjO+m0iRSCjzsNh7q3ZjFD3enY4NgsvKcvLJoB4Omr2LLkRSr44mUqLcXjWKVMwUfl4u3Ojyj0iTFztOnMq9dM40Al4sYcnh70UirI0kpU3GSYrHuYBL9p61g6m+7yXW46NkklN8e6cnYHuHl+ki3iDtqFObPl2M68+otrajs48HWo6nc9O5KJi7cTkaOw+p4IsXul6g3+DB5IwAv1bqeZq2HW5xIyqta9Xvycv2bAZh9agsrN35ocSIpTbpUz42UxUv14k5lMfmXXXy/8SgAIf5ePH/DFdwYUbPC3Jgu4s4S0nKYuHA7P26OA6B6ZR8ev74pN7ethc1Wxr5Gly0reLEGeShbivlSvd2HlnHHH+PJshnc7VWLx/7xkya6lZJlmvx77rV86Ygn2GUyd8CX1ApraXUquUS6VE9KXHqOg9d/2cXVry87U5pu61CHJY/25KYKNJqXiLsLDfBm2rC2fDzySuoEV+J4ajb//HozN767kjX7TlodT+SypKTF8fAfD5FlM+js8mTC4G9UmqTkGQaPDfqSZk5Ishncs+h2jifutDqVlAIVJ7koDqeLuVGx9Jq8jHeW7iXH4aJTg2AWjL+KV4e0JsjXy+qIIlKAXk3D+O2RnjzVrxkB3vmX7w17P5Ixn65nf0K61fFELprT6eCJH4ZwxGZSy+li8g2f4+Htb3UsqSC8/UJ5t8+H1HGaHLWZjF5wGwnJ+6yOJSVMxUkuiGmaLNsVz4BpK3nm+y0kpudQv6ovs+5sz5djO9OqdqDVEUWkCD6edu7rGc6yx3txZ+d62G0Gv20/QZ83/uRfP27jZHqO1RFFLkieI4dnvx7AalcaPi6Ttzq9SFBoc6tjSQUTVrsjH/aeQU2ni0M2F2PmDyEp5bDVsaQE6R4nN+KO9zjlF6YE3vp9D5sOnwIgsJInD/duzB2d6+Hloe4tUlbtjU/jP4t38sfO/AmqK3naubNLPcZ0b0hogBsOsat7nMqHy7zHKSc3g8e/HsBSx0k8TJPJ9QZx7dWvFFs8kYt1eP8SRix7mHi7jaamJx/esojAgBpWx5ILdDH73ypObsSdipNpmizZEc+03/ew5Wj+MMbeHjbu7FyP8dc00iV5IuXIyj2JvPrzzjNf6z6eNm7vWI97ezakWmUfi9P9jYpT+XAZxSkzK5mHvulPlCsdL9NkasOh9OzxQrHGE7kUB3cvYsTKJzhpt9ECb94f8jMBfiFWx5ILoOJURrlDcXK5TH7dfpxpv+9l+7FU4L9HoUd3b0BYgBvtRIlIsSno7LKXh41hV9bhvl7h1AisZG1AUHEqLy6xOKWkH+P+bwcSQw6+LhdvXzGWjp0eLvZ4Ipdq745vGbXmBZLtNiKMSsy69Rf8KlWxOpYUQcWpjLK6OGXnObl5+mp2/FWY/Lzs3NW1PqOvakBVfze8bEdEip1pmqzYk8i03/ew/lAyAJ52g/6tajCia33a1rVwJ0DFqXy4hOKUmLSPe38cwm7DQWWXi5ltH6dVmxElkU7ksuza8gWj1r1Cqt1GO8OXaYO+I7ByLatjyXlczP63RyllkjLAx9NOw1A/jiRlMqJbfUZ1a0AVP12SJ1KRGIZBjyahdG8cwpr9J3lryR6iDiQxf1Mc8zfFEVE7kLu71mdA6xp4e9itjisVQNyJLYxZeDuxHhDidPFe0O00PlX/v0X6UieAEikBTVsN4z1HFqM3TSHalsnwb/rybq83qNfwWqujSTHQGSc3YvUZJ4DjKdlU8rQT6Otpyd8vIu5ny5EUPl59kAWb48h1uoD8ya6HdazL7Z3qlt5lfDrjVD5cxBmnqC2f8cz614i3QU2Hi/dDRlM3sG3RLxSx2J4d3/HAmhc4ZjcIdLp4s8mddLjqKatjSQF0qV4Z5Q7FSUSkMCfTc/hy3WHmRB7iWEo2kD/XaLfwEAa3q8X1Larj512CFzKoOJUPF1CcsrJTeGvRSD5P3wNAgzwX71V7iOoBTc//QhE3knhyNw8tvJ0t5OBhmrzk14wbB30Gnm5wz6icoeJURqk4iUhZ4HC6+HX7CT5ZfZCoA0lnllfytNO3ZXUGt6tF1/AQ7DajeP9iFafy7a9CdSL5Rz5Nep5Yj/yzmzfkhfF8nXH4ehcyQpmKk7ix7NxMnp0/lF8zDwEwJs+b8YO+wBbS2OJkcpqKUxml4iQiZc3hpEy+33iU76KPcPBk5pnl1Sp7069lDa67ohodGwTjaS+GOd9UnMo1R+tmrDk8hm/NjTgNgxCni3sq3UXtGk/Si2WFv1DFSdycy3TxztLHef/wrwD0zcxlYofH8Gk3EuwabsBqKk5llIqTiJRVpmmy8fApvos+woLNx0jJyjuzrrKPB1c3C+Pa5tXo1TSUAJ9LvIdSxancSiSSL/xmsNsr/yzTNRmVuCHnOTyNugD0anOq8BerOEkZ8cOWT3hpw+s4DGiWk8vreQHU6/0SNO2ff92zWELFqYxScRKR8iDH4eTP3Yn8tv04v++I52RG7pl1nnaDzg2rclWjELqGh3BFzcoXfkmfilO5c9xYzh/ec1lTKf9sZaDTxai0q2jouu+sHUkVJykv1h2N5J9LHyTZmY2fy8WLiUn0C24N170MdTtZHa9CUnEqo1ScRKS8cbpMNsYm89v2E/y2/QT7EzPOWl/Zx4PODavSNbwqXRuF0DjMH6OwI68qTuWCiUmc8Qu/+XzDBp8cAAzT5OpMX/pl/xMf27kDQKg4SXlyIuMETy5/jA0JmwAYkprGk0mn8Gk6AHq/CKFNrA1Ywag4laKsrCwmTZrEl19+SWxsLMHBwfTt25eJEydSq9bFTXim4iQi5d3e+HSW7Ypnzb6TrD2QRFqO46z1wX5eRNQOpE2dKkTUCSSidtB/55NTcSrTXKaTw7Yf+KXSQrZ45/+/202TazMr0yP3LirTudDXqjhJeeNwOZixeQbvx7yPiUmT3Fxej0+kQZ4TGvaCNsOh2QDw8rU6armn4lRKsrOzufrqq4mMjKRGjRp0796dgwcPsnbtWkJDQ4mMjKRhw4YXvD0VJxGpSBxOF1vjUlm9L5E1+06y7mAS2Xmuc55Xv6ovEXWCaJGVSBN/g2YBNqp5G2fOTKk4uS+X6eC47Te2efzBGp9jJHjk/595uUz6ZAZzVe5o/IzWRW5HxUnKq9Vxq3l6xdMkZSdRCRvPx8czMOOvgXa8AqDFoPwSVbez7oMqISpOpeS5557j3//+N126dOHXX3/F398fgKlTp/LPf/6Tnj17sqyQI6QFUXESkYosx+Fkx8JlbE5xsSnFyeZTLvZnFvwjqrIHNA2w0dTfBqf8qO7hQZjdg6p2O3btXFjKaeZy3PYLWzyWElkpnpP2//5/+LlcXJ9Rnc55Y6lkFDAn0yXoNaFNgcuXvbnpol8DhZ7YVD+TEpOQmcBTK55i7fG1APT0qclTJ+KonRT73ydVaQAtB0P97lCnI3j5WZS2/FFxKgW5ubmEhYWRkpJCdHQ0bduePZN5REQEMTExrF+/nvbt21/QNlWcRKTC+5+91lO5JjGpTjanuNiZ5mJXmosDmSbOQn5y2YEQu50wuwdhf5WpYLudKjY7Ve12Am02bCpWxSrLPMoJ2woO27ex3zOOnV45pP9twI8Ap4su2YFE5HahljkIuxFQrH+/ipOUB06Xk/e2vMd7m9/DYTrwtntzT+0+jEpOxnvHj5Cb/t8n2zygZjuo3w3qXZU/qIR38X5dVSQXs/+tweMv0apVq0hJSSE8PPyc0gQwZMgQYmJiWLBgwQUXJxEROVuQl0GPEA96/G3u0xyXyf4Mk11/Fak1cXbinQ7iHQ4cwAmnkxNOJ+TmnLM9GxBksxP8V4kKtNkJsNkItNsIsOUvq2yz4Wez4WvYdPbqb3JIII3tJBv7SbId4YjHMXZ7phLn+b//RgZBThddsoJp7ehGTddAbIbf6VUiUgC7zc64iHFcX+96/hP1H6KORzH90AIWBtTl6ds/4arUJNj7OxxcCalH4Mja/MfKN8CwQ9VG+YNKhDSBkKYQ0jj/997+Vr+1ckXF6RJt3rwZgHbt2hW4/vTymJiYUsskIlLWne9+pdP3uXjbDJoHGDQPyJ9Ud1lW/mtcpkmyy0m8w0m808EJp4NEp5Mkp5Nkp5NklxMXkORykuRyXlCeSoaBn82Gn3G6TBlUstnwMQx8DBuVDAOfM3828DIMvP/2q7dhw8sw8DQMPMDtzna5zDzyjGRyzBNkG8fINBLIME6SYZwizZZGii2d4/ZM4jwcpBQ4iXH++6mfZ9I4N5AGjgbUdLWnitkVm+H996eUmPOdWSqrzneVv858lW8Ngxryfp/3+eXgL0xeN5nYtFjGLX+Ea+teywNXP069ym/jmRoHB1fBoVVwcAWcioXEXfmP/xVQEyrXhIDq4F8t/9eA6uBfHfxCwCcQvCuDT2Xw8C79N1zGqDhdotjY/OtOa9euXeD608sPHTpUapmKxf7lkJ1idQoRt2SaJr8nb7c6RrkWa8QXus5x7NwzSPmv+dsOug28PaAO+Y+/MzHJMU2yXSZZpotcM//P5/yKC8d5LmLP+uvxd4Zpwlmv+e8f/tuVTGyY2Iz8M182DGzG6WVmfvzTv2JiGC4MwMCFYZhnfgVX/vZtTsCFiRMME9NwYuLCZThwGU6chhOn4cJpOHEYLvIMJ9mGi2ybSZbNJNMwyLnQObTIL03BDhfVHR4EO3wJcoQQkHcFRl4XTMIASAN2AwZOILPALRmF/P5//rEKfU1xyN56rNB1W48X9ppiDnEehWUo7RxipQgebPoevx2bw8oT37EkdglLYpdgYCPQK4SqXjUI9q5OlRZ3EUYlfLMSsGXFYWSfgOwEzNwknK4sHGTimbEH7/TdeJsmPqaJ11+/epjmWV9bLsMTp0clnHYfXHZvXDYPXDYvTMMDl80z//d2T0zDhml4/PWr/W8PGxg2wPhr3V/flA0D869l/2UDI/+7Yt1qrejT7c7S/ee9RCpOlyg9Pf9aU1/fgoeJ9PPLvywhLS2t0G3k5OSQk/PfHYGUlPzCkpqaWlwxL96Pz8CJLdb9/SJuzAQeqlfwwRIpJuc74FnYMR0dJL0w5l8P198X5KvkchHgBD+nDW+nJ55OL2xOH1wOf3LyQjmVV5sTOQ04YAZx4JwN5wFHS+ENFKMPj1z8a6KKP8YlcZccUkquwOZdFa+QX7D7HsKw5XEy6xgnKbz8A+BpBy71Mj3HXw8K+L5R/LoeXkXnVjeV3F9QhNP73Rcy7IOKk4UmTZrESy+9dM7yOnX+9zipiLiPHVYHEBERKTd2AB9OCLQ6BmlpaQQGnj+HitMlOj30eGZmwZciZGRkABAQUPgoJ08//TSPPvromT+7XC6SkpKoWrXqmflJSltqaip16tTh8OHDGtlPztDnQgqiz4UURJ8LKYg+F1IQd/hcmKZJWloaNWvWLPK5Kk6XqG7dugAcOVLw6f7Ty+vVq1foNry9vfH2Pvsak6CgoOIJeJkqV66sb2xyDn0upCD6XEhB9LmQguhzIQWx+nNR1Jmm0woaIkcuQEREBADR0dEFrj+9vHXromdEFxERERER96bidIm6detGYGAg+/btY9OmTees/+abbwAYOHBgKScTEREREZHipuJ0iby8vBg/fjwADzzwwJl7mgCmTp1KTEwMPXv2LHOT33p7e/Piiy+ecwmhVGz6XEhB9LmQguhzIQXR50IKUtY+F4Z5IWPvSYGys7Pp1asXUVFR1KhRg+7du3Po0CGioqIIDQ0lMjKShg0bWh1TREREREQuk4rTZcrKymLSpEnMnTuXw4cPExwcTN++fZk4cWKhk+OKiIiIiEjZouIkIiIiIiJSBN3jJCIiIiIiUgQVJzmvnTt38uqrr3L11VcTEhKCp6cn1atXZ/DgwaxYscLqeFLCsrKyeOGFF2jSpAk+Pj7UrFmTUaNGcfToUaujiQUyMzP54YcfuOeee2jatCk+Pj74+fkRERHByy+/THp6utURxQ2cPHmSsLAwDMOgUaNGVscRN5CQkMBjjz1G06ZNqVSpEsHBwbRr147HH3/c6mhigXXr1jF06FBq1qyJp6cnQUFBdO/endmzZ+PuF8LpUj05r9q1a3P06FH8/f3p3LkzwcHBbN++na1bt2IYBlOnTmXChAlWx5QSkJ2dzdVXX01kZOSZwU8OHjzI2rVrNfhJBfXBBx8wZswYAJo3b07Lli1JTU1l9erVpKWl0axZM5YvX05YWJjFScVKI0aM4NNPP8U0TcLDw9m7d6/VkcRCGzZs4Prrr+fkyZO0aNHizPeN7du3c+TIERwOh9URpRR9++233HbbbTidTtq1a0ejRo1ISEhgxYoVOBwObr/9dj7//HOrYxbOFDmP3r17m59++qmZlZV11vKZM2eagGm3281t27ZZlE5K0rPPPmsCZpcuXcy0tLQzy6dMmWICZs+ePa0LJ5b4+OOPzbFjx5rbt28/a3lcXJzZtm1bEzCHDRtmUTpxB0uWLDEBc+zYsSZghoeHWx1JLBQfH2+GhISYvr6+5vz5889ZHxUVZUEqsUpeXp4ZFhZmAubnn39+1rrt27ebwcHBJmD+8ccfFiUsms44ySW7/vrr+fXXX/nXv/7Fiy++aHUcKUa5ubmEhYWRkpJCdHQ0bdu2PWt9REQEMTExrF+/vszNVSYlY82aNXTt2hVvb29SU1Px8vKyOpKUsqysLFq1aoW3tzc//PADTZo00RmnCu7+++9nxowZvPvuu9x///1WxxGLbd26lVatWtG0aVN27tx5zvqHH36YadOm8eqrr/LEE09YkLBousdJLllERAQAcXFxFieR4rZq1SpSUlIIDw8/pzQBDBkyBIAFCxaUdjRxU6e/H+Tk5HDy5EmL04gVXnrpJfbv38/MmTPx9PS0Oo5YLCsrizlz5uDn58fIkSOtjiNu4EInua1atWoJJ7l0Kk5yyfbv3w9A9erVLU4ixW3z5s0AtGvXrsD1p5fHxMSUWiZxb6e/H3h6ehIcHGxxGiltMTExTJkyhZEjR9K9e3er44gbWL9+PWlpabRt25ZKlSrx008/8eijj3L//ffz5ptv6qBrBdSwYUPCw8PZtWsXc+fOPWvdjh07mDNnDlWqVOHmm2+2KGHRPKwOIGXTvn37WLhwIQA33nijxWmkuMXGxgIUOonz6eWHDh0qtUzi3t566y0A+vbte8FHFaV8cLlcjB49mqCgIF577TWr44ib2L59OwBhYWEMGjSI+fPnn7X+mWee4cMPP2TYsGFWxBML2O12PvnkE2644QaGDx/OlClTaNy4MfHx8axYsYIrrriCjz/+2K0PvumMk1w0h8PBiBEjyMnJ4bbbbtM9LuXQ6WGlfX19C1zv5+cHQFpaWqllEve1ePFiPvzwQzw9PZk4caLVcaSUvf3226xbt47Jkye79SU2UrqSk5MB+PHHH/n555959913iY+P5+DBgzz22GNkZWVx9913s2nTJmuDSqnq1q0by5cvp2HDhkRHRzNv3jyWLl2KzWbjuuuuc/vRenXGqZy7+eab2bFjx0W95tNPP6Vjx46Frn/ooYdYuXIlDRs2ZPr06ZcbUUTKsJ07d3LHHXdgmiaTJ08+c6+TVAyxsbE899xz9OzZkxEjRlgdR9yIy+UC8g+2/vvf/z5rcIjJkydz6NAhvv76ayZPnuzew09Lsfriiy8YOXIknTt35osvvqBFixbExcXx+uuvM2XKFJYuXcrq1avd9soFFady7sCBA+zateuiXpOZmVnoun//+9/MmDGDatWq8csvv7j16VS5dP7+/kDhn4WMjAwAAgICSi2TuJ+jR4/St29fkpOTefTRR3n44YetjiSl7IEHHiA3N5eZM2daHUXczOmfI0CBg0OMHDmSr7/+muXLl5dmLLHQnj17uPvuuwkLC2PhwoVnPiONGzdm1qxZxMXFsXDhQj766CPGjRtncdqCqTiVc8V5CnzmzJk899xzBAYG8vPPP2tG+HKsbt26ABw5cqTA9aeX16tXr9QyiXtJSkqiT58+HDp0iJEjR/L6669bHUkssHDhQoKCgrjvvvvOWp6dnQ3kl+tevXoB8OWXX2owoQrk9M8HX19fQkNDz1lfv359AOLj40szlljoyy+/JC8vj759+55VrE8bOnQoCxcu5M8//1RxkrLtyy+/5IEHHsDX15dFixbRpk0bqyNJCTp9uVV0dHSB608vb926dallEveRnp5Ov3792L59O4MHD+b999/HMAyrY4lFTp06VehZg+zs7DPrTpcpqRhOT2WRlZVFTk7OOZdeJSUlARS4Ay3l0+mDroGBgQWuP7389P1x7kiDQ0iRFi9ezF133YWHhwfff/893bp1szqSlLBu3boRGBjIvn37Cjxr+c033wAwcODAUk4mVsvJyeGmm25i7dq1XH/99XzxxRfY7XarY4lFTNMs8HHgwAEAwsPDzyw7fYZBKoa6desSERGBaZoFFuvTywqaK1DKp9NnnNevX1/g+nXr1gG49fcKFSc5r1WrVjFkyBBM02TevHn06dPH6khSCry8vBg/fjyQfw/D6XuaAKZOnUpMTAw9e/bUiIoVjNPpZNiwYfzxxx90796d7777Di8vL6tjiYibeuKJJwB47LHHOHbs2JnlmzZtYsqUKQDnXOYp5ddNN90EwJ9//smMGTPOWhcZGckbb7wBwJAhQ0o924UyTNM0rQ4h7qtKlSqcOnWKBg0a0KNHjwKfc9VVVzF69OhSTiYlLTs7m169ehEVFUWNGjXo3r07hw4dIioqitDQUCIjI91+2FApXm+99RYTJkwA8kfsrFy5coHPe/311wkJCSnFZOJuDh48SIMGDQgPD2fv3r1WxxELjRgxgk8++YSgoCC6du1KVlYWq1evJicnhzFjxvDee+9ZHVFK0eOPP37mntgWLVpwxRVXEBcXx5o1a3C5XIwdO5ZZs2ZZnLJwKk5yXhdy38Ldd9/Nxx9/XPJhpNRlZWUxadIk5s6dy+HDhwkODqZv375MnDix0Mlxpfz617/+xUsvvVTk8w4cOODWl1pIyVNxktNM0+SDDz5g1qxZ7NixA8MwaN26Nffeey9333231fHEAt9//z0zZ85kw4YNpKSkEBAQQJs2bRgzZozbT4is4iQiIiIiIlIE3eMkIiIiIiJSBBUnERERERGRIqg4iYiIiIiIFEHFSUREREREpAgqTiIiIiIiIkVQcRIRERERESmCipOIiIiIiEgRVJxERERERESKoOIkIiIiIiJSBBUnERERERGRIqg4iYiIiIiIFEHFSUREREREpAgqTiIiIiIiIkVQcRIRERERESmCipOIiIiIiEgRVJxEREQuwty5czEMA8MwuP/++wt9XmxsLFWqVMEwDJo3b05WVlYpphQRkeJmmKZpWh1CRESkLBk+fDhz584FYOHChQwYMOCs9S6Xi2uuuYbly5fj6elJZGQk7dq1syKqiIgUE51xEhERuUjTp0+nbt26AIwaNYr4+Piz1r/22mssX74cgJdfflmlSUSkHNAZJxERkUvw559/cvXVV+NyubjhhhtYsGABABs2bKBLly7k5eXRo0cPli5dis2m45QiImWdvpOLiIhcgh49evDkk08C+ZfrzZgxg8zMTIYPH05eXh6BgYF8+umnKk0iIuWEzjiJiIhcory8PLp06cKGDRuoVKkSffr0Yf78+QDMmTOH4cOHW5xQRESKi4qTiIjIZdi1axft2rUjMzPzzLJhw4adGTxCRETKB10/ICIichmaNm3K448/fubPoaGhTJ8+3cJEIiJSElScRERELkNqaiqffPLJmT8nJiYSHR1tYSIRESkJKk4iIiKXYfz48Rw8eBCAgIAATNNkxIgRnDp1ytJcIiJSvFScRERELtHXX3/NZ599BsDo0aPP3Nd0+PBhxo0bZ2U0EREpZhocQkRE5BIcPXqUVq1akZycTOPGjdm4cSN+fn6MGzeOmTNnAhpZT0SkPFFxEhERuUimaXLdddfx+++/4+HhwapVq+jYsSMAmZmZtGvXjl27dhEYGEhMTAx169a1OLGIiFwuXaonIiJykd544w1+//13AJ5//vkzpQnA19eXOXPm4OnpSUpKCnfddRcul8uqqCIiUkxUnERERC7Cli1beOaZZwDo0qULzz777DnP6dChAy+++CIAy5cv5/XXXy/VjCIiUvx0qZ6IiMgFysnJ4corr2TLli34+/uzadMmwsPDC3yu0+mkV69erFy5Ei8vL6KiomjTpk3pBhYRkWKj4iQiIiIiIlIEXaonIiIiIiJSBBUnERERERGRIqg4iYiIiIiIFEHFSUREREREpAgqTiIiIiIiIkVQcRIRERERESmCipOIiIiIiEgRVJxERERERESKoOIkIiIiIiJSBBUnERERERGRIqg4iYiIiIiIFEHFSUREREREpAgqTiIiIiIiIkVQcRIRERERESnC/wMEqCmsQ6+hKQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "plt.rcParams[\"figure.figsize\"] = [9.50, 4.50]\n", - "plt.rcParams.update({'font.size': 15})\n", - "plt.rc('xtick', labelsize=15)\n", - "plt.rc('ytick', labelsize=15)\n", - "plt.rc('axes', labelsize=20)\n", - "plt.rc('legend', fontsize=15)\n", - "w = 0.1\n", - "\n", - "# Plot between -10 and 10 with .001 steps.\n", - "x_axis = np.arange(-2, 8.1, 0.1)\n", - " \n", - "# Calculating mean and standard deviation\n", - "mean = statistics.mean(x_axis)\n", - "sd = statistics.stdev(x_axis)\n", - "\n", - "def normal_pr(x):\n", - " return (statistics.NormalDist(mu=0.0, sigma=1.0).cdf(x + 0.1) - statistics.NormalDist(mu=0.0, sigma=1.0).cdf(x))*1000\n", - "import math\n", - "def normal_pos(x):\n", - " return (statistics.NormalDist(mu=17.0/3, sigma=1.0/math.sqrt(3)).cdf(x + 0.1) - statistics.NormalDist(mu=17.0/3, sigma=1.0/math.sqrt(3)).cdf(x))*1000\n", - "\n", - "print(normal_pr(0))\n", - " \n", - "ax.plot(x_axis, [normal_pr(x) for x in x_axis])\n", - "ax.plot(x_axis, [normal_pos(x) for x in x_axis])\n", - "# plt.show()\n", - "\n", - "\n", - "w = 0.1\n", - "ax.hist(smc_estimated, bins=np.arange(-2, 8 + w, w), alpha = 0.25, color = \"red\")\n", - "ax.hist(mcmc_estimated, bins=np.arange(-2, 8 + w, w), alpha = 0.25, color = \"blue\")\n", - "\n", - "file = open(\"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/conjugate_gaussians/conjugate_gaussians_16_2048.txt\", \"r\")\n", - "hybit_data = file.readlines()\n", - "hybit_data = [float(i)*1000 for i in hybit_data]\n", - "ax.plot([i/10 for i in range(10, 81, 1)], hybit_data)\n", - "\n", - "\n", - "\n", - "ax.legend([\"Prior (N(0, 1))\", \"Posterior (N(5.66, 0.57))\", \"HyBit estimated posterior\", \"SMC estimated posterior\", \"MCMC estimated posterior\"])\n", - "# ax.bar([8.0, 9.0])\n", - "\n", - "ax.set_xlabel(\"x\")\n", - "ax.set_ylabel(\"pr(x)\")\n", - "\n", - "scale_y = 1000\n", - "ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale_y))\n", - "ax.yaxis.set_major_formatter(ticks_y)\n", - "\n", - "fig.savefig(\"conjugate_gaussians.png\")\n", - "\n", - "# ax.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Multimodal - MCMC samples" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "x and y must have same first dimension, but have shapes (1024,) and (0,)", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/plotting.ipynb Cell 81\u001b[0m in \u001b[0;36m3\n\u001b[1;32m 32\u001b[0m hybit_data \u001b[39m=\u001b[39m file\u001b[39m.\u001b[39mreadlines()\n\u001b[1;32m 33\u001b[0m hybit_data \u001b[39m=\u001b[39m [\u001b[39mfloat\u001b[39m(i)\u001b[39m*\u001b[39m\u001b[39m640\u001b[39m \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m hybit_data]\n\u001b[0;32m---> 35\u001b[0m ax\u001b[39m.\u001b[39mplot([i \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m np\u001b[39m.\u001b[39marange(\u001b[39m-\u001b[39m\u001b[39m8\u001b[39m, \u001b[39m8\u001b[39m, \u001b[39m0.015625\u001b[39m)], hybit_data, color\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mpurple\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 38\u001b[0m w \u001b[39m=\u001b[39m \u001b[39m0.1\u001b[39m\n\u001b[1;32m 39\u001b[0m ax\u001b[39m.\u001b[39mhist(mcmc_samples, bins \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39marange(\u001b[39m-\u001b[39m\u001b[39m6\u001b[39m, \u001b[39m6\u001b[39m \u001b[39m+\u001b[39m w, w), alpha \u001b[39m=\u001b[39m \u001b[39m0.25\u001b[39m, color\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mred\u001b[39m\u001b[39m\"\u001b[39m)\n", - "File \u001b[0;32m/space/poorvagarg/miniconda3/lib/python3.9/site-packages/matplotlib/axes/_axes.py:1662\u001b[0m, in \u001b[0;36mAxes.plot\u001b[0;34m(self, scalex, scaley, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1419\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 1420\u001b[0m \u001b[39mPlot y versus x as lines and/or markers.\u001b[39;00m\n\u001b[1;32m 1421\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1659\u001b[0m \u001b[39m(``'green'``) or hex strings (``'#008000'``).\u001b[39;00m\n\u001b[1;32m 1660\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 1661\u001b[0m kwargs \u001b[39m=\u001b[39m cbook\u001b[39m.\u001b[39mnormalize_kwargs(kwargs, mlines\u001b[39m.\u001b[39mLine2D)\n\u001b[0;32m-> 1662\u001b[0m lines \u001b[39m=\u001b[39m [\u001b[39m*\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_get_lines(\u001b[39m*\u001b[39margs, data\u001b[39m=\u001b[39mdata, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)]\n\u001b[1;32m 1663\u001b[0m \u001b[39mfor\u001b[39;00m line \u001b[39min\u001b[39;00m lines:\n\u001b[1;32m 1664\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39madd_line(line)\n", - "File \u001b[0;32m/space/poorvagarg/miniconda3/lib/python3.9/site-packages/matplotlib/axes/_base.py:311\u001b[0m, in \u001b[0;36m_process_plot_var_args.__call__\u001b[0;34m(self, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 309\u001b[0m this \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m args[\u001b[39m0\u001b[39m],\n\u001b[1;32m 310\u001b[0m args \u001b[39m=\u001b[39m args[\u001b[39m1\u001b[39m:]\n\u001b[0;32m--> 311\u001b[0m \u001b[39myield from\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_plot_args(\n\u001b[1;32m 312\u001b[0m this, kwargs, ambiguous_fmt_datakey\u001b[39m=\u001b[39;49mambiguous_fmt_datakey)\n", - "File \u001b[0;32m/space/poorvagarg/miniconda3/lib/python3.9/site-packages/matplotlib/axes/_base.py:504\u001b[0m, in \u001b[0;36m_process_plot_var_args._plot_args\u001b[0;34m(self, tup, kwargs, return_kwargs, ambiguous_fmt_datakey)\u001b[0m\n\u001b[1;32m 501\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39maxes\u001b[39m.\u001b[39myaxis\u001b[39m.\u001b[39mupdate_units(y)\n\u001b[1;32m 503\u001b[0m \u001b[39mif\u001b[39;00m x\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m] \u001b[39m!=\u001b[39m y\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m]:\n\u001b[0;32m--> 504\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mx and y must have same first dimension, but \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 505\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mhave shapes \u001b[39m\u001b[39m{\u001b[39;00mx\u001b[39m.\u001b[39mshape\u001b[39m}\u001b[39;00m\u001b[39m and \u001b[39m\u001b[39m{\u001b[39;00my\u001b[39m.\u001b[39mshape\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 506\u001b[0m \u001b[39mif\u001b[39;00m x\u001b[39m.\u001b[39mndim \u001b[39m>\u001b[39m \u001b[39m2\u001b[39m \u001b[39mor\u001b[39;00m y\u001b[39m.\u001b[39mndim \u001b[39m>\u001b[39m \u001b[39m2\u001b[39m:\n\u001b[1;32m 507\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mx and y can be no greater than 2D, but have \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 508\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mshapes \u001b[39m\u001b[39m{\u001b[39;00mx\u001b[39m.\u001b[39mshape\u001b[39m}\u001b[39;00m\u001b[39m and \u001b[39m\u001b[39m{\u001b[39;00my\u001b[39m.\u001b[39mshape\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n", - "\u001b[0;31mValueError\u001b[0m: x and y must have same first dimension, but have shapes (1024,) and (0,)" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAGMCAYAAABH49w2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAskUlEQVR4nO3de1xU9b7/8ffgZQQUKKWwQPACUqYYSXnJQk3d5sMbamVaXrb1qE4Kefb20t6UZh3dJ63Ymtse3TzH0mOpaIbWseziwxsllVu34k4NMfEnKA4COiis3x89YMcBlZGZwfn2ej4e88d8v2t912d9H7jerpm11tgsy7IEAICB/Bq6AAAAPIWQAwAYi5ADABiLkAMAGIuQAwAYi5ADABiLkAMAGIuQAwAYq3FDF3AtqKio0PHjx9WiRQvZbLaGLgcAjGZZls6ePaubbrpJfn6ePdci5CQdP35cERERDV0GAPym5ObmKjw83KPbIOQktWjRQtIvEx4UFNTA1QCA2YqKihQREVF17PUkl0Nu9+7d2rx5szIzM5WZmamff/5Z0i+nn7Wpy8d/ffr00ZYtW+q0/QkTJui//uu/Ltn/t7/9TU888USdxqpUWWNQUBAhBwBe4o2vh1wOublz52r9+vV1Xn78+PGX7MvIyFBBQYF69+7tahkaOHCgwsLCarR37NjR5bEAAGZyOeR69OihLl26KCEhQQkJCYqKipLT6bzk8suWLau1/cyZM/qf//kfSdK4ceNcLUMzZ85UYmKiy+sBAH47XA65GTNmuGXDH374oZxOp7p3767o6Gi3jAkAwK812H1y7733niTpkUceaagSAACGa5CrK48ePaqtW7eqSZMmevDBB69qjLVr12rNmjUqLy9X27ZtNWTIEMXGxrq5UgCAL2uQkHv//fdlWZYGDRqkli1bXtUYixYtqvZ+xowZevLJJ5WWlqbGjS+/W06ns9r3iEVFRVdVAwDg2tYgH1fW56PK22+/XUuXLtXBgwdVWlqqw4cP6/XXX1dISIiWLFmiP/7xj1ccY968eQoODq56cSM4AJjJZl3qBrc6atasmZxO5yXvk/u/srKydMcddygkJEQnTpyQ3W6vz+ar7Nu3T/Hx8aqoqNDhw4cvG1y1nclFRETI4XBwnxwAeFhRUZGCg4O9csz1+plc5Vnc6NGj3RZwktSpUycNHTpUFy9e1Oeff37ZZe12e9WN39wADgDm8mrIlZeX1+veuCupvBUhLy/P7WMDAHyPV0Pu888/V15eniIjI6/qKSdXUlhYKEkKDAx0+9gAAN/j1ZCr/Khy3Lhxbn9mmdPpVEZGhiQpPj7erWMDAHyT10KutLRU6enpkq58VWVmZqZiY2PVr1+/au0HDhzQ8uXLazxGLD8/Xw899JByc3MVFxenXr16ubd4AIBPcvk+uYyMDM2dO7fqfVlZmSSpe/fuVW2pqakaPHhwtfXWrVun4uJiJSQkXPEhyqWlpcrOztb58+ertZ84cUKPPvqokpOT1a1bN4WGhur48ePavXu3zp49q/DwcH3wwQf88CkAQNJVhFx+fr527dpVo/3Xbfn5+TX6f/1R5dWKiYlRSkqKdu7cqb///e86deqU7Ha7YmJiNGTIECUnJ+u666676vEBAGap931yJvDmPRsA8Ftn9H1yAAB4CyEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwlssht3v3bs2fP19JSUkKDw+XzWaTzWa75PKzZ8+uWqa218yZM10uury8XK+++qo6d+4sf39/hYaG6oEHHtD+/ftdHgsAYK7Grq4wd+5crV+/3uUN9erVSx06dKjRfscdd7g0TkVFhUaPHq309HSFhIRo8ODBKigo0OrVq5WRkaEvvvhCd955p8v1AQDM43LI9ejRQ126dFFCQoISEhIUFRUlp9N5xfUmT56sCRMmXE2N1bzzzjtKT09XdHS0tm7dqhtvvFGStGbNGo0aNUpjx47V/v371bixy7sGADCMy0kwY8YMT9RRZ6+88ook6T//8z+rAk6SRo4cqaFDh+qjjz7S+vXrNXLkyIYqEQBwjfCpC0+OHDmi/fv3y9/fX4MHD67RP2rUKEnShg0bvF0aAOAa5LXP9LZs2aLvv/9e58+fV3h4uAYNGuTy93E//PCDJOm2225TkyZNavTHx8dLkvbs2VP/ggEAPs9rIbd8+fJq71NTUzVy5EgtW7ZMzZs3r9MYR48elSSFh4fX2l/ZnpOTU49KAQCm8PjHlR06dNCCBQu0b98+FRcXKzc3V++//75uvvlmrVmzRo888kidxyouLpYkBQQE1NofGBgoSTp79uxlx3E6nSoqKqr2AgCYx+NncuPGjav2PjAwUA8//LD69Omjzp07a926ddq5c6e6d+/u6VKqzJs3T3PmzPHa9gAADaPBLjxp3bq1Jk6cKEn65JNP6rRO5ceapaWltfaXlJRIklq0aHHZcWbNmiWHw1H1ys3NrWvZAAAf0qA3k0VHR0uS8vLy6rR8mzZtJEnHjh2rtb+yPTIy8rLj2O122e32upYJAPBRDXoLQWFhoaR/fZd2JXFxcZKkvXv36sKFCzX6s7KyJEldunRxU4UAAF/WYCFnWZbS09Ml/evS/ytp27atbrnlFp07d04ZGRk1+levXi1JGjJkiPsKBQD4LI+GXH5+vl5//fUaVzsWFxfrySef1K5duxQWFqakpKRq/ZmZmYqNjVW/fv1qjDlt2jRJ0vTp03Xy5Mmq9rVr1+qjjz5Shw4dNGzYMA/sDQDA17j8nVxGRobmzp1b9b6srEySql0dmZqaqsGDB6ukpERPP/20Zs6cqYSEBLVu3Vr5+fnKysrSqVOnFBISotWrV9e4JaC0tFTZ2dk6f/58je1PmjRJGzduVHp6elUQFhQU6KuvvpK/v7/ee+89nlsJAJB0FSGXn5+vXbt21Wj/dVt+fr4kqWXLlpoxY4Z27typgwcPavv27WrUqJHatm2rCRMm6JlnntHNN9/s0vb9/Pz04YcfKi0tTe+8844+/vhjBQYGauTIkZozZ45uvfVWV3cJAGAom2VZVkMX0dCKiooUHBwsh8OhoKCghi4HAIzmzWOuTz2gGQAAVxByAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAYxFyAABjEXIAAGMRcgAAY7kccrt379b8+fOVlJSk8PBw2Ww22Wy2WpetqKjQ1q1bNX36dN1xxx1q0aKF7Ha72rdvryeeeEJHjhxxueAJEyZUbbO219KlS10eEwBgpsaurjB37lytX7++TssePnxY99xzjyQpLCxMffv2VaNGjZSZmak33nhDK1as0MaNG3X33Xe7WoYGDhyosLCwGu0dO3Z0eSwAgJlcDrkePXqoS5cuSkhIUEJCgqKiouR0Omtd1mazqX///po5c6b69OlTdcbndDr1xBNPaNmyZRo7dqx+/PFHNWnSxKU6Zs6cqcTERFfLBwD8hrgccjNmzKjzsu3bt9f//u//1mi32+1asmSJ0tPTdfToUW3fvl333nuvq6UAAHBZDXbhib+/v2JiYiRJx48fb6gyAAAGc/lMzl0qKiqUk5MjSbV+t3Yla9eu1Zo1a1ReXq62bdtqyJAhio2NdXeZAAAf1mAht3LlSp08eVKhoaHq2bOny+svWrSo2vsZM2boySefVFpamho3brDdAgBcQxrk48rc3FylpKRIkl544QXZ7fY6r3v77bdr6dKlOnjwoEpLS3X48GG9/vrrCgkJ0ZIlS/THP/7ximM4nU4VFRVVewEAzGOzLMuqzwDNmjWT0+lUXYcpKSlRYmKivv32Ww0fPlzp6en12XyVffv2KT4+XhUVFTp8+LAiIiIuuezs2bM1Z86cGu0Oh0NBQUFuqQcAULuioiIFBwd75Zjr1TO5CxcuaPTo0fr222919913a8WKFW4bu1OnTho6dKguXryozz///LLLzpo1Sw6Ho+qVm5vrtjoAANcOr315VVFRofHjx2vTpk3q2rWrNmzYIH9/f7duIzo6WpKUl5d32eXsdrtLH5ECAHyT187kpkyZopUrVyomJkaffvqpQkJC3L6NwsJCSVJgYKDbxwYA+B6vhNyf//xnLVmyRG3atNHmzZt1ww03uH0bTqdTGRkZkqT4+Hi3jw8A8D0eD7lXX31VL730ksLCwvTZZ5+pTZs2V1wnMzNTsbGx6tevX7X2AwcOaPny5TUeI5afn6+HHnpIubm5iouLU69evdy6DwAA3+Tyd3IZGRmaO3du1fuysjJJUvfu3avaUlNTNXjwYH3//ff693//d0lS27Zt9dJLL9U65uTJk6s9pLm0tFTZ2dk6f/58teVOnDihRx99VMnJyerWrZtCQ0N1/Phx7d69W2fPnlV4eLg++OCDS/4qAgDgt8XlkMvPz9euXbtqtP+6LT8/X5J05syZqlsLduzYoR07dtQ6ZmJiYp1+iSAmJkYpKSnauXOn/v73v+vUqVOy2+2KiYnRkCFDlJycrOuuu87VXQIAGKre98mZwJv3bADAb52x98kBAOBNhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYLofc7t27NX/+fCUlJSk8PFw2m002m+2K6y1btkx33nmnmjdvruuvv17333+/tm/fflVFl5eX69VXX1Xnzp3l7++v0NBQPfDAA9q/f/9VjQcAMJPNsizLlRWGDx+u9evX12i/3DApKSlKS0uTv7+/BgwYoPPnz+vzzz+XZVlavXq1hg8fXuftV1RUaNSoUUpPT1dISIj69eungoICff311/L399cXX3yhO++805VdUlFRkYKDg+VwOBQUFOTSugAA13jzmOtyyP3lL39RSUmJEhISlJCQoKioKDmdzkuG3Geffab+/furZcuW2rFjh6KjoyVJO3bsUGJiogICAnTkyBGFhITUaftvvfWWHnvsMUVHR2vr1q268cYbJUlr1qzRqFGj1KFDB+3fv1+NGzeu8z4RcgDgPV495lr1ZLfbrcsNM2jQIEuS9eqrr9bomzp1qiXJWrBgQZ23d8stt1iSrPT09Bp9Q4cOtSRZq1evrvN4lmVZDofDkmQ5HA6X1gMAuM6bx1yPXnhy7tw5bdmyRZI0atSoGv2VbRs2bKjTeEeOHNH+/fvl7++vwYMH13s8AIDZPBpy2dnZcjqdCg0NVXh4eI3++Ph4SdKePXvqNN4PP/wgSbrtttvUpEmTeo8HADCbR0Pu6NGjklRrwElSYGCgQkJCVFhYqLNnz9Z7vMr2nJycqykXAGCYul+dcRWKi4slSQEBAZdcJjAwUGfOnNHZs2fVokWLeo0XGBgoSVcMTKfTKafTWfW+qKjosssDAHzTb/Jm8Hnz5ik4OLjqFRER0dAlAQA8wKMh17x5c0lSaWnpJZcpKSmRpCuexdVlvLqONWvWLDkcjqpXbm7uFbcNAPA9Hv24sk2bNpKkY8eO1dpfUlKiM2fO6LrrrqtTyF1pvMr2yMjIy45jt9tlt9uvuD0AgG/z6Jlcx44dZbfblZ+fr59//rlGf1ZWliSpS5cudRovLi5OkrR3715duHCh3uMBAMzm0ZDz9/dX3759JUkffvhhjf7Vq1dLkoYMGVKn8dq2batbbrlF586dU0ZGRr3HAwCYzeMXnkybNk2S9OKLL+qf//xnVfuOHTv0xhtvKCQkRL///e+rrZOZmanY2Fj169fvkuNNnz5dJ0+erGpfu3atPvroI3Xo0EHDhg3zxK4AAHyMy9/JZWRkaO7cuVXvy8rKJEndu3evaktNTa16Isl9992n5ORkpaWlqWvXrurfv7/Kysq0efNmWZald999t8ZzK0tLS5Wdna3z58/X2P6kSZO0ceNGpaenVwVhQUGBvvrqK/n7++u9995z6bmVAABzuZwG+fn52rVrV432X7fl5+dX63vttdfUtWtXLV68WJs3b1bTpk113333KTU1VT179nRp+35+fvrwww+Vlpamd955Rx9//LECAwM1cuRIzZkzR7feequruwQAMJTLv0JgIn6FAAC8x5vH3N/kzeAAgN8GQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsr4Tcl19+KZvNdsXXCy+8UKfxoqKiLjvOgQMHPLxHAABf0NgbGwkLC9P48eNr7SsvL9d7770nSerdu7dL415qzODgYNcKBAAYyWZZltWQBWzatEn333+/IiIilJOTI5vNdsV1oqKilJOTI3eVXlRUpODgYDkcDgUFBbllTABA7bx5zG3w7+Qqz+LGjh1bp4ADAKCuGjTkSkpKtH79eknSI4880pClAAAM5JXv5C5l7dq1Kikp0e23365bb73V5fVffvllHTp0SHa7XZ06ddKIESMUGhrqgUoBAL6oQUOu8qPKqz2Lmz59erX3zzzzjBYtWqRJkybVuzYAgO9rsI8r8/Ly9Pnnn6tRo0YaM2aMS+sOHTpUa9euVU5OjkpLS7V3715NmzZNTqdTkydPrvoI9FKcTqeKioqqvQAA5mmwkFu5cqXKy8vVv39/hYWFubTuX//6V40YMUJt2rSRv7+/OnXqpIULF+pvf/ubLMvSjBkzLrv+vHnzFBwcXPWKiIioz64AAK5RDXYLQXx8vL777ju9//77evjhh90yZkVFhVq3bq2TJ0/qyJEjioqKqnU5p9Mpp9NZ9b6oqEgRERHcQgAAXmD8LQT79+/Xd999p+bNm2v48OFuG9fPz0/t27eX9MvHoZdit9sVFBRU7QUAME+DhNzy5cslSUlJSQoICHDr2IWFhZKkwMBAt44LAPA9Xg85y7K0YsUKSe6/N27fvn3Kzs5WQECAYmNj3To2AMD3eD3ktm7dqpycHN18883q27fvJZdbvHixYmNjNWvWrGrtGzdu1JYtW2osv2fPHo0ePVqWZWny5Mlq2rSp22sHAPgWr98nV3lv3MMPPyw/v0tnbEFBgbKzs2t8t5aZmak5c+YoMjJScXFxCggI0OHDh5WVlaWLFy8qMTFR8+fP9+g+AAB8g1dDzul0avXq1ZKkcePGXdUYAwcOVG5urr755htt27at6uqcu+++W2PHjtXEiRPVqFEjd5YNAPBRDf4rBNcCfoUAALzH+FsIAADwBkIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLEIOAGAsQg4AYCxCDgBgLK+FXGJiomw22yVfn3zyiUvjFRYWKjk5WZGRkbLb7YqMjFRKSorOnDnjmR0AAPicxt7e4MiRI9W8efMa7TfffHOdxygoKFCPHj30448/ql27dho+fLj27duntLQ0bdq0STt27ND111/vzrIBAD7I6yG3YMECRUVF1WuMlJQU/fjjj0pKStKqVavUuPEvuzF16lQtWrRI06ZN07Jly+pfLADAp/ncd3J5eXlauXKlmjZtqiVLllQFnCS9/PLLCg0N1XvvvaeTJ082YJUAgGuBz4XcJ598ooqKCvXu3Vs33nhjtT673a4hQ4aovLxcGzdubKAKAQDXCq9/XPn222/r1KlT8vPzU0xMjIYPH642bdrUef0ffvhBkhQfH19rf3x8vN555x3t2bPHLfUCAHyX10PuxRdfrPb+D3/4g1JTU5Wamlqn9Y8ePSpJCg8Pr7W/sj0nJ6ceVQIATOC1jyvvueceLV++XIcOHVJpaamys7P10ksvqXHjxnruueeUlpZWp3GKi4slSQEBAbX2BwYGSpLOnj17yTGcTqeKioqqvQAA5vFayL3wwgsaN26c2rVrJ39/f8XExOjZZ5/VunXrJEmzZ8/WuXPnvFLLvHnzFBwcXPWKiIjwynYBAN7V4BeeDBgwQN26ddOZM2e0a9euKy5feY9daWlprf0lJSWSpBYtWlxyjFmzZsnhcFS9cnNzr6JyAMC1rsFDTpKio6Ml/XJ7wJVUXqRy7NixWvsr2yMjIy85ht1uV1BQULUXAMA810TIFRYWSvrX92mXExcXJ0nKysqqtb+yvUuXLm6qDgDgq2yWZVkNWUB+fr7atm2rkpIS5ebmXvKqyUp5eXkKDw9X48aNlZubqxtuuKGqz+l0KiIiQqdPn9bx48er9V1OUVGRgoOD5XA4OKsDAA/z5jHXK2dy27dv17p161ReXl6t/aefftKIESNUUlKioUOHVgu4xYsXKzY2VrNmzaq2TuvWrTVmzBiVlZXpqaee0sWLF6v6pk+frvz8fI0bN67OAQcAMJdX7pM7ePCgJk6cqLCwMMXHxyskJEQ5OTnavXu3zp8/r06dOunNN9+stk5BQYGys7Nr/Z7utdde086dO7VmzRrFxsaqW7du2rdvn/bu3avo6Gi98sor3tgtAMA1zitncnfddZeefPJJ3XTTTfrmm2/0wQcfaO/everatasWLlyob775xqUzr1atWikzM1NTpkxRWVmZ0tPT5XA4NHXqVGVmZvILBAAASdfAd3LXAr6TAwDvMe47OQAAGgIhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMJZXQq60tFTr1q3T73//e3Xs2FHNmjVTYGCg4uLi9MILL6i4uNil8aKiomSz2S75OnDggIf2BADgSxp7YyMrVqzQY489Jkm65ZZbNHToUBUVFWn79u16/vnntXLlSn311Ve64YYbXBp3/PjxtbYHBwfXu2YAgO/zSsg1adJEjz/+uFJSUnTLLbdUtefl5Wnw4MH67rvvlJKSohUrVrg07rJly9xcKQDAJDbLsqyGLGDHjh3q2bOn7Ha7ioqK1LRp0yuuExUVpZycHLmr9KKiIgUHB8vhcCgoKMgtYwIAaufNY26DX3gSFxcnSXI6nTp16lQDVwMAMIlXPq68nMOHD0v65SPN66+/3qV1X375ZR06dEh2u12dOnXSiBEjFBoa6okyAQA+qMFDLi0tTZL0u9/9Tna73aV1p0+fXu39M888o0WLFmnSpEluqw8A4Lsa9OPKjRs36u2331aTJk00d+7cOq83dOhQrV27Vjk5OSotLdXevXs1bdo0OZ1OTZ48WevXr7/s+k6nU0VFRdVeAADzNNiFJwcOHFDPnj1VWFio1157TcnJyfUe880339Tjjz+ujh07XvZeudmzZ2vOnDk12rnwBAA8z5sXnjRIyP3888/q1auXcnJyNG3aNC1cuNAt41ZUVKh169Y6efKkjhw5oqioqFqXczqdcjqdVe+LiooUERFByAGAFxh9deXp06c1YMAA5eTkaOLEiVqwYIHbxvbz81P79u0l/XIP3qXY7XYFBQVVewEAzOPVkCsuLtagQYP0j3/8Q0lJSXrzzTdls9ncuo3CwkJJUmBgoFvHBQD4Hq+FnNPp1LBhw5SZmamBAwdq5cqVatSokVu3sW/fPmVnZysgIECxsbFuHRsA4Hu8EnLl5eUaM2aMtmzZot69e2vt2rVXfLLJ4sWLFRsbq1mzZlVr37hxo7Zs2VJj+T179mj06NGyLEuTJ0+u05NTAABm88p9cosXL1Z6erokqVWrVnrqqadqXW7BggVq1aqVJKmgoEDZ2dk1vlvLzMzUnDlzFBkZqbi4OAUEBOjw4cPKysrSxYsXlZiYqPnz53t2hwAAPsErIVf5PZmkqrCrzezZs6tC7lIGDhyo3NxcffPNN9q2bVvV1Tl33323xo4dq4kTJ7r9Y1AAgG9q8Ac0Xwt4QDMAeI/RtxAAAOAthBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYXg25c+fO6bnnnlNMTIyaNWumm266SZMmTdLPP//s8liFhYVKTk5WZGSk7Ha7IiMjlZKSojNnzri/cACAT7JZlmV5Y0Pnz59Xnz59tHPnTrVu3Vq9e/fWTz/9pMzMTIWGhmrnzp1q165dncYqKChQjx499OOPP6pdu3bq1q2b9u3bp3379ikmJkY7duzQ9ddfX+faioqKFBwcLIfDoaCgoKvdRQBAHXjzmOu1M7kXX3xRO3fuVI8ePXTw4EGtWrVKu3bt0sKFC5Wfn69JkybVeayUlBT9+OOPSkpKUnZ2tlatWqW9e/dqypQpOnjwoKZNm+bBPQEA+AqvnMmVlZXphhtukMPhUFZWlm6//fZq/XFxcdqzZ4++/fZb3XHHHZcdKy8vT+Hh4WrcuLGOHj2qG2+8sarP6XQqIiJCp0+f1vHjx3XDDTfUqT7O5ADAe4w7k9u2bZscDofat29fI+AkadSoUZKkDRs2XHGsTz75RBUVFerdu3e1gJMku92uIUOGqLy8XBs3bnRP8QAAn+WVkPvhhx8kSfHx8bX2V7bv2bPHq2MBAMzmlZA7evSoJCk8PLzW/sr2nJwcr44FADBbY29spLi4WJIUEBBQa39gYKAk6ezZs14Zy+l0yul0Vr13OBySfvmcGADgWZXHWm9c3O+VkLvWzJs3T3PmzKnRHhER0QDVAMBv06lTpxQcHOzRbXgl5Jo3by5JKi0trbW/pKREktSiRQuvjDVr1qxqtxmcOXNGkZGROnr0qMcn3JcUFRUpIiJCubm5XHX6K8xLTcxJ7ZiX2jkcDrVp08al+5mvlldCrk2bNpKkY8eO1dpf2R4ZGemVsex2u+x2e4324OBg/hBrERQUxLzUgnmpiTmpHfNSOz8/z18W4pULT+Li4iRJWVlZtfZXtnfp0sWrYwEAzOaVkOvVq5eCg4N16NAhff/99zX6V69eLUkaMmTIFcf63e9+Jz8/P23dulUnT56s1ud0OrVhwwY1atRI999/v1tqBwD4Lq+EXNOmTfX0009Lkv7t3/6t6nszSXrllVe0Z88e3XvvvdWedrJ48WLFxsZq1qxZ1cZq3bq1xowZo7KyMj311FO6ePFiVd/06dOVn5+vcePG1flpJ9IvH18+//zztX6E+VvGvNSOeamJOakd81I7b86LVx/QnJiYqF27dlU9oDknJ0e7du2q9QHNs2fP1pw5czR+/HgtW7as2lgFBQXq3r27Dh06pPbt21c9oHnv3r2Kjo7Wzp07vfKFJgDg2ua1BzQ3a9ZMX3zxhVJTUxUQEKB169YpJydHEyZMUFZWVp1/gUCSWrVqpczMTE2ZMkVlZWVKT0+Xw+HQ1KlTlZmZScABACR58UwOAABv45fBAQDGMjLk+AXy2rljXs6cOaMVK1ZozJgxatu2rZo2baoWLVrorrvuUlpami5cuODBPXA/d/6t/No///lP+fv7y2az6b777nNTtd7j7nn56aef9MQTT6ht27ay2+1q1aqVevTooZdfftnNlXuWO+dl8+bNGjx4sEJDQ9WkSRO1bNlSAwYMUHp6ugcq95zdu3dr/vz5SkpKUnh4uGw2m2w221WP5/ZjrmWYc+fOWd27d7ckWa1bt7YeeOAB684777QkWaGhodahQ4fqPFZ+fr7VoUMHS5LVrl0764EHHrA6depkSbJiYmKsU6dOeXBP3Mtd8/KnP/3JkmTZbDbr9ttvtx588EGrb9++lt1utyRZd999t1VSUuLhvXEPd/6t/F+JiYmWzWazJFn9+vVzY9We5+552bhxoxUQEGDZbDbrjjvusB566CGrf//+VlhYmNW+fXsP7YX7uXNeXn311ap/Rz179rQefPBBq2fPnlV/M88++6wH98S9hg0bZkmq8boanjjmGhdylQfhHj16WGfPnq1qX7hwoSXJuvfee+s81tixYy1JVlJSknXhwoWq9ilTpliSrPHjx7uxcs9y17z8x3/8hzV9+nQrJyenWvvBgwetNm3aWJKsWbNmubN0j3Hn38qvvfXWW5Yk6/HHH/fJkHPnvOzfv99q1qyZFRoaam3btq1aX3l5ufXNN9+4q2yPc9e8nDx50rLb7VaTJk2sL7/8slrfV199Zdntdstms9XrP1neNH/+fCs1NdX66KOPrLy8vKr/8F4NTxxzjQo5p9NpBQcHW5KsrKysGv1dunSxJFnffvvtFcc6fvy45efnZzVt2tQ6ceJEtb7z589boaGhVqNGjaz/9//+n9vq9xR3zsvlrFixwpJkRUVF1Wscb/DUnJw4ccK67rrrrP79+1tffPGFz4Wcu+dl0KBBliQrIyPD3aV6lTvnZcOGDZYka+DAgbX2Dx061JJkrVq1qt51N4SrDTlPHXON+k6OXyCvnTvn5XIqH7l2/Pjxeo3jDZ6ak+TkZJ07d05LlixxS53e5s55yc3N1aeffqp27dr5/BOI3Dkvdb0BumXLlq4V6eM8dcw1KuT4BfLaeWtfDh8+LEkKCwur1zje4Ik52bhxo1atWqVnn31WHTp0qH+RDcCd8/Lll1+qoqJCPXv21MWLF/XBBx8oOTlZTz/9tJYuXarCwkL3Fe5h7pyXO++8UyEhIdqyZYu++uqran1ff/21Pv30U0VHR6t37971rNq3eOo4ZdTvyfEL5LXz1r6kpaVJkoYNG1avcbzB3XNSUlKip556Sh07dtSMGTPcU2QDcOe8/OMf/5D0y89j9e7dWzt37qzW/6c//UmrV69Wnz596lOyV7hzXoKDg/X222/r4YcfVp8+fdSzZ0+Fh4fr2LFj2r59u3r16qX//u//VtOmTd23Az7AU8cpo87krrVfIL9WeGNfli5dqs8++0whISGaOXPmVY/jLe6ekz//+c/KycnR0qVLffrg5M55qTxTe+utt3TgwAGtWLFCp0+fVnZ2tsaNG6fTp09rxIgR9b5dwxvc/feSlJSkTZs2qWXLltq2bZtWrVqlbdu2qUWLFhowYIBuvvlm9xTuQzx1nDIq5NAwtm7dquTkZNlsNr3zzju66aabGrokr/r222/117/+VY8++qgSExMbupxrRkVFhSTp4sWLeuONNzRmzBhdd911iomJ0fLly5WQkCCHw+Gz31/Wx8KFC3Xffffpnnvu0Z49e1RcXKw9e/aob9++eu6555SUlNTQJRrDqJC71n6B/FrhyX3Zu3evhg0bprKyMqWlpWnEiBFXX6gXuWtOLl68qMcee0whISFasGCBe4tsAJ74N9S8eXONHj26Rv/EiRMlqcb3Utcid87Ll19+qT/84Q/q2rWrPvzwQ3Xu3FmBgYHq3LmzVq9era5duyojI0ObNm1y3w74AE8dp4z6Tu5a+wXya4Wn9uXIkSMaMGCACgsLNXv2bE2ZMqV+hXqRu+bk2LFj+v777xUWFlbjQF75hIbdu3dXneF9+eWXV1+0F7jzb6VymTZt2tT6BIyoqChJqvG7kNcid87L8uXLJUkjRoyo8cvYjRo1UlJSkr7//nt9/fXXGjRoUH3K9imeOk4ZFXL8AnntPLEveXl56t+/v/Ly8pScnKznn3++/oV6kbvn5MSJEzpx4kStfWfOnPGJsxXJvfNSean9pa6iPH36tKR//Q/+WubOeak8WAcHB9faX9nuS1efuoPHjrku37F3Dfv1DZvfffddjf6rvRn8/9586Ms3g9d3XizLsk6fPm117tzZkmRNnDjRqqiocHPFnufuOamNr98MXt95uXDhgtWyZUvLZrNZBw4cqNH/2GOPWZKsSZMmuaN0j3LnvDz66KOWJOvRRx+ttX/cuHGWJGvevHn1LbtBuONmcHcec40KOcv616N3evbsaRUXF1e1X+rRO4sWLbI6duxozZw5s8ZYlY+YGTlyZLVHzEydOtVnH+tV33kpKSmxevToYUmyHnjgAevixYveKN8j3Pm3UhtfDDnLcu+8vPTSS1Vz4HA4qto3b95sNWnSxLLZbNauXbs8ti/u5K55Wbt2rSXJatSokbVhw4ZqfevWrbP8/PwsPz+/Wv9j4AuuFHLePuYaF3Lnzp2z7rrrrmoPUa18X9tDVJ9//vlLTl5+fr7Vvn17S5LVvn1768EHH7Ruu+02S5IVHR3tcw9odse8pKSkVP0Dffjhh63x48fX+vIF7vxbqY2vhpw756WsrMy67777LEnWjTfeaA0bNszq1auX1ahRI0uS9dJLL3lpr+rPXfNSUVFhjR49uupBxt26dbNGjx5tdevWrarNl+bl448/tu66666qV+VDpn/d9vHHH1ct7+1jrnEhZ1mWVVpaaqWmplrt27e3mjZtaoWFhVkTJkywcnNzayx7pQPXqVOnrClTplgRERFW06ZNrYiICGvq1KlWYWGhZ3fCA9wxL+PHj6/6h3i5l69w59/K/+WrIWdZ7p2XsrIy6y9/+YvVqVMnq1mzZlZQUJDVt2/fGmcxvsBd81JRUWG9/fbb1j333GOFhIRYjRs3tlq1amXdf//91qZNm7ywJ+7z7rvvXvF48O6771Yt7+1jLr8MDgAwllH3yQEA8GuEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFiEHADAWIQcAMBYhBwAwFj/H6d8hpfLn9YDAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "file1 = open(\"/space/poorvagarg/cmdstan-2.28.2/benchmarks/multimodal/multimodal_samples_1.csv\", \"r\")\n", - "lines1 = file1.readlines(100000)\n", - "mcmc_samples = []\n", - "for i in range(-1, -101, -1):\n", - " mcmc_samples.append(float(lines1[i].split(\",\")[-2]))\n", - "\n", - "file2 = open(\"/space/poorvagarg/cmdstan-2.28.2/benchmarks/multimodal/multimodal_samples_2.csv\", \"r\")\n", - "lines2 = file2.readlines(100000)\n", - "mcmc_samples2 = []\n", - "for i in range(-1, -101, -1):\n", - " mcmc_samples2.append(float(lines2[i].split(\",\")[-2]))\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "# mcmc_samples = [-5.321316455131474,-5.355140579827021,-5.233490336767545,-6.067015095596283,-4.548800466991291,-5.703062072830024,-4.842569829129043,-5.081115804087283,-4.421406710010476,-4.161711303390016,-4.919536376809643,-4.846695263872425,-5.674426741967488,-5.294554675421254,-4.675151729688979,-4.346175046268987,-5.019901159626997,-5.238937963982364,-4.939731667595425,-4.61950330137317,-5.037857792375063,-4.876001284160546,-4.425722343068648,-6.244080868088658,-4.007556450309569,-5.39244419389785,-3.9130300163797673,-5.0432372920101685,-3.730240706987388,-6.281326999350051,-5.157141563493664,-5.008660329457878,-5.246187350204035,-5.30697120173472,-5.232961291989078,-4.638394171221466,-5.868002558649008,-4.955346419628353,-5.7325841694954685,-4.367123184199796,-5.781732005720217,-5.30369352247955,-5.529961146980136,-4.5501223513582305,-4.329346777699819,-5.595307871330695,-5.605970371569017,-5.593581008684544,-5.127018171131782,-4.8575581372950625,-5.546477707833224,-5.095876232028193,-4.427219439842593,-4.849227833570057,-5.292726468068822,-5.471435792732446,-4.672405031361396,-5.262095012311124,-4.578282396416381,-5.021868595147214,-4.942979120956043,-5.190938133270016,-5.064089249425432,-5.493751228124197,-5.48320140931662,-4.725561899428199,-5.178980767484936,-4.650467942970524,-4.125211732755207,-3.994294768299944,-4.391564144790965,-4.946782164528411,1.2988928671129178,-5.740806876243877,-5.104979943258394,-3.8573276248068398,-5.131200469931176,-4.780781821994093,-5.390843540221784,-5.495287333849501,-5.38586662787941,-4.094245216322156,-4.991655504926896,-6.3457096153307475,-5.390338988731538,-5.645048073577354,-4.826393051668881,-5.159839627390694,-4.075466638350983,-5.028836116447421,-5.64306486373272,-6.098157414352456,-5.306224151498137,-5.905402808069706,-4.945545099682993,-4.690125986811691,-5.977168120140098,-4.367123184199796,-3.4927494082391606,-5.926120163832372]\n", - "# mcmc_samples2 = [5.3116492784402105,4.96287658036718,4.693991376737534,4.978893880084266,4.807424112099266,5.043251037325479,5.002745713260297,5.128123885009591,5.236156857318935,4.964366725495933,5.045955044985327,4.534787351141534,4.848811198913965,5.101938474658217,4.5543078858271935,5.713174849187091,4.517491368358664,5.385364376960139,5.250225945883789,4.762606819723282,5.334472666462586,4.990184586242447,5.164334396044917,4.437320296889747,5.359799876411509,4.90485703102088,5.342092841875766,5.662058098167974,4.812412547378678,4.578121282412445,5.334472666462586,5.196537648598212,5.2647976336340285,5.487313588599507,5.019203854114686,5.0320044742685734,5.0433805086088395,5.4899005134725085,4.504103065811974,5.0790943510147075,5.013087850666883,5.253268239180125,5.42494892063007,5.129639063078916,5.859916124123895,5.366468610554215,5.80586120765038,4.867094368353411,4.917628691693704,5.026797167914664,5.043551017753835,4.650852575088083,4.011602618219986,5.210870559071634,5.2940441420411934,5.26663316577435,4.960208041002326,5.7731094597492385,4.733648478955986,5.2279532411414635,5.242556637955195,4.227032721216373,5.0645352359442555,5.693272327366622,4.777141880669607,5.7165904920596615,4.513469905512513,4.286172926297819,5.207536553408746,5.086598806147579,4.011602618219986,4.5854256656815835,4.860790040892319,5.207623888923657,4.757643360030338,5.0907380250272976,5.039537464575903,5.75443441893153,4.6864511105535,5.5958949477659345,5.0274767548348915,5.224168518417544,5.359412369964098,5.042543892611337,5.013756830185163,5.26751939973186,4.994800684862162,4.511301256802195,5.285257369014978,4.8475808364621304,4.874903496865409,5.122569224652865,5.590679634751843,5.466758761045749,5.4686370045862,5.352646367784651,4.8160419168025,5.248261996636317,5.436046349957406,5.011419895882324]\n", - "\n", - "import math\n", - "fig, ax = plt.subplots()\n", - "plt.rcParams[\"figure.figsize\"] = [4.5, 4.50]\n", - "plt.rcParams.update({'font.size': 15})\n", - "plt.rc('xtick', labelsize=15)\n", - "plt.rc('ytick', labelsize=15)\n", - "plt.rc('axes', labelsize=20)\n", - "plt.rc('legend', fontsize=20)\n", - "plt.ylim(0, 18)\n", - "w = 0.1\n", - "\n", - "file = open(\"/space/poorvagarg/.julia/dev/Dice.jl/multimodal_6_256.txt\", \"r\")\n", - "hybit_data = file.readlines()\n", - "hybit_data = [float(i)*640 for i in hybit_data]\n", - "\n", - "ax.plot([i for i in np.arange(-8, 8, 0.015625)], hybit_data, color=\"purple\")\n", - "\n", - "\n", - "w = 0.1\n", - "ax.hist(mcmc_samples, bins = np.arange(-6, 6 + w, w), alpha = 0.25, color=\"red\")\n", - "ax.hist(mcmc_samples2, bins = np.arange(-6, 6 + w, w), alpha = 0.25, color=\"blue\")\n", - "\n", - "\n", - "\n", - "ax.legend([\"HyBit\", \"Stan HMC Run 1\", \"Stan HMC Run 2\"])\n", - "# ax.bar([8.0, 9.0])\n", - "\n", - "ax.set_xlabel(\"mu1\")\n", - "# ax.set_ylabel(\"pr(mu1)\")\n", - "\n", - "from matplotlib import ticker\n", - "\n", - "scale_y = 100\n", - "ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale_y))\n", - "ax.yaxis.set_major_formatter(ticks_y)\n", - "\n", - "fig.savefig(\"multimodal_mcmc_hmc.png\", bbox_inches='tight')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "MCMC- MH" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdcAAAG9CAYAAABH6zz9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxPUlEQVR4nO3deVyU5fr48c+w7ygKCIK4hFruu2aEejrqKcklLc0W5XROpzRzycxy1+Jblh1z+WmL2lExF8xSyzUhN1xAxaU0FxDEDcUBZIf5/THNJMLADMzCwPV+veYFPMv9XAPDXHMvz30rVCqVCiGEEEIYjY2lAxBCCCFqGkmuQgghhJFJchVCCCGMTJKrEEIIYWSSXIUQQggjk+QqhBBCGJkkVyGEEMLIJLkKIYQQRmZn6QBE1RQXF5Oamoq7uzsKhcLS4QghRI2mUqnIzMzE398fGxvd9VNJrlYuNTWVwMBAS4chhBC1SnJyMgEBATr3S3K1cu7u7oD6D+3h4WHhaIQQ1mL/fvXXkJDK7a+tMjIyCAwM1L736mLVyTUnJ4eIiAi+++47rl69ipeXF/3792fu3Lk0bNhQ73JiYmKIjo7m6NGjHD16lLS0NIKCgkhMTCzz+MTERJo0aVJhuaNHj2bFihXan1etWsXo0aN1Hv/CCy/w3Xff6R03oG0K9vDwkOQqhNCbq6v6q663jYr213YVdcNZbXLNzc2lT58+xMbG4ufnx8CBA0lMTGTlypVs27aN2NhYmjZtqldZb7/9NqdOndL72m5ubrz66qs6969fv57c3FxCdHzka9euHe3bty+1vVu3bnrHIIQQovqy2uQ6b948YmNj6dGjB7t27cLNzQ2ABQsWMGnSJMLDw4mOjtarrL59+zJs2DC6dOlCQEAArVq1Kvf4+vXrs2rVqjL3/fbbb3z77bc4Ozvz3HPPlXnMoEGDmDVrll6xCSGEsD5WmVzz8/NZvHgxAEuWLNEmVoCJEyfy7bffEhMTQ1xcHJ06daqwvE8++UT7/Y0bN6oU25o1awAYOHCgNNMKIUQtZZX3uR48eBClUkmzZs3o0KFDqf1Dhw4FYOvWrWaNS6VSERkZCcDLL79s1msLIYSoPqyy5qrpH+3YsWOZ+zXbExISzBYTwIEDB0hMTMTHx4e+ffvqPC4uLo7JkyeTkZFBgwYN6NOnD6GhoWaMVAghhClZZXK9evUqgM57jDTbk5KSzBYT/NUkPHz4cOzsdP9qt23bxrZt27Q/z5kzh9DQUNavX4+vr6/J4xRCCGFaVtksnJWVBYCLi0uZ+13/HEOemZlptpjy8vLYuHEjoLtJ2M/Pj1mzZnHixAmUSiU3btzgxx9/pGXLlsTExDBgwACKiooqvE5GRkaJhxBCiOrFKpNrdbR9+3bS09Np2bIlnTt3LvOYfv36MXPmTNq3b4+Hhwe+vr6EhYVx7NgxmjdvzvHjx9mwYUO514mIiMDT01P7kNmZhBCi+rHK5KoZHZydnV3m/vv37wNUOIOGMWmahCszkMnNzY1x48YBsHPnznKPnTp1KkqlUvtITk42PFghhBAmZZV9ro0aNQIgJSWlzP2a7UFBQWaJ5969e/z0008oFApGjhxZqTKCg4MBuH79ernHOTo64ujoWKlrCCGEMA+rTK7t2rUDID4+vsz9mu1t27Y1SzwbNmwgLy+PJ598stIJPT09Hfirv9jYVCoVBQUFFBcXm6R8IYR10Szokptbuf3WxsbGBjs7u3JXsjEmq0yuPXv2xNPTk0uXLnHy5MlSUwlu2rQJgLCwMLPEU5UmYY2oqChA9+1FlVVUVERaWhqZmZkUFBQYtWwhhPXS9JpduVK5/dbIxsYGFxcXPDw88PT0NOm1rDK5Ojg4MHbsWD788EPGjBnDrl27tDW+BQsWkJCQQGhoaInZmRYvXszixYsZPHgwERERRoslKSmJAwcO4OTkxLBhw8o9NiIign/961/Ur19fu62goICPPvqIjRs34uzsXO7E/oYqKioiOTmZvLw8PD09cXNzw9bWVtZ9FULw59AUdDWWVbTfmqhUKoqLi8nNzSUrK4vU1FRycnLw9fU12fuhVSZXgGnTprFnzx4OHTpEcHAwISEhJCUlceTIEby9vUusRgOQlpbG+fPny+zT/Prrr/n6668BtLW769ev0717d+0xS5cuLbNWuXbtWlQqFWFhYRV+Enr//feZPXs2nTt3JjAwkIyMDE6ePElqaipOTk6sWbPGoNV8KpKWlkZeXh6NGjXC2dnZaOUKIayfpiHLyaly+62Rq6sr9erVIz09nRs3buDg4ICXl5dJrmW1ydXJyYl9+/YRERFBZGQkW7ZswcvLi1GjRjF37txyF7F9WEpKCkeOHCmxLT8/v8Q2XfeTrl27FoCXXnqpwuvMmDGDw4cPc/78eeLj41GpVAQEBPD6668zYcIEWrRooXfMFVGpVGRmZuLp6SmJVQghHlC3bl3u37/PvXv3qFu3rklqrwqVSqUyeqnCbDIyMvD09ESpVJZYKCA/P59Lly4RGBhYYmEDIYQA0Myxo+uOxYr2W7vMzExSUlJ45JFHsLe31/s8Xe+5D7PK+1xFxTSjgm1tbS0ciRBCVD+aKWormhWvsiS51nAyeEkIIUoz9XujJFchhBDCyCS5CiGEEEYmyVUIIYQwMkmuQgghhJFJchVCVEihUKBQKJg1a5alQxHCKkhyFcIIoqOjDU5Ao0aN0p6TmJho9Jg0ZZf1cHZ2JjAwkLCwMP73v/9RWFho9OsLUZtJchWiFsrNzSUlJYVt27bx6quv0q1bN27evFmpsh78YBEdHW3cQIWwUlY7/aEQQj+dO3dm5cqVJbZlZWVx5swZFi9ezKlTp4iPj2fo0KHs37+/zDJkIjchDCPJVYgaztXVldatW5fa3r17d0aOHEnHjh35/fffOXDgAIcPH6ZHjx4WiFKImkWahYWoxZydnRkzZoz252PHjlkwGiFqDkmuQlQjaWlpODo6olAo+M9//lPh8Vu3btX2d27YsKFS12zSpIn2+7y8vDKPKWuwVmJiIgqFgt69e2u39e7du9TgqVWrVlUqLiGsmSRXIaqR+vXrM3DgQADWr19Pbm5uucdr+lK9vLy05xkqKSlJ+32jRo0qVYYQoiRJrkJUM6+99hoA9+7d4/vvv9d53O3bt9m2bRsAI0eOxNHR0eBr5eTksGTJEkDdN/vUU0/pfW7Dhg05ffo0K1as0G5bsWIFp0+fLvEYNGiQwXEJYe1kQJMQRnbr1i3OnDlT4XH37t0rc/tTTz1FUFAQSUlJrFy5khEjRpR53Jo1aygoKAAgPDxc53Xu379fKp7s7GxOnz7NkiVLOHfuHAqFgk8++YR69epVGLeGvb09rVu3Ji0tTbutSZMmZQ6eEqK2keRay6lUKgqyCywdhsnZu9ibbfm9//f//h//7//9v0qfb2NjQ3h4ODNnzmTv3r0kJycTGBhY6jhNk3CHDh1o3769zvKOHz9OmzZtdO7v27cv7733Xom+UyFE1UhyreUKsguIcIuwdBgmNzVrKg6uDpYOQ2/h4eHMnj2b4uJivv32W6ZNm1Zif1xcHKdPn9YeWxX79u3D1dWVRx55pMwkLoQwnPS5CmFkM2fORKVSVfh49dVXdZYREBBAv379AMocbauptTo6OjJy5Mhy4wkNDS117fz8fK5cucKSJUvw9PTk+++/p3v37vz++++Vf+JCCC2pudZy9i72TM2aaukwTM7exd7SIRjstdde4+eff+bSpUv8+uuvPPnkk4D6dpnIyEgABg0aRN26dQ0u297ensaNG/Pmm28SGhpKhw4dSE1N5bXXXuPAgQNGfR5C1EaSXGs5hUJhVc2ltUlYWBi+vr7cvHmTlStXapPrli1bSE9PB6reJAzQqlUrnn76aX744QcOHjzIhQsXaN68eZXLFaI2k2ZhIaope3t7XnnlFQA2btxIVlYW8FeTcKNGjQy6daY8LVu21H6v6csVQlSeJFchqjHNPa/3799n48aNpKSksHv3bgBeffVVbGyM8y/84JJzhi4/Z65R2EJYE2kWFqIaa968OSEhIezfv5+VK1eSmppKcXExCoWC0aNHG+06x48f135v6IhhJycn7fe6pk8UoraR5CpENffaa6+xf/9+9u/fz4ULFwDo1atXiTmBq2L79u3ExMQA6ukXu3btatD5fn5+2u8vXbpklJiEsHaSXIWo5oYNG8a4ceNQKpXaBc0NGchU1gxNBQUFXLt2je3bt/P1119rt0dERGBnZ9jbQqNGjQgICCAlJYVPP/2UgIAAWrRoga2tLQC+vr64u7sbVKYQ1k6SqxDVnLOzMy+++KJ21idPT0+ee+45vc+vaIYmUA+emjdvnraP11Dvv/8+b775JleuXCm1gMDKlSsZNWpUpcoVwlrJgCYhrMDLL7+s/X748OE4OztXqTxbW1u8vLzo2rUrU6ZM4dy5c7z77ruVLu+NN94gKiqKvn374uPjY3DtV4iaRv4DhDCCXr16oVKpDDpn1apVeq91+mCzrr5NwobGU9WyhgwZwpAhQ4x2TSGsmdRchbACmmXdWrdubfCAIyGE+UlyFaKa+/XXX4mNjQXgP//5j4WjEULoo9Yl15ycHGbMmEHz5s1xcnLC39+f8PBwrl27ZlA5MTExzJ49m2eeeQZvb28UCgWNGzcu95xRo0ahUCh0PpYtW1aFZyZqkqSkJC5cuMD333+vnaWpQYMGRpnuUAhherWqzzU3N5c+ffoQGxuLn58fAwcOJDExkZUrV7Jt2zZiY2Np2rSpXmW9/fbbnDp1qlJx9OvXjwYNGpTa3qJFi0qVJ2qe0NBQkpKSSmxbtGhRlQcyCSHMo1Yl13nz5hEbG0uPHj3YtWsXbm5uACxYsIBJkyYRHh5OdHS0XmX17duXYcOG0aVLFwICAmjVqpXecbz33nv06tWrEs9A1Dbu7u60bt2aDz74gGeeecbS4Qgh9FRrkmt+fj6LFy8GYMmSJdrECjBx4kS+/fZbYmJiiIuLo1OnThWW98knn2i/v3HjhvEDFrVaYmKipUMQQlRBrelzPXjwIEqlkmbNmtGhQ4dS+4cOHQrA1q1bzR2aEEKIGqbW1Fw1/aMdO3Ysc79me0JCgslj2bx5M1FRURQVFdGkSRPCwsJKLPklhBDCutWa5Hr16lUAAgICytyv2f7wIBJTWLRoUYmfp0yZwhtvvMHChQtlZhshhKgBak2zsGahaRcXlzL3u7q6ApCZmWmyGDp06MCyZcu4cOEC2dnZXL58mSVLllCnTh2WLl3K5MmTKywjLy+PjIyMEg8hhBDVS61JrtXB22+/zeuvv05wcDDOzs40adKEN998k/379+Pg4MDixYtJTk4ut4yIiAg8PT21D0PX3hRCCGF6tSa5akYHZ2dnl7n//v37ABZZGqtVq1Y8++yzFBYWsnfv3nKPnTp1KkqlUvuoKBkLIYQwv1rTwdeoUSMAUlJSytyv2R4UFGS2mB4UHBwMwPXr18s9ztHREUdHR3OEJIQQopJqTc21Xbt2AMTHx5e5X7O9bdu2ZovpQenp6cBffb9CCCGsV61Jrj179sTT05NLly5x8uTJUvs3bdoEQFhYmJkjUw9S2r59O6D7ViEhhBDWo9YkVwcHB8aOHQvAmDFjtH2soJ7+MCEhgdDQ0BKzMy1evJiWLVsyderUKl//999/Z/Xq1eTl5ZXYfvv2bYYPH05ycjLt2rWjZ8+eVb6WEEIIy6o1fa4A06ZNY8+ePRw6dIjg4GBCQkJISkriyJEjeHt7a9fM1EhLS+P8+fNl9oN+/fXXfP311wAUFBQA6v7S7t27a49ZunSptiZ648YNXnnlFd5++206d+6Mt7c3qampxMXFkZmZSUBAABs2bEChUJjq6QshhDCTWpVcnZyc2LdvHxEREURGRrJlyxa8vLwYNWoUc+fO1TnBRFlSUlI4cuRIiW35+fkltj14D2rz5s0ZP348sbGxnD59mjt37uDo6Ejz5s0JCwvj7bffpm7dulV/kkIIISxOoVKpVJYOQlReRkYGnp6eKJVKPDw8tNtzc3O5cuUKTZo0wcnJyYIRCiGqI818ObruPqxov7Wr7Hukrvfch9WaPlchhBDCXCS5CmEE0dHRKBQK7cPd3V3nhCUPysnJwdPTs8S5+qwpnJ+fz7p163jllVdo2bIl9erVw97envr169OpUyfeeOMN9uzZQ3FxcZnnN27cuMQ1//e//+n1PP/1r3+VOG/UqFF6nXf8+HGmTp1K9+7dadiwIY6Ojnh4eNCsWTOGDh3K8uXLuXfvnl5llWXUqFEl4goPD9frvLVr15Y4r3HjxhWWr+9ygJrjq7J288N/J81D87fu0aMHU6dOrXFLFBYWFnLixAmWL1/Oa6+9Rtu2bbGzszP4b2BJtarPVZRDz0XirZIFFqbPyspiy5YtvPjii+Ue98MPPxg8P/TmzZuZNGlSmW8wd+7c4c6dO8THx7Ns2TKaN2/OggULKlxofc2aNbzyyivlHpObm8vGjRsNijUpKYmxY8eybdu2Uvvy8/PJzMzk8uXLREVFMWHCBCZMmMC0adNwdnY26DoPi4qKYunSpRU2961evbpK17GUwsJC7d86NjaWhQsXsmzZsgr/htbiww8/ZNasWZYOo0qk5iqEkWne0PV549Yco2+fz9y5c3nuuee0ifXvf/87ixYtYu/evcTFxbF7924WL15Mv379sLGx4cKFC3zwwQcVxrp3715SU1PLvfbWrVtRKpV6x3r8+HG6deumTayNGzdm6tSpbN26laNHj3LgwAG+++47XnvtNerVq0dOTg4fffQR58+f16v88p5TRkYGP/zwQ7nH3bhxgz179mjPqc78/f05ffq09nH06FEiIyP5xz/+AahbQMLDwzl8+LCFIzWOB4cCOTk50b17d5o1a2bBiAwnyVUII3v22WcB2L17Nzdu3NB53K1bt9i1axcAAwcOrLDclStXMmPGDAB8fHyIjo5m165djB07lj59+tCxY0eeeuopxowZw44dOzh16hRPPfVUuWV27twZPz8/iouLiYyMLPdYzQcBfWK9ceMGAwYM4ObNm4D6Nrjz58/z0UcfMWDAALp06ULPnj154YUX+Oqrr7hy5QozZ87E3t6+wrIrovn9V/ThJjIykqKiIvz9/enSpUuVr2tK9vb2tG7dWvvo0qULI0aM4KeffmLixIkAFBUV8eGHH1o4UuPo0aMHy5YtIz4+nszMTA4fPswTTzxh6bAMIslVCCPr27cvDRo0oKioiHXr1uk8bt26dRQWFtKgQQP+/ve/l1vmtWvXtJOguLq6EhMTQ2hoaLnntG7dmp07d/LOO+/oPMbW1paRI0cC5SejtLQ0duzYAaBX0+Prr7+uTaxz585l7ty5ODg46Dze3d2dWbNmsXfvXjw9PSssvzya+Hbu3MmtW7d0Hqd5viNHjsTGxnrfCufOnaudb3zfvn06+9mtSb9+/Xj99dfp0KGD1a5xbb2vKCGqKVtbW0aMGAGUn7A0g4hefPFFbG1tyy3z888/1w6QmjNnDi1bttQrFhsbG1566aVyj3n55ZcBSEhIICEhocxj1q1bR0FBAT4+PvTt27fc8s6cOcOPP/4IQPv27Q2a4SwkJIQmTZrofXxZ+vXrh7e3N4WFhXz33Xc6Y9RMg6p5/tbKxcWFpk2bAupVv+7cuVNi/4OD7SoaLKc5rqz+zlmzZmn3g7oPfv78+XTs2BF3d3fc3d3p2rUrixcvprCw0CjPzZpJchXCBDRv2CdOnODs2bOl9p87d067WERFb+4qlYpvv/0WUNda//Wvfxk11rZt22oXrND1YUCzfcSIERXWJFauXKn9/q233qrwg4Ox2dnZVfjhRvPBpl27drRp08ZssZnKg60Cxmhar8jNmzfp0aMH7777LidOnCArK4usrCyOHTvGW2+9xZAhQ2pEDboqJLkKYQIdOnSgVatWQNlv8JptrVu3pn379uWWdfbsWdLS0gB1zc4Uaw5rEnxkZGSpN8Xz589z7NixEseVJyYmRvt9RaOUTUUT5/Hjx/n9999L7Huwf9naa62gHjn8xx9/AODp6UmdOnVMfs0hQ4Zw7tw5xo0bx+7du4mLiyMyMpJHH30UUA9+++qrr0weR3UmyVUIE9H0/UVGRpYY/ahSqVi7dm2JY8pz6tQp7fcPLixhTCNHjsTW1pbU1FT27t1bYp/mg8Bjjz2m1/U1TcsNGzbE19fX+MHqoXPnzto3+oc/3Pzyyy9cu3atRH+zIS5cuMCZM2cqfJjLF198oe0yGDp0qFmueezYMXbu3MnChQt56qmn6NixIyNGjODAgQPav/nSpUvNEkt1JclVCBPRDJRJTk4u0dcVHR1NcnIyNjY2Fd4HC5ToQ/Px8TFFqPj5+fG3v/0NUN/zqqFSqbQ/61PLy8jI0C5kYapY9aWJd+3atSU+3GiS7VNPPUWDBg0MLrdfv360adOmwocp5eTkcObMGSZPnsyUKVMA9e/7/fffN+l1Nd56660yJ8fw8vJi9OjRAJw+fRqlUmmWeKojSa5CmEjDhg3p3bs3ULL2pPm+T58+NGzYsMJyMjWTvKLuczUVTTLavHmztia0f/9+kpKSsLGx0auWZ65Y9TFy5EgUCgVJSUns378fUA/42bx5M2BdTcJJSUklZmhycXGhTZs2fPrppxQWFtKrVy/27dunHdhkauW9FjStGyqViitXrpglnupIkqsQJqRp9o2KiiInJ4ecnBw2bdpUYl9FHuxjfXAdYmMbMmQIbm5uZGVl8f333wN/Dfzp1asXgYGBFZZhrlj10ahRI23tSvOBZvPmzWRlZeHm5sbgwYMrVe6VK1dQqVQVPszF09OTMWPG8Nhjj5ntmuWNVvfy8tJ+/+CHrdpGkqsQJjRkyBBcXFy0MwZt2bKFzMxMXF1dGTJkiF5l1KtXT/u95t5RU3BxcdHGtHr1anJzc7UfBPSt5Xl4eGhHq5oyVn1p4t64cSO5ubnaJPvcc8/h4uJiydAM8vAMTb/88gsff/wxDRo0QKlU8vzzz7N+/XqzxVPe7+7Be4aLiorMEU61JMlVCBN6sIa0evVq7Zv74MGD9W42bdeunfZ7ze07pqJJRnv27GH58uUolUpcXFx47rnn9C5Dc1tPamqqxRPs0KFDcXZ2RqlU8uWXX2oHa1lTkzCUnqGpd+/evPvuu8TFxdGwYUNUKhX//ve/uXr1qqVDFX+S5CqEiWmaf3ft2sXu3btLbNNHq1atqF+/PqDuAzV0on9DaPqBi4qKeO+99wAYNGiQQbf/PDhz1Pbt240eoyHc3d0ZNGgQAFOmTKGoqIiAgABtX7i18/f3Z9myZYB6MFlZ80g/WJMs795TSzfj1zSSXIUwsb/97W/4+flRWFhIYWEh/v7+2pG5+lAoFLz66quA+g3w66+/NlWoJQYu5ebmAobX8h5chm7RokUWn0xAE7/m+Vj7dIcPGzBggHbe3cjISM6dO1di/4MfjNLT03WWc+HCBdMEWEvVnFeYENWUra0tL7/8Mo6Ojjg6OvLyyy8b/OY+YcIEbT/XjBkzSk2MoEtxcbH2nlp9PRhrYGBghfMeP6xNmzbayfNPnjzJRx99pPe5Bw4cMPoI0759+xIYGFji91/TTJ8+HVD/vR+evP/BNWqPHz+us4zy5sEWhpPkKoQZfPzxx+Tm5pKbm8v//d//GXx+w4YNWbx4MaCuvYaGhpaYCaks586do3///syfP9+ga7Vu3Vob69WrVys1feHy5cu1kwlMnz6dGTNmkJ+fr/P4+/fvM3v2bPr06WP0eyNtbW25evWq9jlpZs6qSfr27Uvnzp0BWL9+PRcvXtTuq1u3rrYffOXKldy9e7fU+QcOHGDhwoXmCbaWsM7lBoSohUaPHk1KSgozZszg1q1b9OrVi759+zJw4EAeffRR6tSpw927d7lw4QLbt29nx44dFBUVlRgQZS4NGjRg27Zt2mXn5s6dy+rVq3nxxRfp2bMnPj4+5Ofnc+3aNX755ReioqK4ffu22eOsST744AMGDx5MUVERERERfPPNN9p9Y8aM0a5UFBISwvTp0wkIaEF6+l327dvO0qVL6dy5M4cOHbLgM/hLVlaWdqS6xoMfGDZt2qQdhwDqBSIqmkbU3CS5CmFFpk+fTqtWrZg0aRKJiYns2rVLuyZsWVq1asUnn3xixgj/0rlzZ44cOcKYMWPYvn07iYmJ5TYRu7q6MnnyZO20hcIwAwcOpFWrVpw9e5bVq1czc+ZMGjVqBMBrr73Gzz//zJYtWzh37px2YQONNm3aEBUVhZ+fnyVCLyUtLU0701NZJk+eXOLnmTNnVrvkKs3CQliZIUOGcP78edauXctLL71EixYtqFu3LnZ2dnh5edGxY0fefPNNfvnlF06fPl3hEnGmFBQUxLZt2zh69ChTpkyha9eu+Pn54eDggJubG02bNmXo0KF8+eWXpKamMnPmTO3apMIwCoVCO/1hQUEBH3/8sXafjY0NmzZtYsmSJXTp0gVXV1dcXV1p3botH374IUeOHKnUVJBCN4XKnFOJCKPLyMjA09MTpVKJh4eHdntubi5XrlyhSZMmODk5WTBCIUR1pJk8SdddVhXtt3aVfY/U9Z77MKm5CiGEEEYmyVUIIYQwMkmuQgghhJFJchVCCCGMTJKrEEIIYWSSXIUQQggjk+QqhBBCGJkkVyGEEMLIrDq55uTkMGPGDJo3b46TkxP+/v6Eh4dz7do1g8qJiYlh9uzZPPPMM3h7e6NQKEqsJPGwgoICdu3axdixY2ndujUuLi44Ozvz6KOP8s477+icI3XVqlUoFAqdj+HDhxsUtxBCiOrJaucWzs3NpU+fPsTGxuLn58fAgQNJTExk5cqVbNu2jdjYWJo2bapXWW+//TanTp3S+9oxMTH069cPUC/n9I9//IOCggIOHz7MZ599xtq1a4mOjqZFixZlnt+uXbsy58Hs1q2b3jEIIYSovqw2uc6bN4/Y2Fh69OjBrl27cHNzA2DBggVMmjSJ8PBwoqOj9Sqrb9++DBs2jC5duhAQEFDhklQ2NjY8//zzTJo0ia5du2q3K5VKXnjhBXbu3Mno0aN1rjAxaNAgZs2apVdsQgghrI9VJtf8/Hzt2pZLlizRJlaAiRMn8u233xITE0NcXBydOnWqsLwHVw25ceNGhcf36dOHPn36lNru6enJihUraNiwIYcPHyYpKYmgoCB9npIQQogaxCr7XA8ePIhSqaRZs2Z06NCh1P6hQ4cCsHXrVnOHhr+/P97e3gCkpqaa/fpCCCEszyprrpr+0Y4dO5a5X7M9ISHBbDFp3Lt3j/T0dACdSzjFxcUxefJkMjIyaNCgAX369CE0NNScYQohhDAhq0yuV69eBSAgIKDM/ZrtSUlJZotJY8mSJRQWFtKmTRuaNGlS5jHbtm1j27Zt2p/nzJlDaGgo69evx9fX11yhCiGEMBGrbBbOysoCwMXFpcz9rq6uAGRqFiQ0kxMnTjBv3jyAEgsVa/j5+TFr1ixOnDiBUqnkxo0b/Pjjj7Rs2ZKYmBgGDBhAUVFRudfIy8sjIyOjxEMIIUT1YpXJtTq6efMmQ4YMITc3l/Hjx/OPf/yj1DH9+vVj5syZtG/fHg8PD3x9fQkLC+PYsWM0b96c48ePs2HDhnKvExERgaenp/YRGBhoqqckhBCikqwyuWpGB2dnZ5e5//79+wC4u7ubJZ7MzEyefvppEhMTGTZsGJ999plB57u5uTFu3DgAdu7cWe6xU6dORalUah/JycmVjlsIIYRpWGWfa6NGjQBISUkpc79muzlug8nNzeXZZ58lPj6evn37smbNGmxsDP/MEhwcDMD169fLPc7R0RFHR8dKxSqEEMI8rLLm2q5dOwDi4+PL3K/Z3rZtW5PGUVhYyAsvvEB0dDSPP/44mzdvxsHBoVJlaUYYa/qLhRBCWC+rTK49e/bE09OTS5cucfLkyVL7N23aBEBYWJjJYlCpVIwePZoff/yR9u3bs3379iolxqioKED37UWieouOji4xT7S7u7vObosH5eTk4OnpWeJcfWYWy8/PZ926dbzyyiu0bNmSevXqYW9vT/369enUqRNvvPEGe/bsobi4uMzzGzduXOKa//vf//R6nv/6179KnDdq1Ci9zjt+/DhTp06le/fuNGzYEEdHRzw8PGjWrBlDhw5l+fLl3Lt3T6+yyjJq1KgScYWHh+t13tq1a0ucp2tO8QfLT0xM1KtszfG9evXS70mU4eG/k+ah+Vv36NGDqVOn6h2TtVAqlaxdu5bRo0fTrl07PD09sbe3x9vbm969e/PZZ59V6fViDlbZLOzg4MDYsWP58MMPGTNmDLt27dImtgULFpCQkEBoaGiJ2ZkWL17M4sWLGTx4MBEREVWOYfz48axZs4aWLVuya9cu6tSpU+E5ERER/Otf/6J+/frabQUFBXz00Uds3LgRZ2dnRo8eXeXYKkPPmSKtUhXe2yotKyuLLVu28OKLL5Z73A8//GDwiO/NmzczadKkMt9Q79y5w507d4iPj2fZsmU0b96cBQsW8Mwzz5Rb5po1a3jllVfKPSY3N5eNGzcaFGtSUhJjx44tceuZRn5+PpmZmVy+fJmoqCgmTJjAhAkTmDZtGs7OzgZd52FRUVEsXboUJyenco9bvXp1la5jKYWFhdq/dWxsLAsXLmTZsmUV/g2twc8//8zgwYPJy8srtS8tLY3o6Giio6P59NNPiYyMpHfv3haIsmJWmVwBpk2bxp49ezh06BDBwcGEhISQlJTEkSNH8Pb2ZsWKFSWOT0tL4/z582X2aX799dd8/fXXgDrZgbrvs3v37tpjli5dqq1V/vDDD3zxxRcABAYGMnny5DJjfO+992jZsqX25/fff5/Zs2fTuXNnAgMDycjI4OTJk6SmpuLk5MSaNWto2LBhFX4rojpwcnIiNzeX1atXV5hcNW/umnMqMnfuXGbMmKH9+e9//zvPPvssjz32GHXq1OHu3bucP3+erVu3snv3bi5cuMAHH3ygM7lqrrt3715SU1Px9/fXee2tW7eiVCr1jvX48eMMGDCAmzdvAupa2IgRI3j88cfx9fUlPz+flJQU9uzZw/fff8+dO3f46KOPGDZsWJkLW+jLycmJjIwMfvjhB1544QWdx924cYM9e/Zoz9HnOVmKv79/icGOOTk5XLx4kdWrV/Pzzz+Tk5NDeHg4wcHB9OjRw4KRVt2dO3fIy8vDxsaGv//97/Tv35927dpRp04dUlJSWLt2LevXr+fGjRsMGDCAgwcPVun1YipWm1ydnJzYt28fERERREZGsmXLFry8vBg1ahRz587VOcFEWVJSUjhy5EiJbfn5+SW2PVi70PSPAuzevVtnuaNGjSqRXGfMmMHhw4c5f/488fHxqFQqAgICeP3115kwYYLOVXSEdXn22WfZsGEDu3fv5saNGzpn6rp16xa7du0CYODAgaxfv77ccleuXKlNrD4+PmzYsKHMmb2eeuopxowZw5kzZ5gwYYLOJRABOnfuzKVLl7h+/TqRkZG88847Oo/VfBDQJ1bNG58msU6bNo3p06eXOSbhhRdeYMGCBXz22Wd89NFH5ZarD83vf/Xq1eUm18jISIqKivD396dZs2bs37+/ytc2FXt7e1q3bl1iW5cuXRgxYgSTJk1iwYIFFBUV8eGHH5bZSmBN7O3tef3113n//fe1g1c1OnToQFhYGD179mTcuHFkZ2czceJEfvnlFwtFq5tV9rlqODs7M2fOHC5evEheXh7Xr19n5cqVZSbWWbNmoVKpWLVqlc595T0e7DcZNWpUhcc/fA7A7Nmz2bVrF0lJSWRnZ5OTk8Mff/zBsmXLJLHWIH379qVBgwYUFRWxbt06ncetW7eOwsJCGjRowN///vdyy7x27Rpjx44F1IPeYmJiKpwys3Xr1uzcubPchGlra8vIkSOB8ptI09LS2LFjB4BeTY+vv/66NrHOnTuXuXPnljvYz93dnVmzZrF37148PT0rLL88mvh27tzJrVu3dB6neb4jR46s1Aj/6mLu3LnaOwj27duns5/dWrzwwgssW7asVGJ90FtvvUXnzp0B9RKgaWlp5gpPb9b7ihLCEJmZ6ocZ2NraMmLECKD8hKUZRPTiiy9ia2tbbpmff/65doDUnDlzSrSIlMfGxoaXXnqp3GNefvllQD0Xt675uNetW0dBQQE+Pj707du33PLOnDnDjz/+CED79u2ZOnWqXrEChISE6Jw2VF/9+vXD29ubwsJCvvvuO50xagZDap6/tXJxcdGuXZ2dnc2dO3dK7H9wsF1Fg+U0x5W1JOasWbO0+0HdBz9//nw6duyIu7s77u7udO3alcWLF1NYWGiU51YeTeWluLiYK1eumPx6hpLkKoQJaN6wT5w4wdmzZ0vtP3funPaWsYre3FUqFd9++y2grrX+61//Mmqsbdu21d62puvDgGb7iBEjsLMrvzdp5cqV2u/feuutCj84GJudnV2FH240H2zatWtHmzZtzBabqTzYKmBvb2/y6928eZMePXrw7rvvcuLECbKyssjKyuLYsWO89dZbDBkyxOQ16AcHPJn7NaYPSa5CmECHDh1o1aoVUPYbvGZb69atKxyMcfbsWW2zV0hIiElmHtMk+MjIyFJviufPn+fYsWMljitPTEyM9vuKRimbiibO48eP8/vvv5fYV1xcTGRkZInjrFlhYSF//PEHoF5TWp87F6pqyJAhnDt3jnHjxrF7927i4uKIjIzk0UcfBdSD37766iuTxqB5ndnb2/PII4+Y9FqVIclVCBPR9P1FRkaiUqm021UqFWvXri1xTHk0SywCJW4vM6aRI0dia2tLamoqe/fuLbFP80Hgscce0+v6mqblhg0bWmyVp86dO2vf6B/+cPPLL79w7dq1Ev3Nhrhw4QJnzpyp8GEuX3zxhbbLYODAoWa55rFjx9i5cycLFy7kqaeeomPHjowYMYIDBw5o/+ZLly412fW3b9+ufZ3169cPDw8Pk12rsiS5CmEimoEyycnJJfq6oqOjSU5OxsbGpsJbdYASfWg+Pj6mCBU/Pz/+9re/Aep7XjVUKpX2Z31qeRkZGdrb2UwVq7408a5du7bEhxtNsn3qqad0juQuT79+/WjTpk2FD1PKycnhzJkzTJ48mSlTpgDg7e3DpEnvm/S6Gm+99VaZk2N4eXlp79U/ffo0SqXS6Ne+e/cuY8aMAdTNwXPmzDH6NYxBkqsQJtKwYUPtDe4P1p403/fp00ev+5ofXDrRlNNjapLR5s2btTWh/fv3k5SUhI2NjV61PHPFqo+RI0eiUChISkrS3maTnZ3N5s2bAetqEk5KSioxQ5OLiwtt2rTh008/pbCwkF69erF9+z6aNGlqlnjKey1oWjdUKpXRBxoVFRUxcuRI7Vrd06ZNo0OHDka9hrFIchXChDTNvlFRUeTk5JCTk6OdnlPf2XQe7GPVrPhkCkOGDMHNzY2srCy+//574K+BP7169dJreUNzxaqPRo0aaWtXmg80mzdvJisrCzc3NwYPHlypcq9cuaLXrXjm4unpyZgxY2jZ8jGzXbO80epeXl7a7429pvabb76pvSVswIABTJ8+3ajlG5MkVyFMaMiQIbi4uGhnDNqyZQuZmZm4uroyZMgQvcqoV6+e9nvNvaOm4OLioo1p9erV5Obmaj8I6FvL8/Dw0I5WNWWs+tLEvXHjRu2sWQDPPfccLi4ulgzNIP7+/pw+fVr7+OWXX/j4449p0KABSqWS559/nqio8if2MKbyfncP3jNcVFRktGtOnTqVL7/8ElAP7NuwYUO1HCWsYdQZmi5fvkxcXByXL1/mxo0b3L9/H3t7e+rUqUOjRo1o1aoVHTt2tKoXtRBVoakhrV27ltWrV2trNIMHD9a72VSzChToXgnKWF5++WX+97//sWfPHpYvX45SqcTFxYXnnntO7zLatm1LXFwcqamp3Lx502KDmgCGDh3KmDFjUCqVfPnll9rBWtbUJAxlz9DUu3dvXnrpJbp27cq1a9d4++1/07VrDx57TPfkC9bq448/5v/+7/8A9eIm27Ztq/L806ZW5eS6b98+1q1bx44dO7h27VqFx9vb29OjRw8GDx7M8OHDLT7oQQhTe+WVV1i7dq12qkPNNn21atWK+vXrk5aWxv79+8nIyDDZ6EhNP/C1a9d47733ABg0aJBBt/+EhoYSFxcHqEd16rtCjSm4u7szaNAg1q1bx5QpUygqKiIgIKDaTvZuKH9/f5YtW0ZYWBgZGRnMmfMB331XcnT0gzXJ8u49tXQzvi5Lly7VvhYfffRRdu7cWS1HBz+sUs3COTk5/Pe//+WRRx7hqaee4ptvviElJUWvfoj8/HxiYmKYMGECgYGBjBgxgqNHjxr7eQlRbfztb3/Dz8+PwsJCCgsL8ff3147M1YdCoeDVV18F1G+AmkUmTOHBgUuaiewNreU9uAzdokWLLD4dnyZ+zfOx9ukOHzZgwACeeOIJADZujOTcuXMl9j/4wejBedEfduHCBdMEWAWrV6/WTvvZtGlT9uzZU2JVserMoFdYUVER//3vf2nSpAmTJk3i8uXLqFQqGjduzPDhw1mwYAExMTH89ttv3Lx5k/z8fJRKJVeuXCE+Pp7vvvuOSZMmERISgqOjIwUFBaxfv54ePXowYMCAUi8KIWoCW1tbXn75ZRwdHXF0dOTll182+M19woQJ2u6UGTNmlJoYQZfi4mLtPbX6ejDWwMDACuc9flibNm149tlnATh58qRBk/EfOHDA6CNM+/btS2BgYInff02jGdhTXFzMhx9+WGLfg2vUHj9+XGcZ5c2DbQmbN29m9OjR2gVO9u7dW+6qTdWNQf/hrVq1YtKkSdy6dQt/f38mTpxIXFwcly5dIjIykvHjxxMSEkKLFi3w9vbGzs4Od3d3goKCaN++Pc8//zzz588nJiaGW7dusWrVKvr27YuNjQ0//fQT7du3L3GPnRA1xccff0xubi65ubnaviNDNGzYkMWLFwPq2mtoaGiJmZDKcu7cOfr378/8+fMNulbr1q21sV69erVSg0aWL1+u7WudPn06M2bMID8/X+fx9+/fZ/bs2fTp08fo90ba2tpy9epV7XPSzJxVk/Tt25cOHdQT2a9fv56LFy9q99WtW1c7veXKlSu5e/duqfMPHDjAwoULzROsHnbt2sWIESMoKirCx8eHPXv26FzIvroyqM/1woULPPbYY3zwwQe88MILVWpacXNz45VXXuGVV17h6tWrfPjhh3z77bdcvny50mUKUZONHj2alJQUZsyYwa1bt+jVqxd9+/Zl4MCBPProo9r1XC9cuMD27dvZsWMHRUVFJQZEmUuDBg3Ytm2bdtm5uXPnate37dmzJz4+PuTn53Pt2jV++eUXoqKiyl0aT1Rs8uQPePHFwRQVFREREcE333yj3TdmzBjtSkUhISFMnz6dgIAWpKffZd++7SxdupTOnTtz6NAhCz4DtdjYWAYPHkx+fj729vZ8/vnnFBQUlDvrVUBAgFmmfTSEQcl1w4YNPPfcc9pVEYylUaNGLF++nOnTp5OcnGzUsoWoSaZPn65tQUpMTGTXrl0lBko9rFWrVnzyySdmjPAvnTt35siRI4wZM4bt27eTmJhYbhOxq6srkydP1k5bKAzzzDMDefTRVvz221lWr17NzJkztcu2vfbaa/z8889s2bKFc+fOaRc20GjTpg1RUVH4+flZIvQSduzYoZ3EpKCgQK/JS1auXFmir786MKjqOXToUKMn1gcFBATQo0cPk5UvRE0wZMgQzp8/z9q1a3nppZdo0aIFdevWxc7ODi8vLzp27Mibb77JL7/8wunTpytcIs6UgoKC2LZtG0ePHmXKlCl07doVPz8/HBwccHNzo2nTpgwdOpQvv/yS1NRUZs6cqV2bVBhGoVBopz8sKCjg448/1u6zsbFh06ZNLFmyhC5duuDq6oqrqyutW7flww8/5MiRI5WaClLoplCZcyoRYXQZGRl4enqiVCpLDE/Pzc3lypUrNGnSBCcnJwtGWE1oZooxwYoyQlQHhr7EKzq+pv/LVPY9Utd77sNqznh0IYQQopqQ5CqEEEIYmcWS68GDBwkPD+ef//ynpUIQQgghTMJiyfXixYusWrWKVatWWSoEIYQQesrM/KsfVlRMmoWFEEIII5PkKoQQQhiZwavi/Prrr0a5sL5zowohhBDWxuDk2qtXL5NOJCGEEEJYu0qv5ypzTwghhBBlMzi5Ojg4UFBQQNu2bRk8eHClL3zy5El++OGHSp8vhBBCVFcGJ9e2bdty/Phx7O3tmTlzZqUv/O2330pyNQNpYRBCiNJM/d5o8GjhLl26AHD69Oly12cUlqVZDrC4uNjCkQghRPVTVFQEUKWlU8tjcKldu3YF1KsunDx50tjxCCOxs7PDxsaG3NxcS4cihBDVTnZ2Nra2ttjb25uk/EonV4Bjx44ZNRhhPDY2Nri4uJCVlWXpUIQQolpRqVRkZGTg7u5usrtfDE6uLVu2ZNWqVaxYsaJEojXUq6++SnFxsbZqXp3l5OQwY8YMmjdvjpOTE/7+/oSHh3Pt2jWDyomJiWH27Nk888wzeHt7o1AoaNy4sWmCBjw8PMjOziY9Pd1k1xBCCGuiUqlITU2loKAAT09Pk11H1nOtQG5uLr179yY2NhY/Pz9CQkJITEzk6NGjeHt7ExsbS9OmTfUqq3379pw6darEtqCgIBITEysdX0VrC964cYP09HTc3d3x9PTEzs6udt6nfP+++qurq2XjEMJEDH2JV3T8w/ut+V9IpVJRVFREdnY2GRkZFBQUEBAQgHslFqvVdz3XSt/nWlvMmzeP2NhYevTowa5du3BzcwNgwYIFTJo0ifDwcKKjo/Uqq2/fvgwbNowuXboQEBBAq1atTBi5mq+vLw4ODty7d4+UlBSTX6/a0vQ9y8LxooYy9CVe0fEP768J/0K2trbaioaLi4tJryU113Lk5+fj4+ODUqkkPj6eDh06lNjfrl07EhISOH78OJ06dTKo7Bs3buDn52fymquGSqWisLDQKprhTeLoUfXXKnRlCFGdGfoSr+j4h/db+7+QjY0N9vb2VW65k5qrERw8eBClUkmzZs1KJVaAoUOHkpCQwNatWw1OruamUCiwt7c32ci4ak9zS5I1f+wWohyGvsQrOv7h/fIvZBijJNerV69W6fxGjRoZIwyj0/SPduzYscz9mu0JCQlmi0kIIUT1Z5Tk2qRJk0qfq1AoKCwsNEYYRqf50BAQEFDmfs32pKQks8UkhBCi+jNKcq2p3baae0R1dXy7/jlsLjMz02wx5eXlkZeXp/05IyPDbNcWQgihH6Mk15UrV1Z4zP3797lw4QJRUVFcu3aNnj178tprrxnj8rVKREQEs2fPtnQYNYdmpHevXpaMQghRwxglub766qt6Hzt//nwmTJjA//t//4+ePXvyf//3f8YIwSQ0t91kZ2eXuf/+nzd+VeZeqcqaOnUqEydO1P6ckZFBYGCg2a4vhBCiYmYfLWxvb8/ixYv57bffmD9/Pr1796Zfv37mDkMvmoFWuu4P1WwPCgoyW0yOjo44Ojqa7XpCCCEMZ5rlAPTw+uuvo1KpWLRokaVCqFC7du0AiI+PL3O/Znvbtm3NFpMQQojqz2LJNTg4GIDjx49bKoQK9ezZE09PTy5dulTmCkCbNm0CICwszMyRCSGEqM4sllyVSmWJr9WRg4MDY8eOBWDMmDHaPlZQT3+YkJBAaGhoiQkkFi9eTMuWLZk6darZ4xVCCFE9WGyGpm+//RYAPz8/S4Wgl2nTprFnzx4OHTpEcHAwISEhJCUlceTIEby9vVmxYkWJ49PS0jh//jzXr18vVdbXX3/N119/DajXwwW4fv063bt31x6zdOlSnZNWCCGEsA5mT65//PEHn332Gd9++y0KhYKnn37a3CEYxMnJiX379hEREUFkZCRbtmzBy8uLUaNGMXfuXJ0TTJQlJSWFI0eOlNiWn59fYpvctyqEENbPKBP367PkWnFxMffu3dNOuKBSqfD19SU+Pr7a116rM30nka71dN3PKve5ihrC0JdyRcc/vF/+VdTMOnF/ZVZ16dGjBytWrJDEKoQQosYx2yQSNjY2uLu706RJE0JDQ2nfvr0xLi2EEEJUO2ab/lAIIYSoLSx2K44QQghRU0lyFUIIIYxMkqsQQghhZEa/z/XUqVPs37+fy5cvk5mZSVFRUbnHKxQKvvnmG2OHIYQQQliM0ZLrb7/9xj//+c9SkySUR6VSSXIVQghR4xgluV6+fJknnniCe/fuoZmTwt3dnTp16mBjIy3PQgghahejJNcZM2aQnp6OjY0N77zzDm+88QaNGzc2RtFCCCGE1TFKct2zZw8KhYLx48fz8ccfG6NIIYQQwmoZpc1WM9n8c889Z4zihBBCCKtmlOQaGBgIgJ2dxVawE0IIIaoNoyTXfv36AXD06FFjFCeEEEJYNaMk10mTJuHu7s78+fO5e/euMYoUQgghrJZRkmtQUBCbN2/m7t27PP744+zevdsYxQohhDCxa8eusbjFYn4Y/QNGWN5b/MlonaR9+vThxIkTPP744/Tv35+6devyyCOP4OLiUu55CoWCvXv3GisMIYQQeirOL2TLm1u4c+EOdy7cISg0iPaj2ls6rBrBaMn10KFDvPzyy6SlpaFSqbh79265fbAKhUI7Q5MQQgjzux1zjrTf0rQ///LBL7R7pR0KG3lfriqjJNdz587Rr18/srOzUalUODk5ERwcLDM0CSFENXbvVCIA3cZ34+SKk2SmZnL9xHX8O/lbNrAawCjJdfbs2dy/fx9HR0c+++wzwsPDcXJyMkbRQgghTESZcBWApn9ryu2zt7m8+zKpx1MluRqBUaqVBw8eRKFQ8P777/Pmm29KYhVCiGou/959cpLvABD4eCD+ndUJ9XrcdUuGVWMYJbmmp6cD0L9/f2MUJ4QQwsQyziQD4N3KG2cvZ21yTT2easmwagyjJNeAgACACtduFUIIUT0oz6ibhBs90QgAv05+ANw6c4vC3EKLxVVTGCW5hoWFAfDrr78aozghhBAmlp14GwC/juqk6tnIE5f6LhQXFHPz9E1LhlYjGCW5Tp48GR8fH+bPn09iYqIxihRCCGFCOSnq2fS8gr0A9e2Rmtrr9Xjpd60qoyRXX19fdu7ciYeHB926deOrr77i3r17xihaCCGEkRUVFJFzXT1Wpl5wPe32+o/WB+DuRZnGtqqMcitO06ZNAcjOzub27dv85z//4Y033qB+/fp6zdB06dIlY4QhhBBCD/cS70GxChtHO9z93bXb6zatq95/+R4+FoqtpjBKcn24KVilUqFSqbh161aF58oMTUIIYV53/1DXTJ0bepWYjaluE3VyTb+SLsm1ioySXF999VVjFCOEEMIM7vyhvr/VuWG9Ets1Ndf0y+lmj6mmMUpyXblypTGKEaK06Gj11169auf1hTABTfJ08q9bYnudxnUAyFPmUZCZg727s7lDqzFk4l8hhKhlMpIzAHDy9Syx3d7FHrcGbgDkpkrttSqsOrnm5OQwY8YMmjdvjpOTE/7+/oSHh3Pt2jWDy0pPT+ftt98mKCgIR0dHgoKCGD9+fJmjnhMTE1EoFBU+wsPDS5y3atWqco8fPnx4ZX8VQgiht4wUdXJ19PYotU/TNJx7XZJrVRhtyTlzy83NpU+fPsTGxuLn58fAgQNJTExk5cqVbNu2jdjYWO0o5oqkpaXRo0cPLl68SNOmTRk0aBBnz55l4cKF/Pzzzxw+fBgvLy/t8W5ubuX2M69fv57c3FxCQkLK3N+uXTvat29fanu3bt30ilcIIapCU3N19PEsta9OkzokH0om5/o9M0dVsxiUXBcsWMAbb7yBs7Np2uGPHz9OWlqaXnMUz5s3j9jYWHr06MGuXbtwc3PTxjhp0iTCw8OJ1vSXVWD8+PFcvHiRIUOGsH79euzs1L+WcePGsWjRIiZOnMiqVau0x9evX7/Ezw/67bff+Pbbb3F2dua5554r85hBgwYxa9YsvWITQghjKsovIutmFiA1V1MyqFn4nXfeoWnTpnz66afcv3/faEEcPnyYp59+mm7dupW7wLpGfn4+ixcvBmDJkiXaxAowceJE2rZtS0xMDHFxcRWWdf36ddatW4eDgwNLly7VJlaA+fPn4+3tzZo1a/S6rQhgzZo1AAwcOBAPj9IvXCGEsKTM1ExQgcLeFvs6pech8AxS12bzbinNHVqNYlByDQkJ4ebNm0yZMgVfX19GjhzJ9u3bKzVh/+XLl5k3bx6PPfYYTzzxBDt27MDDw4NOnTpVeO7BgwdRKpU0a9aMDh06lNo/dOhQALZu3VphWTt27KC4uJiQkBB8fX1L7HN0dCQsLIyioiJ++umnCstSqVRERkYC8PLLL1d4vBBCmJsyWZ00Hb09ypxnwN1PPalE/p0ss8ZV0xjULBwTE8PGjRuZMWMG58+f57vvvuO7777D1dWVjh070qVLFzp06ICPjw9169albt265OTkcPfuXdLT07lw4QLHjh3j6NGjXL2qXpFBpVLh6OjImDFj+OCDD6hbt24FUcCpU6cA6NixY5n7NdsTEhKMUtaKFSv0KuvAgQMkJibi4+ND3759dR4XFxfH5MmTycjIoEGDBvTp04fQ0NAKyxdCiKrS9reW0SQM4OanbgnMu5NptphqIoMHNA0bNoyhQ4eyceNGFi5cyOHDh8nKyuLXX39l//79epWhUqkAaNCgAaNHj+Y///kPgYGBesegScyape4eptmelJRk1rI0TcLDhw8v0bz8sG3btrFt2zbtz3PmzCE0NJT169eXqj0LIYQxaWuuZQxmgr9qrgXKbFRFxVj5TSUWU6nfmkKh4Pnnn+fgwYP89ttvzJ49m169euHk5KSd+lDXo0mTJrz66qts3ryZ5ORkPvzwQ4MSK0BWlrq5Qte8xa6urgBkZlb8yctYZeXl5bFx40ZAd5Own58fs2bN4sSJEyiVSm7cuMGPP/5Iy5YtiYmJYcCAARU2sefl5ZGRkVHiIYQQ+irvNhwAF28X9ZSIxSry7xlvbE1tU+VbcVq0aMH06dOZPn06hYWFnDhxgpSUFG7fvs3du3dxcnLC29sbb29v2rRpg5+fnzHirna2b99Oeno6LVu2pHPnzmUe069fP/r166f92cPDg7CwMHr37k2nTp04fvw4GzZsYMSIETqvExERwezZs40evxCidtBOIOFTdnK1sbXB1ceVrBtZf/a7upd5nCifUe9ztbOzo0uXLnTp0sWYxZaiGR2cnZ1d5n7NSGZ394pfFMYqS9MkXJmBTG5ubowbN46xY8eyc+fOcpPr1KlTmThxovbnjIwMg2v+QojaS5NcHXTUXEHd76pOrplAzawQmZpVTiLRqFEjAFJSUsrcr9keFBRklrLu3bvHTz/9hEKhYOTIkRVesyzBwcGA+tag8jg6OuLo6FipawghhKZZ2ElHnyuo+11vnLhB/l0ZMVxZRumptrGxwc7Ojk8++cQYxVWoXbt2AMTHx5e5X7O9bdu2Zilrw4YN5OXlERISoldCL0t6uvqGbU0frxBCGFthXiH3b6lb43T1ucJfI4YluVaeUZKrg4MDKpVK53R/xtazZ088PT25dOkSJ0+eLLV/06ZNAISFhVVYVv/+/bGxsWH//v2lJorIy8tj69at2Nra8vTTT+ssoypNwhpRUVGA7luChBCiqrJuqJOlrYMtdh66Z9rTTN6fL7fjVJpRkqu/vz9AubefGJODgwNjx44FYMyYMSVmi1qwYAEJCQmEhoaWmJBi8eLFtGzZkqlTp5Yoy8/PjxEjRpCfn8+bb75JYWGhdt+7777L7du3eemll/DxKXvp4KSkJA4cOICTkxPDhg0rN+6IiAjS0tJKbCsoKGD27Nls3LgRZ2dnRo8erd8vQQghDKSptbr6uJY5gYSG1FyrzijZ8Mknn2T16tXExcWZfDCTxrRp09izZw+HDh0iODiYkJAQkpKSOHLkCN7e3qxYsaLE8WlpaZw/f77MPs3//ve/xMbGEhUVpR3te/bsWc6cOUNwcDALFizQGcfatWtRqVSEhYXh6am7DwPg/fffZ/bs2XTu3JnAwEAyMjI4efIkqampODk5sWbNGho2bFi5X4gQQlQg+7Z64KaLd9m3HmpoZ2mS5FppRqm5vvXWW9ja2vLpp5+a7b5LJycn9u3bx/Tp03FxcWHLli0kJSUxatQo4uPj9V4RB9QT8R89epS33nqL/Px8vv/+e5RKJePGjePo0aMlVsR52Nq1awF46aWXKrzOjBkzePLJJ0lOTuaHH37gl19+wcXFhddff52TJ08yZMgQvWMWQghD3b/9Z83Vu/yxHdqaq0yBWGlGqbl26tSJRYsWMXbsWEJDQ1myZAmPP/64MYoul7OzM3PmzGHOnDkVHjtr1qxyV6Lx8vLiiy++4IsvvjAohrNnz+p9rNyfKoSwpAebhcujqbnm3clEpVKV24QsymaU5KpZFLxFixacOnWKkJAQAgMDadu2LXXr1sXW1lbnuQqFgm+++cYYYQghhCiHvs3CmgFNqoIicu/l4lzXNMuM1mRGSa6rVq3SfrJRKBSoVCquXr1KcnJyuedpPhFJchUmo2tNXz3X+hWiJnkwueqaaFX9r2GHnZsThVm5ZF3PkuRaCUZJro0aNZJmAyGEqOYebBauaHSMQz03dXK9kYX3Y96mD66GMUpyTUxMNEYxQgghTOjBAU0VJlcvd7KT0si8Lve6VoasJSSEELWEvn2uAA5e6n7XrOsyYrgyTJpcCwsLuX37Nrdv3y4xOYMQQgjz03e0MKibheGvWZ2EYYyeXM+dO8e4ceN47LHHcHJyokGDBjRo0AAnJyceffRR3nrrLc6cOWPsywohhChHQXYBBdkFQMX3uQLY11Efo6ntCsMYLbkWFxczadIk2rVrx5IlS/j9998pLi7WLpJeXFzM+fPnWbp0KR06dGDChAkUFxcb6/JCCCHKoelvtXWwxcHdocLjHeqom441tV1hGKNNBvziiy+yceNGVCoVAK1ataJr1674+voCcPPmTY4dO8aZM2coKiriiy++IDU1lfXr1xsrBCGEEDroO6+whqbmKsm1coySXL/77js2bNiAQqGgXbt2fPnllzrnGD527Bj/+c9/OHHiBJs2beK7775j+PDhxghDCCGEDoYMZgKwr/tncr0tybUyjNIs/OWXXwLQvHlzDhw4UO7k/V26dOHXX3+lRYsWqFQqli9fbowQhBBClEPfeYU1HB6ouWpaJIX+jJJcT506hUKhYMqUKXot9u3q6sqUKVO05wohhDAtQ0YKA9h7qmu4RXlF5GflmyyumsooyTU/X/2Lb9u2rd7naI4tKCgwRghCCCHKYWizsK2zAzZO9oD0u1aGUZJrUFAQAEqlUu9zNEvTac4VQghhOoYmVyjZNCwMY5Tk+txzz6FSqYiKitL7nE2bNqFQKBg8eLAxQhBCCFEOQ5uFAez/vB1H7nU1nFGS68SJE2natCnLly9nw4YNFR6/adMmli9fTpMmTXjnnXeMEYIQQohyGDqgCeR2nKowSnL19PRkz549dOzYkREjRjBo0CC2bNnCtWvXKCgooLCwkGvXrrFlyxYGDx7MCy+8QMeOHdm7dy+enp7GCEEIIUQ5KtMsrE2ucjuOwYxyn+uDi6GrVCq2bt3K1q1bdR6vUqk4fvw4TZs21XmMQqGQ+YiFEMJIKtMs/OAsTU4miarmMkpyffgeKH3uiZL7poQQwjwMnVdYQzu/8K1sSa4GMkpynTlzpjGKEUIIYQKGzius8WCzsJdJIqu5JLkKYUnR0eqvvXpZMgpRwxk6r7CGvUzeX2myWLoQQtRwlRnMBH/d55qdJrfiGEqSqxBC1HCVuQ0H/poCMft2toyTMZAkVyGEqOEqM1IYHphfOL+IohyZX9gQklyFEKKGq2yzsK2zA3bO6qE5BfekadgQklyFEKKGq2xyhb+akgvuyaAmQ0hyFUKIGq6yzcIALvXVCblAKTVXQ0hyFUKIGq6yA5rgr9quJFfDSHIVQogaTpqFzU+SqxBC1HBVaRZ2ru8MQL4MaDKIJFchhKjB8u/nV2peYQ3NOYXSLGyQWpdcc3JymDFjBs2bN8fJyQl/f3/Cw8O5du2awWWlp6fz9ttvExQUhKOjI0FBQYwfP5579+6VefyoUaNQKBQ6H8uWLavisxNCiJI0TcKGziusoWlKzpfkahCjzC1sLXJzc+nTpw+xsbH4+fkxcOBAEhMTWblyJdu2bSM2NrbcZfAelJaWRo8ePbh48SJNmzZl0KBBnD17loULF/Lzzz9z+PBhvLzKnuq6X79+NGjQoNT2Fi1aVOn5CSHEw7SDmQycV1hDO1pY+lwNUquS67x584iNjaVHjx7s2rULNzc3ABYsWMCkSZMIDw8nWjORegXGjx/PxYsXGTJkCOvXr8fOTv2rHDduHIsWLWLixImsWrWqzHPfe+89eslE7UIIM6jKYCZ4YECT1FwNUmuahfPz81m8eDEAS5Ys0SZWgIkTJ9K2bVtiYmKIi4ursKzr16+zbt06HBwcWLp0qTaxAsyfPx9vb2/WrFnDrVu3jP9EhBDCANrBTJXobwW5Faeyak1yPXjwIEqlkmbNmtGhQ4dS+4cOHQrA1q1bKyxrx44dFBcXExISgq+vb4l9jo6OhIWFUVRUxE8//WSc4IUQopIebBauDE2zcNH9PIrzC40WV01Xa5qFT506BUDHjh3L3K/ZnpCQYJSyVqxYobOszZs3ExUVRVFREU2aNCEsLIyWLVtWeF0hhDBUVZuFnes6o7BVoCpSUZCRA7gbMbqaq9Yk16tXrwIQEBBQ5n7N9qSkJJOXtWjRohI/T5kyhTfeeIOFCxeWaGIWQoiq0jQLVza5KmwUuNRz4f6t+38OapLkqo9a0yyclZUFgItL2S8wV1d1k0lmZqbJyurQoQPLli3jwoULZGdnc/nyZZYsWUKdOnVYunQpkydPrvDaeXl5ZGRklHgIIYQumpprZZuFQeYXrgypJpnR22+/XeLnJk2a8OabbxIaGkrHjh1ZvHgxEydOJDAwUGcZERERzJ4929Sh1j56jhLXeV51G/1dXeMSZleVeYU1dA1qkpeZbrWm5qoZHZydXfYnr/v31S9Ad/eKmzyMWRZAq1atePbZZyksLGTv3r3lHjt16lSUSqX2kZycrNc1hBC1U1WbhUHmF66MWlNzbdSoEQApKSll7tdsDwoKMmtZGsHBwYD6Np/yODo64ujoqHe5QojazRjNwjK/sOFqTc21Xbt2AMTHx5e5X7O9bdu2Zi1LIz09Hfirv1YIIaqqqvMKa8j8woarNcm1Z8+eeHp6cunSJU6ePFlq/6ZNmwAICwursKz+/ftjY2PD/v37S00UkZeXx9atW7G1teXpp5/WK7a8vDy2b98O6L69RwghDFXVeYU1tPMLS7Ow3mpNcnVwcGDs2LEAjBkzRtsvCurpDxMSEggNDaVTp07a7YsXL6Zly5ZMnTq1RFl+fn6MGDGC/Px83nzzTQoL/7qx+t133+X27du89NJL+Pj4aLf//vvvrF69mry8vBJl3b59m+HDh5OcnEy7du3o2bOnUZ+3EKL2quq8whp/9blKzVVftabPFWDatGns2bOHQ4cOERwcTEhICElJSRw5cgRvb29WrFhR4vi0tDTOnz9fZj/of//7X2JjY4mKiqJly5Z07tyZs2fPcubMGYKDg1mwYEGJ42/cuMErr7zC22+/TefOnfH29iY1NZW4uDgyMzMJCAhgw4YNVfoHEEKIB1V1AgmNv0YLS81VX7Wm5grg5OTEvn37mD59Oi4uLmzZsoWkpCRGjRpFfHy83iviANSvX5+jR4/y1ltvkZ+fz/fff49SqWTcuHEcPXq01Io4zZs3Z/z48bRo0YLTp0+zceNGjh8/TnBwMDNnziQhIYHmzZsb+ykLIWqxqs4rrKEZDCU1V/3VqporgLOzM3PmzGHOnDkVHjtr1ixmzZqlc7+XlxdffPEFX3zxRYVl+fv78/nnnxsSqhBCVElV5xXW0DYLZ2RTXFSMjW2tqpdVivyGhBCihjJWs7BzPfWtOKgg505OVcOqFSS5CiFEDWWMCSQAbO1tsXN3Upd5W/pd9SHJVQghaijtBBJV7HMFsK/jWqJMUT5JrkIIUUNp+1x9jZdcpeaqH0muQghRQ2lHC1dxQBOAQx1107LUXPUjyVUIIWoglUpl1ORq76lOrpoyRfkkuQohRA1UcL+Awhz17HFGSa7SLGwQSa5CCFEDaWqY9i72OLhWfl5hDRnQZBhJrkIIUQMZ6zYcDelzNYwkVyGEqIGM2d8KDzQLS5+rXiS5CiFEDWT05KoZ0CR9rnqR5CqEEDWQqWquOXdyUBWrjFJmTSbJVQghaiBT1VxVxSpy7sr8whWR5CqEEDWQsZOrjb0tdm5OJcoWuklyFUKIGsjYyRXAvo70u+pLkqsQQtRAJkmunnKvq74kuQohRA0kNVfLkuQqhBA1jKpY9ddyc0ZMrg5yr6veJLkKIUQNk3P3r9tlXOobZ4YmAHsvNwCybmQZrcyaSpKrEELUMJqapVNdJ2wdbI1WrmO9P5PrdUmuFZHkKoQQNYwp+lsBHKTmqjdJrkIIUcNk3VQnPzdfN6OW61DPXV2+1FwrJMlVCCFqGE3yc/MzcnJ9oOaqUskUiOWR5CqEEDVM5vVMANwamCa5FuUXkZuea9SyaxpJrkIIUcPcv6HuczV2zdXGwQ6nuuopEDUJXJRNkqsQQtQwpqq5Plim9LuWT5KrEELUMJrRvO5+7kYvW1OmjBgunyRXIYSoYUw1oOnBMqVZuHySXIUQogYpyi8iO0099aFJm4Wl5louSa5CCFGDaCaQsLGzwaWe8aY+1NDUXKXPtXx2lg5ACL1ER5f8uVcvS0QhRLWnaa519XVFYaPQbn/4X+jh7fr+S2n7XK9nUa9yIdYKVl1zzcnJYcaMGTRv3hwnJyf8/f0JDw/n2rVrBpeVnp7O22+/TVBQEI6OjgQFBTF+/Hju3btX6tiCggJ27drF2LFjad26NS4uLjg7O/Poo4/yzjvvcPv27TKvsWrVKhQKhc7H8OHDDY5bCCEeZMrBTCDNwvqy2pprbm4uffr0ITY2Fj8/PwYOHEhiYiIrV65k27ZtxMbG0rRpU73KSktLo0ePHly8eJGmTZsyaNAgzp49y8KFC/n55585fPgwXl5e2uNjYmLo168fAI0bN+Yf//gHBQUFHD58mM8++4y1a9cSHR1NixYtyrxeu3btaN++fant3bp1M/wXIYQQD9AOZjJBfyvIgCZ9WW1ynTdvHrGxsfTo0YNdu3bh5qb+gy9YsIBJkyYRHh5OtK52kIeMHz+eixcvMmTIENavX4+dnfrXMm7cOBYtWsTEiRNZtWqV9ngbGxuef/55Jk2aRNeuXbXblUolL7zwAjt37mT06NEcOnSozOsNGjSIWbNmVep5CyFEebT3uJpgpDD8lbTzlHkU5RVg62hvkutYO6tsFs7Pz2fx4sUALFmyRJtYASZOnEjbtm2JiYkhLi6uwrKuX7/OunXrcHBwYOnSpdrECjB//ny8vb1Zs2YNt27d0m7v06cP69evL5FYATw9PVmxYgUAhw8fJikpqUrPUwghDKVprjVVzdWpjhO2jupl7PLvStOwLlaZXA8ePIhSqaRZs2Z06NCh1P6hQ4cCsHXr1grL2rFjB8XFxYSEhODr61tin6OjI2FhYRQVFfHTTz/pFZu/vz/e3t4ApKam6nWOEEIYiynvcQVQKBTa/tz8O5JcdbHKZuFTp04B0LFjxzL3a7YnJCQYpawVK1boVRbAvXv3SE9PB6BBgwZlHhMXF8fkyZPJyMigQYMG9OnTh9DQUL3KF0KI8ph6QBOoa8X3Eu+Rf0f6XXWxyuR69epVAAICAsrcr9muT7OsMcsCdTN1YWEhbdq0oUmTJmUes23bNrZt26b9ec6cOYSGhrJ+/fpStWchhDBE5jXT9rk+WLY0C+tmlc3CWVnqP6iLS9k3SLu6ugKQmVnxpypjlnXixAnmzZsHwMcff1xqv5+fH7NmzeLEiRMolUpu3LjBjz/+SMuWLYmJiWHAgAEUFRWVe428vDwyMjJKPIQQAkBVVExmqvq9yjPQ02TXkeRaMatMrtXRzZs3GTJkCLm5uYwfP55//OMfpY7p168fM2fOpH379nh4eODr60tYWBjHjh2jefPmHD9+nA0bNpR7nYiICDw9PbWPwMBAUz0lIYSVybuTiapYhY2dDa6+ria7jmawlCRX3awyuWpGB2dnZ5e5//599fRf7u4V9zkYo6zMzEyefvppEhMTGTZsGJ999lmF1304hnHjxgGwc+fOco+dOnUqSqVS+0hOTjboWkKImivvphIA94bu2Nia7u3do6GH+nq3peVMF6vsc23UqBEAKSkpZe7XbA8KCjJ5Wbm5uTz77LPEx8fTt29f1qxZg42N4S/q4OBgQH1rUHkcHR1xdHQ0uHwhRM2nSXambBIG8Aj8M7nekuSqi1XWXNu1awdAfHx8mfs129u2bWvSsgoLC3nhhReIjo7m8ccfZ/PmzTg4OFT8BMqgGWGs6eMVQghD5d1S11w1yc9UPBt5aq+nUqlMei1rZZXJtWfPnnh6enLp0iVOnjxZav+mTZsACAsLq7Cs/v37Y2Njw/79+0tMFAHqwUNbt27F1taWp59+usQ+lUrF6NGj+fHHH2nfvj3bt2+vUmKMiooCdN8SJIQQFdHUJE2eXP+sGRfl5FOYlWvSa1krq0yuDg4OjB07FoAxY8Zo+0VBPf1hQkICoaGhdOrUSbt98eLFtGzZkqlTp5Yoy8/PjxEjRpCfn8+bb75JYWGhdt+7777L7du3eemll/Dx8Slx3vjx41mzZg0tW7Zk165d1KlTp8K4IyIiSEtLK7GtoKCA2bNns3HjRpydnRk9erTevwchhHhQrpmahe1d7HGpr77DQpqGy2aVfa4A06ZNY8+ePRw6dIjg4GBCQkJISkriyJEjeHt7a6ch1EhLS+P8+fNl9mn+97//JTY2lqioKFq2bEnnzp05e/YsZ86cITg4mAULFpQ4/ocffuCLL74AIDAwkMmTJ5cZ43vvvUfLli21P7///vvMnj2bzp07ExgYSEZGBidPniQ1NRUnJyfWrFlDw4YNq/qrEULUUuZqFgZ103B2Wvaf15T78x9mtcnVycmJffv2ERERQWRkJFu2bMHLy4tRo0Yxd+5cnZNClKV+/focPXqUWbNmsWXLFr7//nt8fX0ZN24cs2fPLlUr1fSPAuzevVtnuaNGjSqRXGfMmMHhw4c5f/488fHxqFQqAgICeP3115kwYYLOVXSEEEIf5hrQBOoEfj3+Orl/jlAWJVltcgVwdnZmzpw5zJkzp8JjZ82aVe5KNF5eXnzxxRfaGml5Ro0axahRowyIVG327NkGnyOEEPoozi+kIF3dRWaumitA3m1JrmWxyj5XIYQQJWlqrXZOdtr+UFPSJteb0udaFquuuQpRimYN3169yt8vRA2jSa4egR4oFIoK/xWqSpNcc29JzbUsUnMVQogaQDOYyRz9rfBgzfWeWa5nbSS5CiFEDZCTqh5oWadJHbNcT3OdvNsZFOYVln9wLSTJVQghagBNcvV6xMss13P1ccXW2QFUcC/xnlmuaU0kuQohRA2Qc+0uAHWb1TXL9RQKBU7+6mvdvXjXLNe0JpJchRCiBshNVSc4c9VcAZwbqq8lybU0Sa5CCGHl8jLyKLinXjbTq5n5k2v6pfQKjqx9JLkKIYSVu3tJXXO0r+OCo4f5lqR0lmZhnSS5CiGEldMkN01N0lycpFlYJ0muQghh5bTJ1d+8yVWTzO8l3qO4sNis167uJLkKIYSV0yRXp4bmGSms4VjfA4W9LcUFxdxLumfWa1d3klyFEMLK3T57GwDXIG+zXldho8ClUX11DOdum/Xa1Z0kVyGEsGKqYpU2ubo09jH79V3/vKYmBqEmyVUIIayY8qqS/Kx8FHY2OAeYt88VwLWJurZ868wts1+7OpPkKoQQVkyT1Fwa1cfGztbs13dp4lMiDqEmyVUIIazYrbPqpOZqgSZhANc/k2vab2kyYvgBklyFEMKK3T7zZ39rE8skVyffOti72lOUXyT3uz5AkqsQQlixm6dvAn/VIM1NYaPAp5U0DT9MkqsQQlipguwCbUJze6SBxeLwbe8LwLVj1ywWQ3VjZ+kAhKiU6GhLRyAqovkb9eplyShMzpJP83r8dVRFKtz83HD08TDLNcv61wvoHkD8l/FcOyLJVUNqrkIIYaVSYlMACOgWgEKhsFgcAd0CAEg9liqDmv4kyVUIIayUpqbYsHtDi8ZRv2V9HD0cSzRT13aSXEWNV1ykIu1qNucPpnF6z00uHL7D3Ws5qFQqS4cmRJVoa67dAywah8JGQcNu6gSviam2kz5XUWPdOnOL2E/P8/v+NHIyCkvt9/R1pHUfHzo/60+dBk4WiFCIylNeVZKRkoHCRoF/J38Sj1s2noDuAVzefZnkg8l0/k9nywZTDUhyFTWO8mYuu57fyLmN57Tb7J1sqB/ogpO7HTkZhdxOuo/yZh4H1yVzeGMKncL86PVqY1w87S0YuRD6u7T7EgANuzbEwc3BwtFA416N+XXur1zafQmVSmXRPuDqQJKrqDFUxSqOb73OnuWXyc8pAuCx0Pp0HuhPUNs62Nj+9c9ekFvExaN3ObollcQT9zj2fSrnom/z9NvBPBZq3pVFhKiMSzvVybVZv2YWjkQtsGcg9i723L95n5sJN2nQznK3BlUHklxFjZCZlsfmD38j8aQSUP+jP7P0GXzv/lbm8fZOtjz6pDePPunNlfh0fl50kduJ2WycdY72/2jA0+Mewd7J/PO0CqGP4sJiLu+5DFSf5GrnaEfj3o35Y/sfXNxxsdYnVxnQJKzelRPpLP93HIknldg72dD/rUcY/etofNv66nV+k451+ffyToS81AiFDZz8+QZfvRHP7aT7Jo5ciMq5su8Kuem5uNR3oWEXy44UflDwM8EA/BZV9ofa2kSSq7BaqmIV+9cksfqdBO6nF+Db1JXXv+pEtyENUdgY1t9j52BDn3824eVP2+Lm5cDtxGy++k88p3bdNFH0QlTe2fVnAXj0uUexsas+b+OPDnkUhY2C1GOppF9Ot3Q4FlV9/ipCGCBbWUDk+2f45ZtEVMXQvn8D/rm0A/UCXKpUbpMOdXn9q0406ViHgtxitkT8zo/zz1OQU2CkyIWomoKcAn7brK4ZtnqhlYWjKcnN143GvRsDkLA2wbLBWJgkVwvIyclhxowZNG/eHCcnJ/z9/QkPD+faNZk6TB/JZ5Us/3ccF4/cxc7BhrB3mjNwSgvsHY3TR+rm5cBLn7QldFQQKODETzf4pvs33LlwxyjlC1EVpyNPk5ueS53GdQh6MsjS4ZTSflR7AOKWx1FUUGTZYCxIkquZ5ebm0qdPH+bOnUtWVhYDBw4kMDCQlStX0qFDBy5fvmzpEKut4iIV+9deZdXbp8i4lYdXgDOvLe1Ax2f8jH4tG1sFvV5tzMvz2+Ja156bCTf5stOXnF53WiafEBZTXFRM7OexAHQZ2wUb2+r3Fv7YsMdw9XUl81omZzectXQ4FlP9/jI13Lx584iNjaVHjx5cuHCB9evXc+TIET777DNu375NeHi4pUOslm5duc83Y07wy9dXKC5S0bqPN/9e3hHfZm4mvW7TTupm4qDQIPKz8tn84mbWD15PRkqGSa8rRFkS1iRw++xtHD0d6RDewdLhlMnO0Y6ub3UFYN/0fRTmlZ7ApTaQ5GpG+fn5LF68GIAlS5bg5vZXYpg4cSJt27YlJiaGuLg4S4VY7WQrC9i55CLL/x1H6vlMnNzsGPReC4ZMexRHF/PcSeZez5FX9rxC6MxQbOxsOP/DeZY8uoRDnx2iMF8mKRfmkXUziz3v7gEg5IMQnOs6Wzgi3bqP746bnxv3rtwjZk6MpcOxCEmuZnTw4EGUSiXNmjWjQ4fSnzqHDh0KwNatW80dWrWTcS2DfTP28cXII8RuukZxoYoWj9fjzVWdadevgdlnf7Gxs6HXrF68fuJ1AnoEkJ+Vz+53dvPFyCMciUohV5lr1nhE7VKQU8Cm5zdx/9Z9fNr40O2tbpYOqVwOrg7844t/AHAg4gC/fV/7bs2RSSTM6NSpUwB07NixzP2a7QkJtXOUXU56Dhd3XOTcxnOc//E8qiJ132aDR9x46t9NaNq5rsWnVPNp7UP4gXBOrjpJzOwYlFeV7Fh8ib0rFtDqhVY8NvQxGvdqjL2LTKMojCPjWgZRI6K4uv8qDu4OPLfuOeycqv9b92NDH6PTfzoRtyyOTS9sou9nfek6tqvF/4fNpfr/hWqQq1evAhAQUPYKFprtSUlJZovJEooKisi8lonyqpI7f9zhetx1rsddJzUuVZtQAYKeDKJLb1cee7K+wfetmpLCRkGH8A60GdmGE1PWc2xLKreTsjm58iQnV57EzsmOgO4BNOjYAL8OftRrXg+PAA/cGrhVq+chqq+C7AKux1/n3KZzxH8VT0F2AQ7uDry47UV8WvlYOjy9Pb3oafIz8jkdeZod43ZwcuVJOv+nM4/0fwSPQI8anWgluZpRVlYWAC4uZd+L6erqCkBmZqbOMvLy8sjLy9P+rFSqp/vLyDB8gM2ts7eIWx6nHv2qQvtV872q+M/tlNxf1lftsQ/tKy4qJj8zn/ysPx+Z+WTfzdYZU/0W9XnkH4/Q6vlW6jeR/fvJzNF9vE6a38d9I82ypOP32+LvdWj+lCcpDk04+91ZLu++jDJFye/Rv/N79O8ljrWxtcHZyxkHdwccPRxxdHPENicDG1sFNj5XsLGzUT9s1Y/yOm10vilpNt+4of668kb5xz+g1Cjoh3+sYH+p42/+GcOXqQaXpSq9Qff5hpZdzv7KnJv25x1aV+pVreziomJy03PJvp2NMkWp/p/6U0C3AJ5e8jR1g+vq/F/XvNQffunr+6+g6zh9zi/v7edvS/+GZ1tPfp37K4knEkl8PREAR3dHPBt54lTHCUcPR+yc7FDYKrCxsUFhq0Bho1B/NUECdvV15ckPnqzUuZrff0V3DUhytTIRERHMnj271PbAwEALRGMC5/98/NfCcZhCEXD7z4cQhjgC1LRV3DIBS96p80nVTs/MzMTT01PnfkmuZqQZHZydXXZN7P6fHw3d3d11ljF16lQmTpyo/bm4uJi7d+9Sr169Gt3EYgwZGRkEBgaSnJyMh4eHpcOp1eRvUb3I30N/KpWKzMxM/P39yz1OkqsZNWrUCICUlJQy92u2BwXpnnXF0dERR0fHEtvq1KljnABrCQ8PD3kDqSbkb1G9yN9DP+XVWDXkVhwzateuHQDx8fFl7tdsb9u2rdliEkIIYXySXM2oZ8+eeHp6cunSJU6ePFlq/6ZNmwAICwszc2RCCCGMSZKrGTk4ODB27FgAxowZo+1jBViwYAEJCQmEhobSqVMnS4VYozk6OjJz5sxSzerC/ORvUb3I38P4FCqZhdyscnNz6dWrF0eOHMHPz4+QkBCSkpI4cuQI3t7exMbG0rRpU0uHKYQQogokuVpATk4OERERREZGkpycjJeXF/3792fu3Lk6J5gQQghhPSS5CiGEEEYmfa5CCCGEkUlyFbVWdHQ0CoVC56N79+6WDrHGycnJYcaMGTRv3hwnJyf8/f0JDw/n2rVrlg6t1unVq1e5r/8dO3ZYOkSrJpNIiFqvWbNmPPHEE2VuF8aTm5tLnz59iI2Nxc/Pj4EDB5KYmMjKlSvZtm2bDOazkOeee67E2tIaDRs2tEA0NYckV1HrPfHEE6xatcrSYdR48+bNIzY2lh49erBr1y7tG/qCBQuYNGkS4eHhREdHWzbIWujTTz+lcePGlg6jxpFmYSGEyeXn57N48WIAlixZUqKmNHHiRNq2bUtMTAxxcXGWClEIo5LkKoQwuYMHD6JUKmnWrBkdOnQotX/o0KEAbN261dyhCWES0iwsar0//viDqVOncufOHerXr88TTzxB//79sbGRz57GcurUKQA6duxY5n7N9oSEBLPFJNS++eYb7ty5g42NDc2bN2fQoEHaRUZE5UlyFbXeoUOHOHToUIltbdq0ISoqiuDgYAtFVbNcvXoVQOckKZrtSUlJZotJqM2bN6/Ez++88w7Tp09n+vTpFoqoZpCP5qLW8vT0ZPLkycTGxnLnzh3u3LnD3r176d69O6dPn6Zv374olUpLh1kjZGVlAeDi4lLmfldXV0C9ALUwjyeffJLVq1dz6dIlsrOzOX/+PB9++CF2dnbMmDGDhQsXWjpEqyYzNAmrNXjwYH777TeDzvnf//5H165dyz2mqKiI3r17s3//fj766COmTp1alTAF8O9//5uvvvqKDz74oFRNCeDixYsEBwcTHBzMhQsXLBCh0Ni1axf9+vWjTp06pKam4uzsbOmQrJI0CwurdeXKFc6fP2/QOdnZ2RUeY2try5QpU9i/fz87d+6U5GoEmtHBun7/mhWi3N3dzRaTKFvfvn3p3Lkzx48f58iRI/Tq1cvSIVklSa7CapW1Jq6xaPpar1+/brJr1CaaATIpKSll7tdsDwoKMltMQrfg4GCOHz8ur/8qkD5XIcqQnp4O/NUXKKqmXbt2AMTHx5e5X7O9bdu2ZotJ6Cav/6qT5CpEGaKiogDdt44Iw/Ts2RNPT08uXbpUZovDpk2bAAgLCzNzZOJht2/fZv/+/YC8/qtCkquotf773/+SnJxcYptKpWL58uV8/vnnKBQK3njjDQtFV7M4ODgwduxYAMaMGaPtYwX19IcJCQmEhobSqVMnS4VYqxw6dIgtW7ZQVFRUYntiYiKDBw/m/v37PPvss7K+dBXIaGFRazVu3JiUlBQ6duxIkyZNyM3N5fTp01y5cgUbGxsWLlyoTQii6nJzc+nVqxdHjhzBz8+PkJAQkpKSOHLkCN7e3jJxvxmtWrWK0aNH06BBAzp27EidOnVISkoiLi6O3NxcWrVqxS+//IKPj4+lQ7VaklxFrbVo0SJ27drF2bNnuXXrFgUFBdo3/XHjxtGlSxdLh1jj5OTkEBERQWRkJMnJyXh5edG/f3/mzp0rtSQz+u2331i0aBFHjhwhOTmZ9PR0XF1defTRRxk2bBhvvPGG3IJTRZJchRBCCCOTPlchhBDCyCS5CiGEEEYmyVUIIYQwMkmuQgghhJFJchVCCCGMTJKrEEIIYWSSXIUQQggjk+QqhBBCGJkkVyGEEMLIJLkKIYQQRibJVQghhDAySa5CCCGEkUlyFUIIIYxMkqsQQghhZJJchRBCCCOT5CqEEEIYmSRXIYQQwsgkuQohhBBGJslVCCGEMDJJrkIIIYSRSXIVQgghjEySqxBCCGFkklyFEEIII5PkKoQQQhiZJFchhBDCyCS5CiGs1sWLF1m3bh0TJkygZ8+euLi4oFAoUCgUrFq1ytLhiVrMztIBCCFEZcTExNCrVy9LhyFEmaTmKoSwSiqVSvu9jY0NrVq1omvXrhaMSIi/SHIVQlilhg0bMn/+fKKjo1EqlZw5c4Y33njD0mEJAUizsBDCSgUHB/POO+9YOgwhyiQ1VyEEALNmzdIOBgLIyMhg1qxZtGnTBjc3N3x8fHj66ac5dOhQifNu3brFtGnTaNWqFa6urtSrV4+BAwdy4sQJva6jS3R0tPa46OhoozxHIcxFaq5CiFKSk5N56qmnuHDhgnbb/fv3+fnnn9m1axfr1q1j2LBhJCQk8PTTT3Pt2jXtcdnZ2fz444/s3LmTn3/+md69e1viKQhhUVJzFUKUMmzYMFJSUpg6dSoxMTEcO3aMzz//HA8PD4qKivjnP//JlStXGDBgADk5OXz44YccOHCAI0eOMHv2bBwcHMjLy2PUqFHk5+db+ukIYXZScxVClHLy5EliYmLo1q2bdlvnzp0JDg5mwIABZGZm0q1bN1QqFUePHqVZs2ba47p27Ur9+vUZM2YMV69eZfv27QwePNgST0MIi5GaqxCilPHjx5dIrBrPPPMMQUFBANy+fZu5c+eWSKwao0ePxsnJCYD9+/ebNlghqiFJrkKIUoYPH65zX9u2bQFQKBS88MILZR7j7OxMcHAwAJcvXzZ+gEJUc5JchRClNG/eXOe+OnXqAFC/fn3q1q1b4XGZmZnGDE0IqyDJVQhRiouLi859NjY2FR7z4HFFRUXGC0wIKyHJVQghhDAySa5CCLPS1GgBiouLdR53//59c4QjhElIchVCmJW7u7v2+/T0dJ3HPTiBhRDWRpKrEMKsmjRpov3++PHjOo/77rvvzBGOECYhyVUIYVaPP/44dnbq+Ws+//zzEkvHacyfP5+jR4+aOzQhjEZmaBJCmJWPjw/Dhg1j3bp17Ny5k2effZYxY8bg6+vL1atXWb16NVFRUTz++OOlFgl42KZNm8jKytL+fODAgTK/B2jQoAH9+/c37pMRQgdJrkIIs/v88885fvw4f/zxB9u2bWPbtm0l9g8fPpzXXnuNp556qtxy3nnnHZKSksrc98033/DNN99ofw4NDZXkKsxGmoWFEGbn6+vLkSNHmDJlCsHBwTg6OuLl5cWTTz7JmjVrWLduHba2tpYOU4hKU6jK6vAQQgghRKVJzVUIIYQwMkmuQgghhJFJchVCCCGMTJKrEEIIYWSSXIUQQggjk+QqhBBCGJkkVyGEEMLIJLkKIYQQRibJVQghhDAySa5CCCGEkUlyFUIIIYxMkqsQQghhZJJchRBCCCOT5CqEEEIYmSRXIYQQwsj+P683gnAn0bwwAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "mcmc_samples = [-4.972877252229058,-5.8835831550427224,-5.043916188481671,-4.468301034065018,-5.8322011458449134,-5.9486775454141565,-4.810566990491992,-5.053578061057608,-3.9248329244224385,-6.093210935624584,-4.861111649362306,-3.9162389411845036,-4.7188927025004554,-5.904816719672374,-6.093210935624584,-4.7188927025004554,-4.741619976168469,-4.377026991830562,-5.053578061057608,-4.741619976168469,-5.904816719672374,-4.377026991830562,-5.059245041042267,-4.929152009281275,-4.56067504240393,-4.56067504240393,-4.741619976168469,-4.89569840525208,-4.7188927025004554,-3.9539137272230613,-3.136704800755594,-4.582268762348072,-2.0828998086453083,-4.810566990491992,-4.634296200074161,-4.369437153443351,-5.179852756819603,-3.9539137272230613,-4.377026991830562,-4.468301034065018,-5.730633562291203,-5.129795320337272,-3.136704800755594,-5.431181519193664,-5.529694022675031,-5.8322011458449134,-5.904816719672374,-5.010153766771048,-3.136704800755594,-5.904816719672374,-4.741619976168469,-5.129795320337272,-3.136704800755594,-5.053578061057608,-4.614990597711583,-4.614990597711583,-4.620012255281036,-3.136704800755594,-4.348010867355755,-4.634296200074161,-4.810566990491992,-5.904816719672374,-4.468301034065018,-5.129795320337272,-2.0828998086453083,-5.179852756819603,-4.810566990491992,-4.468301034065018,-2.0828998086453083,-4.377026991830562,-5.3035852997085655,-5.6099781618015,-5.904816719672374,-5.059245041042267,-5.904816719672374,-5.053578061057608,-5.059245041042267,-4.741619976168469,-4.58776212660127,-6.093210935624584,-5.053578061057608,-5.129795320337272,-4.468301034065018,-4.582268762348072,-5.3035852997085655,-3.136704800755594,-4.741619976168469,-5.053578061057608,-5.129795320337272,-5.730633562291203,-4.348010867355755,-5.730633562291203,-4.810566990491992,-2.0828998086453083,-2.0828998086453083,-4.377026991830562,-0.3020409801474395,-3.9539137272230613,-4.745225105713253,-5.010153766771048]\n", - "mcmc_samples2 = [5.265399110174624,5.184205653369311,4.663074888839699,5.765557613324706,4.207317011306248,5.265399110174624,9.60787906816039,4.980964864971945,4.865699916991435,2.5255828399193945,5.265399110174624,4.865699916991435,5.265399110174624,5.471676510075245,5.265399110174624,4.865699916991435,4.663074888839699,4.207317011306248,5.5213948614455575,4.865699916991435,5.1421889315307965,5.4833194496095885,5.4833194496095885,4.207317011306248,5.265399110174624,5.7807756422815935,4.865699916991435,4.879209032553675,5.265399110174624,5.265399110174624,5.265399110174624,4.233849470975329,5.4833194496095885,4.420450726938757,5.265399110174624,5.265399110174624,5.184205653369311,5.765557613324706,5.265399110174624,4.809331312678385,4.865699916991435,5.265399110174624,4.663074888839699,4.879209032553675,5.227529824207284,5.4833194496095885,4.865699916991435,4.865699916991435,4.207317011306248,4.233849470975329,5.184205653369311,5.265399110174624,4.865699916991435,5.265399110174624,5.485700381973434,5.184205653369311,4.225212924685245,5.265399110174624,4.207317011306248,4.865699916991435,5.661416558668549,4.758510653592122,4.233849470975329,5.4833194496095885,4.865699916991435,4.865699916991435,4.233849470975329,5.4833194496095885,5.7807756422815935,4.207317011306248,5.265399110174624,4.980964864971945,5.265399110174624,4.879209032553675,4.865699916991435,5.265399110174624,5.227529824207284,5.265399110174624,4.437167108420784,5.4833194496095885,4.879209032553675,5.227529824207284,5.265399110174624,5.471676510075245,5.184205653369311,4.207317011306248,5.265399110174624,5.265399110174624,4.7341938929857825,5.4833194496095885,5.265399110174624,4.879209032553675,4.710296136905853,5.184205653369311,5.265399110174624,4.865699916991435,5.265399110174624,5.265399110174624,5.7807756422815935,4.980964864971945]\n", - "\n", - "fig, ax = plt.subplots()\n", - "plt.rcParams[\"figure.figsize\"] = [4.50, 4.50]\n", - "plt.rcParams.update({'font.size': 15})\n", - "plt.rc('xtick', labelsize=15)\n", - "plt.rc('ytick', labelsize=15)\n", - "plt.rc('axes', labelsize=20)\n", - "plt.rc('legend', fontsize=20)\n", - "plt.ylim(0, 18)\n", - "w = 0.1\n", - "\n", - "file = open(\"/space/poorvagarg/.julia/dev/Dice.jl/multimodal_6_256.txt\", \"r\")\n", - "hybit_data = file.readlines()\n", - "hybit_data = [float(i)*640 for i in hybit_data]\n", - "\n", - "ax.plot([i for i in np.arange(-8, 8, 0.015625)], hybit_data, color=\"purple\")\n", - "\n", - "\n", - "w = 0.1\n", - "# ax.hist(smc_estimated, bins=np.arange(-2, 8 + w, w), alpha = 0.25, color = \"red\")\n", - "# ax.hist(mcmc_estimated, bins=np.arange(-2, 8 + w, w), alpha = 0.25, color = \"blue\")\n", - "ax.hist(mcmc_samples, bins = np.arange(-6, 6 + w, w), alpha = 0.25, color=\"red\")\n", - "ax.hist(mcmc_samples2, bins = np.arange(-6, 6 + w, w), alpha = 0.25, color=\"blue\")\n", - "\n", - "\n", - "\n", - "\n", - "ax.legend([\"HyBit\", \"MCMC MH Run 1\", \"MCMC MH Run 2\"])\n", - "# ax.bar([8.0, 9.0])\n", - "\n", - "ax.set_xlabel(\"mu1\", labelpad=15)\n", - "ax.set_ylabel(\"pr(mu1)\")\n", - "\n", - "scale_y = 100\n", - "ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale_y))\n", - "ax.yaxis.set_major_formatter(ticks_y)\n", - "\n", - "fig.savefig(\"multimodal_mcmc_mh.png\", bbox_inches='tight')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "SMC" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAGtCAYAAAB6GFEoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRCElEQVR4nO3deVyU5f4//tcMywzrIInsoBJIHxfccslDGL+OmImaadmxBfn0OJ7U1DRLygzSc/i2WSZYn3PM5eRyXLPETLOEQ+pggohLaaIgiygYzLAN6/z+mGYCGWCGGWaG4fV8POYR3Pc91/0eU15c133d1y1QKpVKEBERWQmhuQsgIiIyJgYbERFZFQYbERFZFQYbERFZFQYbERFZFQYbERFZFQYbERFZFVtzF9BTNTc3o7i4GC4uLhAIBOYuh4jIqimVSlRWVsLHxwdCYcd9MgZbFxUXF8Pf39/cZRAR9SoFBQXw8/Pr8BgGWxe5uLgAUP0hu7q6mrkaIiLrJpfL4e/vr/nZ2xEGWxephx9dXV0ZbEREJqLLpZ8uTR6pra3F6tWrERISArFYDB8fH8TGxqKoqEivdtLS0pCQkIDHH38cHh4eEAgE6N+/f7vH5+XlQSAQdPqKjY1t9b6tW7d2ePycOXO68sdAREQWSO8em0KhQGRkJKRSKby9vTF9+nTk5eVhy5YtSElJgVQqxcCBA3Vqa8mSJTh//rzO53Z2dsYLL7zQ7v7du3dDoVAgPDxc6/6wsDAMHz68zfaxY8fqXAMREVk2vYNt7dq1kEqlGD9+PI4dOwZnZ2cAwLp167B8+XLExsYiNTVVp7YmTZqE2bNn48EHH4Sfnx8GDx7c4fF9+/bF1q1bte77+eefsW3bNjg4OODJJ5/UesyMGTMQHx+vU21ERNQz6RVs9fX1SEpKAgAkJydrQg0Ali1bhm3btiEtLQ2ZmZkYNWpUp+299957mq9LSkr0KaWN7du3AwCmT5/Oa15ERL2YXtfYTp48CZlMhqCgIIwYMaLN/lmzZgEADh06ZJzqdKRUKrFz504AwHPPPWfScxMRkWXRq8emvh42cuRIrfvV23NycgwsSz8//vgj8vLy0K9fP0yaNKnd4zIzM7FixQrI5XJ4eXkhMjISERERJqyUiIi6m17BdvPmTQBo9+Y49fb8/HwDy9KPehhyzpw5sLVt/yOlpKQgJSVF8/0777yDiIgI7N69G56enh2eo66uDnV1dZrv5XK5gVUTEVF30GsosqqqCgDg6Oiodb+TkxMAoLKy0sCydFdXV4e9e/cCaH8Y0tvbG/Hx8Th37hxkMhlKSkrw9ddfIzQ0FGlpaZg6dSqampo6PE9iYiIkEonmxVVHiIgsU49fBPnw4cMoLy9HaGgoRo8erfWYqKgovP322xg+fDhcXV3h6emJ6Oho/PTTTwgJCcHZs2exZ8+eDs8TFxcHmUymeRUUFHTHxyEiIgPpFWzqWZA1NTVa91dXVwOATkueGIt6GLIrk0acnZ2xePFiAMDRo0c7PFYkEmlWGeFqI0RElkuva2wBAQEAgMLCQq371dsDAwMNLEs3FRUV+OabbyAQCDB37twutREcHAwAuHXrljFL04tSqURDQwOam5vNVgORNjY2NrC1teUTLKhH0SvYwsLCAABZWVla96u3Dxs2zMCydLNnzx7U1dXh4Ycf7nKYlpeXA/jj+qAp1dTUQCaTobKystNrfETmIhKJ4Obmhj59+jDgqEfQK9gmTJgAiUSC3NxcZGdnt1meat++fQCA6OhooxXYEUOGIdX2798PoP1bGLpLZWUlCgsLYWdnBzc3Nzg5OUEoFPIHB1kMpVKJxsZGyGQy3L59G/X19fDy8jJ3WUSdU+rpzTffVAJQPvTQQ8qqqirN9g8//FAJQBkREdHq+A0bNigHDRqkXLlyZYft3rp1SwlAGRgYqFMdeXl5SoFAoBSLxcqKiooOj/3HP/6hLC0tbbWtvr5eGR8frwSgdHBwUBYWFup0XjWZTKYEoJTJZHq9T6lUKqurq5WXL19WFhYWKpubm/V+P5Gp/fbbb8rLly93+m+NqLvo8zNX77UiV61ahePHj+PUqVMIDg5GeHg48vPzkZGRAQ8PD2zevLnV8WVlZbhy5YrWa1ibNm3Cpk2bAAANDQ0AVNe6xo0bpzlm48aNWntTO3bsgFKpRHR0NCQSSYc1v/HGG0hISMDo0aPh7+8PuVyO7OxsFBcXQywWY/v27fD19dX3j6LLZDIZ7Ozs4OPjwx4a9Qh9+vSBXC6HXC7v9N8bkbnpHWxisRgnTpxAYmIidu7ciYMHD8Ld3R0xMTFYs2ZNp082bamwsBAZGRmtttXX17fa1t6N0Dt27AAAPPvss52eZ/Xq1Th9+jSuXLmCrKwsKJVK+Pn5Yf78+XjllVcwaNAgnWs2lPL3x5u7ubkx1KhHcXZ2RllZGZqbmyEU9vg7hciKCZRKpdLcRfRE6t9cZTKZXlP/6+vrkZubi4CAALNMWCHqqurqaty8eRNBQUGwt7c3dznUy+jzM5e/dpmYeko/f+Olnkb9d5a3pZCl409XM+EwJPU0/DtLPQWDjYiIrAqDjYiIrAqDjYiIrAqDjYiIrAqDjaiHEwgEEAgEiI+PN3cpRBaBwUZWLzU1Ve8f/jExMZr35OXlGb0mddvaXg4ODvD390d0dDT+/e9/o7Gx0ejnJ7JmDDYiC6NQKFBYWIiUlBS88MILGDt2LG7fvt2ltlqGempqqnELJbJQei+pRUTGM3r0aGzZsqXVtqqqKly8eBFJSUk4f/48srKyMGvWLKSnp2ttg4sHEbXGYCMyIycnJwwZMqTN9nHjxmHu3LkYOXIkfvnlF/z44484ffo0xo8fb4YqiXoWDkUSWSgHBwcsXLhQ8/1PP/1kxmqIeg4GG5GOysrKIBKJIBAI8Le//a3T4w8dOqS5vrVnz54unXPAgAGar+vq6rQeo21iTF5eHgQCAR555BHNtkceeaTNRJWtW7d2qS4iS8ZgI9JR3759MX36dADA7t27oVAoOjxefe3M3d1d8z595efna74OCAjoUhtEvQ2DjUgPL774IgCgoqICX375ZbvHlZaWIiUlBQAwd+5ciEQivc9VW1uL5ORkAKprcY8++qjO7/X19cWFCxdaPfh38+bNuHDhQqvXjBkz9K6LyNJx8gj1Knfu3MHFixc7Pa6iokLr9kcffRSBgYHIz8/Hli1b8Mwzz2g9bvv27ZqnwsfGxrZ7nurq6jb11NTU4MKFC0hOTsbly5chEAjw3nvv4b777uu0bjU7OzsMGTIEZWVlmm0DBgzQOlGFyNow2CyUUqlEQ02DucswCTtHO5M9EuXTTz/Fp59+2uX3C4VCxMbG4u2338b333+PgoIC+Pv7tzlOPQw5YsQIDB8+vN32zp49i6FDh7a7f9KkSVi5cmWra2VE1DEGm4VqqGlAonOiucswibiqONg79ZwnMsfGxiIhIQHNzc3Ytm0bVq1a1Wp/ZmYmLly4oDnWECdOnICTkxPuv/9+rQFKRG3xGhv1Km+//TaUSmWnrxdeeKHdNvz8/BAVFQUAWmcVqntrIpEIc+fO7bCeiIiINueur6/HjRs3kJycDIlEgi+//BLjxo3DL7/80vUPTtSLsMdmoewc7RBXFWfuMkzCztHO3CXo7cUXX8SRI0eQm5uL//73v3j44YcBqKbk79y5EwAwY8YM9OnTR++27ezs0L9/fyxYsAAREREYMWIEiouL8eKLL+LHH3806ucgskYMNgslEAh61PBcbxMdHQ1PT0/cvn0bW7Zs0QTbwYMHUV5eDsDwYUgAGDx4MKZMmYKvvvoKJ0+exNWrVxESEmJwu0TWjEORRF1gZ2eH559/HgCwd+9eVFVVAfhjGDIgIECv6fkdCQ0N1XytvnZHRO1jsBF1kfqeturqauzduxeFhYX47rvvAAAvvPAChELj/PNq+dgafR9hY6rZpkSWhEORRF0UEhKC8PBwpKenY8uWLSguLkZzczMEAgHmzZtntPOcPXtW87W+MyPFYrHm6/aW5CKyNgw2IgO8+OKLSE9PR3p6Oq5evQoAmDhxYqs1Hg1x+PBhpKWlAVAt6TVmzBi93u/t7a35Ojc31yg1EVk6BhuRAWbPno3FixdDJpNpHgaqz6QRbSuPNDQ0oKioCIcPH8amTZs02xMTE2Frq98/2YCAAPj5+aGwsBAffPAB/Pz8MGjQINjY2AAAPD094eLiolebRJaOwUZkAAcHB/zlL3/RrGYikUjw5JNP6vz+zlYeAVQTVdauXau5pqevN954AwsWLMCNGzfaLMa8ZcsWxMTEdKldIkvFySNEBnruuec0X8+ZMwcODg4GtWdjYwN3d3eMGTMGr7/+Oi5fvozXXnuty+299NJL2L9/PyZNmoR+/frp3esj6mn4N5ys3sSJE6FUKvV6z9atW3V+VlnLoURdhyH1rcfQtmbOnImZM2ca7ZxElow9NiIDqR8NM2TIEL0ndxCR8THYiAzw3//+F1KpFAB0eqo2EXU/kwZbbW0tVq9ejZCQEIjFYvj4+CA2NhZFRUV6tZOWloaEhAQ8/vjj8PDwgEAgQP/+/Tt8T0xMDAQCQbuvzz77zIBPRr1Jfn4+rl69ii+//FKz+oiXl5dRltAiIsOZ7BqbQqFAZGQkpFIpvL29MX36dOTl5WHLli1ISUmBVCrFwIEDdWpryZIlOH/+fJfqiIqKgpeXV5vtgwYN6lJ71PtEREQgPz+/1bYNGzYYPGmEiIzDZMG2du1aSKVSjB8/HseOHYOzszMAYN26dVi+fDliY2ORmpqqU1uTJk3C7Nmz8eCDD8LPzw+DBw/WuY6VK1di4sSJXfgERK25uLhgyJAhePPNN/H444+buxwi+p1Jgq2+vh5JSUkAgOTkZE2oAcCyZcuwbds2pKWlITMzE6NGjeq0vffee0/zdUlJifELJupAXl6euUsgog6Y5BrbyZMnIZPJEBQUhBEjRrTZP2vWLADAoUOHTFEOERFZMZP02NTXw0aOHKl1v3p7Tk5Ot9dy4MAB7N+/H01NTRgwYACio6NbPRaEiIh6NpME282bNwEAfn5+Wvert997Qb47bNiwodX3r7/+Ol566SWsX7++wxUZ6urqWq2OLpfLu61GIiLqOpMMRaofwujo6Kh1v5OTEwCgsrKy22oYMWIEPvvsM1y9ehU1NTW4fv06kpOT4ebmho0bN2LFihUdvj8xMRESiUTz0vfxIUREZBq95gbtJUuWYP78+QgODoaDgwMGDBiABQsWID09Hfb29khKSkJBQUG774+Li4NMJtO8OjqWiIjMxyTBpp4FWVNTo3V/dXU1AJjl8RmDBw/GtGnT0NjYiO+//77d40QiEVxdXVu9iIjI8pgk2AICAgAAhYWFWvertwcGBpqinDaCg4MBALdu3TLL+YmIyHhMEmxhYWEAgKysLK371duHDRtminLaKC8vB/DHtT4iIuq5TBJsEyZMgEQiQW5uLrKzs9vs37dvHwAgOjraFOW0UldXh8OHDwNo/3YEIiLqOUwSbPb29li0aBEAYOHChZpraoBqSa2cnBxERES0WnUkKSkJoaGhiIuLM/j8v/zyC7744otW0/UBoLS0FHPmzEFBQQHCwsIwYcIEg89FRETmZbK1IletWoXjx4/j1KlTCA4ORnh4OPLz85GRkQEPDw/NM63UysrKcOXKFa3XvTZt2oRNmzYBABoaGgCoro+NGzdOc8zGjRs1PbCSkhI8//zzWLJkCUaPHg0PDw8UFxcjMzMTlZWV8PPzw549eyAQCLrr4xMRkYmYLNjEYjFOnDiBxMRE7Ny5EwcPHoS7uztiYmKwZs2adm/e1qawsBAZGRmtttXX17fa1vIG6pCQECxduhRSqRQXLlzA3bt3IRKJEBISgujoaCxZsgR9+vQx/EMSEZHZCZTGfEZ9LyKXyyGRSCCTyfSa+q9QKHDjxg0MGDAAYrG4GyskMi7+3SVz0udnbq+5QZuIiHoHBhv1GtXV1fjss88wZcoU+Pr6QiwWQyQSwcPDAw8++CBiY2Pxr3/9S+uqMvc+gV3Xp2Xv2LGj1fs6e9K72s2bN/Hee+/hz3/+M/r37w8nJyc4ODjA19cXUVFRWLt2LW7cuKHPxyfqNTgU2UUmG4rU8eGrPZaJHvp6+vRpzJkzR7Mgd0c8PT3bPOcvJiYG27Zt03zv6uqK27dvd/r/cPLkyTh69Kjm+8DAwA6f56ZQKBAXF4dPP/20zSzeewkEAsyePRsffPCBSdYu5VAkmZM+P3NNNnmEyFyuXr2KqKgozSLb06ZNw6xZsxASEgJ7e3uUlZXh/Pnz+O6773DixIlO2xOLxZDL5fjqq6/w9NNPt3tcSUkJjh8/rnmPQqHosN2ysjJER0dDKpUCUC0x95e//AWRkZHw8/ODnZ0dSkpKcPLkSRw4cAC//vor9uzZg/Hjx2Pp0qU6/mkQWT8GG1m9N998UxNqW7ZsQUxMTJtj/vznP+PVV19FaWkp9uzZ02F706ZNw549e/DFF190GGw7d+5EU1MTfHx8EBQUhPT09HaPbW5uxlNPPaUJtalTp+Lzzz9Hv3792hwbHR2Nf/zjH9ixYwdeffXVDmsl6o14jY2sWlNTk2ZlmdGjR2sNtZY8PDywcOHCDo95/vnnAQBHjx7FnTt32j3uiy++AADMnTsXQmHH/9TWr1+v6S1GRUXhyy+/1BpqakKhEM899xwyMzPNthQdkaVisJFVKy0tRW1tLQDg/vvvN0qbUVFR8PDwQGNjI/7zn/9oPebixYua5eOee+65Dturr6/HBx98AEA1ZLl58+YOH3rbkp+fHyIjI3UvnqgXYLCRVbO3t9d8/fPPPxulTVtbWzzzzDMA/uiV3evf//43ANUC4EOHDu2wvaNHj6K4uBgAMHv2bPj4+BilTqLeisFGVs3d3V3zOKTz58/j3XffRXNzs8HtqnthZ8+exS+//NJqX3NzM3bu3NnquI6kpaVpvn788ccNro2ot2OwkdV7+eWXNV+vXLkSQUFBWLJkCXbv3t3le8FGjx6NBx54AEDbXtsPP/yAoqIi2NjYYO7cuZ22df78ec3XLRcCJ6KuYbCR1XvllVda3VCdl5eHTz75BHPmzMHAgQPh5eWFOXPm4NChQ9Dntk51b2zHjh2t3qcOukcffRReXl6dtnP37l3N1x1NGCEi3TDYyOoJhUJ8/vnnOHbsGCZPntxmYsbt27exe/duTJs2DWPGjEFubq5O7c6dOxcCgQD5+fmaqfw1NTU4cOAAAN2GIQFobkUA+LBbImNgsFGv8ec//xlHjhzB3bt38c033yAhIQHR0dGQSCSaY86ePYvw8HCtj0u6V0BAACb+vnKKupd24MABVFVVwdnZGU888YROdbm4uGi+bvmsQiLqGgYb9Tqurq547LHHsHr1anz99de4ffs2Nm/erHl00a1bt/DWW2/p1Ja6V7Z3714oFApNwD355JNwdHTUqY377rtP8/Xt27f1+ShEpAWDjXo9kUiEefPmYdeuXZptBw4c0Gn25KxZs+Dg4ACZTIZ//vOf+P777wHoPgwJqG4JUMvKytKjciLShsFG9LuoqCjNYsLl5eWtJnW0x8XFBTNmzAAAvP7662hqaoKfnx8eeeQRnc8bERGh+Vq9SgoRdR2DjaiFljdHCwQCnd6j7p2pFznWZQmtlqKiojTn3bt3L4qKinR+LxG1xWAj+l1NTQ0uX74MQHUdruW1r45MmjQJ/v7+EIlEEIlEeg1DAqrVUdSLGSsUCvzv//4vmpqadHpvUVERfvjhB73OR2TtGGxk1aqqqjB27FikpKR0eM2subkZL7/8cqtH2+jaY7OxscHNmzehUCigUCgwePBgvetcsmSJZvjy6NGjeOKJJ1BaWtru8UqlEjt37sSoUaOQk5Oj9/mIrBkfW0NW78yZM4iOjoavry9mzJiB8ePHIzAwEC4uLqioqMC5c+ewefNmXLhwAQAgkUiwZs0ak9YoFAqxZ88eTJ06FRkZGTh06BCCgoIwd+7cNs9jk0ql2L9/f5ulvIhIhcFGVs3W1hZeXl4oKSlBUVERkpOTkZyc3O7xwcHB2LVrF/r372+6In/Xt29fpKamYuXKlfj0009RWVmJzz77DJ999pnW4wUCAebOnYunnnrKxJUSWTYGm6X7/QZg6hqxWIyioiJIpVIcP34cUqkUV65cwe3bt6FQKODk5AQfHx+EhYVh+vTpePLJJ1s9EcAc9X788cdYtmwZdu3ahePHj+Pq1asoLS2FUqmEu7s7hgwZgoiICMydO1ezwDMR/UGg1GdxPNKQy+WQSCSQyWRwdXXV+X0KhQI3btzAgAEDIBaLu7FCIuPi310yJ31+5nLyCBERWRUGGxERWRUGGxERWRUGGxERWRUGGxERWRUGGxGROaSmql7tfU9dxmAjIiKrwmAjIiKr0qVgq62txerVqxESEgKxWAwfHx/Exsbq/biNtLQ0JCQk4PHHH4eHhwcEAkGHSxk1NDTg2LFjWLRoEYYMGQJHR0c4ODjggQcewKuvvtruorFbt26FQCBo9zVnzhy96iYiIsul95JaCoUCkZGRkEql8Pb2xvTp05GXl4ctW7YgJSUFUqkUAwcO1KmtJUuW4Pz58zqfOy0tDVFRUQCA/v3747HHHkNDQwNOnz6NDz/8EDt27EBqaioGDRqk9f1hYWEYPnx4m+1jx47VuQYiIrJsegfb2rVrIZVKMX78eBw7dgzOzs4AgHXr1mH58uWIjY1Fqo4XQCdNmoTZs2fjwQcfhJ+fX6eP+xAKhXjqqaewfPlyjBkzRrNdJpPh6aefxtGjRzFv3jycOnVK6/tnzJiB+Ph4nWrrblzJjHoa/p2lnkKvYKuvr0dSUhIAIDk5WRNqALBs2TJs27YNaWlpyMzMxKhRozpt77333tN8XVJS0unxkZGRiIyMbLNdIpFg8+bN8PX1xenTp5Gfn2+xi8Pa2NgAABobG81cCZF+1A8/1efp4ETmoNff0JMnT0ImkyEoKAgjRoxos3/WrFkAgEOHDhmnOj34+PjAw8MDAFBcXGzy8+vK1tYWIpEIMpnM3KUQ6aWyshJ2dnaws7MzdylEHdKrx6a+HjZy5Eit+9XbzfFE34qKCpSXlwMAvLy8tB6TmZmJFStWQC6Xw8vLC5GRkYiIiDBlmRAIBHBzc8Pt27dRXl6OPn36mPT8RF1RW1sLuVwONzc3nZ8sTmQuegXbzZs3AQB+fn5a96u35+fnG1iW/pKTk9HY2IihQ4diwIABWo9JSUlBSkqK5vt33nkHERER2L17Nzw9PTtsv66uDnV1dZrv5XJ5l2vt06cP6uvrUVJSArlcDmdnZ4jFYgiFQv7QIIuhVCrR1NSEyspKyOVyiEQi9O3b19xlEXVKr2CrqqoCADg6Omrd7+TkBEA1ZGFK586dw9q1awEA7777bpv93t7eiI+Px/Tp0zFw4EDU1tbizJkzeO2115CWloapU6dCKpVqrn9pk5iYiISEBKPUKxAI4OXlBQcHB8jlcpSVlaG5udkobRMZm52dHdzc3NC3b98O/40QWYoe/wTt27dvY+bMmVAoFFi6dCkee+yxNsdERUVpbhMAAFdXV0RHR+ORRx7BqFGjcPbsWezZswfPPPNMu+eJi4vDsmXLNN/L5XL4+/sbVLtEIoFEIkFzczMaGxsZbmRxhEIh7OzsOJJAPYpewaaeBVlTU6N1f3V1NQDAxcXFwLJ0U1lZiSlTpiAvLw+zZ8/Ghx9+qNf7nZ2dsXjxYixatAhHjx7tMNhEIhFEIpGhJWslFAphb2/fLW0TEfU2es2KDAgIAAAUFhZq3a/eboqp9gqFAtOmTUNWVhYmTZqE7du3d2kacnBwMADg1q1bxi6RiIjMQK8kCAsLAwBkZWVp3a/ePmzYMAPL6lhjYyOefvpppKam4qGHHsKBAwe63ONRz6RUXx8kIqKeTa9gmzBhAiQSCXJzc5Gdnd1m/759+wAA0dHRRilOG6VSiXnz5uHrr7/G8OHDcfjwYYNCaf/+/QDav4WBiIh6Fr2Czd7eHosWLQIALFy4UHNNDVAtqZWTk4OIiIhWq44kJSUhNDQUcXFxRil46dKl2L59O0JDQ3Hs2DG4ubl1+p7ExESUlZW12tbQ0ICEhATs3bsXDg4OmDdvnlHqIyIi89J7VuSqVatw/PhxnDp1CsHBwQgPD0d+fj4yMjLg4eGBzZs3tzq+rKwMV65c0XoNa9OmTdi0aRMAVdAAqmtd48aN0xyzceNGTW/qq6++wieffAIA8Pf3x4oVK7TWuHLlSoSGhmq+f+ONN5CQkIDRo0fD398fcrkc2dnZKC4uhlgsxvbt2+Hr66vvHwUREVkgvYNNLBbjxIkTSExMxM6dO3Hw4EG4u7sjJiYGa9asaffmbW0KCwuRkZHRalt9fX2rbS1vhFZfDwOA7777rt12Y2JiWgXb6tWrcfr0aVy5cgVZWVlQKpXw8/PD/Pnz8corr7T7NAAiIup5BEou2d0lcrkcEokEMpkMrq6u5i6HiHoa9VNQJk7U/j21os/PXC7TTUREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRkREVoXBRoZLTVW9iIgsAIONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisisUHW21tLVavXo2QkBCIxWL4+PggNjYWRUVFerWTlpaGhIQEPP744/Dw8IBAIED//v27p2giIjIbW3MX0BGFQoHIyEhIpVJ4e3tj+vTpyMvLw5YtW5CSkgKpVIqBAwfq1NaSJUtw/vz5bq6YiIjMzaJ7bGvXroVUKsX48eNx9epV7N69GxkZGfjwww9RWlqK2NhYnduaNGkS1q5di6NHj+LSpUvdWDUREZmTxfbY6uvrkZSUBABITk6Gs7OzZt+yZcuwbds2pKWlITMzE6NGjeq0vffee0/zdUlJifELJiIii2CxPbaTJ09CJpMhKCgII0aMaLN/1qxZAIBDhw6ZujQiIrJgFhts6uthI0eO1LpfvT0nJ8dkNRERkeWz2KHImzdvAgD8/Py07ldvz8/PN0k9dXV1qKur03wvl8tNcl4iItKPxQZbVVUVAMDR0VHrficnJwBAZWWlSepJTExEQkKCSc5FRFYsNdU475s40cBCrJfFDkVamri4OMhkMs2roKDA3CUREZEWFttjU8+CrKmp0bq/uroaAODi4mKSekQiEUQikUnORUREXWexPbaAgAAAQGFhodb96u2BgYEmq4mIiCyfxQZbWFgYACArK0vrfvX2YcOGmawmIiKyfBYbbBMmTIBEIkFubi6ys7Pb7N+3bx8AIDo62sSVERGRJbPYYLO3t8eiRYsAAAsXLtRcUwOAdevWIScnBxEREa1WHUlKSkJoaCji4uJMXi8REVkGi508AgCrVq3C8ePHcerUKQQHByM8PBz5+fnIyMiAh4cHNm/e3Or4srIyXLlyBbdu3WrT1qZNm7Bp0yYAQENDAwDg1q1bGDdunOaYjRs3tntDOBER9QwWHWxisRgnTpxAYmIidu7ciYMHD8Ld3R0xMTFYs2ZNuzdva1NYWIiMjIxW2+rr61tt403XREQ9n0CpVCrNXURPJJfLIZFIIJPJ4Orqau5yzEt94yhvGCXqXHs3Wnf276iX36Ctz89ci73GRkRE1BUMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIisioMNiIiM8n+tgTfLv0WteW15i7Fqlj0g0aJiKxV/vkKfPXuFQBATVkNZr7obuaKrAd7bEREZnBkwzXN1xd2XMDNCzIzVmNdGGxERCZWWVaH27nVgAAIfjwYAHDpRKmZq7IeDDYiIhO7eVEOAPAKckbY82EAgMLLcnOWZFUYbEREJnYzRzXs6D/UFT6jfQAAt69Xoamh2ZxlWQ0GGxGRid28qAq2gCESuA1wg7iPGE0NSty5UW3myqwDg42IyITqqhtxO7cKABAwVAKBQACfUapeW/HVKnOWZjUYbEREJnTnRjWUzYBLX3u4eogAAN6jvAEAxVcqzVma1WCwERGZ0N1C1c3Yff0dNdvU19luXWWwGQODjYjIhH4rVgWbu5+DZpvnME8AQNnNGiiVSrPUZU0YbEREJvRbYdtgkwRKAAHQoGhGTVmNuUqzGgw2IiITUgfbfb5/BJutyBaufVXX28qvl5ulLmvCYCMiMhGlUom7RW17bADg5i0GAFTcqDB1WVaHwUZEZCI1pTWor2kCBEAf79bB1uf3YGOPzXAMNiKi7pCaqnq1ILupujHb2d0etvatf/yqe2zlNxhshmKwERGZiLxQtR6k5Pf711rq4/X7UOT1ClOWZJW6FGy1tbVYvXo1QkJCIBaL4ePjg9jYWBQVFendVnl5OZYsWYLAwECIRCIEBgZi6dKlqKioaHNsXl4eBAJBp6/Y2NhW79u6dWuHx8+ZM6crfwxERHqRFah6bK79tASbj2pokj02w+n9oFGFQoHIyEhIpVJ4e3tj+vTpyMvLw5YtW5CSkgKpVIqBAwfq1FZZWRnGjx+Pa9euYeDAgZgxYwYuXbqE9evX48iRIzh9+jTc3f94+J6zszNeeOGFdtvbvXs3FAoFwsPDte4PCwvD8OHD22wfO3asTvUSERlCXqDqsWkLNrffe2yymzI0NzZDaMsBta7SO9jWrl0LqVSK8ePH49ixY3B2dgYArFu3DsuXL0dsbCxS7xlXbs/SpUtx7do1zJw5E7t374atraqcxYsXY8OGDVi2bBm2bt2qOb5v376tvm/p559/xrZt2+Dg4IAnn3xS6zEzZsxAfHy8rh+ViMioNMGmZSjS5T572NgJ0NSghLxQDrf+biauznro9StBfX09kpKSAADJycmaUAOAZcuWYdiwYUhLS0NmZmanbd26dQu7du2Cvb09Nm7cqAk1AHj//ffh4eGB7du3486dOzrVtn37dgDA9OnT4erqqs/HIiIyCfVQpLZrbAKhAM7u9gCAyltcWssQegXbyZMnIZPJEBQUhBEjRrTZP2vWLADAoUOHOm3r22+/RXNzM8LDw+Hp6dlqn0gkQnR0NJqamvDNN9902pZSqcTOnTsBAM8995wuH4WIyOTUk0e0DUUCql4bAFTd4ir/htBrKPL8+fMAgJEjR2rdr96ek5NjlLY2b96sU1s//vgj8vLy0K9fP0yaNKnd4zIzM7FixQrI5XJ4eXkhMjISERERnbZPRGSo5qZmVBapemKSfmKtxzjfJwJQyR6bgfQKtps3bwIA/Pz8tO5Xb8/PzzdpW+phyDlz5rQa0rxXSkoKUlJSNN+/8847iIiIwO7du9v0Gu9VV1eHuro6zfdyOR/jTkS6q75djebGZgiE0Aw53ku9vaqEPTZD6DUUWVWl+sN2dHTUut/JyQkAUFnZ+W8bxmqrrq4Oe/fuBdD+MKS3tzfi4+Nx7tw5yGQylJSU4Ouvv0ZoaCjS0tIwdepUNDU1dXiexMRESCQSzcvf37/D44mIWlJfX3O5TwShjUDrMRyKNI4eP5/08OHDKC8vR2hoKEaPHq31mKioKLz99tsYPnw4XF1d4enpiejoaPz0008ICQnB2bNnsWfPng7PExcXB5lMpnkVFBR0x8chIivV0VR/NU2PjcFmEL2CTT0LsqZG+2MVqqurAQAuLi4ma0s9DNmVSSPOzs5YvHgxAODo0aMdHisSieDq6trqRUSkq45WHVHjrEjj0CvYAgICAACFhYVa96u3BwYGmqStiooKfPPNNxAIBJg7d26n59QmODgYgOr2AyKi7tLRqiNqHIo0Dr2CLSwsDACQlZWldb96+7Bhw0zS1p49e1BXV4fw8HCdwlSb8nLV8jXqa3pERN1BPSPSpW8HPbbfg636TjWam5pNUpc10ivYJkyYAIlEgtzcXGRnZ7fZv2/fPgBAdHR0p21NnjwZQqEQ6enpbW7Crqurw6FDh2BjY4MpU6a024Yhw5Bq+/fvB9D+bQdERMZQfUd1ecW5j127xzi52UMgFEDZrERNKZ+k3VV6BZu9vT0WLVoEAFi4cKHmOhigWlIrJycHERERGDVqlGZ7UlISQkNDERcX16otb29vPPPMM6ivr8eCBQvQ2Nio2ffaa6+htLQUzz77LPr166e1lvz8fPz4448Qi8WYPXt2h3UnJiairKys1baGhgYkJCRg7969cHBwwLx583T7QyAi6gJ1UDm6tR9sQhsBnPr9PiOc19m6TO+1IletWoXjx4/j1KlTCA4ORnh4OPLz85GRkQEPDw9s3ry51fFlZWW4cuWK1mtYH3/8MaRSKfbv36+Z1Xjp0iVcvHgRwcHBWLduXbt17NixA0qlEtHR0ZBIJB3W/MYbbyAhIQGjR4+Gv78/5HI5srOzUVxcDLFYjO3bt8PX11ffPwoiIp1Vl6o6Ak5u2u9hU3P2ckZVSZXqOlvbBZ5IB3pP9xeLxThx4gTeeustODo64uDBg8jPz0dMTAyysrJ0XtkfUC1qfObMGbz88suor6/Hl19+CZlMhsWLF+PMmTOtVva/144dOwAAzz77bKfnWb16NR5++GEUFBTgq6++wg8//ABHR0fMnz8f2dnZmDlzps41ExHpS9msRE2Zqsfm1EGPDQCcvVUzxtlj6zqBUqlUmruInkgul0MikUAmk3Hqv/ppDhMnmrMKIsvS4t9Fzd0avN/3fQDAqmPhsLFr0adQ/7v5/fivvpAhe3M2HlnzCB5e9XDb9u59Xy+hz8/cHn+DNlmB1NS2/2iJrIj6+ppIImodalq4eKvu3eWyWl3HYCMi6mbqGZHqiSEdUQ9F8l62rmOwERF1M83EEY/Og03dY+M1tq5jsBERdTPNVH8P7Yu+t+TsxR6boRhsRETdTD0UqVOwtZgVybl9XcNgIyLqZpqhSB2usamPaaprQn1VfbfWZa0YbERE3Uw9FKnLNTZ7J3vYOarudVP39Eg/DDYiom6mz1Ak8EevjcHWNQw2IqJupumx6TAU2fI4LoTcNQw2IqJups90f+CPnh17bF3DYCMi6kYt14nUeyiylMHWFQw2IqJuVFteC2WTato+e2ymwWAjIupGrdaJtLfR6T2aa2x3eI2tKxhsRETdSN/ray2P5VBk1zDYiIi6kT4LIKtxur9hGGxERN1In3Ui1dTHcrp/1zDYiIi6kXo4UZ9ga9lj43qR+mOwERF1oy4NRf5+ja25sRmKCkW31GXNGGxERN1In3Ui1WzFtrB3sW/1ftIdg42IqCtSU1WvTnTlGhvQYmYkJ5DojcFGRNSNujIUCbSYQFLGHpu+GGxERN2oK/extTye97Lpj8FGRNRNurJOpBqn/Hcdg42IqJvUVjZq1ol07KtnsPXlUGRXMdiIiLpJjawBgGqdSFuRrV7vZY+t6xhsRETdpLqiHoD+19davofX2PTHYCMi6ibV5aoem77X1wAORRqCwUZE1E3UQ5H6TvUHOBRpCAYbEVE3qa7oeo+NQ5Fdx2AjIuomhlxjUw9FNtY2oqGmwah1WTsGGxFRN6mp6PpQpL2LveaJ2+y16cekwVZbW4vVq1cjJCQEYrEYPj4+iI2NRVFRkd5tlZeXY8mSJQgMDIRIJEJgYCCWLl2KiooKrcfHxMRAIBC0+/rss88M/HRERK3VGDAUKRAIeJ2ti/S7scIACoUCkZGRkEql8Pb2xvTp05GXl4ctW7YgJSUFUqkUAwcO1KmtsrIyjB8/HteuXcPAgQMxY8YMXLp0CevXr8eRI0dw+vRpuLu7a31vVFQUvLy82mwfNGiQQZ+PiOhe6mtsXRmKBFTDkZVFlaqZkWJjVmbdTBZsa9euhVQqxfjx43Hs2DE4OzsDANatW4fly5cjNjYWqTqslA0AS5cuxbVr1zBz5kzs3r0btraqj7F48WJs2LABy5Ytw9atW7W+d+XKlZg4caIRPhERUcc019i6MBQJ3DOBxN9oZVk9kwxF1tfXIykpCQCQnJysCTUAWLZsGYYNG4a0tDRkZmZ22tatW7ewa9cu2NvbY+PGjZpQA4D3338fHh4e2L59O+7cuWP8D0JEpCNls1Iz3b8rQ5Et38ehSP2YJNhOnjwJmUyGoKAgjBgxos3+WbNmAQAOHTrUaVvffvstmpubER4eDk9Pz1b7RCIRoqOj0dTUhG+++cY4xRMRdUFtZSOUzaqv9V0nUk39Pk4e0Y9JhiLPnz8PABg5cqTW/ertOTk5Rmlr8+bN7bZ14MAB7N+/H01NTRgwYACio6MRGhra6XmJiPRhyDqRaq2fyeZqrNKsnkmC7ebNmwAAPz8/rfvV2/Pz87u9rQ0bNrT6/vXXX8dLL72E9evXtxrWvFddXR3q6uo038vl8k5rJaLey5B72NTU71UNRTLYdGWSociqqioAgKOj9u64k5Pqf15lZWW3tTVixAh89tlnuHr1KmpqanD9+nUkJyfDzc0NGzduxIoVKzo8b2JiIiQSiebl788ruUTUPkPWiVTTrBfJa2x66TU3aC9ZsgTz589HcHAwHBwcMGDAACxYsADp6emwt7dHUlISCgoK2n1/XFwcZDKZ5tXRsUREhqwTqdZ6KJJ0ZZJgU8+CrKnR/j+nulp1YdTFxcWkbQHA4MGDMW3aNDQ2NuL7779v9ziRSARXV9dWLyKi9hiyTqQa14vsGpMEW0BAAACgsLBQ63719sDAQJO2pRYcHAxAdSsBEZExGOMam3ooUlGuQFNjs1Hq6g1MEmxhYWEAgKysLK371duHDRtm0rbUysvLAfxxfY6IyFCGLKel5nCfAyBQfV0rbzRGWb2CSYJtwoQJkEgkyM3NRXZ2dpv9+/btAwBER0d32tbkyZMhFAqRnp7e5ibsuro6HDp0CDY2NpgyZYpOtdXV1eHw4cMA2r+FgIhIX4YsgKwmtBHCwd0BwB89QOqcSYLN3t4eixYtAgAsXLhQcx0MUC2plZOTg4iICIwaNUqzPSkpCaGhoYiLi2vVlre3N5555hnU19djwYIFaGz847eY1157DaWlpXj22WfRr18/zfZffvkFX3zxRavp+gBQWlqKOXPmoKCgAGFhYZgwYYJRPzcR9V7VMsPWiVTTTPmv4KNrdGWytSJXrVqF48eP49SpUwgODkZ4eDjy8/ORkZEBDw8PbN68udXxZWVluHLlitbrXh9//DGkUin279+P0NBQjB49GpcuXcLFixcRHByMdevWtTq+pKQEzz//PJYsWYLRo0fDw8MDxcXFyMzMRGVlJfz8/LBnzx4IBIJu/TMgot6julzVwzJkKBJQ9fjKfinTTEahzplsur9YLMaJEyfw1ltvwdHREQcPHkR+fj5iYmKQlZWl88r+ANC3b1+cOXMGL7/8Murr6/Hll19CJpNh8eLFOHPmTJuV/UNCQrB06VIMGjQIFy5cwN69e3H27FkEBwfj7bffRk5ODkJCQoz9kYmol2q5TqQhQ5FAiyn/MgabrkzWYwMABwcHvPPOO3jnnXc6PTY+Ph7x8fHt7nd3d8cnn3yCTz75pNO2fHx88NFHH+lTKhFRlykqFAavE6mmDjb22HTXa27QJiIyleo7qnkEIiebLq8Tqaa5l42TR3TGYCMiMjL1DdVObvYGt6UeyuTkEd0x2IiIjEy9tqOjm53BbWmusTHYdMZgIyIyMvVQpJMRgk0zFMnJIzpjsBERGdkfwWb4UCR7bPpjsBERGZkm2PoYr8dWI29Ac5PS4PZ6AwYbEZGRGXMoUnO7gBKolbPXpgsGGxGRkf3RYzN8KFJo23K9SAabLhhsRERGZsweG8DVR/TFYCMiMjJj9tiAljdpM9h0wWAjIjKi5sZm1N6tBWC8HtsfN2m3WH0kNVX1ojYYbERERlRTpro5GwLAwdW4Q5HssemGwUZEZETqYUhHiR2ENsZ5FBaDTT8MNiIiIzL2xBGADxvVF4ONiMiIjD1xBGg5K5Ir/OuCwUZEZETd0mPrx1mR+mCwEREZkTHXiVTjdH/9MNiIiIxI8yw2I6wTqebk+fs1NhnXi9QFg42IyIhq7qim+xtzKNKxryMEQgBKoLqc19k6w2AjIjKi7pg8IrQRatqrvMtg6wyDjYjIiKpKqgAYt8cGAC7uqmCr+o3B1hkGGxGRkSiVSk2wOd9nvB5by/YYbJ1jsBERGUmdrA6NikYAgLO7kYONPTadMdiIiIxE3VsTSUSwE9kYtW11j43X2DrHYCMiMpLKW5UAABdvF6O3zWtsumOwEREZSdWt36+veTkbvW0OReqOwUZEZCSaiSPe3RBs6skjHIrsFIONiMhI1EOR3dljq7xbB6WSq490hMFGRGQk1SWqm7O7o8fmcp8IANDUoERddZPR27cmDDbSHx9JT6RVd/bYbO2FEDvbqs5zt87o7VsTBhsRkZGoJ490x6xIoMUEEl5n61CXgq22tharV69GSEgIxGIxfHx8EBsbi6KiIr3bKi8vx5IlSxAYGAiRSITAwEAsXboUFRUVbY5taGjAsWPHsGjRIgwZMgSOjo5wcHDAAw88gFdffRWlpaVaz7F161YIBIJ2X3PmzNG7biKie2kmj3RDjw3g6iO6stX3DQqFApGRkZBKpfD29sb06dORl5eHLVu2ICUlBVKpFAMHDtSprbKyMowfPx7Xrl3DwIEDMWPGDFy6dAnr16/HkSNHcPr0abi7u2uOT0tLQ1RUFACgf//+eOyxx9DQ0IDTp0/jww8/xI4dO5CamopBgwZpPV9YWBiGDx/eZvvYsWP1/WMgImqlsa4Rtb/VAvj9GluZ8c+hvpetksHWIb2Dbe3atZBKpRg/fjyOHTsGZ2fVbybr1q3D8uXLERsbi1Qdr78sXboU165dw8yZM7F7927Y2qrKWbx4MTZs2IBly5Zh69atmuOFQiGeeuopLF++HGPGjNFsl8lkePrpp3H06FHMmzcPp06d0nq+GTNmID4+Xt+PTETUqerbqokjQjshHNwduuUcTryXTSd6DUXW19cjKSkJAJCcnKwJNQBYtmwZhg0bhrS0NGRmZnba1q1bt7Br1y7Y29tj48aNmlADgPfffx8eHh7Yvn077ty5o9keGRmJ3bt3two1AJBIJNi8eTMA4PTp08jPz9fnYxERGazlxBGBQNAt53DhvWw60SvYTp48CZlMhqCgIIwYMaLN/lmzZgEADh061Glb3377LZqbmxEeHg5PT89W+0QiEaKjo9HU1IRvvvlGp9p8fHzg4eEBACguLtbpPURExtLdE0cATh7RlV5DkefPnwcAjBw5Uut+9facnByjtLV582ad2gKAiooKlJeXAwC8vLy0HpOZmYkVK1ZALpfDy8sLkZGRiIiI0Kl9IqKOdOdUfzUuq6UbvYLt5s2bAAA/Pz+t+9XbdRkKNGZbgGpotLGxEUOHDsWAAQO0HpOSkoKUlBTN9++88w4iIiKwe/fuNr1GIiJ9yAvkAABXf9duO4d6KJKTRzqm11BkVZWqq+3o6Kh1v5OTEwCgsrLSpG2dO3cOa9euBQC8++67bfZ7e3sjPj4e586dg0wmQ0lJCb7++muEhoYiLS0NU6dORVNTx3fy19XVQS6Xt3oREamZItjUPTZFZSMa65u77Tw9XY+/Qfv27duYOXMmFAoFli5discee6zNMVFRUXj77bcxfPhwuLq6wtPTE9HR0fjpp58QEhKCs2fPYs+ePR2eJzExERKJRPPy9/fvro9ERD2QrEAGAJD4S7rtHGIXW9jYqSamcPWR9ukVbOpZkDU1NVr3V1erpru6uHR+8dQYbVVWVmLKlCnIy8vD7Nmz8eGHH3Z63ntrWLx4MQDg6NGjHR4bFxcHmUymeRUUFOh1LiKybrKbqmDrzh6bQCCApJ8YACC/w2Brj17X2AICAgAAhYWFWvertwcGBnZ7WwqFAtOmTUNWVhYmTZqE7du3QyjUvwMaHBwMQHX7QUdEIhFEIpHe7ROR9VM2KyEvVA1FSgK6r8cGAJJ+IvxWVAsZg61deiVBWFgYACArK0vrfvX2YcOGdWtbjY2NePrpp5GamoqHHnoIBw4cgL29fecfQAv1TEr1NT0iIn1V36lGc0MzIABcfLpvuj8ASDxVv2DLbiu69Tw9mV7BNmHCBEgkEuTm5iI7O7vN/n379gEAoqOjO21r8uTJEAqFSE9Pb3UTNqCaqHHo0CHY2NhgypQprfYplUrMmzcPX3/9NYYPH47Dhw8bFEr79+8H0P5tB0REnVFfX3PxdoGNnU23nsv196FIWSl7bO3RK9js7e2xaNEiAMDChQs118EA1ZJaOTk5iIiIwKhRozTbk5KSEBoairi4uFZteXt745lnnkF9fT0WLFiAxsZGzb7XXnsNpaWlePbZZ9GvX79W71u6dCm2b9+O0NBQHDt2DG5ubp3WnZiYiLKy1gu3NTQ0ICEhAXv37oWDgwPmzZun858DEVFLppgRqSbpp+qxyW8z2Nqj91qRq1atwvHjx3Hq1CkEBwcjPDwc+fn5yMjIgIeHh2ZpK7WysjJcuXJF6zWsjz/+GFKpFPv370doaChGjx6NS5cu4eLFiwgODsa6detaHf/VV1/hk08+AQD4+/tjxYoVWmtcuXIlQkNDNd+/8cYbSEhIwOjRo+Hv7w+5XI7s7GwUFxdDLBZj+/bt8PX11fePgogIgGlmRKqpg43X2Nqnd7CJxWKcOHECiYmJ2LlzJw4ePAh3d3fExMRgzZo17d5wrU3fvn1x5swZxMfH4+DBg/jyyy/h6emJxYsXIyEhoU1vTH09DAC+++67dtuNiYlpFWyrV6/G6dOnceXKFWRlZUGpVMLPzw/z58/HK6+80u7TAIiIdGHSHpvn70ORd3iNrT16BxsAODg44J133sE777zT6bHx8fEdrqjv7u6OTz75RNMT60hMTAxiYmL0qFQlISFB7/cQEenKlMHm6qHqsdVVN0FR1Qhxt5+x5+nxN2hTD5KaqnoRWZPUVMguqe5rNcVQpL2DDRxcVX0S9tq0Y7ARERlIfbO0KXpsADQ3acs4gUQrBhsRkQEa65shL1MFjFugm0nO6ealGo6sKGGPTRsGGxGRASpKFIASsHe2h5OnaRZ66OOrekL3b8W1JjlfT8NgIyIywG9FqnDpE9Sn256cfS93H1WwlRcx2LRhsBERGaD8916T+/3uJjunu6bHxqFIbRhsREQG+K1IFS59gvqY7Jx9fFSTR8qLa9HcxOey3YvBRkRkgN/M0GOT9BNDaCtAU4MSlUWdP4y5t2GwEREZQDMUGWS6YBPaCODmpeq1/Zb7m8nO21Mw2IiIuqi5SYnyW6qhSFP22IAW19muMdjuxWAjIuoieWkdmhuVsLETwMW3e5/Ddi/1dTYGW1sMNiKiLirNUz26y93XAUIb0/447evvCAAo+7mskyN7HwYbEVEX3bmhCrZ+A0xzY3ZL6nPeuXinkyN7HwYbEVEXlebVADBPsHn0V/XYKm5UoL663uTnt2QMNiKiLjJnj83JzR5OfewAAKWXS01+fkvGYCMi6oLmJiVK883XY2t5Xg5HtsZgIyLqgvJbtWisb4atSKi5p8zUGGzaMdiIiLrgzg1Vb80j0BFCG9MsfnwvTbBdYLC1xGAjIuqCW7+qlrLyHGieYciW5y45VwKlUmm2OiyNrbkLICLqiYouywEAvg/o+NTs1FSj1+AZ5AwbexvUlNWg/Hq5SZf1smTssRER6UnZrETRL6oem9//6Bhs3cDWXgivEV4AgEJpodnqsDQMNiIiPZX9Uoa66ibYiYVmmxGp5jfODwBQlFFk1josCYONup2yWYmauzVQVDXyOgBZBXXvyCfExWwTR9TUwcYe2x94jY26RdkvZcjZnoNfv/kVd6/cRUNNAwBA5GQD3/GFCJkWgmHPDoNDHwczV0qkP3WI+JpxGFJNHWwl50rQUNMAO0c7M1dkfgw2MqrSn0uR+nYqLu+9rHV/XXUTrh+/juvHr+P468cxdvFYTHhICQdX/mOknkGpVOL68esAgICh5g82SaAErn6ukBfKkZ+ej/uj7jd3SWbHYCOjaGpoRnpCKtL/no7mBtWj6kOmhmDwnMHwHeMLt0A3NP+QiruFtbghvw/ZW7Nx58IdnHz3JM5J7PDY4vsxOEIJgcC8wzpEnSnPLUfFjQoIbQUYMKKPucuBQCDAwEkDkb05G7nHchlsYLCREZRcq8KXib/gznXVunkhU0MQ+Y9IeA71bHWcjdgGXvc7w2vieIx7ZRyuplzF9yu/R+nlUuxf8zN+/mUfov8VDbHEPKs4EOni2tFrAICAIa6wd7AxczUq90fdrwq2o7nAh+auxvw4eYS6TKlUIvNfmdi0IAt3rlfDsa8jnvzPk5jz9Zw2oXYvgUCAQdGDMP/cfETEBEJoI8DlvZfxz5H/RHFmsYk+AZH+rhy8AgAIGmM594wNfHQgBDYClF4q5YNHwWCjLmpQNOGreV8h5a8paGpQIuSh+7Dg8gIMeXqIXsOJNvY2mPhCf8RuGA63/m4ov16OzQ9txpmkM5xBSRan+k41bvxwAwDwPw97mLmaPzi4O2BA5AAAwKU9l8xcjfkx2EhvZTdrsGnhOZzfdh4CoQD/318HYM6awXDy6Pr9PL4PuOKvWX9F6IxQNNU34cjLR7Dv6X1QyBRGrJzIMJf2XoKyWQmf0T5w97WsGb2Dnx4MALi462Kv/6WQwUZ6ufifi/jX31RDj06eTnj+++fxp2cCIBAaPunDoY8DnjrwFKI+ioLQVojLey/jX6P/hZLsEiNUTmQYpVKJs5+eBQAMnTvUzNW09cDMB2ArtsWdi3dQcLLA3OWYVa8LttraWqxevRohISEQi8Xw8fFBbGwsiop4135HGmoakPJSCvY/sx/1tU3oP1yCv2X/Df0n9jfqeQQCAcYtHYd5P86DJECC3679hk3jNiHzn5m9/rdQMq+8E3kovVQKO0c7DI8Zbu5y2nDo46AJ3Iz1GWauxrx6VbApFApERkZizZo1qKqqwvTp0+Hv748tW7ZgxIgRuH79urlLtEh5aXn4dNinyPwsExAA4c8F4LkPwuDs5dxt5/Qb64f55+YjZGoImuqakDI/Bbtn7IasQNZt5yRqj1KpxA+rfgAADJ83HGI3y5y5O3bJWADA5X2XcevcLTNXYz69KtjWrl0LqVSK8ePH4+rVq9i9ezcyMjLw4YcforS0FLGxseYu0aJU3a5Cyksp2DZxG8pzy+Hq54pnjz6LyNgBJllGyMHdAXO+moNH330UQjshrnx9BRv/ZyMyPslAU0NTt5+fSC1new4KTxfCztEO4W+Gm7ucdnkO9cTQv6h6bUdePoLmpmYzV2QevSbY6uvrkZSUBABITk6Gs/MfvY1ly5Zh2LBhSEtLQ2ZmprlKtBg1d2uQGp+KT4I+UfXSAIz860gsuLQAQX8OMmktAqEAE16bgPnn5sP/IX/UV9Xj2yXfIvmBZJz/4jwDjrpd6c+l+GbhNwCA8DfD4eLtYuaKOhb5j0jYO9uj4GQBUuNTzV2OWfSaYDt58iRkMhmCgoIwYsSINvtnzZoFADh06JCpS7MIzY3NyP9vPg7GHMQ633VIS0hDQ3UDfB70wQupLyD6/6IhchWZrb5+g/thXvo8PP7Z43Dq54Ty3HIcfP4gPg78GD+s+gF3f71rttrIepWcL8EXj36B+sp6BIQHYMLrE8xdUqfcAt0wZeMUAED62nSkJqRC2dy7rk/3mpVHzp8/DwAYOXKk1v3q7Tk5OSaryZwaahpwO+c2ijOLUXi6ENeOXEPtb7Wa/V4jvBD+RjgeePIBi1nmSiAUYPT80Rg2dxgyNmRA+pEUVbeqkP73dKT/PR3uwe64f/L98B3jC68RXug7qC+Etr3mdzcyovIb5Tj76VnVsHddEzz+xwNPH3gaQpue8fcp7LkwlOeWIy0hDWnxabj+3XU8/NbDGBA5ADZ2lrFaSnfqNcF28+ZNAICfn5/W/ert+fn5Jqkn91gu6irrVL9JKVUXpzv8b7Oy82OUylbtNdQ0oL6yHnWVdaivrIeiXAFZgQyymzLUlNa0qUncR4zQ6aEY9bdR8B3jazGBdi97Z3uEx4XjoeUP4crXV5D1ryzc+OEGfvv1N5z59YzmOKGdEK6+rnD1c4WLjwtEbiKIXEQQuYpg72wPoZ0QQtu2L4FQ0P5nb29zR39Wuvwx3vMLdZsZoErd9um935D3WlHb9VX1qL5TDXmhHCXnSlqt3hEyNQQzts2Ag7tl3bfWmYnxEyEJlOCbhd+g4GQBdkzeAbGbGN4jvXFf6H1w8nCC2E0Mexd7CG2EENgIVP8VCiCwERjlFh5tAiYEdOvEM6AXBVtVVRUAwNHRUet+JyfVzcWVlZVa99fV1aGurk7zvUymmp0nl8u7VM+BhQfMvvSNU18neI3wgtcIL/Sf2B9+Y/00PZz2/hwAANWqNSGh/uz3fq/r+zrbrgO/SX7wm+SHOnkd8tLykP/ffNw+fxt3Lt6BolqBmrwalOTxPjjSX/+H++PBRQ8iaFIQGgQNaJA3tD5A/fdWrbO/1/cef+/7Ovt30Nn7tQh6MggvjHsB0o+l+Hn/z6i4W4GKHyqAH9p9S7d7at9TXbpWr/5Zq8ttP70m2AyVmJiIhISENtv9/f3NUI2RlAH47vfXe2auhcjS/Pf3FxnV/5v1/wx6f2VlJSQSSYfH9JpgU8+CrKlpOwQHANW//zbk4qJ9xlNcXByWLVum+b65uRm//fYb7rvvPosdsrMkcrkc/v7+KCgogKur+Z9h1Zvx/4Xl4P8L3SmVSlRWVsLHx6fTY3tNsAUEBAAACgu1Pz5dvT0wMFDrfpFIBJGo9axANzc34xXYS7i6uvIfsIXg/wvLwf8Xuumsp6bWM6b4GEFYWBgAICsrS+t+9fZhw4aZrCYiIjK+XhNsEyZMgEQiQW5uLrKzs9vs37dvHwAgOjraxJUREZEx9Zpgs7e3x6JFiwAACxcu1FxTA4B169YhJycHERERGDVqlLlKtGoikQhvv/12m+FcMj3+v7Ac/H/RPQTKXrRkukKhwMSJE5GRkQFvb2+Eh4cjPz8fGRkZ8PDwgFQqxcCBA81dJhERGaBXBRugemxNYmIidu7ciYKCAri7u2Py5MlYs2ZNuzdvExFRz9Hrgo2IiKxbr7nGRkREvQODjcwiNTUVAoGg3de4cePMXaLV4dPjLcPEiRM7/Lv/7bffmrvEHq/X3KBNlikoKAh/+tOftG4n41E/PV4qlcLb2xvTp09HXl4etmzZgpSUFE6cMoMnn3yy1XMh1Xx9fc1QjXVhsJFZ/elPf8LWrVvNXYbVa/n0+GPHjml+oK5btw7Lly9HbGwsUlNTzVtkL/PBBx+gf//+5i7DKnEoksjK8enx1Nsw2IisHJ8eT70NhyLJrH799VfExcXh7t276Nu3L/70pz9h8uTJEAr5O5ex8Onxlunzzz/H3bt3IRQKERISghkzZmgWayfDMNjIrE6dOoVTp0612jZ06FDs378fwcHBZqrKulja0+NJZe3ata2+f/XVV/HWW2/hrbfeMlNF1oO/FpNZSCQSrFixAlKpFHfv3sXdu3fx/fffY9y4cbhw4QImTZqkeUo5GcbQp8eTcT388MP44osvkJubi5qaGly5cgV///vfYWtri9WrV2P9+vXmLrHH48oj1CVPPPEEfv75Z73e8+9//xtjxozp8JimpiY88sgjSE9Pxz/+8Q/ExcUZUiYB+Otf/4p//etfePPNN9v0EgDg2rVrCA4ORnBwMK5evWqGCgkAjh07hqioKLi5uaG4uBgODg7mLqnH4lAkdcmNGzdw5coVvd7T3tPLW7KxscHrr7+O9PR0HD16lMFmBIY+PZ5MY9KkSRg9ejTOnj2LjIwMTJw40dwl9VgMNuoSbc+0Mxb1tbVbt2512zl6E0OfHk+mExwcjLNnz/LvvoF4jY0sTnl5OYA/rv2QYfj0+J6Df/eNg8FGFmf//v0A2p+eTvrh0+N7htLSUqSnpwPg331DMdjILD7++GMUFBS02qZUKvF///d/+OijjyAQCPDSSy+ZqTrrwqfHW45Tp07h4MGDaGpqarU9Ly8PTzzxBKqrqzFt2jQ+G9JAnBVJZtG/f38UFhZi5MiRGDBgABQKBS5cuIAbN25AKBRi/fr1mh/GZDg+Pd4ybN26FfPmzYOXlxdGjhwJNzc35OfnIzMzEwqFAoMHD8YPP/yAfv36mbvUHo3BRmaxYcMGHDt2DJcuXcKdO3fQ0NCg+YG7ePFiPPjgg+Yu0erw6fHm9/PPP2PDhg3IyMhAQUEBysvL4eTkhAceeACzZ8/GSy+9xGn+RsBgIyIiq8JrbEREZFUYbEREZFUYbEREZFUYbEREZFUYbEREZFUYbEREZFUYbEREZFUYbEREZFUYbEREZFUYbEREZFUYbESkt2vXrmHXrl145ZVXMGHCBDg6OkIgEEAgEGDr1q3mLo96OT5Bm4j0kpaWhokTJ5q7DKJ2scdGRHppuW66UCjE4MGDMWbMGDNWRNQag42I9OLr64v3338fqampkMlkuHjxIh8KSxaFQ5FEpJfg4GC8+uqr5i6DqF3ssRGZWXx8vGbiBQDI5XLEx8dj6NChcHZ2Rr9+/TBlyhScOnWq1fvu3LmDVatWYfDgwXBycsJ9992H6dOn49y5czqdpz2pqama41JTU43yGYlMiT02IgtSUFCARx99FFevXtVsq66uxpEjR3Ds2DHs2rULs2fPRk5ODqZMmYKioiLNcTU1Nfj6669x9OhRHDlyBI888og5PgKR2bHHRmRBZs+ejcLCQsTFxSEtLQ0//fQTPvroI7i6uqKpqQn/+7//ixs3bmDq1Kmora3F3//+d/z444/IyMhAQkIC7O3tUVdXh5iYGNTX15v74xCZBXtsRBYkOzsbaWlpGDt2rGbb6NGjERwcjKlTp6KyshJjx46FUqnEmTNnEBQUpDluzJgx6Nu3LxYuXIibN2/i8OHDeOKJJ8zxMYjMij02IguydOnSVqGm9vjjjyMwMBAAUFpaijVr1rQKNbV58+ZBLBYDANLT07u3WCILxWAjsiBz5sxpd9+wYcMAAAKBAE8//bTWYxwcHBAcHAwAuH79uvELJOoBGGxEFiQkJKTdfW5ubgCAvn37ok+fPp0eV1lZaczSiHoMBhuRBXF0dGx3n1Ao7PSYlsc1NTUZrzCiHoTBRkREVoXBRtRLqHtyANDc3NzucdXV1aYoh6jbMNiIegkXFxfN1+Xl5e0e1/LmcKKeiMFG1EsMGDBA8/XZs2fbPe4///mPKcoh6jYMNqJe4qGHHoKtrWpNho8++qjV42fU3n//fZw5c8bUpREZFVceIeol+vXrh9mzZ2PXrl04evQopk2bhoULF8LT0xM3b97EF198gf379+Ohhx5qs+Dyvfbt24eqqirN9z/++KPWrwHAy8sLkydPNu6HIeoAg42oF/noo49w9uxZ/Prrr0hJSUFKSkqr/XPmzMGLL76IRx99tMN2Xn31VeTn52vd9/nnn+Pzzz/XfB8REcFgI5PiUCRRL+Lp6YmMjAy8/vrrCA4Ohkgkgru7Ox5++GFs374du3btgo2NjbnLJDKIQKltoJ2IiKiHYo+NiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisCoONiIisyv8PMlDY/cqjT4AAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "\n", - "\n", - "smc_samples = [4.931763534677909,4.931763534677909,-4.9320891338890585,5.621259778630396,5.12465160042257,5.12465160042257,5.621259778630396,4.931763534677909,-4.6579432517491455,4.876504731477834,5.5838924471357245,5.12465160042257,5.771266945978422,4.585504931126646,-4.6579432517491455,-5.640631533190109,4.931763534677909,4.931763534677909,4.876504731477834,4.584621406564235,5.146053175145614,5.554477042788893,-5.447509490383438,4.585504931126646,-5.447509490383438,5.5838924471357245,4.876504731477834,5.621259778630396,4.149858974125451,5.621259778630396,4.931763534677909,5.771266945978422,5.771266945978422,5.621259778630396,5.554477042788893,4.163566109577072,5.621259778630396,-4.6579432517491455,4.931763534677909,-5.640631533190109,4.876504731477834,-4.6579432517491455,4.584621406564235,4.149858974125451,5.12465160042257,4.897173319391566,-5.447509490383438,-5.447509490383438,-5.447509490383438,-5.447509490383438,5.5838924471357245,5.5838924471357245,-5.447509490383438,-5.447509490383438,5.146053175145614,4.585504931126646,4.876504731477834,4.149858974125451,-5.447509490383438,5.146053175145614,-4.9320891338890585,5.5838924471357245,4.800049652986203,4.931763534677909,5.621259778630396,4.227752656874745,4.585504931126646,5.621259778630396,4.931763534677909,-4.6579432517491455,5.146053175145614,5.5838924471357245,-4.6579432517491455,4.931763534677909,-4.6579432517491455,4.876504731477834,5.146053175145614,5.5838924471357245,5.5838924471357245,-5.447509490383438,4.584621406564235,5.146053175145614,5.146053175145614,4.149858974125451,4.931763534677909,5.621259778630396,5.12465160042257,5.146053175145614,4.800049652986203,4.897173319391566,4.149858974125451,5.621259778630396,4.726788745240697,4.584621406564235,-5.447509490383438,4.931763534677909,4.931763534677909,5.771266945978422,-5.640631533190109,4.227752656874745]\n", - "\n", - "fig, ax = plt.subplots()\n", - "plt.rcParams[\"figure.figsize\"] = [4.50, 4.50]\n", - "plt.rcParams.update({'font.size': 15})\n", - "plt.rc('xtick', labelsize=15)\n", - "plt.rc('ytick', labelsize=15)\n", - "plt.rc('axes', labelsize=20)\n", - "plt.rc('legend', fontsize=20)\n", - "plt.ylim(0, 18)\n", - "w = 0.1\n", - "\n", - "file = open(\"/space/poorvagarg/.julia/dev/Dice.jl/multimodal_6_256.txt\", \"r\")\n", - "hybit_data = file.readlines()\n", - "hybit_data = [float(i)*640 for i in hybit_data]\n", - "\n", - "ax.plot([i for i in np.arange(-8, 8, 0.015625)], hybit_data, color=\"purple\")\n", - "\n", - "\n", - "w = 0.1\n", - "# ax.hist(smc_estimated, bins=np.arange(-2, 8 + w, w), alpha = 0.25, color = \"red\")\n", - "# ax.hist(mcmc_estimated, bins=np.arange(-2, 8 + w, w), alpha = 0.25, color = \"blue\")\n", - "ax.hist(smc_samples, bins = np.arange(-6, 6 + w, w), alpha = 0.25, color=\"red\")\n", - "\n", - "\n", - "\n", - "ax.legend([\"HyBit\", \"SMC\"], loc=\"upper left\")\n", - "# ax.bar([8.0, 9.0])\n", - "\n", - "ax.set_xlabel(\"mu1\")\n", - "# ax.set_ylabel(\"pr(mu1)\")\n", - "\n", - "scale_y = 100\n", - "ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale_y))\n", - "ax.yaxis.set_major_formatter(ticks_y)\n", - "\n", - "fig.savefig(\"multimodal_smc.png\", bbox_inches='tight')" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAGtCAYAAAB6GFEoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWcklEQVR4nO3de1yUZf4//teAwnAcRDkKIhpIaeIpDxmhbB81k3RNN1vbTdk+Xz8eUrOsaE2l3OXTlpZ5qM8vV61I11OZYKlZwqoIJoh4SlcCBAEBhRlOw2nu3x90j04MMCdmhuH1fDzmIXNf11z3ewDnzXW4r1siCIIAIiIiG2Fn6QCIiIhMiYmNiIhsChMbERHZFCY2IiKyKUxsRERkU5jYiIjIpjCxERGRTelh6QC6KpVKhaKiIri5uUEikVg6HCIimyYIAqqqquDv7w87u/b7ZExsBioqKkJgYKClwyAi6lYKCgoQEBDQbh0mNgO5ubkBaPkmu7u7WzgaIiLbplAoEBgYqP7sbQ8Tm4HE4Ud3d3cmNiIiM9Fl6segxSN1dXVYvXo1QkNDIZVK4e/vj5iYGNy6dUuvdlJSUhAXF4ennnoKXl5ekEgk6N+/f5v18/LyIJFIOnzExMRovG7nzp3t1p8zZ44h3wYiIrJCevfYlEoloqKikJaWBj8/P0yfPh15eXnYsWMHkpKSkJaWhgEDBujU1rJly3DhwgWdz+3q6ooXXnihzfI9e/ZAqVQiIiJCa3l4eDiGDRvW6viYMWN0joGIiKyb3olt3bp1SEtLw7hx43Ds2DG4uroCADZs2IBXXnkFMTExSE5O1qmtSZMmYfbs2XjkkUcQEBCAwYMHt1u/T58+2Llzp9ayq1ev4rPPPoOTkxOeeeYZrXVmzJiBtWvX6hQbERF1TXoltoaGBmzevBkAsGXLFnVSA4AVK1bgs88+Q0pKCjIyMjBy5MgO2/vHP/6h/rqkpESfUFpJSEgAAEyfPp1zXkRE3Zhec2ynT5+GXC7HwIEDMXz48Fbls2bNAgAkJiaaJjodCYKAXbt2AQD+9Kc/mfXcRERkXfTqsYnzYSNGjNBaLh7Pzs42Miz9nDp1Cnl5efD29sakSZParJeRkYGVK1dCoVDA19cXUVFRiIyMNGOkRETU2fRKbDdv3gSANi+OE4/n5+cbGZZ+xGHIOXPmoEePtt9SUlISkpKS1M/ffvttREZGYs+ePfDx8Wn3HPX19aivr1c/VygURkZNRESdQa+hyOrqagCAs7Oz1nIXFxcAQFVVlZFh6a6+vh779u0D0PYwpJ+fH9auXYvz589DLpejpKQEhw4dQlhYGFJSUjBt2jQ0Nze3e574+HjIZDL1g7uOEBFZpy6/CfLhw4dRUVGBsLAwjBo1SmudyZMnY82aNRg2bBjc3d3h4+OD6Oho/PTTTwgNDcW5c+ewd+/eds8TGxsLuVyufhQUFHTG2yEiIiPpldjEVZC1tbVay2tqagBApy1PTEUchjRk0YirqyuWLl0KADh69Gi7dR0dHdW7jHC3ESIi66XXHFu/fv0AAIWFhVrLxeNBQUFGhqWbyspKfPvtt5BIJJg7d65BbYSEhAAAiouLTRmaXgRBQGNjI1QqlcViINKFnZ0devbsyTtakFXTK7GFh4cDADIzM7WWi8eHDh1qZFi62bt3L+rr6/H4448bnEwrKioA3JsfNKfa2lrI5XJUVVV1OMdHZC3s7e3h5uYGmUzW5nw7kSXpldjGjx8PmUyGnJwcZGVltdqeav/+/QCA6OhokwXYHmOGIUUHDhwA0PYlDJ2lqqoKhYWF6NmzJzw8PODi4gI7Ozv+JUxWSxAEqFQq1NTUQKFQoLKyEgEBAWadeiDSiaCnv/71rwIA4dFHHxWqq6vVx9evXy8AECIjIzXqb9q0SRg0aJDwxhtvtNtucXGxAEAICgrSKY68vDxBIpEIUqlUqKysbLfu3//+d6GsrEzjWENDg7B27VoBgODk5CQUFhbqdF6RXC4XAAhyuVyv1wmCINTU1AhXrlwRCgsLBZVKpffriSxNpVIJhYWFwpUrV4SamhpLh0PdgD6fuXrvFblq1SocP34cqampCAkJQUREBPLz85Geng4vLy9s375do355eTmuXbumdQ5r27Zt2LZtGwCgsbERQMtc19ixY9V1tm7dqrU39eWXX0IQBERHR0Mmk7Ub85tvvom4uDiMGjUKgYGBUCgUyMrKQlFREaRSKRISEtC3b199vxUGk8vl6NmzJ/z9/dlDoy5JIpHA398fdXV1kMvlHJIkq6J3YpNKpThx4gTi4+Oxa9cuHDx4EJ6enpg3bx7eeeedDu9ser/CwkKkp6drHGtoaNA41taF0F9++SUA4Pnnn+/wPKtXr8aZM2dw7do1ZGZmQhAEBAQEYMGCBXj55ZcxaNAgnWM2lvDr7c09PDyY1KhLk0gkcHd3R2VlJXx9ffn7TFZDIgiCYOkguiKFQgGZTAa5XK7X0v+Ghgbk5OSgX79+FlmwQmRK1dXVKCgowMCBA+Hg4GDpcMiG6fOZ2+Uv0O5qxCX9dnb81lPXZ29vDwC8VIWsCj9dLYTDNmQL+HtM1oiJjYiIbAoTGxER2RQmNiIisilMbEREZFOY2Ii6OIlEAolEgrVr11o6FCKrwMRGNi85OVnvD/958+apX5OXl2fymMS2tT2cnJwQGBiI6OhofP7552hqajL5+YlsGRMbkZVRKpUoLCxEUlISXnjhBYwZMwa3b982qK37k3pycrJpAyWyUnpvqUVEpjNq1Cjs2LFD41h1dTUuXbqEzZs348KFC8jMzMSsWbNw8uRJrW1w8yAiTUxsRBbk4uKCIUOGtDo+duxYzJ07FyNGjMDPP/+MU6dO4cyZMxg3bpwFoiTqWjgUSWSlnJycsHjxYvXzn376yYLREHUdTGxEOiovL4ejoyMkEgn+53/+p8P6iYmJ6vmtvXv3GnTO4OBg9df19fVa62hbGJOXlweJRIKJEyeqj02cOLHVQpWdO3caFBeRNWNiI9JRnz59MH36dADAnj17oFQq260vzp15enqqX6ev/Px89df9+vUzqA2i7oaJjUgPL774IgCgsrISX3/9dZv1ysrKkJSUBACYO3cuHB0d9T5XXV0dtmzZAqBlLu6JJ57Q+bV9+/bFxYsXNW78u337dly8eFHjMWPGDL3jIrJ2XDxC3UppaSkuXbrUYb3Kykqtx5944gkEBQUhPz8fO3bswHPPPae1XkJCgvqu8DExMW2ep6amplU8tbW1uHjxIrZs2YIrV65AIpHgH//4B3r37t1h3KKePXtiyJAhKC8vVx8LDg7WulCFyNYwsVkpQRDQWNto6TDMoqdzT7Pd/uTjjz/Gxx9/bPDr7ezsEBMTgzVr1uCHH35AQUEBAgMDW9UThyGHDx+OYcOGtdneuXPn8PDDD7dZPmnSJLzxxhsac2VE1D4mNivVWNuIeNd4S4dhFrHVsXBw6Tp3X46JiUFcXBxUKhU+++wzrFq1SqM8IyMDFy9eVNc1xokTJ+Di4oIHHnhAawIlotY4x0bdypo1ayAIQoePF154oc02AgICMHnyZADQuqpQ7K05Ojpi7ty57cYTGRnZ6twNDQ3Izc3Fli1bIJPJ8PXXX2Ps2LH4+eefDX/jRN0Ie2xWqqdzT8RWx1o6DLPo6dzT0iHo7cUXX8R3332HnJwc/Pvf/8bjjz8OoGVJ/q5duwAAM2bMQK9evfRuu2fPnujfvz8WLVqEyMhIDB8+HEVFRXjxxRdx6tQpk74PIlvExGalJBJJlxqe626io6Ph4+OD27dvY8eOHerEdvDgQVRUVAAwfhgSAAYPHoypU6fim2++wenTp3H9+nWEhoYa3S6RLeNQJJEBevbsiT//+c8AgH379qG6uhrAvWHIfv366bU8vz1hYWHqr8W5OyJqGxMbkYHEa9pqamqwb98+FBYW4vvvvwcAvPDCC7CzM81/r/tvW6PvLWzMtdqUyJpwKJLIQKGhoYiIiMDJkyexY8cOFBUVQaVSQSKRYP78+SY7z7lz59Rf67syUiqVqr9ua0suIlvDxEZkhBdffBEnT57EyZMncf36dQDAhAkTNPZ4NMbhw4eRkpICoGVLr9GjR+v1ej8/P/XXOTk5JomJyNoxsREZYfbs2Vi6dCnkcrn6ZqD6LBrRtvNIY2Mjbt26hcOHD2Pbtm3q4/Hx8ejRQ7//sv369UNAQAAKCwvx/vvvIyAgAIMGDYK9vT0AwMfHB25ubnq1SWTtmNiIjODk5IQ//vGP6t1MZDIZnnnmGZ1f39HOI0DLQpV169ap5/T09eabb2LRokXIzc1ttRnzjh07MG/ePIPaJbJWXDxCZKQ//elP6q/nzJkDJycno9qzt7eHp6cnRo8ejddffx1XrlzBa6+9ZnB7CxcuxIEDBzBp0iR4e3vr3esj6mr4G042b8KECRAEQa/X7Ny5U+d7ld0/lKjrMKS+8Rjb1syZMzFz5kyTnZPImrHHRmQk8dYwQ4YM0XtxBxGZHhMbkRH+/e9/Iy0tDQB0uqs2EXU+sya2uro6rF69GqGhoZBKpfD390dMTAxu3bqlVzspKSmIi4vDU089BS8vL0gkEvTv37/d18ybNw8SiaTNxyeffGLEO6PuJD8/H9evX8fXX3+t3n3E19fXJFtoEZHxzDbHplQqERUVhbS0NPj5+WH69OnIy8vDjh07kJSUhLS0NAwYMECntpYtW4YLFy4YFMfkyZPh6+vb6vigQYMMao+6n8jISOTn52sc27Rpk9GLRojINMyW2NatW4e0tDSMGzcOx44dg6urKwBgw4YNeOWVVxATE4Pk5GSd2po0aRJmz56NRx55BAEBARg8eLDOcbzxxhuYMGGCAe+ASJObmxuGDBmCv/71r3jqqacsHQ4R/cosia2hoQGbN28GAGzZskWd1ABgxYoV+Oyzz5CSkoKMjAyMHDmyw/b+8Y9/qL8uKSkxfcBE7cjLy7N0CETUDrPMsZ0+fRpyuRwDBw7E8OHDW5XPmjULAJCYmGiOcIiIyIaZpccmzoeNGDFCa7l4PDs7u9Nj+eqrr3DgwAE0NzcjODgY0dHRGrcFISKirs0sie3mzZsAgICAAK3l4vHfTsh3hk2bNmk8f/3117Fw4UJs3Lix3R0Z6uvrNXZHVygUnRYjEREZzixDkeJNGJ2dnbWWu7i4AACqqqo6LYbhw4fjk08+wfXr11FbW4tffvkFW7ZsgYeHB7Zu3YqVK1e2+/r4+HjIZDL1Q9/bhxARkXl0mwu0ly1bhgULFiAkJAROTk4IDg7GokWLcPLkSTg4OGDz5s0oKCho8/WxsbGQy+XqR3t1iYjIcsyS2MRVkLW1tVrLa2pqAMAit88YPHgwnn76aTQ1NeGHH35os56joyPc3d01HkREZH3Mktj69esHACgsLNRaLh4PCgoyRzithISEAACKi4stcn4iIjIdsyS28PBwAEBmZqbWcvH40KFDzRFOKxUVFQDuzfUREVHXZZbENn78eMhkMuTk5CArK6tV+f79+wEA0dHR5ghHQ319PQ4fPgyg7csRiIio6zBLYnNwcMCSJUsAAIsXL1bPqQEtW2plZ2cjMjJSY9eRzZs3IywsDLGxsUaf/+eff8YXX3yhsVwfAMrKyjBnzhwUFBQgPDwc48ePN/pcRERkWWbbK3LVqlU4fvw4UlNTERISgoiICOTn5yM9PR1eXl7qe1qJysvLce3aNa3zXtu2bcO2bdsAAI2NjQBa5sfGjh2rrrN161Z1D6ykpAR//vOfsWzZMowaNQpeXl4oKipCRkYGqqqqEBAQgL1790IikXTW2yciIjMxW2KTSqU4ceIE4uPjsWvXLhw8eBCenp6YN28e3nnnnTYv3tamsLAQ6enpGscaGho0jt1/AXVoaCiWL1+OtLQ0XLx4EXfu3IGjoyNCQ0MRHR2NZcuWoVevXsa/SSIisjiJYMp71HcjCoUCMpkMcrlcr6X/SqUSubm5CA4OhlQq7cQIiToff5/JXPT5zO02F2gTEVH3wMRG3U5KSorG3dNTU1P1buPUqVNYtmwZwsPD4eXlBUdHR/Tt2xfjx4/H22+/jZycnA7b2LlzpzqGnTt36nTe++8Er+vtcyZOnKh+zaRJk3R6DVFXxsRG3c5nn32m8fzzzz/X+bWFhYWYNm0aIiIi8NFHHyE7Oxvl5eVoaGhAUVERUlNTsWbNGjz00ENYuXKlenGTpeTn5yMlJUX9/IcffkBRUZEFIyLqfExs1K3U1dWpr5sUt3rbu3dvq0tBtLl69SrGjRunvu4xNDQU8fHxOH78ODIyMvDtt9/ilVdegaenJxoaGvD+++/jqaee0ri8xdy++OILCIIAR0dH9OjRAyqVCgkJCRaLh8gcmNioW/n666/Vd5H46KOPALTsPNPRTW6rqqoQHR2t3v7t5ZdfxsWLF/HGG2/gd7/7HUaMGIEnn3wS77//Pq5evYqoqCgAwPfff4+FCxd24jtq3xdffAEAmDZtmnoYUjxGZKuY2KhbEYcdhw4divnz52PQoEEax9vy+uuvq+fNXnzxRWzYsAEODg5a63p7eyMxMVG9ldwXX3yBQ4cOmeot6CwtLQ3Xr18HAMydOxfPP/88AODSpUttbm9HZAuY2KjbKC4uxvHjxwFA/SEv/nvkyBGUlZVpfV1paal6AwEfHx+sX7++w3M5Ozvj//7v/9TP//d//9eo2A0hJutevXrhqaeewowZM9R30NBnXpGoq2Fio27jyy+/RHNzM+zs7PDHP/4RQEtPRiKRoLGxEbt379b6un/961/qObiYmBidr1scM2aMejecM2fO4OeffzbBu9BNQ0MD9uzZAwCYPXs2HBwc4OTkhJkzZwIAdu/ejaamJrPFQ2ROTGzUbYhzSxMmTEDfvn0BAMHBwXj00UcBtN2L+fe//63+Wt+Nup9++mn11ydPntTrtcZISkrC3bt3Adzrld7/dWlpKY4cOWK2eIjMiYmNAADNKgFncu7gm6xbOJNzB80q29qQJisrC9nZ2QA0P+jvf56RkYErV660eu2FCxcAAHZ2dhg2bJhe573/jhHmnNcSk3T//v3x2GOPqY9HRUXB399fow6RrWFiIxy5VIzH3v0Rz32ahmX/ysJzn6bhsXd/xJFLtnPjVfFD3MnJCc8884xG2R/+8Af1QhBtH/bl5eUAAHd3dzg5Oel1Xh8fn1btdLY7d+7g22+/BQD88Y9/1Njc+/5h2MTERFRWVpolJiJzYmLr5o5cKsbChEwUy5Uax0vkSixMyLSJ5NbU1IRdu3YBaBlK/O0cmaenJ6ZOnQqgZR5OpVJplIuXB4jXvenj/teYK4ns3r1bfWH4b3un9x9TKpXYt2+fWWIiMicmtm6sWSUgLvEKtA06isfiEq90+WHJo0eP4vbt2wC0f9Dff7ywsBAnTpzQKBNXElZXV+t97vtf4+joqPfrDSHurDJixAg8+OCDrcrDw8MxZMgQAByOJNvExNaNnc2926qndj8BQLFcibO5d80XVCcQP7x79+6NKVOmaK0zbdo0eHh4aNQX9enTB0DL7uJ1dXV6nVtMqPe3I7p/iFDXm2zcX0/b/QOvXr2Kc+fOAWg7iQPAn/70JwDA6dOnkZubq9O5iboKJrZurLSq7aRmSD1rJJfL1RdH37lzBw4ODhobIIsPqVSqHir86quvNLbBEi+0VqlU6oUkurp/wchve0/3z9fpmjDvj8vFxaVV+f1JecWKFVrfq0Qiweuvvw6gJVGy10a2homtG/N20+3+WbrWs0Z79+6FUqlfYq6ursZXX32lfv7444+rv9Z3B5H760dERGiUeXp6qr8uKSnRqT2xnkQiUfcwRSqVCl9++aVe8QHcYotsj9nuoE3WZ3SwJ/xkUpTIlVrn2SQAfGVSjA721FLaNYi9ET8/P2zYsKHD+itXrkRhYSE+//xz9XDdnDlz8Nprr6G+vh47duzAm2++qdNCkp9++glpaWkAgMDAQPXF2qKhQ4eqv87IyOiwvcbGRly8eBEA8NBDD6FHD83/vidOnEBBQQEA4KWXXlJfn9eW9PR0fPjhh8jJycHp06cxfvz4DmMg6gqY2LoxezsJ1kQ/hIUJmZAAGslNnL1ZE/0Q7O1az+V0Bbm5uTh9+jQA4JlnnsGcOXM6fE1aWho2btyIH3/8Ebdu3ULfvn3h7e2NmJgYfPzxxygpKcHKlSvx8ccft9tOXV0dFixYoH6+YsUK2NlpDpB4e3tjyJAhuHTpEn744QeUlpbC29u7zTYTExOhUCgAAL/73e9alYtJ3N7eHqtWrWq3LQB44oknsHnzZjQ1NeHzzz9nYiObwaHIbm7KED98/PwI+Mo0hxt9ZVJ8/PwITBniZ6HIjPf555+rF1vMmjVLp9eI9X57e5d3330XAwYMAAB88skn7d5rrby8HE8//TTOnz8PABg2bBgWL16ste5LL70EAKivr8df/vIXNDQ0aK1XWFiIFStWAGhJXL9tr6amRj18GhER0WFSA1oWs0RGRgLQ/dY9RF2CQAaRy+UCAEEul+v1urq6OuHKlStCXV1dJ0VmmKZmlZB6o1w4eL5QSL1RLjQ1qywdktEGDhwoABC8vb2F5uZmnV7T3Nws+Pn5CQCEwYMHa5RdvnxZCAgIENDSuRUGDRokvPvuu8KPP/4oZGRkCN99952wcuVKoXfv3uo6/v7+Qm5ubpvna2pqEiZMmKCuHxYWJnz44YfCyZMnhfPnzwvff/+9sGrVKsHT01Nd5+23327Vzueff64u37Rpk87fo61bt6pft3fvXp1fJ7LW32eyPfp85jKxGcjWEputOXXqlPoDe8GCBXq9dtGiRerXnjt3TqPs5s2bwpNPPqkub+8xbtw44ebNmx2eTy6XC9OnT++wPXt7e+Htt98WVKrWf3Q88cQTAgBBIpEIt27d0vm9lpSUCHZ2dgIAYdq0aTq/TsTfZzIXfT5zORRJNun+Jey/3UKrI/fX/+1S+MDAQHz77bc4efIkXnrpJQwZMgSenp6trilbtGgRTp8+jcDAwA7P5+7ujoMHDyI5ORl/+ctfEBYWBnd3d/To0QOenp4YNWoUVq5cievXr+Ott95qda5bt27hxx9/BACMGzdOvRekLnx8fNRza+3duoeoK5EIgo5XhpIGhUIBmUwGuVyu821MgJZtjHJzcxEcHAyptOsuo6fWcnNzMXbsWJSWlsLV1RUpKSkamyDbIv4+k7no85nLHhuRiQQHB+Obb76BVCpFdXU1pk6dil9++cXSYRF1O0xsRCY0duxYfP7555BIJLh9+zYmT56M0tJSS4dF1K3wOjYiE5s9ezZUKhWuXr0KoOXu2dOnT7dwVETdBxMbUSd49tlnLR0CUbfFoUgiIrIpTGxERGRTmNiIiMimMLEREZFNMSix1dXVYfXq1QgNDYVUKoW/vz9iYmJw69YtvdpJSUlBXFwcnnrqKXh5eUEikaB///5t1m9sbMSxY8ewZMkSDBkyBM7OznBycsKDDz6IV199tc1dE3bu3NnmDRclEolOu74TEVHXoPeqSKVSiaioKKSlpcHPzw/Tp09HXl4eduzYgaSkJKSlpal3Qe/IsmXL9LojcUpKCiZPngwA6N+/P5588kk0NjbizJkzWL9+Pb788kskJydj0KBBWl8fHh6OYcOGtTo+ZswYnWMgIiLrpndiW7duHdLS0jBu3DgcO3ZMfcPFDRs24JVXXkFMTAySk5N1amvSpEmYPXs2HnnkEQQEBGDw4MHt1rezs8Mf/vAHvPLKKxg9erT6uFwux7PPPoujR49i/vz5SE1N1fr6GTNmYO3atTrF1tm4kxnZAv4ekzXSK7E1NDRg8+bNAIAtW7Zo3EV4xYoV+Oyzz5CSkoKMjAyMHDmyw/b+8Y9/qL8Wb3nfnqioKERFRbU6LpPJsH37dvTt2xdnzpxBfn4+goKCdHlLZmdvbw8AaGpqsnAkRMYTf4/F32sia6DXHNvp06chl8sxcOBADB8+vFW5eJPGxMRE00SnB39/f3h5eQEAioqKzH5+XfXo0QOOjo6Qy+WWDoXIaHK5HI6OjujRg3s9kPXQ67dRnA9ra8dy8Xh2draRYemvsrISFRUVAABfX1+tdTIyMrBy5UooFAr4+voiKipKfQdhc5FIJPDw8MDt27dRUVGBXr16mfX8RKZSUVGBqqoq+Pj4tLqVDpEl6ZXYbt68CQAICAjQWi4ez8/PNzIs/W3ZsgVNTU14+OGHERwcrLVOUlISkpKS1M/ffvttREZGYs+ePfDx8Wm3/fr6etTX16ufKxQKg2Pt1asXGhoaUFJSAoVCAVdXV0ilUtjZ2fEDgqyWIAhQqVRQKpWorq5GbW0tevXqxT/OyOroldiqq6sBAM7OzlrLXVxcAABVVVVGhqWf8+fPY926dQCAd999t1W5n58f1q5di+nTp2PAgAGoq6vD2bNn8dprryElJQXTpk1DWlpau/ME8fHxiIuLM0m8EokEvr6+cHJygkKhQHl5OVQqlUnaJupsdnZ2cHZ2hr+/P2QymaXDIWqlyw+M3759GzNnzoRSqcTy5cvx5JNPtqozefJk9WUCQMsdi6OjozFx4kSMHDkS586dw969e/Hcc8+1eZ7Y2FisWLFC/VyhUOh0d+T2yGQyyGQyqFQqNDU1MbmR1bOzs0OPHj1gZ8e9Hch66ZXYxFWQtbW1WstramoAAG5ubkaGpZuqqipMnToVeXl5mD17NtavX6/X611dXbF06VIsWbIER48ebTexOTo6wtHR0diQtbKzs4ODg0OntE1E1N3o9WdXv379AACFhYVay8Xj5lhqr1Qq8fTTTyMzMxOTJk1CQkKCQX9FhoSEAACKi4tNHSIREVmAXpkgPDwcAJCZmam1XDw+dOhQI8NqX1NTE5599lkkJyfj0UcfxVdffWVwj0dcSSnODxIRUdemV2IbP348ZDIZcnJykJWV1ap8//79AIDo6GiTBKeNIAiYP38+Dh06hGHDhuHw4cNGJaUDBw4AaPsSBiIi6lr0SmwODg5YsmQJAGDx4sXqOTWgZUut7OxsREZGauw6snnzZoSFhSE2NtYkAS9fvhwJCQkICwvDsWPH4OHh0eFr4uPjUV5ernGssbERcXFx2LdvH5ycnDB//nyTxEdERJal96rIVatW4fjx40hNTUVISAgiIiKQn5+P9PR0eHl5Yfv27Rr1y8vLce3aNa1zWNu2bcO2bdsAtCQaoGWua+zYseo6W7duVfemvvnmG3z00UcAgMDAQKxcuVJrjG+88QbCwsLUz998803ExcVh1KhRCAwMhEKhQFZWFoqKiiCVSpGQkIC+ffvq+60gIiIrpHdik0qlOHHiBOLj47Fr1y4cPHgQnp6emDdvHt555502L97WprCwEOnp6RrHGhoaNI7dfyG0OB8GAN9//32b7c6bN08jsa1evRpnzpzBtWvXkJmZCUEQEBAQgAULFuDll19u824ARETU9UgEbs9tEIVCAZlMBrlcDnd3d0uHQ0Rk0/T5zOVVlkREZFOY2IiIyKYwsRERkU1hYiMiIpvCxEZERDaFiY2IiGwKExsREdkUJjYiIrIpTGxERGRTmNiIiMimMLEREZFNYWIjIiKbwsRGREQ2hYmNiIhsChMbERHZFCY2IiKyKUxsRERkU5jYiIjIpjCxERGRTWFiIyIim8LERkRENoWJjYiIbAoTGxER2RQmNiIisilMbEREZFOY2IiIyKYwsRERkU1hYiMiIpvCxEZERDaFiY2IiGwKExsREdkUq09sdXV1WL16NUJDQyGVSuHv74+YmBjcunVLr3ZSUlIQFxeHp556Cl5eXpBIJOjfv3/nBE1ERBbTw9IBtEepVCIqKgppaWnw8/PD9OnTkZeXhx07diApKQlpaWkYMGCATm0tW7YMFy5c6OSIiYjI0qy6x7Zu3TqkpaVh3LhxuH79Ovbs2YP09HSsX78eZWVliImJ0bmtSZMmYd26dTh69CguX77ciVETEZElSQRBECwdhDYNDQ3w9vaGXC5HZmYmhg8frlEeHh6O7OxsnDt3DiNHjtSr7ZKSEvj5+SEoKAh5eXkGxadQKCCTySCXy+Hu7m5QG0REpBt9PnOttsd2+vRpyOVyDBw4sFVSA4BZs2YBABITE80dGhERWTGrTWzifNiIESO0lovHs7OzzRYTERFZP6tdPHLz5k0AQEBAgNZy8Xh+fr5Z4qmvr0d9fb36uUKhMMt5iYhIP1bbY6uurgYAODs7ay13cXEBAFRVVZklnvj4eMhkMvUjMDDQLOclItvUrBJwJucOvsm6hTM5d9CsssrlDl2S1fbYrE1sbCxWrFihfq5QKJjciMggRy4VIy7xCorlSvUxP5kUa6IfwpQhfhaMzDZYbY/N1dUVAFBbW6u1vKamBgDg5uZmlngcHR3h7u6u8SAi0teRS8VYmJCpkdQAoESuxMKETBy5VGyhyGyH1Sa2fv36AQAKCwu1lovHg4KCzBYTEZExmlUC4hKvQNugo3gsLvEKhyWNZLWJLTw8HACQmZmptVw8PnToULPFRERkjLO5d1v11O4nACiWK3E29675grJBVpvYxo8fD5lMhpycHGRlZbUq379/PwAgOjrazJERERmmtKrtpGZIPdLOahObg4MDlixZAgBYvHixek4NADZs2IDs7GxERkZq7DqyefNmhIWFITY21uzxEhF1xNtNatJ6pJ1Vr4pctWoVjh8/jtTUVISEhCAiIgL5+flIT0+Hl5cXtm/frlG/vLwc165dQ3Fx68nXbdu2Ydu2bQCAxsZGAEBxcTHGjh2rrrN169Y2LwgnIjLW6GBP+MmkKJErtc6zSQD4yqQYHexp7tBsilUnNqlUihMnTiA+Ph67du3CwYMH4enpiXnz5uGdd95p8+JtbQoLC5Genq5xrKGhQeMYL7omos5kbyfBmuiHsDAhExJAI7lJfv13TfRDsLeTaHk16cpqN0G2dtwEmYgMxevY9KfPZ65V99iIiGzRlCF++K+HfHE29y5Kq5TwdmsZfmRPzTSY2IiILMDeToJxA3tbOgybZLWrIomIiAzBxEZERDaFiY2IiGwKExsREdkUJjYiIrIpTGxERGRTmNiIiMimMLEREZFNYWIjIiKbwsRGREQ2hYmNiIhsChMbERHZFCY2IiILaG5oxo9v/YhT/3sKgop3DzMl7u5PRGQBp949hZPrTgIAnPs4Y8SLIywcke1gj42IyMyqS6rVSQ0Avl/5PRqqGywYkW1hYiMiMrPcE7lobmiG9xBveAR7QFmpRM6xHEuHZTOY2IiIzOzmqZsAgOAngjFw8kAAQGFaoSVDsilMbEREZnbzZEti6/dYP/iP8gcAFGcUWzIkm8LFI0REZlRXUYfSS6UAWhJbdXE1AKAoowiCIEAikVgyPJvAHhsRkRkVnikEBMAzxBOuPq7wGuwFe0d71MvrUZFTYenwbAITGxGRGZVklQAA+o7uCwCw72kP33BfAEDRuSKLxWVLmNiIiMzo7n/uAgB6D+qtPuY3yg9Ay3AkGY+JjYjIjO785w4AoHfIvcTmM9SnpeznOxaJydYwsRERmZHYY/MM8VQf6xXcCwBQkcs5NlNgYiMiMpN6RT1qSmsAaPbYeg1oSWyVuZUQBO4baSwmNiIiM7l7o6W35uLtAkd3R/VxWT8ZIAEaaxvViY8Mx8RGRGQmYmLzfMBT47i9gz1kgTIAQMUvHI40FhMbEZGZyG/KAQCyIFmrMo9gDwAtw5FkHCY2IiIzURQqAADuge6tytQLSNhjM5pBia2urg6rV69GaGgopFIp/P39ERMTg1u3bundVkVFBZYtW4agoCA4OjoiKCgIy5cvR2VlZau6eXl5kEgkHT5iYmI0Xrdz585268+ZM8eQbwMRkV4UBS2JTRx2vJ/HAA8AXBlpCnrvFalUKhEVFYW0tDT4+flh+vTpyMvLw44dO5CUlIS0tDQMGDBAp7bKy8sxbtw43LhxAwMGDMCMGTNw+fJlbNy4Ed999x3OnDkDT897Y9Gurq544YUX2mxvz549UCqViIiI0FoeHh6OYcOGtTo+ZswYneIlIjKGvKBlKNI9oO0eW+UvleYMyTYJevrrX/8qABDGjRsnVFVVqY+vX79eACBERkbq3NbcuXMFAMLMmTOFxsZG9fGXXnpJACC88MILOrd15coVAYDg5OQkyOVyjbIdO3YIAIQ1a9bo3F5H5HK5AKDVuYiI2vK+3/vCWqwVbp271aos/1S+sBZrhQ/7f2iByKyfPp+5eg1FNjQ0YPPmzQCALVu2wNXVVV22YsUKDB06FCkpKcjIyOiwreLiYuzevRsODg7YunUrevS413l877334OXlhYSEBJSWluoUW0JCAgBg+vTpcHdv/dcQEZElNTc0o7qkZSd/bUORbv5uAICq4ipey2YkvRLb6dOnIZfLMXDgQAwfPrxV+axZswAAiYmJHbZ15MgRqFQqREREwMfHR6PM0dER0dHRaG5uxrffftthW4IgYNeuXQCAP/3pT7q8FSIis6oqqgKElqX9zn2cW5W7+bUktub6ZigrleYOz6boNcd24cIFAMCIESO0lovHs7OzTdLW9u3bdWrr1KlTyMvLg7e3NyZNmtRmvYyMDKxcuRIKhQK+vr6IiopCZGRkh+0TERnr/vk1iV3re671kPaA1EMKZaUS1SXVcOrlZO4QbYZeie3mzZa7vgYEBGgtF4/n5+ebtS1xGHLOnDkaQ5q/lZSUhKSkJPXzt99+G5GRkdizZ0+rXuNv1dfXo76+Xv1coVB0GBcRkai9pf4iVz/XlsRWXA2vB73MFZrN0Wsosrq6ZXzY2bl1NxoAXFxcAABVVVVma6u+vh779u0D0PYwpJ+fH9auXYvz589DLpejpKQEhw4dQlhYGFJSUjBt2jQ0Nze3e574+HjIZDL1IzAwsN36RET3a2+pv8jVt2XdQlVxx5+h1LYuf4H24cOHUVFRgbCwMIwaNUprncmTJ2PNmjUYNmwY3N3d4ePjg+joaPz0008IDQ3FuXPnsHfv3nbPExsbC7lcrn4UFBR0xtshIhslDkW6Bbi1WUecZ6surjZLTLZKr8QmroKsra3VWl5T07J5p5tb2z84U7clDkMasmjE1dUVS5cuBQAcPXq03bqOjo5wd3fXeBAR6aqqsKUX1m6PzY89NlPQK7H169cPAFBYWKi1XDweFBRklrYqKyvx7bffQiKRYO7cuR2eU5uQkBAALZcfEBF1FvXikQ7m2ACgpoQ7/BtDr8QWHh4OAMjMzNRaLh4fOnSoWdrau3cv6uvrERERoVMy1aaiomX7GnFOj4ioM1TdaumFufdtO7GJQ5HssRlHr8Q2fvx4yGQy5OTkICsrq1X5/v37AQDR0dEdtjVlyhTY2dnh5MmTrS7Crq+vR2JiIuzt7TF16tQ22zBmGFJ04MABAG1fdkBEZCxBJaCmrKUX5uLT9h/R4uIRzrEZR6/E5uDggCVLlgAAFi9erJ4HA4ANGzYgOzsbkZGRGDlypPr45s2bERYWhtjYWI22/Pz88Nxzz6GhoQGLFi1CU1OTuuy1115DWVkZnn/+eXh7e2uNJT8/H6dOnYJUKsXs2bPbjTs+Ph7l5eUaxxobGxEXF4d9+/bByckJ8+fP1+2bQESkJ2WlEkJzy24i2i7OFnGOzTT03gR51apVOH78OFJTUxESEoKIiAjk5+cjPT0dXl5e2L59u0b98vJyXLt2Tesc1ocffoi0tDQcOHBAvarx8uXLuHTpEkJCQrBhw4Y24/jyyy8hCAKio6Mhk7U9GQsAb775JuLi4jBq1CgEBgZCoVAgKysLRUVFkEqlSEhIQN++ffX9VhAR6UTsrTm6O6KHY9sfu+JQZL28Ho11jejp1NMs8dkavZf7S6VSnDhxAm+99RacnZ1x8OBB5OfnY968ecjMzNR5Z38A6NOnD86ePYuXXnoJDQ0N+PrrryGXy7F06VKcPXtWY2f/3/ryyy8BAM8//3yH51m9ejUef/xxFBQU4JtvvsGPP/4IZ2dnLFiwAFlZWZg5c6bOMRMR6aum9NdhSO/25/IdZY7oIW1JfOK+kqQ/icDdNg2iUCggk8kgl8u59J+I2nX1q6vY+8xeBIwLwF9S/9Ju3Y3BG1GZV4mY0zEIfJQbQYj0+czt8hdoExFZO/XCEa+OV19zns14TGxERJ2stqxlIwpn77YXjojUu49wKNJgTGxERJ1MPcemR4+NS/4Nx8RGRNTJ1D02r457bNwI2XhMbEREncyQOTb22AzHxEZE1Ml0Xe4PAK4+v24QX6Z9g3jqGBMbEVEn02coUqwjJkPSHxMbEVEnElQCastbEpsuQ5Fir66mrAa8zNgwTGxERJ1IWamEqkkFQLcem5jYmuqa0FjT2Kmx2SomNiKiTqTrPpEiBxcH9HDqofFa0g8TGxFRJ9Jnfk2kHo7kPJtBmNiIiDqRPisiReJcHBObYZjYiIg6kT7XsInEJMgl/4ZhYiMi6kSGDEVyyb9xmNiIiDqRusemz1DkfUv+SX9MbEREnai21PAem/ha0g8TGxFRJzJmjo09NsMwsRERdSJxjs2goUjOsRmEiY2IqBOJyUmv69i8uCrSGExsRESdRBD02ydSdP+qSO4XqT8mNiKiTqLvPpEiMQk2NzSjobqhU2KzZUxsRESdRByG1HWfSFFP557o6dwTAIcjDcHERkTUSQy5OFvk3OfX4UiujNQbExsRUScxZKm/SH0tWzl7bPpiYiMi6iSGLPUXcWWk4ZjYiIg6iSFL/UUcijQcExsRUScRk5JBiY1DkQZjYiMi6iTGDEWqExuHIvXGxEZE1EnUNxk1ZPFIHyY2QzGxERF1EmOW+6sXj3AoUm9MbEREncSQe7GJuHjEcGZNbHV1dVi9ejVCQ0MhlUrh7++PmJgY3Lp1S++2KioqsGzZMgQFBcHR0RFBQUFYvnw5KisrtdafN28eJBJJm49PPvnEyHdHRHSPIAj35tiMuY6NQ5F6032PFyMplUpERUUhLS0Nfn5+mD59OvLy8rBjxw4kJSUhLS0NAwYM0Kmt8vJyjBs3Djdu3MCAAQMwY8YMXL58GRs3bsR3332HM2fOwNPTU+trJ0+eDF9f31bHBw0aZNT7IyK6n6H7RIrEZFivqEdzQzPsHexNGp8tM1tiW7duHdLS0jBu3DgcO3YMrq6uAIANGzbglVdeQUxMDJKTk3Vqa/ny5bhx4wZmzpyJPXv2oEePlrexdOlSbNq0CStWrMDOnTu1vvaNN97AhAkTTPCOiIjaJva09N0nUiT1kEJiL4HQ3HKHADd/N1OHaLPMMhTZ0NCAzZs3AwC2bNmiTmoAsGLFCgwdOhQpKSnIyMjosK3i4mLs3r0bDg4O2Lp1qzqpAcB7770HLy8vJCQkoLS01PRvhIhIR8ZcnA0AEjsJnHtzns0QZklsp0+fhlwux8CBAzF8+PBW5bNmzQIAJCYmdtjWkSNHoFKpEBERAR8fH40yR0dHREdHo7m5Gd9++61pgiciMoAx+0SKOM9mGLMMRV64cAEAMGLECK3l4vHs7GyTtLV9+/Y22/rqq69w4MABNDc3Izg4GNHR0QgLC+vwvERE+jDm4myR+lo2LvnXi1kS282bNwEAAQEBWsvF4/n5+Z3e1qZNmzSev/7661i4cCE2btyoMaz5W/X19aivr1c/VygUHcZKRN2XMdtpicTeHoci9WOWocjq6moAgLOz9h+wi0vLD6+qqqrT2ho+fDg++eQTXL9+HbW1tfjll1+wZcsWeHh4YOvWrVi5cmW7542Pj4dMJlM/AgMDO4yViLovY+fY7n8thyL1020u0F62bBkWLFiAkJAQODk5ITg4GIsWLcLJkyfh4OCAzZs3o6CgoM3Xx8bGQi6Xqx/t1SUi4lCk5ZglsYmrIGtrtf9wampa/rJxc+t4Oasp2wKAwYMH4+mnn0ZTUxN++OGHNus5OjrC3d1d40FE1BZjLs4WscdmGLMktn79+gEACgsLtZaLx4OCgszaligkJARAy6UERESmYJKhSG6rZRCzJLbw8HAAQGZmptZy8fjQoUPN2paooqICwL35OSIiY5liuT/vom0YsyS28ePHQyaTIScnB1lZWa3K9+/fDwCIjo7usK0pU6bAzs4OJ0+ebHURdn19PRITE2Fvb4+pU6fqFFt9fT0OHz4MoO1LCIiI9KGxT6Qxc2xe7LEZwiyJzcHBAUuWLAEALF68WD0PBrRsqZWdnY3IyEiMHDlSfXzz5s0ICwtDbGysRlt+fn547rnn0NDQgEWLFqGpqUld9tprr6GsrAzPP/88vL291cd//vlnfPHFFxrL9QGgrKwMc+bMQUFBAcLDwzF+/HiTvm8i6p6M3SdSJPbY6u7UQVAJJomtOzDbXpGrVq3C8ePHkZqaipCQEERERCA/Px/p6enw8vLC9u3bNeqXl5fj2rVrWue9PvzwQ6SlpeHAgQMICwvDqFGjcPnyZVy6dAkhISHYsGGDRv2SkhL8+c9/xrJlyzBq1Ch4eXmhqKgIGRkZqKqqQkBAAPbu3QuJRNKp3wMi6h7E3pqDm4NB+0SKxDk2QSWg7m6d+jm1z2zL/aVSKU6cOIG33noLzs7OOHjwIPLz8zFv3jxkZmbqvLM/APTp0wdnz57FSy+9hIaGBnz99deQy+VYunQpzp4922pn/9DQUCxfvhyDBg3CxYsXsW/fPpw7dw4hISFYs2YNsrOzERoaauq3TETdlDH3YbufvYM9pB5SjTapYxJBENi/NYBCoYBMJoNcLufSfyLScPXrq9g7cy8CxgbgL2f+YlRbm0I34e5/7mJeyjwEPa77am9bo89nbre5QJuIyFzEoUhj5tdE6m21Stlj0xUTGxGRiZlqKPL+NjgUqTsmNiIiEzNlj427j+iPiY2IyMTEYUNT9Nh4LZv+mNiIiEzMlImNu4/oj4mNiMjEOqPHxsSmOyY2IiITM2mPzZurIvXFxEZEZEKCyjT7RIp4F239MbEREZlQ3d17+zqaYgss9VBkeS33i9QRExsRkQmJQ4ZOnk6w72lvdHvq/SKbBSgrlUa31x0wsRERmZAp59cAoIdjDzjKHFva5nCkTpjYiIhMyNSJDeC2WvpiYiMiMqHOSGxc8q8fJjYiIhMSE5uzt+nuncaVkfphYiMiMiH22CyPiY2IyIQ6ZY6NO/zrhYmNiMiE1InNqxN6bKXssemCiY2IyIRMueuIyNXHFQBQfbvaZG3aMiY2IiITaFYJOJNzB5XFVQAAqQl2HRG5+rUktrKbcnyTdQtncu6gmbuQtKmHpQMgIurqjlwqRlziFdy+W4sXqhoAALN3Z+DNZ8MxZYif0e1nVdUBAO4WKrDsX1kAAD+ZFGuiHzJJ+7aGPTYiIiMcuVSMhQmZKJYrIa1pAgCo7CQoaGjCwoRMHLlUbHT7b/z4HwCAY30z7BtVAIASudIk7dsiJjYiIgM1qwTEJV6BOCjoXNMIAKhz6QFBIgEAxCVeMXjYUGy/3tEeTfYt7Tn9eg6xRWPat1VMbEREBjqbexfF8nsbEztVtySdWpeeAFqST7FcibO5d41rXyJBnWtLm2JiM0X7toqJjYjIQKVVmrvti0lHTEJt1TOk/bpfk6VzdWO79YiJjYjIYN5uUo3nYtIRk1Bb9QxpX1uPzdj2bRUTGxGRgUYHe8JPJoXk1+di0hGHIiVoWb04OtjT6PbFNp3u67EZ276tYmIjIjKQvZ0Ea6IfAtCSZO4fihST3Zroh2BvJ9HegB7tq4cifz2HKdq3VUxsRERGmDLEDx8/PwK+Mqm6N1Xn0hO+Mik+fn6E0deZie07/LqtlngOU7VviySCIHCdqAEUCgVkMhnkcjnc3d0tHQ4RWVizSsD7gR9AWVSF0ftnYdLvTduT+jnxGvY8/S84PdgbEYnPYXSwZ7fqqenzmcudR4iITMBOAjSWt+wTOW5UX5MnHXd/NwCAfWU9xg3sbdK2bQ2HIomITEBZoURzQzMAwNXX1eTtu/m1JLaa2zVQNatM3r4tMSix1dXVYfXq1QgNDYVUKoW/vz9iYmJw69YtvduqqKjAsmXLEBQUBEdHRwQFBWH58uWorKxsVbexsRHHjh3DkiVLMGTIEDg7O8PJyQkPPvggXn31VZSVlWk9x86dOyGRSNp8zJkzR++4iYjuV13SsvO+tJcUPRxNPxjm4u0CSABBJaC2nLevaY/e332lUomoqCikpaXBz88P06dPR15eHnbs2IGkpCSkpaVhwIABOrVVXl6OcePG4caNGxgwYABmzJiBy5cvY+PGjfjuu+9w5swZeHreW8aakpKCyZMnAwD69++PJ598Eo2NjThz5gzWr1+PL7/8EsnJyRg0aJDW84WHh2PYsGGtjo8ZM0bfbwMRkYaqX3f1F3tWpmbXww4uXi6oKa1BdXG1+lY21JreiW3dunVIS0vDuHHjcOzYMbi6tnxzN2zYgFdeeQUxMTFITk7Wqa3ly5fjxo0bmDlzJvbs2YMePVrCWbp0KTZt2oQVK1Zg586d6vp2dnb4wx/+gFdeeQWjR49WH5fL5Xj22Wdx9OhRzJ8/H6mpqVrPN2PGDKxdu1bft0xE1KHq4pYem3iLmc7g6ufakthKeF+29ug1FNnQ0IDNmzcDALZs2aJOagCwYsUKDB06FCkpKcjIyOiwreLiYuzevRsODg7YunWrOqkBwHvvvQcvLy8kJCSgtLRUfTwqKgp79uzRSGoAIJPJsH37dgDAmTNnkJ+fr8/bIiIymphsOmN+TSS2LfYOSTu9Etvp06chl8sxcOBADB8+vFX5rFmzAACJiYkdtnXkyBGoVCpERETAx8dHo8zR0RHR0dFobm7Gt99+q1Ns/v7+8PLyAgAUFRXp9BoiIlMRk01n9tjEYU6xd0ja6TUUeeHCBQDAiBEjtJaLx7Ozs03S1vbt23VqCwAqKytRUVEBAPD19dVaJyMjAytXroRCoYCvry+ioqIQGRmpU/tERO1RD0V2Yo/Nxdel5VwcimyXXont5s2bAICAgACt5eJxXYYCTdkW0DI02tTUhIcffhjBwcFa6yQlJSEpKUn9/O2330ZkZCT27NnTqtdIRKQPRYECACALlHXaOdhj041eQ5HV1S3fTGdnZ63lLi4tf01UVXU8/mvKts6fP49169YBAN59991W5X5+fli7di3Onz8PuVyOkpISHDp0CGFhYUhJScG0adPQ3Nzc7jnq6+uhUCg0HkREInmBHADgHth5OxGJw5ycY2tfl79A+/bt25g5cyaUSiWWL1+OJ598slWdyZMnY82aNRg2bBjc3d3h4+OD6Oho/PTTTwgNDcW5c+ewd+/eds8THx8PmUymfgQGBnbWWyKiLkbVrELVrZZkY44eW1URE1t79Eps4irI2lrtFwfW1NQAANzcOr6OwxRtVVVVYerUqcjLy8Ps2bOxfv36Ds/72xiWLl0KADh69Gi7dWNjYyGXy9WPgoICvc5FRLaruqQaqiYVJPaSTl08IvYGFYUKCCpu89sWvebY+vXrBwAoLCzUWi4eDwoK6vS2lEolnn76aWRmZmLSpElISEiAnZ3+HdCQkBAALZcftMfR0RGOjo56t09Etk+cX3Pzd4OdfecNhLn5u0FiJ4GqUYXq29WddjF4V6fXTyA8PBwAkJmZqbVcPD506NBObaupqQnPPvsskpOT8eijj+Krr76Cg4NDx29AC3ElpTinR0SkL3F+rTOHIQHAvqc93H7dDFlMptSaXolt/PjxkMlkyMnJQVZWVqvy/fv3AwCio6M7bGvKlCmws7PDyZMnNS7CBloWaiQmJsLe3h5Tp07VKBMEAfPnz8ehQ4cwbNgwHD582KikdODAAQBtX3ZARNQRMcl05sIRkaxfS/KU35R3+rm6Kr0Sm4ODA5YsWQIAWLx4sXoeDGjZUis7OxuRkZEYOXKk+vjmzZsRFhaG2NhYjbb8/Pzw3HPPoaGhAYsWLUJTU5O67LXXXkNZWRmef/55eHt7a7xu+fLlSEhIQFhYGI4dOwYPD48O446Pj0d5ebnGscbGRsTFxWHfvn1wcnLC/Pnzdf4+EBHdzxwrIkXiOZjY2qb3XpGrVq3C8ePHkZqaipCQEERERCA/Px/p6enw8vJSb20lKi8vx7Vr17TOYX344YdIS0vDgQMHEBYWhlGjRuHy5cu4dOkSQkJCsGHDBo3633zzDT766CMAQGBgIFauXKk1xjfeeANhYWHq52+++Sbi4uIwatQoBAYGQqFQICsrC0VFRZBKpUhISEDfvn31/VYQEQEwzzVsIvbYOqZ3YpNKpThx4gTi4+Oxa9cuHDx4EJ6enpg3bx7eeeedNi+41qZPnz44e/Ys1q5di4MHD+Lrr7+Gj48Pli5diri4uFa9MXE+DAC+//77NtudN2+eRmJbvXo1zpw5g2vXriEzMxOCICAgIAALFizAyy+/3ObdAIiIdGGJoUjOsbVNIggC14waQJ/blBORbVvvvx7VxdX475/+G/6j/Dv1XNcOXcO/pv8L/qP88d8//Xennsua6POZ2+Uv0CYisqTmhmb13o1cPGIdmNiIiIxQVVQFCIC9oz1cvDr/siExedaU1qBJ2dRB7e6JiY2IyAgVuS1z/7J+MkjsJJ1+PidPJzi4tly3W5lX2enn64qY2IiIjFCR05LYPB/wNMv5JBKJ+lx3c+6a5ZxdDRMbEZER7t5oSS69BvYy2znFc4nnJk1MbERERjB3j+3+c4nnJk1MbERERhB7TZ4DzZfY2GNrHxMbEZGBBEG4l9gs0GNjYtOOiY2IyEC1ZbVoqG4AJIBHsIfZziv2DivzKqFqUpntvF0FExsRkYHEHpMsUIYejnrvUGgw9wB32DvaQ9WoUm/ATPcwsRERGUhcbm/OFZEAILGToFcw59nawsRGRGSgsitlAIDeg3qb/dziOcuvlndQs/thYiMiMlDZ5ZbE5j3Eu4Oapiees/RyaQc1ux8mNiIiA5VeakkqlkxsZZfKzH5ua8fERkRkgIbqBlTmVgIAvAdbsMd2qRS8+5gmJjYiIgOI82suPi5w7uNs9vP3Du0Nux52qFfUQ1HIm47ej4mNiMgA4tyWJYYhAcDewV69gESc66MWTGxERAaw5PyaSDz37Yu3LRaDNWJiIyIyQElmCQDA+2HLJTafoT4tsZwvsVgM1oiJjYhIT6pmFW79dAsAEDAmwGJx9B3dFwBQmFZosRisERMbEZGeyi6XobGmEQ5uDujzYB+LxeH/iD8gASpzK1FTWmOxOKwNExsRkZ7EHlLf0X1hZ2+5j1GpTAqvh7xaYkpnr03ExEadTlAJqL1Ti3pFPa+3IZugTmxj+lo4knsxcDjyHvNtR03dyu2Lt5GdkI2cIzm4c/0OmpRNAABpLykCxgZg0PRBePi5h+Ho7mjhSIn0JyaRgLGWm18TBYwNQNb2LBSmMrGJmNjIpEoulCB5dTKuHbqmtVxZocSN727gxnc38P3K7zFuxTiMWzGOCY66DMUtRcvGwxIg8NFAS4eDoIggAEDBmQI01jaip3NPC0dkeUxsZBJNyiYkr01G6nupEFQCJHYShM0Iw+BnB8NvpB9k/WRobmjGnWt3kPN9DrJ2ZOHOtTtIiUtB5qeZiP40GiFTQyz9Nog69Mv3vwAA/Ef5w7m3+Xcc+a3eg3rDPdAdigIF8v+djwemPGDpkCyOiY2MVpheiIMvHMSda3cAAA/NeggT101En0Gaq8Xse9rDb4Qf/Eb4YfzK8bhy4Ap+iP0BFTkV2PXULgybPwxPbnoSDi4OlngbRDrJOZoDABg4eaCFI2khkUgwcNJAnP/nedw4eoOJDVw8QkYQBAHpH6Vjx2M7cOfaHbj6uuLZr5/F7H2zWyW135LYSTB49mAszF6IsSvGAhIga0cWPn3kU/WODkTWpqm+Cf/57j8AYFUJRIzl2jfXuEALTGxkoPqqehyYcwBHlh2BqkmFh2Y/hEVXFiFsRphe7fR07onJ6ydjXvI8uPm7ofxqOT4d/SnO7zjfSZETGS7nWA7q5fVw83dD4DjLz6+JHnjyAfR07onK3EoUnSuydDgWx8RGert98TY+feRTXN57GXY97DBl4xTM2jMLTr2cDG4z6PEgLMhagIGTB6KprgmHYg7h4LyDaKhpMGHkRMa5tPsSAOChPzwEiZ3EwtHc4+DigNDoUAD3YuzOmNhIL+d3nMe2Mdtw59oduAe4Y96/52HM0jGQSIz/T+7i5YK5385F1N+iILGT4MJnF7Bt9Db17UGILKmmtAZXD1wFAAydO9TC0bQ29PmWmLJ2ZqGxttHC0VhWt0tsdXV1WL16NUJDQyGVSuHv74+YmBjcunXL0qFZtfqqenwz/xscijmEpromPDDlASw4v8DkwzESOwki3ozAn3/8M1z9XFF2pQyfPvIpLnxxwaTnIepIs0rAmZw7+CbrFs7k3MFPn5xDc0Mz+o7pC/9R/pYOr5UHnnwAHv09oKxQIvvL7FbxN6u6z9ybROhGM41KpRITJ05EWloa/Pz8EBERgby8PJw9exZeXl5IS0vDgAEDdGpLoVBAJpNBLpfD3d29kyO3rJzvc5D4YiLkN+WQ2Ekw8Z2JeOyNxzp9KKb6djW+fv5r/HK8ZXn1w3MfxuQPJsPFy6VTz0t05FIx4hKvoFiuBAA41jVh9v93ET2VzZi5ayYefu5hC0eo3ZkPzuDYimNw8HVB0sJw3Kq9N5TvJ5NiTfRDmDLEz4IRGk6fz9xu1WNbt24d0tLSMG7cOFy/fh179uxBeno61q9fj7KyMsTExFg6RKtSVVSFb2K+QcKkBMhvyuER7IE///hnRLwZYZb5BVcfV8w9MhcT4iYAEuDilxexJWwLzm8/D1WzqtPPT93TkUvFWJiQqU5qADAypRA9lc246+2Ewoc8LRhd+0b9zyg4+LigoaQGXsdyNcpK5EosTMjEkUvFForOfLpNj62hoQHe3t6Qy+XIzMzE8OHDNcrDw8ORnZ2Nc+fOYeTIkR22Z8s9tprSGqRtTEPaB2loqmvZCmv0S6Pxu7//Dg6ulrnGrDC9EEn/Lwm3s1tuqOg12AsT4iYgbEaYRTehJdNpVgk4m3sXpVVKeLtJMTrYE/bt/AHVGfWbVQIee/dHjaTW/+pdTDzUMmpwZE4oMNQbp16PavdcltKsEjBr7h4M+9c1qCTA0WdDURJ07/NJAsBXJm0VvzV87zuiz2dut7lA+/Tp05DL5Rg4cGCrpAYAs2bNQnZ2NhITE3VKbLamubEZN0/dxPl/nseVfVfQ3NAMoGXLoP96778svnVQwJgA/Pe5/0b6xnSc/NtJlF0uw75Z+yALkmHEiyMw9E9D4RHkYdEYyXC/HfoD2h8666z6Z3Pvaia1n+/i8cMtPZ+Lo31QHOQOyJU4m3sX4wb2Nu5Nd4KzuXdxPsgNroM98cDlu/jdVzeQPH0gbg2QAQAEAMW/id9avvem1G0S24ULLYsPRowYobVcPJ6dnW22mCypoaYBt7Nvo+hcEQpTC3HjyA0oK+/94vk/4o+INyMwaPogk6x4NAX7nvZ49NVHMeLFEUhdn4qfNv8Eeb4cJ946gRNvnYDXYC8MnDwQfR/pC78RfvB8wNOqlmSTduLQ32+HjsShs4+fH6HxAdiZ9UurlIAgoHdJLR5OL0HwtQoAQO6gXsiIvLfhcWmVEtZIjCt1Sn84VzfCP78Kk/b9B9cf7o0rj/igoo8TIJGo61nT996Uuk1iu3nzJgAgIED7btzi8fz8fLPEk3MsB/VV9RBUAiC07OLR7r8qoeM6gqDRXmNtIxqqGlCvqEdDVQPqKuqgKFBAXiBHbVltq5icejshbEYYRv3PKKtc9SWSekgR9U4UIt6MwNUDV5G5LRM3T95E2eUylF2+d2mAvYM93APc4R7oDjc/NzjKHOHo3vLo6dITdj3stD4kdpK2k3lbh9tL/rrk1t/8z9eYIWivzNhyE7ZtyGtVKgH/PPIzHqhrhETLpIgEwD+v/QjPSYNgZweoVMD2oz8jtE77cnYJgO1Xf0CvSaGwk0igEgRsP3Ydg+6r/9vz7Lh8HNLR/VBbWoPCy6V49mwRnGsa1W/h0hhfZDzeF8J9fyR5u0m1nt/SxLiae9jh+KwQPPJjAR48X4bQi3cQevEOqt0dcNfbGRVlTUjufwM7frqJB5pUECSAyk4CQQJAIoFK0vI7/Un8vxEw42H19/6TgxfRr41LCSRAh/UFCXAztBeEX+vHJV7Bfz3ka/Jh3W6T2KqrqwEAzs7aNy11cWlZaVdVVaW1vL6+HvX19erncrkcQMu4ryG+WvwV7t64a9BrTcXFywV+I/zgO9wX/Sf2R99H7t000dD3ZW79n+6P/k/3R93dOuSeyMXNUzdx+8JtlF4uhVKpRM0vNSj+xfYny7syXTam+vrgvYuOddmh8eChy3rVP5p0Rf21HYAaewkKBnrg8iM+qPRyBhrrALR8GHu7OyKsdw+r/D8S1rsHvBybUaqoRyOA1EgvXA9xwkPnSuGfJ0cPhRLeCgWu3SjBNQADfn2058tdWeqvH9QhhvbqqyQS5C27NxV0q7QWJ7LzMXpAxwtyxO+3LstCuk1iM1Z8fDzi4uJaHQ8MtJ5tdfRWBuDor4//tXAsRNakGcD1Xx+/cROA59tmjscIBQCsZoM6AcCHmof+60Mt9dpRVVUFmUzWbp1uk9hcXV0BALW1rYfgAKCmpgYA4ObmprU8NjYWK1asUD9XqVS4e/cuevfubTVzUNZMoVAgMDAQBQUFNreKtKvhz8J68GehO0EQUFVVBX//jqdJuk1i69evHwCgsFD7XWbF40FBQVrLHR0d4eioeTNMDw8P0wXYTbi7u/M/sJXgz8J68Gehm456aqJucwFQeHg4ACAzM1NruXh86FDr2wOOiIh0120S2/jx4yGTyZCTk4OsrKxW5fv37wcAREdHmzkyIiIypW6T2BwcHLBkyRIAwOLFi9VzagCwYcMGZGdnIzIysltenG0Ojo6OWLNmTavhXDI//iysB38WnaPbbKkFtGyCPGHCBKSnp6s3Qc7Pz0d6erremyATEZF16laJDWi5bU18fDx27dqFgoICeHp6YsqUKXjnnXfavHibiIi6jm6X2IiIyLZ1mzk2IiLqHpjYyOySk5MhkUjafIwdO9bSIdoc3jneekyYMKHd3/8jR45YOsQur9tcoE3WZ+DAgXjssce0HifTUSqViIqKUt85fvr06cjLy8OOHTuQlJTERVMW8swzz6h3RLpf3759LRCNbWFiI4t57LHHsHPnTkuHYfPuv3P8sWPH1B+mGzZswCuvvIKYmBgkJydbNshu6P3330f//v0tHYZN4lAkkQ1raGjA5s2bAQBbtmzR6CGsWLECQ4cORUpKCjIyMiwVIpHJMbER2TBd7hwPAImJieYOjajTcCiSLOY///kPYmNjcefOHfTp0wePPfYYpkyZAjs7/r1lKrxzvPX65z//iTt37sDOzg6hoaGYMWOGerN2Mg4TG1lMamoqUlNTNY49/PDDOHDgAEJCQiwUlW2xtjvH0z3r1q3TeP7qq6/irbfewltvvWWhiGwH/zQms5PJZFi5ciXS0tJw584d3LlzBz/88APGjh2LixcvYtKkSeo7lJNxjL1zPJne448/ji+++AI5OTmora3FtWvX8Le//Q09evTA6tWrsXHjRkuH2OVx5xHS2+9//3tcvXpVr9d8/vnnGD16dLt1mpubMXHiRJw8eRJ///vfERsba0yYBOD//b//h08//RR//etfW/UQAODGjRsICQlBSEgIrl/XcrtoMptjx45h8uTJ8PDwQFFREZycnCwdUpfFoUjSW25uLq5du6bXa9q6c/n97O3t8frrr+PkyZM4evQoE5sJGHvneDKfSZMmYdSoUTh37hzS09MxYcIES4fUZTGxkd603c/OVMS5teLi4k47R3di7J3jybxCQkJw7tw5/v4biXNsZFUqKioA3Jv7IePwzvFdC3//TYOJjazKgQMHALS9PJ30wzvHdx1lZWU4efIkAP7+G4uJjczuww8/REFBgcYxQRDwf//3f/jggw8gkUiwcOFCC0VnW3jneOuSmpqKgwcPorm5WeN4Xl4efv/736OmpgZPP/007w1pJK6KJLPr378/CgsLMWLECAQHB0OpVOLixYvIzc2FnZ0dNm7cqP4wJuPxzvHWY+fOnZg/fz58fX0xYsQIeHh4ID8/HxkZGVAqlRg8eDB+/PFHeHt7WzrULo2Jjcxu06ZNOHbsGC5fvozS0lI0NjaqP3CXLl2KRx55xNIh2hzeOd46XL16FZs2bUJ6ejoKCgpQUVEBFxcXPPjgg5g9ezYWLlzIZf4mwMRGREQ2hXNsRERkU5jYiIjIpjCxERGRTWFiIyIim8LERkRENoWJjYiIbAoTGxER2RQmNiIisilMbEREZFOY2IiIyKYwsRGR3m7cuIHdu3fj5Zdfxvjx4+Hs7AyJRAKJRIKdO3daOjzq5ngHbSLSS0pKCiZMmGDpMIjaxB4bEenl/n3T7ezsMHjwYIwePdqCERFpYmIjIr307dsX7733HpKTkyGXy3Hp0iXeGJasCociiUgvISEhePXVVy0dBlGb2GMjsrC1a9eqF14AgEKhwNq1a/Hwww/D1dUV3t7emDp1KlJTUzVeV1pailWrVmHw4MFwcXFB7969MX36dJw/f16n87QlOTlZXS85Odkk75HInNhjI7IiBQUFeOKJJ3D9+nX1sZqaGnz33Xc4duwYdu/ejdmzZyM7OxtTp07FrVu31PVqa2tx6NAhHD16FN999x0mTpxoibdAZHHssRFZkdmzZ6OwsBCxsbFISUnBTz/9hA8++ADu7u5obm7GX/7yF+Tm5mLatGmoq6vD3/72N5w6dQrp6emIi4uDg4MD6uvrMW/ePDQ0NFj67RBZBHtsRFYkKysLKSkpGDNmjPrYqFGjEBISgmnTpqGqqgpjxoyBIAg4e/YsBg4cqK43evRo9OnTB4sXL8bNmzdx+PBh/P73v7fE2yCyKPbYiKzI8uXLNZKa6KmnnkJQUBAAoKysDO+8845GUhPNnz8fUqkUAHDy5MnODZbISjGxEVmROXPmtFk2dOhQAIBEIsGzzz6rtY6TkxNCQkIAAL/88ovpAyTqApjYiKxIaGhom2UeHh4AgD59+qBXr14d1quqqjJlaERdBhMbkRVxdnZus8zOzq7DOvfXa25uNl1gRF0IExsREdkUJjaibkLsyQGASqVqs15NTY05wiHqNExsRN2Em5ub+uuKioo2691/cThRV8TERtRNBAcHq78+d+5cm/X+9a9/mSMcok7DxEbUTTz66KPo0aNlT4YPPvhA4/Yzovfeew9nz541d2hEJsWdR4i6CW9vb8yePRu7d+/G0aNH8fTTT2Px4sXw8fHBzZs38cUXX+DAgQN49NFHW224/Fv79+9HdXW1+vmpU6e0fg0Avr6+mDJlimnfDFE7mNiIupEPPvgA586dw3/+8x8kJSUhKSlJo3zOnDl48cUX8cQTT7Tbzquvvor8/HytZf/85z/xz3/+U/08MjKSiY3MikORRN2Ij48P0tPT8frrryMkJASOjo7w9PTE448/joSEBOzevRv29vaWDpPIKBJB20A7ERFRF8UeGxER2RQmNiIisilMbEREZFOY2IiIyKYwsRERkU1hYiMiIpvCxEZERDaFiY2IiGwKExsREdkUJjYiIrIpTGxERGRTmNiIiMimMLEREZFNYWIjIiKb8v8DF5gCBFxnvjUAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "AQUA_x = [ 2.000000000000000000E0, 2.600000000000000000E0, 3.200000000000000000E0, 3.800000000000000300E0, 4.400000000000000000E0, 5.000000000000000000E0, 5.600000000000000000E0, 6.199999999999999000E0, 6.799999999999999000E0, 7.399999999999999000E0, 7.999999999999998000E0]\n", - "AQUA_y = [ 1.101774238963736600E-12, 1.834150538958005000E-8, 3.521285683062886000E-5, 7.796352435180525000E-3, 1.990698937241850200E-1, 5.861970452823937000E-1, 1.990698937241850200E-1, 7.796352435180525000E-3, 3.521285683062852000E-5, 1.834150538954174500E-8, 1.101774238778373800E-12]\n", - "from matplotlib import ticker\n", - "fig, ax = plt.subplots()\n", - "plt.rcParams[\"figure.figsize\"] = [4.50, 4.50]\n", - "plt.rcParams.update({'font.size': 15})\n", - "plt.rc('xtick', labelsize=15)\n", - "plt.rc('ytick', labelsize=15)\n", - "plt.rc('axes', labelsize=20)\n", - "plt.rc('legend', fontsize=20)\n", - "w = 0.1\n", - "\n", - "file = open(\"/space/poorvagarg/.julia/dev/Dice.jl/benchmarks/multimodal/multimodal_6_256.txt\", \"r\")\n", - "hybit_data = file.readlines()\n", - "hybit_data = [float(i)*640 for i in hybit_data]\n", - "\n", - "ax.plot([i for i in np.arange(-8, 8, 0.015625)], hybit_data, color=\"purple\")\n", - "\n", - "ax.scatter(AQUA_x, [y*100/6 for y in AQUA_y])\n", - "\n", - "plt.ylim(0, 18)\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ax.legend([\"HyBit\", \"AQUA\"], loc=\"upper left\")\n", - "# ax.bar([8.0, 9.0])\n", - "\n", - "ax.set_xlabel(\"mu1\")\n", - "# ax.set_ylabel(\"pr(mu1)\")\n", - "\n", - "scale_y = 100\n", - "ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale_y))\n", - "ax.yaxis.set_major_formatter(ticks_y)\n", - "\n", - "fig.savefig(\"multimodal_aqua.png\", bbox_inches='tight')" - ] - }, { "attachments": {}, "cell_type": "markdown", diff --git a/benchmarks/plotting_files/pieces_time_accuracy.ipynb b/benchmarks/plotting_files/pieces_time_accuracy.ipynb new file mode 100644 index 00000000..d2be13f9 --- /dev/null +++ b/benchmarks/plotting_files/pieces_time_accuracy.ipynb @@ -0,0 +1,236 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Accuracy and Runtime with respect to Number of Pieces" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import math\n", + "import sys\n", + "import statistics\n", + "import csv\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "plt.rcParams[\"figure.figsize\"] = [5.50, 3.50]\n", + "plt.rcParams.update({'font.size': 15})\n", + "plt.rc('xtick', labelsize=15)\n", + "plt.rc('ytick', labelsize=15)\n", + "plt.rc('axes', labelsize=20)\n", + "plt.rc('legend', fontsize=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "def pieces_time(benchmark_name, ll, ul):\n", + " filehandle = open(\"../\" + benchmark_name + \"/results.txt\")\n", + " lines = filehandle.readlines()\n", + " bits = int(float(lines[-1].split(\",\")[0]))\n", + "\n", + " fig, ax = plt.subplots()\n", + " ax.set_xscale(\"log\", base=2)\n", + " ax.set_xlabel(\"# Linear Pieces\")\n", + " ax.set_ylabel(\"Time (s)\")\n", + " ax.set_title(benchmark_name)\n", + "\n", + " legend_list = []\n", + " for i in range(ll, ul+1):\n", + " cur = []\n", + " for j in lines:\n", + " if int(float(j.split(\",\")[0])) == i:\n", + " cur.append(j)\n", + " \n", + " x = []\n", + " y = []\n", + " for j in cur:\n", + " cur_split = j.split(\",\")\n", + " x.append(int(float(cur_split[1])))\n", + " y.append((float(cur_split[-1])))\n", + " ax.plot(x, y)\n", + " legend_list.append(\"b = \" + str(i))\n", + "\n", + " ax.legend(legend_list, loc=\"upper left\")\n", + " fig.savefig(\"../\" + benchmark_name + \"/time.png\", dpi=300, bbox_inches=\"tight\")\n", + "\n", + "def pieces_accuracy(benchmark_name, ll, ul):\n", + " filehandle = open(\"../\" + benchmark_name + \"/results.txt\")\n", + " lines = filehandle.readlines()\n", + " bits = int(float(lines[-1].split(\",\")[0]))\n", + " \n", + " fig, ax = plt.subplots()\n", + " ax.set_xscale(\"log\", base=2)\n", + " ax.set_yscale(\"log\")\n", + " ax.set_xlabel(\"# Linear Pieces\")\n", + " ax.set_ylabel(\"Result (s)\")\n", + " ax.set_title(benchmark_name)\n", + " \n", + " legend_list = []\n", + " for i in range(ll, ul+1):\n", + " cur = []\n", + " for j in lines:\n", + " if int(float(j.split(\",\")[0])) == i:\n", + " cur.append(j)\n", + " \n", + " x = []\n", + " y = []\n", + " for j in cur:\n", + " cur_split = j.split(\",\")\n", + " x.append(int(float(cur_split[1])))\n", + " y.append(abs((float(cur_split[-2]))- param_bench[benchmark_name][\"gt\"]))\n", + " ax.plot(x[1:], y[1:])\n", + " legend_list.append(\"b = \" + str(i))\n", + "\n", + " ax.legend(legend_list, loc=\"upper right\")\n", + " fig.savefig(\"../\" + benchmark_name + \"/accuracy.png\", dpi=300, bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "param_bench = {}\n", + "param_bench[\"weekend\"] = {\"ll\": 15, \"ul\": 19, \"gt\":0.3742061754266954}\n", + "param_bench[\"altermu2\"] = {\"ll\": 5, \"ul\": 10, \"gt\":0.1550617483}\n", + "param_bench[\"addFun_max\"] = {\"ll\": 13, \"ul\": 18, \"gt\": 1/math.sqrt(math.pi)}\n", + "param_bench[\"spacex\"] = {\"ll\": 6, \"ul\": 10, \"gt\": 30.00463476991299}" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGBCAYAAAAZl6lgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACpa0lEQVR4nOzdd3QU1dvA8e9sSe+9E0ooAYKhF6kCCohdVBCUV6qgKPKzgr0rIioiVhDBAmJBQUF6DYQaCD1ASEjvZZNt8/4xZCGkkLJpcD/n7Mnu7MzcuwnsPHPLcyVZlmUEQRAEQbihqRq6AoIgCIIgNDwREAiCIAiCIAICQRAEQRBEQCAIgiAIAiIgEARBEAQBERAIgiAIgoAICARBEARBQAQEgiAIgiAgAgJBEARBEBABgSAIDezVV19FkiQGDBjQ0FWxquv1cwnXLxEQCIIgCIIgAgJBEARBEERAIAiCIAgCIiAQBEEQBAEREAhCk9SxY0ckSeKzzz4r896uXbuQJAlJkrjvvvvKvG8wGHB2dkaSJDZs2FDqPbPZzLJlyxg+fDi+vr7Y2Njg7e3N0KFD+fHHH7nWaulHjhxh0qRJhIWF4eDggJOTExEREbz00kukp6fX6LMeOHAAPz8/JEni1ltvJT8/v9ZlXj3gb8OGDYwYMQJvb2/s7Oxo164dr732GkVFRZXWbe3atQwZMgQ3NzecnJzo1KkT77//PgaDoUafVRAalCwIQpPzxBNPyIB89913l3nvzTfflAEZkD09PWWz2Vzq/e3bt8uAbGtrK+t0Osv2jIwMuV+/fpZjAdnV1bXU6zvuuEMuLi4ut07vvfeerFKpLPs6ODjINjY2ltf+/v7y/v37yxz3yiuvyIDcv3//Mu+tX79ednZ2lgH54YcflvV6vdXLfP/992VJkmRJkmQ3NzdZkiTL8QMHDpSNRmO5n7fkHCUPNzc3WaPRyIDcr18/+YUXXqjwcwlCYyQCAkFoglatWiUDsoeHh2wymUq9d8stt8iA7OLiIgPygQMHSr3/xhtvlLlQGY1GuX///jIg33TTTfLq1avlgoICWZZlOT8/X16yZIns4+MjA/JTTz1Vpj5ff/21DMhOTk7yW2+9JSclJVnOGx0dLQ8aNEgG5KCgIDkvL6/UsRUFBMuXL7dc3J955pkygY01ynRzc5NVKpX8wgsvyGlpabIsy3JOTo788ssvWy7033zzTZnP+8cff1jev//+++X4+HhZlmW5sLBQXrBggWxjYyO7ubmJgEBoUkRAIAhNUGZmpuXOeN++fZbtRUVFsr29vezg4CDPmjVLBuS5c+eWOnbgwIEyIL/66quWbd9//70MyG3btpWzs7PLLTM6OlqWJEm2sbGRU1JSLNtzc3MtF79//vmn3GMNBoPcpUsXGZDnzZtX6r3yAoK5c+da7tqvrr81ywTkV155pdzj77nnHhmQBw8eXOa98PBwS52vDshkWZa/+OILy/lFQCA0FWIMgSA0Qe7u7nTq1AmAjRs3Wrbv3r0bnU5Hnz59uO2228q8X1xczK5duwAYOHCgZfs333wDwNSpU3F1dS23zC5dutC+fXv0ej2bNm2ybP/111/Jzs4mMjKSW2+9tdxjNRoNDz30EAD//vtvhZ9LlmX+97//8cwzz6DRaPjhhx+YOXNmmf2sVaatrS2zZs0q970777wTgMOHD5fafvjwYWJjYwGYPXs2KlXZr9GJEycSGBhYwacUhMZJ09AVEAShZgYNGsSBAwfYuHGj5aJWcvEfNGgQvXv3xtbWlm3btmEymVCr1ezcuZOioiLs7e3p2bMnACaTid27dwPKYLu33367wjIzMzMBOH/+vGXbjh07ADh27Bh+fn4VHqvT6coceyWDwcC4ceP44YcfcHJyYtWqVQwZMqTcfa1VZvv27XFycir3vYCAAODyZy4RHR0NKAFH3759yz1WpVIxYMAAli1bVmHdBKGxEQGBIDRRAwcOZO7cuWzbtg2j0YhGo7HcuQ8aNMhy0d+yZQt79+6lZ8+elvd79+6NjY0NoFzwiouLAcjKyqpS2YWFhZbnFy9eBKCoqOiao/KvPvZKO3fuZOfOnQB89913FQYD1izT2dm5wmM0GuXr0Wg0ltqempoKgJeXF7a2thUeHxQUdM16CUJjIroMBKGJ6tevHxqNhvz8fPbs2UNhYSFRUVG4urrSpUsXQAkM4HLLQcnPK7sLTCaT5fnatWuRlbFFlT5effXVMsc/8MADVTr23Llz5X6ejh07EhERAcDMmTM5c+ZMhZ/dWmUKgnCZCAgEoYlydna2XPg3btzI9u3b0ev19OvXD7VaDVy+8G/cuJGCggL27NkDXA4UADw9PS13wxU1rVempMm+JsdeycPDg40bN3LTTTdx4cIF+vfvz8mTJ+u0zJrw8fEBID09Hb1eX+F+iYmJ9VUlQbAKERAIQhN25QX/yu6CEj169MDBwYGdO3eyYcMGDAYDTk5OdOvWzbKPVqule/fuAKxevbradejTpw8A+/btIykpqcafBZTgZMOGDXTu3JnExEQGDBjAiRMn6rTM6uratSugdCVs27at3H3MZjObN2+ux1oJQu2JgEAQmrCSi/+uXbtYu3ZtqW0ANjY29OnTB51OZxksePPNN1taBEpMmjQJgDVr1rBmzZpKy7x6kN3999+Pm5sbBoOBmTNnVprN0Gw2k52dXen5PTw82LBhA926dSMpKYkBAwZw7NixOi2zOiIiImjXrh0Ab731Fmazucw+3377LQkJCVYrUxDqgwgIBKEJ69OnDzY2NhQVFXHo0CG8vb3p2LFjqX1KAoSoqCig9PiBEg8//DCDBw9GlmXuvvtu3nzzTcvAPYCCggI2bdrEtGnTaNGiRalj3dzc+PjjjwH46aefGDFiBFFRUZYLpdls5tixY8ydO5f27dvz119/XfNzubm5sX79enr27ElycjIDBgzgyJEjdVpmdbz11lsAbNq0idGjR1su/kVFRXzxxRdMnz4dNzc3q5YpCHWuHnIdCIJQh/r27Vsqa97Vdu/eXSrF7p49e8o9T05Ojnz77beX2tfFxaVMOl+NRlPu8QsXLiyVNtjW1lb29PSUtVptqXP+8MMPpY6rLHVxbm6u3Lt3bxmQvby85EOHDtV5mSU2bdpkOb48L730Uqky3N3dLamL+/btK1IXC02OaCEQhCbuyjv+K7sLSnTt2hUXFxcAXFxc6Ny5c7nncXFxYfXq1axZs4YHHniAkJAQiouLKSwsJDAwkKFDh/LOO++U26cPMGXKFE6cOMGsWbPo1KkTtra2ZGdn4+TkRNeuXXniiSdYv369JVlQVTg7O/Pvv//St29f0tPTLbkX6rLMqnrzzTf566+/GDRoEC4uLhQXF9OuXTveffddNmzYYJnWKQhNhSTL11i+TBAEQRCE655oIRAEQRAEQQQEgiAIgiCIgEAQBEEQBERAIAiCIAgCIiAQBEEQBAEREAiCIAiCgFj+uFbMZjMXL17E2dkZSZIaujqCIAiCUIosy+Tl5REQEIBKVXkbgAgIauHixYsEBwc3dDUEQRAEoVIXLlwgKCio0n1EQFALzs7OgPKLLskEJwiCIAiNRW5uLsHBwZbrVWVEQFALJd0ELi4uIiAQBEEQGq2qdGuLQYWCIAiCIIiAQBAEQRAEERAIgiAIgoAYQ1AvTCYTBoOhoatxQ9FqtajV6oauhiAIQpMhAoI6JMsyycnJZGdnN3RVbkhubm74+fmJHBGCIAhVIAKCOlQSDPj4+ODg4CAuTPVElmUKCwtJTU0FwN/fv4FrJAiC0PiJgKCOmEwmSzDg6enZ0NW54djb2wOQmpqKj4+P6D4QBEG4BjGosI6UjBlwcHBo4JrcuEp+92L8hiAIwrWJgKCOiW6ChiN+94IgNDUnjybw9eyNbFkZW+9li4BAEARBEBqJfYdjKU6HTUd31HvZIiAQShkwYABPPfVUQ1dDEAThhpR6MgsAd5/6b+EUAYHQ4JKSkhg9ejStW7dGpVKVG5AsXrwYSZJKPezs7Oq/soIgCHVElmWkFGXsU5f12+u9fBEQCA2uuLgYb29vZs+eTadOnSrcz8XFhaSkJMvj/Pnz9VhLQRCEunU+4SJqsyOS2UBg55b1Xr4ICIQyjEYj06dPx9XVFS8vL+bMmYMsy3VWXmhoKPPnz2fcuHG4urpWuJ8kSfj5+Vkevr6+dVYnQRCE+rb30FEAnPMu4NXn5novXwQE9USWZQr1xgZ5VPdivmTJEjQaDXv27GH+/Pl89NFHfP311xXuv23bNpycnCp9LFu2rLa/QvLz82nWrBnBwcHceeedHD16tNbnFARBaCwSjyQB4Jp7FoeuXeu9fJGYqJ7oDCbCX/63QcqOff1WHGyq/qcODg5m3rx5SJJEmzZtiImJYd68eUycOLHc/bt27crBgwcrPWdt7+bbtGnDt99+S0REBDk5OXz44Yf07t2bo0ePEhQUVKtzC4IgNAoJWgAcHfNQOzvXe/EiIBDK6NmzZ6k5/L169WLu3LmYTKZyM/7Z29vTqlWrOq1Tr1696NWrl+V17969adeuHYsWLeKNN96o07IFQRDqWlJ2ChqDD0gQFNEwNzkiIKgn9lo1sa/f2mBl16Vt27YxbNiwSvdZtGgRY8aMsVqZWq2WyMhITp8+bbVzCoIgNJTdhw4iSVpsizIJ7NujQeogAoJ6IklStZrtG1JUVFSp17t37yYsLKzC9QDqo8vgaiaTiZiYGIYPH27V8wqCIDSE8wfOoSUMl9yz2He5rUHq0DSuUEK9io+PZ+bMmUyePJn9+/fz6aefMnfu3Ar3t0aXQUlAkZ+fT1paGgcPHsTGxobw8HAAXn/9dXr27EmrVq3Izs7mgw8+4Pz580yYMKFW5QqCIDQGcpwy+NvJNhu1k1OD1EEEBEIZ48aNQ6fT0b17d9RqNTNmzGDSpEl1WmZkZKTl+b59+1i+fDnNmjXj3LlzAGRlZTFx4kSSk5Nxd3enS5cu7Ny50xIwCIIgNFXphenYFPmDCoLaNtx0ahEQCKVs3rzZ8nzhwoX1Vu61pkbOmzePefPm1VNtBEEQ6s+u4/tA5YzKbKBZ/8hrH1BHRB4CQRAEQWhAZ6KOA+CUF49zt84NVg8REAiCIAhCAzKdKAbAWZOJytGxweohAgJBEARBaCAZugzs8v0A8G9Rcer2+iACAkEQBEFoIHvPR4M6AIDmN3do0LqIgEAQBEEQGsjxnYdAUmFblIFXn4YbPwAiIBAEQRCEBmM8kgeAM2moHBwatC4iIBAEQRCEBpBZlIlDljcAvsH2DVwbERAIgiAIQoOITopGpQ4FoHn31g1bGURAIAiCIAgN4tiu3Zg0TqhMegIG3NTQ1REBgVDagAEDeOqppxq6GoIgCNc9/b4MAJzMqWidGy7/QInrJiDIyMjAx8cHSZIqXGjn1VdfRZKkCh/PP/98PddaAEhKSmL06NG0bt0alUpVYUCSnZ3NtGnT8Pf3x9bWltatW7NmzZr6rawgCIIVZBVl4ZTuCYC3T+NYRaBx1MIKnnnmGdLT06u0b58+fcoNGrp06WLtaglVUFxcjLe3N7Nnz65wvQK9Xs+QIUPw8fFh5cqVBAYGcv78edzc3Oq3soIgCFawLzkaG7k5RUBIZGhDVwe4TgKCDRs2sGTJEiZNmsSXX355zf0nTJjAo48+WvcVa6KMRiPTp09n6dKlaLVapk6dyuuvv44kSXVSXmhoKPPnzwfg22+/LXefb7/9lszMTHbu3IlWq7UcJwiC0BQdi96Myn4gACEDOzZwbRRNvstAp9MxefJkwsPDmTVrVkNXp2KyDPqChnlcYyXBqy1ZsgSNRsOePXuYP38+H330EV9//XWF+2/btg0nJ6dKH8uWLavVr+/PP/+kV69eTJs2DV9fXzp06MDbb7+NyWSq1XkFQRAagi4qSUlIZMrBydu5oasDXActBK+99hpxcXFs2bLFcufYKBkK4e2Ahin7xYtgU/UBK8HBwcybNw9JkmjTpg0xMTHMmzePiRMnlrt/165dOXjwYKXn9PWt3RrfcXFxbNy4kTFjxrBmzRpOnz7N448/jsFg4JVXXqnVuQVBEOpTVlEWLklumJzAy93Y0NWxaNIBweHDh5k7dy7jx4+nb9++nDt3rkrHbdy4kYMHD1JUVERQUBDDhg0T4weu0LNnz1LdA7169WLu3LmYTCbUanWZ/e3t7SscyGktZrMZHx8fvvzyS9RqNV26dCExMZEPPvhABASCIDQp+5P34WhsTi4Q1L6BbhTL0WQDArPZzIQJE3Bzc+P999+v1rFLly4t9XrOnDnce++9LF68GCcnJ2tW8zKtg3Kn3hC0dZsOc9u2bQwbNqzSfRYtWsSYMWNqXIa/vz9arbZUQNKuXTuSk5PR6/XY2NjU+NyCIAj16dj+/9A63gxAcJ92DVyby5psQPDpp5+yd+9evvvuOzw9Pat0TKtWrfjwww8ZNmwYzZo1Iysri61bt/Lss8/y66+/YjKZ+O233yo8vri4mOLiYsvr3NzcqldYkqrVbN+QoqKiSr3evXs3YWFh5bYOQP10GfTp04fly5djNptRqZShLydPnsTf318EA4IgNCmFu87gqB2KSjbg1dytoatj0SQDgvj4eGbPnk3//v2rNVvg4YcfLvXa0dGR0aNHM3DgQDp27Mjvv//O7t276dmzZ7nHv/POO7z22mu1qXqTEB8fz8yZM5k8eTL79+/n008/Ze7cuRXub40ug5KAIj8/n7S0NA4ePIiNjQ3h4eEATJ06lc8++4wZM2bwxBNPcOrUKd5++22efPLJWpUrCIJQn7KLsnFLcMbgCm6ORajVjWdsf+OpSTVMmzYNvV7PF198YZXz+fv7M378eAD++eefCvd74YUXyMnJsTwuXLhglfIbm3HjxqHT6ejevTvTpk1jxowZTJo0qU7LjIyMJDIykn379rF8+XIiIyMZPny45f3g4GD+/fdf9u7dS0REBE8++SQzZswQyaQEQWhS9qVE41rcHIDAMK8Grk1pTbKF4K+//sLNzY0pU6aU2l5UVARAYmIiAwYMAOCnn37Cz8/vmucMCwsDlKx5FbG1tcXW1raGtW4aNm/ebHm+cOHCeitXrsLUyF69erF79+56qI0gCELdOLHvPxwcOwAQ1K1FA9emtCYZEICSxnbLli3lvldUVGR5ryRIuJasrCxA6UYQBEEQhLpQsPsgssNgAPxaV238W31pkl0GsiyX+zh79iwALVu2tGyrSjY7WZYtgwk7d+5cl1UXBEEQblA5xTm4n3UASYWDthgHl8Y1ILpJBgQ1kZaWxoIFC8jLyyu1PT8/n6lTpxIVFYWfnx/33HNPA9VQEARBuJ5FJ+3BU6eMH/Br1jiyE16pyXYZVFdBQQHTp0/n+eefp1u3bvj7+5OWlsb+/fvJyMjAzc2NlStX4uBQt3P2BUEQhBvTyej/cHO4NKAwMriBa1PWDRMQeHp68txzz7F7925OnjzJzp07UavVNG/enEcffZSnn36awMDAhq6mIAiCcJ0q2LMXlUtfAPzDPBq4NmVdVwFBaGhohaPVnZ2deffdd+u5RoIgCIKgjB/wOA06HwfUKhOegY1vAPsNM4ZAEARBEBrKvqS9+OYp3QXefraoGlFCohKNr0aCIAiCcJ05Gb2e4kvjBwI6+DdwbconAgJBEARBqGO6qL3kuFyaYdDKvYFrUz4REAilDBgwgKeeeqqhqyEIgnDdyCnOweNEDoWOSsuAX3OXBq5R+URAIDS4pKQkRo8eTevWrVGpVOUGJAMGDECSpDKPESNG1H+FBUEQqmH/xWgCc0IBcHFVY+/cuBISlRABgdDgiouL8fb2Zvbs2XTq1KncfVatWkVSUpLlceTIEdRqNffff38911YQBKF6Tkavo9j+UndBm8aVrvhKIiAQyjAajUyfPh1XV1e8vLyYM2dOlRYfqqnQ0FDmz5/PuHHjcHV1LXcfDw8P/Pz8LI/169fj4OAgAgJBEBo9XdQey/gB/5ZuDVuZSlxXeQgaM1mW0Rl1DVK2vcYeSZKqvP+SJUt47LHH2LNnD9HR0UyaNImQkBAmTpxY7v7btm1j2LBhlZ5z0aJFjBkzplr1rsw333zDgw8+KBajEgShUcvV5+J5PJVcv1AAfFuUf9PTGIiAoJ7ojDp6LO/RIGVHjY7CQVv1lMzBwcHMmzcPSZJo06YNMTExzJs3r8KAoGvXrhw8eLDSc/r6+lanypXas2cPR44c4ZtvvrHaOQVBEOrC/ot7Cc3w43CQPRqthGdA472JEQGBUEbPnj1LtSj06tWLuXPnYjKZUKvVZfa3t7enVatW9Va/b775ho4dO9K9e/d6K1MQBKEmTkb9Sws7pbvAt7lro0xIVEIEBPXEXmNP1OioBiu7LtVnl0FBQQE//fQTr7/+eq3PJQiCUNd0e/aS4zIYAL+Wjbe7AERAUG8kSapWs31DiooqHbjs3r2bsLCwclsHoH67DFasWEFxcTEPP/ywVc4nCIJQV3L1uXgfTyHX89IMg0Y8fgBEQCCUIz4+npkzZzJ58mT279/Pp59+yty5cyvc3xpdBiUBRX5+PmlpaRw8eBAbGxvCw8NL7ffNN99w11134enZeKfuCIIgABy4GE3LJHuig/0A8GsuAgKhiRk3bhw6nY7u3bujVquZMWMGkyZNqtMyIyMjLc/37dvH8uXLadasGefOnbNsP3HiBNu3b2fdunV1WhdBEARrOLXrH9pcGj/g5mOPnZO2gWtUOREQCKVs3rzZ8nzhwoX1Vm5V8hy0adOmTvMhCIIgWJNu715yXboCjb+7AERiIkEQBEGwujx9Hl7HU8hxvTTDQAQEgiAIgnDjOXAxmjYXINc5FBAtBIIgCIJwQzq1ay0mG39MGju0dmo8qpqQqCgXzu8Ck6FuK1gOERAIgiAIgpXp9uwlx7UFAL6hLqhUVUwff2YjfHcbfDOkDmtXPhEQCIIgCIIV5evz8T6WYlnQqFrdBWe3KD+D6z/VvQgIBEEQBMGK9ifuoU2CbAkIfJu7VP3guM3KzxYDrF6vaxEBgSAIgiBY0Zmd/yBJjugclAytVW4hyI6HzDiQ1NCsTx3WsHwiIBAEQRAEK1LyDyitA+5+Dtg5VjEhUdyl7oLALmBXjVYFKxEBgSAIgiBYydXjB6qVf8DSXdDf+hWrAhEQCKUMGDCAp556qqGrIQiC0CQdSNhD68TL4wf8qjp+QJYvDyhsgPEDIAICoRFISkpi9OjRtG7dGpVKVWFA8vHHH9OmTRvs7e0JDg7m6aefpqioqH4rKwiCUInTO9eiManIdQkFqjF+IDUWCtJA6wBB3equgpUQaxkIDa64uBhvb29mz57NvHnzyt1n+fLlPP/883z77bf07t2bkydP8uijjyJJEh999FE911gQBKF8xXuiKXAMwKy2xcZOjYd/FRMSlXQXhPQCjW2d1a8yIiCoJ7IsI+t0DVK2ZG+PJFUxKQZgNBqZPn06S5cuRavVMnXqVF5//fVqnaM6QkNDmT9/PgDffvttufvs3LmTPn36MHr0aMsxDz30EFFRUXVSJ0EQhOoqMBQo6xe43Awo0w2lqiYkimvY7gIQAUG9kXU6TnTu0iBlt9m/D8nBocr7L1myhMcee4w9e/YQHR3NpEmTCAkJYeLEieXuv23bNoYNG1bpORctWsSYMWOqVe8r9e7dmx9++IE9e/bQvXt34uLiWLNmDWPHjq3xOQVBEKzpQMIewhJlToVdylBY1e4CkwHO71CeXw8BQVpaGnFxcSQnJ1NQUIBWq8XNzY2QkBBatWqFWq22VlFCHQsODmbevHlIkkSbNm2IiYlh3rx5FQYEXbt25eDBg5We09fXt1Z1Gj16NOnp6dx8883IsozRaGTKlCm8+OKLtTqvIAiCtZzZvobuJsh2VwKCKo8fSNwH+nxw8ATfDnVYw8rVOCAoKCjgjz/+YO3atWzZsoXExMQK97W1tSUyMpKhQ4dy9913ExERUdNimyzJ3p42+/c1WNnV0bNnz1LdA7169WLu3LmYTKZyAzt7e3tatWpV63pWZvPmzbz99tt8/vnn9OjRg9OnTzNjxgzeeOMN5syZU6dlC4IgVEXRnmj0WieKbb0AZQ2DKikZP9C8H6gabqx/tQOCAwcO8Omnn7JixQoKCwsBpX+8MkVFRezatYvdu3fz+uuv0759e6ZNm8bYsWNxqEZTdlMmSVK1mu2bkvroMpgzZw5jx45lwoQJAHTs2JGCggImTZrESy+9hKoB/xMJgiAUGArwPp5Cjotyh1+9hESblZ/NGyb/QIkqBwQHDhxgzpw5rF27FrgcBPj5+dG9e3e6dOmCj48PHh4euLu7o9PpyMzMJCsri5MnT7J3714OHz6MwWDgyJEjPP7448yZM4dnn32WJ554AlvbhhlVKZR19UC93bt3ExYWVmG3T310GRQWFpa56JfU51oBqSAIQl07GB9Fq4sy8SGX8g+0rGJ3QXE+JOxVnjfg+AGoYkAwfvx4li5ditlsBqBz586MGTOGe++9l5CQkCoXptfr2bp1K8uWLeO3334jPT2d5557js8//5zvv/+em2++uWafQrCq+Ph4Zs6cyeTJk9m/fz+ffvopc+fOrXB/a3QZlAQU+fn5pKWlcfDgQWxsbAgPDwdg5MiRfPTRR0RGRlq6DObMmcPIkSPF+BRBEBrcme1r6GaCTE/lu7DK4wfO7wSzEdyagUfzOqzhtVUpIFiyZAk2NjY88sgjPPPMM7Ru3bpGhdnY2DB48GAGDx7MF198wYoVK3j77bc5fvw4GzduFAFBIzFu3Dh0Oh3du3dHrVYzY8YMJk2aVKdlRkZGWp7v27eP5cuX06xZM86dOwfA7NmzkSSJ2bNnk5iYiLe3NyNHjuStt96q03oJgiBURVH0PsySigIn5SbZr3kVAwJLdsKG7S6AKgYEjz/+OM899xzBwcFWK9jW1paHH36YMWPGsGLFCkwmk9XOLdTc5s2bLc8XLlxYb+Veq9lfo9Hwyiuv8Morr9RTjQRBEKqm0FCI97EUChyDMKPF1kGDu18Vx4w14HLHV6tSQPDZZ5/VWQUkSWLUqFF1dn5BEARBqEsHzyvjB5L9Li1oFFrFhET5aZByRHnewAMKQaxlIAiCIAi1cmbH32jMkOEdBlQjIVFJd4FvR3D0urw5vcDaVawSERAIgiAIQi0U71FyzOS5lwworGb+gSvGD+w7n8mguZuZ+fNBzOb6nUFV56mLDx06xMqVK0lPT6d58+aMGTOGwMDAui5WEARBEOpcoaEQ7+Mp6LXO6HEBCXyrMqBQlsusX2Ayy7zy51FkGWw0KlRVXQfBSmrVQrB37166d+9O7969yc7OLvP+okWL6NKlC2+//TZffvklL7zwAuHh4axfv742xZYrIyMDHx8fJEm65hS4xYsX0717d5ycnPDw8GD48OHs3LnT6nUSBEEQrm8Hz++mRZJMjqsyfsDD3xFb+yrca2edhZx4UGmVFQ6BX6IvcCQxF2c7DbNubVOX1S5XrQKC1atXEx0djYuLC25ubqXeO3v2LE8++SRms1lZ6e/SIy8vjwceeIC0tLTaFF3GM888Q3p6+jX3e+qppxg/fjxHjhxh8ODBdO/enfXr19OvXz9+//13q9ZJEARBuL6d3bYGjRnSfZXp+H7Nq9ldENwdbJ3IKTTwwb8nAHh6cGu8nOo/WV+tAoLNmzcjSRK33XZbmfcWLFiAwWDA3t6eVatWkZOTwy+//IK9vT05OTl88cUXtSm6lA0bNrBkyZIKF98p8d9//zF//nw8PT05dOgQv//+O//88w9bt25FrVYzfvz4cls6BEEQBKE8RXsvjR/wbgdUY0BhSXfBpdkF8/47SWaBnjAfJ8b2amb1elZFrQKCkgWNylus6I8//kCSJCZPnsxdd92Fs7Mz9913H1OmTEGWZf7555/aFG2h0+mYPHky4eHhzJo1q9J9P/roI0BJchMWFmbZ3qtXL6ZMmUJ2djbffPONVeolCIIgXN8KDYX4HE/BLKkoVPkAVcxQaDZfkZBoACeS81i6+zwAr4xsj1bdMOP9a1VqSbO/p6dnqe2JiYmcOXMGoEyOgaFDhwJw/Pjx2hRt8dprrxEXF8cXX3yBVlvxQhI6nY6NGzcCcN9995V5v2Tb6tWrrVIvQRAE4fp28NwumifJ5DsFYTarlIREvlVISJR8GHRZYOOEHBDJa6uPYjLL3Nbej5vDvK59fB2pVUCg1+sBZSnkK23btg0ABwcHunXrVuq9kkVu8vLyalM0AIcPH2bu3LmMHz+evn37VrrviRMnKC4uxtvbm6CgoDLvd+7c2XLOG9mAAQN46qmnGroagiAIjd65rWtQy5AaoAwA9G3uWrWERCWtA6E388+xDHaeycBWo+KlEe3qsLbXVquAwNvbG8DSGlCiZBZBz549yyw8U1RUBFBmEGJ1mc1mJkyYgJubG++///4194+PjwcoNxgAcHR0xM3NjaysrAqDleLiYnJzc0s9hNpLSkpi9OjRtG7dGpVKVW5AYjAYeP3112nZsiV2dnZ06tTJat1OgiAINVEcvR+AvICOQPXzD+hD+vHm38cAmNK/JcEeVUx3XEdqFRB07doVWZb55ptvLCshZmRksGrVKiRJ4pZbbilzTEnwUNvlcD/99FP27t3LBx98UKbLojz5+fmA0mpREUdHR6Di1ot33nkHV1dXy8OaazvcyEpabmbPnk2nTp3K3Wf27NksWrSITz/9lNjYWKZMmcLdd9/NgQMH6rm2giAIl/MPABTZKoMAqzR+wFgM53cB8FN6cxKzdQS62TOlf8s6q2tV1SogGDduHKB0Edx8883MmjWL3r17k5OTg0ajYcyYMWWOKZnv37JlzT98fHw8s2fPpn///jz66KM1Pk91vfDCC+Tk5FgeFy5cqPKxsixjKDY1yONaCwddzWg0Mn36dFxdXfHy8mLOnDnVPkd1hIaGMn/+fMaNG4era/n/oZYuXcqLL77I8OHDadGiBVOnTmX48OGVLsssCIJQVw6d3UXzZJliGxd0RRolIVFoFVoILuwBow6TgzdvRSubXhrRDnubhl/GvVaZCu+++27uu+8+Vq5cye7du4mKirJcOJ599tkyd9Amk8nSelCbpY6nTZuGXq+v1tRFJycnAAoLCyvcp2QshLOzc7nv29raYmtbs7mhRr2ZL2dsqdGxtTVpfn+0tlX/x7ZkyRIee+wx9uzZQ3R0NJMmTSIkJKTCaZ3btm1j2LBhlZ5z0aJF5QaIVVVcXIydnV2pbfb29mzfvr3G5xQEQaips1v/JlKG5GCl398zwBGbqiQkutRdEK3qRLFRplcLT4Z18KvDmlZdrVMX//TTT3z++eesWLGC5ORk/P39eeSRRxg/fny5+6akKE0sI0aMqHGZf/31F25ubkyZMqXU9pLxCYmJiQwYMMBSpp+fHyEhyhrVCQkJ5Z6zoKCA7Oxs3N3dKwwIbhTBwcHMmzcPSZJo06YNMTExzJs3r8KAoGvXrhw8eLDSc9a2i+jWW2/lo48+ol+/frRs2ZINGzawatUqsWy2IAgNwhCtdFfmhXYGU/UXNFqZ1QK1SuLVO9ojSfWborgitQ4IVCoV06dPZ/r06dfcd8yYMbW6S7xSdnY2W7aUf8ddVFRkea8kSGjTpg22trakpaWRmJhYZj2F/fuVwSHl5VSwBo2NiknzG2Z5S41N9XqGevbsWeofaK9evZg7dy4mk6nMIFFQ7tSvlS66tubPn8/EiRNp27YtkiTRsmVLxo8fz7ffflun5QqCIFxNZ9RZxg8YnMIgB/yqsn5BUQ5y4j4kYIepA2N7N6ONX+O5AW2Sqx1emQr5ysfZs2cBZXxCybbQ0FBAuWgNGjQIgBUrVpQ558qVKwEYOXJkndRZkiS0tuoGedR19Llt2zacnJwqfSxbtqxWZXh7e/P7779TUFDA+fPnOX78OE5OTrRo0cJKn0IQBKFqDsXtpFmyjFlSk1ugdGVWaYbBue1Ispk4sx9FjgE8Pbh1Hde0eup8tcPGZObMmaxdu5Y333yTESNGWLIV7tq1i0WLFuHm5sZjjz3WwLVseFFRUaVe7969m7CwsHJbB6B+ugxK2NnZERgYiMFg4Ndffy2T+EoQBKGund3yNzcBF5uFYTLK2DpqcKtCQiLdiY3YAzvMHfjfrW1wdag4mV5DqFJAkJSUhL+/f51WJDk5GT+/uh1YMXjwYGbMmMH8+fO56aabGDJkCHq9nvXr1yPLMt99912t8yNcD+Lj45k5cyaTJ09m//79fPrpp5WO5rdGl0FJQJGfn09aWhoHDx7ExsaG8PBwQAlSEhMTuemmm0hMTOTVV1/FbDbz7LPP1qpcQRCE6jLsvZR/IKwHGJTugqq0xObGrsceiHfrzvNdG9+09Sp1GbRs2ZInn3zSsnaBNf3yyy9ERETw5ZdfWv3c5fn444/57rvvaNeuHevXr2fXrl0MHjyYrVu3ctddd9VLHRq7cePGodPp6N69O9OmTWPGjBlMmjSpTsuMjIwkMjKSffv2sXz5ciIjIxk+fLjl/aKiImbPnk14eDh33303gYGBbN++XQRwgiDUK51Rh8/xVADMHh2AquUfiD1xAt/i85hlieEj70ddlYyG9axKLQRGo5EFCxbw1VdfMWrUKMaMGcPgwYNRqWo2BOHChQv8+OOPfPfdd5w8eRJZlhk9enSNznWl0NDQKs2Xf/TRR+s1f0FTsnnzZsvzhQsX1lu51/q79e/fn9jY2HqqjSAIQvkOn9lJcKryfZVX5AoYrjl+wGyWWf/Xz4QDCfatiWzTOMc+VSkgOHLkCE8//TRr167lhx9+4IcffsDHx4c777yTnj170q1bN8LDwytsMklPT2fv3r3s2bOHDRs2sHPnTsugv8DAQF577TVxgRYEQRAavXNb/iYCSA0KID/HgCSBzzUSEv1+MJGg7D2gBs+OQ+unojVQpYCgdevW/P333+zcuZM333yTf//9l5SUFL766iu++uorAGxsbPD09MTd3R13d3d0Oh2ZmZlkZWWRk5NjOVfJnWBQUBBPPPEETzzxRJmEM4IgCILQGOkvrV+QH94H9OAR6ISNXcWX0vxiI++sOcafqqMAOLYtm9K/sajWLIPevXuzZs0aTp48ybfffsuKFSssU/2Ki4u5ePEiFy9eRJKkcpuAbW1tufXWW5k4cSLDhg2rcZeDIAiCINS3ImORZfwA/l3h/LXHD3y64RQuBWfxt81EVtsihfSsh5rWTI2mHbZu3Zp3332Xd999l/j4eLZt28bOnTtJSEggLS2NzMxM7Ozs8Pb2xtvbm44dO9K3b1+6d++OjY2NtT+DIAiCINS5mFPbCbk0fkAn+wCFlY4fOJOWz7c7zvKQ6ggAUkgP0NrXR1VrpNZ5CEJCQqyagfB6U5eLAgmVE797QRCs6ezWv+kIZAS5kXZRB1ScoVCWZV5fHYvBJHOXx2koBFoMqLe61oRos68jWq2ScKKyxZSEulXyuy/5WwiCINSGfq+yfkFBhz6YjTJ2Tlpcfcq/4994PJUtJ9OwV8t0MsYoGxt5QHBDZSqsT2q1Gjc3N1JTlf4mBweHRrOAxfVOlmUKCwtJTU3Fzc2twgyLgiAIVVVsKsbnhPJ9rgm9GY6DX3OXcr/Xi40mXv9LmSb9QmQx6iO5YOcK/jfVZ5WrTQQEdagk82JJUCDULzc3tzrPfikIwo0h5uR2gtOUbki9JgTIrnCFw2+2n+V8RiG+LrY86KnMLiC0L6ga982JCAjqkCRJ+Pv74+Pjg8FgaOjq3FC0Wq1oGRAEwWrObvmLDkBmkAupiZfGD5QTECTnFPHZxtMAvDCsHTaHPlbeaOTdBSACgnqhVqvFxUkQBKEJM1waP1DcqRv5WcVKQqJmZZcufmftMQr1Jro0c+fO9m7w16XF4ppAQCAGFQqCIAhCJYpNxZb8A7atBwLgGVQ2IdHec5n8cfAikgSv3dEe6UIUmPTgEgietVsArj6IgEAQBEEQKhFzfCuBGTJmCUwOrYGy3QUms8wrfyjjBR7sFkKHQFeI26K82bw/NIFB5SIgEARBEIRKnN+yBoCsIBdSLxYDZQOCn/bGE5uUi4udhv/d2kbZGLdZ+dkEugtABASCIAiCUCl9tDJ+wBTZkbT4PIBSGQqzC/V8+O8JAJ4Z2gYPRxsozISkQ8oOLfrXb4VrSAQEgiAIglCBYlMxvpfGDzh0uA2zScbeWYuL1+WERPPWnySr0EAbX2fG9AhRNp7bBsjg3Racm8b0ZxEQCIIgCEIFjhzbin+mMn5A5R4BgG9zV0tCouPJuSzdfR6AV+4IR6O+dFltYt0FYOVphzqdjn379pGcnExhYSF33XUXLi6VrxMtCIIgCI3VuS1/Ew5kBrtSYBk/oFzXZFkZSGiWYURHf3q39Lp8YElA0LxpdBeAlQKCCxcu8OKLL7JixYpSCXi6du1KeHi45fU333zDokWLcHV1Zd26dSKVryAIgtCoGS+NHzBHtic5Lge4PKDw75gkos5mYqdV8cLwtpcPyo6HzDiQ1BDap97rXFO17jKIiooiMjKS5cuXo9frkWW5wlXmRo4cyeHDh9m4cSPr1q2rbdGCIAiCUGf0Jj0+x9MA8Oh6GwU5eiSVhE8zFwr1Rt7++xgAU/u3Isjd4fKBJdMNA7soaxg0EbUKCLKzs7nzzjvJzMzEz8+Pzz//nJiYmAr39/HxYdiwYQD8/ffftSlaEARBEOrUkdjN+GUp4we0vt0A8ApyQmur5ovNZ7iYU0SQuz2T+7cofeDZSwFBE5ldUKJWXQaffPIJqampeHl5sWvXLkJCQq55zODBg/njjz/Ys2dPbYoWBEEQhDp1bssa2gEZzVyRkvWAssLhhcxCvtgaB8DsEeHYaa9ITS/LTXJAIdSyhWD16tVIksTMmTOrFAwAtG/fHoAzZ87UpmhBEARBqFPGS+sX0LkDyXG5APi1dOXNv2PRG83c3MqLW9v7lj4oNRYK0kDrAEHd6rnGtVOrgOD0aWVFp379+lX5GHd3dwByc3NrU7QgCIIg1Bm9SY/vCWX8gE/voaRfUBISXVCZ+PdoCmqVxCsjw8sOji8ZPxDSCzS29VnlWqtVQFBUVAQoS81WVUFBAQD29vbX2FMQBEEQGsaRI5vwyZYxqcCxWV9LQqK3N58E4JFeoYT5ll3tsKl2F0AtAwIfHx8Azp49W+VjDh48CEBAQEBtihYEQRCEOhN/af2CjGZupCUp4weKXbWcSS/E09GGGYPDyh5kMsD5HcrzJjagEGoZEPTo0QOAtWvXVml/WZb56quvkCSJvn371qZoQRAEQagzhn0HlSedO5ByafzAzmyl2+C529rial9Oy3jiPtDng70H+Hasp5paT60CgjFjxiDLMsuWLbPc+VfmmWee4dAhZbGHRx55pDZFC4IgCEKd0Jv0+F7KPxDQ91ZLQqI4jEQEuXJfl6DyD7R0F/QHVdNbGaBWNb7zzjsZOHAgRqORW265hYULF5Kammp532g0cvHiRVasWEHfvn2ZP38+kiRxzz330Lt371pXXhAEQRCs7WjMRrxzlPEDXuEDKczVY0ImRW3m1Tvao1JVkGW3ZEBhE0pXfKVapy7+9ddfueWWWzhw4ADTp09n+vTpllGXkZGRpfaVZZmePXuyePHi2hYrCIIgCHUifstaWgPpoe5ok5R0/KlqmTu7BNE5xL38g4rzIeFSfp0mOKAQrJC62M3NjV27dvHCCy/g4uJiSV189cPe3p5nn32WzZs34+joaI26C4IgCILVlaxfQOf27IhKBCDNRua529pUfND5nWA2glsz8GheD7W0PqssbmRjY8Nbb73Fiy++yJYtW4iOjiY1NRWTyYSnpyeRkZEMHjwYV9emk9NZEARBuPHojXp8T6QD4NFrCJv/ycYbichIX3xc7Co+sImmK76SVZc/dnR0ZPjw4QwfPtyapxUEQRCEehEbsxHPXBmjGv4ubImHIRuA+29tWfmBTTj/QImmNwxSEARBEOpI/GYl/0BKMzf+2ZOKGgmNgwYPH4eKD8pPg5QjyvMmOqAQREAgCIIgCAAUGgop3rwNgKO+IfgalEtkSBv3simKr1TSXeDbERy96rqadcZqXQYZGRns2rWLuLg48vLyMJlM1zzm5ZdftlbxgiAIglAry5a9wM0nijBJ8KvDQLqalIDAr/k1xr9dmX+gCat1QJCcnMzMmTP59ddfMRqN1TpWBASCIAhCY3DgYjTB364DYFP7TsQ7BTOqSAuY8WvhUvGBsnw5/0ATHj8AtQwI0tLS6N27N+fPn0eWZWvVSRAEQRDqTbGpmDWfzOSeVCiw17Io5F5aOdoh5ZhRqSW8m5WziFGJrLOQEw8qrbLCYRNWqzEEr7zyCufOnUOWZe6//342btxIRkYGJpMJs9l8zYcgCIIgNLSvd8xn8L9KquLFrW8l38aBieGBAHgFO6PRqis+uKR1IKgb2DrVdVXrVK1aCP766y8kSWLs2LEi+6AgCILQ5MRmxFL81fe46OC8qxv/Nu/He/d2xP+0jnSovLsArovphiVq1UKQlqZEVP/3f/9nlcpUx0cffcQ999xDWFgYrq6u2Nra0qxZM8aNG0dMTEyZ/V999VUkSarw8fzzz9f7ZxAEQRAajsFsYN6KZxkarQyCXxw5mm/+rycPdAsh+ayywqFfi0oGFJrNcHar8vw6CAhq1UIQEBDAuXPnGiQV8dtvv01BQQERERF07KgsM3n06FGWLl3KTz/9xKpVq7j99tvLHNenTx9atWpVZnuXLl3qvM6CIAhC4/HO9s8Z9Eccahn2hYTz6quP0NbPBUOxifSEfOAaAUFKDOgywcYJAjvXU63rTq0Cgn79+nHu3DliYmLq/YL6xx9/0KVLF+zsSqeS/Pzzz5k2bRoTJkwgISEBjab0R5wwYQKPPvpoPdZUEARBaGyWRkdx5t+vuf+sjEGlYtDH7xLgp3QPpJ7PRTbLOLra4ORuW/FJSroLQm8GtbbuK13HatVlMGvWLLRaLXPnzqWoqMhadaqSPn36lAkGAB5//HFatmxJSkoKsbGx9VonQRAEofH7ZvtpPtj1Go9sVKbKezw6noDwMMv7yXE5gNI6UGlCouto/ADUMiBo37493333HSdOnGDo0KGcPHnSWvWqFa1WidRsbGwauCaCIAhCY2Eyy7y2+ijv7viW22PP458FkqcH/o9PLbVfcpwyfsC3su4CYzGc36U8b8Lpiq9U68REDz30EGFhYYwYMYLw8HAiIiJo3bo1Dg6V5H0GJEnim2++qW3xZSxdupQTJ04QFhZGWFhYmfc3btzIwYMHKSoqIigoiGHDhonxA4IgCNc5nd7EjJ8OsP7UMQJ91nLvDmXqu9+s/6F2ujwOTpZlSwuBf8tKAoILe8CoA0cf8GlXp3WvL7UOCE6ePMnMmTNJT1eWizx06BCHDh2q9BhZlq0WEHzwwQccPXqUgoICjh07xtGjRwkICODHH39ErS47d3Tp0qWlXs+ZM4d7772XxYsX4+RU+RzS4uJiiouLLa9zc3NrXX9BEAShbqXlFTNhyV4OJWTj2Ow3HtpUjIMe7Dp2wPXOO0rtm5OmoyjfgEoj4R1cSUKiK5c7rqxboQmpVUAQHx9Pv379SEtLs2QqdHZ2xs3NDZWqftZN+vfff9mwYYPldbNmzfj+++/L3PW3atWKDz/8kGHDhtGsWTOysrLYunUrzz77LL/++ismk4nffvut0rLeeecdXnvttTr5HIIgCIL1nU7N49Hv9pKQpcPV+wChOScZcFi5Xvm++CLSVdeqlEutA97Bzqi1lVzHrrPxAwCSXIucwxMmTODbb79FpVIxc+ZMHn/8cUJDQ61YvarLzs4mJiaG119/nf/++48333yTl1566ZrHJSUl0bFjR8viTD179qxw3/JaCIKDg8nJycHF5RrJKwRBEIR6tetMBpOXRpNbZCTE24De912e+y6HtongcsdIAt9/v8wx6787ysmoFDrdEszN95ftdgagKAfeCwXZDE8dAbfguv0gtZCbm4urq2uVrlO1uo3fsGEDkiQxY8YM3n///QYLBgDc3Nzo27cva9asoUuXLsyZM4e9e/de8zh/f3/Gjx8PwD///FPpvra2tri4uJR6CIIgCI3PbwcSGPdtFLlFRjo3c6N9xAZuOpxH20SQ7O3xeeaZMscc25nEyagUAEIjKlnG+NwOJRjwaNmog4HqqlVAkJKi/OLuvfdeq1TGGrRaLQ888ACyLLN69eoqHVMy+DApKakuqyYIgiDUMVmW+WTDKZ7++RAGk8yIjv6MH5LD3nObeHiTMpDQa/IktL6+pY67eCqLzcuOA9B1eChBbdwrLuQ67C6AWo4h8Pf359y5c41uep+XlxLZlaRWvpasrCyABsm4KAiCIFiHwWTmxVUxrNiXAMDkfi2YPNCPu/98mjt2m/HMA21gIB5XJafLTi1kzRcxmE0yLTv70P325pUXdPb6WO74arVqIRgyZAhAlZrm69OWLcofq2XLltfcV5Zly2DCzp2bfupJQRCEG1FukYHx3+1lxb4EVBK8cVcHXhjejg+i30eVksFdUcp+Ps89i+qKpHZFBQb+XnCY4gIjPs2cueXRdkiqSmYN5CZB2nFAUjIUXkdqnanQ0dGR9957j8zMTGvV6Zp27NjBP//8U2YJZYPBwKeffsrSpUuxt7fngQceAJSWggULFpCXl1dq//z8fKZOnUpUVBR+fn7cc8899fYZBEEQBOtIzNZx38KdbD+djoONmm8e6cbYns3YmrCVv+L+YuwmGa1RxqFHD5wv3cgCmExm/v3qCNkphTi52zL88Qi0NpUsdQyXWwcCbgIHj7r7UA2gVl0GrVq14rfffmPUqFH06dOHTz75xNJqUJdOnTrF+PHj8fLyokuXLnh6epKenk5MTAxJSUnY2dmxePFigoOVwR4FBQVMnz6d559/nm7duuHv709aWhr79+8nIyMDNzc3Vq5cec1kSoIgCELjciQxh/GL95KWV4yPsy3fPtqNDoGu5OvzeX3X67SLl+l1zAwqFb4vvmBJRSzLMlt/OknC8Sw0tmpGTIvA0bWSdQtKxF0KCK6T7IRXqlVAMGjQIEDpsz9x4gS33XYbbm5uhIWFVSlT4ZX5A6qjf//+vPjii2zZsoXDhw+Tnp6OjY0NoaGh3HfffTz55JOlVjT09PTkueeeY/fu3Zw8eZKdO3eiVqtp3rw5jz76KE8//TSBgYE1qosgCILQMDYcS+GJHw9QqDfRxteZ78Z3I8DNHoB5++aRmp/McxvVgAm3B0Zh16aN5djDGxOI3XYRJBj6WHu8gipJQlRClq/bAYVQyzwEKpWqVLRVpQIlyZKp0GQy1bToRqE68zsFQRAE61m66xyv/HkUswx9w7xYMKYzLnbKOjZ7k/fyf//+H7ccNDN5rRmViwst//0Hjbsyc+Dc4XT+XngYZOhzXytuGhxStULTTsKCbqC2hefPg9a+rj6e1VTnOlXr5Y8rXQlKEARBEKzIbJZ595/jfLk1DoBRXYN46+6OaNXKkDidUcerO1/FoUjmke1aoBjv6dMtwUB6Qj7rvjkKMoTfHECnW6qRR6Bk/EBIjyYRDFRXrQKCzZs3W6kagiAIglC5IoOJmb8cZE1MMgCzhrZm2sBWpW5MFx5cSHxePFOi7LDLK8CmZUvcH3oQgIKcYv7+/BCGYhOBbdzp91Dr6t3UXsfdBWCFxY0EQRAEoa5l5Bcz8fto9sdnY6NW8f59EdwVWXrs15H0IyyJXUJAhszAKB0Avs8/j6TVYtSbWPtFDPmZxbj5OnDbpA6o1dWYaGc2wdltynMREAiCIAhC/YtLy2f84r2czyjExU7Dl+O60rOFZ6l9DCYDL+98GbNsZtZOTyRTKk4DB+LU92ZkWWbD98dIOZuLrYOGEY9HYOeorV4lLh6E4hywcwX/m6z22RoTERAIgiAIjdbec5lM/D6a7EIDQe72LB7fjVY+ZWcEfH3ka05lnaLveQeCjqSCVovvc88q5/jrLKejU1GpJIZN7oibbw2mmMdtUn6G9gXVNXIVNFFVCgji4+Mtz0NCQsrdXhNXnksQBEEQrrT60EWe+eUQepOZTsFufD2uK97OZXMFnMo6xZeHv0RtkpmyRXnfY9xYbEJDObknmb1/nwOg/5g2BFa2RkFlrtN0xVeqUkDQvLmS11mSJIxGY5ntNXH1uQRBEAQBlGnsX2yJ471/lMWGhob7Mv/BSOzLySJoMpt4ZecrGM1GZpxugTbxFGpPT7ymTiXpTA4bv1fOETkkhPA+ATWrkEEH8ZdyH9/oAUFFOQZqkcJAEARBEMowmszM+eMoP+5RWqD/r09zXhrRDnUF6wv8cOwHYtJj8Nc7cPO/F5EBn5lPU1CkZu0XBzAZzTTv5EWvu6+9tk2F4neDqRhcAsGz1bX3b6KqFBB89913AGWmZ5RsFwRBEITakmWZacv38+/RFCQJXr49nPF9Km6Jjs+N57MDnwHwSkxr5IJo7Nq3x/62kayaewBdngGvYCeG/F/7yhcsupaS6YbN+8N1nHunSgHBI488gkqlQqVS0bVrV8LDwy3bBUEQBMEatpxMI+j4t7yqzaT5Hc/Rv1vFwYAsy7y661WKTEWMNLbHY/0+ALxfeIF13x4j82IBDq42jHg8Aq1tLQcBXuf5B0pUa5aB6CIQBEEQ6oIsyxxdPZ852mXKhn83Qc7jcPNTylS/q6w8tZK9yXuxU9nyyH8mzLKMy4gRHDjjTPzRBDRaFSMej8DJ3a7MsdVSmAlJh5TnzfvV7lyNXK2WPxYEQRAEa9i7fR0T8xYCYHJrDsYi2P4RfBIJUV+CyWDZN7kgmY+iPwLgZd0QzAeOINnZkdZ/PIc3JQAweHw4Ps2ssMbMuW2ADN5twcW/9udrxERAIAiCIDQoc24KLTZOxUYycdx9IOoZB+DBH8EzDAozYO3/YEEPiP0T2Wzmzd1vkm/Ip7NLB9r+qIz+Nzw4g53/pALQ864WtOzsY53K3SDdBSASEwmCIAgNyWQg6/vReMkZxMmB+I77Vhm413Y4hA2B/Utg87uQeQZ+GcuakAi2qLPRqDS8eCYcY9JBikI7Ep3cHNlsok1PPzrf2sx69Yu7lH+geX/rnbOREi0EgiAIQoMxr5uNZ3o0ebI9Wzp/jLu7x+U31VroNgGePAD9/kemjQPvkgHAk3nuyEt/Ra914nD4ZPRFJvxbuTJwTFvrrcKbfUEJRCQ1hPaxzjkbMREQCIIgCA3j8C+oor4AYLY0jXuGDix/P1tnGDSbd3vcR7ZaTetiPYN/P4NJbyK26+PkF0q4eNkxbEpH1ForXtZKshMGdil3YOP1ptpdBuPHj8fR0bHWBUuSxIYNG2p9HkEQBKEJSo5B/vNJJOBT412EDXoQV/uKFxzaFL+JtQmbUUkqXvd+nLz4Lzje9iEybZthIxUyovdJ7G07W7eOlvED1393AdQgIIiOjq51obIsW69JRxAEQWhaCjPhpzFIRh2bTZ1YrH2QLZUkIMrV5/Lm7jcBeKTdWBze2crxkFtJ9uuJhInb3N7HY88hOLEAbpkDHe4DVS1bCmT58viBG2BAIdSgy0CW5Vo/BEEQhBuU2QS/ToDs8yRKvswwTGPSgNY42VZ8f/pR9Eek6lJp5tKMsXGBxKfZEtfiDgD6PdiW4AemgHMA5MTDqonw1UA4u7V29Uw9BgWpoLGHoG61O1cTUe2A4MiRI5jN5lo/TCZTXXweQRAEoTHb9Dac2YBRZceEoqfQOnkyrldohbvvTtrNr6d+BeDVjs9y7qvfiG07DoCIQUF0GBAMN42GJ/bBoDlg4wxJB2HJSFj+AKQer1k9S7oLmvUGTdkVFq9HYlChIAiCUD+O/QXbPgTgDdVkjsnNeHxAy3JXMQQoNBTy6s5XAXigzQN4/rKfg8EPYVbbEBLuTp/7wi7vbOMA/WYpMxK6TVRmBpz8Bxb2gtUzIC+lenW9AZY7vpoICARBEIS6l3YSfpsCQGzIaJbk98DPxY7RPUIqPOSzg5+RmJ+In6Mfk5zuZGusB3pbV9xc4daJHVGVt2CRkzeM+BCmRUHb20E2w77FSsbDze+BvuDadTUZ4Nx25fkNMqAQREAgCIIg1LXiPPh5DOjzMAX35v8u3gnA9EGtsNOW3zpwKO0QP8T+AMCc7nPY9tlB8p2CsJGLGPm/XtjYX2NMvFcYPLgMxq9Vpg0aCmDz2/BJZ9i3RBnLUJHEfaDPB3sP8O1Yo4/cFImAQBAEQag7sgy/T4X0k+AcwI/NXic530SQuz2jugaXe4jepOflHS8jIzOyxUjMv5lJJhCV2cCtDzfHxcu+6uU36w0TNsB934JbM8hPhtVPwhc3w6n1Sv2uZpld0L/2sxWakBvnkwqCIAiVMhcWkvbpZ2R88y26I0eRrTH4e/s8OLYa1Dbo7v6Oj3ZlA/DkoDBsNOVfgr48/CVxOXF42Hlwj/5Rjh4zA9DVJ56Qvu2qXwdJgg73wvS9cOvbYOcGqbGw7D74/s7LqxmWKBlQeAOkK76SWMtAEICsoizWnF2Di40LI1uObOjqCEK9M6SkkjB1KkWxsZZtKhcXHLp2xbFHdxx69MC2dWuk6twxn94AG99Qng97n2/Pe5FZkEGopwP3dA4s95ATmSf4JuYbAJ7ye4k9P10AJFqkbKTz+8/W9OMpNLbQa5oyK2HbXIhapAweXNQfOj0Ig2YrwULCHmX/G2hAIVQjIDh79iwAgYHl/xEFoamRZZkDqQf45eQvrDu3DoNZWV7Vy96LXgG96r0+fx9O4rcDibx2Z3sC3arRJCoItVR0/DgXpkzFmJyM2sMD+4gICqOjMefmkr9xI/kbNwKgdnPDoVs3HHr0wKF7N2zDwipOMpd1Dn59TBnU13kcuR0e5sv3NgEwY3AYGnXZwOJC3gWe2/ocRtnIbe53kPG7LbJswjdlLz0ejEDtYoXljAHs3WHom8pshI1vQMwKOPQjHP0NWt4CZiO4hYBHxcmSrkdVDgiaNbPi6lGC0IDy9fmsjlvNLyd+4XT2act2DzsPMosyeWfPO/w68le06orTqFpbXFo+z6w4SJHBTHp+MSum9EJbzhemcH0zm2UKc4pxdLVFKm8EfR3I37KFxKdnYi4sxKZFC4IXfYFNcDCy0UjRseMU7omiICoKXfQ+TNnZ5K1fT9769QCoPTxw6N7d0oJg07y5EiDoC+Hnh0GXBQGdYdgHfLvlLDk6A618nLijU9kby3/O/cNrO18j35CPnzqAjnuHkafT45ITRyeicb9vlvU/vHszuPdr6Pk4rJsD57fDib+V926w1gEASRapA2ssNzcXV1dXcnJycLFW5CrUmdiMWH458Qtrzq5BZ9QBYKe2Y3iL4YxqPYpgl2BG/jaSzKJMZnWdxSPtH6mXepnMMqMW7WLf+SzLtsn9WvDC8Br0lQpNUlGBgWM7kojZkkBeRhFewU70vKslIeEedZrmPfOHZaS8/TaYzTj07EnQJ/MrvAuXDQaKjh6lIGoPhVFRFO7fj1xUVGofjbc3Dt2742BzEkf9drQ+7khTtpCt9aHve5vIKzby2ehIbo8IuPzZjUW8v/d9VpxcAUCkZ2duPzaVtDOF2BZl0m3f+4R9uwCHbnWcLVCWlbwF61+GjNMw7k9o3rduy6wH1blOiYCgFkRA0PjpjDr+OfsPK06uICY9xrK9pWtL7m9zPyNbjsTF5vLf7rdTv/Hyzpdx0Djw191/4e3gXed1/GprHG+tOYaTrYaZQ1rz+l9KH+5347sxsI1PnZcvNJyMi/nEbErgRFQyRr25zPsBYW70urslfi2su9KebDKR8u57ZC1dCoDrfffi/8orSNqqt4rJej26mBgKoqIojNqD7sABZL2+1D4aL3ccet/MVocQPs5wwb1lKGue7GvJHxCXE8esLbM4lXUKCYnHmk8m7Fhfzh5IRy0b6BL9Pv79IgiaN896H/5azCYozlW6Fa4DIiCoJyIgaLzicuJYcWIFf5z5gzx9HgAalYYhzYYwqvUouvh2KffOyyybGbtmLIfTD3N7i9t5p+87dVrP06n5DP9kG3qjmXfv6ciD3UN4+Y8jfL/rPB6ONqx5si9+rnZ1WgehfpnNMudj0jm8KYGE45dbhTwDnYgYFERIuAeHNlwgZnMiJqMSJIRGeNHzzhZ4BjrVvvyCAhKfmUX+5s0AeD8zE88JE2rdEmEuLka37kcKl7xMYYoGXZY9srF0kGP09sXz5t449OjODt8cXotbgM6oI1huwTj9TLIOmTGbZCRkOh5eiHfBaVqu+RutGLtWYyIgqCciIGhcDCYDG+I38MvJX9ibvNeyPdApkPtb389dre7C097zmuc5mn6Uh/5+CBmZxbctpotvlzqpr9Fk5t4vdnHoQjb9WnuzZHw3JEmiyGDins93EpuUS4/mHiyf2BN1PfUnC3WnuNDAsZ1JxGxOIDddaWqXJGhxkzcRg4Lwb+VW6qKcl1nE3r/PcnxnkjJVXoI2Pfzofns15+FfwZCczIWpj1N87BiSrS0B772Hy223WuPjQW4SfNkf8lOgw72Yh3+G7tAh1i37G9P+fbTNvoD6qmRA5319SWh9B3pNJ2RZ+ewBrVwI3LQA5zO78Xr8cbyffMI69btBiYCgnoiAoHFIzE9k5cmVrDq1isyiTABUkor+Qf0Z1WYUvQN6o5KqN0DvtV2vsfLkSlq7t+bn239Go7L+DN2Fm8/w3j/HcbbTsO7pfvi7Xv6Sj0vLZ+Sn2ynQm5hxSxhPD2lt9fKF+pF5sYCYzQkc351k6RawddTQ/uYA2vcLxMWz8ot7VnIBUX/GcWZ/GgAqtUSHfoF0GRaKg4tNleuhO3qUhKmPY0xNRe3pSfDnC7Dv1KnmH+xKRj0sHqFM1/NpDxPWg40jqblF9H1/E8VGM4sfbI/vxV1s+uMTvM87IDvcRpp3JFz6v+mRcZQw/SG8XfQU7t2Lxs+Plmv+RuXgYJ063qCqc50SeQiEJslkNrE9cTs/n/iZ7YnbkVHiWm97b+5tfS/3ht2Ln6Nfjc//ZOSTrDu3jpNZJ1lxcgUPtX3IWlUH4GRKHvPWnwTg5dvDSwUDAC28nXjr7o489fNBPtl4ih4tPOjd0suqdRDqjtksc/5IBoc3XriqW8CRiIHBhHX3RVvBgj5Xc/dz5LZJHUk5l8vu38+QcDyLw5sSiN2ZxE23BHPTkBBsr5HGN2/jRhKfmYWs02HTqiXBXyzCJsiKzfD/PK8EA3au8OAPYOMIwOebz1BsNBMZ4kqS7S7eOfczHT0eRJYupwMOcMgiNPE/7I5uBbOZwkvbfWbNEsFAPRMtBLUgWgjqX7ounVWnVrHy5EqSCpIs23v592JUm1H0D+6PVmWd6YI/H/+ZN6PexNnGmb/u/gsPOw+rnNdgMnPP5zuJSczhlrY+fP1I1wr7b59deYhfohPwcbZlzYy+eDndGMuwNlUVdQs0v8mbiAFBBLR2q/Bvna/P57ODn/FX3F/cEnILEzpOINi5bGrfC8cz2f3bGVLPK2Nj7By1dBnWjA79A9FctS6ALMtkff89Ke++B7KMY+/eBM7/GLWzs/U+9IEf4I9pgASjf4HWQwG4mK1jwAeb0csFjGhzGOdYX4JzLs2ckSCsiw9dhoVaxkWYcnMpjI6mMGoPag8PPCdNrNMZFjcK0WVQT66ngECWZTKKMnDQOGCvsW9U/xFlWWZP8h5+PvEzm+I3YZSNALjaunJ3q7u5r/V9NHOxfp4Mk9nEg38/yPHM49wbdi+v9n7VKuf9bOMpPlx3Eld7Leue7oevS8WDBgv1Ru74bAenU/Pp39qb7x7tVv4Kb0KDykwq6RZIxlis9JPbOmgIvzmADv0r7xaQZZl159fx3p73SNOlWbarJTW3t7idiRETy/z7lmWZuINpRP0RR1ayck/t5G5Lt9ub07anHyq1CtloJOXtt8la/iMAbqNG4TdndrVmElxT4n749jYwFcPAl6D/5UyCL646zK69B+ljNOGfd6n+kkybHv50ua0Z7n6O1quHUCERENST6ykgWHhoIZ8f/BxQ5ua727njYedh+VnyKHntaeeJu5077nbu2GvqJqteTnEOf5z+gxUnV3Au95xl+03eNzGqzSiGhg7FVl23d8wHUg8wbu04JCSWDV9GR+/arXx2LCmXOz7bjsEk8/EDN3FX5LWbbU8k53HHZ9spNpp5flhbpvRvWas6CNYhm2XOH83g8KYELsRmWrZ7BDgSMTCI1j38rtktcCH3Am/teYsdiTsACHEO4bGOj7Hu/DrLNpWkYnjz4UyMmEgL1xaljjebzBzfnczev86Sn1UMgJuvA91vDcDmuzcp3LYNJAmf//0Pj/GPWjfQL0hXUv7mJkCb4fDAMlCpkGWZvTsSWL0iGr9iZbqkSTIS1NWJwXdG1nhApFAzIiCoJ9dLQBCfG89df9xlSd1bXfYa+3KDhvJeu9u5V3oRl2WZw+mH+eXEL/x77l+KTcqXnIPGgZEtR3J/6/tp49GmRvWsqZe2v8SfZ/6kg2cHlo1YVu0BiiUMJjN3fraD2KRchob7smhs+VMfy/PjnnheWBWDRiXx8+RedGl2fcyRboqKdUaO70zi8OYEctOUBFeSpEwNjBgUTGAl3QIl9CY9i48u5svDX1JsKkar0jKh4wQe6/iY5f9HTFoMiw4vYkuCsvKehMRtzW9jUsdJtHJvVep8RoOJI1sS2bf2PEUFyv9j59xztEr4hw5zJuIyZIh1fwkmI/xwj7IOgEdLmLQJs40LcQfSiPr7DNkXld+LQaWnsFUijz18F74+157hI1ifCAjqyfUSEDyx8Qk2X9hM74DezBswj8yiTLKKssgsyiz1KG9bTYIIR61jqQChpLXBTm3H+vPrOZF1wrJvG/c2jGozihEtRuCobZgmxnRdOrf/djsFhgJe6/0a94TdU6PzfPzfST7+7xTuDlrWPd0fb+eqt27IssyTPx1k9aGLBLrZs+bJvrg61F9qZUEZ7R+zSekWMFzRLdCuTwAd+wdW+c53b/Je3tj9BmdzlPVhevj3YHaP2YS6hpa7f2xGLIsOLWLjBWU9AQmJIc2GMCliUpngOGffYXa+tZLznr0wXQosgtq60/OulviGWvE7at0c2PkJaB0x/99/nDrvzr5/zlu6L/SqIo747iS8b2tmDhzbqLogbzQ3REDw0UcfsX37dmJiYkhNTaWoqAg/Pz/69+/P//73Pzp2LL9pd/HixXz++efExsZiY2NDz549mT17Nr179652Ha6HgGBH4g6m/DcFjaTh1zt+pYVbi2sfdIksyxQYCioNGq58nVWUZen/r4yt2pZbQ29lVJtRRHhFNIovk++Pfs8H0R/gbuvO6rtX42pbvcxxRxJzuGvBDoxmmU8fimRkp4BrH3SVvCIDt3+6nfMZhdVuYRBqpqRbIGZTAvFXdAu4+yvdAm16+KG1rdpsgQxdBh/t+4g/z/wJKGtnPNvtWYY3H16lv+PxzON8efhL1p9fb9l2S8gtTOk0hbYebcldv56L/3tWSSfcthOpdzxH7L5szCblK75lpDc97mxR+777o7/BikcxyRqOhy9hf4yHZQBlsbqQGP8tHPQ4ShuHCfz0aM2CZ8F6boiAwMvLi4KCAiIiIiwrMB49epSTJ0+i1WpZtWoVt99+e6ljnnrqKebPn4+9vT1Dhw6lqKiIDRs2IMsyK1eu5K677qpWHZp6QGAwG7j3z3s5m3OWseFjebZbLZcWvQZZlsnV51qChKyiLDKKMiyvc/Q5hHuEc2erO6t9wa1rBrOB+/+8nzM5Z3io7UO82OPFKh+rN5q547PtHE/OY3hHPxaM7lzuBaAoNpaCXbsACUmjBo0GSaNF0qiRNBrQaLiQo+fd9acollWM7t2coRFBSFoNkloNGq3lubL/5WNLjrc8V6tFMFEJvc7IsV1JxGxKIOdStwASNI/wouPAIILauFf592eWzaw6tYp5++aRq89FQmJUm1E82fnJUmmzq+pU1im+PPwl/577V5luK8s8daIFvX4/jSTLOPbtS+C8j1A7OZGbrmPvX2c5HpUMstK10ba3P91GNMfZowYZMFNiMX45jNjc3hwwjiVfp5zDYFPEPr/1HPXdRmFBe4qS7uSv6bfQIbBx/T++Ed0QAcGOHTvo0qULdnal/1F//vnnTJs2DV9fXxISEtBolPm5//33H0OGDMHT05Ndu3YRFhYGwK5duxgwYAAODg6cPXsWNze3KtehqQcEJXe9HnYerL57dY2+nG4kUUlRTFg3AZWk4pfbf6nyWIa5607w6cbTeDrasO7pfnheNXVQd+Qo6QsWkL9pU11Uu2JXBAiSWg1aLSpbW5wHD8Zz0kQ0nvXf51usM6LLVfLhy7KMbObSRe/Sa5lSz2W55L0rn5fsV5V9yp4rKS6H4zuTLN0CNvYawvv406F/EK7e1RsQdyLzBG/sfoNDaYcAaOvRljk95xDhHVHr31VcdhxfHfiCgEV/M/igkvDocN9A2r3+ARH+kaX2zUjMJ+rPOM4eSgdArVHRYUAgXW5rhr1T1ZIb6bMyODLvLQ6m90FnVsawaJ1hj+8/7PP4D62thmDzw+w72pLb2vvxxdi6yfApVM8NERBUplWrVpw5c4ZDhw4REaH8xxs+fDhr165l3rx5PPXUU6X2nzFjBp988gkffvghzzzzTJXLacoBQbounZG/jSTfkF+rfvEbzawts/j33L909unM4tsWX/Mu8XBCNnd/vhOTWWbhmM4M6+hveU8Xc0QJBC7llEelwql/f9QuzsgGI7LRiGwyIRsNYCh5bkQ2GDiXmkdhYRH2KplgFxukkveMRrj0s+R4jNfuprmaZG+Px8MP4/F/49G41/0AxpSzuRzefIHT+1IxGxvHV5K7nwMRg4Jp3d0XG7vq5XArNBSy8NBClsYuxSSbcNA4MD1yOg+1fchqWS9NeXkkzniKgp07kSVYeouav7oCkkTvgN5M6TSFSJ/SgUFyXA67fjvDxVPZAGjt1EQOCaHTLcEVfsbiQgOHN17g0D/HKTYqN2BO7lpyws/yrXEeJpWR1u6tmdzuFSZ9cwFJgn9m9KONnxVzHQg1dsMHBO3ateP48eMcO3aMtm3botPpcHd3p7i4mAsXLhAUFFRq/23bttGvXz/69+/P5pIv5ypoygHBKztfYdWpVYR7hvPjiB9rPHLeWowGEyd2J+PqbU9gNZpj61tyQTJ3/H4HOqOOd/q+w+0tbq9w32Kjids/2c6p1HxGdgrg04eUL2fd4cOkLVhAwZatyo4qFS63j8BrylRsWzSvUj2yC/UMn7+NizlF3HlTAB8/cFOFvzNZlpUg4YqAggoCCENiIulfLKIoRlkZUuXoiMcjj+Ax/lHrJrMBTAYzp/encnhTAqnnci3btXZqS64FSZJKMtsqzyXg0k9JkkDC8lyyHMMVzys/Xnld+j0HZy3t+gQQ1LZm/w43xm/knT3vkFyQDMCQZkN4ttuztcqceTV9QiIXpkxGf/oMkr09gXM/JKtrK76O+ZrVZ1Zbxur08OvBlE5T6OrX1XKsLMtciM1k1+9nSL+QD4C9s5Yuw0Lp0DcQtVb5heny9coiS5sS0BcprSWu6iRaDvXlc/USDmYcBOCBNg8wq+sspi87wn/HUkr9Wxca3g0dECxdupRHHnmEVq1acezYMdRqNQcPHiQyMhJvb29SU1PLHFNQUICTkxPu7u5kZmaWc9byNdWA4MrFe5YOW8pNPjc1aH3S4vNY/10sWUkFgHJn1qF/IG16+l8zJWtD+Drma+bvn4+XvRer71qNk035K9C9989xFm4+g5eTLeuf7ofd6WNKILB1m7KDSoXryJF4TpmMbfOqBQJXij6XyQNf7sZklnn/3ghGdSub1a4mZFkmf9Nm0j75hOLjx5WqurriOX48HmMfRuVYu0Fp+VnFHN2WyNFtiejylFkqKo1EWBdfOg4Msu5o+Hp0Mf8i70S9w+aEzYCyqNaLPV6kX1A/q5ajO3SIC49Pw5SRgcbHh6CFn2Pfvr3l/YS8BL6O+Zo/zvyB0awEBl19uzKl0xS6+3W3BDmyWeb0/lSi/owjJ1UZJ+HsYUfX4aFkJRdwZGuiZe0FD815ujqu5Pxt3Xg5eR15+jyctE681vs1hoYO5dCFbO5csAOVBOtn9qeld+1XZRSs44YKCD744AOOHj1KQUEBx44d4+jRowQEBPDnn3/SpYvSh/Xnn39y5513EhkZyf79+8s9j7u7O9nZ2eTm5uJcxTuhphgQyLLM2LVjOZR2iBEtRvBu33cbrC5mk5n9/8az96+zmM0ydrYGTGYNBoPyhaWxUdG6hx8d+wfiFdR4mh/1Jj13/3E38XnxPNr+UZ7pWrab6UB8Fvcu3IlZhsXd7Wix5icKtm9X3lSrcR05Eq8pk7EJDa1VXT7ffJr3/zmBnVbFn9NvprWv9X5PstlM3rr1pH32KfrTZwBQu7vjOXEi7g89iMq+6v3psiyTdCaHmE0JxB1Iw2xWvnYc3Wzp0C+Q8JsDqrVQT2NiMBtYGruULw59gc6oQ6PSML79eCZGTLR60q7cf/7l4nPPIRcXY9u2LcFfLETrV37Lw8X8i3x75FtWnVplmR4c6RPJlIgp9AroZQkMTCYzx3cmsfevsxTk6EudwzvAhq6GDwlUbWZeeB+WFcUD0NGrI+/3e58gZ6W19ZFv97DlZBr3dA7ko1E3WfUzC7VzQwUEgwcPZsOGDZbXzZo14/vvv6dfv8tR+fLlyxkzZgx9+vRhe8mX8lWCgoJITEwkMTGRgIDyp4QVFxdTXFxseZ2bm0twcHCTCghWn1nNi9tfxF5jz+q7VuPr6Nsg9chOLeS/72JJOas0Fbd0PkR/+7moMXLCcxYxmb3JSimy7O/XwpUO/QNp1dnH0qTZkLYlbOPxDY+XO12zyGBixCfbsDl+lKcvbiX4zGHlDbUa1zvvxGvyJGyaWSfVstks88h3e9h2Kp3Wvk78Me1m7Ku4aE5VySYTuWvWkPbZZxjOKxcEtbcXXpOn4DbqflQ2FV/IjXoTJ/emELM5wdI8DeDfypWIgcE0v8kLtbrh/541tT9lP2/sfoPT2acB6OLbhTk959DSzbrZJGVZJuOrr0n76CMAnPr3J2DuXNRO126tSS5I5rsj37Hy5Er0ZuWCH+EdwZSIKdwceLMlMDDoTcRsSuDgf/G4+TrQZbAfITvu40LWSWYFhXBMUlobHgl/hBmdZ6BVK3kw9p3P5N6Fu1CrJDY+059mniIlcWNyQwUEJbKzs4mJieH111/nv//+48033+Sll14CrBcQvPrqq7z22mtltjeVgKDAUMDI30aSpktjRucZTOg4od7rIMsyR7ddZMfKUxj1ZmxszPRzXEhrm/+QHL2gMAOQkR39SOr8CTFxgaXuKO0v9e+27xtwzWVj61pJQqee/j35csiXli/WRZ+twunnxXROO6XsqFbjetedeE2ejE1IiNXrkZZXzPBPtpGWV8yD3YJ5997aj2Avj2w0kvPHH6Qv+BzDxYsAaPz98Zo6Bbe77y6VIz83Q8eRLYnE7rhIcYFyIVFrVbTu7kvEwKBG1eJTE9lF2czbP49Vp1YB4G7rzjNdn+GOlndYffyLrNeT9Prr5Kz8VSlr7Fh8n39OmRlSDWmFaXx39DtWnFhBkUkJttt7tmdKpyn0D+pfut6yDCv/jzXn/uF1L08KVBJutm68dfNbZbpARn+1m51nMur0355QczdkQFDCYDDQq1cv9u/fT1RUFN26dbNal0FTbyH4eN/HfHPkG4Kcgvj9rt/rfB2AqxVkF7Nx6THijyrjNAI907hF9QLO6gxoNRju+QrST8Efj0OGcsdFxIMU9H6D2H0FHN12kYJs5fcvSdCsoxcd+gcS0s7DMoisPl3Iu8Bdv9+F3qznowEf0SfVjbi581Ef3AeArFbjfs/deE6ejM1VA1mtbcfpdB7+JgpZhvkP3sSdN1lxaduryHo92atWkb7wC4wpKQBog4PxnPo4+W36ELM1iXOH0yn5ZnH2tKND/0DC+wRg59i0syvKsswfZ/5gbvRcsouzAbg37F6e6vwUbnZuVi/PlJNDwoynKNy9G1QqfF94AY+xD9fqnOm6dJYcXcLPJ35GZ1TGDrTzaMfkiMkMDBmISlKh2z6P9w5+wq/OyliAzj6dea/fe2UGRu46k8FDX+1Gq5bYNGsAQe5iueLG5oYOCEAZV/Dss88yZ84cXn/9dTGokNLrFXwy8BMGhgys1/JPRaew5ccTFBcYUWskevmuJcL4pTKye8AL0O9/oLrUdGzQwaa3YNcCkM3g5AcjP8bc6lbOHc4gZktCqTXmXbzt6dAvkHa9/ev9grPg4AK2rF7ImJ0aWp9VghWjpOJ0l4GMePcF6645fw0frTvBJxtP42ij5u8n+xLqVbdNt+biYrJ//pnkr5dwUdOChMD+FDhebl0LautOxwFBhEZ4XRcrNJ7JPsMbu99gX4oS8LVya8XLvV4uM7XPWvQXLnBh8hT0cXGoHBwI+GguzgMGWO38mUWZfH/0e348/iOFRiXlcJh7GA96duHH2KWcttEiAZMiJjOl05Qy0yVlWWbUol3sPZfF2J7NeOOuDlarm2A91blONb4h3Fbg5eUFQFqaspRomzZtsLW1JS0tjcTEREtmwxIlrQYlOQuuRx9Ef4DBbKB3QG8GBA+ot3KLCgxs/ekkp/Yqd5LevjKD1S/iYToGDh5w71dK68CVtPYw9E1odwf8/jhknIIfH0QV8QAtbnuXFpGRllHQx3clk5umY+evp4n6M46wrj50HBCET7O6D9AKovYw7NNdDIo2ASaMahX/BndnU+fhLJ9zFzb29RucPHlLGLvjMtlzLpPpP+7n16m9sdVYdzzBlXJzTMTa9eJY52aWaWlqUzF+ybtpoTlH6L0P49yp4umQTYXOqOPLw1+y+MhijLIRe409UztN5eHwh9Gq6uZvXLj/AAnTpmHKykLj60vwoi+wa9vWqmV42HnwVJeneLT9oyw9/BXLT/7MqaxTvJF1Cmy0eEla3hm8gJ4Bvco9ftupdPaey8JWo2L6oFbl7iM0LddlQLBli7I6WMuWysAee3t7Bg0axNq1a1mxYkWZxEQrV64EYOTIkfVaz/qyI3EHmy9sRiNpeK7bc/X2BX0hNpMN3x+jILsYSQVd2l6ga8bTqM0mCOwC9y8Bt0qmygV3hynbYPM7sPNTOPwzxG2G2z/Gve1w+o5qTc87W3JqbwoxW5RBa8d3JXN8VzI+zZzp0D+IsK4+aKw4yE6WZQqjokj/bAGF0dHKNo2adR3N/N5Tw/n0AXz3cH9c6zkYANCoVcx/6CaGz9/GkcRc3llznFfvaH/tA6tBNsvEH8skZlMC549mwKX2RVdve9r39sbn9H/kH1yLOS+PxCf2YBcejteTT+DUv3+TDAy2Jmzl7ai3ScxPBGBA8ABe6P4CAU7VX4uiqnL+/pukF15E1uuxCw8naOFCtL4+1i1EXwgXdkPcFtziNvNE0iHGqWCZiws/uTgRgR2v3vcnXi7ld3XJsszc9ScBeLhnM3xdapAGWWh0mmSXwY4dO8jLy2Po0KGoVJdHKBsMBr744gueeuopbG1tOXHiBMHBygWnstTFAwcOxN7e/rpMXVzf6xWAMlp516ozxGxOAMDN24bBfkvxTftJ2aHbBLj1bdBUYwxDQjT8PhXSlS8hOo6CYe8prQwoX1ApZ3OJ2ZJQKtudrYOGdr39ad8vEDefmvdvyrJM4e7dpH22AN0+pclY0mpxu/8+7B8Zz4B/Z2K0PY6POpIND39f43KsYePxFP5vsRKsLBrbhVvb1z4hTsmSvzFbEixz1gFC2nsSMTCIkPDL4zhMOTlkfPcdWd8vxVyoNEXbd+qE94wncejVq0kEBskFyby35z3+i/8PAD9HP17o/gKDQgZZrQzZaER//jzFp05TfOqU5aE/q6yC6DRoEIEffoDKwQr98iYjXNwPcVuUJYsvRIGp9BRDvNpAi/7Iof2QwoaAtuKL/IZjKTy2JBp7rZptzw3Ey6l+xyMJVXfdjyFYvHgx48ePx8vLiy5duuDp6Ul6ejoxMTEkJSVhZ2fHkiVLGDVqVKnjShY3cnBwYMiQIej1etavX39dL25U3+sVpJzN5b/FsWSnKBeCjl219Mqejjb/HGgdYOQnEHF/zU5uKLrUWvCJMrbA0QdunwftSmcL1OXpid1xkaNbL5KXeXnqYki4Bx0GBNGsg2eV+7RlWaZg507SF3yO7lLXkhII3I/npIlo/fx45Y8jfL8vGqcWH4Nk4rNBn9E/uH/NPqOVvPV3LF9tO4uLnYY1M/rWeLBXZlIBMZsTOHHFkr82dmra9Q6gw4DKgyxjVhYZX39N1rLlygp8gEO3bkpg0LVrhcc1JKPZyPJjy1lwcAGFxkLUkpqx4WOZ2mkqDtqa/Q5lsxlDYqJywT95iuLTSgCgj4tTskaWw+PRR/H536xqzyS4XKgMqbGXA4BzO0CfV3ofl0Bo3h9a9Fd+uviXf66rmM0yt3+6ndikXKb0b8nzw6zblSFY13UfEJw9e5avv/6aLVu2EBcXR3p6OjY2NoSGhjJo0CCefPJJWrUqv09r8eLFfPbZZxw7dsyy/PGcOXOuy+WPr1yv4NVer3Jv63vrrCyTyUz0mnPsW3se2Szj6GbLoO5xhBx5GswG8AyDB5aCT7vaF5aw71JrwQnldYf7YPgHltaCEmazTPyRDGK2JBIfe7l528nD9tIgxIqT4ciyTMGOnaR/9hm6gwcBkGxscBs1Cs+JE9D6Kvkbdp5JZ/RXUQDce8tB1l38iWDnYH6787d6n8VxJb3RzP2LdnHoQjadQ9z4eXIvtFWc7282y5yPSefwptKDN939HYkYEEjrHn7Vyu1vTEsj/cuvyP7pJ8sF0LF3b7xnPIl9p07V+2BWZJbNxOfGE5sRy9GMo8RmxHIs8xgFBiVjZifvTszpOafKi1jJsowxNVW56F9xx1985gyyTlfuMZKDA7YtW2IbFnb50ToMrU8Nugiyzl0OAM5uhYK00u/bu0No30sBwADwbKlM16mmtTFJTF22HydbDdueHYi7Y9NMKHWjuO4DgsbCmgHBSz/vIc+sxc/VDj8XO/xc7fC99NPH2bbKX+ZXunK9guXDl6NW1c0As8ykAv77Lpa0eOUOJKyLJ/2cFmJ34kdlh/A74c4FYGvFueeGItjyLuyYf6m1wPtSa0H540By0go5svUix3Zenhev0ki06uxDh/5B+LVwQZIkJRDYvp30zxagO6SsUCfZ2iqBwIQJpfpy84uN3PbxVhKydIzpEcKLt7fgjt/uIFWXyhORTzApYpL1Pm8NXMgsZPgn28grMjJ1QEueu63iOzmzyUxGYgEXjmVyZGsieRnKHb0kQWiEFxEDg2q9xoQhKYn0LxaR/euvlgWXnAYMwPvJJ7ALD6/xeaviyot/SQBwPPM4+Yb8Mvu62boxo/MM7gm7p8I1PoyZmaXu9kse5ry8cveXtFpsSi78rVpdvvAHBCCpapiYqSBdufjHbVYCgezzpd/X2EOz3pdbAPwiLs/kqSGTWWbY/K2cTMnnyUGtmDm0asGS0HBEQFBPrBkQHOh7E5piIzGeLVjn2ZUjni1Jt3cDlC9lT0db/Fxt8XO5FCi42OF7VfDgYqexfGEfzTjKQ3/V7XoFslnm8KYEdv1+BpPBjK2Dhv63OxMWO1m5e1dpYMgb0HNqje5EqiRxnzITIU3JuU+He2HYB+BY/tK9Rr2J0/tSidmSWGpBHXd3iTDfPNx2/oLx8KUxAra2uD/4AB6PPVbuHdtLv8WwLCqeIHd7/nmqH062GtbEreG5bc9hp7bjz7v+xN+pas2wdWVNTBKPL1O6Opb8X3f6t/YGoDBXT8rZHJLjckmOyyH1fK4lbz2AraOG8D4BdOgXiIuXdRNA6RMSSP98ITm//w5mpUznoUPxfmI6tpfG9tSGWTZzIe+CcuFPP0psZizHMo6Ve/G3VdvSxqMN7T3bE+4ZTrhnOC1cW1im2Jny8kr38V8KAEwZGeUXrlZj06xZ6Tv+sFbYhIQgaWo5hrs4D87vvNwKkHKk9PuSGoK6Xu4GCOpWvXE6VfDHwURm/HQQFzsN254b1CCDZ4XqEQFBPbFWQCDnpnKiZz9kc+mLZrqTB4c9WnDYozlHvFqQ6OhV6YXVXqtWWhRcbEi0+4Ac+TRtnfrzf61fsgQPPs62aKyQKjYvs4iN3x+zNCmHhHswqHscjhumg6EAnP3h/sUQ0rPWZV2TsRg2vws7Pra0FshD38fo1QNDSirG1BSMqakYUlIwpqRiTEnBkJpCZoEtCZ49SPHpgll9qdlTNuNQlI6Hpwb/Xu3wbu2DZ5ATzh52pe6Ot51KY+w3ewBYPrEHvVsqU11lWWb8v+PZl7KPIc2G8NGAj+r+81/D7FWHWb8zgTC1DQ809yE7IZ/c9KIy+9nYa/Bt7kKrLj607uZr1dkZ5Sk+e5b0BZ+T+/ffSp+3JOEyfDjOtw5VdpBRtstmkGVl1UazrLwhKw+z2USmLoOLeRe5mJfIxfxEkvOT0BuLkS59s6kuHaJVafC198HP3hc/B1/8HP3wtHFHJUnK+c3KOU05OZYAwJicXGH9tcHBl+/2L93x2zRvXmkq52oxFkPC3ssBQOI+MF+1lLVvh8sBQLPe1m2Fu7o6JjND520lLr2AZ4a05olbah+8CXVPBAT1xJotBMa4QxSunIdu1zYKk6EoWwty6Yu/yc2d3LD2JIW05ZRvS445+JGcpyc5t4gc3eXBSRqXA9gH/oxstqHgzDPIRlfLe5IEXk5XtDRcanXwc7WnmacDXULcKx1wJ8syJ6OS2frzKfQ6IxobFX3ubk573UKkPQuVnUL7wn3fgpOVp0pdKt+UnY0xNVV5pKRcvtCfP4nhzGGMeQZMxVW/mJk8/Ehp1o8LLpEUSOX/HW3s1HgGOeEZ6ISTjz2vbjvFcV0Ro3s347U7SydkOZF5glF/jcIsm/lyyJf0qmAed10pyCkmJS6X5LM5l+7+8zAZzKV3ksDD3xG/5i74tnDFr7kr7n4ODZLxsejkSdI/W0DeunX1XnZVaHx9L1/0W7XCtnUYti1a1HrVx3LpsmD/UojbBOd3gfGqsQfuoZcDgNB+4ORt/TpUYOW+BGatOIS7g5Ztzw3Cyfa6nLV+3REBQT2pk0GFxXlw8EdM2z5Hd+oihWk26NJs0WXZIhtL/6lUTk7Yd47EoWs31J1uIju4FecL8nlxz1jyjBl0sH8Qd8NtJOcUkZJbTEpuEUZz5X/uwe18+PjByHL/s+vy9WxZdoIzB5TBSr7NXRh8nydumyZBgnK3zM1Pw8DZoK7+l4VZr7dc5JUL/aXnqSkYUlOVi35qKvIV6aMrI6lkNA6gCQpF07wdWh8fND6+aHx90fr6oPH1RePjg8pOmV4lyzKFuXoyEvPJSCggPTGPjIQCspILMJvK/705e9nhHeSMZ6AjXkHOeAY54uJpz7t732X58eU0d23OryN/tSwEY20mo5n0C/kkn80hJU7pArhyZkUJrb2a0yYDF1QmenUPYPLd7Rrd0tJFsbFkfP0NhqQkkCSKzXoKjToKjIUUGAsoMBZiQJnpUNKYJksgSRKONk442TjjZOuMs60LjjZOypRkSaVEwZJ0KdiRLK9RSZdafSSlb12SlKf2Dpcv/C1bonZ1rbDOVpWwD1Y8Cjnxl7c5ekPzfpeDAPfQ+qnLVQwmM7fM3UJ8ZiEvDGvL5P7WXbxJqDsiIKgndTrLwGyGU+sgaiHEbcZsgqJMGwqLQiks8EN3KglzQUGpQyRbWzJaeLDJPZm0Nj68O/U37F3crzilTEaBnpTcIpJzikjOLSr1POpsJnqjmbZ+znw1rivBHpenWZ2LSWfj0uPocvWoVBLdbm9O59ZnUa2aAIXpYOsKd38BbYdX+JFM+fkYEi9iuJiI4eLFMg9TWnqVfz1qd/dLF3RvtL6+ly70PspzX180pmTUm59HSjumHBB+F4yYC45eVS7DUm+jmeyUQtIT8jkQk0r0wRS8TSqc5PLvpjW2atz87YjSb+WibRxDO/djzM33W+UCXJBdTHKccuefcjaX1Pjy7/49Axwtd/5+LVxw83Hgt4OJzPzlECoJlk/sSc8W5Y+zaCgGk4HvY79n18VdxGbGknf1NDnARmVDG482hHuGW/r9W7i1qLOMgfVClmH3Qlj/sjIjxz0Uuk9WAgCf8Lobf1MNP+6J54VVMXg52bLt2YFWX1FTqDsiIKgn9TbtMOUoRH0Bh34Gk3J3LDv4UeR/F7qiUApjjlMYHY3p6nUY1GrswsNx6NIFh65dsO/SBY27ezkFKA5eyGbi99Gk5RXj4WjDorFd6OTnwo6Vp4ndrqxu5+7vyJBH2uId/yVselvp3/XriHz/Ekyy6+ULfOKln0lJlm3m3NwKyy4h2dgoF3RfH7SX7uaV55fu6Evu6qvST2sshq0fwLaPQDaBg6cSFLS/+9rHliNHZ+DWeVtJzi3i//o0538DWimtCYkFpCfmk5GQT+bFAkxGc7nHO3vY4RnkhNelrgfPQEdcfRwq7KIxGcykXcizXPyT43LIzyrbOmLnqMW3hYul+d831KXCaYHP/HKIX/cn4Otiy5on++LZSBLKJOQl8OzWZ4lJj7Fsu/LiX/Jo6dayaV/8r6bLhj+mwfG/lNft7oA7PwO7emqVqIJio4mBH2zmYk4RL98ezv/d3LyhqyRUgwgI6km95yEoSId938GeryH/0mAntS1EjELuMYWXN31E7p4o+qV70emiFkNiYplT2LRqiUPXrjh06YpD1y5o/UuPgk/K0THx+2iOJOYSYlbxkOyEOc8AEnTs4c5NzbOQ17yDIS4WQ4EagzoIg8EFQ1JylZry1a6uaAID0AZc/QhEGxiA2s3N+pnsLh6A36dB6lHldfidMHxutftfZ604xMp9CTT3cmTNk33LvUsym8xkp+rISMwnPSGP/w5sR5vljLO+/EBMo1XhEeCoBAhBTtg7aUk9rwQBaRfyLBkXS0gSeAY54Xvpzt+vuSuuPvZV/p0VFBu547PtnEkrYEAbb759pFuDLzy04fwG5uyYQ54hDxcbF6ZHTifSJ/L6u/hfLXG/0kWQfR5UWiV7Z/eJjaJF4Erf7zrHy38cxc/Fjs3/G4CdVrQONCUiIKgnDZaYyKiH2N9h9+fKxQ7YYW/HFD8fNJKKX0f+Sgv3VhiSkiiM3kfhvmgKo6PRnz5T5lTawECl9aBrV+zCwzFlZZN3LoG/tuZRLIUiSSps9Nm0P/497pknKq+XJKHx9r58kS/nwl8nA7Gqwqi/1Fow93JrwfAPldaCKnwBl6RqlSRYOaUXXZp5XPMYgCPpRxj992i0Rjs+7PApnoWBl4KFfDIv5pea6lceOyctfi2Ui79vc1d8mjkrd/9mExgKlZz0hoJLPwuv2FYI+oKrfir75uTmsPdkAnZyEWHuKnzt5cv7GIvBuw0E91BmiAT3qFE3S1XoTXrmRs9l+fHlAER4R/Bhvw8bfKpmnZNl2PMl/PuS0kXg1kyZkRPYuaFrVkaRwUS/9zeRmlfMG3d1YGzPZg1dJaGaREBQTxo8U6Esw4UoDLsWcG/uXs7aaBmbk8uzeECPqXDTQ6WmIRmzstDt23cpSNhHUWwsmEylTpnvGEBsu0fId1IWNfFL2kXr0yvRmIpAJaN1MKF11aLt2B9tqw6lL/6+vkjWmnJVVy4eVJpoS+Zwt7tD6UaoZEZEdqGeofO2kppXzKR+LXhxePWyLb6681V+PfUrrd1b8/OIn9AYdFCYgbkgg9ykLDIS8klPMZCRLqErVOHllIGfcxJ+DvG4qJKRjAVlL/LGsgMH64xnKwjuCSE9lADBq3Wt72Iv5F1g1pZZxGbEAjC+/Xie6PzE9d0iAFCUA38+AbF/KK/b3q4k7bqUc6Sx+XpbHG/+fYxAN3s2zRqAjab2U5aF+iUCgnrS4AHBJZb1ClQ2rE5Mw6UoR3nD1gU6j4Puk8C9bGRvLiig8OBBdPv2kb93H6dyfDntPxhZ0mCjMtAtNINch2IKYpcz2DkajZ0ZXYshOIz6SkmD2lQZ9bDtQ6W1wGwEew8l9XGHe8u90D3980F+O5BIS29H/n6y7+UmU7MZirKVqWKFGVCYqfzUZZZ6nlWYxu3SRXIleDEjm4eqMJaiWrQOysPGAbSOl346gI1j+du1DshaB5ZEp7Hrgg4HJxfeuL87Tk4uyqj85MMQv1tZAKck4dOV7N2VwKCkFSEgUlmyuorWnVvHKztfId+Qj5utG2/d/Bb9gvpZ8RfSSF08qHQRZJ1VugiGvgE9pjS6LoISBcVG+r2/iYwCPe/d25EHuoU0dJWEGhABQT1pDAFBhi6D23+7/fJ6Bc1uhUM/KoMQM04rO0kqaDsCej4OIb1KfQFlpxRybGcSJ3YnUZCjrH4WGuHFwIfb4mC4AL88AikxmFAx13A/P9rcw+cPd6NXy8Y1Qr1Gkg4pYwtSLg1kazcS+v1PuRvXKRf0E2fPs+nAcTykfIY21+Am51++6OuylEGVVfCTsxNveXngbDLzV8JFPFS2SreFg7sSkDh4Kmsx2LkpF/JyL+ZXX+ztlfS0NUxHm1tkYMQn27iQqWNYBz8+H9O57FiEwkwlOU5JgJC4r2zrhEoLATeV7mYop8Wl2FTMB3s/4OcTPwMQ6RPJ+/3ex8+x9qsxNmqyDHu/hn9fVFYYdA1RugiCujR0zSr1+ebTvP/PCZp5OvDfzP41Sp8uNDwRENSTxhAQVLhegdkMp/9TxhnEbbp8gH8n9J2ncVrXk2O700mOy7G8ZeekpdfdLWnX2x/pxBr4bSoU54CDF5nDv2D8ZnsOJeSgUUm8cVcHHup+HdwxGPWw/SNlfMHVWeCqysZZubA7eJa+uNt7KD8dPDDZu/PgoY84nneee1veyas3v2ndz1FDhy5kc98XOzGYZN64sz1je4VWfoBRf0ULwm6Ij4KC1LL7ebQo1Ypw3saO/217jmOZyjTQCR0nMO2maZYUwdetolxYPQOOrlJetxmudBE4VG0MSkPJKzLQ9/1NZBca+GhUJ+7pHNTQVRJqSAQE9aShA4Iqr1eQegx510Iu7j3Msfy+nCnuhVFWkvFIEoR08KRdb39CO3qhlsyw8XVl0SBQvtDvXwwuARQZTDy78jB/HlKmID7aO5TZI9pZJRVyg0s6DGv+pzSROygX9SNZak7kapHtPbird0c0Tl5XXOivuOhrqjZu4kDqAcatHYeExLLhy+jo3bGOP1TVlPQT22hU/PZ4b9oHVGPKmywrTeAX9lxuRUg9hmVpSWCtowOveXlSoJJwV9nydvuJ3NxhrNLacT1LOqx0EWSeUdb1GPwa9JrWaLsIrjT/v1PM++8kLb0dWfd0f9QNPBNFqDkRENSThgwIZFlm7NqxHEo7xIgWI3i377vl7peXWcTxXUkc35VUKn+9uzqBtvYbaOO0C8fIIcogREdv+PUxOLdN2ann4zDkdbgiy54syyzYdJoP150EoG+YF5+N7nzdLXLy9+Ekpi3fj1ol8dvjvYkIcrPKeV/c9iKr41bTwbMDy0Ysq3A1vfokyzITlkSz4XgqLbwcWf3EzTjWJi2tLhsS9lJ0fjvvJ6xjhaQsKtRFV8R7aRn4mkzKBdK/0xWDFXuCs691PlBDk2VlevDa55W8IS5BcP93ENy9oWtWJTmFBm5+fyN5RUY+Gx3J7REBDV0loRZEQFBPGjIgWH1mNS9ufxF7jT2r71qNr+PlL1Oj3kTcoTSO7Ugi4USW5WZNa6cmrKsv7Xp641u4CWn3Ari4//JJtY7KFDYbJ7jjU+hwT4Xl/3Mkiad/PoTOYKKFtyPfPNKN5l4NNKXQytLzixk6byuZBXqeGNSKZ6y4xGtaYRojfx9JgaGA13q/xj1hFf+O61NWgZ7hn2wjKacIf1c7HugWzIPdQvBztavR+c7mnGXWllmczDqJhMTE5rczVROAJmGP0s2QX86iQe6hSmDQ6hZlPEc1Bio2GsV5sPopOLJSeR12q5LBs5F3EVzpw39P8Nmm07T1c2bNk30bPE+FUDsiIKgnDRUQFBoKGfnbSFJ1qczoPIMJHScgyzKp5/I4tiuJU3tT0Osu94cHtnGjXS9/WnT2QXtlMh1ZVgaM7f4cYv9U5ud7t4VRS8G79TXrcfRiDhOXRHMxpwhXey2fj+lMn1Z1M2e9vsiyzOPL9rP2SDJt/Zz5c/rNVp9qteToEj6M/hB3W3dW370aV9vGkZVu3/ksJi+NJj1fGVyqVkkMauvDmB4h9AvzrvKF4a+4v3h91+vojDo87Dx4p+879A7ofXkHWVaS8cRHKeMQLuxRsnFe0c2ArSt0vBciH4aAzk2imZ3kI7DiEWUwr6SGwa9ArydqPOizPmUW6Nl7LpO9ZzNZvieeQr2JRWO7cGv763zA5w1ABAT1pKECgvn75/N1zNcEOQWxfNAvnIvO4viuJDIvXl7bwNnDjra9/Gjby79q69lnX1D6f1vfBrZOVa5Lal4Rk5fu40B8NmqVxKsjw689MK0R+/PQRZ788QAalcTv0/rQIdD6F2uD2cB9f95HXE4cD7V9iBd7vGj1Mmqq2GjinyPJLI+KJ+rs5VTYQe72PNQ9hPu7BuHjXH6rgc6o47097/HrqV8B6ObXjff6voe3QxUyQhblKMHpuR3K3XX2FQv8+LRXAoOIB8CxEc5ukWXY/z2sfVaZgeEcoHQR1MfS3zWUmK1j79lMos5msvdcJqdT80u93y3UnV8m97J+1lCh3omAoJ40REAQnxvP3b/dQ0Bma+4zT6DwjIT50gqGaq2KlpHetO3tT1Br93pbyrbIYOKFVTH8dkBJlTy2ZzNeHhne5KYppeYVMXTeVrILDTw1OIynBl+7laSmdiftZuK6iagkFb/c/gttPKzXLWEtp1PzWB51gZX7LpBbpLQ4aVQSQ9v7MqZHM3q18LS0GsRlx/HMlmc4nX0aCYkpnaYwOWLy5Vkv1WE2w7mtcOAHpeXq0vodqLTK4lmRY6HlIKjJua2tOB/+ngmHlamUtBoMd3/ZqAIXWZY5nZrPnkstAHvPZZGYrSuzX5iPE92ae9A91INb2/uJBYyuEyIgqCf1HRBkJObz+c/LsDvrh4PhcgZC3+YutOvtT6uuvg22pK0sy3yxJY73/z2OLEOfVp4sGN0Zt/9v787jqqrzx4+/LvsOAi6gbCoqCiJqWiJZzNevmrnkMqOVomlOWjZlTqYtYFlNZfN1q0atn9akzZi54GiTmUu5pSbkgriyqKAiOyKX5X5+fyBXriyCwr0s7+fjcR/COedzzvueD977Pp/zOZ+PXQMfuRAo0SkOXkhn8Y6zHErMoKuHE5tfCK33hOaV3a+wPWk7PVv1ZPXg1Q32aqygqIStx1JZ82sSR5Oz9Mt93ex4sq83Du6/syjmb9wsvombjRsfPPwBfT361s3Bb2bC8fUQ88/ScSPKOHpCjych5KnSRxxN4Wpc6S2C62dKbxGEvwGhL5n8FkFxiY6TKTkcTszgUEIGR5IyybhRaLCNuZmGwLbO9PFtwQO+rvT2dcXVvuH/XxW1JwmBkRgjIdDmF3H28FVO7U/lWtLt6WCtHMzo9lA7ujzkgatnw+nM92PcVf7yrxjyC0vwdbPj84gH6Niq5rcgjEUpRezFLKJ/T+E/x1JJyy29CrUyN2PzC6EEeNR/gpeal8qIzSO4WXyT98Pe5/H2j9f7Me9X/JUc1v6azMajl8ktzMemzWYsXX4DIMClJ58MXFizWwT3IvUYxK4pvRq/mXl7uW9Y6S2FgOHGe5QxZg1sfQWKb4KjB4z5f+DT7+7l6kFBUQkxyVn6BOBocib5hYZDkttYmhHi1ULfAhDi7XJ/T5KIRkMSAiOpr4RAp1Ncjs/k1IFULsSk6afT1WlKSGxxAs9edrw08lnMG2iT/KnUHKZ+eYTLWTdxtLFg2ZM9GdCpnr4kaunM1VyiY1OI/j2F5Ix8/XIXO0uGBHrwVF/veuk3UJWVx1ayJGYJ7rbubBm5BQerhpc8VeZE2mlm/jSL69pklNJQeP1/KLz+KB1bOfFkH29G92yHs109PYpaVACnt5W2Gpzfhb4zorVT6fDTPSfcU0dEpRSXs26SlqvFydYS51svg5aiwhuwdTb8XjohEx3CS28R1HLmzPuRnV/EkaQM/S2A45ezKSox/Bh3srHgAV9XHvBz5QFfV4LaOss8BM2UJARGUtcJQXZaPvEHrhB/INVg3nu3tvbk+V1mecFH2DlaseWJLThZmW7uhJq4nqfluX/+xpGkTMw08MbQrkwO9TVJs/jFjHy2HEshOjaF+Cu3W1nsrMwZ2LU1w4M9CfNvaZIPzMKSQp7Y/ATJuclM6jaJV3q/YvQYakMpxaZzm3jv1/coKCmgpW1Lngt4k5iz7myOvay/MrW2MGNodw+e6utDT+96mNK6TNbF0qG6Y/55R0fEruU6IlZ88qWoRMe5a3nEpeQQl5rDyZRs4lJy9H0lyrO1NMfZ1pIgq1TeKvgAr+JkdJix23Mqx/ym4GxnrU8enG0tDZKJupgq+GpOAYdudf47lJDB6au53Pmp3drJmj5+bqW3APxc6dTKUR4XFIAkBEZTVwmB9mYx2z49RsrZLP0yazsLOj3Qmi79PDBrWciwTcNuz1fQaXQdRF//tMUlvL7xBOt/uwTA+D5ezB8eaJQv3ut5WrYdT2VzbAq/Jd1uXrY01zCgUyuG9/DkfwJaYWdl+mbTny/9zPM/PY+FxoLvhn9HexcT3RO/i/yifBYcXMCWC1sA6OfZj/f6v4ebbWkHutyCIjbHprDm12ROpd6ewKlLG0ee6uvNiJC2ONnUU6uBTlc6oFbM13Aq+vZ8C2aWFPsP5oLXKA5qgjmZeoOTqdmcuZJHYUnFeSgszTW0crQhp6CI3HLJwRNmv/Cu5f/DTqPlmnLhxaIXOKjretewrCzMbicKNhYGiUNZ8uB0xzJzMw2xyVkcupUAlG/JKtPe3V7fAtDH1xUvV9sG2wdFmJYkBEZSVwmBUop/LzhEesoNvANc6dLPA79gdyxuXV2UzVcQ4BrAN0O/ubee2yailOLzXxJ47/tTKAV9/Vz5x9O9aFEPHZhyC4r44eRVon9PYd+565TcevpCo4EH/dwY0cOTwYFtGmRHx5k/zWT3pd309ejLkkeXYGfZsIb1PZN5htl7ZpOQnYCZxowXerzAlKAplY60WNY/Y82vyfznWAoFRaVfvLaW5ozo4cmTfb3rbOTHO4+blqvldOIlSo5/i1/yRny0p/XrU5Ur35WEsa7kEZJVaxytLQjwdKKbpxNdPZzo6umEfytHfcJaolPk5eZg/sMcHOK+AeB6y4f4Oeg9rilnsm8W6V85d/5bUKz/+7tfZhoI8HDiAV9X+ty6BdDS0bpO9i2aPkkIjKQubxlcTcjBztkKR1fDZ7zLz1fw1ZCvCGkVcl/HMZWd8Vd58ZtY8rTFeLva8XlEbzq1drx7wbsoKCph9+lrbI5N4af4axQW377qC27nzLBgT4YFe9La6d5G3DOWizkXGbl5JIW60t7grexa4ePkU/py9MHbyRtfJ1/aObbDytx4CY1Sig1nN/D+offRlmhpZduKDx7+gN5teteofPbNIjYevcSaX5M5W+5Z98C2TjzV14fhwZ731LmtRKdITL/ByZQc4lJKm/xPpeboB1UqE6BJYqz5HkZb7MWZ28cvaPsQ1g9EoOk6ouqOiGlnSp8iuBYHaOCRufDw7Bo97qiUIk9bfCtJKK6QOJQmDUUGSUXZtgVFJQR4OOq//Hv5tMCxvlpWRJMnCYGR1PdTBkopJn4/kdi02GrnK2gszlzNZcqXh7mYcRMHawuWjO9BeJfaj19fXKJj//l0on9P4YcTV8jV3m7a7dDSnhE92jI82BPfRjaU8qZzm/j4yMdkabOq3MZMY4aHvQc+Tj54O3rj6+yLt6M3Pk4+eDp41unsgTeKbvD2gbfZlrANgNC2obzX/z1cbWo/DK9SiiNJmaw5mMS2E1f0iZuDtQUjQzx5so8PXT0r/z9UUFRC/JXcW/f7szmZkkN8ai43i0oqbGumgQ4tHeiqv/J3JsDDETcbbnVE/BrO/YRhR8RREDIR2pbriHjs29JZCotugH0rGP05tB9Q6/cthKlJQmAk9Z0Q/OfCf5j7y9xK5ytorDJuFPLc179xKCEDjQbmDQlgapjfXe9/KqU4mpxFdOxlth5PNbgS9HS2YVgPT4YHe9LVw6nR30vNKsgiKTeJ5JxkEnMSSc5JJikniaScJPKLK95PLmOhsaCdY7vSZMHJGx9HH3ycS1sYWtu3rtVESqczTjN7z2wScxIx15gzM2QmkwMn18lkTJk3Cvnu6CXW/prMheu3R9fs4eXCU3298XC2JS41+9aVfw7n0/KorPXd1tKcLh6OdPVwopunM109nejSxvHuHfmyL0FsWUfEpNvLWwaUPqFw/Qz8trp0mW8YjP6i6Uy8JJodSQiMpD4TgsrmK2gqCot1vLX5BP86fBGAsb3aseCJQKwtKn6Qx1/JYXNsClt+T+FS5u3R1VztrXgsqA0jerSll3eLZtGjWilFekE6idmJJOfeThKScpK4mHsRbYm2yrLW5tZ4OXrdvg1RroXBzcZNn0Qppfj2zLd8cOgDCnWFtLZrzUcDPqqXW1VKKQ5cSGfNr8lsP3mlwqNz5bnZW9266i/94u/q4YSfu/39Tcur00HS3lsjIm6+3RERAA0MeBUGzGkYIyIKcY8kITCS+kwIys9XsGnkJqzNm1YnIqUUq/YlsmBrHDpVOnb6Z0/3wt3BmosZ+UT/nsLm2MucuXr7vq+9lTmDurVhWA9P+nd0b3RDI9cnndJx9cZVknKTSMpO0rcwJOUkcSn3EsWq4uN0Zewt7fW3HW4U3eCXy6XTXz/c7mHeDX0XFxuXeo//ep6Wb49c4rujlygq0dGt7Mv/Vme/Vo7W9dvyczMLTnxXmhzkX4dhi0vHGBCikZOEwEjqKyG4mHOREZtHUKQrYvGjiwn3brofTHvOpPHC2qPkFhTT1sWWVk7WxJQbHtfK3IxHOrdkRI+2hHdpJeOr34NiXTEpeSkk5SSRnJts0MKQkpeCwvAjwEJjwV96/oWJ3SbWyS0CIYTp1OZ7yvQPYYsKPjzyIUW6Ivp59uNRr0dNHU69GtCpJRtnhDL1y8MkpudzOesmZhro18Gd4cGeDApsg7Ot9LC+HxZmFng7eePt5F1hXWFJIZdyL+n7KqQXpDPIdxCB7oEmiFQIYUqSEDQw+y/vZ/fF3VhoLJjzwJxG30GuJjq2cmDT86F8uvs8Hs42DO3uUeUUu6JuWZlb0d6lfYMdDEkIYTySEDQgRboi/na49NHCcV3GNasPaRc7K+Y9FmDqMIQQotmSG4QNyDenviEhOwFXG1em95hu6nCEEEI0I5IQNBDpN9P57PfPAHgx5MUGP3mREEKIpkUSggZiacxS8oryCHANYGTHkaYORwghRDMjCUEDcP3mdbZe2ArA3L5zG9XkRUIIIZoG6VTYALjburNhxAZ+vvRzo528SAghROMmLQQNhJejF08FPGXqMIQQQjRTjTIhyM/PZ9OmTUyZMoXOnTtjY2ODvb09wcHBvP322+Tl5VUoExUVhUajqfL12muvmeCdCCGEEA1Do7xlsHbtWp599lkAAgICGD58ODk5Oezfv5/IyEi++eYb9uzZQ6tWrSqUDQ0NpWPHjhWW9+rVq97jFkIIIRqqRpkQWFpaMm3aNF566SUCAm4PZpOamsrQoUOJiYnhpZdeYu3atRXKTp06lUmTJhkxWiGEEKLha5S3DCIiIli+fLlBMgDg4eHBJ598AsCGDRsoLCw0RXhCCCFEo9MoE4LqBAcHA6DVaklPTzdxNEIIIUTj0ChvGVTnwoULQOltBVdX1wrrd+7cSWxsLAUFBbRr144hQ4ZI/wEhhBDNXpNLCBYvXgzA4MGDsba2rrD+n//8p8Hvb775JqNHj2b16tU4ODgYJUYhhBCioWlStwy2bdvGF198gaWlJe+8847Buo4dO7Jw4UJOnjxJXl4eFy9eZM2aNbRt25bvvvuOCRMm3HX/Wq2WnJwcg5cQQgjRFGiUUsrUQdSF+Ph4+vXrR2ZmJosWLeIvf/lLjcqlpqYSFBREeno6Bw4c4MEHH6xy26ioKObPn19heXZ2Nk5OMhmREEKIhiUnJwdnZ+cafU81iYTg8uXLhIaGkpSUxKxZs/j4449rVf6vf/0rCxcuJDIykqioqCq302q1aLVa/e/Z2dl4e3tz8eJFSQiEEEI0ODk5OXh5eZGVlYWzs3O12zb6PgQZGRn87//+L0lJSUyePJmFCxfWeh/+/v5AaWtBdaytrQ36JZTdMvDy8qr1MYUQQghjyc3NbdoJQV5eHkOGDCEuLo5Ro0axcuVKNBpNrfeTmZkJgL29fa3KeXp6cvHiRRwdHe/puMJQWSYrLS6mI3VgWnL+Ta+p1YFSitzcXDw9Pe+6baNNCLRaLSNGjODQoUMMGjSIb775BnPz2k8brJRi48aNAPTs2bNWZc3MzGjXrl2tjymq5+Tk1CT+IzZmUgemJeff9JpSHdytZaBMo3zKoKSkhPHjx7Nz507CwsLYsGEDVlZWVW6flpbGJ598Qm5ursHyvLw8pk+fzq+//kqbNm0YNWpUfYcuhBBCNEiNsoVg2bJl+qt6d3d3ZsyYUel2CxcuxN3dnRs3bvDCCy/w2muv8cADD+Dh4UFaWhpHjx4lPT0dFxcX1q9fj52dnTHfhhBCCNFgNMqEoOyeP6BPDCoTFRWFu7s7bm5uzJkzh4MHD3LmzBn279+Pubk5fn5+TJo0iZdffpm2bdsaI3RRDWtrayIjIysdUEoYh9SBacn5N73mXAdN4rFDIYQQQtyfRtmHQAghhBB1SxICIYQQQkhCIIQQQghJCEQDtm7dOoYOHYqHhwfOzs48/PDD7N2719RhNSurV69Go9FUeO3evdvUoTUrX375Jd27d8fe3h5fX19effVV8vPzTR1Wk3TkyBEmTpxIx44d0Wg0vPHGG/e0TWPUKJ8yEM3DokWL8Pf355NPPsHBwYFVq1bxhz/8gUOHDhEcHGzq8JqVvXv3Ggz81bVrVxNG07xs2LCBSZMm8eqrrzJo0CDi4+OZO3cu2dnZLF++3NThNTn79u3j4MGD9O/fn+vXr9/zNo2RPGUgGqz09HTc3Nz0v+t0OoKCgggNDWXFihUmjKz5WL16NZMnT6aoqAgLC7l+MIU//elPpKSk8Msvv+iXRUVFsXTpUtLT000YWdOk0+kwMyttPPf19eXpp59mwYIFtd6mMZJbBqLBKp8MQOlQ0YGBgSQkJJgoIiGMr7i4uMIQus7Ozuh0OhNF1LSVfdHf7zaNUdN8V6LByc/PZ9OmTUyZMoXOnTtjY2ODvb09wcHBvP322+Tl5d11HyUlJRw+fJiOHTsaIeKm537qoG3btlhYWNC9e3fWr19vxKiblnupg4iICHbs2MGGDRvIzc3lyJEjLF26lOnTp5vgHTQudfG506woIYxg5cqVClCACggIUGPHjlWDBg1Sjo6OClBdunRRV69erXYfixYtUubm5urYsWNGirppuZc6+O9//6veffddtWPHDrVlyxY1cuRIBahNmzaZ6F00bvf6/+CLL75QlpaW+rJPP/200ul0JngHjcv9fu74+Pio119/vdpj1GSbxkISAmEUq1evVtOmTVNxcXEGy1NSUlRISIgC1Pjx46ssf/DgQWVjY6MiIyPrOdKm637roEz//v1Vnz596ivMJu1e6mDHjh3K0dFRRUZGqt27d6uVK1eqli1bqtmzZxsz9Ebpfv/mJSEQwsj279+vAGVtba20Wm2F9QkJCap169Zq7NixclVUT+5WB+V99NFHysrKykiRNR9V1UFwcLCaMmWKwbZr165V5ubmKiUlxdhhNhk1+ZtvbgmB9CEQJlf2CKFWq63QazorK4uhQ4fi6+vLl19+iUajMUWITV51dSCMo6o6OHPmTIXHbIODgykpKSExMdGYITYp8jdfkTxHJEzuwoULAFhaWuLq6qpfXlhYyKhRo8jPz2fnzp3Y2tqaKsQmr6o6uJNSio0bNxISEmKs0JqNqurAy8uLmJgYg22PHj0KgI+Pj/ECbGJq+jffnEhCIExu8eLFAAwePNhgytEZM2awZ88eVq5cSUJCgv5xQ2tra/lCqmNV1cGYMWPo06cP3bt3R6vV8vnnn3PgwAGio6NNFWqTVVUdTJs2jTlz5uDp6Ul4eDhnzpzhjTfeYPjw4Xh6epoq3EavqvOdlpbGnj17gNKnFOLj41m/fj329vYMGTKkxts0Sqa+ZyGat61btyqNRqMsLS1VbGyswTofHx99D+HyLx8fH9ME20RVVwdz585V/v7+ytbWVtna2qp+/fqprVu3mijSpqu6OiguLlZ///vfVUBAgLK1tVW+vr5q5syZKisry0TRNn7Vne9du3bd9XOnJts0RpIQCJM5deqUatGihQLUokWLTB1OsyR1YHpSB8Yl57tqkhAIk7h06ZK+BWDWrFmmDqdZkjowPakD45LzXT2Zy0AYXUZGBmFhYcTFxTF58mS++OILeXrAyKQOTE/qwLjkfN+dJATCqPLy8vQzFo4aNYp169YZzKIn6p/UgelJHRiXnO+akYRAGI1Wq+Wxxx5j586dDBo0iOjoaKysrEwdVrMidWB6UgfGJee75mRgImEUJSUljB8/np07dxIWFsaGDRvkP6WRSR2YntSBccn5rh0Zh0AYxbJly9i4cSMA7u7uzJgxo9LtFi5ciLu7uzFDazakDkxP6sC45HzXjiQEwigyMzP1P5f9B61MVFSU/MesJ1IHpid1YFxyvmtH+hAIIYQQQvoQCCGEEEISAiGEEEIgCYEQQgghkIRACCGEEEhCIIQQQggkIRBCCCEEkhAIIYQQAkkIhBBCCIEkBEIIIYRAEgIhGo1HHnkEjUbDI488YupQmiVfX180Gg2TJk0ydShC1AtJCIQADhw4gEajwd7enuLiYv3yrKwszM3N0Wg0JCcn39cxEhMT0Wg08qViImVf6He+LC0tcXd3p3///kRFRZGSkmLqUIUwCUkIhAD27dsHQN++fbGwsDBYrtPp8PLywtvb21ThiXpUXFxMeno6+/btY/78+QQEBFQ7EY4QTZXMdigEtxOC/v37Gyz/5ZdfKl1uCrt37zZ1CE2Cp6cnP/zwg/73oqIiEhMTWbVqFVu2bCEnJ4dx48Zx8OBBQkJC9NslJiaaIFohjEdaCIQA9u/fD1T84t+7d2+ly0XjZWlpSWBgoP4VEhLCE088QXR0NLNmzQKgsLCQBQsWmDhSIYxLEgLR7J07d45r165hbm7OQw89pF9eUFDA4cOHAUkImov58+dja2sLwPbt29HpdCaOSAjjkYRANHtltwu6d++Oo6OjfvmhQ4coLCzExcWFwMBAU4WnV91TBuU7LK5evRqAH3/8kWHDhtGmTRusra3x8/Nj+vTpXLp0qUbH27VrFxEREbRv3x47OzucnJwICgrir3/961073p04cYIFCxYwaNAg2rVrh7W1NQ4ODvj7+xMREcHBgwerLR8VFaV/PwDZ2dm88847hISE4OLiYvA+65KDgwNdu3YFIC8vj4yMDP26mj5lcO7cOV5++WWCgoJwdnbG1taW9u3bM2nSJI4cOVKjOBITE5kzZw69evXCzc1N3/ExLCyMqKgoLly4UGXZ7Oxs3n//fUJDQ2nZsiVWVlZ4eHgwbNgw1q9fj1Kq2mNv3LiRkSNH6uvN0dGR9u3bExYWxptvvsmhQ4dq9B5EI6SEaEZWrVqlgPt+JSQk1PrYCQkJ+vIRERG1Lj9gwAAFqAEDBlS771WrVqnXXnutythbtmyp4uLiqjzOzZs31bhx46p9//b29io6OrrS8rt27arROXzttdeqjCEyMlK/3ZkzZ5Svr2+F8qtWrarV+fPx8VGA8vHxqXa7Bx98UH+MK1euVChfXd199NFHytLSssr3rNFo1Jtvvlnt8e+2j6r+BpRSaseOHcrNza3aso899pjKzc2tULa4uFiNHTv2rvXWq1evauMXjZd0KhSiiVm5ciX79+9nwIAB/PnPf6ZTp05kZWXx1Vdf8dVXX5GWlsYzzzzDgQMHKpRVSjFmzBi2bt0KwLBhw/jjH/9I+/btMTMz49ChQ3z88cckJyczZswY9u3bR+/evQ32UVxcjL29PUOHDiU8PJwuXbrg5OTEtWvXOHnyJEuWLCEpKYm//e1vdOrUicmTJ1f7fsaMGcPly5eZOXMmw4cPp0WLFpw9exYfH5+6O2nlYo+PjwfAysoKNze3Gpf96KOPePXVV4HS1qbp06fj7++Pi4sLp0+fZtmyZRw4cIB33nkHd3d3XnzxxQr7eOedd3jrrbcAcHFxYcaMGTz66KO4ubmRlZXF0aNH2bBhg77lpLx9+/YxZMgQioqKaN26NTNnziQ4OBhPT09SUlL497//zddff822bduIiIjgu+++Myj/2Wef8e233wKlt8imTp1Khw4dsLe3Jz09nWPHjvHf//6X7OzsGp8T0ciYOiMRwpiysrLUqVOn9K/yV7N79+7VLz958qSysbFRgFq/fr1BmVOnTqnCwsJaH9tYLQSAevbZZ5VOp6uw3dSpU/XbHD16tML6FStWKEBZWlqq77//vtI4MjIyVLdu3RSgQkNDK6xPS0tTmZmZVb4PrVarBg4cqL9aLy4urrBN+RYCMzMz9cMPP1S5v5qqSQvBsmXL9McNDw+vtHxldXfy5En9VX1kZGSl576kpEQ9/fTTClAODg4qIyPDYP3Ro0eVmZmZAlSnTp3UxYsXq4wzOTnZ4PfCwkJ9K8rgwYPVjRs3Ki1XVr+A2r59u8G6sLAwBai+ffuqoqKiKo+dnp5e5TrRuElCIJq1devWKUD5+fkZLI+NjVWAsrW1vacv/8oYKyHw8PBQBQUFle4jPj5ev93ixYsN1ul0OtWhQwcFqFdeeaXaWLZt22bQpF9bZecXUEeOHKmwvnxC8Mwzz9R6/5WpKiEoKipSZ8+eVfPmzVPm5ub6496ZEFWXEDzzzDMKUL179640GSiTmZmprK2tFaBWrFhhsG78+PH62wqVJWvV+eqrrxSgbGxs1LVr16rdtk+fPgpQTz75pMFyf39/BaiXX365VscWTYd0KhTNWlXjDJR1NOzduzeWlpZGj+t+jBkzBmtr60rXde7cGQcHB4AKHdPi4uI4f/68fh/Vefjhh/U/V3broTytVktycjJxcXGcOHGCEydOGHRs+/3336st/9RTT1W7vraSkpIqjFTo7+/Pe++9R0lJCRqNhgULFjB48OAa73PLli0AjB49utLm/DIuLi4EBQUBhudNp9Px/fffA6WdR8uPf1AT0dHRAAwYMICWLVtWu21Z3d1Zbx4eHkDpe7l+/Xqtji+aBulDIJq1qsYZKBuXIDQ01Ogx3a8uXbpUu75Fixbk5eWRm5trsLx8D/jyj1/ezZUrVyosu3HjBkuWLOFf//oXJ0+epKSkpMryd/vy6d69e41juR9OTk6Eh4cza9YswsLCalwuKSmJtLQ0AObOncvcuXNrVK78eUtISCArKwugVscuU1Z3P/zwQ7UJSVXHB4iIiODnn3/m3LlzdOzYkVGjRjFw4EDCwsJo165drWMSjY8kBKLZys3N5dixY0DVLQT9+vUzelz3y87Ortr1ZmalDYN3fklfu3btno6Xn59v8HtiYiLh4eEkJCTUqPzNmzerXd+iRYt7iqsqd45UaGFhgbOzM23atKnxl2l5dXHeyidFZVfq9R3Dnef9mWee4fz583z44YdkZ2ezatUqVq1aBUCHDh0YMWIEzz//PO3bt6/1sUTjIAmBaDZ8fX1JSkqqdF23bt0qXT58+HCD3yMjI4mKiqrr0BqE8gnCli1b8PX1rVG5Vq1aGfw+YcIEEhIS0Gg0TJ48mXHjxhEQEKB/Jl6j0aDT6TA3Nwe463PxZdvVlbKRCutK+fP21ltvMXbs2BqVs7e3r/MYhgwZwocffnjP+3n33XeZNm0aa9as4aeffuLgwYPk5+dz/vx5/v73v7N06VKWLFnCc889V1ehiwZEEgIhBIDBI3b3OhhTfHy8/jbMvHnzqhz+t/yAP41d+fN2r8mGu7u7/ufU1NR7iiElJYXCwsL7TnZ8fHyYN28e8+bNo6ioiMOHD7Nu3TqWL19OQUEBM2bMoG/fvrXu5yAaPulUKJqN7du3c/z4cf2rV69eALz++usGy5944gmgtDNb+eXHjx9nxowZpnwL9ar8B3zZLZPaOnnypP7nP/3pT1VuV9MR+xqD9u3b4+zsDNz7efPz88PFxQWAn3/+udbly+ruyJEjFBYW3lMMlbG0tKRfv34sWrSItWvXAqUtOuvXr6+zY4iGQxIC0Wx06tRJP6FN586dOXXqFACjRo0ymOzm9OnTADz++OMGywMDAys0jzclPXv21HceW7FiBQUFBbXeR3Fxsf7nGzduVLndP/7xj9oH2ECZm5vz2GOPAaVJZ9nfVW2YmZkxdOhQAPbs2UNMTEytypfd2iq7918f/vCHP+h/lqcQmiZJCESz9Ntvv5Gfn4+joyPBwcH65enp6foP9PKP1jUHZmZmzJs3Dyh9JHHixIlotdoqt8/JyWHZsmUGy/z9/fU/VzXXwGeffcbmzZvvP+AGZO7cuZibm6PT6RgzZky180WUlJSwZs2aCtvMnj0bMzMzlFKMGzeu2n3cuS4iIgIvLy/9fu7WyrB371727NljsOzrr782SOjutH37dv3Pfn5+1e5fNE7Sh0A0S2UfmP369TPotLZ3716UUnTs2BFPT896O/65c+dqNDlPnz599JPtGMNzzz3Hjz/+yMaNG/n22285evQof/7zn+nTpw/Ozs7k5OQQHx/P7t27iY6OxsbGhhdeeEFfPiQkhMDAQE6cOMHy5cvJzMxkwoQJeHh4cOnSJb7++mvWr19PaGjoPTevN0RBQUEsXLiQl19+mbi4OAIDA5k2bRrh4eG0bt2agoICEhMTOXDgAOvXryc1NZXjx48bPM7Xo0cP5s+fz5tvvsmZM2cICgri+eefNxi6ODY2lg0bNmBubs6uXbv0Za2trVm3bh2PPPIIeXl5hIeHM27cOEaOHImfnx86nY7U1FR+++03Nm7cyPHjx1m6dCkDBgzQ72PChAnMnj2bUaNG0a9fPzp06ICNjQ1Xr17lxx9/5LPPPgNKJ4Cq67EhRANh0mGRhDCRoUOHKkAtWLDAYPkrr7xSp6PjlXfn8MI1ef3f//2fvnxtJjeqzt0m6SksLFTTp09XGo3mrvHdOcKjUkrFxMSoFi1aVFkmKChIpaSk6H+PjIyssI/yIxXWlZpObnS38tWNMrlixQplZ2d31/NmZWWlzp49W+k+3n33XWVhYVFt+aomNzpw4IDy8vKq0d/Wl19+aVC2JmWcnZ2rHNJaNH7SQiCaHZ1Op786vXMQmLKRC5vb7YLyLC0t+fTTT5k+fTorV65k9+7dJCcnk5eXh4ODA35+fvTq1YshQ4bw+OOPVyjfo0cPYmNjef/99/n+++9JSUnB0dGRjh078sc//pHnn38eGxsbE7yz+vfss88yfPhwli9fzvbt2zl9+jRZWVlYW1vTtm1bgoKCGDhwIKNHjzZ4sqC8efPmMXbsWD799FN27NhBcnIy+fn5tGjRgq5duzJw4EAmTpxYadkHH3yQs2fPsnr1arZs2UJMTAzXr1/HzMyMli1bEhAQwIABAxg9ejSdO3c2KHvixAm2bt3K3r17OX/+PFevXiUrKwtHR0e6dOnCoEGDmD59Oq1bt67z8yYaBo1Sd3kIWAghhBBNnnQqFEIIIYQkBEIIIYSQhEAIIYQQSEIghBBCCCQhEEIIIQSSEAghhBACSQiEEEIIgSQEQgghhEASAiGEEEIgCYEQQgghkIRACCGEEEhCIIQQQggkIRBCCCEEkhAIIYQQAkkIhBBCCAH8fx0bFAadSUKWAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhoAAAGBCAYAAAAg8Bg7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6sklEQVR4nO3dd3gUVdvA4d/spveQAqEltNB770WRLkgRAUVFQBD8UFBfQRCU5qsi+mpUQARUUASRXqWGEkLvgkBCLwkhPdlNsvP9EbImpJBks9mU577cK7sz58x5dkeyT86cOUdRVVVFCCGEEMIMNJYOQAghhBAllyQaQgghhDAbSTSEEEIIYTaSaAghhBDCbCTREEIIIYTZSKIhhBBCCLORREMIIYQQZiOJhhBCCCHMRhINIYQQQpiNJBpCiBJrxowZKIpCp06dLB1KgSqp70uUTJJoCCGEEMJsJNEQQgghhNlIoiGEEEIIs5FEQwghhBBmI4mGECKD+vXroygK33zzTaZ9hw4dQlEUFEVh4MCBmfYnJSXh7OyMoijs3Lkzwz6DwcDy5cvp2bMnZcuWxcbGBi8vL5555hl+/fVXVFXNMa6zZ88yevRoatSogYODA05OTjRo0IAPPviA8PDwfL3XEydOUK5cORRFoVu3bsTGxprc5uMDNXfu3EmvXr3w8vLCzs6O2rVr89FHH5GYmJhjbFu2bKFr1664ubnh5OREw4YN+fTTT0lKSsrXexXCYlQhhEjnzTffVAH1ueeey7Rv1qxZKqACqoeHh2owGDLs379/vwqotra2akJCgnH7gwcP1A4dOhjrAqqrq2uG188++6yq0+myjOm///2vqtFojGUdHBxUGxsb42sfHx/1+PHjmepNnz5dBdSOHTtm2rdjxw7V2dlZBdQXX3xR1ev1Bd7mp59+qiqKoiqKorq5uamKohjrd+7cWU1OTs7y/aYdI+3h5uamWllZqYDaoUMHdfLkydm+LyGKGkk0hBAZrFmzRgXUMmXKqCkpKRn2PfXUUyqguri4qIB64sSJDPtnzpyZ6QswOTlZ7dixowqojRo1Ujds2KDGxcWpqqqqsbGx6rJly1Rvb28VUN96661M8fzwww8qoDo5OamzZ89W79y5Yzzu0aNH1S5duqiAWrFiRTUmJiZD3ewSjRUrVhiThkmTJmVKmAqiTTc3N1Wj0aiTJ09Ww8LCVFVV1aioKPXDDz80JhCLFy/O9H7XrVtn3D9o0CD1+vXrqqqqanx8vBoQEKDa2Niobm5ukmiIYkMSDSFEBhEREca/5I8dO2bcnpiYqNrb26sODg7qO++8owLqvHnzMtTt3LmzCqgzZswwbvvpp59UQK1Vq5YaGRmZZZtHjx5VFUVRbWxs1Hv37hm3R0dHG79Ut27dmmXdpKQktWnTpiqgzp8/P8O+rBKNefPmGXsZHo+/INsE1OnTp2dZv3///iqgPv3005n21alTxxjz44meqqrq999/bzy+JBqiOJAxGkKIDNzd3WnYsCEAu3btMm4PCgoiISGBtm3b0r1790z7dTodhw4dAqBz587G7YsXLwZg7NixuLq6Ztlm06ZNqVu3Lnq9nt27dxu3//HHH0RGRtK4cWO6deuWZV0rKyuGDBkCwLZt27J9X6qq8u677zJp0iSsrKz45ZdfmDhxYqZyBdWmra0t77zzTpb7+vbtC8Dp06czbD99+jTnz58HYOrUqWg0mX9Fjxo1igoVKmTzLoUoeqwsHYAQoujp0qULJ06cYNeuXcYvy7SkokuXLrRp0wZbW1sCAwNJSUlBq9Vy8OBBEhMTsbe3p1WrVgCkpKQQFBQEpA6SnDNnTrZtRkREAHDt2jXjtgMHDgBw4cIFypUrl23dhISETHXTS0pKYvjw4fzyyy84OTmxZs0aunbtmmXZgmqzbt26ODk5ZbmvfPnywL/vOc3Ro0eB1ESmffv2WdbVaDR06tSJ5cuXZxubEEWJJBpCiEw6d+7MvHnzCAwMJDk5GSsrK2NPQ5cuXYzJxN69ezly5AitWrUy7m/Tpg02NjZA6hepTqcD4OHDh7lqOz4+3vj89u3bACQmJj7xLo3H66Z38OBBDh48CMCSJUuyTTIKsk1nZ+ds61hZpf7qTU5OzrD9/v37AHh6emJra5tt/YoVKz4xLiGKCrl0IoTIpEOHDlhZWREbG0twcDDx8fEcPnwYV1dXmjZtCqQmHPBvT0faz/SXTVJSUozPt2zZgpo6LizHx4wZMzLVHzx4cK7qhoaGZvl+6tevT4MGDQCYOHEiV65cyfa9F1SbQohUkmgIITJxdnY2JhS7du1i//796PV6OnTogFarBf5NKHbt2kVcXBzBwcHAvwkIgIeHh/Gv9+wuMeQk7dJFfuqmV6ZMGXbt2kWjRo24ceMGHTt25NKlS2ZtMz+8vb0BCA8PR6/XZ1vu1q1bhRWSECaTREMIkaX0iUT6yyZpWrZsiYODAwcPHmTnzp0kJSXh5ORE8+bNjWWsra1p0aIFABs2bMhzDG3btgXg2LFj3LlzJ9/vBVKTnp07d9KkSRNu3bpFp06duHjxolnbzKtmzZoBqZdUAgMDsyxjMBjYs2dPIUYlhGkk0RBCZCktqTh06BBbtmzJsA3AxsaGtm3bkpCQYBzk2a5dO2MPRprRo0cDsHnzZjZv3pxjm48Pjhw0aBBubm4kJSUxceLEHGcPNRgMREZG5nj8MmXKsHPnTpo3b86dO3fo1KkTFy5cMGubedGgQQNq164NwOzZszEYDJnK/Pjjj9y8ebPA2hTC3CTREEJkqW3bttjY2JCYmMipU6fw8vKifv36GcqkJR6HDx8GMo7PSPPiiy/y9NNPo6oqzz33HLNmzTIOuASIi4tj9+7djBs3jqpVq2ao6+bmxpdffgnAb7/9Rq9evTh8+LDxC9hgMHDhwgXmzZtH3bp12bhx4xPfl5ubGzt27KBVq1bcvXuXTp06cfbsWbO2mRezZ88GYPfu3QwdOtSYVCQmJvL9998zfvx43NzcCrRNIcyqEObqEEIUU+3bt88wS+XjgoKCMkyVHRwcnOVxoqKi1N69e2co6+Likmlabisrqyzrf/fddxmm/7a1tVU9PDxUa2vrDMf85ZdfMtTLaQry6OhotU2bNiqgenp6qqdOnTJ7m2l2795trJ+VDz74IEMb7u7uxinI27dvL1OQi2JFejSEENlK30OR/rJJmmbNmuHi4gKAi4sLTZo0yfI4Li4ubNiwgc2bNzN48GAqV66MTqcjPj6eChUq8MwzzzB37twsx0wAjBkzhosXL/LOO+/QsGFDbG1tiYyMxMnJiWbNmvHmm2+yY8cO4yRaueHs7My2bdto37494eHhxrlDzNlmbs2aNYuNGzfSpUsXXFxc0Ol01K5dm08++YSdO3cabx8WojhQVPUJSyYKIYQQQuST9GgIIYQQwmwk0RBCCCGE2UiiIYQQQgizkURDCCGEEGYjiYYQQgghzEYSDSGEEEKYjSwTX0QZDAZu376Ns7MziqJYOhwhhBAiA1VViYmJoXz58mg02fdbSKJRRN2+fZtKlSpZOgwhhBAiRzdu3KBixYrZ7pdEo4hydnYGUk9g2syLQgghRFERHR1NpUqVjN9X2ZFEo4hKu1zi4uIiiYYQQogi60mX92UwqBBCCCHMRhKNIiYgIIA6derQvHlzS4cihBBCmEwWVSuioqOjcXV1JSoqSi6dCCGEKHJy+z0lYzSEEEIUeSkpKSQlJVk6jFLF2toarVZr8nEk0RBCCFFkqarK3bt3iYyMtHQopZKbmxvlypUzaT4nSTSEEEIUWWlJhre3Nw4ODjKBYSFRVZX4+Hju378PgI+PT76PJYmGEEKIIiklJcWYZHh4eFg6nFLH3t4egPv37+Pt7Z3vyyhy10kpERcTY+kQhBAiT9LGZDg4OFg4ktIr7bM3ZXyM9GiUcJfPHGfv/HWoKZV56fuh2D7KUIUQoriQyyWWUxCfvfRoFDEFPY+GajCQpGmBzr4KKz+cVSDHFEIIIXJLEo0iZty4cZw/f54jR44UyPFqNGyGrSYIAF14A6IiIgrkuEIIIbLWqVMn3nrrLUuHUWRIolEKdP/gFaySYtDberFm+meWDkcIIUQBu3PnDkOHDsXf3x+NRpNlorN06VIURcnwsLOzM3tskmiUAj6+1bC1T+0hSYprzp3rVy0ckRBCiIKk0+nw8vJi6tSpNGzYMNtyLi4u3Llzx/i4du2a2WOTRKOUGPDRW1jrIkiycWPLnEWWDkcIIUq05ORkxo8fj6urK56enkybNg1zrvjh5+fHV199xfDhw3F1dc22nKIolCtXzvgoW7as2WJKI4lGKeHs4Ym9xykA9MltuHjqqIUjEkKIvFNVlXh9cqE/8pokLFu2DCsrK4KDg/nqq6/44osv+OGHH7ItHxgYiJOTU46P5cuXm/rxERsbi6+vL5UqVaJv376cO3fO5GM+idzeWoo8P3MyP439E72dD/v/t46ai5tZOiQhhMiThKQU6ny4rdDbPf9xNxxscv+VWalSJebPn4+iKNSsWZMzZ84wf/58Ro0alWX5Zs2acfLkyRyPaWrvQ82aNfnxxx9p0KABUVFRfP7557Rp04Zz585RsWJFk46dE0k0ShFbewecK1/hwX0f9Jo2HN2zg2adulo6LCGEKHFatWqVYQ6K1q1bM2/ePFJSUrKcYdPe3p7q1aubNabWrVvTunVr4+s2bdpQu3ZtFixYwMyZM83WriQapcygD6ew5LWf0Nn7cWpZoCQaQohixd5ay/mPu1mkXXMKDAykR48eOZZZsGABw4YNK7A2ra2tady4MZcvXy6wY2ZFEo1SRmtlhVf9CG5e9kNn3Zrdf6yk84DBlg5LCCFyRVGUPF3CsJTDhw9neB0UFESNGjWyXS+kMC6dPC4lJYUzZ87Qs2fPAj3u44r+2RIFru8777B4+HckOtTk6voQOg+wdERCCFGyXL9+nYkTJ/L6669z/Phxvv76a+bNm5dt+YK4dJKWqMTGxhIWFsbJkyexsbGhTp06AHz88ce0atWK6tWrExkZyWeffca1a9cYOXKkSe0+iSQaRUxAQAABAQGkpKSYtZ1KHTT8cxQS7Zqx4cfv6DNirFnbE0KI0mT48OEkJCTQokULtFotEyZMYPTo0WZts3Hjxsbnx44dY8WKFfj6+hIaGgrAw4cPGTVqFHfv3sXd3Z2mTZty8OBBYyJiLopqzht7Rb5FR0fj6upKVFQULi4uZmlj8cvzSbRviF38KUYse0sWLhJCFCmJiYmEhIRQpUqVQpnBUmSW0znI7feUzKNRitV+tjyoBhIdGrLqi/9aOhwhhBAlkCQapVibAYOx1x0DIOaUK3p9koUjEkIIUdJIolHKNXulKYohiUSHmvw+x3z3UQshhCidJNEo5Rp0ehq75NQF1xJDqhCXEG/hiIQQQpQkkmgIOk/oiSZFh87el1UffmTpcIQQQpQgkmgIqjRsgp2SOrlMUlhDwsPuWzgiIYQQJYUkGgKAXpOHo02KRW9XjvUzP7N0OEIIIUoISTTM7MyZM1hZWZl1ZbyC4F2lKvb2qXegJMe25FrIFQtHJIQQoiSQRMPM3nrrLTw8PCwdRq70//hNrPUPSbIpw1//XWDpcIQQQpQAkmiY0dq1a7l69SojRoywdCi54lzGE8cyZwBITmrL2eNHLByREEIUP506deKtt96ydBhFhiQaZqLX63nnnXf45JNPsLW1tXQ4uTboo/ew0d0j2dqZwwF/WjocIYQQuXDnzh2GDh2Kv78/Go0m20QnMjKScePG4ePjg62tLf7+/mzevNmssRXrROPYsWN88skn9O/fn4oVK6IoSq7W60hISODDDz/E398fOzs7ypcvz4gRI7h161aBxfbll1/i5eXF4MHFawl2G0cHXCtdBSBJacvBndssHJEQQogn0el0eHl5MXXqVBo2bJhlGb1eT9euXQkNDWX16tVcvHiRRYsWUaFCBbPGVqxXb505cybr1q3LU53ExES6dOlCUFAQPj4+9O3bl9DQUJYsWcLGjRsJCgqiatWqJsV17949Zs+ezdatW006jqUMmPYfloxajs6uEhd+2Uubp7pZOiQhhChWkpOTGT9+PD///DPW1taMHTuWjz/+2GyLV/r5+fHVV18B8OOPP2ZZ5scffyQiIoKDBw9ibW1trGduxTrRaN26NQ0aNKB58+Y0b94cPz8/dDpdjnVmzZpFUFAQrVu3Zvv27Tg5OQHwxRdfMGnSJEaMGMGePXuM5SMjI7l7926Ox3RwcKBy5crG11OmTKF79+60bt06/2/OgrTWVpStF8H1y5XQWbdh+x8reGbAUEuHJYQQoKqQZIEZjK0dIA9JwrJly3jttdcIDg7m6NGjjB49msqVKzNq1KgsywcGBtKjR48cj7lgwQKGDRuWp7DTW79+Pa1bt2bcuHGsW7cOLy8vhg4dyn/+8x+0Wm2+j/skxTrR+M9//pOn8nq9nm+++QaAgIAAY5IBMHHiRJYtW8bevXs5duwYTZs2BeC3335j7NixOR63Y8eOxuTk7Nmz/PLLLwQFBREZGQmk9qKoqkpkZCQODg7Y2NjkKW5L6DVxAkte/YFE++rcWB+C2l+VZeSFEJaXFA9zyhd+u1Nug41jrotXqlSJ+fPnoygKNWvW5MyZM8yfPz/bRKNZs2acPHkyx2OWLVs2LxFncvXqVXbt2sWwYcPYvHkzly9f5o033iApKYnp06ebdOycFOtEI68OHDhAVFQU1apVo3Hjxpn2Dxw4kNOnT7NhwwZjojFmzBjGjBmT6zYuX76MXq+nSZMmmfa5u7vz3Xff5el4lqLRaPBtr3DxKCTatWTdDwH0GzXe0mEJIUSx0KpVqwx/nLVu3Zp58+aRkpKSZe+Bvb091atXN2tMBoMBb29vFi5ciFarpWnTpty6dYvPPvtMEo2CcurUKYAsk4D020+fPp3vNtq1a8fu3bszbFu6dCmbNm1i1apV+Pv7Z1lPp9NluOwTHR2d7xgKytMjR3Et8H8k2tfjQWAiKSMMaLXFevywEKK4s3ZI7V2wRLtmVBiXTnx8fLC2ts6Q6NSuXZu7d++i1+vN1tteqhKN69evA2Q7S2fa9mvXruW7DU9PTzp16pRh2549e7C1tc20Pb25c+fy0UdFb0GzOn3Lc3ybgUSHJvw+fy5D3vnA0iEJIUozRcnTJQxLOXz4cIbXQUFB1KhRI9uxEIVx6aRt27asWLECg8GARpP6R+OlS5fw8fEx6yX9UvXnaWxsLJA6eDMrjo6p//PGxMQUWkxpJk+eTFRUlPFx48aNQo8hK637D8RedxKA+NOuJOr1lg1ICCGKgevXrzNx4kQuXrzIr7/+ytdff82ECROyLZ926SSnh7Ozc45tnjx5kpMnTxIbG0tYWBgnT57k/Pnzxv1jx44lIiKCCRMmcOnSJTZt2sScOXMYN25cgb3vrJSqHg1LmTFjBjNmzMixjK2tbZGd2Kv5K00IXJFCokMdVs7+iJc/mm3pkIQQokgbPnw4CQkJtGjRAq1Wy4QJExg9erRZ20w/9vDYsWOsWLECX19fQkNDgdQBqtu2bePtt9+mQYMGVKhQgQkTJuT5xoq8KlWJRtpdJvHxWd8aFRcXB/DErNGcAgICCAgIICUlxWIxPK5+py4c+XkuCZqWJIVWITImBjcLfkZCCFGUpZ8i4bvvviu0dlVVfWKZ1q1bExQUVAjR/KtUXTpJm+vi5s2bWe5P2+7r61toMT1u3LhxnD9/niNHitY6I0/9X3c0KXp09lVZ83HRG0sihBCiaCpViUbatKzHjx/Pcn/a9gYNGhRaTMWFb8PG2CupyY8hrCG3nzCJmRBCCAGlLNFo27Ytrq6uXLlyJcvRvatXrwagT58+hRzZvwICAqhTpw7Nmze3WAzZ6TX5RbTJ8ejsKrBp9qeWDkcIIUQxUKoSDRsbG8aPT510aty4ccYxGZA6Bfnp06fp2LGjcbIuSyiql04AvKpUwcHuWOqL2FZc+ueiZQMSQghR5BXrRGPTpk20atXK+NA/uvUy/bZNmzZlqDN16lRatmzJwYMHqVGjBoMHD6ZVq1ZMmjQJLy+vbBejEame+2gcVknR6G092TtvoaXDEUIIUcQV67tOwsLCMk2KAhknSgkLC8uwz87Ojt27dzN37lxWrFjB2rVrKVOmDK+88gozZ87MdjIvkcrZwxNn99M8jG2HQd+e40cO0aR58Vw8TgghhPkpam7uhxGFJv3trZcuXSIqKgoXFxdLh5WBLjaOZW9uIsnWE9ukrYxcLOM1hBAFLzExkZCQEKpUqYKdnZ2lwymVcjoH0dHRuLq6PvF7qlhfOimJivIYjTS2To6UqXwVgGSlA7u3b7RwREIIIYoqSTREvvSb+g62ibdJsXLgyq9BuZooRgghROkjiYbIFytrK3zqPQAgyaodG3//ycIRCSFE0dCpUyfeeustS4dRZEiiUcQU5Xk0Htdj4pvYJYRg0Npwf/M1UgzSqyGEEJZw584dhg4dir+/PxqNJstEp1OnTiiKkunRq1cvs8YmiUYRUxzGaKTRaDRUaZf6XGfbmtWLvrJsQEIIUUrpdDq8vLyYOnWqcRbsx61Zs4Y7d+4YH2fPnkWr1TJo0CCzxiaJhjBJl1GvYZdwAVWjJfaADl1SsqVDEkIIi0tOTmb8+PG4urri6enJtGnTzDqWzc/Pj6+++orhw4fj6uqaZZkyZcpQrlw542PHjh04ODhIoiGKvvrPlgMg0b4pK+fLEvJCCPNRVZX4pPhCf+Q1SVi2bBlWVlYEBwfz1Vdf8cUXX/DDDz9kWz4wMBAnJ6ccH8uXLzf148tg8eLFvPDCCzg6OhbocR9XrCfsEkVDiwEDOLvhCxLsGpF01o2YBB3O9raWDksIUQIlJCfQckXLQm/38NDDOFg75Lp8pUqVmD9/PoqiULNmTc6cOcP8+fMZNWpUluWbNWuW5Rpc6ZUtWzYvIecoODiYs2fPsnjx4gI7ZnYk0Shi0k/YVZy0fLkRe35LIdGhPqvmfsiIj/9r6ZCEEMJiWrVqhaIoxtetW7dm3rx5pKSkoNVqM5W3t7enevXqhRbf4sWLqV+/Pi1atDB7W5JoFDHjxo1j3LhxxhnXiou6nbsQ/PN/ibdpjhpajXsRDylbxt3SYQkhShh7K3sOD8289ERhtGtOgYGB9OjRI8cyCxYsYNiwYSa3FRcXx2+//cbHH39s8rFyQxINUWA6/19XNn8bRqJDddbP/ZhRn823dEhCiBJGUZQ8XcKwlMfX4QoKCqJGjRpZ9mZA4V46WbVqFTqdjhdffLFAjvckkmiIAuPXqAmOzCaW1ij3GxFy8yZVZJE6IUQpdP36dSZOnMjrr7/O8ePH+frrr5k3b1625Qvi0klaohIbG0tYWBgnT57ExsaGOnXqZCi3ePFi+vXrh4eHh0nt5ZYkGqJA9Xj/Bf6Y8zc6+0rs+O9njP5a5tYQQpQ+w4cPJyEhgRYtWqDVapkwYQKjR482a5uNGzc2Pj927BgrVqzA19eX0NBQ4/aLFy+yf/9+tm/fbtZY0pNEQxQo76rVcLL7lejkNigxrTl97hwN6ta1dFhCCFFo9uzZY3z+3XffFVq7ubkFt2bNmoW+NpXMo1HEFKcpyLPT98MxWCXFoLfzJujrRZYORwghhAVJolHEFKcpyLPj4u2Ji9vZ1Bf6Dhw8GGjZgIQQQliMJBrCLPrPeAtrfQRJNm6c+3GtLCMvhBCllCQawixsnR3xqHgVAIPakW1b11s4IiGEEJYgiYYwm75TJ2KTeJdkaydu/n4IgywjL4QQpU6BJhr37t3j1KlTHDx4kCNHjvDPP/+QmJhYkE2IYsTKxooKdR8AkGTVkT9/XWLhiIQQQhQ2k25vPXjwIFu2bGHv3r2cOHGC+Pj4LMtVqVKFli1b8swzz9C7d+9CmyREWF73SeP4ccQydHa+RG6/hn6wARsr6UgTQojSIs+Jxr1791iwYAFLlizh+vXrxu05Dfa7evUqISEh/Pbbb1hZWdG9e3feeOMNunXrlr+oRbGh0Wio1hbOHwOdbVt+XzifF9+YZOmwhBBCFJJcJxq3b99mzpw5LF68GL1eb0wstFotdevWpWnTpnh7e1OmTBnc3d1JSEggIiKChw8fcunSJY4ePUp4eDhJSUls2LCBjRs3UqdOHaZPn87AgQPN9gaLm+K6emtOOo96lasHvifRzh9dkJ64EUk42llbOiwhhBCFQFFzcd/hRx99xOeff058fDyqquLt7c3gwYMZMGAAzZs3x94+d6vahYSEsHPnTlasWMG+ffswGAwoikLLli1ZuHAh9erVM/kNlRRpq7dGRUXh4uJi6XBMFrz6D4785Q6qAfuq+xjxn8JZNVAIUXwlJiYSEhJClSpVsLOzs3Q4udapUycaNWrEl19+aelQTJbTOcjt91SuLpZ/9NFHxMXF8fTTT7N161Zu377NV199RYcOHXKdZEDqWI2RI0eya9curl+/zscff4y7uztBQUGsWbMm18cRxU+LgQOwTzwDigb1nBsPorMezyOEECLv7ty5w9ChQ/H390ej0fDWW29lWe7LL7+kZs2a2NvbU6lSJd5++22z37SRq0SjZ8+eHDp0iG3btvHMM8+g0Zg+mK98+fJMnTqVa9eu8cknn+Dl5WXyMUXR1nJ4fVANJDo04s95MywdjhBClBg6nQ4vLy+mTp1Kw4YNsyyzYsUK3n//faZPn86FCxdYvHgxK1euZMqUKWaNLVdjNDZu3Gi2ABwdHXnvvffMdnxRdNTt0oXgX+YRb9MYJcSLiFgdZZxsLR2WEKIYUVUVNSGh0NtV7O1RFCXX5ZOTkxk/fjw///wz1tbWjB07lo8//jhPx8gLPz8/vvoqdbXsH3/8McsyBw8epG3btgwdOtRYZ8iQIRw+fNgsMaWR1VtFoWo6qB6B6yDRvhFrFnzCyEnTLR2SEKIYURMSuNikaaG3W/P4MRQHh1yXX7ZsGa+99hrBwcEcPXqU0aNHU7lyZUaNGpVl+cDAQHr06JHjMRcsWMCwYcPyFHd6bdq04ZdffiE4OJgWLVpw9epVNm/ezEsvvZTvY+aGJBqiUDXo0Y0jKxeSaFcdTuuIiNNTxtHG0mEJIUSBqlSpEvPnz0dRFGrWrMmZM2eYP39+tolGs2bNOHnyZI7HLFu2rEkxDR06lPDwcNq1a4eqqiQnJzNmzJiicenEFPfu3WPjxo2Eh4dTpUoVevfujUMeskJR8lRrZce5k5Bs3YbVvy1i9GvjLB2SEKKYUOztqXn8mEXazYtWrVpluEzSunVr5s2bR0pKClqtNlN5e3t7qlevbnKcOdmzZw9z5szh22+/pWXLlly+fJkJEyYwc+ZMpk2bZrZ2TUo0Lly4wPTp01EUhQULFuDm5pZh//r16xk6dCgJ6a6nVaxYkXXr1tGoUSNTmhbFWIdRL/LPyN/R23qjOXieiBekV0MIkTuKouTpEkZxURiXTqZNm8ZLL73EyJEjAahfvz5xcXGMHj2aDz74oEBu9MiKSYnG2rVrWb16NW3bts2UZNy/f58XX3wx07TkN27coE+fPly4cAEnJydTmhfFlEaroazvA27c9UaT0o6VG9cydvDzlg5LCCEKzOMDLIOCgqhRo0aWvRlQOJdO4uPjMyUTafHkYkqtfDMpfdm5cyeKotC7d+9M+7799ltiY2OxsrLiiy++4NSpU3z66adoNBpu377NokWLTGlaFHNdJ76CNjkenV1Z1D2beBint3RIQghRYK5fv87EiRO5ePEiv/76K19//TUTJkzItnzapZOcHs7Ozjm2efLkSU6ePElsbCxhYWGcPHmS8+fPG/f36dOH7777jt9++42QkBB27NjBtGnT6NOnT7YJUEEwqUcjba2Txo0bZ9r3xx9/oCgKw4cPN04cUr9+ff755x8WLVrE+vXrefvtt01pXhRj9i6OuDtdITyxPraxrfh1x17e6NfV0mEJIUSBGD58OAkJCbRo0QKtVsuECRMYPXq0WdtM/1187NgxVqxYga+vL6GhoQBMnToVRVGYOnUqt27dwsvLiz59+jB79myzxpWrKciz4+bmRkxMDMeOHcsw5iI8PBxvb28URWHHjh106dLFuG/Tpk306dMHLy8v7t27Z1LwJVH6tU4uXbpUYqYgz8r9y9dZ9dlFULQk2S3g5dk/4y5jNYQQjxTXKchLkkKbgjw7aYM8H5++dP/+/QDY2NjQrl27DPt8fHwAiIyMNKXpEmvcuHGcP3+eI0eOWDoUs/OuXhkX9RIAzg8asHxX4Y8kF0IIYV4mJRplypQByLBcPKSO3YDUwS02Nhn/Qk1OTgaQgaACgOaDWwCgs29G7P4vZayGEEKUMCYlGmnzqa9YscK4LSEhgVWrVqEoSoZLJmmuXbsGmD56VpQMtZ5qjr3+OqrGGq+7lfhp71lLhySEEKIAmZRovPDCC6iqyoYNG3jhhRf45ptveOaZZ7h//z6KojBkyJBMddJu+fH19TWlaVGC1OrgCUCyVXseHvwfkfHSqyGEECWFSYnG8OHDjVOZrlq1igkTJnDw4EEAXn31VWrVqpWpzpo1a1AUhTZt2pjStChBWr7YA+ukCJKtnal4V8PSfRctHZIQQogCYlKiodFo2LJlCxMnTqRixYpYWVlRqVIlpk2bxnfffZep/MaNG4232fTs2dOUpkUJorXSUqla6oBiJakLdw4tlF4NIYQoIUy6vTWvHj58SHR0NCCXTp4kt7cNlRQJkfEsfXcvBq0tNpqvie07m7e71bF0WEIIC5LbWy3P4re35pW7uzu+vr6SZIhM7N0c8HS9BYA2ugtXD64gKj7JwlEJIYQwVaEmGqXF0qVLUxf+eeyxZ88eS4dWpHUe3QNUAwlOdakfE8Ti/VctHZIQQggT5WoK8sTERLN3WxVGG4Vt//79GeaPr1NHLgXkxNO/Ai6abUSrfmjvt+fcgXVEtXsbVwdrS4cmhBC51qlTJxo1asSXX35p6VCKhFz1aFSpUoUvvvgiw3LvBSU4OJjevXvz2WefFfixLa1ly5a0atXK+CgNYy1M1WpQEwD09i1podvI4gMhFo5ICCGKvjt37jB06FD8/f3RaDTGNcbSS0pK4uOPP6ZatWrY2dnRsGFDtm7davbYcpVo3Lt3j3fffRc/Pz+mT5/OpUuXTGo0MTGR33//nW7dutG6dWu2bNli0vFEyVG9c0Psku9i0NqgudOYoAM7iEqQsRpCCJETnU6Hl5cXU6dONU6m+bipU6eyYMECvv76a86fP8+YMWN47rnnOHHihFljy1Wi8ddff1G3bl3CwsKYNWsWtWvXpnnz5nzyySfs2bOHmJiYJx7jwoULLFu2jOHDh1O2bFmGDBnCjh07cHBw4IMPPsjXSq7Hjh3jk08+oX///lSsWNE4FuJJEhIS+PDDD/H398fOzo7y5cszYsQIbt26lecYclKhQgWsrKxo0KABq1evLtBjl1SKolCvvTcAqrYjnVJW8eN+6dUQQqRSVZUkXUqhP/J6g2ZycjLjx4/H1dUVT09Ppk2bludj5IWfnx9fffUVw4cPx9XVNcsyP//8M1OmTKFnz55UrVqVsWPH0rNnT+bNm2e2uCCXYzS6dOnCqVOn+PXXX5k9ezYXLlzg2LFjHD9+HEj9cqhatSre3t64u7vj7u5OQkICERERPHz4kCtXrhAbG2s8nqqq2Nvb88orr/Dhhx/mezrymTNnsm7dujzVSUxMpEuXLgQFBeHj40Pfvn0JDQ1lyZIlbNy4kaCgIKpWrZqveNL4+Pgwe/ZsWrZsSUJCAosXL2bQoEGsXbuWvn37mnTs0qDp0M6cDNxAko0b1ncqsvnAAUa0q4KrvYzVEKK0S9YbWDhhb6G3O/qrjljbap9c8JFly5bx2muvERwczNGjRxk9ejSVK1dm1KhRWZYPDAykR48eOR5zwYIFDBs2LE9xp6fT6TKNhbS3tzcuhGouuUo0IDWZGDp0KEOHDuWvv/7ihx9+YMOGDSQkJKCqKpcvX+bKlSuZ6j2ewTVo0IBRo0bx4osvZpt15Vbr1q1p0KABzZs3p3nz5vj5+aHT6XKsM2vWLIKCgmjdujXbt283Lu72xRdfMGnSJEaMGJHh7pDIyEju3r2b4zEdHByoXLmy8XW3bt3o1q2b8XXv3r1p3749c+bMkUQjF6ystfhVT+ZyKFjpnqZ7ykqWHGjLW0/7Wzo0IYTIlUqVKjF//nwURaFmzZqcOXOG+fPnZ5toNGvWjJMnT+Z4TFPXCOvWrRtffPEFHTp0oFq1auzcuZM1a9aQkpJi0nGfxKQJu3Q6HYcPHyYwMJCDBw9y8+ZNwsLCiIiIwM7ODi8vL7y8vKhfvz7t27enffv2Zp1Dw87ODp1Ol233lF6vx9vbm6ioKI4fP07jxo0z7G/YsCGnT5/m6NGjNG3aFIDvv/+esWPH5thux44dn3jr6ueff84HH3zwxEQoTWmbsOtx8RFxLH0/EFVjg432M37zGs6a/wyUXg0hSpGsJotSVZVkvaHQY7Gy0eTq0jyk3nVStWpVfvzxR+O2devWMXDgQBITEzPcjWgO2d31EhYWxqhRo9iwYQOKolCtWjWefvppfvzxx2xv9iiICbty3aORFVtbWzp06ECHDh1MOUyhOXDgAFFRUVSrVi1TkgEwcOBATp8+zYYNG4yJxpgxYxgzZkxhh1rqOZRxpKz7A+5G+WAV2ZXeHn+w9EAzJjxdw9KhCSEsSFGUPF3CKC4K49KJl5cXa9euJTExkQcPHlC+fHnef/99k4cLPIlJiUZxc+rUKQCaNGmS5f607adPny7QdlVV5c8//8wyuUmj0+ky9HakTdVemnUY0YXf518g3qkBrnG/s3j/aV5p6ye9GkKIIi9tpfI0QUFB1KhRI9vejMK4dJLGzs6OChUqkJSUxB9//MHzzz9fIMfNTqlKNK5fvw5AxYoVs9yftv3atWsmtTNw4EBatGhBgwYN0Ol0/PDDDxw6dIj169dnW2fu3Ll89NFHJrVb0njV9MFVu5OolPIY7nalt/0mlh5oIL0aQogi7/r160ycOJHXX3+d48eP8/XXX+d4d4e9vT3Vq1c3qc20RCU2NpawsDBOnjyJjY2NcbLIw4cPc+vWLRo1asStW7eYMWMGBoOB9957z6R2n6RUJRppd744ODhkud/R0REgV7fr5sTf358ffviBmzdvAtC4cWM2btyY44q1kydPZuLEicbX0dHRVKpUyaQ4SoJW/RuxbdV9ku1bU1F9j6/3X+DVdn642EmvhhCi6Bo+fDgJCQm0aNECrVbLhAkTGD16tFnbTN9rfuzYMVasWIGvr69x1fTExESmTp3K1atXcXJyomfPnvz888+4ubmZNa5SlWgUljlz5jBnzpw81bG1tcXW1tZMERVf1brUxW7lBRKtPIi70YFnKv3F0gO1+b+npFdDCFE0pb854Lvvviu0dp90b0fHjh05f/58IUXzr1K1qFrarazx8fFZ7o+LiwPA2dm50GJ6XEBAAHXq1KF58+YWi6EoURSF+m28ALDSdKah9XaWBl4iOlFmCxVCiOKgVCUaaXNdpF3SeFzadksuYz9u3DjOnz/PkSNHLBZDUdN4SDusUuLQ2Xlw/2Yj2uv3s+xAqKXDEkIIkQulKtFIm/89bUbTx6Vtb9CgQaHFJJ7M2taKqtVT75t3THiKp+zW80PgVWKkV0MIIYq8UpVotG3bFldXV65cuZLlbURp65H06dOnkCP7l1w6yVrrEU+hGJKJc67GjXvlaaI/wrKDoZYOSwghxBOUqkTDxsaG8ePHA6mXKNLGZEDqFOSnT5+mY8eOxsm6LEEunWTNycuJcu6RADhGdKW/3Z8sCgyRXg0hSgFzLkYmclYQn32xTjQ2bdpEq1atjA+9Xg+QYdumTZsy1Jk6dSotW7bk4MGD1KhRg8GDB9OqVSsmTZqEl5dXhiljRdHS9uV2AMS7NOZmDNRIPCO9GkKUYNbWqbexZzeAX5hf2mefdi7yw6TbW9MmwKpQoUKu5243GAzGQZfpFyLLj7CwsEyzr0HGGdnCwsIy7LOzs2P37t3MnTuXFStWsHbtWsqUKcMrr7zCzJkzs53MS1he2TrlcbUKJCrZC5tbXXmpxjqm76/Py238cJZ5NYQocbRaLW5ubty/fx9InQMpt+uNCNOoqkp8fDz379/Hzc3NpPVZTFpUTaPRoNFoOH36tHHmsSe5cuUKNWrUQKPRkJycnN+mS6yAgAACAgJISUnh0qVLpXZRtexc2n6WHWvuY5UUj235t/kteSJ9nunKuM6mzagnhCiaVFXl7t27REZGWjqUUsnNzY1y5cplmeDldlE1kxMNRVE4c+ZMnhMNRVHMvjRtcVbaV2/NjmpQ+XHMnyRq3FDiV+Lpd405VhPZ/58uONnK/HNClFQpKSkkJcmYrMJkbW2dY09Goazemh9peY1GU6yHhwgLUTQKDdp4ERyUhK3SCcXmPzjF3WLZwVDp1RCiBNNqtWZfXl2YR6F/29+5cwew7OybonhrOLgVWkMCifZluRXakpHajSwKvEqsTi7FCSFEUVMgiUZuBuckJSXx999/M3v2bABq1qxZEE2XODKPxpPZ2FtTvVrq/3Nl4rvg43gYbXw4Px0KtWxgQgghMsnTGI3Hu63SquZnFPCnn37KpEmT8lyvtJAxGjmLvh/Lz9MOgaIl0WomNm6V+dFmGIEyVkMIIQpFbr+n8tSjoapqhkd225/0GDRoEG+99Va+35wQLt5OlHeLAcAr7GmaOewmKT5KejWEEKKIydOfftOnT8/w+qOPPkJRFMaMGYO3t3e29RRFwc7ODh8fH9q0aUO1atXyF60Q6bQc1pI/v71IrGszDkT+wRDrXSza58rLrf1wlF4NIYQoEgr99laRO3LpJHd+Hv8H0cnu2EVtplm9PxgUM5+3u9dnbCdJZoUQwpzMcunkcUuWLOHHH3+U2TQLkAwGzZtmvWsBkGLfnn16K57T7mfhvivEyR0oQghRJJjUoyHMR3o0cseQYuDHNzaiU5xQ4n6ho/8h+sR9yns96jCmo/RqCCGEuRRKj4YQlqbRaqjf0gMAe7pwWBNLN80RFu67Kr0aQghRBORqxNy+ffvM0niHDh3MclxRujQc3JzjQbuIdyxPQkgz3qi8gS1xLfg56Jr0agghhIXlKtHo1KlTga+YpyiKLKomCoSdow3Vq8KlUCgb24XLNnNpm3iWhftsGd7aFwcbuQNFCCEsJdeXTvI6V0ZuHkIUlObD24BqINqtLudv+TPBbiMRcXp+PnTN0qEJIUSplqs/9Xbv3m3uOMQj6ZeJF7nnVt4FH7c47kQ5U/leZxIrfEuDhCss3GfDS9KrIYQQFiN3nRRRctdJ3t04cYv1Cy6iSdETXmYy7Z3K8krcm0zpWYvRHWSshhBCFCS560SUOhUblcfFKgaD1oYKoR3x1B6jqnKbBXuvEq+X8UBCCGEJkmiIEkNRFJr0rA5AikMH1ie5M9FhKw/i9CwPum7h6IQQonSSREOUKLWeqY0N8eht3XD9pxUNNIGUJYIF+65Ir4YQQliASSPkRowYke+6iqKwePFiU5oXIhOtlYZ6zcpw/GgiTmpn1mj28rbTDt6PHczyoOuM6lDV0iEKIUSpUiCLquWVqqooiiJ3VuRABoPmX3yMjmXv7MGgWBOb/AUj/Y7TJXY+1k5lCHyvC/Y2WkuHKIQQxV5uv6dM6tGoXLnyExONuLg4Hjx4YEwuPD09cXBwMKVZIXLk4GxLVV+Fy9ehYnQX1tueZLyyh9kxvVl++Boj20uvhhBCFBaTxmiEhoYSEhKS4+P+/fuEh4fzzTff4O7ujpubG1u3biUkJKSg3kOJIqu3FoxmL7UEINK9AaE3/HhB2YIdOr7fe5UEvfSkCSFEYSmUwaDu7u688cYbHDhwgPv379OjRw8ePnxYGE0XO+PGjeP8+fMcOXLE0qEUax6VXCnrEg+KBv/bndhpred15wOEx+pYflhmCxVCiMJSqHed1KxZk//7v/8jNDSUefPmFWbTohRq9nwjAGLc2nDogRejrDZhRbL0agghRCEq9Ntbn376aQDWrFlT2E2LUsa3aQWcrOJIsbKj1tX2nOQhLzsfIzxWx4pgmVdDCCEKQ6EnGk5OTgBcvy6/6IV5KYpC42eqAGBw6MhGvRtv2m5CwcD3e6+QmCS9GkIIYW6FnmicOHECAGtr68JuWpRCdbrXxppEEu08qPR3U+7or/G8y3nCYnQsPyzJrhBCmFuhJhohISHMmDEDRVFo1KhRYTYtSikrGy11mrgB4GLozEprF95x2ASo0qshhBCFwKR5NH766acnljEYDDx8+JCjR4+ybt064uPjURSFMWPGmNK0ELnWeHBTTh/bR7RrNWwv+pPiG0xPl1A2R1dhxeHrjGhXxdIhCiFEiWVSovHKK6/kaWbQtElI/+///o/Bgweb0rQQueboakuVynD1BvhFdmZFnQt8YLuVzdFj+W7vFYa2rIydtcwWKoQQ5mDypRNVVXP1cHV15dlnn2Xr1q3Mnz+/IGIXIteaDUudAO1hmSaEhVbAJXw/HVzuERajY87mC6QY8j0TvxBCiByY1KORm9k9NRoNzs7OuLm5mdKUECbx8nPD2zmR+zF21L/ZgT98rzPb9S/aRw/jp0PXCH0Qz9cvNMbVQQYpCyFEQTJpUTVR8AICAggICCAlJYVLly7JomoF6MrhG2xd8g9WSXGcKzuVebbX2dd1K+O2RJCYZMDXw4FFw5vhX9bZ0qEKIUSRl9tF1Qr99laRM5mC3HyqNK+Io1UiydaONPmnFVsd7Hjq4e+sGduWiu72XHsQT7+AA2w9e8fSoQohRIlRKImGTqfj3r17GAyGwmhOiCxpNAoNn6oMgMG+E1t1rqgnfqGOSyLrx7ejTTUP4vUpjPnlOPO2X8Qg4zaEEMJkJiUasbGxbN68mc2bNxMbG5tpf3h4OAMGDMDFxYXy5cvj7u7OpEmT0Ol0pjQrRL7V7VELK/QkOJSlzvkGBFmpsH0qZRys+WlEC157dKvr17suM+qno0QnJlk4YiGEKN5MSjT++OMPevfuzZgxY3BwcMiwz2Aw0KNHD9auXUtSUhKqqhITE8OXX37J0KFDTQpaiPyysbOiVsPUa4luKZ1ZZe0Kp1fCnrlYaTVM612H+YMbYmulYeff9+kXcIDL9zMn0UIIIXLHpERj27ZtADz33HNoNBkPtXLlSo4dOwZAkyZNePvtt2nSpAmqqrJ27Vq2bt1qStNC5FuTwU1QVAOR7jXxOu/HRWtr2PtfOLYMgOcaV2T1mDaUd7Xjalgc/QIO8Nf5exaOWgghiieTEo2zZ8+iKApt2rTJtC9t1tCmTZsSFBTEvHnzOHToEC1atABg2bJlpjQtRL45l7GjcsXU51UiO/G/yg1RATa+DZe2A1C/oivr32xHiypliNUlM/Kno/xv5z8ybkMIIfLIpETj/v37AFSpknEK56SkJPbt24eiKIwbNw4rq9TpOqytrRkzZgyqqhIcHGxK00KYpOmQpgBEeDTDMTiO32t3BjUFVr0Mt44D4Olky/KRLXm5tS8AX+y4xNjlx4jVJVssbiGEKG5MSjQiIiIAsLGxybD9yJEjJCQkANC9e/cM+/z9/QG4e/euKU0LYRKf6u54OOtRNda0DG3PtzE3uV6lHSTFw4rnISJ1MjprrYaP+tbj0wENsNFq2HbuHs8FHCA0PM7C70AIIYoHkxKNtAGgaT0bafbt2wdA9erVKVu2bIZ99vb2pjRZbCQlJTFr1iyqVq2Kra0tfn5+zJ0719JhiXSaP98AgLCynegZqDDFw4WUcvUgLgx+GQBxD4xln29eiZWvt6Ksiy3/3I/l2W/2s+fi/ewOLYQQ4hGTEo1q1aoBsGfPngzb//zzTxRFoUOHDpnqhIWFAeDt7W1K00XeSy+9xIIFC5gyZQrbtm1j+vTpeVqATphf1WY+lHGHFCt7aoU/xb1/zrCk2SBwrQQRV+DXwaCPN5ZvXNmdDePb0aSyG9GJyby69Ajf7rmMTK4rhBDZMynR6Nq1K6qq8u2337JlyxZiY2P5+uuvjbNa9unTJ1Od06dPA1C+fHlTmi7SNm3axJo1a9ixYwcjR46kU6dOvPrqq7z//vuWDk2koygKrYem9mrcLt+JF3c7EnBhGRefnQd2bnDzCPwxEgwpxjreLnb8OroVQ1pURlXh060XGf/rCeL1Mm5DCCGyYlKiMWHCBFxcXIiJiaF37964urry1ltvAVC7du0sE41NmzahKAqNGzc2pekibenSpXTp0oVatWpZOhTxBL71PPAub4tBa4Ob4RnqXNYz+dwC9IN/Bq0tXNwEW96DdL0WtlZa5vavz+zn6mGtVdh0+g79vz3IjYj4HFoSQojSyaREw8fHhw0bNlCuXLkMS8JXrVqV1atXZ7pUcOXKFQIDAwF4+umnTWkagGPHjvHJJ5/Qv39/KlasiKIoubo8kZCQwIcffoi/vz92dnaUL1+eESNGcOvWLZNjAggODqZGjRq88cYbODk54ezszLBhw3j48GGBHF8UHEVRaPV8bQBulW/HS/vcuRp+iYCIY9B/IaDAkR/gwJeZ6g5r6cuKUa3wdLLl77sx9PlmP/v/CS/cNyCEEEVcgazeqtfrOXDgAHfv3sXHx4d27doZb2lNb//+/ezcuROAd999N9NsonnVr18/1q1bl2l7Tm8pMTGRzp07ExQUhI+PD+3btyc0NJTg4GC8vLwICgqiatWqJsVla2uLjY0NjRo14oMPPiA8PJxJkybRunVr1q5dm6tj5HZVPGE6VVVZ+9kRbl+Npfzt/Rz0Xcm2ZlqWdl9Kk6tBsG1yasH+i6DB85nq34lKYMwvxzl1IxKNAlN61ua1dlVkTI4QokTL7fdUsV4m/r///S9xcXE0b96c5s2b4+fnh06nyzHRmDp1KrNnz6Z169Zs374dJycnAL744gsmTZpEx44dMwxujYyMfOKtuA4ODlSuXNn42traGltbW65du4aHhwcAq1evZtCgQVy6dIkaNWo88b1JolG4bl+O5M/Pj6MYUmh8Zg4Th4fh5l2JP579A4dds+HQN6CxhhdXQ9VOmeonJqUwde1ZVh+7CUC/RuX5ZEAD7Ky1hfxOhBCicJSKRONxdnZ2OSYaer0eb29voqKiOH78eKZxIg0bNuT06dMcPXqUpk1TJ3T6/vvvGTt2bI7tPp6ceHt7U61aNQ4dOmTcFh4ejpeXF+vWrePZZ5994nuRRKPwbfjfCa6ff0i5u0GEu67hmy46BvkP4sOWU+GPEXDuT7B1gVe3QLl6meqrqspPh67x8cbzpBhU6lVwYcFLzajgVjpu6RZClC65/Z4q0GXir1y5wi+//MLnn3/Oxx9/THh40bpefeDAAaKioqhWrVqWg1EHDhwIwIYNG4zb0mYyzenx+O29tWvXzjbZeXxNGFF0tOyberv23bItaHLWmUr3VVZdWkXg7QPQ73vwbQu6aFg+CKJuZqqvKAovt/Hjl9daUsbRhrO3onn26/0EXX2QqawQQpQWBfKtd/z4cTp06IC/vz8vv/wy//nPf/joo48yTeQVEBCAt7c3NWrUICmp8JffPnXqFJC6yFtW0ran3YKbXz179uTMmTMZEq1du3ahKAr16mX+SxhAp9MRHR2d4SEKl7evC1UaeoKiIdS3J+8f8gZVZfrB6USmJMILy8GrFsTchl8GQkJklsdpXc2D9ePbUre8Cw/i9Az74TDLDobKfBtCiFLJ5ERj48aNtG3blgMHDmT4Kz8rw4cPJyEhgatXr7Jx40ZTm86z69evA1CxYsUs96dtv3btmkntvP7667i5udG3b182btzI0qVLGT9+PC+++CJ+fn5Z1pk7dy6urq7GR6VKlUyKQeRPy2dTBwLf926K3TUNvW55E5YQxuzDs8HeHYatBqdyEHYBVr4Iybosj1PR3YHVY9rQr1F5Ugwq09ef473Vp0lMSsmyvBBClFQmJRp37txhyJAh6HQ66tSpw5YtW4iJicm2vLOzs3F8wpYtW0xpOl9iY2MBsr3bxdHRESDH95Abbm5u7Nq1CwcHB55//nneeecdBg4cyPfff59tncmTJxMVFWV83Lhxw6QYRP54VHCiRrPUWWtDqvRm+E4DtikatoZuZUvIFnCrBMNWgY0zhAbC2rFgMGR5LHsbLfMHN2Jqr9poFFh17CaDFwZxNyqxMN+SEEJYlEmJxvz584mLi8PX15fAwEC6detm/LLOTqdOnVBVlWPHjpnSdJFXs2ZNduzYQXx8POHh4Xz77bc53s5ra2uLi4tLhoewjOa9q6AoEO7ZgJgYO2bcaAbArKBZ3Iu7Bz4NYPBPoLGCs3/AX9OzPZaiKIxsX5WfRrTEzcGaUzci6f31fo6GRhTW2xFCCIsyKdHYunUriqIwadIk3NzcclUnbbbMkJAQU5rOl7RbWePjs57BMS4udUVOZ2fnQovpcQEBAdSpU4fmzZtbLIbSzr2cIzVblQPgapXeVF93khbWNYjWRzP90PTUS4PVukDfgNQKB/8HhxfkeMx2NTxZP64dtco5Ex6rY8iiIJYfNu0SnRBCFAcmJRppYxlatGiR6zppf6mnXcYoTGlzXdy8mfmOgfTbfX19Cy2mx40bN47z588b14sRltG8VxU0GoWIMnWIsC7Pe8crYqOx4cCtA6y6tCq1UMMXoMu01Odb/gPn1+d4zMoeDqx5ow29GviQlKLywZ9nmbzmDPrkrC+9CCFESWBSopGcnLqQlCGba9RZiYqKAv7tXShMDRs2BFLvkslK2vYGDRoUWkyiaHLxtKd2u9SF/65W6UPKxh1McR0MwOdHP+d6dOrAYtpPgmYjABXWjILrQTke18HGim+GNOY/3WuhKPBr8HWGLArifrSM2xBClEwmJRrlyj3qXr56Ndd1goODATLMpFlY2rZti6urK1euXOHkyZOZ9q9evRrIetVZUfo06+GL1kpDlFt1HrrXosmvJ2hethkJyQl8sP8DUgwpoCjQ4zPw7wHJifDrCxD+T47HVRSFsZ2q8eMrzXG2s+LYtYf0+WY/J67LWjhCiJLHpESjffv2qKrKqlWrclVer9ezYMECFEWhU6dOpjSdLzY2NowfPx5IvUSRNiYDUqcgP336NB07djTOCmoJMkaj6HByt6NehwoAXK3Wl4QTJ/kw9ikcrR05GXaSpeeWphbUWsHAH6FCM0h4CL/0h5h7Tzx+55rerB/fjhreTtyL1jF4QRATV55k7uYLLNx3hT+O3WT3xfucuRnF7cgEuTVWCFEsmTQF+Z49e+jSpQuKorB161a6du0KpM5+qSgKZ86coU6dOkBqkjF8+HB+//13NBoNp06dom7duiYFv2nTJmbOnGl8HRwcjKqqtGzZ0rht2rRp9OrVy/g6MTGRTp06cfjwYeOiateuXePw4cMFtqhaQZApyIuG+Gg9P089SLLeQIMz31HOOpxzX49h2vFZWGms+K3Xb9QsUzO1cFw4LO4KEVfBpyG8shlsn3yJMFaXzMSVJ9l+/snJiZOtFR5ONng42lDG0RZPJxs8nNI9d7SljKMNnk42uDvaYK2VmWiFEOZRaGudDBkyhJUrV2JjY8OECRMYMGAArVq1QlEUNmzYgJubGwcOHGDhwoXGSyxjx47lm2++MaVZAJYuXcqrr76aY5klS5bwyiuvZNiWkJDA3LlzWbFiBTdu3KBMmTJ0796dmTNnZjuZV2GTRKPoOPTnFY5vu4Zz4l2aBc3Cc9xYZta9xJ4be/B39+fXXr9io7VJLfzgCix+BuLDofrTMOQ30Fo/sQ2DQWXHhXtcCYslIlbPgzg94bE6HsTqiYjT8yBOR1JK3v+putpb4+Fkg+ejBMTDyQYPJ1s80p472hoTFzcHG7QaWXFWCJE7hZZo6HQ6BgwYwObNm3NcFjutmf79+7Ny5Uq0WlnVMisBAQEEBASQkpLCpUuXJNEoAhLjkvj5g4PoE1Ood+4Hykafx/3P5QwKHstD3UNeq/cabzV9698KN4/B0l6QnACNX4Rnv0kdy2ECVVWJTkxOTTpidYTHpiYf2SUlEXF6DHn8l61RwN3h3wTE0VYLKGiU1PAVFDSa1J+KkjrWRHlUT1EUYxlFebTtUXke25b6XHnUZlo90GhSj6ek35bueV4+w7x+2nk9PUqeWxCi6KhT3oWudcqafJxCX7110aJFfPrpp1y5ciXL/RUrVmTKlCmMGTOmIJor8aRHo2gJ3hjCkY0hOBkiab5vKq49u/P3hF68tectNIqGpd2X0tg73UJ9F7fCb0NANUDH96Hz5EKNN8WgEpWQlDEpidOnPo/VPUpY9ITHpSYoUQmFv/aQEMIyBjWtyGeDGpp8HIstE3/+/HmOHj3K/fv3SUlJwcPDg8aNG9OkSZMcezxERpJoFC26hGR+nnoQXVwydf5eRrm7wfj+8jOzE/9k/ZX1VHKuxOo+q3GwTjf769EfYePbqc+f/RqaDLdM8LmQlGLg4aNEJOJRD0lCUgqqCipqau+IqqKSepnn0UsMj359GFT1Udl/n5NF2dTnaobjpj1X1X/3GR7flof3ktffaHk7et6PL0RR06SyOwOamj5MwGKJRm4dO3bMond3FHWSaBQ9x7dd49CfV3DUJtB813vY166Jx/LFDNz0PHfj7vK8//NMaz0tY6WdMyHwc1C0qeM1/J+xTPBCCFHAcvs9VehD0g8ePEiPHj0y3BkiRHFQv1NF7J2tiUux555vJ3TnL6Bu2snMtql3Pv1+6XcCbwZmrNRlKjQcAmoKrHoZbmU9WZwQQpRUhZZo7Ny5k86dO9O+fXu2b9+e7VLypZ3Mo1F0WdtqadrdD4Br/n0xKFbcn/8lzZ3rMaz2MACmH5xOlC7q30qKAn3+B1U7Q1I8rHgeIgp/nR8hhLCUPCcaqqqyZs0a3njjDfr06UP//v2ZOHEiBw8ezLL8nj17aNOmDc888wz79u17dA1WNc65ITKStU6KtrodyuPoZku83op79fqQ8uAB4d99x4QmE/Bz8SMsIYzZQbMzVrKyged/gnL1IS4Mlg+EuAeWeQNCCFHI8jRG49q1a/Tt25czZ85kuX/QoEEsX74crVbLgwcPGDlyJOvXpy40paoqiqLw7LPP8sEHH9CsWbOCeQcllIzRKLrO7rvF3hUXsbeDFtvfQquFahvWc9Exhpe2vESKmsJnHT6je5XuGStG30md0CvqBlRsAS+vB2t7y7wJIYQwUYGP0dDr9fTu3ZvTp08beyUef6xatYrJkydz48YNmjdvzvr161FVFY1Gw5AhQzh9+jR//vmnJBmiWKvdxgdnDzsSEiGs3cuQlMS9Tz+jvld9RjUYBcCsw7O4H38/Y0UXHxi2Guxc4WYw/DESDDKtuBCiZMt1orF8+XLOnTuHoij4+fnxww8/cPjwYU6cOMGKFSto3Lgxqqry3XffMXToUEJDQ1FVlQEDBnD+/HmWL19u8pTjQhQFWisNzXtVAeCKY1OSbR2J3bWL2P0HGN1gNLXL1CZKF8X0g9Mzj0XyrvVotlAb+Htj6vLyMl5JCFGC5TrRWLNmDZA68dbp06cZMWIEzZs3p2HDhrzwwgscOXKENm3aEBcXx4EDB9BqtSxdupRVq1ZRo0YNs72BkkYGgxYPNVuWxa2sA7oEAw+6vwnAvU/mYmVQmNt+LjYaG/bf2s/qf1ZnruzbBvovTH1+ZBEc/F8hRi6EEIUr14nGqVOnUBSFd999FyenzAtFaTQaPv74YyB1CuGXXnqJ4cOL7gRFRZUMBi0eNFoNLXqn9mr8o/PD4OmD/vIVHv62kmpu1fi/Jv8HwGdHPuNG9I3MB6j7HHSbk/p8x4dwOncrIAshRHGT60TjwYPUUfL16tXLtkyDBg2MzwcOHGhCWEIUfdWbelOmvCP6xBTCeqbOABr29dckP3zIS3VeolnZZiQkJ/DBgQ9IyWosRutx0Gpc6vO1YyFkXyFGL4QQhSPXiUZCQgIA3t7e2Zbx9PQ0Pi8qq6AKYS6KRqHls1UBuHjXGWo3whAVRfjX36BRNMxqNwsHKwdO3D/BsvPLsj7IM7OgTj8wJMFvw+DvTRB1S8ZtCCFKDLNN2GVlZWWuQwtRZFRp6IlXZWeS9QbudRkLwMOVK0m8dIkKThV4v8X7AHxz4hsuRlzMfACNBp5bAJXbgC4afhsK8+vA3EqwsDP8OQYCv0hNQMIvQ0pyYb49IYQwWa7n0dBoNCiKwpkzZ6hTp47J5UTOZB6N4uPauQds/PoUWmsNT6mbSf5rAw6tW1H5xx8B+L9d/8eem3vwd/fn116/YqO1yXyQhIewfSrcCIaIq2DIJqHQ2kCZauDlD541wasmePqDZw2Zk0MIUahy+z2V526Hb7/9NsfLJ3kp9+GHH+a1+RIvICCAgIAAUlJkfoXionKdMvhUc+XOlShuNh2Mz75txB8KInbXLpyfeorpbaZzat0pLj28xHenUmcRzcTeHfoGpD5P1sPDEAi7COEXIexS6s/wf1KnMQ+7kPrIQAG3yv8mHl41HyUi/qnHFkIIC8lzj0ZBki/T7EmPRvFy6+JD1s4/gUar0N33PIk/foN15cpU3bgBjY0NO67tYOKeiWgUDcu6L6ORd6O8N2IwQPTNfxOPsIsQfin1Z0JE9vUcvR9LQB79dPZJXYtFCCHyocCXiddoCnY4h6IokmjkQBKN4mfdlye4+fdDarXwovKScSSHheH9ziQ8Ro4EYErgFDZc3UAl50qs7rMaB2uHgms8Ljw14Qj7+9/kI/wSRN/Kvo6Nc7pLMOkuxbj5glbGWAkhclbgicbevXsLLLg0HTt2LPBjlhSSaBQ/d69G8cenx1A0Cr3bxhA38z9oHByotm0rVl5eROuj6b+uP/fi7zG45mCmtppq/qB0MY8Sj0sZL8NEhKQuXZ+VtHEgzmVB0YJGC4rm0fNHPxXNo+1p+5V0z9Pv12RRNi/HSlcm296XLLbntacmL8fOz/FLjaL0ucidW9lyqwwVmpp8mAJPNEThkkSjeNoYcIprZx5Qo7k3NbbNJPH0aVwH9Kf87NQVXQ/dPsToHaMB+P7p72lboa1lAk3WQ8SVjJdfwi+m3tmSnGCZmIQQhaPRi9AvwOTDSKJRzEmiUTyFXY/h9zlHQIHnBrkQ9cZLoCj4/f479vVTJ7ube3guK/5egbe9N2v6rsHV1tXCUadjMEDU9dSej8TI1EXf1BRQDf8+NxhSX6spj+03ZFH20ev02zI8V7Mom1UbhmwCzuLXV7a/0rLZntdfgfIrMxtF8XMpSj0sRUiNp6Hd2yYfRhKNYk4SjeJr64IzXDkRRrUmXtS//DPR6zdg37gxviuWoygKCckJPL/heUKjQ+lZpSf/7fBfS4cshBB5VuDLxAshcqd5nyqgwJXjYWiGvoFib0/CiRNEb9oMgL2VPbPbzUajaNgcspmtoVstHLEQQpiPJBpFjKzeWvx5lHfCv3lZAI4fiMJz9CgA7n/+OYZHU/k38GrAyPqpd6PMCppFWHyYZYIVQggzk0SjiJHVW0uG5r2qoGgUQs88QN95INbly5N89y4PflhsLDOmwRhql6lNlC6K6QenI1cxhRAlkSQaQpiBW1kHarUuB8CRrTfxfu89AB788ANJt28DYK21Zk67OdhobAi8Fcgf//xhsXiFEMJcJNEQwkya9fRDo1W4+fdDoqs0x6FZM1SdjvufzzOWqe5enf9r8n8AfHrkU25E37BUuEIIYRaSaAhhJi4e9tRtVx6A4A0heE+ZDIpC9ObNxB89aiz3Yu0XaVq2KQnJCfRb148xf41h+YXlknQIIUoESTSEMKOmPfzQWmu4czmKMLUsboMGAXBvzlxUQ+rcEFqNltntZlPdrTp6g54Dtw7wSfAn9PyzJ33+7MOnRz7l0O1D6FP0lnwrQgiRLzKPRhEl82iUHPtX/8Opv27g7etMv1FVuNq9B4bYWHxmz8JtwABjOVVVuRp1lcCbgey7tY8T906QrP67XLy9lT2tfFrRvmJ72ldoTznHcpZ4O0IIAciEXcWeJBolR3y0np+nHSJZl0KPMfVxPbGJ+//9L1oPD6pt24rWySnLejH6GILuBBF4M5DAW4GEJ4Rn2O/v7k/7Cu1pX7E9Db0aYqWRhdCEEIVHEo1iThKNkiVo7RWObb2GRwVHnn+3ESH9+qEPDaXMayMo++67T6xvUA38HfG3Mek4HXYaNd2Uz842zrQt35b2FdvTtnxbPOw9zPl2hBBCEo3iThKNkiUxLomfpx5Cn5DMMyPrUi72AjfHjAVra6ptWI+Nn1+ejvcw8SEHbh8g8GYgB24fIEoXZdynoFDXoy7tK7anQ8UO1PGog0aR4VhCiIIliUYxJ4lGyXNkUwjBG0JwK+vAC9Oac2vsWOICA3Hq0oVK3+Z/JcUUQwpnws8QeCuQwJuBXIi4kGF/GbsytKvQjvYV2tO6fOuitYibEKLYkkSjmAoICCAgIICUlBQuXbokiUYJok9I5ueph0iMS+Kpl2tTxTueq337QXIylRb/gFPbglky/n78fQ7cOkDgrUAO3j5IXFKccZ9W0dLQq6FxQKm/uz+KIitcCiHyThKNYk56NEqm49uvcWjNFVw87Rg6oxXhn/2XiGU/YVO9GlXXrkWxKtgBnUkpSZy4f8LY23El6kqG/WUdyhqTjlY+rXCwdijQ9oUQJZckGsWcJBolU5I+hZ+nHiIhWk/HoTWp3dCJK926kxIZSdmpUynz4jCztn8r9hb7b+5n3619BN8JJjEl0bjPWmNN07JNaV8hdWyHr4uv9HYIIbIliUYxJ4lGyXV69w0CV/6Do5stL85sRcwfq7g74yM0rq5U27oFK3f3QokjMTmRo/eOps7bcXMfN2NvZthvp7XDWmuNtcYaK8UKa601Vhqr1NdZ/Mxp35PKZvU8fRmtRovCv0lPhudKFtvT5Ud5qveY3JR5kvR3Bz2xrAV/HRdEUpnfz0gULhcbF8o6ljX5OJJoFHOSaJRcKUkGfvnwELEPdbQbVIMGncoT0n8AuosXcWzXjrJTJmNbtWqhxqSqKqHRocbbZ4/eO0qyIfnJFYUQxU6/6v2Y2XamyceRRKOYk0SjZDsXeIs9yy9i72zNS7PaoD91jOuvjoCUFFAUXHr0wGPM69j5+1skvvikeCISI0g2JJNkSMrwM6tt6X/mtC/Xx0lJIln992d2SU/6X19pPQfpexCy2v/oRZbbc1U3H/Lyl745L1fl9de9qe9bFE09qvTg/Rbvm3wcSTSKOUk0SraUFAMrpgcRHZ5I6+eq0aSbLwnnzhH+7XfE7txpLOf8zDN4jh2DXe3aFoxWCCEyy+33lMziI4QFaLUaWvSuAsDxbdfQJSRjX7culQK+ocraP3Hu1g2AmO3bCXmuPzfeGEfCmbOWDFkIIfJFEg0hLKRGi3K4l3NAF5/MqZ3/LglvV6sWFb/6kqob1uPSqxcoCrG7dhE6aBDXR48m/sQJC0YthBB5I4mGGXTq1AlFUbJ83Llzx9LhiSJCo1Fo0Sd10Oepv66TGJeUYb9tjRpUmPc5VTdtxLXvs6DVErcvkGtDhnJ9xAjijx61RNhCCJEnMkbDDM6fP090dHSGbePHjycpKYlTp07l6hgyRqN0UA0qK+cc4cHNWJp096V1v2rZltVfu0b4woVErVsPyamDIx1atMDzjbE4tGwpc14IIQqVDAYtQh4+fEjZsmWZMWMGU6ZMyVUdSTRKj5DT4Wz+9jRWNhpemtUGBxebHMvrb97iwaJFRK5ZA0mpvSD2TZrgOXYsju3aSsIhhCgUMhi0CPnzzz9JSkpi8ODBlg5FFEF+9T3w9nMhWW/g4B+XMaQYcixvU7ECPh/NoPr2bbgPG4ZiY0PC8ePcGDWK0MEvELN7t0UnfhJCiPSKdaJx7NgxPvnkE/r370/FihWN4yCeJCEhgQ8//BB/f3/s7OwoX748I0aM4NatW2aJc+XKlTRt2pRq1bLvFhell6IotOqXOlbj4uG7rPvyJHFRuifWs/bxody0qVT7awdlXn4Zxc6OxNOnuTn2DUIGDCB6xw5UQ85JixBCmFuxvnTSr18/1q1bl2l7Tm8pMTGRzp07ExQUhI+PD+3btyc0NJTg4GC8vLwICgqiagHOyhgeHo6Pjw9z5szh3XffzXU9uXRS+vxz9B67f/6bJF0KDi42PDOyLhX8cz8defKDB0QsWULEil9R4+MBsPX3x3PsGJyfeQZFqzVX6EKIUqhUjNH473//S1xcHM2bN6d58+b4+fmh0+lyTDSmTp3K7Nmzad26Ndu3b8fJyQmAL774gkmTJtGxY0f27NljLB8ZGcndu3dzjMPBwYHKlStnuW/BggWMGTOG0NBQfH19c/3eJNEonR7ejWPrwrNE3I5DUaBl36o0ecYXRZP7cRfJDx8SsWwZD3/+BUNc6hLxNtWq4TlmDC49e0jCIYQoEKUi0XicnZ1djomGXq/H29ubqKgojh8/TuPGjTPsb9iwIadPn+bo0aM0bdoUgO+//56xY8fm2O7jyUl6Tz31FPHx8Rw6dChP70USjdIrSZ/C3hUXuRiUmuD61ffgqVfqYOdonafjpERFEfHTz0T8/DOGR3dB2fj64jFmDK69e6FY5+14QgiRngwGzcKBAweIioqiWrVqmZIMgIEDBwKwYcMG47YxY8agqmqOj+ySjHv37rF3714ZBCryxNpGy1Mv16bzi7XQWmkIPfOA32cf4f616CdXTkfr6orXm+OpvvMvvN6agNbVFf21a9yZPJkrPXrycNUqVL3eTO9CCCFSlapEI20OiyZNmmS5P2376dOnC6S91atXYzAYGDRo0BPL6nQ6oqOjMzxE6aUoCnXalWfAe01x8bQjJiKRPz47xtm9N/N8R4nW2RnPMWOotnMn3u9MQlumDEk3b3J32odc7t6dh7/+ikESDiGEmZSqROP69esAVKxYMcv9aduvXbtWIO2tXLmSdu3aUaFChSeWnTt3Lq6ursZHpUqVCiQGUbx5VXbm+SnNqdLQE0Oyyt5fL7Hjx/PoE/O+hLvWyRGPkSOp/tcOvN//D1ovT5Jv3+HuRx9z5emuRPz0M4bERDO8CyFEaVaqEo3Y2FggdfBmVhwdHQGIiYkxua3bt2+zf//+XF82mTx5MlFRUcbHjRs3nlxJlAq2Dtb0GFOfNgOqo2gU/jlyj9WfHCXidly+jqdxcMDjlVeovmMHZadOxapsWZLv3+fenDlcfrorD35cguHRXStCCGEqK0sHUFKVL18eQx7mMLC1tcXW1taMEYniTFEUGnetTNkqLmxfdJaHd+NZ9ckROg2rRc2W5fJ1TI2dHWVeHIbb84OIWvMnDxYuJOn2be5/+ikPFi3C+Zln0Dg5orGzR+Ngj2Jvb3yusX/0Ot1DcXBAY2eHYmcns5MKIYxKVaKRditrfDZ/rcU9uhXQ2dm50GJ6XEBAAAEBAaSkpFgsBlF0la/uxvMftGDHj+e4+fdD/lpynjtXomg3qDpW1vm7bVVjY4P7C4NxG9CfqPXrCf9+AUk3bhC5cmX+glSUR0mJXWoS4mCPYu9gfK04PEpY7DMnMJmTGQc09nYotraAgqKkHj/DAwWUtKaVLPZnsf1RnNkeU1FSD5m+7OP10zw+ZsaE15lG3zypbnaySvSy2JZlOpjLullue1xW8eZ2G1l8HgVwzFzvz2WZ/N63menje3yDia8znZ30+zWaQr3NvVQlGmlzXdy8eTPL/Wnb8zLfRUEbN24c48aNM942JMTjHFxs6PN/jTiyMYSjW0I5t+8W90Oj6T66Hi6e9vk+rmJtjduAAbj27UvM9u3oLl/GEJ+AITEBNSHh0fNEDAnxqPEJGBJSX6vx8RgSEv69g0VVUePjSYmPR9JlIYoe1/79KT9ndqG1V6oSjYYNGwJw/PjxLPenbW/QoEGhxSREfmg0Ci2frUq5aq789eN5wq7H8PucIzz1cm2qNPQy6diKlRUuPXvmuZ6anIwhUYeakJp4GBIS0z1PfRgTloRHCUz659nuS0TV6VL/dHz0UOHfPyXTbc/3n5dCCLMptRN2nThxgkaNGmXYn9WEXYUt/aWTS5cuyYRd4oliIhLZtugs90JSb4lu/ExlWvWtikZbqsZ6Z6A+nnhklaRksT/1ZRaJy6M5c4xln3DZINMYlby8ztynnmPVx2X968+Eyw253KaqavZjc8y9PeuLQDl/VjntNMe+9Ey83Jb5489bfcXKCk02N0XkhcwMmo20KcjbtGnD9u3bjXeaZDcFuaXIzKAiL1KSDRxcc5nTu1Iv/5Wv4cYzI+vi6CoDjIUQ5lEqEo1NmzYxc+ZM4+vg4GBUVaVly5bGbdOmTaNXr17G14mJiXTq1InDhw8bF1W7du0ahw8fNsuiavkliYbIj8vH7rPr5wskJaZg72LDM6/VpWLN3C/MJoQQuZXb76liPUYjLCyMw4cPZ9qefltYWFiGfXZ2duzevZu5c+eyYsUK1q5dS5kyZXjllVeYOXNmtpN5CVEcVG/qjWdFJ7YuPMODW3Gs//IELZ6tStNueVuYTQghCkqx7tEoiWSMhigISfoU9v16kb8PpS7M5lvPg6dfqYOdkyykJoQoGKXi0klJJpdOREE4f+A2+367REqSAacytnQfVZ+yVeT/JyGE6WT1ViEEddo+WpjNy57YCB1rPj/G6d15X5hNCCHySxINIUo4r0qpC7NVbeSFIUUlcOUlti8+l6+F2YQQIq8k0ShiAgICqFOnDs2bN7d0KKIEsbW3ovvr9Wg7sDoajcLlo/dZNfcoD27FWjo0IUQJJ2M0iigZoyHM5c7lSLb9cI64SB1W1ho6DatJzVY+lg5LCFHMyBgNIUSWfKq7MfiD5lSq7U5ykoG/ll5g9/K/SU6SlUmEEAVPEg0hSiF7Zxt6v9mI5r38QIHzgbf549NjRIUlWDo0IUQJI4mGEKWURqPQok9V+rzZEDtHa8JvxPL7nCNcPRn25MpCCJFLkmgUMTIYVBS2ynU8eP6D5pSr6oI+IZkt35/h4B+XSUkxWDo0IUQJIINBiygZDCoKW0qygUNrrnBq1w0AHF1tcHS3w97ZGnsna+ycbB79tMbeOeNzGztt9it3CiFKpFKx1okQouBorTS0e74GPtVd2fnTBeKi9MRF6XNVV6NVUpOOtITE2Rp7R2vs0ickj5ISu0evtaV4GXshShNJNIQQGVRr4k3FWu5E3IknIUZPYlxS6s/YJBJik0iISSIxVk9CbBKJsUkk6VIwpKjER+mJj9IDcblqx9bBCjtHa+yd/+0tsXe2xs7R5tE2a+wfJS029lYoCqm9Jo9+KgrG5+m3laSeFVVVIfU/UFVUldTXqvpoG4/e+2Pvv4R9DqJ4k0RDCJGJrYM1PtVcc1U2WZ9iTDoSYh8lJDHpnqfte5S0JMYmoaqgi09GF59snjtdUr9rU79sNaCQMTFJfZ79NgWMq90qioLyqPMl7Us87cseQDWA+igbSE0EUhOCrJKD1PL/JgnGREJ9dAzDY/VM/QzSJR+KAmiUTEmJokn3vp+0XfPY5/T49keyiz3D9mwKZV83F+UzFMn4GRqfp9uYcb9qrK8+vjPtpXG/mqGt9Mc2blYfC+cRJdOT9NuU9D+yrKj8++TfXY+XTztOVvUVhaqNvWjdr1oWjZiHJBpCCJNY2WhxLqPFuYxdrsobDCq6+CRjQpKWoKR/buw9idWTGJNEclIeB6Y++iWvqqlf3ln/yi/h0vd8lMb3L7KVEJ27S6IFRRKNIib9MvFClEQajZJ6ScTJBvdyuauTkvLoT/20L8/0vQGk9hLwqFdAfZST/Ntb8Fh5NfO+DM8fO0ZWdTNcuiHtUkX6yxZAFr0oxssZWVz+ya5O9m1k7F1R1XSfQ7q4VUPa63T7DFm9t2y2G9IdK237Y+WMbT8mw1/a6V5k9Zd2VjJc/sn66WPbHzuY8u9+JV0MSrp6SoYXGXsXMvcUZOxRyBBeFrFmODaQPuH7txeETLLqvcmqvLH/JMtjPP7k32IOzjaZK5iR3HVSRMldJ0IIIYoymYJcCCGEEBYniYYQQgghzEYSDSGEEEKYjSQaQgghhDAbSTSEEEIIYTaSaAghhBDCbCTRKGJk9VYhhBAlicyjUUTJPBpCCCGKMplHQwghhBAWJ1OQF1FpHU3R0dEWjkQIIYTILO376UkXRiTRKKJiYmIAqFSpkoUjEUIIIbIXExODq2v2qz3LGI0iymAwcPv2bZydnTMu1iMKVHR0NJUqVeLGjRsyFqaIknNUPMh5Kh4K8jypqkpMTAzly5dHo8l+JIb0aBRRGo2GihUrWjqMUsPFxUV+ORZxco6KBzlPxUNBnaecejLSyGBQIYQQQpiNJBpCCCGEMBtJNESpZmtry/Tp07G1tbV0KCIbco6KBzlPxYMlzpMMBhVCCCGE2UiPhhBCCCHMRhINIYQQQpiNJBpCCCGEMBtJNIRIZ9myZTRr1gw3NzccHR1p0qQJv/32m6XDEo9JSkpi1qxZVK1aFVtbW/z8/Jg7d66lwxKP+fbbb6lWrRp2dnY0bNiQjRs3WjqkUu3o0aMMHz6c6tWroygKU6dOzVTm999/p1evXvj4+ODq6kqHDh3Yv3+/Se3KhF1CpPPw4UP69etHo0aNsLOzY+3atQwZMgQ7Ozv69etn6fDEIy+99BIHDhxg+vTpVK9enZCQEO7du2fpsEQ6v/zyC2+++SYffPAB7dq149dff+W5554jMDCQVq1aWTq8UunAgQMEBQXRrl07wsPDsyzz5ZdfUqNGDQICAnBycmLJkiU89dRTBAcH07Bhw3y1K3edCPEE7dq1w8fHh1WrVlk6FAFs2rSJ5557jtOnT1OrVi1LhyOy4e/vT8eOHVm0aJFxW4sWLfD09GTz5s0WjKz0MhgMxqnC/fz8ePHFF5k1a1aGMg8ePMDDwyNDnfr169O2bVsWLlyYr3bl0okQT+Dh4UFSUpKlwxCPLF26lC5dukiSUYTFx8dz+fJlunbtmmH7U089xc6dO9HpdBaKrHTLaT2SNOmTjLQ69erVIyQkJP/t5rumEEVcfHw8a9eu5bXXXqNmzZrY2dnh6OhIw4YN+fjjj4mNjc22bnJyMtHR0axcuZIdO3bw+uuvF2LkpUd+zlFwcDA1atTgjTfewMnJCWdnZ4YNG8bDhw8t8A5Kh7yep8TERFRVxcbGJsN2W1tb9Hq9SV9aIpUpv9/yIiUlhSNHjlC9evX8H0QVooRatGiRCqiAWrt2bXXQoEFqt27dVGdnZxVQa9Wqpd67dy9TvTt37hjrabVadcGCBRaIvnTIzzmysbFRnZyc1Hbt2qlbtmxRf/75Z9Xb21vt27evZd5EKZCf8+Tu7q5OmTIlw7aePXuqgHrgwIHCDL9Eyu/vtzS+vr7qBx988MR2vvzyS1Wr1aqnT5/Od6ySaIgSa+nSpero0aPV8+fPZ9h++/ZttXHjxiqgDhkyJFO9pKQk9ciRI+quXbvU9957T7W2tlZXr15dWGGXKvk5R1ZWVqqjo6MaHh5u3LZq1SoVUC9dulQocZc2+TlP77//vuri4qJu2LBBjYiIUL/99lvVyspKBdRDhw4VZvglUn5/v6XJTaIRFBSk2tnZqdOnTzcpVkk0RKl08OBBFVBtbW1VnU6XY9mRI0eqNWrUKKTIRJrszpGXl5faqlWrDGXDwsJUQF23bl1hh1nqZXeeYmNj1b59+xr/6q5QoYI6ffp0FVBDQkIsF3ApkJvfb09KNEJCQtSyZcuqgwYNUg0Gg0nxyBgNUSql3aal0+l48OBBjmUbNWrE1atXCyMskU5256h27dqo2dwsl5vBbqJgZXeeHB0dWbt2Lbdv3+bs2bOEhITg7OyMt7c3fn5+Foq2dMjL77esREZG0qtXL/z8/Fi2bBmKopgUj/yrFKVSWuJgbW1NmTJlcix78OBB+cVoAdmdo549e3LmzJkM8wDs2rULRVGoV69eocdZ2j3p35KPjw9169bFYDCwZMkSXnnllUKOsPTJy++3x+n1evr37098fDzr1q3D3t7e5Hhkwi5RKn311VcAdO/ePcNyyZ07d2bAgAHUqlWLxMRE1q1bx4oVK/J9/7jIv+zO0euvv87//vc/+vbty+TJkwkPD+e9997jxRdflITQArI7T+vXr+f27dvUrFmT27dv8+WXX5KcnMyUKVMsFWqpkd05CQsLY+/evUDqXSt///03q1evxtHRkR49egDwxhtvsHfvXhYtWkRISIjxDiFbW1saN26cv4BMuvAiRDG0adMmVVEU1draWj158mSGfRMmTFD9/f1Ve3t71dPTU+3QoYO6YcMGC0VaeuV0jlRVVf/++2/16aefVu3t7VUPDw917NixalxcnAUiLd1yOk8bN25U69atq9rZ2amenp7qq6++muNdEKJg5HROdu/ebRwzk/7h6+trLOPr6/vEMnklM4OKUuXvv/+mTZs2PHz4kC+//JIJEyZYOiTxGDlHxYOcp6KnqJ4TGaMhSo1bt27RvXt3Hj58yMSJE4vMP0LxLzlHxYOcp6KnKJ8T6dEQpUJERATt27fn/PnzvPrqqyxevNjkkdSiYMk5Kh7kPBU9Rf2cSKIhSrzY2Fjj6oP9+/fn999/R6vVWjoskY6co+JBzlPRUxzOiSQaokTT6XT07NmTXbt20a1bN9avX59p/QVhWXKOigc5T0VPcTknMkZDlFgpKSkMGTKEXbt20b59e9asWVMk/xGWZnKOigc5T0VPcTonMo+GKLG++eYb/vzzTwA8PT154403siz3+eef4+npWZihiUfkHBUPcp6KnuJ0TiTRECVW+mXD0/5BZmXGjBkW/4dYWsk5Kh7kPBU9xemcyBgNIYQQQpiNjNEQQgghhNlIoiGEEEIIs5FEQwghhBBmI4mGEEIIIcxGEg0hhBBCmI0kGkIIIYQwG0k0hBBCCGE2kmgIIYQQwmwk0RBCCCGE2UiiIYSgU6dOKIpCp06dLB1KqeTn54eiKLzyyiuWDkWIAieJhhBmdujQIRRFwdHRkeTkZOP2yMhItFotiqJw/fp1k9oIDQ1FURT5srKQtETh8Ye1tTWenp60a9eOGTNmcPv2bUuHKkShk0RDCDM7cOAAAC1btsTKyirDdoPBQKVKlahcubKlwhNmlJyczIMHDzhw4AAfffQRtWvXznEBLCFKIlm9VQgzS0s02rVrl2F7YGBgltstYc+ePZYOoUQoX74827ZtM75OSkoiNDSUJUuWsGHDBqKjo3nhhRcICgqicePGxnKhoaEWiFaIwiE9GkKY2cGDB4HMCcX+/fuz3C6KL2tra+rVq2d8NG7cmOeee47169czceJEAPR6PbNmzbJwpEIUHkk0hDCjy5cvc//+fbRaLa1btzZuT0xM5MiRI4AkGqXFRx99hL29PQDbt2/HYDBYOCIhCockGkKYUdplkwYNGuDs7GzcHhwcjF6vx83NjXr16lkqPKOc7jpJP9B06dKlAOzYsYM+ffpQrlw5bG1tqVKlCmPHjuXmzZu5am/37t28/PLLVK1aFQcHB1xcXKhfvz7vvvvuEwdMnj17llmzZtGtWzcqVqyIra0tTk5O1KhRg5dffpmgoKAc68+YMcP4fgCioqKYOXMmjRs3xs3NLcP7LEhOTk7UqVMHgNjYWCIiIoz7cnvXyeXLl3n77bepX78+rq6u2NvbU7VqVV555RWOHj2aqzhCQ0P5z3/+Q9OmTfHw8DAOWG3fvj0zZszg6tWr2daNiopi7ty5tG3bFi8vL2xsbPDx8aFPnz6sXr0aVVVzbPvPP/+kX79+xvPm7OxM1apVad++PdOmTSM4ODhX70EUM6oQokAsWbJEBUx+hISE5LntkJAQY/2XX345z/U7duyoAmrHjh1zPPaSJUvU999/P9vYvby81PPnz2fbTkJCgvrCCy/k+P4dHR3V9evXZ1l/9+7dufoM33///WxjmD59urHcpUuXVD8/v0z1lyxZkqfPz9fXVwVUX1/fHMu1atXK2Mbdu3cz1c/p3H322WeqtbV1tu9ZURR12rRpObb/pGNk9/+AqqrqX3/9pXp4eORYt2fPnmpMTEymusnJyeqgQYOeeN6aNm2aY/yieJLBoEKIXFu0aBEHDx6kY8eOvP766/j7+xMZGclPP/3ETz/9RFhYGCNGjODQoUOZ6qqqysCBA9m0aRMAffr04fnnn6dq1apoNBqCg4OZN28e169fZ+DAgRw4cIBmzZplOEZycjKOjo706tWLLl26UKtWLVxcXLh//z7nzp3jf//7H9euXeOTTz7B39+fV199Ncf3M3DgQG7dusWbb77Js88+i7u7O//88w++vr4F96Gli/3vv/8GwMbGBg8Pj1zX/eyzz3jvvfeA1N6xsWPHUqNGDdzc3Lh48SLffPMNhw4dYubMmXh6evJ///d/mY4xc+ZMPvzwQwDc3Nx444036Ny5Mx4eHkRGRnL8+HHWrFlj7OlJ78CBA/To0YOkpCTKli3Lm2++ScOGDSlfvjy3b99m5cqV/PLLL2zevJmXX36ZP/74I0P97777jlWrVgGplwpHjhxJtWrVcHR05MGDB5w+fZqtW7cSFRWV689EFCOWznSEKCkiIyPVCxcuGB/p//rev3+/cfu5c+dUOzs7FVBXr16doc6FCxdUvV6f57YLq0cDUEeNGqUaDIZM5UaOHGksc/z48Uz7Fy5cqAKqtbW1umXLlizjiIiIUOvWrasCatu2bTPtDwsLUx8+fJjt+9DpdGrXrl2NvQvJycmZyqTv0dBoNOq2bduyPV5u5aZH45tvvjG226VLlyzrZ3Xuzp07Z+yFmD59epaffUpKivriiy+qgOrk5KRGRERk2H/8+HFVo9GogOrv76/euHEj2zivX7+e4bVerzf2+nTv3l2Ni4vLsl7a+QXU7du3Z9jXvn17FVBbtmypJiUlZdv2gwcPst0nii9JNIQwk99//10F1CpVqmTYfvLkSRVQ7e3t85VUZKWwEg0fHx81MTExy2P8/fffxnJfffVVhn0Gg0GtVq2aCqiTJk3KMZbNmzdnuLSRV2mfL6AePXo00/70icaIESPyfPysZJdoJCUlqf/88486ZcoUVavVGtt9PNHKKdEYMWKECqjNmjXLMslI8/DhQ9XW1lYF1IULF2bYN2TIEOPllaySwJz89NNPKqDa2dmp9+/fz7FsixYtVEAdOnRohu01atRQAfXtt9/OU9uiZJDBoEKYSXbzZKQNEG3WrBnW1taFHpcpBg4ciK2tbZb7atasiZOTE0CmAYXnz5/nypUrxmPkpEOHDsbnWV2CSU+n03H9+nXOnz/P2bNnOXv2bIYBiadOncqx/rBhw3Lcn1fXrl3LNDNojRo1mDNnDikpKSiKwqxZs+jevXuuj7lhwwYABgwYkOVljTRubm7Ur18fyPi5GQwGtmzZAqQO+k0/f0durF+/HoCOHTvi5eWVY9m0c/f4efPx8QFS30t4eHie2hfFn4zREMJMspsnI21ejbZt2xZ6TKaqVatWjvvd3d2JjY0lJiYmw/b0d0Skv833Se7evZtpW1xcHP/73//47bffOHfuHCkpKdnWf9KXWoMGDXIdiylcXFzo0qULEydOpH379rmud+3aNcLCwgCYPHkykydPzlW99J9bSEgIkZGRAHlqO03audu2bVuOiU527QO8/PLL7Nu3j8uXL1O9enX69+9P165dad++PRUrVsxzTKJ4kURDCDOIiYnh9OnTQPY9Gm3atCn0uEzl4OCQ436NJrWT9PEv//v37+ervfj4+AyvQ0ND6dKlCyEhIbmqn5CQkON+d3f3fMWVncdnBrWyssLV1ZVy5crl+ks6vYL43NInW2k9C+aO4fHPfcSIEVy5coVPP/2UqKgolixZwpIlSwCoVq0affv2Zdy4cVStWjXPbYmiTxINIQqAn58f165dy3Jf3bp1s9z+7LPPZng9ffp0ZsyYUdChFQnpE48NGzbg5+eXq3re3t4ZXr/00kuEhISgKAqvvvoqL7zwArVr1zbO6aAoCgaDAa1WC/DEeR3SyhWUtJlBC0r6z+3DDz9k0KBBuarn6OhY4DH06NGDTz/9NN/HmT17NqNHj2b58uXs3LmToKAg4uPjuXLlCl988QVff/01//vf/xgzZkxBhS6KCEk0hBBml/5WzvxOUvb3338bL0dNmTIl22m800+EVdyl/9zym8R4enoan9+5cydfMdy+fRu9Xm9yEuXr68uUKVOYMmUKSUlJHDlyhN9//50FCxaQmJjIG2+8QcuWLfM8jkQUbTIYVIgCsH37ds6cOWN8NG3aFIAPPvggw/bnnnsOSB2EmH77mTNneOONNyz5Fswq/RdH2qWjvDp37pzx+eDBg7Mtl9sZMouDqlWr4urqCuT/c6tSpQpubm4A7Nu3L8/1087d0aNH0ev1+YohK9bW1rRp04Yvv/ySFStWAKk9UKtXry6wNkTRIImGEAXA39/fuJBWzZo1uXDhAgD9+/fPsMjWxYsXAejdu3eG7fXq1ct0maAkadKkiXHQ38KFC0lMTMzzMZKTk43P4+Lisi33/fff5z3AIkqr1dKzZ08gNZlN+/8qLzQaDb169QJg7969nDhxIk/10y7xpY2tMIennnrK+FzuSil5JNEQooAdO3aM+Ph4nJ2dadiwoXH7gwcPjF8U6W/hLA00Gg1TpkwBUm99HT58ODqdLtvy0dHRfPPNNxm21ahRw/g8u7VIvvvuO9atW2d6wEXI5MmT0Wq1GAwGBg4cmON6MikpKSxfvjxTmXfeeQeNRoOqqrzwwgs5HuPxfS+//DKVKlUyHudJvSL79+9n7969Gbb98ssvGRLFx23fvt34vEqVKjkeXxQ/MkZDiAKW9ou4TZs2GQYb7t+/H1VVqV69OuXLlzdb+5cvX87VomAtWrQwLvJVGMaMGcOOHTv4888/WbVqFcePH+f111+nRYsWuLq6Eh0dzd9//82ePXtYv349dnZ2jB8/3li/cePG1KtXj7Nnz7JgwQIePnzISy+9hI+PDzdv3uSXX35h9erVtG3bNt+XGYqi+vXr8/nnn/P2229z/vx56tWrx+jRo+nSpQtly5YlMTGR0NBQDh06xOrVq7lz5w5nzpzJcNtoo0aN+Oijj5g2bRqXLl2ifv36jBs3LsMU5CdPnmTNmjVotVp2795trGtra8vvv/9Op06diI2NpUuXLrzwwgv069ePKlWqYDAYuHPnDseOHePPP//kzJkzfP3113Ts2NF4jJdeeol33nmH/v3706ZNG6pVq4adnR337t1jx44dfPfdd0DqwnMFPbeJKAIsOl2YECVQr169VECdNWtWhu2TJk0q0Nko03t8mvDcPObPn2+sn5dF1XLypMXB9Hq9OnbsWFVRlCfG9/iMqqqqqidOnFDd3d2zrVO/fn319u3bxtfTp0/PdIz0M4MWlNwuqvak+jnN6rpw4ULVwcHhiZ+bjY2N+s8//2R5jNmzZ6tWVlY51s9uUbVDhw6plSpVytX/W8uWLctQNzd1XF1ds52aXhRv0qMhRAEyGAzGv6YfnxwpbabQ0nbZJD1ra2u+/fZbxo4dy6JFi9izZw/Xr18nNjYWJycnqlSpQtOmTenRowe9e/fOVL9Ro0acPHmSuXPnsmXLFm7fvo2zszPVq1fn+eefZ9y4cdjZ2VngnZnfqFGjePbZZ1mwYAHbt2/n4sWLREZGYmtrS4UKFahfvz5du3ZlwIABGe40SW/KlCkMGjSIb7/9lr/++ovr168THx+Pu7s7derUoWvXrgwfPjzLuq1ateKff/5h6dKlbNiwgRMnThAeHo5Go8HLy4vatWvTsWNHBgwYQM2aNTPUPXv2LJs2bWL//v1cuXKFe/fuERkZibOzM7Vq1aJbt26MHTuWsmXLFvjnJixPUdUn3GguhBBCCJFPMhhUCCGEEGYjiYYQQgghzEYSDSGEEEKYjSQaQgghhDAbSTSEEEIIYTaSaAghhBDCbCTREEIIIYTZSKIhhBBCCLORREMIIYQQZiOJhhBCCCHMRhINIYQQQpiNJBpCCCGEMBtJNIQQQghhNpJoCCGEEMJsJNEQQgghhNn8P0dDex+dRhIZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAGBCAYAAADYEOPMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7RElEQVR4nO3dd3wU1drA8d9szaaHhE5CJ/SiiAgiiCAgFkSwSy8WFMWrV1FE7A0ROypNFO8rxV4BAemIiPReAoQSQnqymy3n/WOTJSGF9M0mz/fe/ezMmfbsTmSePefMGU0ppRBCCCGEKCadtwMQQgghhG+SJEIIIYQQJSJJhBBCCCFKRJIIIYQQQpSIJBFCCCGEKBFJIoQQQghRIpJECCGEEKJEJIkQQgghRIlIEiGEEEKIEpEkQghxSfPmzUPTNBo1auTtUIQQlYjB2wEIIXzbqlWrWLVqFY0aNWLEiBHeDqdSU0qxceNGfvrpJ9auXcuePXs4f/48/v7+NGvWjOuvv54JEyZQv359b4cqRJFITYQQolRWrVrFtGnTmDdvnrdDqfReeeUVunXrxssvv8zq1auJi4sjMDCQlJQUtm7dymuvvUbr1q35/vvvvR2qEEUiSYQQQlQQu91OcHAw999/P3/88QdpaWkkJCSQlpbGkiVLiIqKIjk5maFDh7Jnzx5vhyvEJUkSIYQQFWTQoEEcPXqUjz76iGuvvRaLxQKAxWJh8ODBrFq1CovFQmZmJtOnT/dytEJcmiQRQlQjCQkJzJ49m9tvv5127dpRo0YN/Pz8aNiwIXfffTcbN24s8r6OHj2KpmlMmzYNgNWrV6NpWq5Xfk0cR48e5dFHH6VNmzYEBgbi7+9Py5YtmThxIjExMfke6+KOnStXrmTQoEHUrVsXvV7v6Yvx/PPPo2kavXr1AuD777/nuuuuIzw8nODgYLp168a3336ba98LFiyge/fuhIWFERgYyDXXXMOKFSvyjWPVqlWez1aY7HVWrVqVq7xjx46EhYUVuF3jxo259tprAfjrr78KPYYQlYEkEUJUIzNnzmTMmDEsWrQoV3V5TEwMX331Fd26dePdd98t0r70ej21a9cmICAAAKPRSO3atXO9sn9pZ/vyyy9p2bIlM2fOZPfu3TgcDgD27dvHu+++S9u2bfn9998v+Rmuu+46vvvuOzIyMtDr9fmuN3XqVG655RZWrVqF0+kkJSWFDRs2cOuttzJr1iyUUowYMYJhw4axefNmnE4naWlprFmzhn79+vHTTz8V6Xsoa35+fgA4nU6vHF+IYlFCiGpj1qxZaurUqWrLli3KZrMppZRyuVzq8OHDauLEiUrTNKXX69XWrVtzbTd37lwFqIYNG+bZ59SpUxWgevbsWeixf//9d6XT6ZTBYFBPPvmkOnLkiHK5XMrlcqm9e/eqoUOHKkAFBwerY8eO5Xt8Pz8/pdfr1YgRI1RMTIxSSimHw6EOHjyYK5aQkBCl1+vVyy+/rBITE5VSSp04cUL169dPASooKEg999xzymKxqI8//lilpaUppZTav3+/6ty5swJUVFSUcjqdueJYuXKlAtSl/unMXmflypWFrnexzMxMVbt2bQWoO++8s1jbCuENkkQIITweeughBajRo0fnKi9tEuF0OlXz5s0VoGbNmlXgejfffLMC1MSJE/M9PqAGDx5c4PbZsQDqpZdeyrM8KSlJBQQEeNb54osv8qxz8OBBz/I1a9bkWlbeScRrr73m2XbFihXF2lYIb5DmDCGEx8CBAwFYu3Ztme73zz//5MCBA0RERDBmzJgC1xs2bBgAv/32W4HrPP3005c8np+fH48++mie8uDgYK666ioAoqKiuPvuu/Os07RpU5o1awbA9u3bL3mssrJ27Vqee+45AO666y569+5dYccWoqRksCkhqpnDhw/z4YcfsnLlSg4dOkRKSgoulyvXOidOnCjTY65btw6ApKQk6tWrV+B6mZmZABw7dizf5RaLhcsuu+ySx2vdurWnr8bFateuDUDnzp0L7CBZu3ZtDh48SEJCwiWPVRb27t3L4MGDyczMpE2bNsyaNatCjitEaUkSIUQ18s0333DXXXdhs9k8ZcHBwfj5+aFpGpmZmZ5xC8pSbGws4B4n4cyZM5dcPyMjI9/y8PBwdLpLV6AGBQUVuMxgMBR5Hbvdfsljldb+/fvp3bs3cXFxREdHs3z58kJjE6IykeYMIaqJ+Ph4RowYgc1mo3fv3qxatYr09HSSkpI4c+YMp0+fZtGiReVy7Ow7Da688kqUuy/WJV/5KehODF+1f/9+rr32Wk6dOkWLFi1YuXIlderU8XZYQhSZ1EQIUU38/PPPJCcnExYWxg8//IC/v3+edU6fPl0ux86+MBbUTOErsmsoAKxWq+d2zJySkpKKtK/sBCI2NpbmzZuzcuVK6tatW2axClERpCZCiGri+PHjAERHR+ebQAAsX7682PvNbl4oqPYAoHv37oA7SdmyZUuxj1FZ5BwoKvv7vNimTZsuuZ/9+/fTq1cvYmNjadGiBatWrSq0r4gQlZUkEUJUEyEhIYD7Ama1WvMs37ZtGwsXLiz2foODgwFITEwscJ1rr73Wc8fDY4895ulAWZDz588XO46K0KJFC88AWkuWLMmz3OVy8eqrrxa6j+wEImcThiQQwldJEiFENXH99dej0+k4f/4899xzDydPngTcd0R8/fXXXH/99SXq0Ne2bVsAdu3axfr16/Ndx2Aw8PHHH2MwGFi7dq1naOmcHRcPHz7Mxx9/zBVXXMGHH35Ygk9Y/oxGI7fddhvgfiLn119/7UmI9u3bx6233lrobaEHDx709IGIjo6WGgjh8ySJEKKaaN68OU888QQAS5cupUGDBoSGhhIYGMgdd9xBYGBgkYe8zqlXr15ER0fjdDrp3r07NWrUoFGjRjRq1IjFixd71rvuuutYtGgRQUFBbNq0iT59+hAQEEBERAR+fn40bdqUBx54gC1btlzy2RTe9Oqrr1KvXj1SUlI831tISAgtW7Zk5cqVLF26tMBtX3nlFc+dKqdOnaJTp07UqVOnwJcQlZ0kEUJUI6+99hqff/45Xbp0wWKxYLfbadasGZMnT+aff/4p0a9ig8HAihUrGDNmDI0bNyYtLY1jx45x7NgxUlNTc607aNAgDh48yNSpU+nSpQuBgYEkJiZiNpvp0KEDY8aM4ZtvvvEkO5VRgwYN2LRpE2PGjKF+/foABAYGMmzYMLZu3UrPnj0L3DbneBzJycmcOXOm0JcQlZ2mCusNJYQQQghRAKmJEEIIIUSJSBIhhBBCiBKRJEIIIYQQJSJJhBBCCCFKRJIIIYQQQpSIJBFCCCGEKBF5AFcFc7lcxMbGEhQUVKkH1BFCCFE9KaVISUmhXr16nmfjFESSiAoWGxtLZGSkt8MQQgghCnX8+HEaNGhQ6DqSRFSw7GcTHD9+3PPgIiGEEKKySE5OJjIyskjP0pEkooJlN2EEBwdLEiGEEKLSKkqTu3SsFEIIIUSJSBIhhBBCiBKRJEIIIYQQJSJ9Iiopp9OJ3W73dhjVitFoRK/XezsMIYTwGZJEVDJKKU6fPk1iYqK3Q6mWQkNDqVOnjozhIYQQRSBJRCWTnUDUqlULf39/uZhVEKUU6enpnD17FoC6det6OSIhhKj8JImoRJxOpyeBCA8P93Y41Y7FYgHg7Nmz1KpVS5o2hBDiEqRjZSWS3QfC39/fy5FUX9nfvfRHEUL4EldGBkqpCj+uJBGVkDRheI9890IIX+NKTydm9BhOPz8N5XRW6LEliRBCCCF8lCszkxMPP0LG1q0k//wz9tjYCj2+JBGi1Hr16sWjjz7q7TCEEKJaUQ4HsY//h7R169AsFiJnzcJUwQ94lCRC+KRVq1ahaVqe1+nTp70dmhBClDvlcnHq2SmkLFuGZjQS+cH7+F/WqcLjkLszhE/bt29frgeZ1apVy4vRCCFE+VNKceblV0j69lvQ66n/zgwCunXzSixSEyHKhMPhYMKECYSEhBAREcGUKVMqpKdwrVq1qFOnjuel08mftBCiaoubOZOEL78EoN6rrxB03XVei0X+xa3klFKkZzoq/FXcBGD+/PkYDAY2b97MzJkzefvtt/nss88KXH/NmjUEBgYW+voy6z+SwnTs2JG6devSt29f1q1bV6yYhRDC18TPnk38x7MAqP3cFEJuvtmr8UhzRiWXYXfS+rnfKvy4u1/oh7+p6H8ekZGRzJgxA03TiI6OZseOHcyYMYOxY8fmu37nzp3Ztm1bofusXbt2gcvq1q3Lxx9/TOfOnbHZbHz22Wf06tWLTZs2cdlllxU5biGE8BUJ//s/zr75FgA1H59Ejbvv9nJEkkSIMtK1a9dcYyxcddVVTJ8+HafTme/IjxaLhWbNmpX4eNHR0URHR3vmu3XrxqFDh5gxYwYLFiwo8X6FEKIySvrhR05PmwZA+LhxRBTwA62iSRJRyVmMena/0M8rxy1Pa9asYcCAAYWuM2vWLO65554i77NLly6sXbu2tKEJIUSlkvLHH8Q+9RQoRdjdd1PzsUe9HZKHzyYRb7/9NmvXrmXHjh2cPXsWq9VKnTp16NmzJ0888QTt2rXLd7t58+bx4Ycfsnv3bkwmE127duXZZ5+lWyE9W9etW8fLL7/Mxo0byczMpHXr1kyYMIFhw4aV18fz0DStWM0K3rJp06Zc8xs3bqR58+YFPn+itM0Z+dm2bZs8OEsIUaWkbdjAyUcfA6eTkFtupvazz1SukXWVjwoPD1d+fn6qS5cu6tZbb1W33nqratGihQKU0WhUP/zwQ55tJk6cqABlsVjULbfcovr166cMBoPS6/Xqm2++yfc4ixcvVnq9Xmmapnr27Kluu+02FRoaqgD1+OOPFzvupKQkBaikpKQ8yzIyMtTu3btVRkZGsffrTT179lSBgYHqscceU3v37lULFy5UAQEB6uOPPy63Y86YMUN9++236sCBA2rHjh1q4sSJSqfTqeXLl5dqv756DoQQVU/6P/+oPZ0uU7ujW6rjEyYol91eIcct7Dp1MZ9NItauXZvvP/QffPCBAlTt2rWVPccXvmzZMgWo8PBwtX//fk/5+vXrlclkUqGhoSohISHXvuLj41VwcLAC1JIlSzzlp0+fVs2aNVOAWrlyZbHirqpJxIMPPqjuv/9+FRwcrMLCwtTkyZOVy+Uqt2O+/vrrqmnTpsrPz0/VqFFD9erVS/3xxx+l3q+vngMhRNWSsWeP2ntFF7U7uqU6NnKUctpsFXbsapFEFKZp06YKUP/++6+nbMCAAQpQM2bMyLP+I488ogD11ltv5Sp//fXXFaBuueWWPNssXbpUAerGG28sVmxVMYmoSuQcCCG8zXr4sNrXrbvaHd1SHbnzLuVMS6vQ4xcniaiS40QYjUYATCYTABkZGfzxxx8ADBkyJM/62WU//PBDrvKffvqpwG0GDhyIn58fy5cvx2q1ll3wQgghqi17bCwxo0bjjI/H3KoVkbM+Rufv7+2wClTlkogFCxawb98+mjdvTvPmzQH30Mg2m42aNWvSoEGDPNtkjyuwffv2XOX//vtvruU5mUwm2rZti9VqZf/+/WX9MYQQQlQzjnPniBk5CsepU5gaNybqs0/R5xjWvzKq/N3+L+HNN99k165dpKWlsWfPHnbt2kW9evX46quvPHcGxMTEAOSbQAAEBAQQGhpKQkICKSkpBAUFkZycTFJSUqHbNWjQgC1btnDs2DHat2+f7zo2mw2bzeaZT05OLvFnFUIIUTU5k5KIGT2GzGPHMNarR9TcORjCw70d1iX5fBLx22+/sWLFCs98w4YN+fzzz7n88ss9ZampqQD4F1IlFBAQQGJioieJyN6msO0CAgIASElJKXC/r776KtOyBggRQgghLuZKS+P4uPHY9u1DXzOCqLlzMNap4+2wisTnmzOWL1+OUoqEhAT+/PNPmjdvTs+ePXn55Ze9HRoATz/9NElJSZ7X8ePHvR2SEEKISsJls3H8oQlk/Psv+pAQombPxtSwobfDKjKfTyKyhYaG0qNHD37++Wcuv/xypkyZwl9//QVAYGAgAOnp6QVun5aWBkBQUFCubQrb7uJt8mM2mwkODs71EkIIIZTdzsnHJpG+cSM6f38iP/sUvxYtvB1WsVSZJCKb0WjkjjvuQCnludsiKioKgBMnTuS7TVpaGomJiYSFhXkSguDgYEJCQgrdLru8oQ9ljUIIIbxPuVzEPj2Z1D/+QDObafDRR1gKGGm5MqtySQRAREQEAHFxcYD7YU1ms5m4uDhOnjyZZ/2tW7cC5Okc2aFDh1zLc7Lb7ezcuRM/Pz9a+FjmKIQQwnuUUpx+4QWSf/wRDAbqz3yHgCu7eDusEqmSScTq1asBaNq0KeB+YmTv3r0BWLRoUZ71Fy9eDMBNN92Uq3zgwIG5luf0448/YrVa6dOnD35+fmUXvBBCiCpLKUXc9Okk/u//QNOo/8brBPXq5e2wSswnk4h169bx66+/4nK5cpXb7Xbee+89FixYgMVi4Y477vAsmzRpEgAvvfQSBw4c8JRv2LCBWbNmERoayujRo3Ptb8yYMQQHB/Pdd9+xdOlST/nZs2d58sknAXj88cfL/PP5ml69evHoo496OwwhhKj04md9QvxnswGo88I0gm+4wcsRlY5PJhEHDhxgwIAB1K5dm/79+3PPPffQr18/GjZsyCOPPILJZGLevHlERkZ6tunTpw8TJ04kPj6ejh07MmjQIG644QauueYaHA4Hc+fOJTQ0NNdxatSowZw5c9DpdAwZMoTevXszdOhQoqOjOXjwIJMmTaKXD2eQvs5ms/HMM8/QsGFDzGYzjRo1Ys6cOd4OSwgh8nV+wRfEvfMOALX++1/Chg71bkBlwCfHiejZsyeTJ09m9erVbN++nXPnzmEymWjUqBFDhgzhkUceoVmzZnm2e+edd+jYsSPvv/8+y5Ytw2Qy0adPH6ZMmVLgo8Bvu+02/vzzT1566aU8jwIfPnx4eX9UUYjbbx/KqdhTvDfjbZo2acKZs2dxKUV6chKaprkfl6vpPNOaLp8yTYPsdyGEKCeJ33zLmayhByIefJDwkSO8G1AZ0ZRSyttBVCfJycmEhISQlJSU53ZPq9XKkSNHaNy4sU/1s+jVqxdt27YF3MOOG41GHnjgAV544YVyuTgrpfjhu2+5b/hwNv6xgrCLapBKwp1k6HA4XZw8fZqDy3/Gac3AYDJdeBlNGExmDCZjVpkZvdGIJSiERu07EVqnbuk/nBCiykn+/XdOPvoYuFzUGD6MWk89Val/uBR2nbqYT9ZEVCtKgb3g8S3KjdEfivFHPn/+fEaPHs3mzZvZsmUL48aNIyoqirFjx+a7/po1axgwYECh+5w1axb33HNPrjK7zUpK/DmWLlpMh7Zt+fCz2Sz59jv8/f0Z0O96Jj/5BH5+fiilwKVQSqGUyz2vcsy7cufOSimU04nT6cTldJJ4Opb08+eK/PkBwhtE0eyKrjS9/ErqNG2OpvPJ1kIhRBlKXbOWk4//B1wuQm4bXOkTiOKSJKKys6fDK/Uq/riTY8EUUOTVIyMjmTFjBpqmER0dzY4dO5gxY0aBSUTnzp3Ztm1bofusXbu2Z9ppt5OaEE9G1hDjMcePs/nvrQSFhvHtd99x7tw5HnzwQVIzrMydO/eS8bor4BTKk2i4k4wMawaJ1kyuf2AimsOBI9OGw253v2dmel5O+4XphNOxnNizk/gTMcSfiGHTN18TEFaDppd1oWnnK4lq2wFD1hNlhRDVR/rff3Pi4YfBbieof3/qllPtrDdJEiHKRNeuXXP9x3HVVVcxffp0nE6n50FoOVkslnz7rVzM5XKSnphIWmIC2S1vlsAg9GYzmqaxcOFCz6Bgb7/9NkOGDOHDDz/EYrEUul93rBraRaEZXS4MRiP1G7coVpOSNTWVI9u2cHDLJo5u20Jawnm2r/iV7St+xWj2o2H7TjS7oiuNO3XGPzikyPsVQvimjF27OD7+fpTVSsA1Paj/xuto+fxb6OskiajsjP7uWgFvHLccFaU54913ZnBjn+twOZ0AmPwsBIVHYPTzo169etSvX9+TQAC0atUKpRQnTpzwPAa+ovgFBtLq6l60uroXDrudE7t3cHDLJg79vYnU+HMc/GsDB//agKbpqBfdimadr6TpFV0Jq+OFWiYhRLmyHTrE8TFjcaWm4t+5Mw1mzkSrorWRkkRUdppWrGYFb9m0aVOu+Y0bN9K8efN8ayGg8OaMzIx0UhMTqBEcjMvpRG80ElQjAnNAgKe2o3v37ixatIjU1FTPc07279+PTqcr8NHtFcVgNNKow2U06nAZ1426n7NHDrkTii0biTt2hJN7d3Fy7y5WfzGHGvUj3QlF567UbdZC+lEI4eMyT5wgZtRonAkJ+LVtS4OPP0J3iZpRXyZ3Z1Swqnp3xt9//83YsWMZP348W7duZezYsUyfPp3x48cXeT/2TBup8eewZT3wTKfXERAajn9IMJqW++KamppKq1at6Nq1K9OmTePcuXOMGTOGnj178umnn5b4s5T3OUiOO+tJKE7s2empZQHwDwml6eVdaNq5K1HtOmA0mcv8+EKI8mM/c5Zj996L/fhxTM2a0nDBAgxhYd4Oq9jk7gxR4YYNG0ZGRgZdunRBr9czceJExo0bV6RtnQ4HaQnnSU9OAtz9FfyDQwgIq4GugJqMwMBAli1bxsMPP0znzp0JDw/n9ttv56WXXiqzz1QegmvW4rIBN3HZgJuwpqVyZNvfHPprI0e2/U16UiI7/vidHX/8jsFsplH7TjS9/EqaXN5F+lEIUck5EhI4PmY09uPHMUZGEjV7jk8mEMUlNREVrCrWRJSUy+UiPSmr02TWEOZ+AYEEhodjMHqn/dBb58DpsHN8904ObdnIoS2bSYmP8yxz96NoSdPL3c0eNerVr7C4hBCX5kxNJWbESKw7d2KoVYuGC7/E5OVm1dIoTk2EJBEVTJII9+2V1tQUUs/H43Q4ADCa/QgKj8Dk5bbDynAOlFKcPXrYk1CcPXoo1/Ia9RrQNLsfRfMW6HRVr8e3EL7ClZHB8bHjSN+yBX1YGA2/WIA56+GPvkqaM0SllZmRQUr8Oew2KwB6g4HAGuH4BQZVufunS0rTNGo3bkrtxk3pNvQeks+d5dCWTRz6ezPHd23nfOwJzn9/gr++X4J/SChNLruClt17EtWmvXTMFKICqcxMTkycSPqWLegCA4n87FOfTyCKS5IIUSEc9kxS4+OxpqUCoOl0BISG4R8Sik4ufIUKjqhFp/430an/TdjS09z9KLZs4sg/W0hPSmTnymXsXLmM4Jq1aNOzD216XkdIrdqX3rEQosSU08nJJ/9L2p9r0Pz8iJz1MZY2bbwdVoWTJEKUK5fTSWrCeTKSkzyDRWV3mtQb5M+vuMz+AbTsdg0tu12D02HnxJ5d7N+4lr3r/iQ57iwbFi9kw+KFRLXtQNtr+9Ksy1Vyl4cQZUy5XJx67jlSfv0VjEYavPce/pdf7u2wvEL+FRflQikX6UnJpCXG43K6O02a/f0JDI+Qi1oZ0RuMNGzXkYbtOtJr2BgObt7AzlXLidn5r+dl9g+gZfeetO3Vh9pNm0uTkRClpJTi7Ouvk7RkKeh01H/rLQJ7XO3tsLxGkghRppRS2NLTSIk/h9NuB8BgMhMUHo7Zv/IPmuWrjGY/WvW4llY9riXp7Gl2rV7BzlXLSTkXx7/LfubfZT8TEdmQttf2pVWPa+WWUSFK6Nz7H3B+/ucA1H35ZYL7Xe/liLxL7s6oYFX57gy71f2EzUxrBgA6vZ7AGuFYgoJ95hewr5+DnJTLRczO7exctYwDm9d7kjqdXk+Ty7rQ9tq+NO54eYFjcQghcoufN4+zr70OQO1nnqHGffd6OaLyIXdniAp18RM2NU1zd5oMDZXbD71I0+lo2L4jDdt3xJqayt71f7Jz5TLOHD7geZZHQGgYrXteR9tefahRz3fvaxeivCUsWuRJIGo+OrHKJhDFJUmEKDaXy4XTbsfpsGO3WklPSrzwhM2gIAJrhKM3GL0cpcjJLzCQjtffQMfrbyAu5ii7Vi1j958rSUtM4K/vFvPXd4up16IVba/tS/RVV2OylO8D2ITwJck//8zp56YCUGP0KMKLMZx/VSfNGRXMV5ozXE4nTocdp92Ow273JA3ud0eudQfffS/t27XjvQ/ex2j27SaAynQOypvTYefw33+xc9UyjvzzN0q5O8AazGaiu15N2159qd+qjc80RQlRHlJWreLEhIfB4SD0jjuo8/zUKv/fhDRniCJxOZ0XEgR7Jk7HhYQh54Oh8qPT69AbTOiNRgwmE+aAgApNIEaMGMH8+fPzlLdu3Zpdu3ZVWBy+TG8w0vzKbjS/shup5+PZvWYlO1cuI+HUSXatXsGu1SsIrVOXtr360vqa3gSFR3g7ZCEqVNrmzZyc+Cg4HATfeCN1nptS5ROI4pIkogpTSrlrFHLUIlyoVcj03HpZEJ1e704SjEb0RiN6owmDwT2dszOeTq+v8P+wZs6cyWuvveaZdzgcdOjQgaFDh1ZoHFVFYI1wutwyhCtuvo3Y/XvZuXIZ+zasIfH0Kdb+73PW/d8XNOzQiba9+tK085UYjNJcJaq2jO3bOXH/AyibjcDevan36ito0gk5D0kifJw7UXDkThDsdhxZSUP2g60KojcY3AlCVnLgSRgMxmL12nc4HEyYMIEFCxZgNBp54IEHeOGFF8otuQgJCSEk5MJtit9++y0JCQmMHDmyXI5XXWiaRv3oVtSPbsW1I8ayf+M6dq5cxsm9uzi67W+Obvsbv8AgWl3di7bX9qVWoybeDlmIMmfdv5+YseNwpafj37Ur9We8jSaJc74kiajklFJkODLyXZYcdxZrWiqX6tbiTgoMnloET5JgMOQZctoFuHBhKOZQ1PPnz2f06NFs3ryZLVu2MG7cOKKiohg7dmy+669Zs4YBAwYUus9Zs2Zxzz33FOn4s2fPpk+fPjRs2LBYcYuCmfwstO3Vh7a9+lxo4li1nNSE8/zz6w/88+sP1GrUlLbX9qHl1b2wBAZ5O2QhSi3z2DFiRo/GlZSEX4f2RH7wPjqzDJBXEOlYWcGK27Ey3Z7OlQuvrPA4N929CX9j0Xro9+rVi7Nnz7Jr1y5PzcNTTz3F999/z+7du/PdJiMjg5MnTxa639q1axMUdOkLU2xsLFFRUSxcuJDbb7+9SDEXpDp1rCwJl8vJsX//YefKZRzcsgmX093J1mAyM/6j+fgFBno5QiFKzn76NMfuvgd7bCzm6Ggazp+HPjTU22FVOOlYKSpc165dczVdXHXVVUyfPh2n04k+n2YRi8VCs2bNyuTY8+fPJzQ0lEGDBpXJ/kTBdDo9jTt1pnGnzqQnJ7F33Wp2/vE7AWE1JIEQPs0RH0/MqNHYY2MxNWxI1OzPqmUCUVySRFRyFoOFTXdv8spxy1NZNWcopZgzZw733XcfJpOpLEMUl+AfHMJlA26mU/+bsFvzb3ITwhc4k5OJGTOWzMOHMdStS9TcORgi5G6kopAkopLTNK3IzQretGlT7kRn48aNNG/ePN9aCIDOnTuzbdu2QvdZu/alH2e9evVqDh48yOjRo4scqyhbmqbJ4FTCZ7nS0zk+/n5se/agDw8nas5sjPXqeTssnyFJhCgTMTExTJo0ifHjx7N161bee+89pk+fXuD6ZdWcMXv2bK688kratm1b6n0JIaoXV2YmJyY8TMY//6ALDiZq9meYGzf2dlg+RZIIUSaGDRtGRkYGXbp0Qa/XM3HiRMaNG1eux0xKSmLJkiXMnDmzXI8jhKh6lMNB7OOPk7Z+PZq/P1GfzMKvZUtvh+VzJIkQpbZq1SrP9EcffVRhxw0JCSE9Pb3CjieEqBqUy8WpZ54hZdlyNKORyA/ex9Kxo7fD8knFGwxACCGE8GFKKc689DJJ330Pej3135lBwFVXeTssnyVJhBBCiGoj7p2ZJCxcCJpGvddeJei667wdkk+TJEIIIUS1cO7TT4mfNQuAOlOnEnLTTV6OyPdJEiGEEKLKS/jqK+Kmvw1Arf88Ttidd3g5oqpBkgghhBBVWtL333P6hRcBCB8/nvAxY7wcUdUhSYQQQogqK2XFCmKfngxKEXbPPdR8dKK3Q6pSJIkQQghRJaWtX8/JRx8Dp5OQQYOo/czkXM/4EaUnSYQQQogqJ/2ffzj+0ASU3U5Q377UfelFNJ1c8sqafKNCCCGqFOvevRwffz8qI4OA7t2pN/0tNIOMrVgeJIkQpdarVy8effRRb4chhBDYjhwhZvQYXMnJWC67jAbvvYtOnvBbbiSJED7ryy+/pEOHDvj7+1O3bl1GjRpFfHy8t8MSQniJ/eRJYkaNxhkfj7l1KyJnfYzOX54wW54kiRA+ad26dQwbNozRo0eza9cuFi1axObNmxk7dqy3QxNCeIEjLo5jo0bhOHUKU5MmRH32GfqgIG+HVeVJI1Elp5RCZWRU+HE1i6VYvZgdDgcTJkxgwYIFGI1GHnjgAV544YVy6wm9YcMGGjVqxCOPPAJA48aNGT9+PK+//nq5HE8IUXk5ExOJGT0G+7EYjPXqETVnNoYaNbwdVrUgSUQlpzIy2HfZ5RV+3Oitf6MVoxpw/vz5jB49ms2bN7NlyxbGjRtHVFRUgTUDa9asYcCAAYXuc9asWdxzzz35LrvqqquYPHkyP//8MwMGDODs2bMsXryYG264ocgxCyF8nzM1jZjx47Ht34+hZk2i5s3FWKeOt8OqNsosiYiLi+Pw4cOcPn2atLQ0jEYjoaGhREVF0axZM/R6fVkdSlRCkZGRzJgxA03TiI6OZseOHcyYMaPAJKJz585s27at0H3Wrl27wGXdu3fnyy+/5I477sBqteJwOLjpppv44IMPSvMxhBA+xGWzceKhh7D+ux19SAhRc2ZjiorydljVSomTiLS0NL777jt++eUXVq9ezcmTJwtc12w206lTJ66//npuvfVW2rdvX9LDVjuaxUL01r+9ctzi6Nq1a66mi6uuuorp06fjdDrzTSAtFgvNmjUrcXy7d+9m4sSJPPfcc/Tr149Tp07xxBNPcP/99zN79uwS71cI4RuU3c7JRx8jfdMmdAEBRH72Kebmzb0dVrVT7CTin3/+4b333mPRokWkp6cD7nb7wlitVjZs2MDGjRt54YUXaNOmDQ899BD33Xcf/tJztlCaphWrWcFXlLY549VXX6V79+488cQTALRv356AgAB69OjBSy+9RN26dcs8ZiFE5aCcTmKfeprUlSvRzGYafPQhlnbtvB1WtVTkJOKff/5hypQp/PLLL8CFxKFOnTp06dKFyy+/nFq1alGjRg3CwsLIyMjg/PnzJCQksH//fv766y+2b9+O3W5n586dPPjgg0yZMoUnn3yShx9+GLPZXD6fUFSITZs25ZrfuHEjzZs3L7AZq7TNGenp6RguGjwm+1iXSmqFEL5LKcXpaS+Q/NNPYDDQ4N2ZBHTp4u2wqi9VBCNGjFB6vV5pmqY0TVOXX365evvtt9WxY8eKsrmHzWZTy5YtUyNGjFAhISFK0zSl0+lU48aN1Zo1a4q1L1+VlJSkAJWUlJRnWUZGhtq9e7fKyMjwQmQl17NnTxUYGKgee+wxtXfvXrVw4UIVEBCgPv7443I75ty5c5XBYFAffvihOnTokFq7dq3q3Lmz6tKlS6n266vnQIjqwOVyqdOvv6F2R7dUu1u1Vkk//+ztkKqkwq5TFytSTcT8+fMxmUwMHz6cxx9/nBYtWpQoYTGZTPTp04c+ffrw8ccfs2jRIl555RX27t3LH3/8wdVXX12i/QrvGzZsGBkZGXTp0gW9Xs/EiRMZN25cuR1vxIgRpKSk8P777/P4448TGhpK79695RZPIaqw+I8/5vycOQDUfWEawZdoEhXlT1Pq0nW/EyZM4L///S+RkZFlHoBSikWLFuF0OrnrrrvKfP+VTXJyMiEhISQlJREcHJxrmdVq5ciRIzRu3Bg/Pz8vRVi9yTkQonI6//kCzrzyCgC1nvov4SNGeDegKqyw69TFilQT8f7775dJYPnRNI3bb7+93PYvhBDCtyUu/caTQERMmCAJRCUiw14LIYSotJJ/+51Tzz4LQI3hw4l46EEvRyRykiRCCCFEpZS6Zg0n//MfcLkIGXIbtZ76b7kNpS9KptyHvf73339ZvHgx586do3Hjxtxzzz3Ur1+/vA8rhBDCh6Vv2cKJhx8Bu52gAf2pO22aJBCVUKmSiL/++ouHHnoIg8HAzz//TGhoaK7ls2bN4qGHHsp13/7LL7/M4sWL6du3b2kOLYQQoorK2LWL4/c/gLJaCeh5DfVffx1NHp1QKZWqOeOHH35gy5YtBAcH50kgjhw5wiOPPILL5XI/iTLrlZKSwh133EFcXFxpDi2EEKIKsh08yPHRY3ClpuJ/xRU0mDkTzWTydliiAKVKIlatWoWmafTv3z/Psg8++AC73Y7FYmHp0qUkJSXx9ddfY7FYSEpK4uOPPy7NoYUQQlQxmSdOEDNqNM7ERPzataPBRx+ik1utK7VSJRHZD93K74Fa3333HZqmMX78eAYNGkRQUBBDhgzh/vvvRynFr7/+WppDCyGEqELsZ84SM3IUjrNnMTdvRuQns9AHBno7LHEJpUoispskwsPDc5WfPHmSQ4cOAeQZA+L6668HYO/evaU5tBBCiCrCkZBAzOhR2I8fxxgVReTs2RjCwrwdliiCUiURmZmZgPux4DmtWbMGAH9/f6644opcy7IfqpSSklKaQ4tKpFevXjz66KPeDkMI4YOcqakcHzOWzIOHMNSuTdScORhr1fJ2WKKISpVE1KxZE8BT65Bt2bJlAHTt2jXPUxytVitAno6YQhTXBx98QKtWrbBYLERHR/P55597OyQhRDG4MjI4fv/9WHftQh8WRtTcOZgayBAAvqRUSUTnzp1RSjF79mxcLhcA8fHxLF26FE3TuO666/Jsk51wFPaYZyEu5aOPPuLpp5/m+eefZ9euXUybNo2HHnqIH374wduhCSGKQGVmcuKRiWRs+RtdUBBRsz/D3KSJt8MSxVSqJGLYsGGAu/ni6quv5j//+Q/dunUjKSkJg8HAPffck2eb9evXA9C0adPSHLraUEphtzkr/FWE57Ll4nA4mDBhAiEhIURERDBlypRi76M4FixYwPjx47njjjto0qQJd955J+PGjZOneArhA5TDwcknniRtzRo0i4XIWR/j17q1t8MSJVCqwaZuvfVWhgwZwuLFi9m4cSObNm3yXDiefPLJPE/9dDqdnloKeex30TgyXXwycXWFH3fczJ4YzUUf3GX+/PmMHj2azZs3s2XLFsaNG0dUVBRjx47Nd/01a9Yw4BKP8Z01a1a+iSiAzWbL85RNi8XC5s2bsdvtGI3GIscuhKg4yuXi1HNTSfntNzSjkQbvvYf/ZZd5OyxRQqUe9vp///sfH374IYsWLeL06dPUrVuX4cOHM3LkyHzXPXPmDAADBw4s7aFFJRIZGcmMGTPQNI3o6Gh27NjBjBkzCkwiOnfuzLZt2wrdZ2FNXv369eOzzz5j0KBBXHbZZfz999989tln2O12zp07R926dUvzcYQQ5UApxZnXXiNp6VLQ6ag3/S0Cr+7u7bBEKWiqPOucRR6FPafdarVy5MgRGjdu7PmVrZTCkemq8DgNJl2Rx6nv1asXTZo0Yc6cOZ6y7777jiFDhmC1WvN0ri0LGRkZPPTQQyxYsAClFLVr1+bee+/ljTfe4PTp0yXuc5PfORBClI24d9/j3IcfAlD3tVcJHTTIuwGJfBV2nbqYTz7FMz09nW+//ZbRo0cTHR2Nn58fAQEBdOjQgRdeeIHU1NQCt503bx5dunQhMDCQGjVqcMMNN3j6aRRk3bp13HDDDdSoUYPAwEC6dOlSYXcCaJqG0ayv8Fd5P+hmzZo1BAYGFvr68ssvC9zeYrEwZ84c0tPTOXr0KDExMTRq1IigoCDPXUNCiMojfs5cTwJRe8qzkkBUEeX+FM/ysHDhQk81eatWrbj55ptJTk5m/fr1TJ06la+++orVq1dT66J7jR999FFmzpyJxWLh+uuvx2q1smzZMn7//XcWL17MoHz+qJcsWcIdd9yBy+XimmuuISIighUrVjB8+HC2b9/OW2+9VREfudLbtGlTrvmNGzfSvHnzAmshStuckc1oNNKgQQPA3Vx24403otP5ZG4sRJWV8PXXnH3jDQBqPvooNQro6yR8kCqC2NjYoqxWKqdOnSryuvPmzVPjxo1Tu3fvzlUeGxurOnXqpAB111135Vq2bNkyBajw8HC1f/9+T/n69euVyWRSoaGhKiEhIdc28fHxKjg4WAFqyZIlnvLTp0+rZs2aKUCtXLmy6B9SKZWUlKQAlZSUlGdZRkaG2r17t8rIyCjWPr2tZ8+eKjAwUD322GNq7969auHChSogIEB9/PHH5XbMffv2qQULFqj9+/erTZs2qTvuuEPVqFFDHTlypFT79dVzIERllfjjj2p3y1Zqd3RLdebNN5XL5fJ2SOISCrtOXaxISYTFYlEPP/ywOnHiRKmDu9j//d//qXbt2qlp06aVyf7Wr1+vAGU2m5XNZvOUDxgwQAFqxowZebZ55JFHFKDeeuutXOWvv/66AtQtt9ySZ5ulS5cqQN14443Fiq+qJhEPPviguv/++1VwcLAKCwtTkydPLtd/LHbv3q06duyoLBaLCg4OVrfccovau3dvqffrq+dAiMooeeVKtbtNW7U7uqWKnTpVEggfUeZJhNFoVDqdTvn5+alhw4ap3377TTmdzhIHGBMTo15//XXVsmVLpdPplKZp6tVXXy3x/nJKS0tTgAI8NSjp6enKbDYrQB0/fjzPNn/++acCVM+ePXOVX3PNNQpQCxYsyLONzWZTfn5+ys/Pr1gXnKqYRFQlcg6EKBupGzaqPe3aq93RLdWJ/zyhXKW4ZoiKVZwkokh9Inbu3Mljjz3GL7/8whdffMEXX3xBrVq1uOWWW+jatStXXHEFrVu3LrAz3rlz5/jrr7/YvHkzK1asYP369Sh3AkP9+vWZNm0aI0aMKGmLTC6HDx8G3G3lNWrUAGDfvn3YbDZq1qzpaT/P6bKse5S3b9+eq/zff//NtTwnk8lE27Zt2bJlC/v378/3SaZCCFEdZfz7LycefBCVmUngdddR75WX0aSvUpVUpCSiRYsW/PTTT6xfv56XXnqJ3377jTNnzvDpp5/y6aefAu6Lanh4OGFhYYSFhZGRkcH58+dJSEggKSnJsy+VdUdpgwYNePjhh3n44YfL9Fa6mTNnAtC/f3/MZjMAMTExnmPmJyAggNDQUBISEkhJSSEoKIjk5GRP3AVt16BBA7Zs2cKxY8ckiRBCCMC6bz8x48bjSk/H/6qu1H97OpoM/lZlFevujG7duvHzzz+zf/9+5syZw6JFizhy5AjgHkEwNjaW2NhYNE3Ld8hjs9lMv379GDt2LAMGDCjzXvQ///wzs2fPxmg08uKLL3rKs2/59Pf3L3DbgIAAEhMTPUlEzttEC9ouICAAKPyJpDabDZvN5plPTk4u2ocRQggfk3nsGDGjR+NKSsLSoQOR77+PLuvHnKiaSnSLZ4sWLXjttdd47bXXiImJYc2aNaxfv54TJ04QFxfH+fPn8fPzo2bNmtSsWZN27drRo0cPunTpgslkKuvPAMDevXu59957UUrx5ptv0qFDh3I5TnG9+uqrTJs2zdthCCFEubKfOkXMyFE4z53D3LIlkZ/MQpf1Q0tUXaUeJyIqKop77rmnwGccVISTJ0/Sv39/EhISmDRpEhMnTsy1PDAwEHAPUlWQtLQ0AIKCgnJtk71dfqN2XbxNfp5++mkmTZrkmU9OTs7zTBEhhPBljvh4YkaOwh4bi6lRI6I++xR9SIi3wxIVwOd7upw/f57rr7+eY8eOMXLkyHwHf4qKigLgxIkT+e4jLS2NxMREwsLCPAlBcHAwIVn/ERS0XXZ5w4YNC4zPbDYTHByc6yWEEFWFMzmZmDFjyTx6FEPdukTNmY0hIsLbYYkK4tNJRGpqKgMGDGD37t0MHjyYTz/9NN87RKKjozGbzcTFxXHy5Mk8y7du3QqQp3NkdpNI9vKc7HY7O3fuxM/PjxYtWpTFxxFCCJ/iSk/n+Pj7se3Zgz4igoZz52CsV8/bYYkK5LNJhM1m45ZbbmHz5s3069ePr776qsAhli0WC7179wZg0aJFeZYvXrwYgJtuuilXefaTRrOX5/Tjjz9itVrp06ePPKhJCFHtuGw2TkyYQMY//6ALDiZq9meYGjXydliigvlkEuF0Ornrrrv4448/6NGjB0uXLr1kh83sfgkvvfQSBw4c8JRv2LCBWbNmERoayujRo3NtM2bMGIKDg/nuu+9YunSpp/zs2bM8+eSTADz++ONl9bGEEMInKIeDk48/Ttr6DWj+/kR9Mgu/6GhvhyW8wCcfwPX+++/zzTffABAREcGDDz6Y73pvvfUWEVltc3369GHixInMnDmTjh070rdvXzIzM1m2bBlKKebOnUtoaGiu7WvUqMGcOXO4/fbbGTJkCL169SI8PJzly5eTmJjIpEmT6NWrV3l+VJ/Qq1cvOnbsyDvvvOPtUIQQ5Uy5XJx65hlSl69AM5mI/PADLB07ejss4S3lOnZmOZk6dapnaOvCXvk9jGnu3Lnq8ssvV/7+/io0NFT1799frVu3rtDjrV27VvXv31+FhoYqf39/1blzZzVv3rwSxV4Vh73u2bOnmjhxYoUeMzY2Vt11112qefPmStO0Ao//9ddfq+joaGU2m1Xbtm3VTz/9VOh+ffUcCFERXC6XOjVtmtod3VLtbt1GJa/4w9shiXJQ5sNeVzbPP/88zz//fIm2HTFiRLGH2O7evTu//PJLiY4nykf2MObPPvssM2bMyHed9evXc9ddd/Hqq69y4403snDhQgYNGsTWrVtp27ZtBUcshO+Lm/EOCQu/Ak2j3uuvE9T7Wm+HJLzMJ/tEVCdKKexWa4W/VD4jjhbG4XAwYcIEQkJCiIiIYMqUKcXeR3E0atSImTNnMmzYMM+tuBebOXMm/fv354knnqBVq1a8+OKLXHbZZbz//vvlFpcQVdW5Tz4l/pNPAKjz/POE3DjQyxGJysAnayKqE4fNxrvDh1T4cR+ZvxhjMe46mT9/PqNHj2bz5s1s2bKFcePGERUVxdixY/Ndf82aNQwYMKDQfc6aNatUg5ht2LAh10BfAP369ePbb78t8T6FqI7OL1xI3NtvA1DriScIu+N2L0ckKgtJIkSZiIyMZMaMGWiaRnR0NDt27GDGjBkFJhGdO3dm27Zthe6zdu3apYrp9OnTefZRu3ZtTp8+Xar9ClGdJH3/PWdecD+LKPyB+wkfPcrLEYnKRJKISs5gNvPI/LzjVFTEcYuja9euuQb6uuqqq5g+fTpOpzPf8TssFgvNmjUrdZxCiPKTsnw5sU9PBiDs3nup+cgjXo5IVDZlmkRkZGTw999/c/r0adLT0xk0aJAM81xKmqYVq1nBV1REc0adOnU4c+ZMrrIzZ85Qp06dEu9TiOoidd06Tj42CZxOQm69ldqTn853RGBRvZVJEnH8+HEmT57MokWLsNvtnvLOnTvTunVrz/zs2bOZNWsWISEh/P777/IHWYVs2rQp1/zGjRtp3rx5gaOIVkRzxlVXXcWKFSt49NFHPWXLli3jqquuKtV+hajq0rf+w4kJD6PsdoKuv566L76AppN++CKvUicRmzZtYuDAgSQkJOTqjZ9fgnDTTTfx0EMPYbfb+f333+nXr19pDy8qiZiYGCZNmsT48ePZunUr7733HtOnTy9w/bJozshOQlJTU4mLi2Pbtm2YTCZP4jpx4kR69uzJ9OnTGThwIP/73//YsmULn2T1MBdC5GXds4fj48ejMjIIuPpq6r31JppBWr5F/kqVWiYmJnLLLbdw/vx56tSpw4cffsiOHTsKXL9WrVqeKuyffvqpNIcWlcywYcPIyMigS5cuPPTQQ0ycOJFx48aV6zE7depEp06d+Pvvv1m4cCGdOnXihhtu8Czv1q0bCxcu5JNPPqFDhw4sXryYb7/9VsaIEKIAtsNHiBk9BldKCpbLL6fBe++iu8QjBUT1Vqr08t133+Xs2bNERESwYcMGzyO3C9OnTx++++47Nm/eXJpDi0pk1apVnumPPvqowo5blHEohg4dytChQysgGiF8m/3kSWJGjcJ5/jx+rVsT+fFH6CwWb4clKrlS1UT88MMPaJrGpEmTipRAALRp0waAQ4cOlebQQgghyogjLo5jo0bhOH0aU9OmRH72KfqgIG+HJXxAqZKIgwcPAnDNNdcUeZuwsDAAkpOTS3NoIYQQZcCZmEjMqNHYj8VgbNCAqDmzMdSo4e2whI8oVRJhtVoBMBqNRd4mLS0NcHesE0II4T3O1DRixo3HduAAhpo1iZo7B2Mp74oS1UupkohatWoBcOTIkSJvk92jvl69eqU5tBBCiFJwWa2cePBBrNu3ow8NJWrObEyRkd4OS/iYUiURV155JUCRn3CplOLTTz9F0zR69OhRmkNXaeX54CpROPnuRXWg7HZOPvoY6Zs3owsIIPLTTzE3b+7tsIQPKlUScc8996CU4ssvv7zkwEEAjz/+OP/++y8Aw4cPL82hq6TsZqH09HQvR1J9ZX/3xWmiE8KXKKeT2P8+ReqqVWhmM5Eff4Slndz2LEqmVLd43nLLLVx77bWsXLmS6667jpdeeonbbrvNs9zhcBAbG8u6det49913Wb9+PZqmMXjwYLp161bq4KsavV5PaGgoZ8+eBcDf319G9awgSinS09M5e/YsoaGhBY60KYQvU0px+vlpJP/8MxiNNHjvXfyvuMLbYQkfpqlS1t8mJiZy3XXX8c8//1zygqeUomvXrixbtoyAgIDSHNZnJScnExISQlJSUr7PFVFKcfr0aRITEys+OEFoaCh16tSR5E1UOUopzr7xJufnzgWdjvpvTye4f39vhyUqoUtdp3Iq9VimoaGhbNiwgWnTpvHhhx+SlJSU73r+/v5MmDCBF154AZOMgFYgTdOoW7cutWrVyvUcElH+jEaj1ECIKuvcRx+5Ewig7osvSAIhykSpayJySktLY/Xq1WzZsoWzZ8/idDoJDw+nU6dO9OnTh5CQkLI6lM8qToYnhBBl4fznn3PmlVcBqD35aWoMG+bliERlVpzrVJkmEeLSJIkQQlSkxCVLOfXMMwBEPDyBmg895OWIRGVXnOuUPNtVCCGqqORff+XUlCkA1BgxgogHH/RyRKKqkSRCCCGqoNQ1azj5xJPgchE6dAi1/vukdBgWZa7MHhIfHx/Phg0bOHz4MCkpKTidzktu89xzz5XV4YUQQmRJ37KFEw8/AnY7wTcMoM7zz0sCIcpFqftEnD59mkmTJrFkyRIcDkexti1KolHVSJ8IIUR5ytixk5gRI3ClpRHYsycN3n8PTQZPE8VQYbd4xsXF0a1bN44dOybDBQshhJfZDh7k+NixuNLS8O/Shfoz35EEQpSrUvWJmDp1KkePHkUpxdChQ/njjz+Ij4/H6XTicrku+RJCCFE2Mo8fJ2bkKJyJifi1b0+DDz9E5+fn7bBEFVeqmogff/wRTdO47777mDdvXhmFJIQQojjsZ84QM3IUjrg4zM2bE/XJLPSB1XNUYFGxSlUTERcXB8CoUaPKJBghhBDF40hIIGbUaOwnTmCMiiJy9mfoQ0O9HZaoJkqVRNSrVw+g2j4HQwghvMmZksLx0WPIPHQIQ506RM2Zg7FWLW+HJaqRUiUR11xzDQA7duwok2CEEEIUjSsjg+P3P4B19270NWoQNWc2pgb1vR2WqGZKlUT85z//wWg0Mn36dKxWa1nFJIQQohCuzExOPPwIGX//jS4oiKjZn2Fu0sTbYYlqqFRJRJs2bZg7dy779u3j+uuvZ//+/WUVlxBCiHwoh4PY/zxB2tq1aBYLkbNm4deqlbfDEtVUqUesvOuuu2jevDkDBw6kdevWtG/fnhYtWuDv71/odpqmMXv27NIeXgghqg3lcnFqynOk/P47mtFIg/ffw/+yTt4OS1RjpR6xcv/+/YwZM4Z169YVeRulFJqmyYiVMmKlEKKIlFKceeVVEhYsAL2eBjPfIahPH2+HJaqgChuxMiYmhmuuuYa4uDjPiJVBQUGEhoai08mzvYQQoqyce+89dwIB1HvlZUkgRKVQqiTihRde4OzZs+h0Oh5//HEefPBBGjVqVEahCSGEAIifPYdzH34EQO3nphByyy1ejkgIt1IlEStWrEDTNCZOnMgbb7xRVjEJIYTIkvB/X3P2zTcBqDlpEjXuvtvLEQlxQanaHM6cOQPAbbfdVibBCCGEuCDpx584/fzzAISPHUvEuLHeDUiIi5Qqiahbty4AJpOpTIIRQgjhlvLHSmKfegqUIuzuu6g56TFvhyREHqVKIvr27QvAX3/9VSbBCCGEgLSNGzn56KPgcBB8803UfvZZNE3zdlhC5FHqESsDAgJ4/fXXOX/+fFnFJIQQ1VbGv/9y/MGHUJmZBPa5jnqvvIImd7uJSqpUf5nNmjXjm2++ISUlhe7du7Ns2bKyiksIIaod6759xIwbj0pPJ6DbVdR/+200Q6nHBBSi3JTqr7N3794AREREsG/fPvr3709oaCjNmzcv0oiVK1asKM3hhRCiysg8epSY0WNwJSVh6diRBu+/j076m4lKrlQjVup0Ok87XVF3o2majFgpI1YKIXKwx8Zy9N57ccSewtyyJQ0/n49e/n0QXlJhI1Zec8010tlHCC9RSpFpdWJLs6M36jCa9RhNejSd/DfpSxznzhEzajSO2FOYGjcmavZnkkAIn1GqJGLVqlVlFIYQ1ZtSCkemi4zUTKypdqypdjKy3q1p2dOZuctT7bhcF9UAamA06d0JhVmP0S972nDRvB5TjmnP8ovWkcSkfDmTkogZM5bMo0cx1KtL1JzZGMLDvR2WEEUmPXaEKAcOuxNrqgNrWmaui/6F6azytAvlTrurRMfSG3Q4nS5QgAK7zYndVrZNhQazHlO+SYYBo58eS6CRboOblekxqzpXWhrHx9+Pbe9e9BERNJwzB2PW2DtC+ApJIoTIwelweS7CdmvWu81xoSyfV2aGI1cyYE21l/girjNoWAJN+AUasQQa3e8B7ne/QJOnzLM8wIjBpHfXZNhdOWJ2YrfmH3dmfuUFbJfd1clhc+Io5DP5h5gkiSgGl83G8QkTyNi2DV1ICFGzZ2OS5w4JHyRJhPBZTocLW7oj70Ux5wUxKwFw2FyXTAbsNicuZ4n7Geeh6bRcF/vcCYApTzLgF2jEaNaXqJ+RpmnuZgyTvszizzcxyf5OLyrT6aW5o6iU3c7JSY+TvmEjOn9/oj6ZhV90C2+HJUSJFCmJiImJ8UxHRUXlW14SOfclqh/lUmRaHdjSs14ZDmzpds98Zkb2Mrt7WZp7ncysdRwlrP4vCr1Rd6FvwcV9BHK83NX8BixBeWsITBaDT3c8Lo/EpLpTLhexzzxD6ooVaCYTDT76CEuHDt4OS4gSK1IS0bhxY8D9j4rD4chTXhIX70v4Jkem80ISkH2xv2g+05MkXJQgZDjc7filoeHuJGjWY/Rzdw40mHT5diS89Mvdvm806dDpZYRAUbaUUpx+8UWSv/8BDAbqz3yHgCu7eDssIUqlSElEQWNAlGKICVGJuFyKzHQH1nS7+9d+uj33dJoDW5oda3qO+azlTkfpawMMRh1mfwMmfyNmiwFzgMH97m90l1sMmP2zX1nrZM2b/Axy54DwCXFvv03iV/8DTaPe668RdO213g5JiFIrUhIxd+5cgDxVs9nlwvuy269tae5f+9ac757EwJG1PEcikFUzUBqaTsNsMWDyN+Dnuei7E4CLkwJTdlmOhEBvlF/9omo7N+sT4j/9DIA6054nZOBAL0ckRNko8oiVOp0OnU7H9u3bad26dXnHVWWV5YiVG745yJHt8Z7EobS1AkazHnOAAb8AdwLg52/EnD2d9W72N+IXkJUABLjXMfqVrDOgENXB+S+/5MyLLwFQ68knCR810ssRCVG4chuxUpovKpf0pEwSTqXlKtPpNPcv/3wu9mZ/A+YA44UkIUdiYA4woJd+AEKUqcRvv/UkEBEPPiAJhKhy5BZPH9ahTyTRXevkqi0o6S2CQoiylbxsGacmPwNA2H33EfHww16OSIiyJ0mED4toEOTtEIQQ+Uhdt47YSY+Dy0XI4MHUfvopSe5FlST110IIUYbSt27lxISHUXY7Qf36UffFF9B08k+tqJrkL1sIIcqIdfdujo+/H5WRQUCPHtR/8w00vQzWVdUlWBP4aNtH/HP2H2+HUuGkOUMIIcqA7fBhYkaPwZWSgqXz5TR4dyaayeTtsEQ5OpFygs93f843B77B6rSy49wOPuzzobfDqlDFTiJGjhxJQEBAqQ+saRorVqwo9X6EEMLbMk+cJGbkKJwJCfi1aUPkRx+hs1i8HZYoJ7vidzFv5zx+P/Y7LuW+tb51eGtubnazlyOreMVOIrZs2VLqgyqlpJOREKJKsJ89S8yoUTjOnMHUrCmRn32KPkg6PVc1SinWx65n7s65bDq9yVPevV53RrYdSZc6Xarlda3YSYSMFSGEEG6OhASOjx6DPSYGY4MGRM2egyEszNthiTJkd9n59civzNs1j/0J+wEwaAb6N+7PiDYjiK4R7eUIvavYScTOnTtlxEohRLXnTE3j+Ljx2A4cwFCrFlFz52CsXcvbYYkykm5PZ8mBJXy++3NOp50GwGKwMKTFEO5rdR91A+t6OcLKQTpWCiFEMbmsVk488ADWHTvQh4YSNWc2pshIb4clysC5jHMs3LOQ/+37HymZKQCE+4Vzb+t7GdpiKCHmEC9HWLlIEiGEEMWgMjM5OfFR0v/6C11gIJGffYa5WTNvhyVK6UjSEebvms8Ph34g05UJQKPgRgxvM5ybmt6EWW/2coSVkyQRQghRRMrpJPapp0hdvRrNz4/Ijz/C0raNt8MSpbDt7Dbm7ZrHHzF/oHD3+etQswMj247k2shr0WkynFJhfPbb+fvvv3nttdcYPHgwDRo0QNO0IvWMnTdvHl26dCEwMJAaNWpwww03sH79+kK3WbduHTfccAM1atQgMDCQLl268Pnnn5fVRxFC+AClFKeff57kn38Bo5EG772Lf+fO3g5LlIBLuVh1fBXDfxnOfb/cx4qYFSgUvSJ78fmAz/nihi+4Luo6SSCKwGdrIl588UW+++67Ym3z6KOPMnPmTCwWC9dffz1Wq5Vly5bx+++/s3jxYgYNGpRnmyVLlnDHHXfgcrm45ppriIiIYMWKFQwfPpzt27fz1ltvldEnEkJUVkopzr7+BomLFoNOR/233iKwRw9vhyWKKdOZyU+Hf2LurrkcSToCgFFn5KamNzG89XCahDbxcoS+R1NFvGdTp9OhaRo7duyoFHdnvP7666SlpXHFFVdwxRVX0KhRI2w2W4G3oC5fvpy+ffsSHh7Ohg0baN68OQAbNmygV69e+Pv7c+TIEUJDQz3bnD9/nsaNG5OcnMySJUsYPHgwAGfOnOHqq6/m4MGDrFy5kl69ehU57uI8p10IUTnEffAB5957H4C6r7xC6OBbvRyRKI7kzGQW7VvEl3u+JC4jDoAgYxBDo4dyT6t7qOUvd9XkVJzrVJFrIo4ccWdt9evXL110ZeS///1vsdZ/++23AXj22Wc9CQTAVVddxf3338+7777L7Nmzefzxxz3LPvvsM5KTk7nllls8CQRA7dq1eeONNxg8eDDTp08vVhIhhPAt5+fP9yQQtSdPlgTCh5xOO82Xe75k0f5FpNnTAKjlX4thrYdxW/PbCDQFejlC31fkmojKzs/Pr8CaiIyMDMLCwrDZbBw/fpwGDRrkWr5mzRquueYaevbsyapVqzzlPXv25M8//2TBggXce++9ubbJzMwkJMR9q09CQgJ+fn5FilNqIoTwHYlLlnDqmWcBqDnxESIeeMDLEYmiOJBwgHm75vHz4Z9xKAcAzUKbMbLtSAY0GoBRb/RyhJVbudRE+LJ9+/Zhs9moWbNmngQC4LLLLgNg+/btucr//fffXMtzMplMtG3bli1btrB//37at29fDpELIbwl+ddfOTXlOQBqjBpF+P33ezkiURilFFvObGHuzrmsObnGU965dmdGth1Jj/o9quWw1OWtWiQRMTExAPkmEAABAQGEhoaSkJBASkoKQUFBJCcnk5SUVOh2DRo0YMuWLRw7dkySCCGqkNQ//+TkE0+Cy0Xo7bdT64n/yAWoknK6nKyIWcHcnXPZGb8TAA2NPg37MLLNSNrVbOflCKu2apFEpKamAuDv71/gOgEBASQmJnqSiOxtCtsu+2mmKSkpBe7XZrNhs9k888nJycWKXQhRsdI2b+bEw4+A3U7wDTdQZ+pzkkBUQlaHle8Pfc+8XfM4nnIcALPezKBmgxjWehhRwVFejrB6qBZJhDe9+uqrTJs2zdthCCGKIGPHTk488CDKZiPw2mup9/praHq9t8MSOSRaE/nfvv/x1d6vOG89D0CIOYQ7o+/krpZ3EW4J93KE1Uu1SCICA909cNPT0wtcJy3N3XM3KOsRvtnbZG+XX+eSi7fJz9NPP82kSZM888nJyUTKGPtCVDq2Awc4PmYMrrQ0/K+8kvrvzEAzSge8yuJk6kkW7F7A0gNLyXBkAFAvoB7D2gzj1ma34m8suKZZlJ9qkURERbmrtU6cOJHv8rS0NBITEwkLC/MkBMHBwZ7eqSdOnMh3bIzs/TVs2LDAY5vNZsxmGXNdiMos8/hxYkaNxpmUhF+H9jT44AN08t9tpbAnfg9zd83l96O/41ROAFrVaMXItiPp27AvBl21uIxVWtXi24+OjsZsNhMXF8fJkyfzjHWxdetWgDydIzt06MCff/7J1q1b8yQRdrudnTt34ufnR4sWLcr3Awghyo39zBliRozEEReHuUULombNQh8Y4O2wqjWlFBtObWDuzrlsPLXRU96tXjdGtBlB17pdpZ9KJVEtBga3WCz07t0bgEWLFuVZvnjxYgBuuummXOUDBw7MtTynH3/8EavVSp8+fYo8RoQQonJxnD9PzMhR2E+exNgwiqjZn6HPMWqtqFgOl4OfDv/E7T/ezvhl49l4aiN6Tc8NjW9g0U2LmNV3FlfVu0oSiEqkWgw2BYUPe33ttddisViKPOz12bNn6d69uwx7LYQPc6akcGz4cGy792CoW5dGXyzAWElG5K1u0u3pLD2wlAW7FxCbFguAxWDhtua3cV/r+6gXWM/LEVYv1WKwqZ9++okXX3zRM5+Z6X7+e9euXT1lU6ZM8dQm9OnTh4kTJzJz5kw6duxI3759yczMZNmyZSilmDt3bq4EAqBGjRrMmTOH22+/nSFDhtCrVy/Cw8NZvnw5iYmJTJo0SYa8FsIHudLTOT7+fmy796CvUYOo2bMlgfCC+Ix4Fu5dyP/2/o/kTPft7zX8anBPq3u4I/oOQswhXo5QXIrPJhFxcXFs2rQpT3nOsri4uFzL3nnnHTp27Mj777/PsmXLMJlM9OnThylTptCtW7d8j3Pbbbfx559/8tJLL7Fx40YyMzNp3bo1EyZMYPjw4WX7oYQQ5c6VmcmJhx8hY+tWdEFBRM3+DHOTxt4Oq1o5lnyM+bvm893B78h0uX8ANgxuyLDWw7i56c34GaSJ2FdUmeYMXyHNGUJ4j3I4OPnYJFKWLUPz9ydq9mf4d+rk7bCqje1x25m7cy4rYlagcF962ke0Z2TbkVwbeS16nYzJURlUi+YMIYQoDuVycerZKe4Ewmgk8v33JIGoAC7lYs2JNczdNZe/z/ztKe/ZoCcj247kslqXSUdJHyZJhBCiylNKceaVV0n69lvQ66n/zgwCCmjCFGXD7rTz05GfmLdzHoeSDgFg0Bm4scmNjGgzgqahTb0coSgLkkQIIaq8uJkzSfjiCwDqvfoKQddd5+WIqq6UzBQW71/MF7u/4GzGWQACjAHc3uJ27ml1D7UDans5QlGWJIkQQlRp8bNnE//xLADqTH2OkJtv9nJEVdOZtDN8uedLFu1fRKrd/QDDWpZa3Nv6Xoa0GEKQqeDHAwjfJUmEEKLKSvjf/3H2zbcAqPn4JMLuusvLEVU9hxIPMW/XPH48/CMOlwOApiFNGd5mOAObDMSkN3k5QlGeJIkQQlRJST/8yOmsJ+iGjxtHxNixXo6o6lBKsfXsVubunMvqE6s95ZfVuoxRbUfRo0EPdFq1GBC52pMkQghR5aT88QexTz0FShF2993UfOxRb4dUJThdTlYeX8ncXXPZHrcdAA2N66KuY0TbEXSo2cHLEYqKJkmEEKJKSduwgZOPPgZOJyG33EztZ5+RWwhLyea08f2h75m/az7Hko8BYNKZuKXZLQxrPYxGIY28G6DwGkkihBBVRsa2bRx/aAIqM5Ogvn2o+/LLaDqpVi+pJFsS/7fv//hyz5ect54HINgUzB3Rd3B3q7uJsER4OULhbZJECCGqBOu+fcSMG49KTyegWzfqTZ+OZpB/4koiNjWWBbsXsOTAEjIcGQDUDajLsNbDGNx8MP5Gfy9HKCoL+S9MCOHzbEeOEDNqNK7kZCydOtHg/ffQmeSugOLad34fc3fN5dcjv+JUTgCiw6IZ2XYk1ze6HqPO6OUIRWUjSYQQwicopcDhQGVm4srMRGW9nAkJnJj4KM74eMytWhE562N0/vJLuaiUUmw6vYm5O+eyPna9p7xr3a6MbDOSq+pdJX1KRIEkiRBCFEop5b5g22womw2XLROVacs7n3VRd9myp+1Z7zmXXbj4Zy/zJAQXLXNl2i7sI2ufFPK8QFPjxkR99il6ebBdkThcDpYdW8bcnXPZc34PADpNR7+G/RjRdgStw1t7OULhCySJEMIHKKcTZbW6L9BWKy6rDWWz4sqwei7oLpst60KcY9pmyz2fdUF2ZeZYbsu6kHumcy9Tdru3P37+DAY0kwmd0Yi5eXPqvfUmhvBwb0dV6aXb0/nm4Dcs2L2Ak6knAbAYLNza7Fbua30fDYIaeDlC4UskiRCiGJRS4HTm+LWc9YvbZsVltbovwhkZ7otvzou9592Kstpw2dzvnmXWjKz3HIlCjncqy4Vc09D8/NCZTGhmM5rJ5H75mdEZTRfmPcuM6MxmtFzL3O+67HmTOdeyC+VZ+8naVmfOUW4yoenlsdHFcd56nq/2fsVXe78iyZYEQJg5jLtb3c2d0XcS6hfq3QCFT5IkQnidUgpcLpTD4W7zdjpRDod7/uJppxNld4DT4ZlWdjvKnrP6PPPCvD3nxT5nmT13tbr9wrzLnnPdi9a7RJV6RXBftP3cF2c/P3R+ZjSzX46LsNl98TWbL5o3ubfJbz572+ztTGb3RfuieQwGaR/3MTHJMXy++3O+PfgtNqcNgMigSIa3Hs4tzW7Bz+Dn5QiFL5MkoppRDofnV7H7V25m7l/R1ot+Idvy+dXs+fVsxZVpA7v7Iq+czlxJAE4HypGVBDgd4Jm+aD2Hw9tfS8lpGprZ7Lmga35mdGa//C/yfmZ0fpbc855yPzTzhXV1fln7M5vRWSzu96x5GfdAFMXOczuZs3MOK2JW4FIuANqGt2Vk25FcF3Udep3U5IjSkyTChyUuWUrGv//mvqhfVBXuaSvPrhb3pQu2Tue+z99gQNPrs6b1aHoDWlYZhqxpTzW38UJVudGYuxo9u+yidTWjMXcVes71jBfW1ZlMcPG6Mg6BqESUUqw5uYZ5u+bx1+m/POU96vdgZNuRdK7dWWqSRJmSfwF9WNrGjST/8EOJty+wWjzHL+t8fzWbLyozGd0XdL0BzWi4MG0woBn0kJUAaAZDrulcScDF03q9/OIWoojsTju/HP2FuTvncjDxIAAGzcANTW5geJvhtAhr4eUIRVUlSYQPC7q+L6bGjfK/uGdXheesJvdzt5tLtbgQVUNqZipLDizh892fczb9LAD+Bn+GthjKva3vpU5AHS9HKKo6SSJ8WHDfvtC3r7fDEEJUsLj0OL7Y8wWL9i0ixZ4CQIQlgntb3cvQ6KEEm2SsDFExJIkQQggfcTjpMPN3zeeHQz9gd7lv+20c0piRbUYysMlATHoZ6ltULEkihBCikvvn7D/M2TmHVcdXecouq3UZI9qMoGdkT3SaNE0K75AkQgghKiGXcrHy+Erm7ZzHtrhtAGhoXBt5LSPbjqRjrY5ejU8IkCRCCCEqFZvTxo+HfmTernkcTT4KgFFn5OamNzO8zXAahzT2boCVjcsJR/6EHYug74sQIEOfVyRJIoQQohJIsiWxaP8ivtj9BfHWeACCTEHcGX0nd7e6mwhLhJcjrESUgtM7YPv/wY7FkHraXV7/MrhijHdjq2YkiRBCCC86lXqKBXsWsGT/EtId6QDUCajDfa3u47YWtxFgDPByhJVI4nF3jcP2ryFuz4Vyv1BoOxgadPFaaNWVJBFCCOEF+87vY/6u+fxy5Bccyj2SbPOw5oxsM5L+jftj1Bm9HGElkZEIu79zJw7H1l4o15shegC0vx2a9QWD3JniDZJECCFEBVFK8dfpv5izaw7rTq7zlF9Z50pGth1Jt3rdZFhqAIcNDixzN1fs/xWcmVkLNGh0NbS/A1rfDH4hXg1TSBIhhBDlzuFysDxmOXN3zmV3/G4AdJqOvg37MrLNSNpEtPFyhJWAywXHN7kTh13fgDXxwrKaraDDHdBuKIQ08FqIIi9JIoQQopxkODL49uC3fL7rc06kngDAT+/HoGaDGNZmGJFBkV6OsBKI25/VQfJrSIy5UB5UF9oNcdc61G4LUkNTKUkSIYQQZSzBmsBXe7/iq71fkWhLBCDUHMrdLe/mzpZ3EuYX5t0AvS3lDOxc4k4eTm27UG4KcjdTtL8dGvUAeVx5pSdJhBBClJHjKcf5fNfnfHvwW6xOKwD1A+szvM1wBjUbhMVg8XKEXmRLhb0/uROHwytBudzlOgM06+NOHFoMAJO/d+MUxSJJhBBClILT5WTP+T3M2zWPZceW4cq6OLYOb83ItiPpE9UHg66a/lPrdMDhVe7EYe+PYE+/sKzBFe6mija3QoCMgeGrqulfthBCXOB0OUnJTCEpM4lkWzLJmVmvnNMXz2dNp9pTc+2re/3ujGoziivqXFE977RQCmL/cd+SuXMxpMVdWFajiTtxaDcUwpt6L0ZRZiSJEEJUCQ6Xg5TMlAIv9sVJBIrLoDMwoNEAhrcZTnSN6DL6RD4m4ShsX+SudYg/cKHcPxza3uZOHupfLh0kqxhJIoQohFIKh8tBpisTm9NGpjMTu9PunnZluudddpzKidPlxKmcOFwOz7xDOfItL5P1ckxnV6ErpS7EjkIphUJ55rMmPcs80znmPetm7S/7f3n2X9iyi7bPuTx7Ps/yfLbJFW9+y7PYnDbS7GlFOaWF8jf4E2wOJtiU45VjPsQckqcs2BxMkCmo+gwOlZkO8Qfh3P4Lr7h9cHb3hXUMftByoDtxaNob9NXku6mGJImo5hwuB1aHFavTSoYjgwxHhnvekTXvzPBM5yp3ZGB1uucVCp2mQ6/p0Wm6PNNFndc0zVN+8Xxh+3Apl+eCbnPasDvtnot+9nRhyzzJgcueb6IgfEuAMSDfBCC/i3+1TQQuRSlIO5c7UTi33307ZlJMARtp0KSnO3FoeSP4BVdoyMI7JInwYdvObiMmJSb3hT37gl9AUnBxud1l9/bH8CkGnQGTzoRZb8aoN2LSmTDqjRh0BgyaAb2mR6/To9f0GHQX5g2awVN+8Xxh6+m1vOvkN69pGhruamINLc+8+/+5l188XaRts5blnPesd9H8xcvyLM9vHxqFL8+xn5wxGnQGSQRKwuWExGPu5ODcfji3D84dcE9nJBS8nSUMIqKhZguIyHrV7QhBtSssdFE5SBLhwxbuXcgvR34pk31paPgZ/LAYLJ6Xn97PU5Zz2cXlAC7l8ryyq9cLm1dKecrzm8+5fs6yPOu6nOh1es/F3Kw3Y9KZMOmzXjmnL57PZ1nO5MAznWNdnaYrk+9biAqVmZbVBHHA3fSQXbMQfwictgI20iA0yp0g1IyGiOZZCUO0PG5beEgS4cOiw6JJtiXjZ8hxUdfnuNjnTAD0F8ouTggsRgsmnal69iQXoqrwNEHsu9D0cG6/O3EosAkCd/+F8GYXahSyaxdqNJUxG8QlaSpnbyhR7pKTkwkJCSEpKYngYGkzFEIUgVLu5oWUU5ByOuuVNZ16GpJPuWsacj5v4mL+4RcShZwJQ0hksUeGtNqdHItP53BcKofPpXEoLpWTCRn8b1xX+TFSBRTnOiU1EUII4S1KuS/8OZOC/JKElNM5nmRZGA3CGuZNFiJaFLsJQinFmWQbh+NSOXQuzZ0wxKVx+FwqJxIyyO/n55lkG3VC/Ip1HOHbJIkQQoiyphRYk3InAQUlCQX2SciHpYb7wVRBdbLea7vfA2u7B3IKbwrG4g2tnZHp5PC5rAQhK0lwT6eSlukscLsgs4EmNQNoUjOQJhHu90A/uaRUN3LGhRCiMC4n2JLBmuxODKxJWfNZ09Zkd1NDrmThDDgyin4MS9iFZCC/JCGojnuZwVyyj+BSxCZleJKDw+fSPNOxSdYCt9NpEFXDP1ei4E4cAqgZaJamCyFJhBCiinNk5rj4J+W++BeUFOQstyWX/Nh+IbmTgvyShMA6YCybJoBUm+NCs4OnGSKNI+dSsdpdBW4X6m+kSUQATWsGehKFpjUDiKoRgMkgdySJgkkSIbzD6XD/UnPYwGEFu9X9nj1f4LIc5Q4b2DPcTwPUdO7OYZo+x7SuCOU697JLlutBpyu4XGd0P41Qb3QvK8q8PqusvB93rBS4HO7vymEt+N3zXWcU/J79nV+8Lirr+9AufI8FvvJbR1+67V32gpMCR8G/tIvF4OdOCvxCwBx8YdovazqwTo7kIGu6mE0LADaHk1SrgxSrg1Sb+z3FaifVlnM+R5nVQbLVzrH4dM6mFNw0YtRrF2oVagbQNCLQ0xxRI8BUmm9GVGOSRPiyw6vh/CH3RTS7l5NnWhVxOmsblLusSNMqd7kz88JFyHORseUos+ZNCFTBba3Vj5YjwTBceF0iIXHqDDiUDrvSoXdlYnDZ0Lts6PJLBlTBv0KrjewLf34JQIHloVnlwZdsSnA4Xbku8qlJGaRYk3OX2ezud6uDFNuFRCBnWaajdOcqItDsqUlokiNRiAyzYNBLrYIoW5JE+LJ/voAdX3s7itLTm92/8gxmd7Vu9rTBkvWevSznfI6XTgculzsxUS53G3auaeWed2WVeaYLKnfl2LYo5VnvTrv7F3/2K7/5fJMn5f4lXczRQ/VZr+K2ktt1Zpx6P1x6P1TWd6gZ/dAZLehNFvRmf3RGS9a5yPHuOQd+F72b3TUJ2d9PdnJZ6Cu/dZwl34emLzwxMAcVWOOjlMJqd5FitZOc4xd+ynn3dIo1hRRrQq4kICVHEpCdAGTYyzYxDjDpCfQzEORnJNBsIMjP/XJPX1xmpH6YhcYRAYRYZMROUXEkifBl9TqBPT3rqXjahareQqe1i6Z1RZym4HUM5nwu7gVd9LPms5MFvdmdBFRBTpciIT2T+NRM4tNs7veUDBJTrSSkpZOUmkFSWjrJqVaS0zPIsNkw4ECPCyNO9DgvvGu55w04MeDCT+ck0KSR7tSTaNdjxYRVmdzvmLBixKay3jFhwwg5ho8uiMWoJ9jivlgFZV3IgnO9Gwi2ZC0zGzEZdGga6DQt608j6x3Q6dwDVGtajrKsaV32kNZa7jKN7D9VLdf67uG0c6+voeFwuXL/2k90XEgIrKdJsZ7wJAfJ+dQKOFxlN1yOn1Hn/t6yLvKBhVz4A7Omg7KXZ60baDag10mnRVH5yWBTFayyDzblcimcSuF0KVzZ7y7ylOVarhQuhWdeZU27FFnz+Uwr93ZKKZwu8kx7Xrnms6ZduY93sfz+oi9+6mP+6+RTpi5eJ+9amQ4X59MuShbSMklIz8z3OIXRaVAjwEx4gInwQBPhgVnTAe7pGgEmIgIvTAf7GTw95J0ulVU1fuHXcnKGnZSsi2VyRtZ71sU1+z3nsrL+Ne1LdBqei332hT57Om+5O3nKThKCs5YFmA0YpclA+DgZbKqaeGf5fv7cH4dTZV38c17ksy62zqwL8cVl7uQgx/ICLsii9ML8jdTISgIiAk3u6YDsaTPhgSbPdKjFiK6Ev0D1Oo0Qi7FU1dl2p8vTUS8l6z0546LExGq/kHxkvWe347uTQXdC5sqaUDnKs9+5uIzs7jYq1/rqov25p91JJDmm9TqN4Isu9jmng7Mu9jlrVgLNBk/tSqCfgQCTXm5ZFKKYJInwYUfPpbE1JrFCj6nXaeiyqpL1Og29pqHTaZ5yTXO/6zX3Uxx1Ovd0dtWzez33Mr2OC9NZ+9RlbXNh+sLxdFruY2ue8rxx5ncxyFOS33b5FF68q4vXMOh1npoDd02B2TNdw9/kU53ZjHodYQEmwqS3vhCiCCSJ8GGjrm7MgHZ10WddVHWeizp5yrIv3nrdhYt37jLtosSAfMrkV5oQQogLJInwYe0bhNK+gbejEEIIUV35Tj2rEEIIISoVSSKEEEIIUSKSRAghhBCiRCSJEEIIIUSJSBIhhBBCiBKRJEIIIYQQJSJJhBBCCCFKRJIIIYQQQpSIJBFCCCGEKBEZsbKCZT80NTk52cuRCCGEEHllX5+K8pBvSSIqWEpKCgCRkZFejkQIIYQoWEpKCiEhIYWuo6mipBqizLhcLmJjYwkKCpLHDpeB5ORkIiMjOX78+CWfey/Kh5wD75Nz4H1V6RwopUhJSaFevXrodIX3epCaiAqm0+lo0ECemlXWgoODff4/XF8n58D75Bx4X1U5B5eqgcgmHSuFEEIIUSKSRAghhBCiRCSJED7NbDYzdepUzGazt0OptuQceJ+cA++rrudAOlYKIYQQokSkJkIIIYQQJSJJhBBCCCFKRJIIIYQQQpSIJBGiSvn6668ZOHAgdevWJSQkhGuuuYa1a9d6O6xqZd68eWialue1atUqb4dWrcyfP5/27dsTEBBAo0aNePLJJ0lPT/d2WFXSli1bGDZsGM2aNUPTNJ599tkSreOLZLApUaW88847NG/enA8++IDAwEDmzp3Lddddx+bNm+nQoYO3w6tW1q5di16v98y3bt3ai9FUL0uXLmXEiBE8+eST9OvXj7179/L000+TlJTErFmzvB1elbNu3To2btzI1Vdfzblz50q8ji+SuzNElRIfH094eLhn3uVy0a5dO7p3784nn3zixciqj3nz5jFy5EjsdjsGg/xO8YY77riD2NhY1qxZ4yl7/vnnee+994iPj/diZFWTy+XyDA/dqFEj7r33Xl566aVir+OLpDlDVCk5EwhwDzPetm1bjhw54qWIhKh4Docjz9DLISEhuFwuL0VUtV3q+RJFXccXVc1PJaqE9PR0vv32W0aPHk10dDR+fn4EBATQoUMHXnjhBVJTUy+5D6fTyV9//UWzZs0qIOKqpzTnoH79+hgMBtq3b8/ixYsrMOqqpSTnYPjw4SxfvpylS5eSkpLCli1beO+993jggQe88Al8S1n8u1OtKCEqqU8//VQBClCtWrVSQ4cOVf369VNBQUEKUC1btlRnzpwpdB/vvPOO0uv1avv27RUUddVSknPw66+/qpdfflktX75c/fDDD2rQoEEKUN9++62XPoVvK+l/B7Nnz1ZGo9Gz7b333qtcLpcXPoFvKe2/Ow0bNlTPPPNMoccoyjq+QpIIUWnNmzdPjRs3Tu3evTtXeWxsrOrUqZMC1F133VXg9hs3blR+fn5q6tSp5Rxp1VXac5Dt6quvVl26dCmvMKu0kpyD5cuXq6CgIDV16lS1atUq9emnn6qaNWuq//znPxUZuk8q7d+8JBFC+ID169crQJnNZmWz2fIsP3LkiKpdu7YaOnSo/PoqJ5c6Bzm9+eabymQyVVBk1UdB56BDhw5q9OjRudZduHCh0uv1KjY2tqLDrDKK8jdf3ZII6RMhfFL27Zo2my1Pb/PExEQGDhxIo0aNmD9/PpqmeSPEKq+wcyAqRkHnYP/+/Xluae7QoQNOp5OjR49WZIhVivzN5yX3XwmfdPjwYQCMRiM1atTwlGdmZjJ48GDS09P5448/sFgs3gqxyivoHFxMKcU333xDp06dKiq0aqOgcxAZGck///yTa92tW7cC0LBhw4oLsIop6t98dSJJhPBJM2fOBKB///65Hr374IMPsnr1aj799FOOHDniubXTbDbLRayMFXQOhgwZQpcuXWjfvj02m43PPvuMDRs28P3333sr1CqroHMwbtw4/vvf/1KvXj169+7N/v37efbZZ7n55pupV6+et8L1eQV933FxcaxevRpw392xd+9eFi9eTEBAAAMGDCjyOj7J2+0pQhTXTz/9pDRNU0ajUW3bti3XsoYNG3p6Vud8NWzY0DvBVlGFnYOnn35aNW/eXFksFmWxWFS3bt3UTz/95KVIq67CzoHD4VBvv/22atWqlbJYLKpRo0bq4YcfVomJiV6K1vcV9n2vXLnykv/uFGUdXyQjVgqfsnfvXrp160ZCQgLvvPMOEydO9HZI1Y6cA++Tc1Cx5PsumHSsFD7j5MmT9O/fn4SEBCZNmiT/IXuBnAPvk3NQseT7LpzURAifcP78eXr06MHu3bsZOXIks2fPlrsuKpicA++Tc1Cx5Pu+NEkiRKWXmprqeRLn4MGD+frrr3M9HVKUPzkH3ifnoGLJ9100kkSISs1ms3HDDTfwxx9/0K9fP77//ntMJpO3w6pW5Bx4n5yDiiXfd9FJnwhRaTmdTu666y7++OMPevTowdKlS+U/5Aom58D75BxULPm+i0fGiRCV1vvvv88333wDQEREBA8++GC+67311ltERERUZGjVhpwD75NzULHk+y4eSSJEpZWQkOCZzv6POj/PP/+8/MdcTuQceJ+cg4ol33fxSJ8IIYQQQpSI9IkQQgghRIlIEiGEEEKIEpEkQgghhBAlIkmEEEIIIUpEkgghhBBClIgkEUIIIYQoEUkihBBCCFEikkQIIYQQokQkiRBCCCFEiUgSIUQV16tXLzRNo1evXt4OpVpq1KgRmqYxYsQIb4ciRJmTJEKIUtiwYQOaphEQEIDD4fCUJyYmotfr0TSNmJiYUh3j6NGjaJomFyIvyU4CLn4ZjUYiIiK4+uqref7554mNjfV2qEJUOEkihCiFdevWAXDllVdiMBhylbtcLiIjI4mKivJWeKIcORwO4uPjWbduHdOmTaNVq1aFPrBJiKpInuIpRClkJxFXX311rvI1a9bkW+4Nq1at8nYIVUK9evX47bffPPN2u52jR48yd+5cfvjhB5KTk7nzzjvZuHEjnTp18qx39OhRL0QrRMWQmgghSmH9+vVA3mRh7dq1+ZYL32U0Gmnbtq3n1alTJ2699Va+//57Jk2aBEBmZiYvvfSSlyMVouJIEiFECR08eJCzZ8+i1+u56qqrPOVWq5W//voLkCSiupg2bRoWiwWA33//HZfL5eWIhKgYkkQIUULZTRnt27cnKCjIU75582YyMzMJDQ2lbdu23grPo7C7M3J22pw3bx4Ay5Yt46abbqJOnTqYzWYaN27MAw88wIkTJ4p0vJUrVzJ8+HCaNGmCv78/wcHBtGvXjieeeOKSnQ937tzJSy+9RL9+/WjQoAFms5nAwECaN2/O8OHD2bhxY6HbP//8857PA5CUlMSLL75Ip06dCA0NzfU5y1JgYCCtW7cGIDU1lfPnz3uWFfXujIMHD/LYY4/Rrl07QkJCsFgsNGnShBEjRrBly5YixXH06FH++9//cvnllxMeHu7p/NmjRw+ef/55Dh8+XOC2SUlJvPrqq3Tv3p2aNWtiMpmoW7cuN910E4sXL0YpVeixv/nmGwYNGuQ5b0FBQTRp0oQePXowZcoUNm/eXKTPIHyMEkJc0ty5cxVQ6teRI0eKfewjR454th8+fHixt+/Zs6cCVM+ePQvd99y5c9VTTz1VYOw1a9ZUu3fvLvA4GRkZ6s477yz08wcEBKjvv/8+3+1XrlxZpO/wqaeeKjCGqVOnetbbv3+/atSoUZ7t586dW6zvr2HDhgpQDRs2LHS9rl27eo5x+vTpPNsXdu7efPNNZTQaC/zMmqapKVOmFHr8S+2joL8BpZRavny5Cg8PL3TbG264QaWkpOTZ1uFwqKFDh17yvF1++eWFxi98k3SsFEIA8Omnn7J+/Xp69uzJ+PHjadGiBYmJiXz++ed8/vnnxMXFMWrUKDZs2JBnW6UUQ4YM4aeffgLgpptu4vbbb6dJkybodDo2b97M9OnTiYmJYciQIaxbt47OnTvn2ofD4SAgIICBAwfSu3dvWrZsSXBwMGfPnmXXrl28++67HDt2jNdee40WLVowcuTIQj/PkCFDOHnyJA8//DA333wzYWFhHDhwgIYNG5bdl5Yj9r179wJgMpkIDw8v8rZvvvkmTz75JOCu1XrggQdo3rw5oaGh7Nu3j/fff58NGzbw4osvEhERwSOPPJJnHy+++CLPPfccAKGhoTz44INce+21hIeHk5iYyNatW1m6dKmnhiandevWMWDAAOx2O7Vr1+bhhx+mQ4cO1KtXj9jYWP7v//6PL774gp9//pnhw4ezZMmSXNt/9NFHLFq0CHA3340ZM4amTZsSEBBAfHw827dv59dffyUpKanI34nwId7OYoTwBYmJiWrPnj2eV85fzWvXrvWU79q1S/n5+SlALV68ONc2e/bsUZmZmcU+dkXVRABq7NixyuVy5VlvzJgxnnW2bt2aZ/knn3yiAGU0GtUvv/ySbxznz59Xbdq0UYDq3r17nuVxcXEqISGhwM9hs9lU3759PbUCDocjzzo5ayJ0Op367bffCtxfURWlJuL999/3HLd37975bp/fudu1a5en9mDq1Kn5fvdOp1Pde++9ClCBgYHq/PnzuZZv3bpV6XQ6BagWLVqo48ePFxhnTExMrvnMzExPbU3//v1VWlpavttln19A/f7777mW9ejRQwHqyiuvVHa7vcBjx8fHF7hM+C5JIoQoga+//loBqnHjxrnKt23bpgBlsVhKlDDkp6KSiLp16yqr1ZrvPvbu3etZb+bMmbmWuVwu1bRpUwWoxx9/vNBYfv7551zNDcWV/f0CasuWLXmW50wiRo0aVez956egJMJut6sDBw6oyZMnK71e7znuxUlUYUnEqFGjFKA6d+6cbwKRLSEhQZnNZgWoTz75JNeyu+66y9PkkV+CV5jPP/9cAcrPz0+dPXu20HW7dOmiAHX33XfnKm/evLkC1GOPPVasY4uqQTpWClECBY0Dkd3ZsnPnzhiNxgqPqzSGDBmC2WzOd1l0dDSBgYEAeTrn7d69m0OHDnn2UZhrrrnGM51fs0hONpuNmJgYdu/ezc6dO9m5c2euzn3//vtvodvfc889hS4vrmPHjuUZsbJ58+a88sorOJ1ONE3jpZdeon///kXe5w8//ADAbbfdlm9TQ7bQ0FDatWsH5P7eXC4Xv/zyC+DuQJtzfIqi+P777wHo2bMnNWvWLHTd7HN38XmrW7cu4P4s586dK9bxhe+TPhFClEBB40BkjxvRvXv3Co+ptFq2bFno8rCwMFJTU0lJSclVnvPOgZy3ul7K6dOn85SlpaXx7rvv8r///Y9du3bhdDoL3P5SF6z27dsXOZbSCA4Opnfv3kyaNIkePXoUebtjx44RFxcHwNNPP83TTz9dpO1yfm9HjhwhMTERoFjHzpZ97n777bdCk5iCjg8wfPhw/vzzTw4ePEizZs0YPHgwffv2pUePHjRo0KDYMQnfIkmEEMWUkpLC9u3bgYJrIrp161bhcZWWv79/oct1OnfF5cUX9rNnz5boeOnp6bnmjx49Su/evTly5EiRts/IyCh0eVhYWIniKsjFI1YaDAZCQkKoU6dOkS/AOZXF95YzkcquESjvGC7+3keNGsWhQ4d44403SEpKYu7cucydOxeApk2bcsstt/DQQw/RpEmTYh9LVH6SRAhxCY0aNeLYsWP5LmvTpk2+5TfffHOu+alTp/L888+XdWiVQs6k4ocffqBRo0ZF2q5WrVq55u+77z6OHDmCpmmMHDmSO++8k1atWnnGLNA0DZfLhV6vB7jkuAXZ65WV7BEry0rO7+25555j6NChRdouICCgzGMYMGAAb7zxRon38/LLLzNu3Di+/PJLVqxYwcaNG0lPT+fQoUO8/fbbvPfee7z77rvcf//9ZRW6qCQkiRBClErO2xlLOsDW3r17PU1EkydPLnDo6JyDOPm6nN9bSROUiIgIz/SpU6dKFENsbCyZmZmlTpAaNmzI5MmTmTx5Mna7nb/++ouvv/6aWbNmYbVaefDBB7nyyiuL3W9DVG7SsVKIS/j999/ZsWOH53X55ZcD8Mwzz+Qqv/XWWwF3h76c5Tt27ODBBx/05kcoVzkvCtnNOcW1a9cuz/Qdd9xR4HpFHbnRFzRp0oSQkBCg5N9b48aNCQ0NBeDPP/8s9vbZ527Lli1kZmaWKIb8GI1GunXrxjvvvMPChQsBd83R4sWLy+wYonKQJEKIS2jRooXnoUvR0dHs2bMHgMGDB+d6INO+ffsAuPHGG3OVt23bNk/VfVVy2WWXeTrQffLJJ1it1mLvw+FweKbT0tIKXO/jjz8ufoCVlF6v54YbbgDciWr231Vx6HQ6Bg4cCMDq1av5559/irV9drNbdl+G8nDdddd5puXujapHkgghiuHvv/8mPT2doKAgOnTo4CmPj4/3XARy3sZYHeh0OiZPngy4b/8cNmwYNputwPWTk5N5//33c5U1b97cM13Qsy0++ugjvvvuu9IHXIk8/fTT6PV6XC4XQ4YMKfT5JE6nky+//DLPOv/5z3/Q6XQopbjzzjsL3cfFy4YPH05kZKRnP5eqzVi7di2rV6/OVfbFF1/kSgIv9vvvv3umGzduXOj+he+RPhFCFEP2P7LdunXL1XFv7dq1KKVo1qwZ9erVK7fjHzx4sEgPkOrSpYvngVAV4f7772fZsmV88803LFq0iK1btzJ+/Hi6dOlCSEgIycnJ7N27l1WrVvH999/j5+fHhAkTPNt36tSJtm3bsnPnTmbNmkVCQgL33XcfdevW5cSJE3zxxRcsXryY7t27l7jqvzJq164db731Fo899hi7d++mbdu2jBs3jt69e1O7dm2sVitHjx5lw4YNLF68mFOnTrFjx45ct0527NiRadOmMWXKFPbv30+7du146KGHcg17vW3bNpYuXYper2flypWebc1mM19//TW9evUiNTWV3r17c+eddzJo0CAaN26My+Xi1KlT/P3333zzzTfs2LGD9957j549e3r2cd999/Gf//yHwYMH061bN5o2bYqfnx9nzpxh2bJlfPTRR4D7IWVlPXaHqAS8OtSVED5m4MCBClAvvfRSrvLHH3+8TEdJzOnioamL8poxY4Zn++I8gKswl3qQVGZmpnrggQeUpmmXjO/ikT6VUuqff/5RYWFhBW7Trl07FRsb65mfOnVqnn3kHLGyrBT1AVyX2r6w0UY/+eQT5e/vf8nvzWQyqQMHDuS7j5dfflkZDIZCty/oAVwbNmxQkZGRRfrbmj9/fq5ti7JNSEhIgcOhC98mNRFCFJHL5fL8Cr54YJ/sESyrW1NGTkajkQ8//JAHHniATz/9lFWrVhETE0NqaiqBgYE0btyYyy+/nAEDBnDjjTfm2b5jx45s27aNV199lV9++YXY2FiCgoJo1qwZt99+Ow899BB+fn5e+GTlb+zYsdx8883MmjWL33//nX379pGYmIjZbKZ+/fq0a9eOvn37ctttt+W6IyOnyZMnM3ToUD788EOWL19OTEwM6enphIWF0bp1a/r27cuwYcPy3bZr164cOHCAefPm8cMPP/DPP/9w7tw5dDodNWvWpFWrVvTs2ZPbbruN6OjoXNvu3LmTn376ibVr13Lo0CHOnDlDYmIiQUFBtGzZkn79+vHAAw9Qu3btMv/ehPdpSl3iZmshhBBCiHxIx0ohhBBClIgkEUIIIYQoEUkihBBCCFEikkQIIYQQokQkiRBCCCFEiUgSIYQQQogSkSRCCCGEECUiSYQQQgghSkSSCCGEEEKUiCQRQgghhCgRSSKEEEIIUSKSRAghhBCiRCSJEEIIIUSJSBIhhBBCiBKRJEIIIYQQJfL/hx4mve8RZM0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhoAAAGBCAYAAAAg8Bg7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDEElEQVR4nO3dd1xV9f/A8de9rMsWQRQnKoh7L8Rtam5z5CpXaq6ybA81y8avb2ZLy9TUTC019yg1Nwq4FyoOhooMQfbmnt8fBIkMgcvlMt7P7/c+grM+78ORe998zue8PypFURSEEEIIIfRAbegAhBBCCFF+SaIhhBBCCL2RREMIIYQQeiOJhhBCCCH0RhINIYQQQuiNJBpCCCGE0BtJNIQQQgihN5JoCCGEEEJvJNEQQgghhN5IoiGEKDZr1qxBpVLh7Oxs6FCEEKWEsaEDEEJUDEeOHOHIkSM4OzszceJEQ4dTqimKgpeXF3v27OHEiRNcu3aNyMhILCwscHFxoU+fPsyePZsaNWoYOlQhnkp6NIQQJeLIkSMsXLiQNWvWGDqUUu+zzz6jU6dOfPrppxw9epTw8HCsrKyIjY3l3LlzfPHFFzRu3JidO3caOlQhnkoSDSGEKGVSU1OxsbFh+vTpHDp0iPj4eB49ekR8fDx//vkntWvXJiYmhpEjR3Lt2jVDhytEviTREEKIUmbo0KEEBATw448/0qNHD8zNzQEwNzdn2LBhHDlyBHNzc1JSUli8eLGBoxUif5JoCCFyePToEatWreL555+nWbNmVK5cGY1GQ506dRg7dixeXl4FPlZAQAAqlYqFCxcCcPToUVQqVbZXbrdTAgICeO2112jSpAlWVlZYWFjQsGFD5syZQ1BQUK5tPTkY9fDhwwwdOhQnJyeMjIyyxoZ89NFHqFQqunfvDsDOnTvp1asX9vb22NjY0KlTJ7Zv357t2OvWrcPDwwM7OzusrKzo2rUr//zzT65xHDlyJOvc8pO5zZEjR7Itb9myJXZ2dnnuV7duXXr06AHA6dOn821DCEOTREMIkcO3337LlClT2Lx5c7au+aCgIDZu3EinTp347rvvCnQsIyMjqlatiqWlJQAmJiZUrVo12yvzL/ZM69evp2HDhnz77bf4+vqSlpYGwI0bN/juu+9o2rQp+/fvf+o59OrVix07dpCYmIiRkVGu2y1YsIAhQ4Zw5MgR0tPTiY2N5dSpUzz33HMsX74cRVGYOHEi48ePx8fHh/T0dOLj4zl+/Dh9+/Zlz549Bfo5FDeNRgNAenq6QdoXosAUIYR4wvLly5UFCxYoZ86cUZKTkxVFURStVqvcuXNHmTNnjqJSqRQjIyPl3Llz2fZbvXq1Aih16tTJccwFCxYogNKtW7d8296/f7+iVqsVY2Nj5e2331b8/f0VrVaraLVa5fr168rIkSMVQLGxsVECAwNzbV+j0ShGRkbKxIkTlaCgIEVRFCUtLU25detWtlhsbW0VIyMj5dNPP1WioqIURVGUe/fuKX379lUAxdraWpk/f75ibm6u/PTTT0p8fLyiKIri5+entG3bVgGU2rVrK+np6dniOHz4sAIoT3uLzdzm8OHD+W73pJSUFKVq1aoKoIwePbpQ+wpR0iTREEIU2qxZsxRAeemll7It1zXRSE9PV1xdXRVAWb58eZ7bDR48WAGUOXPm5No+oAwbNizP/TNjAZRFixblWB8dHa1YWlpmbfPbb7/l2ObWrVtZ648fP55tnb4TjS+++CJr33/++adQ+wpR0uTWiRCi0AYMGADAiRMnivW4x44d4+bNmzg4ODBlypQ8txs/fjwAf//9d57bvPfee09tT6PR8Nprr+VYbmNjg7u7OwC1a9dm7NixObapX78+Li4uAFy6dOmpbRWXEydOMH/+fADGjBlDz549S6xtIYpCCnYJIXJ1584dli1bxuHDh7l9+zaxsbFotdps29y7d69Y2/T09AQgOjqa6tWr57ldSkoKAIGBgbmuNzc3p3Xr1k9tr3HjxlljR55UtWpVANq2bZvnoM6qVaty69YtHj169NS2isP169cZNmwYKSkpNGnShOXLl5dIu0LoQhINIUQO27ZtY8yYMSQnJ2cts7GxQaPRoFKpSElJyarrUJyCg4OBjDoSoaGhT90+MTEx1+X29vao1U/vsLW2ts5znbGxcYG3SU1NfWpbuvLz86Nnz56Eh4fj5ubGwYMH841NiNJCbp0IIbKJiIhg4sSJJCcn07NnT44cOUJCQgLR0dGEhoYSEhLC5s2b9dJ25hMUHTp0QMkYQ/bUV27yesKkrPLz86NHjx48ePCABg0acPjwYapVq2bosIQoEOnREEJks3fvXmJiYrCzs2PXrl1YWFjk2CYkJEQvbWd+eOZ1S6SsyOzpAEhKSsp6FPVx0dHRBTpWZpIRHByMq6srhw8fxsnJqdhiFULfpEdDCJHN3bt3AXBzc8s1yQA4ePBgoY+beSsjr14IAA8PDyAjkTlz5kyh2ygtHi+2lfnzfJK3t/dTj+Pn50f37t0JDg6mQYMGHDlyJN+xK0KURpJoCCGysbW1BTI+5JKSknKsv3DhAhs2bCj0cW1sbACIiorKc5sePXpkPcnx+uuvZw36zEtkZGSh4ygJDRo0yCpC9ueff+ZYr9Vq+fzzz/M9RmaS8fjtEkkyRFkkiYYQIps+ffqgVquJjIxk3Lhx3L9/H8h40mPTpk306dOnSIMQmzZtCsDVq1c5efJkrtsYGxvz008/YWxszIkTJ7LKfD8+2PLOnTv89NNPtGvXjmXLlhXhDPXPxMSE4cOHAxkzsW7atCkrabpx4wbPPfdcvo/E3rp1K2tMhpubm/RkiDJNEg0hRDaurq689dZbAGzdupWaNWtSqVIlrKysGDVqFFZWVgUuP/647t274+bmRnp6Oh4eHlSuXBlnZ2ecnZ3ZsmVL1na9evVi8+bNWFtb4+3tzTPPPIOlpSUODg5oNBrq16/PjBkzOHPmzFPnEjGkzz//nOrVqxMbG5v1c7O1taVhw4YcPnyYrVu35rnvZ599lvUEzoMHD2jVqhXVqlXL8yVEaSaJhhAihy+++IJff/2V9u3bY25uTmpqKi4uLrz//vucP3++SH9dGxsb888//zBlyhTq1q1LfHw8gYGBBAYGEhcXl23boUOHcuvWLRYsWED79u2xsrIiKioKMzMzWrRowZQpU9i2bVtWQlQa1axZE29vb6ZMmUKNGjUAsLKyYvz48Zw7d45u3brlue/j9UpiYmIIDQ3N9yVEaaZS8huZJYQQQgihA+nREEIIIYTeSKIhhBBCCL2RREMIIYQQeiOJhhBCCCH0RhINIYQQQuiNJBpCCCGE0BuZVK2U0mq1BAcHY21tXaqLEgkhhKiYFEUhNjaW6tWrZ81llBtJNEqp4OBgatWqZegwhBBCiHzdvXuXmjVr5rleEo1SKnMuibt372ZNRiWEEEKUFjExMdSqVeupcx9JolFKZd4usbGxkURDCCFEqfW02/syGFQIIYQQeiOJhhBCCCH0RhKNUmbp0qU0btyYdu3aGToUIYQQQmcye2spFRMTg62tLdHR0TJGQwhR4aWnp5OammroMCoUExMTjIyM8lxf0M8pGQwqhBCi1FIUhZCQEKKiogwdSoVUqVIlqlWrplM9J0k0hBBClFqZSYajoyMWFhZSwLCEKIpCQkICYWFhADg5ORX5WJJoCCGEKJXS09Ozkgx7e3tDh1PhmJubAxAWFoajo2O+t1HyI4NBK4D0tDTS5N6mEKKMyRyTYWFhYeBIKq7Mn70u42Mk0SjnFK2W/T99y7b/W0hKUqKhwxFCiEKT2yWGUxw/e0k0yrnIB/e56XOKoMsX2PzJByTERBs6JCGEEBWIJBqlTHHX0bCvUYuR8z9FY2VNyC0//vjoXWIjHhbLsYUQQuSue/fuvPbaa4YOo1SQRKOUmTVrFr6+vpw+fbrYjunk4sbohV9iZe9A5P27bJz/FpHB94rt+EIIIQzvyJEjqFSqHK+QkBCDxiWJRgVhX7MWYz7+ErvqNYl9GM7v898m9M4tQ4clhBCimN24cYMHDx5kvRwdHQ0ajyQaFYiNgyOjF/4fVeu5kBgbwx8L3yPoyiVDhyWEEOVSWloas2fPxtbWFgcHB+bNm0dJFON2dHSkWrVqWS+12rAf9ZJoVDAWNrY8P/8zajVpTmpSIls/n89N75OGDksIIQpEURQSUtJK/FWUBGHt2rUYGxvj4+PDt99+y9dff83KlSvz3P748eNYWVnl+1q/fv1T223ZsiVOTk707t0bT0/PQsdd3GSuk1JK33OdpKWksOe7/3Hr9ClUKjW9p82mWc8+xd5OaaRVtFy8dZKzSzaR8Ciehr3a02fKy4YOSwjxhKSkJPz9/albty4ajQaAhJQ0Gs//u8Rj8f24LxamBa9x2b17d8LCwrh69WrWI6LvvvsuO3fuxNfXN9d9EhMTuX//fr7HrVq1KtbW1rmuu3HjBkeOHKFt27YkJyezcuVK1q1bh7e3N61bty5w7I/L7RpkkrlORL6MTU0Z9Pq7HFixlCuH97N/+XckxsbQfsgIQ4emF+mJUVy4voXj53dhdFSFKsWZZO0dAK79c0oSDSFEsevYsWO2OhTu7u4sXryY9PT0XKtsmpub4+LiUuT23NzccHNzy/q+U6dO3L59myVLlrBu3boiH1dXkmhUYGojI/q8/ArmNjac3rGF4xvWkBgbQ9dxk8p2gRxFgUcBpAd5cc7/b/ZHXOZ6WAKdLzhir32GcNPbKNr/BsKmaR/is/tP2g8cbsCghRAFYW5ihO/HfQ3Srr4dP36cfv365bvN8uXLGTduXIGP2b59e06cOKFraDqRRKOCU6lUdB07EXNrG4799gtndm0lKS6W3lNnoy5iXfsSl5oEDy7AXW/Sgrw5HXqGA0Yp/GNhTq0gNQNOa2iqeo5AB3viko5DehqKyoyDDj3oF3GaNG0E57b8LYmGEGWASqUq1C0MQ/L29s72vZeXF66urnnOGdK2bVsuXLiQ7zGrVq1aqBguXLig04RoxaFsXC2hd+0GDcPcypr9y7/nyuEDJMXFMuDVtzE2NTV0aDnFBMNdn39f3qQ+uIiPmRH7LS04ZGFOrI0pna+a8K4PGJt4cMf5GUJSTqJNynjC5oGmFlcbDqRri3oomy9AAiQkxZCYEIe5hZVhz00IUW4EBQUxd+5cXn75Zc6dO8f333/P4sWL89xe11sn33zzDXXr1qVJkyYkJSWxcuVKDh06xP79+4t8zOIgiUYFkJKUhqnm6Ze6aY/emFlZsefbL7l12outny9gyFvzMDPkhEbpqRByGe6dhrveGclF9F1SAC9zDfstLThc05EYIyMskhSeOa0w4LQWrWkjbtUfRqxpGinxW0GJQ1GpMek4iJdHj8K1WsbApa8fjYSdP6Eocez+32eMXPCZ4c5VCFGujB8/nsTERNq3b4+RkRFz5sxh2rRpemsvJSWFN954g/v372NhYUHz5s05ePAgPXr00FubBSFPnZQyS5cuZenSpaSnp+Pn51csT51s+b8zADTuXB3XtlUxMcv/lsjdq5fY/r9PSElMxLFufYa/txAL20o6xVBg8RHZk4r7ZyEtYzK4ZBWcNDdnv6UFRywtift3GIl9tMKgMyZ0P5+KYuLArfrDeVi5EWlJp0hP8gEUrB2dGPL6O1Stl/2vheCoRLbMnEVqehim6qq8snFVyZynEOKp8nviQZSM4njqRBKNUqq4Hm+NjUzit3mn0KZnXGYTjRFu7avRuEt1qtTK/REpgNA7t/jz8wUkxkRj51SdER8swqZKMVeX02oh/Drc++82CBHZq5UmqlR42lZmf+VqHCWRBCUta51LiBV9T5jS+VY46cYW+DsP4H71Lmi1saQm7ENJCwagSfdn6DnpZUw15rmG8e07H5AWcBEwZvC7b+DaqkvxnqcQokgk0TA8STTKseKso5EQk8J1rwf4Hg8mOvy/qeId61jTpEsNXNo65nprJTL4Pls+/ZDYh+FYVbZnxAefYF+ztk6xEPMAzv2akVTcOwPJOWeTTXBowPGqdTlgouVYXCCJ6UlZ64zTK+F22Ykh5x7RMvQeWpUR92p04069gWjVZqSn3CA96R+06UmYmlvQe+osGnp0yzekS0GR/PP2TLRKHDY2TkxdsUK3cxRCFAtJNAxPEo1yTB8FuxStwv2bUfgev8/t8+H/9XKYGdGgfVWadKlBldrZezliIx7y52fzibgXhMbKmmHvfoSTq1tuh3+6+AhY0R2igv5bZmIJNdsQX70VRy0tOJBwlxMhPiQ9llyo0yuTFtGYTldMeO7aZerGhKAA4VVacLvJWBKxQlFSMFKdIOHRBQCcXN0Y8Opb2DpWK1Bo30+YSkrSA4xV9sxcvxITI5OinaMQothIomF4kmiUY/quDJoYm8L1UyFcPXGf6LD/ejmq1LamSZfquLarmtXLkRgbw7YvFvLg1g1MzDQMfuN9nFsUsspceiqsew4CjkOlOtDpFWKrNeVIchgH7v6D531PUrQpWZur0hxIimqKWYQLfW8EMfT2CeyTYgCIta9PQNsphCdn/FxMzCLRJu0jPioUVCo6DH0e9xFjMDIu+Fjn3dv/5sbG7wFo0Lkdg15ZULjzE0IUO0k0DE8SjXJM34lGJkVRCPaL4uqJYG6fD0Ob9l8vh2v7qjTpXB3HOjakJCWyc/FnBF46j9rImP6vvIGbeyHGMux9C3x+JtnUin3PfsiBR1c4GXySNO1/Yy6UlCqkxDQlLaYZ9o80PB/gSZ8Ab0xTMno30p3qctdjGncibEABtZEKx1q3Cbq0G216GlaV7ek/+w1qNWlepJ/Dd2MnkqaNQGNUhVkbVhf6GEKI4iWJhuFJCXKhM5VKRQ03O2q42ZEY58oNrxCuHg8mKjQB3+PB+B4Ppkptaxp3rs6AV9/nn1XfcePUcXZ/+yWJsbG07NP/6Y2cXQs+P6MArzV258TlZVmrtMmOpMY0Iy22GdrkqnRIe8jEe57UuXQKlTYdAGPXhoR2n4pvkCWpDzOWOTczJy58NwHnLwLg0q4jfV5+FXProiVlKpUKqxo1iLobQbI2kaA756ldr1WRjiWEEOI/0qNRSpVUj0ZuFEUh+GYUV49n7+UwNjPCtY0DcRH7uen1DwAez79Ah2Gj8i5ZHuQFawaCNpV/2o/ntfAjKFpjUiK6kxbTDG1KVRpWtWKsKpg23ntRnz+Ttau5e0die07k/DUTYiMzejUc61hTr0UCPttXkBAdhbGJKd0nTKH5M/10Lpv+KDKGX2ZMBFKwcnDg5aVrdDqeEEI30qNheNKjIfRCpVJRo4EdNRrYkRTXIOOJlRPBPApJ4NrJUBSlOdaOKcSGHcdz028kxsbQffwUVGp19gNF34M/XgBtKimNBvNJzA0AUiK70trmefq2tafbvfPwx3KSb97M2MfICJt+/UjvP44zZ9N54BkNpGNZyYz2g2oTdutvjqzdDoBDbWcGvPoWDrXqFMt521W2wdTUnpSUB6RGqElPT8PISH5FhBBCF/IuKvKlsTKh5TO1adGrFg9uRXP1xH1unw0nNbUdxuZGpCUe4dy+nTwKiWTwG29gbPLv0xopCfD7WIgPh6rNWF63AxHXlqNNtWFi7RFMi7rCo/m/kRwWBoDawoJKI0di+twYzpyKw29TKADGpmpa961DnaZq/l72FWEBtwFo2XcgXV+YhImpWbGeb6v+/fDe/gvJSiRb1nzOqJfmFevxhRCiopFEQxSISqWiumslqrtWosvIVG54h3D1uAUPAzWkJvyN//kT/DQjlM6jXqGRRy3M9r4CDy6ChT1hQ79nx6Yp9AjU0vqWHR3vvUZ4QgIAxo6OVB7/IpZDh3Pp1CPOL/UnLVULgFvHanQYXI+Ai8fYOG85acnJaKxt6Dt9Di5tO+jlPDuNGorPjs0oSiwPD/vBS3ppRghRznXv3p2WLVvyzTffGDoUg5NEQxSaxsqEFr1q0bxnTR7cbojXn074n1tHcuxNDq35P7y2DsLFuBrOCc0xt2xI4PCX+D4y8xHa2yiAmasrlSdPxqZfP25eiGTXV77ERyUD4FTfFo+RrthWUXNgxbf4nToOQO2mzXl21lysKzvo7dzUajV2VWoSGXaNtFQ1565fonXDwj/FIoQQhpCcnMzHH3/Mb7/9RkhICE5OTsyfP5/JkycbLCZJNESRqVQqqrtUYtg7w7nlWZ3dS/9Hetp9EqK3cN1qODdMemEVeY/qGjXmJqeJrVmNRv2exdLdHfO2bQm5Hc2BJZcIC4wFwNpeQ6dhLtRvXYVgv+use+d/xISHoTYyotPzL9Bu8DDUav1PXd/vldmsnzebNCLw/PEzWn/7u97bFEKI4vD8888TGhrKqlWrcHFx4cGDB2i1WoPGJImGKBJtQgIJZ8+R4O1F/CkvUn19cTcz4XQ9J5J5SHrUGoxtRhNnVRO/BqPwdRtOkw41Se9agzQbU/5ecZXb5zLGZ5hojGjbz5nmPWuiNgKvrb9zastGFK0W26rVGPDqWzi5FLEaaRFUa1AHE2MHUtPCMQoxJzQqgaqVDDiDrRCiTEpLS2P27NmsW7cOExMTZsyYwccff6zzE3J5+euvvzh69Ch37tyhcuXKADg7O+ulrcKQREMUiDYlhaSLF4n38ibey4vES5cgNTXbNg6aVPqm3eKweQNi05JJTv2D6zUq4RzTA/tEJ254hXDDKwRUgAIqFTTyqE6HwfWwsDEl5mE4+35YzL1rVwBo1KUHvSbPMMg09Q3adeTqqV0kqRLY+Pv/eG26VAoVolRQFEhNKPl2TSwy3rQKYe3atbz00kv4+Phw5swZpk2bRu3atZk6dWqu2x8/fpx+/frle8zly5czbty4XNft3LmTtm3b8uWXX7Ju3TosLS0ZPHgwn3zyCebmuU8qWRIk0ShlHp8m3pCU9HSSfH2J9/IiwcubhLNnUZKSsm1jXN0Jy47uWHZoj0XwKkxCj4JtLZxGfsv6rxYT9+AerreCieh1jWndB3L1+H1unQkjLVVLzYZ2eIxwxaGmFQA3vU+yf/l3JMXHYaIx55mXZtC4a09DnDoAPaZO4Oqpv1GUeIxPXSZ+UhqWZvLrIoTBpSbAZ9VLvt33g8HUslC71KpViyVLlqBSqXBzc+Py5cssWbIkz0Sjbdu2XLhwId9jVq1aNc91d+7c4cSJE2g0GrZt28bDhw+ZOXMmERERrF5tuGrH8s5ZysyaNYtZs2ZlFUIpKYqikHzzJgle3sR7e5Pg44M2NjbbNkb29lh26IBFxw5YurtjUrNmRhfg/g8h9CgYm8PoDZhUqccGF0s6JCVR9ZGGWod9SWjlR68J7eg80pXEuFRsq5ijUqlITU7iyNqVXPrnLwCq1Xel/6tvYVfNAG8kjzGz1GBtU4PYGH9IsuGPEz5M7tXJoDEJIcqWjh07ZrtN4u7uzuLFi0lPT8fIKOd4M3Nzc1xcXIrcnlarRaVSsX79+qzPj6+//poRI0awbNkyg/VqSKJRQSmKQurdu1k9FvHe3qRHRGTbRm1tjUX79lnJhZmra857ixf/gJMZk5ExdBk4NWfRnmNEWB5if/t0pt3pQuLNQHb8bxHPzniNRl16YGaRUWsjLOAOe777H5H37wLQbsgIPJ4fh5Fx6Zg5tdPzY/h75WckE0n03v+R1v1PjI3UT99RCKE/JhYZvQuGaFfPdL114uTkRI0aNbL9kdqoUSMUReHevXu4uroWa7wFJYlGBZIaGpYxeNPLmwQvL1KDs/+yqjQaLFq3xsK9I5YdO6Jp1AhVfjOg3j8LO1/J+LrLm9B0GGcCItly5yeMbdKoa92KaQu+Yf/y77h2/DB7f1hMYlwsrZ4dxPm/dnNs/S+kp6ZiWcmOfrPeoE7zlvo7+SJo3KsjB36xQauNofJ9W/6+EsKAFobtaRGiwlOpCn0Lw1C8vb2zfe/l5YWrq2uuvRmg+60TDw8PNm/eTFxcHFZWGbel/fz8UKvV1KxZs3DBFyNJNMq59Ohowr/9lngvb1Lu3Mm+0tgY8xYtsOzQAUv3jmhatEBtalqwA8eGwO/jID0ZGvSDHh8Ql5zGK9u2YFz5MqDiyx7zMDYxod/M19FYWXF+3y4Or/mZy4f28zAoAIB6rdvRd8ZrWNiU3G2iglKr1dSo14y7tzxJUYw5uP8n+jdfqLcR40KI8iUoKIi5c+fy8ssvc+7cOb7//nsWL16c5/a63joZO3Ysn3zyCZMmTWLhwoU8fPiQt956i8mTJ8tgUKE/agsLorfvQJuQACoVmsaNM8ZYdHTHonUr1JZF+MsgLTljDpPYB1ClIQz7GdRqPtl1iWiLLRgBw1xG4mqX0U2nUqvpMWEaFta2eG76jYdBARiZmNB13GRaPTuwVH9wd582iXVvnySNCJxvhHEm8BHtnCsbOiwhRBkwfvx4EhMTad++PUZGRsyZM4dp06bprT0rKysOHDjAK6+8Qtu2bbG3t+f5559n0aJFemuzICTRKOdUJiY4vvUmRg4OWLZvj5GuA0wVBXbPhXunQVMJRm8AjQ0HfUPZemsrGqcHWBhb83qbV7LHoVLRcfhorB2qcPuMNx2Hj8bRuZ5usZQAxzrVMDOrRnLyA0xjqrHusDftJuV/D1UIIY4cOZL19Y8//lhi7TZs2JADBw6UWHsFIYlGBWA3ZkzxHcz7J7jwG6jUMHI12NcnIi6Zd7Z5Y1ptPwCvtp5FJU2lXHdv0q0XTbr1Kr54SkDT7n05+/caEtUJWFxbyu3wLtSvYmXosIQQokyQIfSi4G4fhr8/yPi6zyKo3xNFUXh/22XizPehNo6nrm09nnd73rBxFjP3sYNAZYaixFPnvgmrjt95+k5CCCEASTREQUXegc0TQUmHFmOh40wA/jx3nwM3L2NS+SQA77Z/BxN16Xg8tbiYacywc8gYoKVNtcP/4u9ExCUbOCohhCgbJNEQT5ccCxvHQlIU1GgLA5eASsXdyAQ+2nkVs6p7UKm0dK/VnU7Vy2dRK/cxowFIUkXQNvw467wCDRyREEKUDZJoiPxptbD1ZQi/BlbVYNRvYKJBq1V4c/NFEo2vYGx1A2O1MW+1fcvQ0epNw04tMTKqBKRj+bAOO0+eJynVsGXihRCiLJBEQ+TvyOdwYw8YmWU8YWLjBMCqE/54+4dhXm0PAC82fpHaNrUNGaleqVQq6jTpCECySk3blA1sPXffwFEJIUTpJ4mGyNvVbXDsy4yvB30LNdsAcCMklv/9fQOTyqdQmYZjr7FnWjP9PRteWnSdOBJQkUYkde/Gs+rYLbRaxdBhCSFEqSaJhsjdg0uwPWPAJ+6zoWXGI7LJaem89scFUonB0vEQAHNaz8HKtPw/7mlfoyrmlrUAUMfXwj7mEP9cDzNwVEIIUbpJoiFyin+YUV48NQHq94RnFmat+ubgTa49iMG6+kHSVYk0tm/MEJchBgy2ZDXr3R+AeON42sXtZ8UxedRVCCHyI4mGHmzatIkBAwbg5OSEra0tXbt25cSJE4YOq2DSU2HTeIgOgsr1YcQvYJRR1+1MQCTLj95GbXYfrDImC3qv/XuoVRXnn1HHYb1BpUFRErAJrsWdgFtcuBtl6LCEEKVM9+7dee211wwdRqlQcT4hStA333yDg4MDS5cuZfPmzdSoUYNevXpx8eJFQ4f2dPvegUBPMLWGMRvB3A6AuOQ05m66iFZRqOGyHwWFfnX70dKxpWHjLWEmZmZUqd4UgDStLT1Mt7FCCngJIUqBiRMnolKpcryaNGli0Lgk0dCDXbt2sXbtWoYNG0afPn1Yv349Li4uLF261NCh5e/ML3BmFaCC4SuhilvWqkW7fQmKTMCx2g2itDfQGGmY22au4WI1oI6jhgOQpI6gzoN7/HX5PncjEwwclRCiovv222958OBB1uvu3btUrlyZkSNHGjQuSTT0wN7ePtv3arWapk2b4u/vb6CICiDwJOz9tw5Gr3ng9mzWqoO+ofx++i4qdSrm1fYBMLnZZKpZVjNEpAbn2r4pxsaVgXQ0kW60N/bhF89SfG2FEAaRlpbG7NmzsbW1xcHBgXnz5qEo+ntSzdbWlmrVqmW9zpw5w6NHj5g0aZLe2iyIMp1onD17li+++IJhw4ZRs2bNrG6ip0lMTGT+/Pk0aNAAjUZD9erVmTx5Mvfv66cuQnp6OqdPn8bFxUUvx9dZVBD88SJo06DJMOj8X09FRFwy7269BEDHVpeJTA7FydKJiU0mGihYw1OpVNRr1QWAOBMVLdP+4o/Td4lOSDVwZEKUf4qikJCaUOKvoiQIa9euxdjYGB8fH7799lu+/vprVq5cmef2x48fx8rKKt/X+vXrC9z+qlWreOaZZ6hTp06hYy9OZXr21k8++YQdO3YUap+kpCR69uyJl5cXTk5ODBkyhICAAFavXs3u3bvx8vKiXr3inb78hx9+ICgoiJkzZxbrcYtFSjz8PhYSHkK15jBkKfybrGVOmPYwLgUXpzRuJu8EYG7buZgbmxsyaoPzGDcUv9O7SFcisQ60w7J2OOt9ApnZvZQmk0KUE4lpiXTY0KHE2/Ue642FiUWh9qlVqxZLlixBpVLh5ubG5cuXWbJkCVOnTs11+7Zt23LhwoV8j1m1atUCtR0cHMy+ffvYsGFDoWLWhzKdaLi7u9O8eXPatWtHu3btcHZ2Jjk5/8muFi1ahJeXF+7u7uzfvx8rq4z6D19//TVvvPEGkydP5siRI1nbR0VFERISku8xLSwsqF0796qY3t7evPvuu3z44Yc0a9ascCeob4oCO2ZByGWwrJJR+dP0v1+kP8/d5++roZgYqXBpeBTPkCRaO7amb52+Bgy6dKjsVAVLm7rEx9zGJLkmPc13sMbTiSmd62FqXKY7CoUQxaRjx47Zetnd3d1ZvHgx6enpGBkZ5dje3Ny82Hq+165dS6VKlRg6dGixHE8XZTrReOeddwq1fUpKCj/88AMAS5cuzUoyAObOncvatWs5evQoZ8+epU2bjCqYv//+OzNmzMj3uN26dcuWnGQKCAhgyJAhDBo0iAULFhQq1hJxfHFG9U+1CTy/DirVylqVOWEawKgu6ewIOYAKFe+2f7dAt6cqghZ9+3Ny8/fEmsRS4+ENHlomsvNiMCPa1DR0aEKUW+bG5niP9TZIu/p2/Phx+vXrl+82y5cvZ9y4cfluoygKv/zyCy+++CKmpqbFGWKRlOlEo7A8PT2Jjo6mfv36tGrVKsf6ESNGcOnSJXbt2pWVaEyfPp3p06cXuq2oqCgGDBiAs7Mza9euLX0fzjf2waFFGV/3/x/Ucc9alTlhWlxyGq3r2HIz9XsAhrkOo5F9I0NEWyq1HdyTU1tWoiiJWNxviEfj06w4Zsvw1jVK3/UWopxQqVSFvoVhKN7e2RMiLy8vXF1dc+3NgOK7dXL06FFu3brFSy+9VOBY9alCJRqZdSxat26d6/rM5ZcuXdKpnZSUFIYNG0ZCQgKHDh3C3PzpmXBycnK22z4xMTE6xZCvsOvw51RAgXZToG32EckZE6ZFYmFqRH/3+3x70RcrEyteafWK/mIqg0xMTajq3JIQ/1MkG1vT3PgvloZ24NjNh3RrUMXQ4QkhDCwoKIi5c+fy8ssvc+7cOb7//nsWL16c5/bFdetk1apVdOjQgaZNm+p8rOJQoW4mBwUFAVCzZu5d25nLAwMDdWpn5syZHD16lHnz5uHv74+XlxdeXl6cP38+z30+//xzbG1ts161atXKc1udJETCxtGQEgvOXeDZL7KtzpwwDeDtfs78duNHAKa3mI69uX2Ow1V0HUc+B0CSKgJzfxXVeChlyYUQAIwfP57ExETat2/PrFmzmDNnDtOm6XcCyujoaP78889S05sBFaxHIy4uDsgYvJkbS0tLAGJjY3Vq5+DBg2i12hwXuk6dOgQEBOS6z3vvvcfcuf89VhoTE1P8yUZ6GmyZDI/8wbY2jFwLRiZZqzMnTEtJ19KroSORJnuJSIrA2caZsQ3HFm8s5UT9No0xMa1Cako4VtFu9K6/h3W3HPANjqFxdRtDhyeEMJDHx+39+OOPJdaura0tCQmlq4BgherRKCkBAQEoipLjlVeSAWBmZoaNjU22V7E7MB/uHAYTCxizASyz91BkTphmZ2HCrL62rLu2DoC32r2FyWMJiciufrtuAERpwDH2Ekaks1LKkgshBFDBEo3Mp0zyyvbi4+MBsLa2LrGYSsyFDeD1bwn0536Catkftc2cMA3g82HNWH3te9K0aXjU8KBLjS4lHW2Z4jF6MKAmXYnEzL8OXY3OsPNiMA+iEw0dmhBCGFyFSjQya13cu3cv1/WZyw1ZRW3p0qU0btyYdu3aFd9B752BXa9lfN3tHWicfVr3/yZMg+Gta2JT2Z8jd49grDLm7bZvyxMUT1HJsTLWlV0BUGlr0tb6AGlahTUnAwwbmBBClAIVKtFo0aIFAOfOnct1feby5s2bl1hMT5o1axa+vr6cPn26eA4Y8wB+HwfpydBwIHR7N8cmn+7JmDCtRiVzPhjYgC99vgRgdMPR1KtUvFVSy6sWffsDEGsaQ+qdGGoQzgavIGKTpCy5EKJiq1CJhoeHB7a2tty+fTvXZ5W3bNkCwKBBg0o4Mj0ytQCn5lClUcYtE3X2S37QN5SNPndRqeCrkS34K3Abt6NvY2dmx/QWha8fUlG17t8VldoCRUmkckgTRtjtJzY5jT9O3zV0aEIIYVDFmmiEhoZy8eJFTp48yenTp7l58yZJSUnF2YROTE1NmT17NpDRc5A5JgMySpBfunSJbt26ZRXrKhc0tjDmd5iwC8yyjz15fMK0lzzq0qiGEUsvZIzjmN1qNrZmtiUeblllYmqCU/22AMRqrDCLP48xaaz2DCAtXWvg6IQQwnB0erz15MmT7Nu3j6NHj3L+/Pk8B1nWrVuXDh060KdPHwYOHJhjGvWi2rNnD5988knW9ykpKUBGfflM8+bNY8CAAVnff/jhhxw8eJCTJ0/i6upKly5dCAwMxNvbmypVqvDLL78US2xFtXTpUpYuXUp6enrxHVRtBFbZC0g9PmFag6pWvNnXjcVnvyAmJYYGdg0Y7jq8+NqvIDqMGMy2z4+RpHqIxq8SgxpfYFtUW/ZeCWFwi+qGDk8IIQyi0IlGaGgoy5cvZ/Xq1VkFsIB8p9C9c+cO/v7+/P777xgbG/Pss88yc+ZM+vbVbXKu8PDwHCVeIXvZ1/Dw8GzrNBoNhw8f5vPPP2fDhg1s376dypUrM3HiRD755JM8i3mVlFmzZjFr1ixiYmKwtdVfj8LjE6YtGdWSoLjbbPLbBMC77d/FSJ17iVyRt3otG2KqqUpKUihWiQ1oY3uQbQlt+fnYbQY1d5JBtUKICkml5JchPCY4OJjPPvuMVatWkZKSkpVYGBkZ0aRJE9q0aYOjoyOVK1fGzs6OxMREIiMjefToEX5+fpw5c4aHDx/+17BKRePGjVmwYAEjRozQz9mVYZmJRnR0dLHX1LgbmUC/b48Tl5zGW33dmNm9PlP3T8U7xJvedXrzdfevi7W9imTfst/wPfo7Rio70h292Wv7AbdTHdg4tSPu9aWyqhCFkZSUhL+/P3Xr1kWj0Rg6nAopv2tQ0M+pAvVoLFy4kK+++oqEhAQURcHR0ZFRo0YxfPhw2rVrV6C5PAD8/f35559/2LBhA8eOHePq1auMGjWKDh068PPPP5eauuzl2eMTprWpY8f0bvU5dPcQ3iHemKpNeaPtG4YOsUzzeH4Avkc3k648wiHAhRn9jvFm4DBWHr8jiYYQFUj37t1p2bIl33zzjaFDMbgCDQZduHAh8fHxPPPMM/z1118EBwfz7bff0rVr1wInGZAxVmPKlCkcOnSIoKAgPv74Y+zs7PDy8mLr1q1FPglRcI9PmPb18y1IU1L46vRXAExoMoEaVjUMHGHZZuNgh22VhgCkmDgRGemJiSqNf66HcStMt9L2QgjxNOvXr6dFixZYWFjg5OTE5MmTiYiIMGhMBUo0+vfvz6lTp/j777/p06cParXuD6tUr16dDz/8kMDAQL744guqVJHZLkFPBbv+9fiEafMGNqaOvSXrfNdxL+4ejuaOTGk2pdjbrIha9H0WgBiTaOL8TJlb2w+Alcf9DRmWEKKc8/T0ZPz48bz00ktcvXqVzZs34+Pjw9SpUw0aV4Eyht27d9OhQwe9BGBpacnbb7/NjBkz9HL8sqbYC3b968kJ00a3q0VYQhg/X/oZgNfavIaFSe6TzYnCaf1sF1RqS1CScHrYmNrqPQBsPXef8NhkA0cnRNmmKArahIQSfxVwOGM2aWlpzJ49G1tbWxwcHJg3b16RjlNQp06dwtnZmVdffZW6devSuXNnXn75ZXx8fPTWZkFUqNlbK7LHJ0z7fHgzVCoV3577lsS0RJpXac6AegOefhBRIEYmxlR368D9a4eIsLTg3u379KuZwL5gC9adCmBuHzdDhyhEmaUkJnKjdcnXOnI7dxZVHjN/52Xt2rW89NJL+Pj4cObMGaZNm0bt2rXz7GE4fvw4/fr1y/eYy5cvZ9y4cbmuc3d35/3332fv3r3069ePsLAwtmzZQv/+/QsVd3GTRKMCeHLCNEdrDZfDL7Pz9k4A3m33LmpVhSoSq3fuwweyZdEhklXhVL7pSPcWR9gX3J9fvQKZ0d0Fc1N5fFiI8q5WrVosWbIElUqFm5sbly9fZsmSJXkmGm3bts21avXjqlatmuc6Dw8P1q9fz6hRo0hKSiItLY1BgwaxdOlSXU5DZ3pPNEJDQ9m9ezcPHz6kbt26DBw4EItCZoWi6J6cMO3Zpk4oisIXp78AYHD9wTSr0uwpRxGFVadZA8zMnUhOfIBJuiuXgw9Sz24Idx6lsuXsXV50dzZ0iEKUSSpzc9zOnTVIu4XVsWPHbPVz3N3dWbx4Menp6RgZ5fxjw9zcHBcXlyLH6Ovry5w5c5g/fz59+/blwYMHvPXWW0yfPp1Vq1YV+bi60inRuHbtGgsWLEClUrF8+XIqVaqUbf3OnTsZO3YsiYn/TZdds2ZNduzYQcuWLXVpWhRQXFIaVazNSNcqLBjcGIA9/nu4FH4JC2MLXmv9mmEDLMdc3Xty5dB6Ii3SSLqpZl7f20w6XZtVJ/wZ26EORmop4CVEYalUqkLfwigrdL118vnnn+Ph4cFbb70FZEwQamlpSZcuXVi0aBFOTk7FHnNB6JRobN++nS1btuDh4ZEjyQgLC+OFF17IUZb87t27DBo0iGvXrmFlZaVL8+VScZcgr2arYdPL7gRHJWKjMSEhNYElZ5YAMLX5VKpYyNM++tJpZH+uHPqddCWKukH1MYnehK35ewREJHDAN5Rnm1YzdIhCCD16snK1l5cXrq6uufZmgO63ThISEjA2zv6xntmWPgehPo1ON+b/+ecfVCoVAwcOzLFu2bJlxMXFYWxszNdff83Fixf58ssvUavVBAcHs2LFCl2aLrf08dSJkVpFrcoZfwGsurKKsMQwalrV5MXGLxZbGyIn68q2VKqW0YsUY1mNk3eCeLVFxroVx+8YMDIhREkICgpi7ty53Lhxg40bN/L9998zZ86cPLfPvHWS38va2jrP/QcNGsTWrVv58ccfuXPnDp6enrz66qu0b9+e6tUNN9+STolG5lwnrVq1yrHuzz//RKVSMX78eF577TWaNWvGm2++yUsvvYSiKOzcuVOXpkUR3I+7z5orawB4s92bmBmZGTagCqBl34xu0BjjR1j4WdNP9RemRmrOBj7ibOAjA0cnhNCn8ePHk5iYSPv27Zk1axZz5sxh2rRpemtv4sSJfP311/zwww80bdqUkSNH4ubmZvCCmDrdOgkLCwPA0dEx2/KHDx9y9epVVCoVY8eOzbZu8ODBrFixAl9fX12aFkWw+MxiUrQpdKjWgZ61eho6nAqhZd9OHPvNCm16HI6xDfnn1m5GtBjNhnPhrDx+hzZ1Sv4xPSGE/h05ciTr6x9//LHE2n3llVd45ZVXSqy9gtCpRyNzkGdSUlK25SdOnADA1NSUzp07Z1uXORglKipKl6ZFIZ0OOc2BwAOoVWrebv+2zCRaQoyMjKnRyB2AMBsL/IPUzK52DYC/roYQGBFvyPCEEELvdEo0KleuDJBtunjIGLsBGQNbTE1Ns61LS0sDkIGgJShdm84XPhmPs45sMJIGdg0MHFHF4j48YwxTMuE08KtC6O1f6e5WBUXJmHtGCCHKM50SjRYtMka2bdiwIWtZYmIimzdvRqVS0bNnzu75wMBAIP+Rs6J4/XnzT/we+WFjasPslrMNHU6FU6txfcwsawIKKSYuHLjnz5zmWgA2nbnLo/gUwwYohBB6pFOiMXr0aBRFYdeuXYwePZoffviBPn36EBYWhkqlYsyYMTn2yXzcp06dOro0XW4V96Rq0cnRfH/+ewBmtpxJJU2lYjmuKBy3ThlJd4RFKmo/DfVDNtOkug1JqVrWewcaODohhNAfnRKN8ePH07lzZxRFYfPmzcyZM4eTJ08CMGnSJBo2bJhjn61bt6JSqejUqZMuTZdbxf14q1bR0rVmV1wqufC82/PFckxReO4jngWM0CpRuATX5y+/HUz3yHjcbM3JQJJSi6duihBClDY6JRpqtZp9+/Yxd+5catasibGxMbVq1WLevHm5jrLdvXs3AQEBAAaf5KWisNPY8WnnT9kwYAMmahNDh1NhWVWywa56Rqn3MLuqXH5gRD+1N062Gh7GJbPjwn0DRyiEEPqh80xalpaWfPXVVwQGBpKcnExAQAALFy7MUZ0MMiZ88ff3586dO7RpI4/1lSRz48LX6RfFq9W/pYVjjR7hcs0Cv3MrmOxRF4AVx/3Rag1XuU8IIfSlRKfstLOzo06dOjI+Q1RIzXt1QG1sDSRjkdqIveH+jK0bh7WZMbfC4jjqF27oEIUQotjJ3OBClBAjI2NqNs4YmxRiqyHxjgXqS2sY06E2AD8fk7LkQojyp0CJxpMFufShJNoQwtA6jRgEQArhtLhZhQN+O5jUzhFjtYpTdyK4cj/awBEKIYpD9+7dee211wwdRqlQoESjbt26fP3119mmey8uPj4+DBw4kP/973/FfmwhSpsabs5orGsDCo9s6uEdqcbp3j4GNs+omCu9GkIIXSxdupRGjRphbm6Om5sbv/76q6FDKliiERoayltvvYWzszMLFizAz89Pp0aTkpLYtGkTffv2xd3dnX379ul0vPKkuOtoiNIns6ZGpHkK1a+bcufMCqZ0qQfA3ssPCI4q/oReCFH+/fjjj7z33nt89NFHXL16lYULFzJr1ix27dpl0LhUSgEmqT906BCvvfYaV65cyZojo3Xr1gwfPpyOHTvSpk2bfKeuBbh27Ro+Pj78888/7Nixg7i4OBRFwdLSktdff523335bypI/JiYmBltbW6Kjo7GxsTF0OKIYJcTE8uPUF4E03MKMuDXgAq+9sJsxO+M5dSeCl7vV471+jQwdphAGl5SUhL+/P3Xr1kWj0QCgKAppKdoSj8XYVF2oOaK6d+9O06ZNAVi3bh0mJibMmDGDjz/+WG9zTXXq1AkPD49sdwjeeOMNvL29s+YgK6zcrkGmgn5OFWj21p49e3Lx4kU2btzIp59+yrVr1zh79iznzp0DQKVSUa9ePRwdHbGzs8POzo7ExEQiIyN59OgRt2/fJi4uLut4iqJgbm7OxIkTmT9/vpQjFxWKhY01lWu2IPLeWe7bVyE8yILU06uY0uU9Tt2JYIN3EK/2dMXSTKfJlYUol9JStPw852iJtzvt226YmBkVap+1a9fy0ksv4ePjw5kzZ5g2bRq1a9dm6tSpuW5//Phx+v37GHxeli9fzrhx43Jdl5ycnCMZMDc3x8fHh9TUVExMDFNLqcDvZJlTvo8dO5aDBw+ycuVKdu3aRWJiIoqicOvWLW7fvp1jvyc7TJo3b87UqVN54YUXsLW11f0MhCiDWvd7loMrzhJnFEmbq+Ycct5B796fUM/BkjsP49l85i4T/62xIYQom2rVqsWSJUtQqVS4ublx+fJllixZkmei0bZtWy5cuJDvMfP7w7xv376sXLmSoUOH0rp1a86ePcvKlStJTU3l4cOHWbOnl7Qi/cn0zDPP8Mwzz5CcnIy3tzfHjx/n5MmT3Lt3j/DwcCIjI9FoNFSpUoUqVarQrFkzunTpQpcuXaSGhhBAsx7tObzalvS0aNJNGnE03pu+V7cyuXN3Ptx+hV88A3jR3RkjtX66WIUoq4xN1Uz7tptB2i2sjh07ZrtN4u7uzuLFi0lPT8fIKGfviLm5OS4uLkWOcd68eYSEhNCxY0cURaFq1apMmDCBL7/8ErXacNUsdOqbNTMzo2vXrnTt2rW44hGiQlAbGVGrmQcB5/cSYmuGnZ8p96uuZPjEF/hq/w2CIhM44BvKs02rGTpUIUoVlUpV6FsYZYWut07Mzc355ZdfWL58OaGhoTg5OfHzzz9jbW1NlSpV9BFygchNYCEMpNOIAQSc30sKYbTwr8r2lreZ9fAyL3Soww+Hb7HqxB1JNIQowzJnK8/k5eWFq6trrr0ZoPutk0wmJibUrFkTgN9//52BAweW3R4NIUTRObnUwdzWmcToAB7Y1+VOaAjpJ79nfO8fWH7sNqcDHnHhbhQta1UydKhCiCIICgpi7ty5vPzyy5w7d47vv/+exYsX57m9rrdO/Pz88PHxoUOHDjx69Iivv/6aK1eusHbt2iIfszhICXIhDKihR2ZNjSRaXVHjeXs3jt6fMbh5xhTyq074GzI8IYQOxo8fT2JiIu3bt2fWrFnMmTOHadOm6a299PR0Fi9eTIsWLejduzdJSUmcPHkSZ2dnvbVZEAWqoyFKntTRqBgS4+JZNuUFUFJpGGrCn4N8+SjxIZaNJtHmdHeM1GqOvd2DGpVk9l1R8eRXw0GUjOKooyE9GkIYkLmVJQ61WgJwt4o9DS4bMbx6Vf4K3MhSh02ka7WsPRlg0BiFEEIXkmiUMlKCvOJp3f9ZAOLVEfQ9a878XxX+flSJLZanmKNZyUbvQOKS0wwcpRBCFI0kGqXMrFmz8PX15fTp04YORZSQJl3bYmRSCUjlpnNzXELgvc1ahv1hjG+aH89Yfskf3jJWQwhRNkmiIYSBqY2MqN28MwB3LaM51mkgAbVaUi9UzdwtCj33PsBvzyiCooIMHKkQQhSeJBpClAK9Jo3EzLIqKCnExV/Dt3IsB1q150zDzjjGODBxRyJXhj7LX78tQqst+QmlhBCiqCTREKIUsK1iz6yVK+g3ex4OtVsDRqSnhxNm9oATrpU51KILWnUTan66kWN9OxC0b1uOeYSEEKI00qlgV1BQRldujRo18qx09iStVsu9e/cAqF27ti7NC1GuqNRqGnfpQOMuHYiLiuLkpj3cOHWIlIRQkgjmRhXwc2yBfaIG0w+X8HDpUlzmvo91jx56m3ZaCCF0pVMdDbVajVqt5tKlSzRu3LhA+9y+fRtXV1fUajVpaTKSPi9SR0NAxuzHt89e5s9fNmEccRVI/XeNCjOlCrUiY3G1SqXWq3Ow6tFdEg5RrkgdDcMrFXU0ipqnSLevEE+nUqlwaducIfPf5ufaE4ixa4zGxAZQSFaFccs+kb80pmz57ld8np9A7KHD8rslhChVSnyMRuaboCEneBGirGlYzYZ2bk6srdQNx76dGeEciL21Nag0KEoCkWbhnFBHsmb5GnaNmcHDffsl4RDCgLp3785rr71m6DBKhRL/tH/w4AEA1tbWJd20EGXaS13qArDwVn0cxy1iYu0DzGxwCI2bAykaBwBSiOCmco+1a5azeux0rq75QxIOISqIBw8eMHbsWBo0aIBarc4z0dm8eTMNGzZEo9HQrFkz9u7dq9e4iiXRKMh94dTUVK5fv86nn34KgJubW3E0LUSF0c21Ci6OVsQlp7E+uhmMWoe5sZpZ6m0MfzaWq89WJsKhCqgsgWQeae/z1751fD92PHs//ob46FhDn4IQQo+Sk5OpUqUKH374IS1atMh1m5MnTzJmzBheeuklzp8/z9ChQxk6dChXrlzRW1yFGgz65JMlmbsWZQDal19+yRtvvFHo/SoKGQwqcrPRJ4j3tl6mRiVzjr7VHePbB+CPFyA9hdQG/VnVqDMrLv5CK7+6NA6qhJIaBmTW3TCmskMDOo4dRcNOrWXgqCj1chuIqCgKacnJJR6LsZlZoX5nunfvTtOmTQFYt24dJiYmzJgxg48//rhEfve6d+9Oy5Yt+eabb7ItHzVqFPHx8ezevTtrWceOHWnZsiU//fRTjuMUx2DQQj3emldOUtiu2eeff17uXQlRBM+1qsH//r7B/ahE/r4ayoDmfWH0Bvh9HCZ+e5mOQo8Ba/ig8kJWu3lTK9yOAb7NSEmIRqtEEfnQl73fLWD/j3Y0cH8Gj1EDsXGwN/RpCVFgacnJfDdhRIm3++raLZgU8smXtWvX8tJLL+Hj48OZM2eYNm0atWvXZurUqbluf/z4cfr165fvMZcvX864ceMKFcfjTp06xdy5c7Mt69u3L9u3by/yMZ+mUInGggULsn2/cOFCVCoV06dPx9HRMc/9VCoVGo0GJycnOnXqRP369YsWrRAVnMbEiBc61uG7f26y8sQdBjR3AtfeMCYj2cBvH26Klo3DV/Pz9V9ZcWkFP1U5Ru3Uyky50omQB5EkEEpa6iN8j23G99if2NVoStuB/Wna3R21umD1cIQQT1erVi2WLFmCSqXCzc2Ny5cvs2TJkjwTjbZt23LhwoV8j1m1alWdYgoJCclxjKpVqxISEqLTcfOjc6IBGROBFbSOhhBCNy92rMNPR25zPiiKs4GPaFPHDlyegTG/w8bRcPNvTLZMZNao9fSo1YMPTnzArahbzG+1m6F9ejHqXCcunblFmCaVdCWcR/cvcWD5JQ6ttqFeq650Hj2YytWrG/o0hciVsZkZr67dYpB2C6tjx47ZbpO4u7uzePFi0tPTcy1yaW5ujouLi05xlkY6DQZdvXo1v/zyCzVr1iyueCo8mSZePE0VazOGtspIBFaduPPfivo9YOwmMDaHWwfh9zE0tqnLHwP/YGqzqahVaraH/8Ns1704LRrImPYtaB5hhZW2Fqg0pKfEcNN7N6tfn8aKV+ZyZs8B0lJT84hCCMNQqVSYaDQl/iqJcRXHjx/Hysoq39f69et1aqNatWqEhoZmWxYaGkq1atV0Om5+dCpBPmHChOKKQ/xr1qxZzJo1K2uQjRC5ealzPTaducdfV0K4G5lArcoWGSvqdYNxm2HD83D7EGwcjenojbza+lV61u7JByc+4E70HV49+wGD2g3irXFf0mLDVu79cQM/h/qEWkOa9gExYX4c/dUP+1p1qdu8/P2FJURJ8Pb2zva9l5cXrq6ueU7ZURK3Ttzd3fnnn3+yjZM8cOAA7u7uOh03P1I1S4gyyK2aNV1cHdAqsNozIPvKul1g3BYwsYQ7R2DjKEiJp6lDUzYN2sSkppNQq9TsurOL4Ucncn1ka5rv+5OezzSh743ztAg2xVrrjMakHnWa1jPE6QlRLgQFBTF37lxu3LjBxo0b+f7775kzZ06e22feOsnv9bQaVBcuXODChQvExcURHh7OhQsX8PX1zVo/Z84c/vrrLxYvXsz169f56KOPOHPmDLNnzy62835SgR5vPXbsmF4a79q1q16OWx7I463iaY76hTPhFx8sTY049X4vbDQm2TcI8oLfhkNKHDh3gbF/gKklABfDL/LhiQ8JiAkAYKjLUN5q9xYW8elErl1LxKpf0KalU3/HNjQNGpTwmQmRoSzPddK9e3eaNGmCVqtlw4YNGBkZMWPGDBYtWqTX2zC5HbtOnToEBARkfb9582Y+/PBDAgICcHV15csvv6R///65Hq84Hm8tUKKhVquL/QejUqlkUrV8SKIhnkZRFPosOcbNsDg+6N+IqV1z6X0I8v432YiF2p0ybquYWQGQlJbED+d/4FffX1FQqGpRlYWdFuJRw4OgqdOIP34cx3fewX7SxJI9MSH+VZYTjfKiRCdVUxSl2F9CiKJTqVRM+bcs+WpPf9LStTk3qt0BXtwGZjYQdDIj6UjOqBCqMdbwZrs3WdtvLbWtaxOaEMr0g9P56ORHmHRsC0C8p2eJnY8Qonwq0GDQw4cP6zsOIUQRDGlZgy//ukFwdBL7roQwqEUuj6XWagcvbod1z8FdL1g3DF74EzQZf4G0cmzFlsFb+O7cd/x27Tf+vPknd5IceA9IOH0abXIy6iI82ieEEFDARKNbt276jkMIUQQaEyNedK/DNwdvsvL4HQY2d8r9NmfNNjB+O6wbCvd84LfMZCPjySZzY3Peaf8OPWv3ZL7nfM4rd4m0VlE5NpnEs2ex7NSpRM9LCFF+yFMnQpRxL3Ssg6mxmov3ojkb+CjvDWu0hvE7QVMJ7p3O6OFIjMq2Sbtq7fhz8J+0cGzJJeeMZfEnT+ordCFEBSCJhhBlnIOVGcNa1QBg5XH//Deu3hIm7ALzynD/bEYPR2L25MTCxII5redwsW5Gz0jUsaN6iFqIgpMxfYZTHD97STSEKAcmd84YFPq3bwiBEfH5b+zUPCPZsLCH4PPw6xBIiMy2Sbtq7TBp3xqAdL9bpD18qJe4hciPiUnGI9sJCQkGjqTiyvzZZ16LotCpMujkyZOLvK9KpWLVqlW6NC+E+FeDqtZ0a1CFo37hrPYM4KPBTfLfoVpTmLAb1g6CBxfh18EZt1UsKmdtMrHLa9yp+gL1QuHe4b04jxyv57MQIjsjIyMqVapEWFgYABYWFiVSClxk9GQkJCQQFhZGpUqV8qxmWhAFqqORl6LW11AUBZVKRXp6elGbLvekjoYorOM3w3lxlQ8Wpkaceq8XtuYF+Ask7FpGshEfDlWbwvgdYOmQtXrt7N60P3gP/07O9P9lnx6jFyJ3iqIQEhJCVFSUoUOpkCpVqkS1atVy/awv6OeUTj0atWvXfmqiER8fT0RERFZy4eDggIWFhS7NCiFy0dnFAbeq1twIjeV3nyBe7lb/6Ts5NoKJezKSjdArGf8dvxOsqgDQcsAEOPgplS4FEBQTRG2b2no+CyGyU6lUODk54ejoSKpM8leiTExMdOrJyKRTj0ZBPXr0iI0bNzJ//nzs7e3ZuXMnbm5u+m62TJMeDVEUm87c5e0tl3Cy1XDs7R6YGBVwGNbDm7BmIMSFQJWGGWM4rBzRJidzpW1rTFK17FnYmzdHfaffExBClBnFXhlUF3Z2dsycORNPT0/CwsLo168fjx7l8xieEKJIhrSsjoOVGQ+ik9h7+UHBd3RwzejZsHaC8OuwZgDEhqA2M8OodXMAIo8dIigmSE+RCyHKqxJ96sTNzY1XX32VgIAAFi9eXJJNl6i1a9fStm1bKlWqhKWlJa1bt+b33383dFiiAjAzNmK8ex0AVp3wL9yjaQ4uGcmGTQ146Aer+8OjQKr16AtAsztall9aro+whRDlWIk/3vrMM88AsHXr1pJuusQ8evSIoUOH8ttvv7Fjxw46derEmDFj2L59u6FDExXAuA61MTNWc+leNKcDCtlzaF8fJu4G21oQeRtW9caqQcbg0MZ3Ff7224V/9FNqdQghxGNKZIzG486fP0+bNm2wsLAgLi6uJJs2qM6dO+Pk5MTmzZsLtL2M0RC6eG/rZTb6BNGncVV+Ht+28AeICYbfRkDYVRQTa27trUlaRDSfjFZTu9cgvujyRfEHLYQoU0rVGI3HnT9/HtCt+EdZZG9vLyOmRYl5qbMzAAeuhRLw8CkFvHJjUx0m7wPnLqhSY7G0CQGgeYDC3jt7uRN1pxijFUKUZzo93lpY/v7+fPTRR6hUKlq2bKnz8c6ePcuBAwfw8fHBx8eH+/fvA08vmZqYmMjnn3/O77//TlBQEJUrV+bZZ5/lk08+oUaNGjrHlSktLY2EhAT27dvHgQMH+PPPP4vt2ELkx8XRmh5uVTh8I5zVnv4sHNK08AfR2GZMvLZtOpYB+4j2N8cj0IT1aPnp4k982e3L4g/8CelahW8O+rH70gO0ikLmr7ZCxheP/6o/+Wuf+T6g5LL+yf1zbvPfxk9uI/JmrTHm6Fs9DB2GKGV0SjR+/fXXp26j1Wp59OgRZ86cYceOHSQkJKBSqZg+fbouTQPwySefsGPHjkLtk5SURM+ePfHy8sLJyYkhQ4YQEBDA6tWr2b17N15eXtSrV0/n2EJCQnBycgIyqtstW7aMfv366XxcIQpqSpd6HL4RzqYz95jb2w1biyL0IhqbwfBVWPIWeO3F4UEKtvFG/BXwF9OaT8PFzqX4A/9Xclo6czddZM+lQjw9IwwqLV1r6BBEKaRTojFx4sRCVQbN/Avj1VdfZdSoUbo0DYC7uzvNmzenXbt2tGvXDmdnZ5KTk/PdZ9GiRXh5eeHu7s7+/fuxsrIC4Ouvv+aNN95g8uTJHDlyJGv7qKgoQkJC8j2mhYUFtWtnL2Tk4ODA6dOniY2N5a+//mL27NnY29szfPjwop2sEIXUqb49DatZcz0klg0+QczoXoACXrlRqzEeuRizFT4kBz1kzPVkfmqj4ccLS1ncY0nxBv2v2KRUXl53lpO3IzAxUvHR4CY0rGb979qM95zMt57Md6DM96L/vs9c/9971JNvV09uk/V9Xst1OakKQMqDi9zoXIK8oCpVqkTXrl2ZOXMmffr0KWqT+dJoNCQnJ+d56yQlJQVHR0eio6M5d+4crVq1yra+RYsWXLp0iTNnztCmTRsAfvrpJ2bMmJFvu926dcuWnORm6tSpHD16FD8/vwKdiwwGFcVhy9l7vLn5IlVtzDj+dk9MjYs+LCts8WIiVqxEVT+Z50daoKhUbOmzGjenIgw2zUd4bDKT1vhw5X4MlqZGLH+xLZ1dHZ6+oxCiRJXIYFB/f/+nvgIDA4mMjCQyMpLt27frLckoCE9PT6Kjo6lfv36OJANgxIgRAOzatStr2fTp01EUJd/X05IMgJYtW3LnjgygEyVrUAsnqlibERqTXLgCXrmw7NQJAKNHjvRJyBjY/NPeKRB9X+c4MwVFJDDyp5NcuR+DvaUpG6d1lCRDiDJOp1snderUKa44SsTFixcBaN26da7rM5dfunSp2Ns+efIkzs7Oea5PTk7OdtsnJiam2GMQFY+ZsRET3Ovw1X4/Vp64w5CW1YvcvW3eujUqjYa0yGhebvAO++99zUHjdK6t6U2jMX9mzJuig6vB0UxcfZrw2GRq2pmz7qUO1HWw1OmYQgjDK/HHWw0pKCijfHLNmjVzXZ+5PDAwUKd2evTowQ8//MDBgwfZvXs3U6dOZcOGDbzzzjt57vP5559ja2ub9apVq5ZOMQiRaWyHOmhM1Fy5H4O3f2SRj6M2M8OiXTsAKt9V82zN7gAsM0mGX/pC4MkiH/vU7QhGL/ciPDaZhtWs2TqjkyQZQpQTJZJoJCcnExoailZr2BHJmQXC8po91tIy440tNjZWp3ZatGjB999/z+DBg5k0aRJ+fn7s2rWLqVOn5rnPe++9R3R0dNbr7t27OsUgRKbKlqYMb52RRK88rltVT0uPjNsn8Z6eTG83FzVqjlhacFWbAL8OBd/CPQUGsO/yAyb84kNschod6lZm03R3HG00OsUphCg9dEo04uLi2Lt3L3v37s21yufDhw8ZPnw4NjY2VK9eHTs7O954442nPhlS1n3zzTfcuHGDhIQEwsPDOXr0KAMHDsx3HzMzM2xsbLK9hCgukzvXBeCf66HcCS96RV4rDw8AEk6fxllTgwH1BgCwrGYDSE+GTRPA++cCH+83r0BmbjhHSrqWZ5tUY+3k9thoKlYxPyHKO50SjT///JOBAwcyffr0HL0EWq2Wfv36sX37dlJTU1EUhdjYWL755hvGjh2rU9BFlfkoa0JCQq7r4+MzKihaW1vnul6Isqp+FSt6NXREUWC1Z0CRj2Pq4oKxoyNKcjKJZ8/ycouXMVIZcUyJ5XKL4YAC+96Cgx/lrKD1GEXJKMT14fYrKAqMaV+bpeNaozExKnJsQojSSadE4++//wbgueeey/Go6x9//MHZs2eBjEGWr7/+Oq1bt0ZRFLZv385ff/2lS9NFklnr4t69e7muz1xuyEGuS5cupXHjxrT79164EMXlpS4ZvRqbz94lKiGlSMdQqVRZT5/EnzxJHZs6DKyX0Vu31MoUenyYseGJJbBtOqTlbCddqzBvxxW+OXgTgFd7ufLZc00xUksNBiHKI50SjStXrqBSqej07xvP4zKrhrZp0wYvLy8WL17MqVOnaN++PZAxlXpJa9GiBQDnzp3LdX3m8ubNm5dYTE+aNWsWvr6+nD592mAxiPLJvZ49jZ1sSErVst47qMjHsfz39kmcZ8bgz5ebZ/RqeAZ7cqFRbxiyFFRGcOl32DgKkv8b85SUms7sDef4zSsIlQo+GdKEub0bSKEnIcoxnRKNsLAwAOrWrZtteWpqKseOHUOlUjFr1iyMjTOeojUxMcmqS+Hj46NL00Xi4eGBra0tt2/f5sKFCznWb9myBYBBgwaVcGRC6J9KpWLKv70aa08GkJJWtMHZlp3cAUi+do20hw+pZVOLIS5DAFh2YRm0egHG/gEmFnD7EKwZALGhxCSlMnG1D/uuhGBqpGbp2Na86O5cLOcmhCi9dEo0IiMzHpUzNTXNtvz06dMkJiYC8Oyzz2Zb16BBA4CnlvXWB1NTU2bPng1k9BxkjsmAjBLkly5dolu3bllVQYUobwY2r46jtRlhscnsvhRcpGMY29tj1jijZkb8qVMATGs+DWOVMacenOJc6Dlw7Q0Td4OFAzy4SPrKZ3hj2Z943YnEysyYNZPa0b+ZU7GdlxCi9NIp0cgcAJrZs5Hp2LFjALi4uFC1atVs68zNzXVpMps9e/bQsWPHrFdKSsb94MeX7dmzJ9s+H374IR06dODkyZO4uroyatQoOnbsyBtvvEGVKlX45Zdfii0+IUobU2M1Ezo5AxmPuhZ1BoLMp0/iT3gCUMOqBkNdhwL/9moA1GgDL+0n1aYORtFBfBH9Jt0sA/l9Wkc6uUi1TyEqCp0Sjfr1MyZperIE97Zt21CpVHTt2jXHPuHh4QA4Ojrq0nTWsby9vbNemW+ajy/LbC+TRqPh8OHDzJs3DwsLC7Zv305gYCATJ07k3LlzxTJzqy5kMKjQt3EdamNuYoTvgxhO3Yko0jEeHxCa+Xs3rdk0jNXGeId4czokY4zRlSQHBsTP46K2HvaqWFarFtI07lTxnIgQokzQKdHo3bs3iqKwbNky9u3bR1xcHN9//33WQMbcxjpklveuXr26Lk0DGbPHPm0ekokTJ+bYz9zcnI8//phbt26RnJzMgwcPWL16dZ4VQ0uSDAYV+lbJwpQRbTL+ra8qYgGvrHLk4eEk38x4esTJyonhrhmzEy+7sAzPWw8ZtfwUfvEWfGz/f6Q490SdlgS/j4WzJT8YXAhhGDolGnPmzMHGxobY2FgGDhyIra0tr732GgCNGjXKNdHYs2cPKpUq10nNhBAlY5KHMyoV/HM9jNtFKOD1eDnyeM//So9PaTYFE7UJZ0LPMPn3jcSnpNOpvj1rXu6B6YuboOU4UNJh16tw5P/yrbUhhCgfdEo0nJyc2LVrF9WqVcvWi1CvXj22bNmS45G127dvc/z4cQCeeeYZXZoWQuigXhUrejXMGD/1y4mi9Wo8Xo48UzXLajS16QuA2n4//ZpWZfWkdlhrTMDIJOPR1y5vZmx85DPYNQfS03Q4EyFEaafT7K0AXbp0wd/fH09PT0JCQnBycqJz585Zj7Q+7sGDB8ybNw/AoNPFCyFgSpe6HLwWyp/n7vFGHzcqW5o+fafHWHl4EEZGOXJtcjIqU1O+PuDH8dPNsaz/F8YWAYzrnoKZ8WPVPlUq6DUPrKvB3rfg3FqIC4MRv4Bp7nMQCSHKNpVS1GHnQi+WLl3K0qVLSU9Px8/Pj+joaJn3ROiFoigM+uEEV+7H8GafBszu6Vro/W91605aWBg1Vq3i81ArNvpkTAbo3u44V+L20KJKC9b1W5d7Qa5ru+DPKZCWBDXbwZg/wNK+OE5NCFECYmJisLW1fernVIWaJr4skMGgoqSoVCqmdM54ymrtqUCS09ILvX/m0yfbV2xlo89d1Cr47LlmfNfvDcyMzLgYfhHPYM/cD9BoEIzfAZpKcO80/NIHHgXocEZCiNKoWBON27dv89tvv/HVV1/x8ccf8/Dhw+I8vBCimPVv5kQ1Gw3hscnsuvig0Pur2ncAoPK185gaq1k2rjVjO9SmikUVRrmNAjKeQMmz47R2R3hpP9jWgohbsKoPPLhY5PMRQpQ+xZJonDt3jq5du9KgQQMmTJjAO++8w8KFC3MU8lq6dCmOjo64urqSmppaHE0LIXSQvYDXnUIV8AqNSeKVGxljsepHB7PuOReebfpftc9JTSehMdJw+eFljt8/nveBqrhlJBtVm0JcKKweALcPF+l8hBClj86Jxu7du/Hw8MDT0zPbkye5GT9+PImJidy5c4fdu3fr2rQQohiMbZ9RwOt6SCwnbxesgNed8DiG/3iSM9EqAipn1ORoGHw92zYO5g6MaTgGgKUXluafxNhUh0l7wbkLpMTC+hFwaVPRTkgIUarolGg8ePCAMWPGkJycTOPGjdm3bx+xsbF5bm9tbc3gwYMB2Ldvny5Nl1tSGVSUNFsLE55vm5EsrDx+56nbX7oXxYifTnHvUSLO9ha49usF/FeO/HETm07E3Ngc3whfjtw9kv+BNbbwwp/QdDho02DrVDjxjdTaEKKM0ynRWLJkCfHx8dSpU4fjx4/Tt29fLC0t892ne/fuKIrC2bNndWm63JLBoMIQJnnURaWCwzfCuRWW9x8Lx2+GM+ZnLyLjU2hWw5YtMzrh9Ew3IHs58kyVNZUZ23AsAMsu5jNWI5OxGQxbCe4Zkx9ycAH89S5oizbTrBDC8HSqo/HXX3+hUql44403qFSpUoH2adiwIQD+/kUrEiSEKH7ODpY806gqB3xDWXUigM+HNcuxzc6Lwbyx6QKp6QqdXRz46cU2WJkZo32iHLnm3xmaM01sMpGN1zdyPfI6h4IO0atOr/yDUauh76dg7QT7PwDvnyDsGjg0AJR/ezj+TVgK9DU5l2clPIX5WnpWypy+n4Gt4aeWqOh0SjQCAwMBaN++fYH3yXzWNi6u8GWPhRD6M6VzXQ74hrL13D3e7NMAeyuzrHWrPf1ZuMsXgEEtqrN4ZAtMjTM6RDPLkccfP06858kciUYlTSXGNRrHissrWHZxGT1q90CtKkBnaqfZGYW9tk0H/6MZLyEKo/v7ho5AoGOikZaWUTpYW4huzejoaACsrKx0aVoIUcza161Msxq2XL4fzXrvIF7t5YqiKHy1/wZLD98GYGInZ+YPbIxanb0Al6VHp38TDU/sJ03McewJTSaw8fpG/B75cTDwIH2cC1gZuNkIsK8PN/4io0fh33ZVqjy+Jp9t/l1XLF+LMsFK91nChe50SjSqVatGQEAAd+7coWPHjgXax8fHB4DatWvr0rQQopipVCqmdKnLnN8v8OupAKZ0qcvCnb78cSaj2udbfd2Y2b1+rlU+nyxHrjYzy7be1syWFxq/wE8Xf+LHiz/yTJ1nCtarAVC9VcZLCFEm6TQYtEuXLiiKwubNmwu0fUpKCsuXL0elUtG9e3ddmhZC6EFmAa+HcSn0//Y4f5zJqPb5f8ObMauHS+6lxAFTFxeMHR1RkpNJPHcu121ebPwi1ibW3Iq6xf6A/fo8DSFEKaJTojFx4kQAdu7cyYEDB/LdNiUlhfHjx3P79m1UKhVTp07VpelySx5vFYZkYqRmooczAAERCZgZq1n+YltGtcu/B/LxcuSPz+b6OBtTG15s8iKQ8QRKurZwJc+FEGWTTolG9+7dGTVqVMbkTIMG8c4772TdGgEICAjg5MmT/O9//6NJkyZs3rwZlUrF9OnTadKkic7Bl0fyeKswtDHtamNvaYqNxph1L3Wgd+OqBdrP0sMDgDjPk3lu80KjF7AxtcE/2p+/Av4qlniFEKWbzrO3JicnM3z4cPbu3ZtntyqQ9fz8sGHD+OOPPzAyMspzW1HwWfGE0IdH8SmoVSpsLUwKvE9aRAQ3PToD4HriOMYODrlu9/Oln/n+/Pc42zizbcg2jNU6DRUTQhhIic3eamZmxu7du1m+fDn16tXLVob88VfNmjVZtmwZW7ZskSRDiFLOztK0UEkGgLG9PWaNGwEQf+pUntuNazQOWzNbAmIC2OcvFYKFKO907tF4kq+vL2fOnCEsLIz09HTs7e1p1aoVrVu3zrfHQ2QnPRqiLAr76isiVq7CdsgQqv/fF3lut/LySr499y21rWuzY+gO6dUQogwq6OdUsf92N27cmMaNGz91u7Nnz9KmTZvibl4IYUCWHh5ErFyVVY48rz8uxjYcy69XfyUoNojdd3Yz1GVoyQYqhCgxxTJNfGGcPHmSfv360aFDh5JuWgihZ+ZPlCPPi4WJBZOaTgLgp4s/kapNLakQhRAlrMQSjX/++YcePXrQpUsX9u/f//TJlYQQZU5mOXKA+HyePgEY5TaKyprK3I+7z67bu0oiPCGEARQ60VAUha1btzJz5kwGDRrEsGHDmDt3LidP5v6mcuTIETp16kSfPn04duxY1uDQ3r176xy8EKL0sfTIv55GJgsTCyY3nQzA8ovLSU2XXg0hyqNCjdEIDAxkyJAhXL58Oce6b7/9lpEjR7J+/XqMjIyIiIhgypQp7Ny5EyDrfu2QIUP44IMPaNu2bfGcQTmzdOlSli5dSnq6FDMSZVNm4a68ypE/7nm351lzdQ3B8cFsu7WN592eL6kwhRAlpMA9GikpKQwcOJBLly7l+Qjr5s2bee+997h79y7t2rVj586dKIqCWq1mzJgxXLp0iW3btkmSkQ8p2CXKOjNXV4yrVMm3HHkmc2NzXmr6EgArLq8gJT2lJEIUQpSgAica69ev5+rVq6hUKpydnVm5ciXe3t6cP3+eDRs20KpVKxRF4ccff2Ts2LEEBASgKArDhw/H19eX9evXSzVQISoAlUqVVSX0abdPAEY0GIGjuSMh8SFsvblV3+EJIUpYgRONrVsz3gBq1qzJpUuXmDx5Mu3ataNFixaMHj2a06dP06lTJ+Lj4/H09MTIyIg1a9awefNmXF1d9XYCQojSpyDlyDNpjDVMaT4FyOjVSE5P1mtsQoiSVeBE4+LFi6hUKt566y2srKxyHkit5uOPPwYy/qJ58cUXGT9+fPFFKoQoMyw7uQOQfO0aaQ8fPnX74a7DqWpRlbCEMLb4bdF3eEKIElTgRCMiIgKApk2b5rlN8+bNs74eMWKEDmEJIcqygpYjz2RqZMq05tMAWHV5FUlpSXqNTwhRcgqcaCQmJgLg6OiY5zYOj02iVLNmTR3CEkKUdVaZ08afePo4DYDnXJ7DydKJ8MRwNvtt1mdoQogSpLeCXcbGMneBEBVZ1oDQf8uRP42JkUm2Xo3EtES9xieEKBklXoJcCFExFLQc+eOGuAyhhlUNIpIi2HRjk54jFEKUhEJ3Oyxbtizf2yeF2W7+/PmFbV4IUUZkliOPP36ceM+TaBo0eOo+JmoTXm7+MvNPzueXK78wssFILEwsSiBaIYS+FHiaeLVaXezTvEv1y5werwzq5+cn08SLMi1izRrCvvg/LDt3pvbKFQXaJ1WbyuBtg7kXd4/X27yeVaZcCFG6FHSa+ELdOsmrImhRXiJ3UhlUlCdPliMvCBO1CdNbTAdg9ZXVxKfG6y0+IYT+FfjWyeHDh/UZhxCiHMosR54WHk7iuXNYursXaL8B9Qaw4vIKAmMC2Xh9I1OaTdFzpEIIfSlwotGtWzd9xiGEKIcyy5FHb99OvKdngRMNY7UxLzd/mfdPvM/qK6sZ7TYaK9OchQKFEKWfPHUihNCrwpQjf1z/uv1xtnEmJiWG9dfW6yM0IUQJkGIXQgi9erIcufFjhf3yY6Q2YkaLGbxz/B1WXVnF0XtHM8Z4Zf5PeeK/PDYOLK9tirJPLtsIUVjvtX+PIS5DDB2GQUiiIYTQK2N7e8waNSL52jXiT53CdtCgAu/b17kvK6+s5Oajm1x+eFmPUQqhX2naNEOHYDCSaAgh9M7Ko1NGouF5slCJhpHaiJV9VnIx7CKQMeZDhSrnfzO/fvL7x/6rVqmzHUOtUqNCRcb/H/v+323UqLO2RUX274UoJDuNnaFDMBhJNIQQemfp4UHEylXEe3qiKEqhavJU1lSmR+0eeoxOCKFPMhhUCKF3RSlHLoQoHyTREELoXWY5coD4Qj59IoQo2yTREEKUCEuPf6eN9yzYtPFCiPJBEg0hRIkoSjlyIUTZJ4mGEKJEZJYjV5KTSTx3ztDhCCFKiCQaQogSkVmOHOT2iRAViSQaQogSU9Ry5EKIsksSjVJm6dKlNG7cmHb/jtAXojx5shy5EKL8k0SjlJk1axa+vr6cPn3a0KEIUewyy5EDxJ86ZeBohBAlQRINIUSJssp6zFVunwhREUiiIYQoUY8PCFUUmQlViPJOEg0hRImScuRCVCySaAghSpSUIxeiYpFEQwhR4jKrhEo9DSHKP0k0hBAlLnPeEylHLkT5J4mGEKLESTlyISoOSTSEECVOypELUXFIoiGEMAgpRy5ExSCJhhDCIKQcuRAVgyQaQgiDkHLkQlQMkmgIIQxGypELUf5JoiGEMBgpRy5E+SeJhp5dvnwZY2NjatasaehQhCh1pBy5EOWfJBp69tprr2Fvb2/oMIQolaQcuRDlnyQaerR9+3bu3LnD5MmTDR2KEKWWlCMXonyTRENPUlJSePPNN/niiy8wMzMzdDhClFpZ5cjPnJFy5EKUQ2U60Th79ixffPEFw4YNo2bNmqhUKlQq1VP3S0xMZP78+TRo0ACNRkP16tWZPHky9+/fL7bYvvnmG6pUqcKoUaOK7ZhClEdZ5ciTkqQcuRDlkLGhA9DFJ598wo4dOwq1T1JSEj179sTLywsnJyeGDBlCQEAAq1evZvfu3Xh5eVGvXj2d4goNDeXTTz/lr7/+0uk4QlQEmeXIo7dvJ97TE0t3d0OHJIQoRmU60XB3d6d58+a0a9eOdu3a4ezsTPJTul4XLVqEl5cX7u7u7N+/HysrKwC+/vpr3njjDSZPnsyRI0eyto+KiiIkJCTfY1pYWFC7du2s799//32effZZ3OUNU4gCyUw04jxP4vimoaMRQhSnMp1ovPPOO4XaPiUlhR9++AGApUuXZiUZAHPnzmXt2rUcPXqUs2fP0qZNGwB+//13ZsyYke9xu3XrlpWcXLlyhd9++w0vLy+ioqKAjF4URVGIiorCwsICU1PTQsUtRHn3ZDlyYwcHA0ckhCguZXqMRmF5enoSHR1N/fr1adWqVY71I0aMAGDXrl1Zy6ZPn46iKPm+Hu8BuXXrFikpKbRu3Ro7Ozvs7Oz4v//7P4KDg7Gzs+OXX37R+3kKUdZIOXIhyq8y3aNRWBcvXgSgdevWua7PXH7p0qUit9G5c2cOHz6cbdmaNWvYs2cPmzdvpkGDBkU+thDlmZVHJ5KvXSPe8yS2gwYZOhwhRDGpUIlGUFAQQJ5VOjOXBwYGFrkNBwcHunfvnm3ZkSNHMDMzy7H8ccnJydnGl8TExBQ5BiHKIksPDyJWrsoqR16QJ8iEEKVfhbp1EhcXB2QM3syNpaUlALGxsSUWU6bPP/8cW1vbrFetWrVKPAYhDEnKkQtRPlWoRMNQPvroI+7du5fvNu+99x7R0dFZr7t375ZQdEKUDlKOXIjyqUIlGplPmSQkJOS6Pj4+HgBra+sSiymTmZkZNjY22V5CVDRSjlyI8qdCJRqZtS7y6l3IXF6nTp0Si0kI8R8pRy5E+VOhEo0WLVoAcC6PMseZy5s3b15iMT1p6dKlNG7cmHb/diELUZFIOXIhyp8KlWh4eHhga2vL7du3uXDhQo71W7ZsAWCQAR+tmzVrFr6+vpw+fdpgMQhhKJnlyEFunwhRXlSoRMPU1JTZs2cDGR/omWMyIKME+aVLl+jWrVtWVVAhRMnLTDTiZECoEOVCma6jsWfPHj755JOs71NSUgDo2LFj1rJ58+YxYMCArO8//PBDDh48yMmTJ3F1daVLly4EBgbi7e1NlSpVpHKnEAYm5ciFKF/KdI9GeHg43t7eWS9FUQCyLQsPD8+2j0aj4fDhw8ybNw8LCwu2b99OYGAgEydO5Ny5czrP3KorGaMhKjopRy5E+aJSMj+dRakSExODra0t0dHR8qirqHDCvvqKiJWrsB06lOpffG7ocIQQuSjo51SZ7tEQQpRPjw8Ilb+FhCjbJNEQQpQ6Uo5ciPJDEg0hRKmjNjPDom1bQMqRC1HWSaJRyshgUCEySD0NIcoHGQxaSslgUFHRJfn54T94CCqNhgbeXqjNzAwdkhDiMTIYVAhRpkk5ciHKB0k0hBClkpQjF6J8KNOVQYUQ5ZulhwfR27cT53kSxzcNHU3JURQFcnkpGStzLs9YkctyJfOAOZfnuU9WFAXe76nLFUXnffJfnnks8l5XqOM99jMj/2PlWJ5jXUGW89TjFaqdbPvkXG7esiW2gwcXzz/WApBEQwhRaj1ejjxg1GgUcnnjVJQ8l+f5ZpvPPoVuI58EAMhzXX77CKFP2qRkSTQqsqVLl7J06VLS09MNHYoQBmdsb49569YknjtH4sWLhg6n/FCpcrxUxbQcFaj49+sc2zy2rqDLVSoo7D4FWZ4ttrza4d9zLUxshV+OSpVzHeS9riDt5Fj337E0jRuXwD+y/8hTJ6WUPHUiRIa0R49IPH8+46/9rDdP/nsDzvGmSsGWP3as3Jc//mZOIfbLZfm/61Qqcl2e9z4FONaTseWTBGSdixDFoKCfU9KjIYQo1Yzt7LDu2dPQYQghikieOhFCCCGE3kiiIYQQQgi9kURDCCGEEHojiYYQQggh9EYSjVJGJlUTQghRnsjjraWUPN4qhBCiNJNJ1YQQQghhcJJoCCGEEEJvJNEQQgghhN5IZdBSKnPoTExMjIEjEUIIIXLK/Hx62lBPSTRKqdjYWABq1apl4EiEEEKIvMXGxmJra5vnennqpJTSarUEBwdjbW0tEyHpUUxMDLVq1eLu3bvydE8pJdeobJDrVDYU53VSFIXY2FiqV6+OWp33SAzp0Sil1Go1NWvWNHQYFYaNjY28OZZyco3KBrlOZUNxXaf8ejIyyWBQIYQQQuiNJBpCCCGE0BtJNESFZmZmxoIFCzAzMzN0KCIPco3KBrlOZYMhrpMMBhVCCCGE3kiPhhBCCCH0RhINIYQQQuiNJBpCCCGE0BtJNIR4zNq1a2nbti2VKlXC0tKS1q1b8/vvvxs6LPGE1NRUFi1aRL169TAzM8PZ2ZnPP//c0GGJJyxbtoz69euj0Who0aIFu3fvNnRIFdqZM2cYP348Li4uqFQqPvzwwxzbbNq0iQEDBuDk5IStrS1du3blxIkTOrUrBbuEeMyjR48YOnQoLVu2RKPRsH37dsaMGYNGo2Ho0KGGDk/868UXX8TT05MFCxbg4uKCv78/oaGhhg5LPOa3337jlVde4YMPPqBz585s3LiR5557juPHj9OxY0dDh1cheXp64uXlRefOnXn48GGu23zzzTe4urqydOlSrKysWL16Nb169cLHx4cWLVoUqV156kSIp+jcuTNOTk5s3rzZ0KEIYM+ePTz33HNcunSJhg0bGjockYcGDRrQrVs3VqxYkbWsffv2ODg4sHfvXgNGVnFptdqsUuHOzs688MILLFq0KNs2ERER2NvbZ9unWbNmeHh48PPPPxepXbl1IsRT2Nvbk5qaaugwxL/WrFlDz549JckoxRISErh16xa9e/fOtrxXr178888/JCcnGyiyii2/+UgyPZ5kZO7TtGlT/P39i95ukfcUopRLSEhg+/btvPTSS7i5uaHRaLC0tKRFixZ8/PHHxMXF5blvWloaMTEx/PHHHxw4cICXX365BCOvOIpyjXx8fHB1dWXmzJlYWVlhbW3NuHHjePTokQHOoGIo7HVKSkpCURRMTU2zLTczMyMlJUWnDy2RQZf3t8JIT0/n9OnTuLi4FP0gihDl1IoVKxRAAZRGjRopI0eOVPr27atYW1srgNKwYUMlNDQ0x34PHjzI2s/IyEhZvny5AaKvGIpyjUxNTRUrKyulc+fOyr59+5R169Ypjo6OypAhQwxzEhVAUa6TnZ2d8v7772db1r9/fwVQPD09SzL8cqmo72+Z6tSpo3zwwQdPbeebb75RjIyMlEuXLhU5Vkk0RLm1Zs0aZdq0aYqvr2+25cHBwUqrVq0UQBkzZkyO/VJTU5XTp08rhw4dUt5++23FxMRE2bJlS0mFXaEU5RoZGxsrlpaWysOHD7OWbd68WQEUPz+/Eom7oinKdXr33XcVGxsbZdeuXUpkZKSybNkyxdjYWAGUU6dOlWT45VJR398yFSTR8PLyUjQajbJgwQKdYpVEQ1RIJ0+eVADFzMxMSU5OznfbKVOmKK6uriUUmciU1zWqUqWK0rFjx2zbhoeHK4CyY8eOkg6zwsvrOsXFxSlDhgzJ+qu7Ro0ayoIFCxRA8ff3N1zAFUBB3t+elmj4+/srVatWVUaOHKlotVqd4pExGqJCynxMKzk5mYiIiHy3bdmyJXfu3CmJsMRj8rpGjRo1QsnjYbmCDHYTxSuv62Rpacn27dsJDg7mypUr+Pv7Y21tjaOjI87OzgaKtmIozPtbbqKiohgwYADOzs6sXbsWlUqlUzzyWykqpMzEwcTEhMqVK+e77cmTJ+WN0QDyukb9+/fn8uXL2eoAHDp0CJVKRdOmTUs8zoruab9LTk5ONGnSBK1Wy+rVq5k4cWIJR1jxFOb97UkpKSkMGzaMhIQEduzYgbm5uc7xSMEuUSF9++23ADz77LPZpkvu0aMHw4cPp2HDhiQlJbFjxw42bNhQ5OfHRdHldY1efvllvvvuO4YMGcJ7773Hw4cPefvtt3nhhRckITSAvK7Tzp07CQ4Oxs3NjeDgYL755hvS0tJ4//33DRVqhZHXNQkPD+fo0aNAxlMr169fZ8uWLVhaWtKvXz8AZs6cydGjR1mxYgX+/v5ZTwiZmZnRqlWrogWk040XIcqgPXv2KCqVSjExMVEuXLiQbd2cOXOUBg0aKObm5oqDg4PStWtXZdeuXQaKtOLK7xopiqJcv35deeaZZxRzc3PF3t5emTFjhhIfH2+ASCu2/K7T7t27lSZNmigajUZxcHBQJk2alO9TEKJ45HdNDh8+nDVm5vFXnTp1srapU6fOU7cpLKkMKiqU69ev06lTJx49esQ333zDnDlzDB2SeIJco7JBrlPpU1qviYzREBXG/fv3efbZZ3n06BFz584tNb+E4j9yjcoGuU6lT2m+JtKjISqEyMhIunTpgq+vL5MmTWLVqlU6j6QWxUuuUdkg16n0Ke3XRBINUe7FxcVlzT44bNgwNm3ahJGRkaHDEo+Ra1Q2yHUqfcrCNZFEQ5RrycnJ9O/fn0OHDtG3b1927tyZY/4FYVhyjcoGuU6lT1m5JjJGQ5Rb6enpjBkzhkOHDtGlSxe2bt1aKn8JKzK5RmWDXKfSpyxdE6mjIcqtH374gW3btgHg4ODAzJkzc93uq6++wsHBoSRDE/+Sa1Q2yHUqfcrSNZFEQ5Rbj08bnvkLmZuPPvrI4L+IFZVco7JBrlPpU5auiYzREEIIIYTeyBgNIYQQQuiNJBpCCCGE0BtJNIQQQgihN5JoCCGEEEJvJNEQQgghhN5IoiGEEEIIvZFEQwghhBB6I4mGEEIIIfRGEg0hhBBC6I0kGkIIunfvjkqlonv37oYOpUJydnZGpVIxceJEQ4ciRLGTREMIPTt16hQqlQpLS0vS0tKylkdFRWFkZIRKpSIoKEinNgICAlCpVPJhZSCZicKTLxMTExwcHOjcuTMfffQRwcHBhg5ViBIniYYQeubp6QlAhw4dMDY2zrZcq9VSq1YtateubajwhB6lpaURERGBp6cnCxcupFGjRvlOgCVEeSSztwqhZ5mJRufOnbMtP378eK7LDeHIkSOGDqFcqF69On///XfW96mpqQQEBLB69Wp27dpFTEwMo0ePxsvLi1atWmVtFxAQYIBohSgZ0qMhhJ6dPHkSyJlQnDhxItflouwyMTGhadOmWa9WrVrx3HPPsXPnTubOnQtASkoKixYtMnCkQpQcSTSE0KNbt24RFhaGkZER7u7uWcuTkpI4ffo0IIlGRbFw4ULMzc0B2L9/P1qt1sARCVEyJNEQQo8yb5s0b94ca2vrrOU+Pj6kpKRQqVIlmjZtaqjwsuT31MnjA03XrFkDwIEDBxg0aBDVqlXDzMyMunXrMmPGDO7du1eg9g4fPsyECROoV68eFhYW2NjY0KxZM956662nDpi8cuUKixYtom/fvtSsWRMzMzOsrKxwdXVlwoQJeHl55bv/Rx99lHU+ANHR0XzyySe0atWKSpUqZTvP4mRlZUXjxo0BiIuLIzIyMmtdQZ86uXXrFq+//jrNmjXD1tYWc3Nz6tWrx8SJEzlz5kyB4ggICOCdd96hTZs22NvbZw1Y7dKlCx999BF37tzJc9/o6Gg+//xzPDw8qFKlCqampjg5OTFo0CC2bNmCoij5tr1t2zaGDh2add2sra2pV68eXbp0Yd68efj4+BToHEQZowghisXq1asVQOeXv79/odv29/fP2n/ChAmF3r9bt24KoHTr1i3fY69evVp5991384y9SpUqiq+vb57tJCYmKqNHj873/C0tLZWdO3fmuv/hw4cL9DN8991384xhwYIFWdv5+fkpzs7OOfZfvXp1oX5+derUUQClTp06+W7XsWPHrDZCQkJy7J/ftfvf//6nmJiY5HnOKpVKmTdvXr7tP+0Yef0bUBRFOXjwoGJvb5/vvv3791diY2Nz7JuWlqaMHDnyqdetTZs2+cYvyiYZDCqEKLAVK1Zw8uRJunXrxssvv0yDBg2Iiori119/5ddffyU8PJzJkydz6tSpHPsqisKIESPYs2cPAIMGDeL555+nXr16qNVqfHx8WLx4MUFBQYwYMQJPT0/atm2b7RhpaWlYWloyYMAAevbsScOGDbGxsSEsLIyrV6/y3XffERgYyBdffEGDBg2YNGlSvuczYsQI7t+/zyuvvMLgwYOxs7Pj5s2b1KlTp/h+aI/Ffv36dQBMTU2xt7cv8L7/+9//ePvtt4GM3rEZM2bg6upKpUqVuHHjBj/88AOnTp3ik08+wcHBgVdffTXHMT755BPmz58PQKVKlZg5cyY9evTA3t6eqKgozp07x9atW7N6eh7n6elJv379SE1NpWrVqrzyyiu0aNGC6tWrExwczB9//MFvv/3G3r17mTBhAn/++We2/X/88Uc2b94MZNwqnDJlCvXr18fS0pKIiAguXbrEX3/9RXR0dIF/JqIMMXSmI0R5ERUVpVy7di3r9fhf3ydOnMhafvXqVUWj0SiAsmXLlmz7XLt2TUlJSSl02yXVowEoU6dOVbRabY7tpkyZkrXNuXPncqz/+eefFUAxMTFR9u3bl2sckZGRSpMmTRRA8fDwyLE+PDxcefToUZ7nkZycrPTu3TurdyEtLS3HNo/3aKjVauXvv//O83gFVZAejR9++CGr3Z49e+a6f27X7urVq1m9EAsWLMj1Z5+enq688MILCqBYWVkpkZGR2dafO3dOUavVCqA0aNBAuXv3bp5xBgUFZfs+JSUlq9fn2WefVeLj43PdL/P6Asr+/fuzrevSpYsCKB06dFBSU1PzbDsiIiLPdaLskkRDCD3ZtGmTAih169bNtvzChQsKoJibmxcpqchNSSUaTk5OSlJSUq7HuH79etZ23377bbZ1Wq1WqV+/vgIob7zxRr6x7N27N9utjcLK/PkCypkzZ3KsfzzRmDx5cqGPn5u8Eo3U1FTl5s2byvvvv68YGRlltftkopVfojF58mQFUNq2bZtrkpHp0aNHipmZmQIoP//8c7Z1Y8aMybq9klsSmJ9ff/1VARSNRqOEhYXlu2379u0VQBk7dmy25a6urgqgvP7664VqW5QPMhhUCD3Jq05G5gDRtm3bYmJiUuJx6WLEiBGYmZnlus7NzQ0rKyuAHAMKfX19uX37dtYx8tO1a9esr3O7BfO45ORkgoKC8PX15cqVK1y5ciXbgMSLFy/mu/+4cePyXV9YgYGBOSqDurq68tlnn5Geno5KpWLRokU8++yzBT7mrl27ABg+fHiutzUyVapUiWbNmgHZf25arZZ9+/YBGYN+H6/fURA7d+4EoFu3blSpUiXfbTOv3ZPXzcnJCcg4l4cPHxaqfVH2yRgNIfQkrzoZmXU1PDw8SjwmXTVs2DDf9XZ2dsTFxREbG5tt+eNPRDz+mO/ThISE5FgWHx/Pd999x++//87Vq1dJT0/Pc/+nfag1b968wLHowsbGhp49ezJ37ly6dOlS4P0CAwMJDw8H4L333uO9994r0H6P/9z8/f2JiooCKFTbmTKv3d9//51vopNX+wATJkzg2LFj3Lp1CxcXF4YNG0bv3r3p0qULNWvWLHRMomyRREMIPYiNjeXSpUtA3j0anTp1KvG4dGVhYZHverU6o5P0yQ//sLCwIrWXkJCQ7fuAgAB69uyJv79/gfZPTEzMd72dnV2R4srLk5VBjY2NsbW1pVq1agX+kH5ccfzcHk+2MnsW9B3Dkz/3yZMnc/v2bb788kuio6NZvXo1q1evBqB+/foMGTKEWbNmUa9evUK3JUo/STSEKAbOzs4EBgbmuq5Jkya5Lh88eHC27xcsWMBHH31U3KGVCo8nHrt27cLZ2blA+zk6Omb7/sUXX8Tf3x+VSsWkSZMYPXo0jRo1yqrpoFKp0Gq1GBkZATy1rkPmdsUlszJocXn85zZ//nxGjhxZoP0sLS2LPYZ+/frx5ZdfFvk4n376KdOmTWP9+vX8888/eHl5kZCQwO3bt/n666/5/vvv+e6775g+fXpxhS5KCUk0hBB69/ijnEUtUnb9+vWs21Hvv/9+nmW8Hy+EVdY9/nMrahLj4OCQ9fWDBw+KFENwcDApKSk6J1F16tTh/fff5/333yc1NZXTp0+zadMmli9fTlJSEjNnzqRDhw6FHkciSjcZDCpEMdi/fz+XL1/OerVp0waADz74INvy5557DsgYhPj48suXLzNz5kxDnoJePf7BkXnrqLCuXr2a9fWoUaPy3K6gFTLLgnr16mFrawsU/edWt25dKlWqBMCxY8cKvX/mtTtz5gwpKSlFiiE3JiYmdOrUiW+++YYNGzYAGT1QW7ZsKbY2ROkgiYYQxaBBgwZZE2m5ublx7do1AIYNG5Ztkq0bN24AMHDgwGzLmzZtmuM2QXnSunXrrEF/P//8M0lJSYU+RlpaWtbX8fHxeW73008/FT7AUsrIyIj+/fsDGcls5r+rwlCr1QwYMACAo0ePcv78+ULtn3mLL3NshT706tUr62t5KqX8kURDiGJ29uxZEhISsLa2pkWLFlnLIyIisj4oHn+EsyJQq9W8//77QMajr+PHjyc5OTnP7WNiYvjhhx+yLXN1dc36Oq+5SH788Ud27Nihe8ClyHvvvYeRkRFarZYRI0bkO59Meno669evz7HNm2++iVqtRlEURo8ene8xnlw3YcIEatWqlXWcp/WKnDhxgqNHj2Zb9ttvv2VLFJ+0f//+rK/r1q2b7/FF2SNjNIQoZplvxJ06dco22PDEiRMoioKLiwvVq1fXW/u3bt0q0KRg7du3z5rkqyRMnz6dAwcOsG3bNjZv3sy5c+d4+eWXad++Pba2tsTExHD9+nWOHDnCzp070Wg0zJ49O2v/Vq1a0bRpU65cucLy5ct59OgRL774Ik5OTty7d4/ffvuNLVu24OHhUeTbDKVRs2bN+Oqrr3j99dfx9fWladOmTJs2jZ49e1K1alWSkpIICAjg1KlTbNmyhQcPHnD58uVsj422bNmShQsXMm/ePPz8/GjWrBmzZs3KVoL8woULbN26FSMjIw4fPpy1r5mZGZs2baJ79+7ExcXRs2dPRo8ezdChQ6lbty5arZYHDx5w9uxZtm3bxuXLl/n+++/p1q1b1jFefPFF3nzzTYYNG0anTp2oX78+Go2G0NBQDhw4wI8//ghkTDxX3LVNRClg0HJhQpRDAwYMUABl0aJF2Za/8cYbxVqN8nFPlgkvyGvJkiVZ+xdmUrX8PG1ysJSUFGXGjBmKSqV6anxPVlRVFEU5f/68Ymdnl+c+zZo1U4KDg7O+X7BgQY5jPF4ZtLgUdFK1p+2fX1XXn3/+WbGwsHjqz83U1FS5efNmrsf49NNPFWNj43z3z2tStVOnTim1atUq0L+ttWvXZtu3IPvY2trmWZpelG3SoyFEMdJqtVl/TT9ZHCmzUmhFu23yOBMTE5YtW8aMGTNYsWIFR44cISgoiLi4OKysrKhbty5t2rShX79+DBw4MMf+LVu25MKFC3z++efs27eP4OBgrK2tcXFx4fnnn2fWrFloNBoDnJn+TZ06lcGDB7N8+XL279/PjRs3iIqKwszMjBo1atCsWTN69+7N8OHDsz1p8rj333+fkSNHsmzZMg4ePEhQUBAJCQnY2dnRuHFjevfuzfjx43Pdt2PHjty8eZM1a9awa9cuzp8/z8OHD1Gr1VSpUoVGjRrRrVs3hg8fjpubW7Z9r1y5wp49ezhx4gS3b98mNDSUqKgorK2tadiwIX379mXGjBlUrVq12H9uwvBUivKUB82FEEIIIYpIBoMKIYQQQm8k0RBCCCGE3kiiIYQQQgi9kURDCCGEEHojiYYQQggh9EYSDSGEEELojSQaQgghhNAbSTSEEEIIoTeSaAghhBBCbyTREEIIIYTeSKIhhBBCCL2RREMIIYQQeiOJhhBCCCH0RhINIYQQQuiNJBpCCCGE0Jv/B4fC6LFThE6oAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh4AAAGBCAYAAAApG7hBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACB50lEQVR4nO3dd3wT9f8H8NdddtM26aaFUlZbQIYMkSGCKAIi4kAQUIYoCiIgri8I4kD9+XUg4kK/CC4cIKgoikyZZSObsgu0pTtd2ff5/ZHmmjRJSVfSpu/n45FH7j7j7pML9N75fO4+xzHGGAghhBBCfID3dwMIIYQQ0nhQ4EEIIYQQn6HAgxBCCCE+Q4EHIYQQQnyGAg9CCCGE+AwFHoQQQgjxGQo8CCGEEOIzFHgQQgghxGco8CCEEEKIz1DgQQi5ruXLl4PjOLRo0aJa9V955RVwHIf+/fvXarsIIQ0PBR6EEL+yByXevAghDZ/U3w0ghBC7mJgYfzeBEFLHKPAghNQbmZmZ/m4CIaSO0VALIYQQQnyGAg9CAkR+fj6WLl2KkSNHomPHjggPD4dSqURCQgLGjBmDlJSUSuunpKTg3nvvRWRkJFQqFZKTk/HSSy+huLjYq/3/+eefGDhwILRaLYKDg9G5c2f897//hdlsro2P56R///7gOA6vvPKKxzKVXdDqWJ8xhi+++AI333wzQkNDERISgl69euHbb7+ttfZWvDh3+/btGDZsGKKjo6FWq9GlSxcsXbrUqc4ff/yBgQMHIioqCkFBQbjpppvw448/etzHhQsX8Pbbb2Pw4MFISkqCWq1GcHAw2rdvj5kzZyItLc1tvbfffhscx0Eul2Pv3r1uy6xbtw48z4PjOHz33XfVOwiE2DFCSECYP38+A8AAMIlEwsLCwphCoRDTOI5jixYtclt36dKljOd5saxGo2FyuZwBYG3btmXvv/8+A8ASEhKuu28ATKvVMqlUygCwW2+9lc2ePZsBYP369au0rrf69evHALD58+df93i426e9/ty5c9nw4cMZACaVSlloaKjT53j55Ze9blNlli1bJh6/L774gvE8zziOYxqNxml///nPfxhjjL388ssMAON53qXMp59+6nYf9s8EgMnlchYREeHynW7fvt2lniAI7I477mAAWKtWrVhhYaFTfnp6OouKimIA2Lhx42rleJDGjQIPQgLEkiVL2Pz589n+/fuZ0WhkjNlOKufPn2czZsxgHMcxiUTCDh486FTvwIEDYpDQv39/dvLkScYYYyaTiX3//fdMq9UyrVbrMfD49ddfxZPbgw8+yNLS0hhjjJWWlrKPP/6YyeVysX59CzzCwsKYRqNhy5cvZ6WlpYwxxi5fvsyGDRsmnvhTU1O9bpcn9sAjKCiIyeVyNn36dJaVlcUYYyw3N5eNHz9e3N/bb7/NJBIJW7BgASsoKGCM2U7+gwcPZgCYWq0W0x3NmDGDffzxxyw1NZVZrVbGGGNms5nt2bNHrBsXFyd+TkcZGRksOjqaAWBjx44V0x2DkjZt2rCioqIaHwtCKPAgpJF46qmnGAA2adIkp/QhQ4YwACwpKcntSemvv/4SAwN3gUf79u3FE7z9hOfos88+E+tfL/CIiYnx+Dp27JhYp7YCDwBs8+bNLvkGg4HFxcUxAGzBggUe9+Ete+ABgD322GMu+RaLhbVs2VIs426fOp2OqdVqBoB98803Vdq/xWJhnTp1qrTuunXrGMdxDABbvnw5Y4yxt956iwFgMpmM7du3r0r7JMQTusaDkEZi6NChAIAdO3aIaQUFBVi/fj0A4Pnnn4dKpXKpN2jQIPTq1cvtNo8cOYITJ04AAObOnQued/2T8vjjj6Np06ZetfHatWseX3VxrUifPn1w2223uaQrFAoMGjQIgO0z1qb//Oc/LmkSiQS33347AECpVGLmzJkuZUJDQ8XvoaptkkgkGDx4MADn79/RkCFD8MwzzwAApk2bhm+//RYvv/wyAODNN99E9+7dq7RPQjyhwIOQAHL+/Hk899xz6NatG7RaLSQSiTj51l133QUAuHLlilj+4MGDEAQBADBgwACP2/WUt3//fgCAVCpF37593Zbhed7rGUuZrRfW7evGG2/0ahtVcfPNN3vMi4uLAwDk5eXV2v7Cw8PRunVrt3n2OUzat28PtVpdaZn8/Hy3+du3b8eECRPQtm1bBAcHO02+9t///heA8/df0VtvvYWuXbuiuLgYjzzyCMxmM+688048++yzXn9GQq6H5vEgJECsWbMGo0ePhtFoFNNCQ0OhVCrBcRxMJhPy8/NRUlIi5mdlZYnLlfVKNGvWzG26vX5kZCQUCkWV6/tbSEiIxzyp1PbnsTZ7WrzZX3Xb9OKLL4rBBWDr5QgLC4NcLgcAFBcXo6SkxOn7r0gul+Orr75Cx44dAQAajQZfffUVzRpLahX1eBASAHJzczFhwgQYjUYMGDAAW7duRWlpKXQ6Ha5du4bMzEysXLnS380kdWTDhg1i0DF16lQcPXoURqMReXl5yMzMRGZmpjiMwhirdFuff/65uFxYWIjDhw/XWbtJ40SBByEBYN26dSgsLERYWBjWrl2Lfv36uVyv4W5W0OjoaHH56tWrHrfvKc9ePycnByaTqcr1q8v+y99gMHgso9PpanWf9dkPP/wAwHY9zscff4wOHTpAIpE4lfFmVtjff/8dixcvBgB06tQJjDGMHz8e165dq/1Gk0aLAg9CAsDly5cBAMnJyQgKCnJbZuPGjS5pXbt2FS8I3bJli8ftb9682W26/YJDi8WC7du3uy0jCAK2bt3qcdvVERYWBqD8c7uzZ8+eWt1nfWY/Dl26dHGbzxjz+B3aZWRkYOLEiQCAiRMnYtu2bWjRogWysrIwfvz46/aUEOItCjwICQAajQYAkJqa6rYX4PDhw1ixYoVLularxZ133gkAePfdd93W3bhxI3bt2uV2v506dUK7du0AAG+88YZ4oaqjL7/8stILGqujc+fOAID169e7vWZh8+bN2L17d63usz6zf////vuv2/zPPvsM58+f91hfEAQ88sgjyMnJQWJiIhYvXgyNRoMVK1ZAKpVi/fr1eP/99+uk7aTxocCDkABw5513gud55OXlYezYseLQhslkwk8//YQ777zT40WLr7/+OiQSCU6dOoWhQ4fi9OnTAGy9GD/99BNGjhwJrVbrcd9vvPEGAFuPyZgxY8Qgw2Aw4LPPPsO0adMqrV8dI0eOBM/zyM3NxejRo8V96vV6fPXVV7jvvvsQHh5eq/usz+y3yv755594/fXXxWCsoKAAb775Jp5++mlERER4rP/f//4XmzZtgkwmw/fffy/eVdOrVy/Mnz8fADBnzhwcPHiwjj8JaQwo8CAkACQmJuL5558HAKxevRrNmjUTn5kyatQoBAcH48MPP3Rbt3v37vjkk0/AcRw2b96Mtm3bOtWNiYkR53Nw57777sNLL70EAPjxxx8RHx+P8PBwhISEYMqUKejRowemTJlSq583KSkJc+fOBQCsXbsW8fHx0Gq1CA0NxYQJEzBgwABMnTq1VvdZn40bN068nfnll19GSEgIwsPDERERgZdeegmDBw/2+B3s3bvXab6Obt26OeXPmTMH/fv3h8lkwujRoyu9K4YQb1DgQUiA+L//+z98/fXX6NGjB1QqFcxmM9q0aYM5c+bg0KFD4rwU7kyePBk7d+7EsGHDEB4eDqPRiISEBMyePRt79+4Vr6nwZMGCBfj9998xYMAAhIaGwmg0ol27dvi///s/bNq0Sbylsza9+uqr+Oabb9CzZ0+o1WpYrVbceOON+Oyzz7B69WqXiysDmUwmw99//4358+cjKSkJMpkMjDH06NEDn376KX777Te3x6OoqAijR4+G2WzGwIED3c7XwfM8vvnmG4SHhyM1NRXTpk3zxUciAYxjdMUQIYQQQnyEejwIIYQQ4jMUeBBCCCHEZyjwIIQQQojP0LNaCCHECz/++CNmzJhRpTqjRo3CokWL6qhFhDRMFHgQQogX9Hp9lacOb0zTthPiLbqrhRBCCCE+Qz0eDYAgCEhPT0dISAg9npoQQki9xBhDUVER4uLixGdAuUOBRwOQnp6O+Ph4fzeDEEIIua7Lly+jWbNmHvMp8GgA7M/YuHz5MkJDQ/3cGkIIIcRVYWEh4uPjPT4Xyo4CjwbAPrwSGhpKgQchhJB67XqXBNA8HoQQQgjxGQo8CCGEEOIzFHgQQgghxGfoGo8AYrVaYTab/d2MRkUmkzWqx68TQkhNUeARABhjyMzMREFBgb+b0ihptVo0adKE5lghhBAvUOARAOxBR3R0NIKCgugE6COMMZSWliIrKwsAEBsb6+cWEUJI/UeBRwNntVrFoCMiIsLfzWl0VCoVACArKwvR0dE07EIIIddBF5c2cPZrOoKCgryuwwQB9Iie2mM/9nR9DSGEXB8FHgHC2+EVk0GP3CuXoS8qrOMWNR40tEUIId6jwKORMRsMsJhNKMrNgdVCv9AJIYT4FgUejUyQRguZUgkmCCjMzvbrkEv//v0xc+ZMv+2fEEKI71Hg0chwHAdNVDQ4joOxtASG4iJ/N8mnMjIyMGbMGCQlJYHnebeBz+rVq9G9e3dotVqo1WrceOON+Oabb3zfWEIICUAUeDRCUrkC6rBwAEBRbjasFoufW+Q7RqMRUVFRmDt3Ljp37uy2THh4OF566SXs3r0bR44cwcSJEzFx4kSsX7/ex60lhJDAQ4FHI6XWhkGmUECwCijKyfLbkIvFYsG0adOg0WgQGRmJefPm1WlbWrRogUWLFmHcuHHQaDRuy/Tv3x/33Xcf2rVrh9atW2PGjBno1KkTduzYUWftIoSQxoICjwDEGEOpyVLpS2+2QqqJhMHCkF9QhLx83XXrePOqatDw1VdfQSqVYu/evVi0aBHef/99/O9///NYfvv27QgODq709d1339X0EIoYY9i0aRNOnz6NW2+9tda2SwghjRVNIBaA9GYr2r9c1WGBs7Wy7xOvDUKQ3Pt/VvHx8Vi4cCE4jkNycjKOHj2KhQsX4vHHH3dbvnv37jh8+HCl24yJialKk93S6XRo2rQpjEYjJBIJPvnkEwwcOLDG2yWEkMaOAg/iVz179nSaB6NXr1547733YLVa3c4CqlKp0KZNmzpvV0hICA4fPozi4mJs2rQJs2bNQqtWrdC/f/863zchhAQyCjwCkEomwYnXBnld3mw0Ii/9CsAATUwTKNXqGu27Lm3fvh1DhgyptMySJUswduzYGu2H53kxwLnxxhtx8uRJvPXWWxR4EEJIDVHgEYA4jqvScAfkUvCRESgpyIdFlwtlaDB4Hz1zZM+ePU7rKSkpSExM9PjME18NtVQkCAKMRmOtb5cQQhobCjwIACA4LBzG0hJYTCYU5WZDE93EJ/tNS0vDrFmz8MQTT+DgwYNYvHgx3nvvPY/la2OoxR64FBcXIzs7G4cPH4ZcLkf79u0BAG+99Ra6d++O1q1bw2g0Yt26dfjmm2/w6aef1mi/hBBCKPAgZTieR2hUNPKuXoG+qAhKdQgUNRhy8da4ceOg1+vRo0cPSCQSzJgxA5MnT67TfXbp0kVcPnDgAFasWIGEhARcvHgRAFBSUoKpU6fiypUrUKlUaNu2Lb799luMGjWqTttFCCGNAcfoMaX1XmFhITQaDXQ6HUJDQ53yDAYDLly4gJYtW0KpVNZ4X0W52SgpKIBEKkVEs+Y+G3JpyGr7OyCEkIaosnOVI5rHgzhRh0VAIpPBarGgKC/H380hhBASYCjwIE54nocmynZxpr6wEMbSUj+3iBBCSCChwIO4kKtUCCqbTrwwJwuCYPVziwghhAQKCjyIW8HhkbYhF7MZxbm5/m4OIYSQAEGBB3GL53mERkYDAEoLdTDpaciFEEJIzVHgQTxSBAUhKNQ25KLLzoIgCH5uESGEkIaOAg9SqeDwCEikUtuQSx4NuRBCCKkZCjxIpXiJBKFRZUMuugKYDHo/t4gQQkhDRoEHuS5FkBqqENtkMIU05EIIIaQGKPAgXgmJiAQvlcBiMqEkP69Wttm/f3/MnDmzVrZFCCGkYaDAg3iFl0jEu1xKCvJhNhj83KLqycjIwJgxY5CUlASe568b+Pzwww/gOA733nuvT9pHCCGBjgIP4jWlOhjK4BAAgC77GlgDHHIxGo2IiorC3Llz0blz50rLXrx4Ec899xz69u3ro9YRQkjgo8CDVElIZCR4SdmQS0F+jbdnsVgwbdo0aDQaREZGYt68eajL5xa2aNECixYtwrhx46Apm53VHavVirFjx+LVV19Fq1at6qw9hBDS2FDgEYgYA0wldfKSWI0IDVWDM+tRkp0Oc1Gec5kqBg1fffUVpFIp9u7di0WLFuH999/H//73P4/lt2/fjuDg4Epf3333XU2PIF577TVER0dj0qRJNd4WIYSQclJ/N4DUAXMp8GZcnW1eWfZya046IFd7va34+HgsXLgQHMchOTkZR48excKFC/H444+7Ld+9e3ccPny40m3GxMR4vX93duzYgaVLl153P4QQQqqOAg/iVz179gTHceJ6r1698N5778FqtUIikbiUV6lUaNOmTZ21p6ioCI888gi++OILREZG1tl+CCGksWqwgcf777+PHTt24OjRo8jKyoLBYECTJk3Qr18/PP/88+jYsaPbesuXL8cnn3yCEydOQC6Xo2fPnpg7dy569+7tcV87d+7EG2+8gZSUFJhMJrRv3x7Tpk3DuHHjPNa5cuUK5s2bh/Xr1yMvLw/NmzfH6NGjMXv2bCiVHvsLaocsyNbzUMf0xUUozMoCOA7hTZtCJlfY9l2Htm/fjiFDhlRaZsmSJRg7dmy1tn/u3DlcvHgRw4YNE9Ps85ZIpVKcPn0arVu3rta2CSGENODA480330RJSQk6deokBhnHjx/HN998gx9++AGrV6/G3Xff7VRn5syZWLRoEVQqFe68804YDAZs2LABf//9N1atWuX2lsmff/4Zo0aNgiAIuPXWWxEZGYlNmzZh/PjxOHLkCN59912XOmfPnkWvXr2Qk5ODDh06oG/fvti/fz9ee+01bNq0CZs2bYJCoaiT4wIA4LgqDXdUlzIsCAajAGNpCQoLShDeNMyp98Ibe/bscVpPSUlBYmKi294OoO6HWtq2bYujR486pc2dOxdFRUVYtGgR4uPjq71tQgghAFgDtWPHDqbX613SP/74YwaAxcTEMLPZLKZv2LCBAWAREREsNTVVTN+1axeTy+VMq9Wy/Px8p23l5uay0NBQBoD9/PPPYnpmZiZr06YNA8C2bNni0oY+ffowAGz69OlimtlsZvfddx8DwObPn1+lz6rT6RgAptPpXPL0ej07ceKE22PhCxaziV07f5ZlnE1lxfl5Varbr18/FhwczJ555hl26tQptmLFCqZWq9lnn31WR621OXToEDt06BDr1q0bGzNmDDt06BA7fvy4x/Ljx49nw4cP95jv7++AEELqg8rOVY4abOBRmdatWzMA7N9//xXThgwZwgCwhQsXupSfPn06A8Deffddp/S3336bAXB70lm9ejUDwO6++26n9D179jAALDo6mhkMBqe8zMxMJpPJWFhYmFNQdD31OfBgjLESXQHLOJvKMs+dYWaj0et6/fr1Y1OnTmVPPvkkCw0NZWFhYWzOnDlMEIQ6bC1jAFxeCQkJHstT4EEIIdfnbeDRYIdaKiOTyQAAcrkcAKDX67F582YAwIgRI1zKjxgxAh9++CHWrl2LZ599Vkz/448/PNYZOnQolEolNm7cCIPBIF63Ya8zbNgwl+GUmJgY9O3bF5s3b8aOHTvQv3//Gn7S+kEVEgpDSTFMpaXQZWchPK6pV0MuW7duFZc//fTTOmyhM1bFW36XL19eNw0hhJBGKODm8fjmm29w+vRpJCYmIjExEQBw+vRpccbKZs2audTp2rUrAODIkSNO6f/++69TviO5XI4OHTrAYDAgNTXVqzqV7ash4zgOmshocDwPs0GP0kKdv5tECCGknmrwPR7vvPMOjh8/jpKSEpw8eRLHjx9HXFwcvv/+e/ECxbS0NABwG3QAgFqthlarRX5+PoqKihASEoLCwkLodLpK6zVr1gz79+/HpUuX0KlTJ6/2ZU+/dOlSNT9x/SSRyRASEYnC7CwU5+ZAERQEqUzu72YRQgipZxp84LF+/Xps2rRJXE9ISMDXX3+Nbt26iWnFxcUAgKAgz7d6qtVqFBQUiIGHvU5l9dRq250jRUVFXu/LXZ2KjEYjjEajuF5YWOixbH2iCgmFobgIJr0ehdlZCIv1bsiFEEJI49Hgh1o2btwIxhjy8/Oxbds2JCYmol+/fnjjjTf83bRqe+utt6DRaMRXQ7mFk+M4hEZFg+M5mPR66IsaRsBECCHEdxp84GGn1WrRt29frFu3Dt26dcO8efOwb98+AEBwcDAAoLS01GP9kpISAEBISIhTncrqVazjzb7c1alo9uzZ0Ol04uvy5csey9Y3UpkcweG2GT+LcnNgNZv93CJCCCH1ScAEHnYymQyjRo0CYwxr164FADRv3hyAbTZRd0pKSlBQUICwsDAxIAgNDRWfXuqpnj09ISFBTLvevtzVqUihUCA0NNTp1ZAEhWogU6rABAG6nKw6fdosIYSQhiXgAg8A4jM2srOzAQDJyclQKBTIzs7G1atXXcofPHgQAMQLRO06d+7slO/IbDbj2LFjUCqVSEpK8qpOZfsKJBzHQRMVDY7jYCotpSEXQgghooAMPP755x8AEJ+poVKpMGDAAADAypUrXcqvWrUKAJyezwHY5upwzHf0+++/w2Aw4I477nB69oq9ztq1a50uEAWAa9euYfv27QgLC0OfPn2q9dkaCqlcjuDwCABAcW4OrBYaciGEENJAA4+dO3fir7/+Eh/eZWc2m7F48WJ88803UKlUGDVqlJg3a9YsAMCCBQtw5swZMX337t1YsmQJtFotJk2a5LS9xx57DKGhofj111+xevVqMT0rKwsvvPACADhNOAYAPXr0QJ8+fZCVlYUXX3xRTLdYLJg6dSrMZjOmT58uTnIWyII0WsgUSgiCgMLsbBpyIYQQ0jCf1bJs2TIGgEVGRrJBgwaxMWPGsDvvvJPFxsYyAEypVLIff/zRpd6MGTMYABYUFMSGDx/OhgwZwqRSKZNIJGzNmjVu97Vq1SrG8zzjOI7ddtttbMSIEUyr1TIAbNasWW7rpKamsoiICAaAdezYkY0aNYq1atWKAWC9e/d2mUr9eur7lOmVMRkNLPPcGZZxNpWVFjq3v1+/fmzGjBn+aVgtqu/fASGE+IK3U6Y3yB6Pfv36Yc6cOUhOTsaRI0ewcuVK7Ny5E+Hh4Xj66adx9OhRjBw50qXeBx98gGXLlqFdu3bYsGEDdu/ejTvuuAPbtm1z+2RaAHjggQewbds2DBo0CIcOHcK6devQpk0bLF++HO+9957bOomJiTh06BAmTJiA7OxsrFmzBjzPY968eXX/ZNp6RiZXQB0WDqDsLheLxa/tycjIwJgxY5CUlASe5zFz5kyXMsuXLwfHcU4vx+E0Qggh1dcgJxBr2bJltefpmDBhAiZMmFClOn369MGff/5ZpTrx8fFYtmxZleoEKrU2DIaSYliMRhTlZEPbJNZvbbFPnT937lwsXLjQY7nQ0FCcPn1aXKeJ0AghpHY0yB4P0rDY7nKJAcdxMJQUw1BcPmurxWLBtGnToNFoEBkZiXnz5tXptSAtWrTAokWLMG7cOPF2aU9tbtKkifiKiYmpszYRQkhj0iB7PEjlGGPQW/R+2bdKqnLbOyBTKKDWhqE4Pw+FOdmQqVQAgK+++gqTJk3C3r17sX//fkyePBnNmzfH448/7nb727dvx5AhQyptw5IlSzB27NgafY7i4mIkJCRAEAR07doVb775Jm644YYabZMQQggFHgFJb9Hj5hU3+2Xfe8bsQZDMw3Nq7EMuJhOKcnIA2IakFi5cCI7jkJycjKNHj2LhwoUeA4/u3bvj8OHDlbahpr0TycnJ+PLLL9GpUyfodDq8++676N27N44fP+7x4X+EEEK8Q4EH8RmO56GJikHu1cswFBeBCQJ69uzp1EPSq1cvvPfee7BareLThR2pVCq0adOmTtvZq1cv9OrVS1zv3bs32rVrhyVLluD111+v030TQkigo8AjAKmkKuwZs8dv+66MTKmEMjgEhuKiat3h4quhFkcymQxdunTB2bNna22bhBDSWFHgEYA4jvM43FEfqLVhMBQXQbBasSclxSkvJSUFiYmJbns7AN8MtVRktVpx9OhR3HXXXbW6XUIIaYwo8CA+J1MooAhSAwDS0tIwa9YsPPHEEzh48CAWL17scX4UoHaGWuyBS3FxMbKzs3H48GHI5XK0b98eAPDaa6+hZ8+eaNOmDQoKCvDOO+/g0qVLeOyxx2q0X0IIIRR4ED9Rh4UBAEbcdy9KS0rQo0cPSCQSzJgxA5MnT67TfXfp0kVcPnDgAFasWIGEhARcvHgRAJCfn4/HH38cmZmZCAsLQ7du3bBr1y4xMCGEEFJ9HKvLSRNIrSgsLIRGo4FOp0NoaKhTnsFgwIULF9CyZcsGN7tmXvoVmPR6BGm0CI2M8ndzqq0hfweEEFJbKjtXOaIJxIjfqLW2qdT1hTpYrf6dSp0QQohvUOBB/EauUkGmUIIxhlKdzt/NIYQQ4gMUeBC/4ThOvNZDryuAYLX6uUWEEELqGgUexK8UQWpI5XIIgoDSQur1IISQQEeBB/ErjuOg1tp6PUp1BRAEwc8tIoQQUpco8CB+pwwOgUQmg2C1wlBU6O/mEEIIqUMUeBC/4zgOao0WAFBSkA+6w5sQQgIXBR6kXlCGhIKXSGC1WGAoLvJ3cwghhNQRCjxIvcDzPNRaLQDq9SCEkEBGgQfxm/79+2PmzJniuipEA17Cw2IywVhS4r+GEUIIqTMUeJB6g5dIEBSqBQCUFOTVSa9HRkYGxowZg6SkJPA87xT4OCooKMBTTz2F2NhYKBQKJCUlYd26dbXeHkIIaWzoIXGkXlFpNCjR5cNsNMKkLxWfYltbjEYjoqKiMHfuXCxcuNBtGZPJhIEDByI6OhqrVq1C06ZNcenSJWjLhoIIIYRUHwUeAYgxBqbX+2XfnEoFjuO8Lm+xWDBt2jR88803kMlkmDJlCp6f/jRKC3UoKciv9cCjRYsWWLRoEQDgyy+/dFvmyy+/RF5eHnbt2gWZTCbWI4QQUnMUeAQgptfjdNduftl38sED4IKCvC7/1VdfYdKkSdi7dy/279+PyZMno1nTprj3zjtg0uth0ushV6nE8tu3b8eQIUMq3eaSJUswduzYan+G3377Db169cJTTz2FX3/9FVFRURgzZgxefPFFSCSSam+XEEJILQYe2dnZOH/+PDIzM1FSUgKZTAatVovmzZujTZs29AebuBUfH4+FCxeC4zgkJyfj6NGjWPThh3jogfugLyxESUG+U+DRvXt3HD58uNJtxsTE1KhN58+fx+bNmzF27FisW7cOZ8+exdSpU2E2mzF//vwabZsQQhq7agceJSUl+PXXX/Hnn3/in3/+wdWrVz2WVSgU6NKlC+68807cd9996NSpU3V3S7zAqVRIPnjAb/uuip49ezoNzfTq1QvvvfcelCGh0BcWwlhaArPRCJlCAQBQqVRo06ZNrba5IkEQEB0djc8//xwSiQTdunXD1atX8c4771DgQQghNVTlwOPQoUNYvHgxVq5cidLSUgC47t0HBoMBu3fvRkpKCl577TXccMMNeOqpp/DII48gqArd8sQ7HMdVabijPpLK5FAGh8BQXISSgjxoY2IB+GaoJTY2FjKZzKmXrl27dsjMzITJZIJcLq/2tgkhpLHzOvA4dOgQ5s2bhz///BNAebDRpEkT9OjRA926dUN0dDTCw8MRFhYGvV6PvLw85OfnIzU1Ffv27cORI0dgNptx7NgxTJ06FfPmzcMLL7yAp59+GoqyX7SkcdmzZ4/TekpKChITEyGRSKDWhsFQXARDcTEsYSZI5XKfDLX06dMHK1asgCAI4HnbHeepqamIjY2loIMQQmrIq8Bj4sSJ+Oabb8Qnh3bt2hVjx47FAw88gObNm3u9M5PJhG3btuG7777DmjVrkJOTgxdffBGffPIJvv76a9xyyy3V+xSkwUpLS8OsWbPwxBNP4ODBg1i8eDHee+89AIBMoYBCrYaxpAQlBfnQRMfUylCLPXApLi5GdnY2Dh8+DLlcjvbt2wMApkyZgo8++ggzZszA008/jTNnzuDNN9/E9OnTa7RfQgghAMe8mKWJ53nI5XKMHz8ezz77LJKSkmq8Y6PRiJUrV+LNN9/EqVOn8Morr+Dll1+u8XYDUWFhITQaDXQ6HUJDQ53yDAYDLly4gJYtW0KpVPqphdXTv39/3HDDDRAEAStWrIBEIsGUKVOwYMEC8boPk0GPvKtXwHEcIuMTICm7vbUm3N3um5CQgIsXL4rru3fvxjPPPIPDhw+jadOmmDRpkse7Whryd0AIIbWlsnOVI68Cj2nTpuHFF19EfHx8rTYSsA3ZrFy5ElarFaNHj6717QeCQA08vJWXfgUmvR5BGi1CI6P83RwXjeE7IISQ6/E28PBqqOWjjz6qtYZVxHEcRo4cWWfbJw2fWhsOk/4q9IU6qLVhkEhp+hlCCGmo6FktpN6Tq1SQKZRgjKG0sMDfzSGEEFIDFHiQeo/jOKjDwgAApTodBKvVzy0ihBBSXXXeZ/3vv/9i1apVyMnJQcuWLTF27Fg0bdq0rndLAowiSA2pXA6LyYTSQh2Cw8L93SRCCCHVUKPAY9++fXjqqacglUqxbt06l6d3LlmyBE899ZTTBGNvvPEGVq1ahYEDB9Zk16SR4TgOam0YdFnXUKorQJBGK86xQQghpOGo0V/utWvXYv/+/QgNDXUJOi5cuIDp06dDEATb01LLXkVFRRg1ahSys7NrsmvSCCmDQyCRySBYrTAUFfq7OYQQQqqhRoHH1q1bwXEcBg8e7JL38ccfw2w2Q6VSYfXq1dDpdPjpp5+gUqmg0+nw2Wef1WTXpBHiOA5qje1aj5KCfDAm+LlFhBBCqqpGgYf9wXDuHvr266+/guM4PPHEE7j33nsREhKCESNG4MknnwRjDH/99VdNdk0aKVVICHiJBFaLBYbiYn83hxBCSBXVKPCwD5dEREQ4pV+9ehXnzp0DAJc5Ou68804AwKlTp2qya9JIcTwPtdax1+O6898RQgipR2oUeJhMJgBASUmJU/r27dsBAEFBQbjpppuc8uwP8CoqKqrJrkkA6N+/P2bOnFnleqrQUPASHhaTCcYS6vUghJCGpEaBR1SUbfpqe++G3YYNGwAAPXv2dHm2hcFgAACXi1EJ8RbPSxAUqgVQ9V6PjIwMjBkzBklJSeB53m3g079/f3Ac5/IaOnRoLX0CQghpvGoUeHTv3h2MMSxdulR8cm1ubi5Wr14NjuNw++23u9SxByk1fXQ5adyCNFpwPA+z0QiTvtTrekajEVFRUZg7dy46d+7stszq1auRkZEhvo4dOwaJRIIHH3ywtppPCCGNVo0Cj3HjxgGwDa3ccssteO6559C7d2/odDpIpVKMHTvWpc6uXbsAAK1bt67JrkklGGMwG61+eVX1mguLxYJp06ZBo9EgMjIS8+bN82obvESCoBDbQ4hK8vO93l+LFi2waNEijBs3DhqNxm2Z8PBwNGnSRHxt2LABQUFBFHgQQkgtqNEEYvfddx9GjBiBVatWISUlBXv27BFPGi+88ILL02ytVqvYG3LLLbfUZNekEhaTgM9n/OOXfU9e1A8yheuj4z356quvMGnSJOzduxf79+/H5MmT0bx5czz++ONuy2/fvh1DhgwR1+3/3hwfdb9kyRK3QW91LV26FA899BDUanWtbZMQQhqrGk+Z/sMPP+CTTz7BypUrkZmZidjYWIwfPx4TJ050W/batWsAQOPlBAAQHx+PhQsXguM4JCcn4+jRo1i4cKHHwKN79+44fPiwuF6UmwtDcRHkKiU00U0A1O4w3t69e3Hs2DEsXbq01rZJCCGNWY0DD57nMW3aNEybNu26ZceOHVurv0SJe1I5j8mL+vlt31XRs2dPp96KXr164b333oPVanW5MBkAVCoV2rRpI65bEpojJ+0SACCiWTPIFMpqtty9pUuXomPHjujRo0etbpcQQhqrOn9IHPE9juOqNNzRkFQcagEAMAYGgAMAjqu1oZaSkhL88MMPeO2112q8LUIIITYUeBC/2rNnj9N6SkoKEhMT3fZ2AK5DLQBgNplQkJEOAAiLjUPTCtcWVdfKlSthNBrx8MMP18r2CCGEeBl4ZGRkIDY2tk4bkpmZiSZNmtTpPkj9k5aWhlmzZuGJJ57AwYMHsXjxYrz33nsey1ccarHLD9fCWFICVUgoQkJCKt2nPXApLi5GdnY2Dh8+DLlcjvbt2zuVW7p0Ke69916XmXkJIYRUn1cD8q1bt8b06dPFZ7PUpp9++gmdOnXC559/XuvbJvXfuHHjoNfr0aNHDzz11FOYMWMGJk+eXOXt2KdRNxQXwWo2V1q2S5cu6NKlCw4cOIAVK1agS5cuuOuuu5zKnD59Gjt27MCkSZOq3BZCCCGeedXjYbFY8PHHH+OLL77AyJEjMXbsWNxxxx3g+epNA3L58mV8//33WLZsGVJTU8EYw5gxY6q1LdJwbd26VVz+9NNPa7QtuVIFuUoFk16PEl0BQiOjPJb1Zp6Q5ORkeg4MIYTUAa8Cj2PHjuGZZ57Bn3/+iW+//RbffvstoqOjMXz4cPTs2RM33XQT2rdv73R3gqOcnBzs27cPe/fuxaZNm7Br1y4wxsAYQ9OmTfHqq69iwoQJtfm5SCOk1obDpL8KfaEOam0YJFK6hIkQQuobjlXhZ92uXbuwYMECrF+/Howxp0BDLpcjIiICYWFhCAsLg16vR15eHvLz86HT6cRy9t01a9YMTz/9NJ5++mkolbV7C2SgKSwshEajgU6nQ2hoqFOewWDAhQsX0LJly0Z/HBljyEu/ArPBAHVYGELCI32yX/oOCCGk8nOVoyqNlfTu3Rvr1q3DyZMn8cILL6BFixZiz4XRaER6ejqOHz+OnTt34sCBA7hw4QIKCgrEMnK5HPfccw/Wrl2Lixcv4vnnn6/WH+rS0lL88ssvmDRpEpKTk6FUKqFWq9G5c2e89tprKC72/MTS5cuXo0ePHggODkZ4eDjuuusucRp3T3bu3Im77roL4eHhCA4ORo8ePfD1119XWufKlSuYOHEi4uLioFQqkZSUhPnz54sPySO1j+M48VqPUp0OgtXq5xYRQgipqEo9Hu6kpaVh+/bt2LVrF65cuYLs7Gzk5eVBqVQiKioKUVFR6NixI/r27YsePXpALpfXuNH/+9//xJkt27Vrhw4dOqCwsBC7du1CUVER2rZti3/++QfR0dFO9WbOnIlFixZBpVLhzjvvhMFgwKZNm8AYw6pVq3Dvvfe67Ovnn3/GqFGjIAgCbr31VkRGRmLTpk0oKCjAs88+i3fffdelztmzZ9GrVy/k5OSgQ4cOaN++Pfbv34/z58+jT58+2LRpExQKhdefl3o8vMcYQ+6VNFhMJgSHRyA4LLzO90nfASGEeN/jAdYALV++nE2ePJmdOHHCKT09PZ116dKFAWCjR492ytuwYQMDwCIiIlhqaqqYvmvXLiaXy5lWq2X5+flOdXJzc1loaCgDwH7++WcxPTMzk7Vp04YBYFu2bHFpX58+fRgANn36dDHNbDaz++67jwFg8+fPr9Ln1el0DADT6XQueXq9np04cYLp9foqbTOQlRbqWMbZVHbtwjlmtVrrfH/0HRBCSOXnKkcNMvCozK5duxgAplAomNFoFNOHDBnCALCFCxe61Jk+fToDwN59912n9LfffpsBYMOHD3eps3r1agaA3X333U7pe/bsYQBYdHQ0MxgMTnmZmZlMJpOxsLAwZjabvf5MFHhUjSAILOvSBZZxNpUVF+TX+f7oOyCEEO8Dj+rdD1uPde7cGQBgNBqRm5sLANDr9di8eTMAYMSIES517Glr1651Sv/jjz881hk6dCiUSiU2btzodN2Gvc6wYcNchlNiYmLQt29f5OfnY8eOHdX6fOT6nK71KMgHY4KfW0QIIcQu4AKP8+fPAwBkMhnCw23j+6dPn4bRaERUVBSaNWvmUqdr164AgCNHjjil//vvv075juRyOTp06ACDwYDU1FSv6lS2L1K7VMEh4KUSWC0WGIo8X2xMCCHEtwIu8Fi0aBEAYPDgwWKPQ1paGgC4DToAQK1WQ6vVIj8/H0VFRQBsF8nYbwP2VM+efunSJTHtevtyV4fUPo7nodbYej1KCvJpMjBCCKknAirwWLduHZYuXQqZTIbXX39dTLffXhsUFOSxrlqtBgAx8HC8JddTvYp1vNmXuzoVGY1GFBYWOr0CUf/+/TFz5sw6274qNBS8hIfFbIKxhHo9CCGkPgiYwOPUqVN4+OGHwRjDO++8I17r0RC99dZb0Gg04iu+lp622tjwvARBoVoAQHFZr0dGRgbGjBmDpKQk8DzvMfD54IMPkJycDJVKhfj4eDzzzDM0BwshhNSCgAg8rl69isGDByM/Px+zZs3CjBkznPKDg4MB2CYe86SkpAQAxCeb2utUVq9iHW/25a5ORbNnz4ZOpxNfly9f9liWVC5IowXH87AYjTDpS8VrfebOnesxOF2xYgX+85//YP78+Th58iSWLl2KH3/8EXPmzPFx6wkhJPA0+IdZ5OXl4c4778SlS5cwceJEtxN6NW/eHIBtNlF3SkpKUFBQgLCwMDEgCA0NFSdCuXLlissj0x23l5CQ4LSvQ4cOedyXuzoVKRSKKk0wVhFjDBajsdr1a0KqUHh8Zo87FosF06ZNwzfffAOZTIYpU6bgtddeq9I2KsNLJAgKDUVJQQFK8vPRokUL8TqgL7/80m2dXbt2oU+fPuKDC1u0aIHRo0djz549tdImQghpzBp04FFcXIwhQ4bgxIkTuP/++/HFF1+4PWElJydDoVAgOzsbV69eRdOmTZ3yDx48CADo1KmTU3rnzp2xbds2HDx40CXwMJvNOHbsmDgdumOdX3/9VdxmRZ72VZssRiM+HO96C7AvTP9qFWRVmL3zq6++wqRJk7B3717s378fkydPRvPmzcWZaSvavn07hgwZUuk2lyxZgrFjx4rrQZowlOp0MBn0MOn1kKtUldbv3bs3vv32W+zduxc9evTA+fPnsW7dOjzyyCNefy5CCCHuNdjAw2g0Yvjw4di7dy8GDRqE77//HhKJxG1ZlUqFAQMG4M8//8TKlStdxvVXrVoFwDb3hqOhQ4di27ZtWLVqFR5++GGnvN9//x0GgwF333230zTZQ4cOxWuvvYa1a9fCaDQ69Vxcu3YN27dvR1hYGPr06VOTjx8w4uPjsXDhQnAch+TkZBw9ehQLFy70GHh0794dhw8frnSbMTExTusSqRSqkFCUFupQUpAHuaqph5o2Y8aMQU5ODm655RZb75HFgieffJKGWgghpDbU/Vxmtc9isYjTj/ft25eVlJRct05lU6YrFIoqTZl+7do1r6ZMnzFjhphmNpvZ/fff75Mp0wVBYCa93i8vQRC8/lz9+vVjEydOdEr75ZdfmFQqZRaLpUrH6HrMJhPLOJvKMs6mMpNBL+7f8Tuy27JlC4uJiWFffPEFO3LkCFu9ejWLj49nr732mttt08ylhBDi/cyltdrjodfrceDAAWRmZqK0tBT33ntv5Q+KqaaPPvoIa9asAQBERkZi6tSpbsu9++67iIy0PRr9jjvuwIwZM7Bo0SLceOONGDhwIEwmEzZs2ADGGJYtWwatVutUPzw8HF9++SVGjhyJESNGoH///oiIiMDGjRtRUFCAWbNmoX///i77XbZsGXr16oVFixZh8+bNaN++Pfbt24fz58+jd+/emD17dq0ej4o4jqvScEdDUp2hFgCQymRQBYdAX1yEkoJ8aGNiPdafN28eHnnkETz22GMAgI4dO6KkpASTJ0/GSy+9BJ4PiGuyCSHEL2ol8Lh8+TLmzJmDlStXwmw2i+ndu3d3ujZi6dKlWLJkCTQaDf7+++9qX0CYn58vLtsDEHdeeeUVMfAAbLdI3njjjfjoo4+wYcMGyOVy3HHHHZg3bx569+7tdhsPPPAAtm3bhgULFiAlJQUmkwnt27fHtGnTMH78eLd1EhMTcejQIbz88sv466+/sGbNGjRv3hzz5s3DnDlzanThaKCpeMFmSkoKEhMTPQ6bVWeoxS5IGwZ9cREMxcWwhJk81i8tLXUJLuztYTQRGSGE1ExNu1ZSUlJYREQE43mecRwnvnieZ8ePH3cqe+3aNaZQKBjP8+yvv/6q6a4bjUB9SFy/fv1YcHAwe+aZZ9ipU6fYihUrmFqtZp999lmd7TMv4yrb8NsvbNumjaxbt25szJgx7NChQ07/VufPn89CQkLY999/z86fP8/+/vtv1rp1azZy5Ei322zI3wEhhNQWnwy1FBQUYPjw4cjLy0NsbCzmzZuHvn37omPHjm7LR0dHY8iQIfjtt9/wxx9/YNCgQTXZPQkA48aNg16vR48ePSCRSDBjxgxMnjy5zvan1oZj4D33iusHDhzAihUrkJCQgIsXLwIA5s6dC47jMHfuXFy9ehVRUVEYNmwY3njjjTprFyGENBY1Cjw+/PBDZGVlITIyErt37xbny6jMHXfcgV9//RV79+6tya5JANi6dau4/Omnn/pkn3KlEnnpV2EsLQHHcQiJjEJQqMapjFQqxfz58zF//nyftIkQQvyBMYb8jKsIj3P/bLG6UqOr5NauXQuO4zBr1iyvgg4AuOGGGwAA586dq8muCak2TUwTKNXBYIyhMDsLhTlZdO0GIaRRuXb+LH6Y/yK+m/MMSgryr1+hFtWox+Ps2bMAgFtvvdXrOmFhtieGBuqDz0j9x/M8NDFNIC3IR3FeLkp1OlhMJmhimkAiabBT2xBCyHWVFORjxw9f49jWjQBjkCoUuHb+LFp1vclnbajRX1n7Q7NkMpnXdezPKlFdZ/ZIQuoSx3EIDguHVC6HLusaTHo98q5egTYmFjK664gQEmAsZjMOrvsVe9b8CJNeDwBo1/c29B0zHiHhkdepXbtqFHhER0fjypUruHDhAm66ybtoyX4rZFxcXE12TUitUKqDIW0qQ35mBqxmM/LSL0MTFQNlsOeH+BFCSEPBGMO5A3vxz9f/Q8G1DABAk9aJuG3CZMQltfNLm2oUeNx88824cuUK/vzzT4wcOfK65Rlj4vNU+vbtW5NdkwroGoXqk8oViGgaj4KsTJhKS1FwLRNqkxHBYRFezTVDx54QUh/lXL6ErV//D5eOHAIAqLVh6DtmAtr3vQ2cHydCrNGex44dC8YYvvvuu+tO6gQAzz77LP79918A8Dj5Fqka+zBXaWmpn1vSsPESCcKaxEGttV2DVJKfj4LMDAhW63Xr2o99VYYcCSGkruiLi7Dpy8/w9QtP49KRQ5BIpehx74N49IMluKHf7X4NOoAa9ngMHz4ct912G7Zs2YLbb78dCxYswAMPPCDmWywWpKenY+fOnfjwww+xa9cucByH+++/3+NMoaRqJBIJtFotsrKyAABBQUG19kj5xkimDoYSQHFeLsxFhTAY9AiJiIJULncpyxhDaWkpsrKyoNVqPc62SgghviBYrfh345/Y9dN3MBQXAQDa3NQL/R6ZBG1MEz+3rhzHathPXFBQgNtvvx2HDh267gmPMYaePXtiw4YNUKvVNdlto1JYWAiNRgOdTuf22TeMMWRmZqKgoMD3jQtQVrMZpYU6MEEAx3FQhWrcBh8AoNVq0aRJEwr4CCF+c+noYWxZ/jlyr6QBACLjE3DbhMlo3qGzz9pwvXOVXY3vHdRqtdi9ezdeffVVfPLJJ9DpdG7LBQUFYdq0aXjttdcg9/AHnFQPx3GIjY1FdHS007NySM2UFuqwedkSZF88D3Acug29Fx0H3OkUYMhkMurpIIT4TUFmBv75dinO7ksBACiDQ9Bn1CPodPsg8PX0b1ONezwclZSU4J9//sH+/fuRlZUFq9WKiIgIdOnSBXfccQc0Gs31N0JceBtFktpnMZux+ctPcXTz3wCAtn364c4np0Mmp1tuCSH+Y9KXImXNTzj4xy+wWizgeB43DhqKXiPGQOWnu/K8PVfVauBB6gYFHv7FGMO/f6/Dlq8+h2C1Irplawx/bi5CI6P83TRCSCPDBAHHt23Gju+/EmccTejUBbeNfxwRzbybQbyuUOARQCjwqB8uHz+CtQv/D/qiQgRptBg2azaatb3B380ihDQS6aknsXnZ57h2/gwAQNskFv3HPY5WXW+qF9eYUeARQCjwqD90Wdfw67sLkH3pAniJFLc/+iQ63THY380ihASwotwcbF+xHCd3bAUAyFUq9HxgNLoMHgZpPbqN3+eBR25uLnbv3o3z58+jqKgIVi/mP3j55ZdrY9cBjwKP+sVsMOCvzxYhdfd2AEDngXfhtgmPQyKtP38ACCENn9lkxP61q7H311WwGI0Ax6FD/4G45aFHxDmH6hOfBR6ZmZmYNWsWfv75Z1gslirV9SY4IRR41EeMMez9ZSV2/PgNwBiateuAYc/8B0Earb+bRghp4BhjSE3ZiW3ffYnCbNscTU3btsdt4ycjplUbP7fOM58EHtnZ2bj55ptx6dKlak0bLQhCdXfdqFDgUX+dO7AX6xa/A5PeNtHY8OfnIqZla383ixDSQGVdPI8tyz/HlZPHAAAhEVG49eGJSO7Vt15cx1EZnwQeU6dOxWeffQYAePDBBzFlyhR07twZWq223h+ghoQCj/ot98pl/Pru68jPSIdUrsCgJ6ejbZ9+/m4WIaQBKdUVYMeP39hu3WcMUrkCN93zAG66537IFEp/N88rPgk8mjdvjqtXr+KRRx7B8uXLq7sZch0UeNR/hpJi/PHhO7h4+AAAoMfwEejz0CPg+fo5gQ8hpH6wWsw49Nfv2L3qe5j0tuc+Jfe+FbeOnYDQyGg/t65qfBJ4qFQqmEwmbNmyBbfeemt1N0OugwKPhkEQrNjx/dfY99vPAICWXbpj6PTnoQiixwMQ0tgxxmDS62EsKYahpBjGkmIU5mRjz5qfkJ9xFQAQ3bI1bpswucHepu+TKdPj4uJw8eJFeu4KIQB4XoJbx05EVEJL/P3Zh7hwaD++e+lZ3Pv8XITHNfN38wghNSQIVhhLS2EsKbEFEMXlQYTju8Eh31havs48XNcYpNHiltHjcEO/2xtFL2mNAo9bb70VFy9exNGjR9GtW7faahMhDVq7W/ojPK4Zfnl3AfLTr+C7ObMwdMbzaNXlJn83jRBSxmIyIfdKGkoLdWVBQ0l54FBsCyKMpcUwFJeIQYVRXwrUcAYKiVQKhToYSnUwFMHBiG/fET2GPwhFUFAtfbL6r0ZDLcePH0e3bt2QmJiIffv2QalsGBfANDQ01NIwlRTkY+3Ct3D11AmA43DLQ+PQY/gIuvCaED8oKchH+umTuJp6EumpJ5F1/iysVZwCwk6qUEBpDx7UajGQsK0HQxkcDEWQ2vbumBccDKlMHrB/A3w2j8f333+P8ePHo2fPnvjf//6HpKSkmmyOuEGBR8NltZix+cslOLLpLwBAcq++GDRlRoO5Sp2QhkgQrMhJu4T01FNILws0dNcyXcqpQkIRHB7hHDCog6EMUkMR7DmYoMkC3fPpzKX79+/H0KFDkZubi06dOiEpKQlB1+k24jgOS5curemuGwUKPBq+fzesw+ZlS2wPmWvRGsOff6nBXbFOSH1lLC1BRuopXC0LNDLOnIbZoHcuxHGIjE9AXFJbNE1uj7ikdtDENAnY3gd/8FngkZqaisceeww7d+70ug5jDBzH0cylXqLAIzBcOXEMvy18C/pCHVShGtw17Vm06NzV380ipEFhjKHgWgbST58s6804hZzLl1yuvZCrVIhNbIu4pLaIS2qH2MRkusOsjvkk8EhLS0OPHj2QnZ0tzlwaEhICrVYLnuevW//ChQvV3XWjQoFH4CjMzsIv7y5A9sXzAIDOA4fg1ocfhVyp8nPLCKmfzCYjrp0/WxZo2Ho09IU6l3KamCaIS2qHpsntEJfUDhHxzRvFHSL1iU8Cj8ceewxffvkleJ7HrFmzMHXqVLRo0aK6myMeUOARWMxGA7Z9txyH1/8OANBEx2DQlJmIb9/Rzy0jxP+K8/NsPRmnba9rF85BsDpfBCqRShHTKhFxye3EHo36+NC0xsYngUfLli2RlpaGmTNn4r333qvuZsh1UOARmC4dPYz1ny1CUU42wHHoOuQe3DJ6HGRyhb+bRohPCFYrstMulgcaqadQmH3NpVyQRou4pHaIS7b1aES3bFOvHgdPbHwSeAQFBcFoNGL79u3o3bt3dTdDroMCj8BlLC3F1q//h2Nb/gYAhMU2xeCpzyAuqa2fW0YCkdViRsG1TORnpKMg4yoMJcUQBAFMEMAEK5jAHNYFpzyXdOa5jPtt2Jet4rKhqAhmo8GpjRzHI7J5ghhoxCW1gyY6hi4CbQB8MnNpbGwsLl68CLlcXpPNENJoKYKCMOjJ6Ui8uRf+XrIY+RlX8cPLL+Cm4Q+g14gx9KuOVJkgWFGYnY2CjKvIy0hHQWY68jOuIj8zHYVZWWCsfj0VXK4KQmxictn1Ge3RpE1So5pMqzGqUeAxcOBAfPHFF9i3bx+6d+9eW20ipNFp1eUmjH/3Y2xZtgQnd2zF3l9W4vzBfRg89RnEtGzt7+aReoYxhuK8XORnlAcV+RlXUZCRjoJrmS7XRDiSKVUIi41DWJM4BGm04HgeHM+Dr/BuW5a45Fe1DM/x4MrKVMyXKVUIi4uji0AbmRoNtZw9exZdu3ZFeHg4Dh48iPDw8NpsGylDQy2Ny5m9u7Dhi4+hL9SBl0jQ8/6H0OPeByGR1uh3AmlgGGPQFxUiP905sMjPuIr8axmwGI0e60pkMmhjYhEW29QWZMQ2RViTOITFNbUFGzRsQeqAz+bx2LRpE0aOHIno6Gh8+OGHGDhwYE02R9ygwKPxKS3UYeP/PsaZPbsAADGt2mDw1GcQGZ/g55aR2mYoKbYFFPYhEXF4JB3G0hKP9TiehzamCbRNHAKLskAjJCISnBdTGhBSm3wSeAwYMAAAcPXqVZw5cwYcx0Gr1SIxMdGrmUs3bdpU3V03KhR4NE6MMZzatQ2bl34KQ0kxJFIpeo98GN2H3Udd0w0UYwzZly7g/MF9uHT0EHKvXHY7J4WI4xASEekSWITFxiE0KoZ6wUi94pPAg+d5scvO281wHEczl1YRBR6NW3FeLjZ88RHOH9wHAIhNaovBU55BeFxTP7eMeMOkL8Wlo4dx4dB+XDi0H8X5eS5l1NowhMU2Leu9iBOvwdA0iaXbq0mD4ZPAo3///jUaK9yyZUu16zYmFHgQxhiOb92ILV99DpNeD6lcgb5jxqPLoLupS72eYYwhP+Mqzh/chwuH9uPKyeNOF3tKFQokdLwRLW/shiatkxAWGwe5iu7iIA2fTx8SR+oWBR7ErjAnC+s/+xBpRw8DAOLbd8SgKTOhiY7xb8MaOYvJhMsnjuLCof04f2ify5NQtU1i0arLTWjZpTuatesAKU1BQAIQBR4BhAIP4ogxhn83/Il/vl0Ki9EImVKF/o9MQsfbB9HdCj5UmJ2F84f248KhfUg7dgQWU/ldJhKpFM3ad0TLG7ujVdfuCIulYTES+CjwCCAUeBB3CjIz8NenH+DqqeMAgBadu+LOJ6YjJCLSzy0LTFaLBempJ229Ggf3IfdKmlN+cHiE2KvRvGNnevAfaXQo8AggFHgQTwTBioPrfsOOH76G1WyGIkiN2yZMRvtbB1DvRy0oKcjHhcMHcOHQflw6csjp9laO4xGX3LasV+MmRDZvQcecNGq1GnikpZVH9s2bN3ebXh2O2yKeUeBBrif3ymX89cn7yDx3BgDQuntPDHz8KXpiZxUxQUDm+TM4f9B2B8q182ec8lUhoWh5Yze07NIdCZ27QhUc4qeWElL/1GrgIZHY5gzgOA4Wi8UlvToqbot4RoEH8YZgtWLfbz9j18oVEKwWKENCccekqUjudYu/m1avGYqLcfHIQdvtrocPuMyrEdOqDVp2uQmtunRHTOs2NIcKIR7UauDBl92uV3HuDb4Gt/HRPB7eo8CDVEXWxfP465OFyL50AQCQ3PtW3P7ok1CFNO5/O4wxGIqLUJSbg6LcbORcTsOFQ/uRnnoSTCh/cJpcFYQWnbqgZZfuaNmlO/UaEeKlWn067bJlywDAZfzSnk4IqT+iW7TC2DffR8rPP2DPLytxetc2XDlxFAMnT0Prbjf7u3l1xqQvtQUVOdkozM0RA4wih2VPzzeJaNYcLbt0R6su3RGX3J5mBCWkDnl9cSlf9jTBI0eOoH379nXdLuKAejxIdWWeTcWfnyxE3tXLAIAb+t2B2yY8DkWQ2s8tqxqLyYSivBwU5TgGE9koyikPLCp7rokjVagGIRGR0ETHoPkNndGyS3eaB4WQWlDrd7XYp0c/evQoBR4+RoEHqQmLyYSdP32L/b+vARhDcEQkBj0xHS06d/V30wDYrk0pzs8Vg4rCHOdeiqLcnMqfZ+JAEaRGSEQkQiKjbO8RDu+RkQgJj6TJuwipIxR4BJDaDjwKrpVCG0NTNDc2V0+dwF+fLkRBZgYAIDyumTjdOsdxAMeBs63YXgA4cABnH2blbMkch7KSgOM6V5YPrnxYloNLnm2ZE4dGSvLzwVj5NRaeSOUKt0FFqEMaTT1OiP/U6jUeJHBknC3A6vcOIummGPS6rw2Cw+gBVI1F07btMe7txdi2YjkOr/8deelX/N0kES+RIjg8whZIRFbopSgLMJTBITRPBiEBgAKPRibjnK3LOnXvNZz/NwfdhyTgxtubQyKjB401BjKlErc/+iS6DhmGotzcslRme7o0AxgYwGwvBpS9M3uxsqdQM9jemEN5OJQryxe3W74tcRmAVC4XAwy1RksPuyOkkaDAo5HpOigBzdqGYfuPqcg8X4iUX87jxM4M9H0wES060VTbjUVYbFN6fgghxC/oJ0YjFJ0Qivuf74Y7JrZHkEaOwmw9/vjkCNYu/hcF10r93TxCCCEBrMoXl3bv3h1qdc1vxeM4Dps2barxdhqDuryrxWSw4MCfF3F442UIVgZewqHz7fHoflcLyJXUIUYIIcQ7dXZXS21gjNV45tIDBw5gw4YN2Lt3L/bu3YurV6+K267M8uXL8cknn+DEiROQy+Xo2bMn5s6di969e3uss3PnTrzxxhtISUmByWRC+/btMW3aNIwbN85jnStXrmDevHlYv3498vLy0Lx5c4wePRqzZ8+GUqms0mf1xe20BddKsWPlGVw6Zhv3DwqVo/f9rZHUowk4ni7oI4QQUrk6Czxq62G2NQ087r33Xvz6668u6ZW1b+bMmVi0aBFUKhXuvPNOGAwGbNq0CYwxrFq1Cvfee69LnZ9//hmjRo2CIAi49dZbERkZiU2bNqGgoADPPvss3n33XZc6Z8+eRa9evZCTk4MOHTqgffv22L9/P86fP48+ffpg06ZNUCi8v5vEl/N4XDyagx0/nYEuWw8AaNIqFH1HJSE6geYPIYQQ4lnAz+Px9ttvo6SkBDfddBNuuukmtGjRAkaj0WPgsXHjRgwcOBARERHYvXs3EhMTAQC7d+9G//79ERQUhAsXLkCr1Yp18vLy0LJlSxQWFuLnn3/G/fffDwC4du0abrnlFpw9exZbtmxB//79nfZ1yy23YOfOnZg+fToWLVoEALBYLBg5ciTWrFmD+fPn45VXXvH6s/p6AjGrWcC/my9j37qLsBitAAe07x2Lm4e3RlAoTb5ECCHEldfnKuYljuMYz/Ps+PHj3lbxKYVCwSr7OEOGDGEA2MKFC13ypk+fzgCwd9991yn97bffZgDY8OHDXeqsXr2aAWB33323U/qePXsYABYdHc0MBoNTXmZmJpPJZCwsLIyZzWavP5tOp2MAmE6n87pObSjON7C/vzzGPnpiE/voiU3s85n/sMOb0pjFYvVpOwghhNR/3p6rGsVdLXq9Hps3bwYAjBgxwiXfnrZ27Vqn9D/++MNjnaFDh0KpVGLjxo0wGAwudYYNG+YynBITE4O+ffsiPz8fO3bsqMEn8g21VoGBE2/A/c91RWR8MEx6C3b8dAY/vbEPl0/l+bt5hBBCGqBGEXicPn0aRqMRUVFRaNasmUt+1662Z1YcOXLEKf3ff/91ynckl8vRoUMHGAwGpKamelWnsn3VZ7FttHhw9k3oPzYZymAZ8tJL8NsHh/HXkqMozNH7u3mEEEIakEYReKSlpQGA26ADANRqNbRaLfLz81FUVATANlal0+kqrWdPv3Tpktf7clenIqPRiMLCQqeXv/E8hxv6NsXYV3ui423NwPEczh3KxopX92Dv2vMwm6p/oTAhhJDGo1EEHsXFxQCAoCDPD5Cyz01iDzzsdSqrV7GON/tyV6eit956CxqNRnzFx8d7LOtrSrUMt45KwqiXbkLTZC2sZgH7/riIFa+k4NzBrFq764kQQkhgahSBR0Mze/Zs6HQ68XX58mV/N8lFRNNgDJ/ZBYMe74DgcAWK84z46/Nj+PWDw8i9Wnz9DRBCCGmUvJ6a8sKFCwCApk0b3vMdgoODAQClpZ6nAy8pKQEAhISEONWx13N3a1DFOt7sy12dihQKRZXm+fAXjuPQpls0EjpG4ND6Szj4dxquns7Hj2/sQ8d+TXHT3S2hVMv83UxCCCH1iNc9HgkJCUhISIBU2vCm0W7evDkA22yi7pSUlKCgoABhYWFiQBAaGgqNRlNpPXt6QkKC1/tyV6ehk8kl6DGsFcbMvxmtukSBCQxHtlzBd/NTcHz7VQgCDb8QQgixaRRDLcnJyVAoFMjOzhanVnd08OBBAECnTp2c0jt37uyU78hsNuPYsWNQKpVISkryqk5l+woEoZEqDHmiI+6ZcSPCYtUwFJux9bvTWPV/+5FxTufv5hFCCKkHGkXgoVKpMGDAAADAypUrXfJXrVoFwDb3hqOhQ4c65Tv6/fffYTAYcMcddzg9e8VeZ+3atTAajU51rl27hu3btyMsLAx9+vSpwSeq3+LbhWPU3Jtwy4OJkKukyE4rwup3DmDDsuMoKTBefwOEEEICVqMIPABg1qxZAIAFCxbgzJkzYvru3buxZMkSaLVaTJo0yanOY489htDQUPz6669YvXq1mJ6VlYUXXngBAPDss8861enRowf69OmDrKwsvPjii2K6xWLB1KlTYTabMX36dMhkgX3tg0TCo/Pt8Rj7ak+07xMLcEDqnmv4bn4KDq6/BKtZ8HcTCSGE+IHXz2qpb/744w+8/vrr4vrevXvBGMPNN98sps2bN0/sgQDKHxIXFBSEgQMHwmQyYcOGDdd9SNzIkSPBGEP//v0RERGBjRs3oqCgALNmzcJ7773nUufMmTPo1asXcnNz0bFjR7Rv3x779u3D+fPn0bt3b2zevLnePiSurmRdKsS2H1Jx7YJtTpLQSCV63N0SiT2agKen3xJCSINX6w+Jq2+WL1+OiRMnVlpm2bJlmDBhgku9jz76CCdPnoRcLkfPnj0xb9489O7d2+N2du7ciQULFiAlJQUmkwnt27fHtGnTMH78eI91Ll++jJdffhl//fUX8vLy0Lx5c4wePRpz5sxxGprxRiAEHgDABIbUvZnYtfocSgtNAICwJkHoMawVWneJAkcBCCGENFgBH3g0JoESeNiZjVYc3XoFB9dfgrHUAgCIaBaMm+9phRYdI8BxFIAQQkhDQ4FHAAm0wMPOqLfg302X8e/GNJgMtinXo1uEouc9rdCsXRgFIIQQ0oBQ4BFAAjXwsDMUm3FoQxqObLkMi8l20WlcohY339MKcYla/zaOEEKIVyjwCCCBHnjYlRaacPCvSzi27SqsFlsAEt8+HDcPa4WYloH7uQkhJBBQ4BFAGkvgYVecb8D+Py/h5I50cdbTFp0icfM9LRHZzPNU84QQQvyHAo8A0tgCDztdth77113A6ZRM2P+VtukWjR7DWiKsidq/jSOEEOKEAo8A0lgDD7v8zBLs+/0CzuzPAgBwHJB0cxPcNLQlNFEqP7eOEEIIQIFHQGnsgYddzpVi7F17Hhf+zQEA8DyHtn1i0X1IC4SEV21uFEIIIbWLAo8AQoGHs2sXC7H3t/NIO5EHAOClHDr0bYqugxOg1ng/IywhhJDaQ4FHAKHAw730MwXY89t5pJ8pAABI5Tw69m+GrncmQBkc2M/CIYSQ+oYCjwBCgYdnjDFcOZWPPb+dF58DI1NK0Pn2eNx4R3MoVFI/t5AQQhoHCjwCCAUe18cYw6WjuUj57TxyrxQDABRBUnS5szk63RYPmULi5xYSQkhgo8AjgFDg4T0mMJw7lI29a88jP7MUAKAKkaHb4Ba44dY4SGUUgBBCSF2gwCOAUOBRdYLAcGbfNexdex6FOQYAgFqrQPe7WqBd71hIpLyfW0gIaaysFgG6bD0KrpXCbLSK6U6Pp+IcFzmXNEeenmslJrvblkN60yQtFEE1vy6OAo8AQoFH9VmtAk7tysD+dRdRnG8EAIREKNFtcAJado5CUKjczy0khAQixhgMxWbkXytFQWZp2XsJ8q+VojDHACbUn1PvyDk3Iap5zWeFpsAjgFDgUXNWs4DjO9Jx4M+LKC00iekRTdVo1jYczdqGIS5RC7mSLkYlhHjPahVQmK1HfmYpCq45BxjGEovHejKFBNqYICjVtr85ns7EzunM6a3yem4yPNS7fXw7aGOCPLbVWxR4BBAKPGqP2WTF0a1XkLr3mngRqh3Pc4hpFYpmbcMR3zYM0S1DIZHQkAwhBGLvRX5miS3AKAs0CrP14jOlXHBASJgSYU2CoI0JcnhXI0gj9zhE0lBR4BFAKPCoG6WFJlxNzceVk3m4fCofRbkGp3yZQoK4JC3iy3pEwuPUAfeHghBSTrAKKMwxOAUY9mESQ7HZYz2pQoKwmIrBRRA00UGQyRvPBe0UeAQQCjx8Q5etx5VTebh8Mh9XT+fDUOL8h0YVKkez5DDEtwtDs7bhNE07adAYY2ACg2BlEOzv9pcgQLA65FsdywlieVaWbrUKHrblUNZNOhMAcLaLIDmOK1u2Xf7I8QDEZVvAz3GOy5z7upxrHseVbct+jSZvWxasDIU55cMkumw9BKvnU2JwuMIWYDRRl70HISwmCGqtgn6UgAKPgEKBh+8xgSHnSjEun8rD1VP5SD9TAItZcCqjiVbZekPahaFpUhiUapotldQfjDEYSywozNWjKNeAwlxD2Xv5usXhjgpiI5Xzth6LmPJhEW3ZMs0HVDkKPAIIBR7+ZzULyDyvw5XT+bh8Mg9ZFwudL+rigOjmIbYLVduFIba1huYMIXWKMQZjqQVFDgGFPbgoKls2G6oeWPA8B07CgZdw4PmydwnvsGx7cbz7dL4snauY7liWL98GYwxg9osdbb0gjDHbdZBOy7Z3xuBQp/ydMVRYZmVlHZeZ+P/WfuoLDVeW9VyooW0ShGCtQuxVIVVDgUcAocCj/jHqLUhPzcflU7ZrROyTldlJpDxi22jQrG0Y4tuFIzI+BDz9MSNVZNRbbEFEjmtvRVGOHiYvAougUDlCIpQIjVTZ3iOUZe8qKINlLoEADRmQ6qLAI4BQ4FH/FecbcfV0nhiIlOhMTvmKICmaJochvq3t+hBNtIr+wBOYDLYei8Icx96K8gDDWOr5dkw7VajcIZhQIiRCJa6HhCshbUQXNxL/osAjgFDg0bAwxlBwrRSXT+bjyqk8XD2d7/LLNDhMAW1MkHhycHwP1irA0228dU6wCrCYBVgtAqxmVvZetl5h2WIWIFgEWC2svI6n8mZbOed6gks9i1nwaihEFSIr+7ehQmhkeXARUhZcNKa7Jkj95u25imZLIqSWcRyHsCZqhDVRo9NtzSBYBWSlFeFKWSCScV6H4nyjOJOqS32eg1ordw5IKiw39l+xVosAk94Co97i9G57WSusO+QbyvOsFS4W9helWobQyLLv16G3IrQsuKALGkmgoR6PBoB6PAKL2WRF9qVC27h9Xln3ep5t3L443wDBcv3/kqoQme1Xb4XeEvu7QlU/f1NYrQIsJgEWkxVmgxUmQ/0IGnieAy/jIZFykEp5SGQ8JI7vLstl5aQ8eBnvXMepPueSJnUoF6SR02y5JGBQjwch9ZRMLkFcYhjiEl3zmMBQWmhyCkjE97Jls9EKfZEZ+iIzsi4Wut2HXCV132NStq4KkYnXmFitAqwmAWaTFVZz+bvFZC0LEgRYzFbnd3uevVzFd5O7dKHWn08hU0qgUEkhV0khV9reFSqJbV1lX3dcljiVtQcDdOEvIb5DgQch9YhtmEUBtVaBJq00LvkVb6F0F5gYSsww6S3IvVqM3KvFbvYCSGQ8eAkHq0nwPN1zHeI422yPNQka5CopBQyENEAUeBDSgHAcB6VaBqVa5vFpkiaDBcV5RqdgpChXLy6XFJpsF0BWnAGaA6QyHlK5pPxdzkMqK3sX0yukuS1TYRuOZWQS8FK6bZOQxooCD0ICjFwpRXicFOFxarf5VouA4nwjmMCcAgOJlKdggBBS5yjwIKSRkUh5aKJU/m4GIaSRoskCCCGEEOIz1OPRyOiPHkXBylWQxTaBtEksZLFNIIuNhbRJE/AKhb+bRwghJMBR4NHIGI6fQMFPP7nNk4SHQ9akCaSxsZA1aeIcnDRpAml0NDgZPYGVEEJI9VHg0cgob7gBkVOnwpyZCUtmBswZmTBnZoLp9bDm5cGalwecOOG+MsdBGhUFaWwTyJrElgUpZctlQYo0KhIcTyN4hBBC3KOZSxuAup65lDEGQaeDOTMT5owMmDMyYCkLSCwZGbb0a9cAc8X7L92QSiGLjnbtNYmLFXtTJFot3T1BCCF+IBgMsOoKYdUVQCgshLWwEOqbbwavdn8XXFXQzKXEaxzHQaLVQqLVQtm2rdsyTBBgzc0VgxNLZmZZb4lDkJKVBVgsMKenw5yeDr2n/SkUkCckQNm+fdmrHRRt20ESXPN/+IQQEuiYyQRrWdBgLdDBWqizBREFurJ0HQRdIaw613VmMrlsr+Wvv0KZnOSz9lPgQbzC8bxtmCUqCqqOHd2WYRYLLNnZMGc4D+OYM9LF4MSamwtmNMKYmgpjaip0v/xStgOuLBhpJwYkinbtIA0L892HJIQQH2GCAKtOB0GnKw8QdPYgQVe2XFheprB8nek9/azzEs9DEhICXquBJFQDwLcDHzTU0gAE0kPiBJMJlowMGM+dg+H4CRhOnIDh5ElYMjPdlpfGxZb3jLRrB2X7GyCNjqKhGkJIvcIEAUJhISx5+bDm5cKSlwdrXj4sebmwimn5sObmwpKfD2t+PmC11miffGgoJGUvXhMKiUZrW9eE2vI0tsCifF1rW1ar6+RaPG/PVRR4NACBFHh4YsnNheHESRhOnrQFIydOwJyW5rasJDKyLAgpH6qRNWtGwQghpNYwxsoCCdtF9/ZAwjmAyIM1N8/2nl8AWCxV3g+vVtuChlBNWaAQ6ryuKQssKq6HhICTSGr/g9cABR4BpDEEHu5Yi4rEQMRofz93HhBcH4nOh4Y6BCO2d3mLFvXuPyYhjRkzmWAtKYFQXGx76fW2/8+MgTEGCAwAA5jtxYSyZTBAEGxlKryYINhGChgDmPtteSxjtcJaUGALKnLzYM3PKw8qCgq8u6C+Aj44GJKIcEjDwiGJiIA0PAySsHBII8IhCbe9pGXvkrAw8HJ5rR5jf6LAI4A01sDDHUGvhzE1VewVMZw4CWNqKpibPxCcSgVlcrItGLnBNlSjaNMGXAD9RyfEF8SAoagIQnExrMXFEIpLIJTYAghrUXF5MFFSDGuxQ9mSsrLFxWBGo78/SpXxarUtgAgLgyQiApLwsLKgwh5AlAUXEREBF0hUFQUeAYQCj8oxk8l2zciJ8mEaw+nTYKWlroVlMigTEyFv09rWxRkUBF4VBF6lAq+2vXP2tCBVWb7tnVMFgVcpqReFeI0xBlZaCqG0FEJJifN7aSmYVSj/RW//U2z/Nc7EjZSXccq3r8O7fPFPPRPLMJO5LGAoKg8mygIIa3F5MOHuToia4IKCIFGrwalUtmsNOM724u1PLeYAh3TOns/Z0wHOmzIcB3AVtg+HMjwHiUYDaXhEWU9EGCThZcGFPZCgGZ29RoFHAKHAo+qY1QrTpUu2C1gdrhsRCgtrvG1OqRSDET5IZQtIHAIUW5rqukENp1CAVyjAyeXgFApwcgV4hRyQSul6FT9hJpPbIMFaUgLm8O5SpsRNYFFSYhtKCKA/sVxQECTBweDLXpJgNXh1MPiQEPDBalue2p6vtt05UZYmCVaXLavBSemGykBEgUcAocCjdjDGYL6aDsOJ4zCnpUEo1UPQ620nCX0pmF5vO4HoK6SXpfnsBMLztqBELi8PShQKcAo5eHnZslzuvK6QlwcxZWm8ojyg4RS2bfH2dbkcAAMzW8DMZjCzCcxiAcxm27qlLN1UYd1sBrOYxWVYLOVlXMpZHMqZXcsJAjigwq9UruyXqsOv1Iq/Zt39chXrVfiFW0ldhrLeCIegwd2QXa3gOFsgau9lU6vBq1SATFqWXfYr3x5wiu0tr8+5zbevO2yjCvmcTAY+JBiS4JDyYEEMLEKc19Vq6u0jlaIJxAipgOM4yJs1hbxZ0yrXZYyBGY1lXeR6CKUltkDFHqBUTLMHMPbgpdS+XP7OjEYwk8n27njCEwTbFPY1vVefVBsnl7sGChXf1dfJd3jnVCrqxSKkDAUehHiB4zjbEItSCYTX/vaZIIhBiGAPSOxBidEIwWgCMxkd8s1lgUvZutFUvm4yOa875ZsgmGzr9l+8nEwGTiotX7avy8vXIebLXcvKnNfhmC91KCd33g94vsLdCRXvaHC9E8Hbcu7vkCgrV3aHhNgL4S5QoIchElJnKPAgpB7geB6cUgkolaDObEJIIKPAgxBCCGkEGGMwC2aYrCaYBBNMVhPMVjNi1DGQS3x3GzAFHo1Mjj4HV4uvIkQWghB5CILlwVBKlDT+TAghdcAqWGG0GsWTvbhsNTml29/N1gqBQVmgYC/rLnDwVN9oNTrlmwX3F0+vGrYKyeHJPjsmFHg0Mjuu7sC8nfOc0qS8FCEyWxASIg9xWg6WBSNUHopgebDTsmO5YHkwZDyNiRNC6g/GGCyCxePJ3mg1iidkT8FAxXT7idxoNcIolC9XVtfKavY8lrok5aWQ83Kft5ECj0ZGxsvQNLgpikxFKDYXQ2ACLIIF+cZ85Bvzq71dlVTlFIjYAxN7r4rjcqg8FEHSIKikKiilSttLooRKqoJCooCEp6scCGGMwcqssAgWmAUzLILF6WVmZo95jmXM1rJ85povMAE8x9sunobt1mMeFdY53jWvLN8pz2G5Yp6nsgzM7S9/tyd8wexy8r9eAMF8/NTV65FyUsgkMigkCsglcsh5ue3d/uLL32USmVOajJe5lnPMl8ic6ntKs79kvAw8V/sPivMGzePRANTVPB6MMZRaSm1BiKkYReYiFJmKXNZdlk1FKDLblkstbmYHrSE5LxcDEpVUBaVEWb4ucQ1W3K5LHOq7WZfzchpeamDsv2DNglk82VZ8d5fmqYxZMMMqWCEwAVZme7cw28nYMV3MKztRi+lCeZ593bGOmOemnOM2K7bbwsqXSe2R8Q4nfIkcColCTKuY7niidsnzkF5xe/YAw54ul8gh5QP7tz7N40Gui+M4qGVqqGVqQF29bVgEC0rMJSg0FaLYVIxic7HbZXsPiz2wKbWUwmAx2F5WA/SW8jkrTIIJJpMJhaaazzJaGSknhZSXQsJLIOWl4rr4cpMv42Uu5SW8BDJeJqaJ+W62KeHK6wKAANuDrxiY+C4w20PwBCY4pTPGXNPKyjuVge22UTHPi21UbIPLeyV5YlsrK2tfrtBui2Cx/SJnFd4rnojL8ho7DhykvLT831vZy77u+O+wYp678lzZhGL2fxOO//Yq/ju5Xp7Tsjd5Zb95K57wHU/87gICpzTezUleUiGYKAsU/PXrvt6xWgCLHjAbAEvZSxMPyJQ+awIFHnVIr9fjrbfewg8//IC0tDSEh4dj8ODBeP3119G0adUnsaqPpLwUGoUGGoWmRtthjMFoNToFIi7LDuvu0uzL9nS91aFM2brjr0gLs8BitQD1dwiWXIe7k66Ml7meiN2dnMsCQQknAc/xkPAOy2XvUl7qtF6xjISTQMI7r9vL8RwPKVd5fU/Bgbu22oNa0sDZ55sRrACzAhZj2cseDOht62a9LSgw6yvkGxzS7csGN/lutmUxAO560p7cATTp6LNDQIFHHTEYDBgwYABSUlIQGxuL4cOH4+LFi1i2bBl+//13pKSkoFWrVr5vWN4FIP0QwEvKppaWlC1Lyqaedlx3THeXx7spKymbjtnDdjzgOE4cMqlLZsEMo8UIg9UgdnHbx9HdjYNbBavY9W0VrGIZq2B16rqvdBsO4/T2ZatgFYd6XMbDHcbSAYh59l9sFcfO3Y2vi+U5uIzZO47X2x+25VjfXZuc0hzWK7a14ni+Pa3iOgcOEk7iGjRIZOKv9YppMonrr3q/DZeJk5U5vARrhbSKZTzlM0BA2ePhjQAMrg+OE5fdvMP+5inPQz2XUXaHdac8T+kV87zZVsU8x2NnLXtnDstW52MrHuOK+Y5pFZcrbt9dmtV5H4LFNa1iWZc0h/2K9QU3+6hHv3QkCltPh4+H9SjwqCMLFixASkoKevXqhb///hvBwcEAgPfffx/PPvssHn30UWzdutX3DbuwDVg73ff7tXMKRKQOwY7Uls5LywIaqWs5XlqhrENgU7GeWNa5noyXQMZLEMyVBUhweLaH22XY3u3PybjushTgZOX1pZXso7KTCuBFGsrT3DzB1H1dwX05l2Vx427aWc1ld/tz/KPutMzcn3jcnnzcpHu7LXcv8eTnLr+sLiG1igNkKkCqtL1kSkCqAmRKMKkCTKKEVaKElZfDIlHCwitg4RQwc3KYODnMnAJGyGGEDAZODgOTw8CkKGVy6JkMpYIMJYIUJVYZigUZii1SlFgl0FsYjBYBH8iT0MKXn5YuLq19JpMJ0dHR0Ol0OHjwILp06eKU37lzZxw5cgT79+9Ht27drru9Wr249PRfwK7Frr8aPEb2bv6QeypLf5AJccE4W48hgy3gZJxEDFRZxQe3gQNzfBicWAZl5Wx5zKGOuOxVXvl2nPYtcngwnWOeU89ShTqe8sTn09na4VTLYYVxEgjgwTgJWNlxYhwvpgngHMpwEMBDgAQCx4PBvu7w4uzLHKxlaVbYtmstewngIDAOVti2b9+e1WHb1grbtZV13Eb5/iyQwMpsy+Xvtu07tsHCbJ/Nwnhx33pBgmIzD6OVwWixwmAWnN6NFqHOn0+5dtot6NisZsPlAF1c6lc7d+6ETqdD69atXYIOABgxYgSOHDmCtWvXehV41KZVxR3wysXp4oVd4u9R8Ydu+b9w5ubHr2OZivmMCXD6U8CEsv+qtncJWPkyZ0uXcVbIwCDlGKScVXyXcQxSToAUgu2ds9W3lbGnM0hhhYRjkEKAhLP9V7bXkZTtS1qWLgGDBFZIOAESsbuTgWO2Ntu7q7myXgHbn0tWtmwLquxlObFuWbpDPR7lvQ32Zedt2dLLUsr+CNtPEpxYgwPEkwNz+EtdfsKwleW48jr2spx9nStPtzXUeT8QW1f2I7+SdMA2IiD26ts/FWNgHAfGbHsVUGEZtt6d8qMG2zKD0wnB8WTBHE4agkOe4HDicFe34gnHXV1x24yDmfGwMkBgPCwArIyDhXEOdWzflu0kxZevl+WV75MXP6tjG1xP7KTxYrBdUFazoRaljIdCKhHfFVIeSpnzu0LGQymVQGEvU2G94jaahwfVyif0FgUedeDff/8FAHTt2tVtvj39yJEjPmuTncUqoNhYV+N59lOyF1ePV+iBJ6Sh4jmA5zjwHAeOA6QcJ6ZxHMDzHCT2a3fEsmXXujg+pV68BqYsDXC4ngZiotiHwXEOy/ZszqkDomJ9jnMua+fyY8LlR4Xzf9SKP1Q8lXf90eKaL+E4h2MESHjbsbSlQVzmHfM4rmwZDssO5SrU4Tjb9m3L5fmc/XtC+ffFlR2oimmcw3dmP86OZRy/E96prK0yX6GefTtyKe82WFA6BA32dbmk/HqqhowCjzqQlpYGAGjWrJnbfHv6pUuXfNYmu6GdYtGrdQQA1z90dtf7w+WubsXeWU/59u3Zbq8DBMZsQ/CMQWCAILCyX9hl68x+C2hZGcGW51THoUx5umsZVFi3/8Gx/zHmyv6qO6Xb/1C4/NGw/9Eq+7SO6aj4x8hWl+edt1Hem8DKL9NwcwIQ8x2OGyvrdihPh9NxFbfF3OynrBzn7nOWfVn29Yp/eN19Vo/Hyc0fWnf1/UnicPJxDAjEAIF3DBYcyzocmwA4ERDiSxR41IHi4mIAQFCQ++4rtdo2aUZRUZHbfKPRCKPRKK4XFtbefBYhShlClDS9OSGEEP+gGVXqobfeegsajUZ8xcfH+7tJhBBCSK2gwKMO2G+dLS11P514SUkJACAkJMRt/uzZs6HT6cTX5cuX66ahhBBCiI/RUEsdaN68OQDgypUrbvPt6QkJCW7zFQoFFApF3TSOEEII8SPq8agDnTt3BgAcPHjQbb49vVOnTj5rEyGEEFIfUOBRB/r06QONRoNz587h8OHDLvmrVq0CAAwbNszHLSOEEEL8iwKPOiCXyzFt2jQAwFNPPSVe0wHYpkw/cuQI+vXr5/PJwwghhBB/oynT64jBYED//v2xZ88exMbGom/fvrh06RL27NmDqKioKj0krlanTCeEEELqgLfnKurxqCNKpRJbtmzBvHnzEBQUhF9++QWXLl3ChAkTcPDgQf88mZYQQgjxM+rxaACox4MQQkh9Rw+JCyD22LA2ZzAlhBBCapP9HHW9/gwKPBoA+9TqNIMpIYSQ+q6oqAgajcZjPg21NACCICA9PR0hISH0QKpaUFhYiPj4eFy+fJmGrvyEvgP/o+/A/wLtO2CMoaioCHFxceB5z5eQUo9HA8DzvMcn3ZLqCw0NDYj/7A0ZfQf+R9+B/wXSd1BZT4cd3dVCCCGEEJ+hwIMQQgghPkOBB2l0FAoF5s+fTw/i8yP6DvyPvgP/a6zfAV1cSgghhBCfoR4PQgghhPgMBR6EEEII8RkKPAghhBDiMxR4EALgp59+wtChQxEbGwuNRoNbb70VO3bs8HezGo3ly5eD4ziX19atW/3dtEblq6++QqdOnaBWq9GiRQu88MILKC0t9XezAtb+/fsxbtw4tGnTBhzHYe7cudUq09DQBGKEAPjggw+QmJiIjz/+GMHBwVi2bBluv/127N27F507d/Z38xqNHTt2QCKRiOvt27f3Y2sal9WrV2PChAl44YUXMGjQIJw6dQqzZ8+GTqfDkiVL/N28gLRz506kpKTglltuQU5OTrXLNDR0VwshAHJzcxERESGuC4KAjh07ok+fPvj888/92LLGYfny5Zg4cSLMZjOkUvo95A+jRo1Ceno6tm/fLqa98sorWLx4MXJzc/3YssAlCII4tXiLFi3w8MMPY8GCBVUu09DQUAshgFPQAdimqe/QoQMuXLjgpxYR4lsWi8Vl2m6NRgNBEPzUosBX2fNMqlKmoQm8T0QavdLSUvzyyy+YNGkSkpOToVQqoVar0blzZ7z22msoLi6+7jasViv27duHNm3a+KDFgaUmx79p06aQSqXo1KkTVq1a5cNWB5bqfAfjx4/Hxo0bsXr1ahQVFWH//v1YvHgxpkyZ4odP0PDUxt+dRoMREmC++OILBoABYO3atWMPPvggGzRoEAsJCWEAWNu2bdm1a9cq3cYHH3zAJBIJO3LkiI9aHTiqc/z/+usv9sYbb7CNGzeytWvXsnvvvZcBYL/88oufPkXDVt3/A0uXLmUymUys+/DDDzNBEPzwCRqemv7dSUhIYC+99FKl+/CmTENAgQcJOMuXL2eTJ09mJ06ccEpPT09nXbp0YQDY6NGjPdZPSUlhSqWSzZ8/v45bGphqevztbrnlFtajR4+6amZAq853sHHjRhYSEsLmz5/Ptm7dyr744gsWFRXFnnvuOV82vcGq6b97CjwICVC7du1iAJhCoWBGo9El/8KFCywmJoY9+OCD9EuvDlzv+Dt65513mFwu91HLGg9P30Hnzp3ZpEmTnMquWLGCSSQSlp6e7utmBhRv/t03psCDrvEgjYr91lij0ehypX5BQQGGDh2KFi1a4KuvvgLHcf5oYkCr7PgT3/D0HaSmprrcOt65c2dYrVZcvHjRl00MOPTv3hndt0YalfPnzwMAZDIZwsPDxXSTyYT7778fpaWl2Lx5M1Qqlb+aGNA8Hf+KGGNYs2YNunTp4qumNRqevoP4+HgcOnTIqezBgwcBAAkJCb5rYADy9t99Y0GBB2lUFi1aBAAYPHiw06Oop06din/++QdffPEFLly4IN5Gq1Ao6ORXizwd/xEjRqBHjx7o1KkTjEYj/ve//2H37t347bff/NXUgOXpO5g8eTJefPFFxMXFYcCAAUhNTcXcuXNxzz33IC4uzl/NDQiejnl2djb++ecfALa7Yk6dOoVVq1ZBrVZjyJAhXpdpcPw91kOIr/zxxx+M4zgmk8nY4cOHnfISEhLEK9IdXwkJCf5pbACq7PjPnj2bJSYmMpVKxVQqFevduzf7448//NTSwFXZd2CxWNj777/P2rVrx1QqFWvRogV7+umnWUFBgZ9aGxgqO+Zbtmy57t8db8o0NDRzKWkUTp06hd69eyM/Px8ffPABZsyY4e8mNSp0/P2PvgPfo2PuHl1cSgLe1atXMXjwYOTn52PWrFn0n9/H6Pj7H30HvkfH3DPq8SABLS8vD3379sWJEycwceJELF26lO5W8SE6/v5H34Hv0TGvHAUeJGAVFxeLT5i9//778dNPPzk9+ZTULTr+/kffge/RMb8+CjxIQDIajbjrrruwefNmDBo0CL/99hvkcrm/m9Vo0PH3P/oOfI+OuXfoGg8ScKxWK0aPHo3Nmzejb9++WL16Nf3n9yE6/v5H34Hv0TH3Hs3jQQLORx99hDVr1gAAIiMjMXXqVLfl3n33XURGRvqyaY0CHX//o+/A9+iYe48CDxJw8vPzxWX7HwJ3XnnllUb/B6Au0PH3P/oOfI+OuffoGg9CCCGE+Axd40EIIYQQn6HAgxBCCCE+Q4EHIYQQQnyGAg9CCCGE+AwFHoQQQgjxGQo8CCGEEOIzFHgQQgghxGco8CCEEEKIz1DgQQghhBCfocCDEOKif//+4DgO/fv393dTGqUWLVqA4zhMmDDB300hpNZR4EGIj+3evRscx0GtVsNisYjpBQUFkEgk4DgOaWlpNdrHxYsXwXEcnbz8xB44VHzJZDJERkbilltuwSuvvIL09HR/N5UQn6PAgxAf27lzJwDg5ptvhlQqdUoXBAHx8fFo3ry5v5pH6pDFYkFubi527tyJV199Fe3atav0gWKEBCJ6Oi0hPmYPPG655Ran9O3bt7tN94etW7f6uwkBIS4uDuvXrxfXzWYzLl68iGXLlmHt2rUoLCzEQw89hJSUFHTp0kUsd/HiRT+0lhDfoB4PQnxs165dAFwDjB07drhNJw2XTCZDhw4dxFeXLl1w33334bfffsOsWbMAACaTCQsWLPBzSwnxHQo8CPGhs2fPIisrCxKJBL169RLTDQYD9u3bB4ACj8bi1VdfhUqlAgD8/fffEATBzy0ixDco8CDEh+zDLJ06dUJISIiYvnfvXphMJmi1WnTo0MFfzRNVdleL44Wry5cvBwBs2LABw4YNQ5MmTaBQKNCyZUtMmTIFV65c8Wp/W7Zswfjx49GqVSsEBQUhNDQUHTt2xPPPP3/dCzCPHTuGBQsWYNCgQWjWrBkUCgWCg4ORmJiI8ePHIyUlpdL6r7zyivh5AECn0+H1119Hly5doNVqnT5nbQoODkb79u0BAMXFxcjLyxPzvL2r5ezZs3jmmWfQsWNHaDQaqFQqtGrVChMmTMD+/fu9asfFixfx4osvolu3boiIiBAvgO3bty9eeeUVnD9/3mNdnU6Ht956C3369EFUVBTkcjliY2MxbNgwrFq1CoyxSve9Zs0a3HvvveL3FhISglatWqFv376YN28e9u7d69VnIA0MI4TUiWXLljEANX5duHChyvu+cOGCWH/8+PFVrt+vXz8GgPXr16/SbS9btoz95z//8dj2qKgoduLECY/70ev17KGHHqr086vVavbbb7+5rb9lyxavjuF//vMfj22YP3++WC41NZW1aNHCpf6yZcuqdPwSEhIYAJaQkFBpuZ49e4r7yMzMdKlf2Xf3zjvvMJlM5vEzcxzH5s2bV+n+r7cNT/8GGGNs48aNLCIiotK6d911FysqKnKpa7FY2IMPPnjd761bt26Vtp80THRxKSGk2r744gvs2rUL/fr1wxNPPIGkpCQUFBTg66+/xtdff43s7Gw8+uij2L17t0tdxhhGjBiBP/74AwAwbNgwjBw5Eq1atQLP89i7dy/ee+89pKWlYcSIEdi5cye6d+/utA2LxQK1Wo2hQ4diwIABaNu2LUJDQ5GVlYXjx4/jww8/xKVLl/B///d/SEpKwsSJEyv9PCNGjMDVq1fx9NNP45577kFYWBjOnDmDhISE2jtoDm0/deoUAEAulyMiIsLruu+88w5eeOEFALbesylTpiAxMRFarRanT5/GRx99hN27d+P1119HZGQkpk+f7rKN119/HS+//DIAQKvVYurUqbjtttsQERGBgoICHDx4EKtXrxZ7ghzt3LkTQ4YMgdlsRkxMDJ5++ml07twZcXFxSE9Px48//ohvv/0W69atw/jx4/Hzzz871f/000+xcuVKALahxcceewytW7eGWq1Gbm4ujhw5gr/++gs6nc7rY0IaEH9HPoQEqoKCAnby5Enx5fjrfMeOHWL68ePHmVKpZADYqlWrnOqcPHmSmUymKu/bVz0eANjjjz/OBEFwKffYY4+JZQ4ePOiS//nnnzMATCaTsT///NNtO/Ly8tgNN9zAALA+ffq45GdnZ7P8/HyPn8NoNLKBAweKvQ8Wi8WljGOPB8/zbP369R635y1vejw++ugjcb8DBgxwW9/dd3f8+HGxl2L+/Pluj73VamUPP/wwA8CCg4NZXl6eU/7BgwcZz/MMAEtKSmKXL1/22M60tDSndZPJJPYKDR48mJWUlLitZ/9+AbC///7bKa9v374MALv55puZ2Wz2uO/c3FyPeaThosCDEB/56aefGADWsmVLp/TDhw8zAEylUlUryHDHV4FHbGwsMxgMbrdx6tQpsdyiRYuc8gRBYK1bt2YA2LPPPltpW9atW+c0FFJV9uMLgO3fv98l3zHwePTRR6u8fXc8BR5ms5mdOXOGzZkzh0kkEnG/FQOvygKPRx99lAFg3bt3dxt02OXn5zOFQsEAsM8//9wpb/To0eJwjLugsDJff/01A8CUSiXLysqqtGyPHj0YADZmzBin9MTERAaAPfPMM1XaNwkMdHEpIT7iaZ4O+wWn3bt3h0wm83m7amLEiBFQKBRu85KTkxEcHAwALhconjhxAufOnRO3UZlbb71VXHY3ZOPIaDQiLS0NJ06cwLFjx3Ds2DGnCxz//fffSuuPHTu20vyqunTpksvMpYmJiXjzzTdhtVrBcRwWLFiAwYMHe73NtWvXAgAeeOABt8MgdlqtFh07dgTgfNwEQcCff/4JwHYRseP8Id747bffAAD9+vVDVFRUpWXt313F7y02NhaA7bPk5ORUaf+k4aNrPAjxEU/zdNjn9ejTp4/P21RTbdu2rTQ/LCwMxcXFKCoqckp3vOPC8bbi68nMzHRJKykpwYcffogffvgBx48fh9Vq9Vj/eie5Tp06ed2WmggNDcWAAQMwa9Ys9O3b1+t6ly5dQnZ2NgBg9uzZmD17tlf1HI/bhQsXUFBQAABV2red/btbv359pYGPp/0DwPjx47Ft2zacPXsWbdq0wf3334+BAweib9++aNasWZXbRBoWCjwI8YGioiIcOXIEgOcej969e/u8XTUVFBRUaT7P2zpVKwYDWVlZ1dpfaWmp0/rFixcxYMAAXLhwwav6er2+0vywsLBqtcuTijOXSqVSaDQaNGnSxOuTtqPaOG6OwZe956Gu21DxuD/66KM4d+4c/vvf/0Kn02HZsmVYtmwZAKB169YYPnw4nnrqKbRq1arK+yL1HwUehNSBFi1a4NKlS27zbrjhBrfp99xzj9P6/Pnz8corr9R20+oFx0Bk7dq1aNGihVf1oqOjndYfeeQRXLhwARzHYeLEiXjooYfQrl07cU4JjuMgCAIkEgkAXHdeCXu52mKfubS2OB63l19+GQ8++KBX9dRqda23YciQIfjvf/9b7e288cYbmDx5Mr777jts2rQJKSkpKC0txblz5/D+++9j8eLF+PDDD/Hkk0/WVtNJPUGBByHE5xxvHa3upGmnTp0Sh6/mzJnjcdpxx4m5GjrH41bdoCYyMlJczsjIqFYb0tPTYTKZahxUJSQkYM6cOZgzZw7MZjP27duHn376CUuWLIHBYMDUqVNx8803V/k6FFK/0cWlhNSBv//+G0ePHhVf3bp1AwC89NJLTun33XcfANtFjY7pR48exdSpU/35EeqU44nEPtRUVcePHxeXR40a5bGctzN4NgStWrWCRqMBUP3j1rJlS2i1WgDAtm3bqlzf/t3t378fJpOpWm1wRyaToXfv3vjggw+wYsUKALYeqlWrVtXaPkj9QIEHIXUgKSlJfDBYcnIyTp48CQC4//77nR4advr0aQDA3Xff7ZTeoUMHl2GFQNK1a1fxIsLPP/8cBoOhytuwWCzicklJicdyn332WdUbWE9JJBLcddddAGzBrf3fVVXwPI+hQ4cCAP755x8cOnSoSvXtQ4L2azPqwu233y4u010vgYcCD0Lq2IEDB1BaWoqQkBB07txZTM/NzRVPHI63jDYGPM9jzpw5AGy32o4bNw5Go9Fj+cLCQnz00UdOaYmJieKyp2epfPrpp/j1119r3uB6ZPbs2ZBIJBAEASNGjKj0eThWqxXfffedS5nnnnsOPM+DMYaHHnqo0m1UzBs/fjzi4+PF7Vyv12THjh34559/nNK+/fZbp8Cxor///ltcbtmyZaXbJw0PXeNBSB2z/2Hu3bu308WLO3bsAGMMbdq0QVxcXJ3t/+zZs1495KxHjx7iQ8t84cknn8SGDRuwZs0arFy5EgcPHsQTTzyBHj16QKPRoLCwEKdOncLWrVvx22+/QalUYtq0aWL9Ll26oEOHDjh27BiWLFmC/Px8PPLII4iNjcWVK1fw7bffYtWqVejTp0+1hyXqo44dO+Ldd9/FM888gxMnTqBDhw6YPHkyBgwYgJiYGBgMBly8eBG7d+/GqlWrkJGRgaNHjzrdpnrjjTfi1Vdfxbx585CamoqOHTviqaeecpoy/fDhw1i9ejUkEgm2bNki1lUoFPjpp5/Qv39/FBcXY8CAAXjooYdw7733omXLlhAEARkZGThw4ADWrFmDo0ePYvHixejXr5+4jUceeQTPPfcc7r//fvTu3RutW7eGUqnEtWvXsGHDBnz66acAbA/Sq+25VUg94NfpywhpBIYOHcoAsAULFjilP/vss7U6W6ajitOae/NauHChWL8qD4mrzPUedmYymdiUKVMYx3HXbV/FGV8ZY+zQoUMsLCzMY52OHTuy9PR0cX3+/Pku23CcubS2ePuQuOvVr2zW2c8//5wFBQVd97jJ5XJ25swZt9t44403mFQqrbS+p4fE7d69m8XHx3v1b+urr75yqutNHY1G43EqfdKwUY8HIXVIEATx13bFyZrsM5k2tmEWRzKZDJ988gmmTJmCL774Alu3bkVaWhqKi4sRHByMli1bolu3bhgyZAjuvvtul/o33ngjDh8+jLfeegt//vkn0tPTERISgjZt2mDkyJF46qmnoFQq/fDJ6t7jjz+Oe+65B0uWLMHff/+N06dPo6CgAAqFAk2bNkXHjh0xcOBAPPDAA053sjiaM2cOHnzwQXzyySfYuHEj0tLSUFpairCwMLRv3x4DBw7EuHHj3Nbt2bMnzpw5g+XLl2Pt2rU4dOgQcnJywPM8oqKi0K5dO/Tr1w8PPPAAkpOTneoeO3YMf/zxB3bs2IFz587h2rVrKCgoQEhICNq2bYtBgwZhypQpiImJqfXjRvyPY+w6N7YTQgghhNQSuriUEEIIIT5DgQchhBBCfIYCD0IIIYT4DAUehBBCCPEZCjwIIYQQ4jMUeBBCCCHEZyjwIIQQQojPUOBBCCGEEJ+hwIMQQgghPkOBByGEEEJ8hgIPQgghhPgMBR6EEEII8RkKPAghhBDiMxR4EEIIIcRnKPAghBBCiM/8P8/4AJqq0LYjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhoAAAGBCAYAAAAg8Bg7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8sElEQVR4nO3dd3gU1dfA8e/spvcACQQICS303ntEQRGQLgJSlY7S9FW6FMVGE6UjoIIi/OhFQIrSQwu9kxBKIAFSSc/O+0fISkghYbPZlPN5nn3Ynbl37tkdkj2ZuUVRVVVFCCGEEMIINKYOQAghhBD5lyQaQgghhDAaSTSEEEIIYTSSaAghhBDCaCTREEIIIYTRSKIhhBBCCKORREMIIYQQRiOJhhBCCCGMRhINIYQQQhiNJBpCiFRWrlyJoih4enq+Uv0vvvgCRVHw9vbO1riEEHmPJBpCiByVnIRk5iGEyPvMTB2AEKLgKlq0qKlDEEIYmSQaQgiTefDggalDEEIYmdw6EUIIIYTRSKIhRB4VEhLC8uXLeffdd6lWrRqFChXCysoKDw8PevbsybFjxzKsf+zYMTp27EiRIkWwtramQoUKTJgwgcjIyEy1v3PnTlq1aoWTkxN2dnbUqFGDb7/9lvj4+Ox4eyl4e3ujKApffPFFumUy6oD6fH1VVVm6dCkNGjTAwcEBe3t7GjVqxG+//ZZt8b7YmfbgwYO0b98eV1dXbG1tqVWrFsuXL09RZ/v27bRq1QoXFxdsbGyoV68ea9euTbcNPz8/vvnmG9566y28vLywtbXFzs6OypUrM2rUKAICAtKs980336AoChYWFvj4+KRZZseOHWg0GhRFYfXq1a/2IQiRTBVC5ElTpkxRARVQtVqt6uzsrFpaWuq3KYqizps3L826y5cvVzUajb6so6OjamFhoQJqxYoV1dmzZ6uA6uHh8dK2AdXJyUk1MzNTAbV58+bquHHjVEBt0aJFhnUzq0WLFiqgTpky5aWfR1ptJtefOHGi2qFDBxVQzczMVAcHhxTvY/LkyZmOKSMrVqzQf35Lly5VNRqNqiiK6ujomKK9zz//XFVVVZ08ebIKqBqNJlWZhQsXptlG8nsCVAsLC7Vw4cKpzunBgwdT1dPpdOobb7yhAmqZMmXU8PDwFPvv37+vuri4qIDap0+fbPk8RMEmiYYQedTixYvVKVOmqCdPnlRjY2NVVU36Erl165Y6cuRIVVEUVavVqqdPn05R79SpU/qkwNvbW718+bKqqqoaFxen/v7776qTk5Pq5OSUbqKxefNm/ZdZt27d1ICAAFVVVTUqKkr96aefVAsLC3393JZoODs7q46OjurKlSvVqKgoVVVV9c6dO2r79u31X/TXrl3LdFzpSU40bGxsVAsLC/Xjjz9Wg4KCVFVV1cePH6t9+/bVt/fNN9+oWq1WnTFjhhoaGqqqatKX/VtvvaUCqq2trX7780aOHKn+9NNP6rVr19TExERVVVU1Pj5ePX78uL5u8eLF9e/zeYGBgaqrq6sKqL169dJvfz4JKVeunBoREWHwZyGEJBpC5FPDhw9XAfWDDz5Isb1NmzYqoHp5eaX5JfTXX3/pE4G0Eo3KlSvrv9CTv+Cet2jRIn39lyUaRYsWTfdx4cIFfZ3sSjQAdd++fan2x8TEqMWLF1cBdcaMGem2kVnJiQagfvjhh6n2JyQkqKVLl9aXSavNsLAw1dbWVgXUX3/9NUvtJyQkqNWrV8+w7o4dO1RFUVRAXblypaqqqjpz5kwVUM3NzdUTJ05kqU0h0iN9NITIp9q2bQvAoUOH9NtCQ0PZtWsXAJ9++inW1tap6r355ps0atQozWOeO3eOS5cuATBx4kQ0mtS/QgYOHEiJEiUyFePDhw/TfRijr0eTJk147bXXUm23tLTkzTffBJLeY3b6/PPPU23TarW8/vrrAFhZWTFq1KhUZRwcHPTnIasxabVa3nrrLSDl+X9emzZtGD16NAAjRozgt99+Y/LkyQB89dVX1K1bN0ttCpEeSTSEyMNu3brFJ598Qp06dXByckKr1eonu3r77bcBuHv3rr786dOn0el0ALRs2TLd46a37+TJkwCYmZnRrFmzNMtoNJpMzwiqJl1VTfNRs2bNTB0jKxo0aJDuvuLFiwPw5MmTbGuvUKFClC1bNs19yXOIVK5cGVtb2wzLhISEpLn/4MGD9OvXj4oVK2JnZ5disrNvv/0WSHn+XzRz5kxq165NZGQkvXv3Jj4+ntatWzN27NhMv0chXkbm0RAij9q4cSM9evQgNjZWv83BwQErKysURSEuLo6QkBCePn2q3x8UFKR/ntFVh5IlS6a5Pbl+kSJFsLS0zHJ9U7O3t093n5lZ0q/D7LySkpn2XjWmzz77TJ9MQNJVDGdnZywsLACIjIzk6dOnKc7/iywsLFi1ahXVqlUDwNHRkVWrVsmsrCJbyRUNIfKgx48f069fP2JjY2nZsiUHDhwgKiqKsLAwHj58yIMHD1i3bp2pwxRGsmfPHn2SMWzYMM6fP09sbCxPnjzhwYMHPHjwQH9bRFXVDI+1ZMkS/fPw8HB8fX2NFrcomCTRECIP2rFjB+Hh4Tg7O7N161ZatGiRqr9FWrNuurq66p/fu3cv3eOnty+5/qNHj4iLi8ty/VeV/Jd9TExMumXCwsKytc3c7I8//gCS+tP89NNPVK1aFa1Wm6JMZmZd3bZtG/PnzwegevXqqKpK3759efjwYfYHLQosSTSEyIPu3LkDQIUKFbCxsUmzzN9//51qW+3atfUdOPfv35/u8fft25fm9uQOggkJCRw8eDDNMjqdjgMHDqR77Ffh7OwM/Pe+03L8+PFsbTM3S/4catWqleZ+VVXTPYfJAgMD6d+/PwD9+/fn33//xdPTk6CgIPr27fvSKyFCZJYkGkLkQY6OjgBcu3Ytzb/yfX19WbNmTartTk5OtG7dGoDvv/8+zbp///03R44cSbPd6tWrU6lSJQC+/PJLfcfS5/38888ZdkB8FTVq1ABg165dafY52LdvH0ePHs3WNnOz5PN/9uzZNPcvWrSIW7dupVtfp9PRu3dvHj16RPny5Zk/fz6Ojo6sWbMGMzMzdu3axezZs40Suyh4JNEQIg9q3bo1Go2GJ0+e0KtXL/2tiri4OP78809at26dbifD6dOno9VquXLlCm3btuXq1atA0lWKP//8k3fffRcnJ6d02/7yyy+BpCsiPXv21CcVMTExLFq0iBEjRmRY/1W8++67aDQaHj9+TI8ePfRtRkdHs2rVKjp16kShQoWytc3cLHno6s6dO5k+fbo++QoNDeWrr77io48+onDhwunW//bbb9m7dy/m5ub8/vvv+lEvjRo1YsqUKQCMHz+e06dPG/mdiIJAEg0h8qDy5cvz6aefArBhwwZKliypX3Oke/fu2NnZ8cMPP6RZt27duixYsABFUdi3bx8VK1ZMUbdo0aL6+RTS0qlTJyZMmADA2rVrcXd3p1ChQtjb2zN06FDq16/P0KFDs/X9enl5MXHiRAC2bt2Ku7s7Tk5OODg40K9fP1q2bMmwYcOytc3crE+fPvrhxZMnT8be3p5ChQpRuHBhJkyYwFtvvZXuOfDx8UkxX0adOnVS7B8/fjze3t7ExcXRo0ePDEetCJEZkmgIkUd9/fXX/PLLL9SvXx9ra2vi4+MpV64c48eP58yZM/p5IdIyaNAgDh8+TPv27SlUqBCxsbF4eHgwbtw4fHx89H0i0jNjxgy2bdtGy5YtcXBwIDY2lkqVKvH111+zd+9e/RDL7DR16lR+/fVXGjZsiK2tLYmJidSsWZNFixaxYcOGVJ0h8zNzc3N2797NlClT8PLywtzcHFVVqV+/PgsXLmTLli1pfh4RERH06NGD+Ph4WrVqleZ8GRqNhl9//ZVChQpx7do1RowYkRNvSeRjiio9foQQQghhJHJFQwghhBBGI4mGEEIIIYxGEg0hhBBCGI2sdSKEEGlYu3YtI0eOzFKd7t27M2/ePCNFJETeJImGEEKkITo6OstTcRekadCFyCwZdSKEEEIIo5ErGrmQTqfj/v372Nvby3LNQgghciVVVYmIiKB48eL6NZTSIolGLnT//n3c3d1NHYYQQgjxUnfu3KFkyZLp7pdEIxdKXqPizp07ODg4mDgaIYQQIrXw8HDc3d3TXVcpmSQauVDy7RIHBwdJNIQQQuRqL7vFL/NoCCGEEMJoJNEQQgghhNFIoiGEEEIIo5E+GkIIIXI1nU5HXFycqcMocMzNzdFqtQYfRxINIYQQuVZcXBx+fn7odDpTh1IgOTk5UaxYMYPmdJJEQwghRK6kqiqBgYFotVrc3d0znBRKZC9VVYmKiiIoKAgANze3Vz6WJBpCCCFypYSEBKKioihevDg2NjamDqfAsba2BiAoKAhXV9dXvo0i6WEB8Oj+HVOHIIQQWZaYmAiAhYWFiSMpuJITvPj4+Fc+hlzRyOf+3fA7J//cgJWVE+9+NZkixWVqcyFE3iJrPplOdnz2ckUjnzu/cS+qGk10dCC/jPmU5SM/Jl56bwshhMghkmjkcx8u/gF7Z3cUxRpVjST0wS0W9BnIprnfmTo0IYTIl7y9vRk1apSpw8g1JNHI5yxtbBi0aCFdvpiClUUxQEuC+pibR/9hfs8BnNq7y9QhCiGEMFBgYCA9e/bEy8sLjUaTZqKzYcMG6tati5OTE7a2ttSsWZNff/3V6LFJolFAeFSsyvBfl1Gn67uYa1wAiEsM4sCSRSzo96F0GBVCiDwsNjYWFxcXJk6cSI0aNdIsU6hQISZMmMDRo0c5d+4c/fv3p3///uzaZdw/OCXRKGC8u/Xi499XULxyTbSKMxBPdPQDfhnzf/w8aqT03xBCiGyQkJDAiBEjcHR0pEiRIkyaNAlVVY3WnqenJ/PmzaNPnz44OjqmWcbb25tOnTpRqVIlypYty8iRI6levTqHDh0yWlwgiUaB1WPKDIb+vBg7p5LP+m9EEBJ4kwV9B7L5h+9NHZ4QQqSiqipRcQkmeWQ1SVi1ahVmZmb4+Pgwb948Zs+ezbJly9Itf/DgQezs7DJ8rF692tCPUE9VVfbu3cvVq1dp3rx5th03LTK8tQCztLFh8OJF3L5ygW1fziEm7hEJusfcOPwP849dovEH3anz+pumDlMIIQCIjk+k8mTT9Cu7NO1NbCwy/5Xp7u7OnDlzUBSFChUqcP78eebMmcPAgQPTLF+3bl18fX0zPGbRokWzEnKawsLCKFGiBLGxsWi1WhYsWECrVq0MPm5GJNEQz/pvLGf/2l85v2k/8bqgZ/03FnP81/W89810ChUtZuowhRAiz2jYsGGKOSgaNWrErFmzSExMTHOGTWtra8qVK2f0uOzt7fH19SUyMpK9e/cyZswYypQpg7e3t9HalERD6L3WvTevde/Nmi8m8PDKbXRqKNHRgawaORpHN1d6f/Md5jJDnxDCRKzNtVyaZpqrrNbmhq9impGDBw/Spk2bDMssXryYXr16GdSORqPRJzQ1a9bk8uXLzJw5UxINkbN6fvElsVFRrBw9hqdhj9GpEYTcj2BBn4GUblKddz4aa+oQhRAFkKIoWbp9YUrHjx9P8frYsWOUL18+3fVCcurWyYt0Oh2xsbHZftzn5Y0zJnJccv+NWxfOsvObH5L6b6iPuX7oAPOPXaTZwB7U9DbufT0hhMirAgICGDNmDIMHD+b06dPMnz+fWbNmpVs+O26dJCcqkZGRBAcH4+vri4WFBZUrVwZg5syZ1K1bl7JlyxIbG8uOHTv49ddfWbhwoUHtvoyiGnO8jXgl4eHhODo6EhYWhoODg6nDAWD/779wfst+4nXBz7ZYYG1dWPpvCCGMJiYmBj8/P0qXLo2VlZWpw8k0b29vqlSpgk6nY82aNWi1WoYOHcqMGTOMum5LWsf28PDA398fgIkTJ7J27Vru3r2LtbU1FStWZOTIkXTv3j3dY2Z0DjL7XSWJRi6UGxONZKunjCfoagA6NRQAjWKPU/GivP/1t9J/QwiRrfJqopGfZEeiIfNoiCzpNfUrBi1dqJ9/Q6dG8OTeDRb0GciW+elfFhRCCFEwSaIhsszW3p7BixfRYeIELM2LARp9/40fe36A74E9pg5RCCFELiGJhnhlZavWZMRvy6jVseuz9VNUYhMfsnfhQhb2H8iThw9MHaIQQggTk0RDGKxljz58/PsKilWojkZxAuKIikqaf2PF2NGyfooQQhRgkmiIbNNr2rP+G47P9d+4e50FfQaybeE8U4cnhBDCBCTRENnK1t6ewUsW0WH8OCzNi5Lcf+Pqgb/5secHnDu439QhCiGEyEGSaAijKFu9NiN+W07Ndzql6L+x58f5LB40xNThCSGEyCGSaAijer1Xfz7+fQVFvarq+29Eht1l6dBhpg5NCCFEDpBEQ+SI96d/zaClC7E0S5qrP/zJXVZPGW/iqIQQQhibJBoix9ja2zNw6fxnt1J0PLhylV3LjTvHvhBC5DRvb29GjRpl6jByDUk0RI6ytLGh61cT0SqFgFgu7vlHJvgSQggDBQYG0rNnT7y8vNBoNC9NdP744w8URaFjx45Gj00SDZHjipcuS4sh76ModqhqJAcW/UKg/01ThyWEEHlWbGwsLi4uTJw4kRo1amRY1t/fn08++YRmzZrlSGySaAiTqOXdmkqtmgOWJKohrBs3g9ioKFOHJYQQ2SIhIYERI0bg6OhIkSJFmDRpEsZcw9TT05N58+bRp08fHB0d0y2XmJhIr169mDp1KmXKlDFaPM+TREOYTJsPhlGsYgVAQ7wumKWDPjJ1SEKI3ExVIe6paR5ZTBJWrVqFmZkZPj4+zJs3j9mzZ7Ns2bJ0yx88eBA7O7sMH6tXrzb0E2TatGm4urrywQcfGHyszDLLsZaESEOvqV+xZOgwIp4EEBv/kEUfDmLIsiWmDksIkRvFR8FXxU3T9vj7YGGb6eLu7u7MmTMHRVGoUKEC58+fZ86cOQwcODDN8nXr1sXX1zfDYxYtWjQrEady6NAhli9f/tJ2sptc0RAmN2jhAqwsiwHwNCKQlf831sQRCSGEYRo2bIiiKPrXjRo14vr16yQmJqZZ3tramnLlymX4sLe3f+V4IiIi6N27N0uXLqVIkSKvfJxXIVc0RK4waNkCFvUbQlxiEI9v32LTvO/oOPJTU4clhMhNzG2SriyYqm0jOnjwIG3atMmwzOLFi+nVq9crHf/mzZv4+/vTvn17/TadTgeAmZkZV69epWzZsq907JeRREPkCuYWFvSa8xW/jvyMBPUxt46e4Ejp/9H4nS6mDk0IkVsoSpZuX5jS8ePHU7w+duwY5cuXR6vVplne2LdOKlasyPnz51NsmzhxIhEREcybNw93d/dXPvbLSKJhBCdPnuSHH37gyJEj3Lx5kwkTJjBjxgxTh5XrFSpajDc/GcbO7+ehU8M5vmYjbmXKUbpqxkO1hBAitwkICGDMmDEMHjyY06dPM3/+fGbNmpVu+eRbJ4ZITlQiIyMJDg7G19cXCwsLKleujJWVFVWrVk1R3snJCSDV9uwmiYYRHD58mGPHjtG0aVMePXpk6nDylIp1GxDYuQ1nNmxBp4ayZcYcBiycjb1zIVOHJoQQmdanTx+io6OpX78+Wq2WkSNHMmjQIKO2WatWLf3zU6dOsWbNGjw8PPD39zdquy+jqMYc2FtA6XQ6NJqkfraenp68//77WbqiER4ejqOjI2FhYTg4OBgrzFxt3dfTCThzCkjAwsyVISsWYW5hYeqwhBA5KCYmBj8/P0qXLo2VlZWpwymQMjoHmf2uklEnRpCcZIhX1+3zSTi7eQAQlxDE0kHDTRyREEKIV5GnvxFPnTrF119/TefOnSlZsiSKoqQYTpSe6OhoJk+ejJeXF1ZWVhQvXpwBAwZw7969HIhaZNaAufOwsXEDIDo6kOUfy4ReQgiR1+TpRGP69OmMGzeOjRs3ZjpJiImJoWXLlkyfPp3IyEg6dOiAu7s7K1asoFatWty6dcvIUYusGLxsERbPlpYPfRjA2i+nmjgiIYQQWZGnO4M2atSI6tWrU69ePerVq4enpyexsbEZ1pkxYwbHjh2jUaNG7N69Gzs7OwBmz57N2LFjGTBgAAcOHNCXDw0N5cGDBxke08bGhlKlShn8fkRqGq2W/gtns3zwSBJ0j7h3/jz7Vq+gZa/+pg5NCCFEJuTpROOzzz7LUvm4uDh+/PFHAH766Sd9kgEwZswYVq1axT///MOpU6eoU6cOkLSU7tChQzM8bosWLVIkJyJ72Tk40vGLT9g45WsS1VDObt2DW9lyVGqYMysPCiGEeHV5+tZJVh0+fJiwsDDKli2bYhhQsq5duwKwdetW/bYhQ4agqmqGD0kyjM+jQlUa9e2GotiiU8PZNXcpj+/fNXVYQgghXqJAJRpnz54FoHbt2mnuT95+7ty5HIsJIDY2lvDw8BQPkVqDNh0o27QBYEGi+oTVYycTHxdn6rCEEEJkoEAlGgEBAQCULFkyzf3J22/fvm1QO8HBwaxfv57169cTFRXFlStXWL9+PTt37kyz/MyZM3F0dNQ/jDkVbF7XYcQYipQuS9LS8kEs+WCYqUMSQgiRgQKVaERGRgJJnTfTYmubNId+RESEQe1cvHiRbt260a1bN4KDg/nf//5Ht27d0u3rMW7cOMLCwvSPO3fuGNR+ftf36++wdUwa9hoT94AlgzPuQyOEEMJ0ClSikVO8vb3T7MuR3jSwlpaWODg4pHiIjA1Zshgri6RhrxGh9/h1wucmjkgIIZJ4e3szatQoU4eRaxSoRCN5lElUVFSa+58+fQqAvb19jsUkXt2Hi+djrnEFdATduMb2RfNNHZIQQphEYGAgPXv2xMvLC41Gk2ais3LlSv3ElsmPnJjavUAlGslzXdy9m/ZoheTtHh4eORaTeHWWNja8991ktEohII6rBw5xcs92U4clhBA5LjY2FhcXFyZOnEiNGumveO3g4EBgYKD+YWifxMwoUIlG8od/+vTpNPcnb69evXqOxSQM41rSk9eG90ej2KOqTzm0/A/u37xm6rCEEAVcQkICI0aMwNHRkSJFijBp0iSMuYapp6cn8+bNo0+fPjg6OqZbTlEUihUrpn8ULVrUaDElK1CJRpMmTXB0dOTmzZv4+vqm2r9+/XoA2rdvn8ORCUPUaPYaldu0BCxJVENYN3EmUQZ26BVC5D6qqhIVH2WSR1aThFWrVmFmZoaPjw/z5s1j9uzZLFu2LN3yBw8exM7OLsPH6tWrDf0IiYyMxMPDA3d3dzp06MDFixcNPubL5OmZQbPKwsKCESNG8OWXXzJ8+HB2796tH2kye/Zszp07R4sWLfSzgoq8482+A3ly+zb3L54nQRfMz0NGMWL1clOHJYTIRtEJ0TRY08AkbR/veRwb87RHLKbF3d2dOXPmoCgKFSpU4Pz588yZM4eBAwemWb5u3bpp/gH8PEOvPlSoUIGff/6Z6tWrExYWxvfff0/jxo25ePFiutM+ZIc8nWhs376d6dOn61/HPZu8qWHDhvptkyZNom3btvrXEydO5O+//+bIkSOUL1+eZs2acfv2bY4fP46Liws///xzzr0Bka16TJ7B0hHDCQ++TWzCQxZ+MIihy5eYOiwhRAHUsGHDFKuJN2rUiFmzZpGYmIhWq01V3tramnLlyhk1pkaNGtGoUSP968aNG1OpUiUWL16c4rs0u+XpRCM4OJjjx4+n2v78tuDg4BT7rKys2L9/PzNnzmTNmjVs2rSJQoUK0a9fP6ZPn27UrE4Y38Aff2JB3w+JjnlAVGQgK8aOpv+sOaYOSwiRDazNrDneM/Xv/Jxq25gOHjxImzZtMiyzePFievXqlW1tmpubU6tWLW7cuJFtx0xLnk40+vXrR79+/bJcz9rammnTpjFt2rTsD0qY3MClC1jUbwhxiUE8uevHhlkz6Tx2nKnDEkIYSFGULN2+MKUX/wg+duwY5cuXT/NqBuTMrZMXJSYmcv78ed5+++1sPe6L8nSiIURazC0s6P3Dt6wa8QkJ6iP8T5zm4Ia1NOvc3dShCSEKiICAAMaMGcPgwYM5ffo08+fPZ9asWemWz45bJ8mJSmRkJMHBwfj6+mJhYUHlypUBmDZtGg0bNqRcuXKEhoby3Xffcfv2bT788EOD2n0ZSTREvuRUpAhtxo1g+8w56NQwTv65heJly1K2Rl1ThyaEKAD69OlDdHQ09evXR6vVMnLkSAYNGmTUNp9flfzUqVOsWbMGDw8P/azUISEhDBw4kAcPHuDs7EydOnU4cuSIPhExFkU15sBe8UrCw8NxdHQkLCxMpiM30L//+4OT6zagqlGYaQrT78dZOBYuYuqwhBCZEBMTg5+fH6VLl86RGSxFahmdg8x+VxWoeTREwdO8y3t41KsJmJGge8wvH/2fLC0vhBA5SBINke91GTse55KegEJcYhBLBg43dUhCCFFgSKIhCoQBs+ZiY1cMgJiYQJYOl2RDCCFygiQaosAYsmwJlmZJw8PCH93h92mTTByREELkf5JoiAJDURQGLJqLucYF0HH/4iV2r0p/7QEhhBCGy9ZE4+HDh5w9e5YjR45w4sQJrl+/TkxMTHY2IYRBbOzt6Tz9c7SKMxDLhZ1/s3/NSlOHJYQQ+ZZB82gcOXKEnTt38s8//3DmzBmioqLSLFe6dGkaNGhA69atadeuHYULFzakWSEMUrJcBRp/8B6Hlv+KqkZyevNW7l+6Sq8ZM00dmhBC5DtZTjQePnzI4sWLWbFiBQEBAfrtGU3HcevWLfz8/Pjjjz8wMzPjrbfeYtiwYbz55puvFrUQBqrfqi3xsTGc+G0TiWoID65fYOEHgxm0ZEG6UwQLIYTIukxP2HX//n2++uorli9fTlxcnD6x0Gq1VKlShTp16uDq6kqhQoVwdnYmOjqaJ0+eEBISwrVr1zh58iSPHj36r2FFoXLlykyZMoWuXbsa593lUTJhV84J9L/JunFfEq8LAsBCW5Te82bi5OJq4siEEDJhl+llx4RdmUo0pk6dyvfff09UVBSqquLq6kr37t3p0qUL9erVw9o6c6va+fn5sXfvXtasWcO///6LTqdDURQaNGjAkiVLqFq1aqaOk99JopGz4mLjWDZ4GNHRDwEVrVKI14f1o1rzlqYOTYgCLa8mGt7e3tSsWZO5c+eaOhSD5djMoFOnTuXp06e88cYb/PXXX9y/f5958+bRvHnzTCcZkNRX48MPP2Tfvn0EBAQwbdo0nJ2dOXbsGBs2bMj0cYTIThaWFgxbuQznkmUBCxLVJ+xZsJgt82ebOjQhhMiUwMBAevbsiZeXFxqNhlGjRqVZLjQ0lOHDh+Pm5oalpSVeXl7s2LHDqLFlKtF4++23OXr0KLt27aJ169ZoNIYPVilevDgTJ07k9u3bfP3117i4uBh8TCEMMWDWXMp7t0Cj2KOqT7l+6F9+HjnS1GEJIcRLxcbG4uLiwsSJE6lRo0aaZeLi4mjVqhX+/v6sX7+eq1evsnTpUkqUKGHU2GRRtVxIbp2Y1rkj/7L/h59JUJP6FFlZujFo8XzMrfPOpVsh8oMXL9urqooaHW2SWBRraxRFyVRZb29vfVeAX3/9FXNzc4YOHcq0adMyfQxDpHfrZtGiRXz33XdcuXIFc3PzTB0rO26dyDLxQrygeuPmlKpQmd8+/ozYhIfExAaycMBQukz/nBLlKpg6PCEKLDU6mqu165ik7QqnT6HY2GS6/KpVq/jggw/w8fHh5MmTDBo0iFKlSjFw4MA0yx88eJA2bdpkeMzFixfTq1evLMX9vC1bttCoUSOGDx/O5s2bcXFxoWfPnnz22WdGHW0niYYQaXAqXIThvy1j8eAhPA0LJF4XzJ8Tp1H/3Xdo0rm7qcMTQuRy7u7uzJkzB0VRqFChAufPn2fOnDnpJhp169bF19c3w2MWLVrUoJhu3brFvn376NWrFzt27ODGjRsMGzaM+Ph4pkyZYtCxM2L0ROPhw4ds27aNR48eUbp0adq1a4dNFrJCIUxFURSGLFnMb1MnEHT5Gjo1jGNr/+TuhYt0nzzN1OEJUeAo1tZUOH3KZG1nRcOGDVPcJmnUqBGzZs0iMTExzasH1tbWlCtXzuA4M6LT6XB1dWXJkiVotVrq1KnDvXv3+O6773JvonH58mWmTJmCoigsXrwYJyenFPu3bNlCz549iX7unlrJkiXZvHkzNWvWNKRpIXLM+1O+ZN+fv3Juwy4S1VDuXvRlyaChDFqy0NShCVGgKIqSpdsXeUlO3Dpxc3PD3Nw8RaJTqVIlHjx4QFxcHBYWFq987IwYlGhs2rSJ9evX06RJk1RJRlBQEO+//36qacnv3LlD+/btuXz5MnZ2doY0L0SOaflub0rXqM3WL2YRrwsiIuwOP/b6gP4/fouts0ypL4RI6fjx4yleHzt2jPLly6fbFyInbp00adKENWvWoNPp9KNHr127hpubm9GSDDBwUbW9e/eiKArt2rVLtW/BggVERkZiZmbG7NmzOXv2LN9++y0ajYb79++zdOlSQ5oWIseVrlCFgSt+wsoy6Yc9NuEhS4eO5srxIyaOTAiR2wQEBDBmzBiuXr3K77//zvz58xmZwXD55FsnGT3s7e0zbNPX1xdfX18iIyMJDg7G19eXS5cu6fcPHTqUJ0+eMHLkSK5du8b27dv56quvGD58eLa977QYNLzVy8uLmzdvsnPnTlq3bp1iX7Vq1bh06RL9+/dn2bL/luIePHgwS5cupUWLFuzfv//VI8/HZHhr7rd05AjCH9wD4lEUO6q0bMabg4z7wypEQZOXZwatUqUKOp2ONWvWoNVqGTp0KDNmzDDq8Na0ju3h4YG/v7/+9dGjRxk9ejS+vr6UKFGCDz74IMNRJzk2BXl6nJyciIiI4NSpUyn6XDx69AhXV1cURWHPnj20bPnfVM7bt2+nffv2uLi48PDhw1dtOl+TRCNvWD/vGwKO+qKqEYAZhd3L0u/7WaYOS4h8I68mGvlJjk1Bnp7kTp4xMTEpth86dAgACwsLmjZtmmKfm5sbkDQNqhB5WdeRn9FscD/MlMJAAo/vXGVB30EkxMebOjQhhMg1DEo0ChUqBJBiuXhI6rsBSZ1bXuxgkpCQACAdQUW+UO+1N+kx72sstEmrvUbH3GdBn0E8vO1v2sCEECKXMCjRSJ5Pfc2aNfpt0dHRrFu3DkVRUtwySXb79m3A8N6zQuQWrkXdGPbLUqzt3AAN8bpg1nw2gRPbNpk6NCGEMDmDEo333nsPVVXZunUr7733Hj/++COtW7cmKCgIRVHo0aNHqjrJQ348PDwMaVqIXEVrpmXY8qUULlcBRbFGp4Zx8Lff+N/MGaYOTQghTMqgRKNPnz40bdoUVVVZt24dI0eO5MiRpKF+/fv3p2LFiqnqbNiwAUVRaNy4sSFNC5Er9fvyOyq1fRON4oSqxuDv68OyoTIaRQhRcBmUaGg0Gnbu3MmYMWMoWbIkZmZmuLu7M2nSJBYuTD1r4rZt2/TDbN5++21DmhYi12rT+0PeGjcac40roCPsyW1+fP8DosPCTR2aEELkuBxdJj4kJITw8KRftnLrJH0yvDV/iIiMYNXQUcTGJQ3jNtMUpv1nH1OmpmlWnxQir5HhraZn8uGtWeXs7IyHh4ckGaJAsLezZ/gvy7ArUhIwJ0H3mE1ff8e+lcteWlcIIfKLHE00hChoFEVh8E+LKF6nNopih6pGcmbndn4b95mpQxNCiByRqUTjxQm5jCEn2hDCVHr83yTq9n7v2eRe8Ty8dZGF/Qfr55URQuQf3t7ejBo1ytRh5BqZSjRKly7N7NmzUyz3nl18fHxo164d3333XbYfW4jcpHnbjnT+5gv95F5RUfdY0GcgIQ/umTgyIUReFxgYSM+ePfHy8kKj0aSZ6Hh7e6MoSqpH27ZtjRpbphKNhw8f8umnn+Lp6cmUKVO4du2aQY3GxMTw559/8uabb9KoUSN27txp0PGEyCvcPUozaOVirGyKAhriE4NZOeozzv79l6lDE0LkYbGxsbi4uDBx4kT9ZJov2rBhA4GBgfrHhQsX0Gq1dOvWzaixZSrR+Pvvv6lSpQrBwcHMmDGDSpUqUa9ePb7++msOHDhARETES49x+fJlVq1aRZ8+fShatCg9evRgz5492NjYMGHCBEaPHm3wmxEiL7C0MGf4iuU4epQFrNCpoexdtpwts741dWhC5GqqqhIfm2iSR1YHaCYkJDBixAgcHR0pUqQIkyZNyvIxssLT05N58+bRp08fHB0d0yxTqFAhihUrpn8kfwcbO9Ewy0yhli1bcvbsWX7//Xe+/PJLLl++zKlTpzh9+jSQ1OGtTJkyuLq64uzsjLOzM9HR0Tx58oSQkBBu3rxJZGSk/niqqmJtbU2/fv2YPHmyTEcuCqQPv53DpmXz8fv7GDo1jOs+h1g9IZReX35l6tCEyJUS4nQsGfmPSdoeNK8F5pZpL6WellWrVvHBBx/g4+PDyZMnGTRoEKVKlWLgwIFplj948CBt2rTJ8JiLFy+mV69eWYo7I8uXL+e9997D1tY2246ZlkwlGpCUTPTs2ZOePXvy999/s2zZMrZu3Up0dDSqqnLjxg1u3ryZqt6LGVz16tUZOHAg77//frpZlxAFRccPP+JMtdocnLuMeF0wD25cYs/SRbQaOMTUoQkhDODu7s6cOXNQFIUKFSpw/vx55syZk26iUbduXXx9fTM8Znb+Ue7j48OFCxdYvnx5th0zPZlONJ73xhtv8MYbbxAbG8vx48c5ePAgR44c4e7duwQHB/PkyROsrKxwcXHBxcWFatWq0axZM5o1ayZzaAjxgloNmlBoZjE2fT6dBPUR5/fuw618Oap6v2Hq0ITIVcwsNAya18JkbWdFw4YNURRF/7pRo0bMmjWLxMREtNrUV0asra0pV66cwXFm1vLly6lWrRr169c3eluvlGgks7S0pHnz5jRv3jy74hGiQPLwLEutAe9y6ufV6NQw9ixaQbHS5SkiibkQeoqiZOn2RV6Sk7dOnj59yh9//MG0adMMPlZmGJRoCCGyT/PWbxN4/TL3Dib12Vj9+RSGLFuIpa21qUMTQmRR8krlyY4dO0b58uXTvJoBOXvrZN26dcTGxvL+++9ny/FeRhINIXKR7sPHsvjOKCL9/EnQPWLp4I8Y9ssSNBqZxFeIvCQgIIAxY8YwePBgTp8+zfz585k1a1a65bPj1klyohIZGUlwcDC+vr5YWFhQuXLlFOWWL19Ox44dKVy4sEHtZVaOLqomMkcWVSvYdDqVhUMGEBP2CFBxcPJk4OIfTR2WEDkury6q5u3tTZUqVdDpdKxZswatVsvQoUOZMWNGin4b2S2tY3t4eOhXTQe4evUqFStWZPfu3bRq1eqlx8yORdUk0ciFJNEQEdFx/DJoEDFxjwBwL1ebd7/MmfupQuQWeTXRyE/y3OqtQojMsbe24K2vv9FPV37nxln2LVlq4qiEECLrJNEQIpcqW6IoVT4ajLniAiRyZu9fXNi719RhCSFElkiiIUQu1rJRAxzbtkCrOAOx7Fm6jIfXU0+MJ4QQuZUkGkLkcn3e7wvV3FEUO3RqBL9Pnkp02MvXFxJCiNxAEg0hcjlFURjyf9NR3KwBCxJ1T1g+fDSJCQmmDk0IIV5KEg0h8gArcy09v1iAhaMloCE2/gE/D5UVj4UQuZ9BiUZAQAABAQEkJiZmuo5Op9PXE0JkXlFHa5qMn4eVVdIwsvBwP/74fLKJoxJCiIwZlGh4enpSpkwZrl69muk6fn5++npCiKyp7elK8UGfYql1AeCe3xl2/7TExFEJIUT6DL518qrzfeXnecJWrVpF3bp1cXJywtbWltq1a/PHH3+YOiyRT3RqUoP4tu2x0LgCKuf/3cmZ7btMHZYQQqQpx/toJCcY+XnthpCQEDp27Mhvv/3G5s2bady4MT169GDTpk2mDk3kEx+915HHtcthphQB4tn/63Lunb9i6rCEECRNQT5q1ChTh5Fr5Pi3fWBgIAD29vY53XSOGTVqFBMnTqRdu3a88cYb/PjjjzRp0oTVq1ebOjSRT5hpNYwa/gkRZazQKA6oahTrvppBRPATU4cmhDCBwMBAevbsiZeXFxqNJt1EZ+7cuVSoUAFra2vc3d0ZPXo0MTExRo0tWxKNzCwSEx8fz5UrV/jyyy8BqFChQnY0nWcULlyY+Ph4U4ch8hEnGwveHfkdatF4FMWaRF0oK0d9QkKc/D8ToqCJjY3FxcWFiRMnUqNGjTTLrFmzhs8//5wpU6Zw+fJlli9fztq1axk/frxRY8tSoqHValM8IOlWSNWqVVPte/FhZWVFlSpV2LNnD4qi0LVrV4ODP3XqFF9//TWdO3emZMmSKIqSqaQnOjqayZMn4+XlhZWVFcWLF2fAgAHcu3fP4Jiel5CQQHh4OGvXrmXPnj0MHjw4W48vhFdRe6oOnIuFYwJgRlxCEMuHjMrXfaBEwaWqKvExMSZ5ZPVnKiEhgREjRuDo6EiRIkWYNGmSUX8uPT09mTdvHn369MHR0THNMkeOHKFJkyb07NkTT09PWrduTY8ePfDx8TFaXABmWSmc3oeU1Q/v3XffzZb7V9OnT2fz5s1ZqhMTE0PLli05duwYbm5udOjQAX9/f1asWMG2bds4duxYtoyIefDgAW5ubkBSgrZgwQLatGlj8HGFeFHrqiW41XkKyh9fExMVSeTT26z5dBK9vp9h6tCEyFYJsbH80NfwP1Jfxcer1mOehRVkV61axQcffICPjw8nT55k0KBBlCpVioEDB6ZZ/uDBgy/9jli8eDG9evXKUtzPa9y4Mb/99hs+Pj7Ur1+fW7dusWPHDnr37v3Kx8yMLCUaU6ZMSfF66tSpSbMWDhmCq6truvUURcHKygo3NzcaN25M2bJlXy3aFzRq1Ijq1atTr1496tWrh6enJ7GxsRnWmTFjBseOHaNRo0bs3r0bOzs7AGbPns3YsWMZMGAABw4c0JcPDQ3lwYMHGR7TxsaGUqVKpdhWpEgRTpw4QUREBH/99RcjRoygcOHCdOnS5dXerBAZGNy6BhMCe1JizwZiEh7x4I4vO2Yt4O2xw0wdmhAFkru7O3PmzEFRFCpUqMD58+eZM2dOuolG3bp18fX1zfCYRYsWNSimnj178ujRI5o2bYqqqiQkJDBkyBCj3zpRVAOu5Wg0GhRF4fz581SuXDk743olVlZWxMbGpnuFJS4uDldXV8LCwjh9+jS1atVKsb9GjRqcO3eOkydPUqdOHQAWLVrE0KFDM2y3RYsWKZKTtAwcOJB//vmHa9euvfR9hIeH4+joSFhYGA4ODi8tLwRAVFwCn8/5CS/fc8TqHgJamr87kHpd2pk6NCFeSUxMDH5+fpQuXRorK6ukL8eX/DFpLGaWlpm6NQ9Jo07KlCnDzz//rN+2efNmunbtSkxMjL7rgbF4e3tTs2ZN5s6dm2L7gQMHeO+995gxYwYNGjTgxo0bjBw5koEDBzJp0qQ0j/XiOXheZr+rDOoMumLFCn7++WdKlixpyGFyzOHDhwkLC6Ns2bKpkgxA329k69at+m1DhgxBVdUMHy9LMgBq1qzJrVu3su29CPEiGwszPh04kNvlHTBXXIFEDq5bye2T50wdmhDZQlEUzK2sTPLIbJLxqg4ePIidnV2GD0NHLk6aNInevXvz4YcfUq1aNTp16sRXX33FzJkz0el02fROUsvSrZMX9e3bN7viyBFnz54FoHbt2mnuT95+7lz2/2I+cuQInp6eae6LjY1NccsnPDw829sXBYN7IRu69JvIvkVDsQ5wRqeGsOH7mfSbPRfn4oZddhVCZN7x48dTvD527Bjly5dP92pGTtw6iYqKSjWH1fMDO4zFoEQjr0leXyW9KzDJ22/fvm1QO6+99hpdunShYsWKxMTEsHnzZtasWcOSJWlPFT1z5kymTp1qUJtCJGtYpjDXO35N+PoRxN63R6dG8OsnnzF4+SIsrTPfmU0I8eoCAgIYM2YMgwcP5vTp08yfP59Zs2alW97a2ppy5coZ1GZyohIZGUlwcDC+vr5YWFjouza0b9+e2bNnU6tWLf2tk0mTJtG+fXuj3s7JVKLx77//GqXx5s2bG+W46YmMjASSOm+mxdbWFoCIiAiD2qlRowbz58/nzp072NraUrlyZbZu3Uq7dmnfKx83bhxjxozRvw4PD8fd3d2gGETB9n6j0ky5PxW3fV8Q9diS+MRH/Dx0NIN//ilfz8orRG7Rp08foqOjqV+/PlqtlpEjRzJo0CCjtvl8l4BTp06xZs0aPDw88Pf3B2DixIkoisLEiRO5d+8eLi4utG/fXj+/lbFkKtHw9vbO9vtTiqKQkJCQrcfMLebOnZuqE05GLC0tsbS0NF5AosBRFIWJHesw7OEQap9eSXSkhqjoO/w6ejx9531t6vCEyNee77e3cOHCHGv3Zbc/zMzMmDJlSqoRpMaW6T9tXtYh8lUeOS15KGtUVFSa+58+fQrk7+nRRcFhYaZhZp/WHC/TCivzpAl8Hj24wJaZc00bmBCiQMnUFY39+/cbO44ckTzXxd27d9Pcn7zdw8Mjx2ISwphc7C35tF8Pflh8lxrXLYjRPeS67z6O/FaSxu+bZuIjIUTBkqlEo0WLFsaOI0ckz/9++vTpNPcnb69evXqOxSSEsVUt4UjbzkM5vXYchf2KEq8+5OjW1RTxcMerWQNThyeEyOcKVK+wJk2a4OjoyM2bN9McRrR+/XogqWeuEPlJh5olsGk+Dk3p+2ifLS2/7afZPPJL++qeEEJklwKVaFhYWDBixAgAhg8fru+TAUlTkJ87d44WLVroZwUVIj/55M2KnPWahF1Jv2dLyz/ltwnjiA6PNHVoQmRIFgk0nez47PN0orF9+3YaNmyof8TFxQGk2LZ9+/YUdSZOnEiDBg04cuQI5cuXp3v37jRs2JCxY8fi4uKSYspYIfITrUZhVo96bCs6FluXh6BYkZgYws8jxpCYmD9HgIm8LXluh+Tf7SLnJQ+eMDc3f+VjGDRh14ABA165rqIoLF++3JDmCQ4OTjX7GqSckS04ODjFPisrK/bv38/MmTNZs2YNmzZtolChQvTr14/p06fnmenUhXgVDlbmzO7XkpE/BdEmZgvR4VpiYu+z6qPPGbDge1OHJ0QKZmZm2NjYEBwcjLm5ucwBk4NUVSUqKoqgoCCcnJwMmtArWxZVyypVVVEUhcTExFdtOl+TRdWEsR24GsTyVUtpePciMbFJU957VmxGl6mfmTgyIVKKi4vDz8/PqGtxiPQ5OTlRrFixNL/rM/tdZdAVjVKlSr000Xj69CmPHz/WJxdFihRJd2ZOIUTO8K7gytU33+Pmnll43LQiRheE/5WDHFhWEu8Pe5k6PCH0LCwsKF++vNw+MQFzc/NsmZrcoEQjeVrTlwkJCeH3339n8uTJODk5sWXLFipUqGBI00IIAw1qXobRgQOJVydhcdONODWQU3vW4VLKnSqtc3Z5ACEyotFoUi1RLvKOHLnh5ezszLBhwzh8+DBBQUG0adOGkJCQnGhaCJEORVH4ukt1DhT7FIdylzBTXIEEdv08n8DLN0wdnhAin8jRnjUVKlTg448/xt/fP8NV7IQQOcPKXMvCPvX52fL/cPa8gEZxRlWj+WPaZCIeh5o6PCFEPpDjXXjfeOMNADZs2JDTTQsh0uDmaM3sPs1YpR2GXVE/FMUWnS6cVaM/kWGvQgiD5XiikbywWUBAQE43LYRIRx2PQgzu+Dq7bDpi6RgOmBEb+4B1478ydWhCiDwuxxONM2fOAIZN/iGEyH7v1nOnaqM2+LtUwEqbNFTtnr8Px9ZuNXFkQoi8LEcTDT8/P7744gsURaFmzZo52bQQIhMmtK3E/VLv4lDpNFYkTV53eMPP3JHOoUKIV2TQ8NZffvnlpWV0Oh0hISGcPHmSzZs3ExUVhaIoDBkyxJCmhRBGYK7V8NP7dZm94APMKizD8VpDEtSHbJgxhUGLF2P97NanEEJkVo7ODJrc1MiRI5kzZ86rNpvvycygwtRCn8Zy9ofm7AuwxTHEFVWNxMnFiwE/fI8i00ALIcj8d5XBvzFUVc3Uw9HRkXfeeYe//vpLkgwhcjknW0vqdP6OMuWuYZeoAFpCg6+x88dlpg5NCJHHGHTrxM/P76VlNBoN9vb2ODk5GdKUECKH2VVoTrdj9RjU9DQt/32DELPbXD68Bfdqlan2WlNThyeEyCMMunUijENunYhc474vZ1a14rtYN5pcaUGM6oeiWND7u3m4uLubOjohhAnl2K0TIUQ+Vrwmtcq+jVeRCMKtTqHVFEVV4/h90iTiYqJNHZ0QIg/IkUQjNjaWhw8fyjK/QuRFr01gVEg4u5qEUDTiMSi2xEc/YtWkGcgFUSHEyxiUaERGRrJjxw527NhBZGRkqv2PHj2iS5cuODg4ULx4cZydnRk7diyxsbGGNCuEyEkuXjhVe4+RYWEsf+MGJSKdAQ3hAWdZt2CFqaMTQuRyBiUa//vf/2jXrh1DhgzBxsYmxT6dTkebNm3YtGkT8fHxqKpKREQEc+fOpWfPngYFLYTIYd6f0SE6nhLWsRyodAgnXUUAAv7dyF/b95s4OCFEbmZQorFr1y4AOnXqhOaFsfVr167l1KlTANSuXZvRo0dTu3ZtVFVl06ZN/PXXX4Y0LYTISU6l0NQdwKRHIRyvohDLfiy05VBQOf/rT/x76oqpIxRC5FIGJRoXLlxAURQaN26cal/yrKF16tTh2LFjzJo1i6NHj1K/fn0AVq1aZUjTQoic1mws5TCnT1gYK1pFUzboGorWFY0awz9zvubo1UBTRyiEyIUMSjSCgoIAKF26dIrt8fHx/PvvvyiKwvDhwzEzS5quw9zcnCFDhqCqKj4+PoY0LYTIaXau0HAog0PDKWSuYfEbAVQIVkCxxib+Eeu++Z6jNx+ZOkohRC5jUKLx5MkTACwsLFJsP3HiBNHRSUPf3nrrrRT7vLy8AHjw4IEhTQshTKHxR9hYOvB5cBC33BSOlvOhWGwZQKHE06vMn7WcI5JsCCGeY1CikdwBNPnKRrJ///0XgHLlylG0aNEU+6ytrQ1pUghhStbO0GQUr0VF81o8bGmg4qg7go2mBgC1Hx9i4k+bOHxDkg0hRBKDEo2yZcsCcODAgRTbN27ciKIoNG/ePFWd4OBgAFxdXQ1pWghhKg0Gg60r4wLvYaUx5+vWIdS+dxKtWXkUVFoH7uKjpfs5eD3Y1JEKIXIBgxKNVq1aoaoqCxYsYOfOnURGRjJ//nxOnDgBQPv27VPVOXfuHADFixc3pGkhhKlY2ELzT3FLTGRIRAxhdgorW4VQPeA+itYFc100be/tZOCK4/xzTZINIQo6gxKNkSNH4uDgQEREBO3atcPR0ZFRo0YBUKlSpTQTje3bt6MoCrVq1TKkaSGEKdXpC46l6B18n3IWzhwqFUV4rRg8wwqDYoVTfBCvPfiHgatOcOBq0MuPJ4TItwxKNNzc3Ni6dSvFihVLsSR8mTJlWL9+PYqipCh/8+ZNDh48CMAbb7xhSNNCCFMyswTvzzEHJgXeA2BqjZuU11zCSa0JKJR7epmKIRcY9Msp9l15aMpohRAmlC2rt8bFxXH48GEePHiAm5sbTZs21Q9pfd6hQ4fYu3cvAJ9++mmq2URFElm9VeQJukRY0AgeXWVyVW82Pr1F43gPhi2J4KBXS2LjT6CiYX2xDjy2c2Nhrzq8Ubnoy48rhMgTMvtdJcvE50KSaIg849Jm+LMPIVb2tPfwICwunK/DWuG0+ho+5cuhi7+BztyOFcW6EG9py089a9O6SjFTRy2EyAayTLwQwvgqvQNuNXGOiWCMVdLEfVMLHaRog1J4PYxH0RRGEx9J7/B9JCYkMGz1af66IHPoCFGQZGuicfPmTX777Te+//57pk2bxqNHMpZeiHxNUeD1SQB0vLCbWoUqE50Yw9I3NXglXsE1rjxggUXYHfqqviToVEasOc3O8zJduRAFRbYkGqdPn6Z58+Z4eXnRt29fPvvsM6ZOnZpqIq+ffvoJV1dXypcvT3x8fHY0LYQwtbKvg0dTNImxTEywRato2fHoH4I/e58a1zdha5a0FpLdbR96OT9MSjZ+P8P2c5JsCFEQGJxobNu2jSZNmnD48OEUI0/S0qdPH6Kjo7l16xbbtm0ztGkhRG7w3FUNr3Ob6F06aVj7tMi1FBnclzpXdmJmUQ+Awr5b6F4aEnUqH/9xhq1n75ssbCFEzkg9NCQLAgMD6dGjB7GxsVSpUoXvv/+epk2bYm9vn2Z5e3t73nnnHf744w927txJp06dDGleCJFblGoI5d+E67sY+iCAv2yLcS/yHusaJNLhWAmqBtzinHsZdPG38Dz1J+82H8yfF0IY+ccZdKpKh5olTP0OcoSqqujUpERLp6ok6lQSVRWd7r/n6rP9z5dJ+jd1vfT+qEuvi39am9Mtm96xM/E+Re5WubgDDlbmOdaeQYnGnDlzePr0KR4eHhw8eBAnJ6eX1vH29ub333/n1KlThjQthMhtWk6E67uwubiJzzvNYZTvHFZcXkXbSYtx7/0xoeGtuW3rRFTYY2pd3YJSuztrT99n9FpfdKpKp1olTf0O0vQ0NgHfO6Gc9A/h5O0nPAyPefaFn15CoOr3v7hdJ9/SIhf439BG1PEolGPtGZRo/PXXXyiKwtixYzOVZABUrFgRAD8/P0OaFkLkNm7VoUpnuLiBlhf+okXJFvxz9x++9FvE3BnTiRs5hrCaHxLCAe5fu8CbZcuhqV+f333uMObPs+h00KWO6ZONwLBoTvqHcOp2UmJxOTCCxBzMELQaBa2ioNGARkl+rqDVKEmvNei3aRSFF+ZFBCCNTakmUEyvXFobM3s8kTdYmmlztD2DEo3bt28DUL9+/UzXSR5rGxkZaUjTQojc6LUJcGkzyvVdjKu7huOBxznx4AT/NO1E3e5dqblxHUdrdCMmZg9ndm6iz0fl0TQoxerjAXyy/iyJqsq7dd1zLNxEncrVBxGcuv2Ek7dDOOkfwr3Q6FTlSjhZU8fDmbqezpR1sUtKBvRf/EnJgKKQ5naN5vnkQXkueSCNsvLlLfIfgxKNhIQEAHQ6XabrhIWFAWBnZ2dI00KI3KhIOajVC07/QokjCxhcZzDzzszj+5Pfs3nUnzidPEn16wc5Vb4eiTEn2LVwHiO//B6N4sGvx27z2f/Ooaoq3euVMkp4UXEJ+AaEJiUVt0M4czuEiNiEFGU0StI97LoehfTJhZujtVHiEaIgMCjRKFasGP7+/ty6dYuGDRtmqo6Pjw8ApUoZ5xeJEMLEWnwGZ/+A24fo2+RjtjmW5WbYTX64tJj/mzWLuG7vUu6hJ9cLe5CYcJtN385g3Ddz0WoUVh7x57P/nUenQo/6hv+OeBgew0n/EE74P+HU7RAuBYanug1iZ2lGrVJOSUmFRyFqlnLCztKgX41CiOcY9NPUrFkz/Pz8WLduHT179nxp+bi4OBYvXoyiKHh7exvStBAit3IsCfU+hGMLMN//FRM7fE//XQNYf209Hd7uQKnPP0M3dTqhjoMJ0oQQ8TiI7fO+Z9K4ySgKrDjsz7gN50nUqbzf0CPTzSbqVK49jODk7RBO+SfdCrkbkvo2SHFHK+p4FqKepzN1PJypWMwBrdyyEMJoDEo0+vXrxy+//MKWLVvYs2cPrVq1SrdsXFwcffr04ebNm2g0GgYOHGhI00KI3KzZWDj9CwT6UvdJIO+UfYctN7cw/eh0fn/3d+wPH6baP79xrO4QIqO2EnD+NEfXrWFy995oFYVlh/yYuOkCqqrSu5Fnmk1ExSWNBjnln3Qb5HQ6t0EquTlQ18OZOp6FqOvhTHEnuQ0iRE4yKNHw9vame/furF27lvbt2zNy5Ei6dOmi3+/v709oaCiHDx9myZIl3Lp1C0VRGDJkCFWqVDE4eCFELmVbBBoOg3+/hX0zGDtgOwfuHOBqyFX+uPoHPaZPJ6ZjJ2pcXI9P1bbEP/2L4xv/pGiZckxo2witRmHxv7eYtPkiOhX6NvYkKDxG32Hz5O0nXLofTsILt0FsLbTUKuWs71tRq5Sz3AYRwsQMXr01NjaWLl26sGPHjgyHOyU307lzZ9auXYtWm7PDa/ISWb1V5AsxYTC3OsSEQsdFrLcxZ+rRqdiY2bC542bsLwQQ0K8fd4o351IJVxJjT2NmYcX7M+dQqERJvvnrKov+uQkkjfpIazSIm6MVdZ9dqUi6DWKPmVbWihQiJ+TY6q2WlpZs27aNxYsXU6ZMmRTTkD//KFmyJAsWLGD9+vWSZAhREFg5QtPRSc8PfEXn0u2o4VKDqIQovj3xLbYN6lN4yGBK3vuHEtEOKGYlSYiLYdN3M4iLjuaztyow/LWyANwLjU4aDeLmQJ9GHsx7ryaHP2/J0XGvM79HLfo29qRqCUdJMoTIhQy+ovGiS5cucfLkSYKCgkhMTKRw4cLUqlWL2rVrywQvmSRXNES+ERcFP9SCyAfw9vdcLdec7tu6k6gmsuD1BTQt1ojb7/cm4vxlTjb8hCdPt4EaSdk6DejwyQRQFP65FoxGUahVygn7HJw2OddRVdAlQmLcs0c86OL/2/dfwZR1Xtz+0rLp1SeN7ZkoK3Ifx5JgYWPwYTL7XZXtiUZmnTp1ijp16pii6VxPEg2Rr5xYBtvHgq0rjPTlu7ML+OXSL5S0K8nGDhvRPHiMX8eOROhsOV7nA2LC1wOJNHn3fRp2ec/U0acUfh8Cz6X8sk/1PI1tuvh0ymbmGAn/PZeVRkR2GLAbSjUw+DCZ/a7K8V5SR44cYfr06ezZs0c/4ZcQIh+r1QcO/wCht8FnCcMaDGOX/y7uRt5l6fmlfFTrI9ymTUU3ZixVru7ibNnXSYjazeE/V+NapixlatUz9TtI4vs7bBsNCan7ipiMxgz9BOEprhg/9zyt7S8t+5L6KZ7Kleo8R5OzX/05dkVj7969zJgxg3///Ve/LTExMSeaznPkiobId87+ARsHg5UTjDzL30EnGX1gNGYaM/73zv8o41iG+xMmEPa/Ddyo3oeblhEkxp3DwtqG97+ei3Ox4qaLPSEW/hoHJ5cnvS5cDmxdQGsOWotnj+eea8zS3q5/nk49rXkmyzzXjtyOFiZktFsnqqqyceNG/v77b+7cuYO5uTmenp507dqVxo0bpyp/4MABxo8fz/Hjx/X1AVq3bs1ff/2VlaYLDEk0RL6jS4SFTSD4MjT7BLXlRIbvHc7BewepX6w+y1ovQ42Oxq9zF2Ju38G3+UQeRuxFTQykcEkPen75PRZWJpj/Iuwu/NkX7p1Met3ic2jxf6CRDu1CGCXRuH37Nh06dOD8+fNp7u/WrRurV69Gq9Xy+PFjPvzwQ7Zs2QIkJRiKovDOO+8wYcIE6tatm8W3VHBIoiHypcvbYG0vMLeFkb7cVePouLkjsYmxzGw2k3Zl2hFz6RL+3d8jWmPLiSafEfHkd1CfUrnZa7QZMTZn4711ANYPgKjHSSNoOi8Dr9Y5G4MQuVi2D2+Ni4ujXbt2nDt3Lt0hrOvWrWPcuHHcuXOHevXqsWXLFlRVRaPR0KNHD86dO8fGjRslyRCiIKrYForXhvincHA2Je1LMrj6YAC+O/EdYbFhWFWujMvYMVjFhlL1/Gos7NoBcOngfoL8b+VMnKoKh+bAr52Skoxi1WDQP5JkCPGKMp1orF69mosXL6IoCp6enixbtozjx49z5swZ1qxZQ61atVBVlYULF9KzZ0/8/f1RVZUuXbpw6dIlVq9eLbOBClGQKQq8Pjnp+cnlEHqHflX6UdqxNE9injD/zHwACvXpg23zZjgHX6DCU3805hUA+Hv5SuPHGBMGa9+Hv78AVQc1e8EHe6BQaeO3LUQ+lelbJ+3bt2f79u24u7tz8eLFVMu863Q6mjdvzpEjRwDQarUsX76cPn36ZH/U+ZzcOhH5lqrCqvbgfxBqvQ8dfuLEgxMM2DUABYXVb6+mmks1Eh4/5laHjiQ8esylNz7mdvA2AF7/cBo1W9U2TmwPLyUlGU9uJnW2bPMt1OknHS6FSEe23zo5e/YsiqLw6aefpkoyADQaDdOmTQNAURR69+5dYJOMlStXoihKqseBAwdMHZoQpqUo8PqUpOe+a+DRdeoVq0f7Mu1RUZl+bDoJugTMChem+Ndfo6BSae987B28ADjwyy/cvfIk++M6tw6WvZ6UZDiUhAF/Qd3+kmQIkQ0ynWg8fvwYgKpVq6Zbpnr16vrnXbt2NSCs/OHQoUMcPXpU/6hd20h/iQmRl7jXgwpvJ92a2P8lAGPrjsXewp7LTy6z9upaAOyaNqHQgAFoVB01TuwDIDHuBlvm7eH+jdDsiSUhDnb8H2z4EOKjoIw3DP4XSshkgkJkl0zP2hEdHY2iKLi6uqZbpkiRIvrnJUuWNCyyfKBBgwaYmcnKkUKk8toEuLoTLm6EpqMp7FaDUbVHMf3YdOafmU8rj1a42rjiOmokakw0rFuPW8hTAp1tiY04wrZ5Lrwzpg7FSju+egzh92FdP7iTNPSeZp/Aa+MLzNDV5LvmKs869PPfa/1s5Ty3/VmZ5++2v7gvW+KS2U+NzsbMBrMcnLTLaC3JF6wQIl3FqkK1rnB+HeybAb3W0dWrK5tvbObco3N8e+Jbvm/xPYqFBcUmT6bwhx+i+Wk+266fQxd/k9joh2yeeYQ2b1vj3qFF1tdR8jsI6/vD02CwdIROi6Di28Z5r89J0CUQlRBFVPyzx7PnT+OfJj1PSLk9RZmEp0THR6coE5sYi07VAc8lAv9lCSmSh+xMBkTe9mubX6npWjPH2svT2cCpU6fYs2cPPj4++Pj4cO/ePQBe1r81OjqamTNn8scffxAQEEChQoV46623mD59OiVKlMi2+EqUKMHjx4+pXLkykydPlttJQjzPe1zSFY3ru+H2UTQejZjUaBLdt3Vnl/8uOpXrRJMSTQAwL16cCl/O5Pp3M7h68hhE7CXBuSd/bQmj4ZpBlB78HnYtW7484VBVOPoj7JkCaiK4VoHuv0Lhsi+pphIWG8adiDs8jnmcYQLwYtIQnRCdtC0+ijhdXHZ9ekLkGZkedaLRaFAUhaFDh2Z4++SLL77IVDmAyZMnZy3aF3Ts2JHNmzen2p7RW4qJieG1117j2LFjuLm50axZM/z9/fHx8cHFxYVjx45RpkwZg+LatWsXp06dokGDBkRHR7N8+XI2bdrEpk2b6NChw0vry6gTUWBsHQWnVkCpRtB/JygK3/h8w2+Xf8Pd3p0N72zAysxKX/zJ/busHDMMVdVRpHBnInWeWMSGUdt3Ls4ehSgyZAj2rVuhaNLofhYbAZuHw6VnvzOqd4d2c/WrWOpUHUFRQdyJuJPiERAewN2Iu0TER2Tb2zbXmGNjboONWdLD1twWa3PrpNfmNtia2f6339wGazNrbM1t9a+T61hoLdAoGpRn640kJ1rPv87UPpQUSVp6+9I6Vorn2bXuifTBNSqtokWjZLqLZrqyfWbQ5EQjOxm61sk333zD06dPqVevHvXq1cPT05PY2NgME42JEyfy5Zdf0qhRI3bv3q0fQTN79mzGjh1LixYtUowOCQ0N5cGDBxnGYWNjQ6lSpTIs06xZM+Li4vRTsWdEEg1RYITfh3k1ITEWev0Pyr/B0/invLPxHYKigxhSYwjDaw5PUWXHj7O4fHA/njXqEhfXmicPYrCMDaX2mdlYxzzGsnw5Cg8egkObt1C0z/pbBF+Fte8T/+ga9y2suNPwQ+64VSUgIimJuBNxh7uRd4lNjM0wXFdrV1xtXFMkBi8mADbmKZ+/mDTYmNlgri3Ay92LfMMoiUZ2UhQl2xdVs7KyyjDRiIuLw9XVlbCwME6fPk2tWrVS7K9Rowbnzp3j5MmT+iXsFy1axNChQzNs98XkJC3ff/89EyZMIDY2419kIImGKGB2TUi6nVGsetIMnBoNu/13M/afsZhrzNnwzgY8HT31xZ/cv8fKMUNRVR1dxn/DkY0RhDyIwtY8jlqnZmHx5C4A8SWLEtCpLr7uj7gdeJQ7Wg0PzLQkZvAHk1bRUtyuOKXsS1HSviTu9u6Usi+Fu707JexLYG1mgvVWhMilsn2Z+P3792dLYKZ0+PBhwsLCKFu2bKokA5KG5J47d46tW7fqE40hQ4YwZMiQnA5ViIKj6Rg4tRIenIPLm6FKJ1p5tKJJiSYcvneYGcdnsLTVUv0V1ULFS1C2cWNuHD7Erv8tQH2rFgkbivE00oZd9QcR83Q2bU6EYnf3IWXnb8fWCYIam/GgqkKiomCltdInEc8nEu4O7rjZuuVob3whCoJM/0S1aNHCmHHkiLNnzwKkO59F8vZz585la7vJK96mldwIUeDZFoZGI+Cfr2Hfl1CxPYrWjAn1J9BpSyeOBx5n4uGJxCXGERARwJ2IO2AWTSeKE3n1NtsKHyPGy5YOFz/CPqYwsXYjmDzsZ94+FUTT4/EUC1UYukPH4FNFsP+gLyW69UZraWnqdy1EgVGgUveAgAAg/Tk+krffvn3boHa6du1K/fr1qV69OrGxsSxbtoyjR4/qV7J9UWxsbIpbKuHh4Qa1L0Se02g4+CyBx9fh3B9Q633cHdwZWG0gP/r+yJabL/zs2ML9UomUDDDjzXsVKPS+N8Xq2fHwdw2Fwt3od6E3HYqOx6KThhDL93i87Tg8fMTTr2Zx6+fVFP7wQ5y6dUUjCYcQRlegEo3IyEggqfNmWmxtbQGIiDCsd7mXlxfLli3j7t2ke8W1atVi27ZtvP122uP0Z86cydSpUw1qU4g8zcoBmo2B3RPhwNdQrRuYWTKg6gD9cNHkWx3u9u6UtC9JzKMQVowegvntcNpbt8CtnBchQcvZuLkQj+JKsTViJh3GNqJwSS+cR8UQ+uc6Hi9bRsKDBzycMYNHixdR+IMPcO7eHY219L0Qwlgy3Rk0L3hZZ9BBgwaxdOlSJkyYwIwZM1Ltv3HjBuXLl6d8+fJcu3bN2OHqpXVFw93dXTqDioIlPhp+qAURgUkLmjUY/NIqfy2Yw8V/9lK6ek06e92Dixt4HF+KTeHfEBNvhVs5R9p/VBNzy6TRJ7rYWMI2bODRkqUkBAYCoC1cmML9++HcoweaZ39sCCFeLtsXVcsPkoeyRkVFpbn/6dOnANjb2+dYTACWlpY4ODikeAhR4JhbQ4v/S3r+73cQG/nSKg06d0fRaPA758v9k3tAY0bh9sN555OmWFibEXgjjO0LzpEQlzTCTWNpiXOPHpTb9RfFpk/DvGRJEh8/Juj7Wdx4/Q0eLVpMYuTL2xVCZF6BunWSPNdF8i2NFyVv9/DwyLGYhBDPqdUbDv8AIX5wfBE0/yTD4s5PTlDZMZiLIYU5GlKeLsNnQqmGuADtP6rBlnm+3Lsaws7F53l7SHW05kl/WykWFjh364ZTx46EbdvO40WLiLt9m+C5c3n8888U6tOHQr3fR+towFoq2UBVVRJDQ0kICiYhKCjpEZz0b3xQEImhoZCoS5rxVH22Domqgk6X5mtQUXUZl9G/frZNRYX06ujLkLQva2/OOGXFS5VatRKbHBycUKASjRo1agBw+vTpNPcnb39+FVohRA7SmictuLbhw6SEo94HYO2culxiAuydCkd+oGEhKy6FFsI/zJb7MY4Uf1akWBlH2o2oztYfzhJw8Qm7ll3gzUFV0Wr/u5CrmJvj1Kkjju3bEb7zLx4tWkTczZs8+vFHnqxcifP7vSjUty9mzmnEYABVVdE9ffpf8hD0X/KQIqkICkKNk2nLRTbL4bytQPXReH7CrjNnzlCzZs0U+9OasMsUZMIuUaDpdLCoKQRdTJpj440pKfdHBsH6AeB/MOl1oxHsulWECwf24lmjNl3GT0tR/M7lJ2z/6RyJCTrK1XWl1YAqaDRpT9qlJiYSsXs3jxYuIvZZPy3FxoZCPXtQqH9/zAoXfnn40dEkBAennTw8fJi0LTgYNZ1buGnROjlh5uqa9Cia9K+5qytaZ2fQaEBRkqZdVxT947/XGlDI4msla3U0GkAhy5NHZ6VCNs9MXZBpCxdGY2Fh8HGyfWbQvOBliQb8NwV548aN2b17t36kSXpTkJuCJBqiwLuyA/7oAeY28LEv2BdN2n7HB/7sk9Rh1MIOOvwEVToS+vABK0YPRpeYSI/p31Hcq1KKw/mff8TORefRJapUaFiM1/tUQkkn2QBQdToi9u7l0cKFxF66DIBiZYVz9+7Yt3qDhCdPSHgYlOJ2RnJCocvC8HSNnZ0+eTBPTiRcXP9LKlxdMXMpIsNwRa5UIBKN7du3M336dP1rHx8fVFWlQYMG+m2TJk2ibdu2+tcxMTF4e3tz/Phx/aJqt2/f5vjx49m2qJqhJNEQBZ6qwvJWcPcE1B+UNArFZynsGg+6eChSIWnVVZcK+iq7Fv3Ahf278ahei64Tpqc65K0zwfy19AKqTqVKs+K06Fnhpes3qapK5IEDPFqwkJjz5zMdvmJllZQ8vJg0uLpi5uqSlFS4uMgoF5GnZfsU5LlRcHBwmouUPb8tODg4xT4rKyv279/PzJkzWbNmDZs2baJQoUL069eP6dOnpzuZlxAiBykKvD4ZVrWHkyuSrmBc3pq0r3JH6PAjWKYcHdaw87tc+ncvt8+d4d7Vy5SokPKqRplaLrzRvxJ7fr7ExYP30ZpraNqtfIbJhqIo2L/2Gnbe3jw9dJjHy5YRf+dO+snDs4fG3j7bF6EUIq/K01c08iu5oiHEM790gFsHkp4rWmg1LWkW0XS+xHcv/oHz+9K/qgFw+Ugg+35Juh1S+00PGnYsI0mBEK9A5tEQQuR9r08BrSXYukLfrdB4RIadAht06o5Gq026qnHlUpplKjV2o0UPLwBO77rNyR3+xohcCPGMJBpCiNyrRG34+AyM9AXPJi8t7uhalCrebwBwZP2adMtVbVGSJl3LAeCz1Y/Tuwxb30gIkT5JNIQQuZtjCbDIfKfJBh3fRaPVEnDel7tXLqZbruYbpWjQIanj99GNNzm7747BoQohUpNEQwiRrzi6FqWqdysAjq5bnWHZum08qfu2JwCH/rzOxYP3jB2eEAVOnh51IoQQaWnQ6V0uHPibgAvnuHvpAiUrV023bP32pUmI1+G7J4ADa65iZq6hQkO3HIw262KexvPgVhghD6JQdSo6XdLU4qpK0r+6pGnCdbrnXuvUpJnEU7xWUZ8ro3vhGCleq8nb0nmtS3tcQbqjDbIwDiHdoulsV3N66ss8ps3garh65NxAA0k0hBD5joOLK1Vfe4Nzf//FkfVreHfyV+mWVRSFxp3Lkhiv4/yBu+xddRmNmYbydYvmYMQZiwyJJfBGKPdvhBJ4I5TH95/m+DTSIv9ITMjZ/zySaAgh8qUGnd7lwv6/uXPxHHcunce9crV0yyqKQrN3y5MYn8ilw4H8/fMltGYaytR0ycGIk6iqSujDKO5fDyXwZhiBN0IJfxSTqpyjqzUupewxM9OgaBT9Q6OQ8rUm6f2leK1R9Ns0GuXZrOP/vUbh2fb/9mmeO6aSYr/ybAZyJd1hwlmfmjytTekcJA+MTM5to6editrkaHuSaAgh8iWHIq5Ua9mKs3t2cnTdGtynzMywvKJRaNGrIgnxOq75PGTXsgu0HVqdUlVevr6JIXSJOh7djUxKLG6EEXgzlOiI+JSxKVDE3R63co4UL+dEsbKO2DrKtOQib5BEQwiRb9Xv+C7n9+3hzqXz3Ll4DvcqGa/MrNEovN63EokJOm6eDmbHovO0G1GDkhWyb/XW+LhEHvqFJ90KuR7KA79wEmITU5TRmmkoWtrhv8SijCMW1vLrWuRN8j9XCJFvORRxoVrL1pzds4Mj69fQ/SWJBoBGq6HVgCokJlzA/9wjti84xzsf1cCtnNMrxRDzND7pFsj1pD4WwQER6BJT3iO3sDbDrayjPrFw9XBAay6DAkX+IImGECJfq9+xGxf27+bupQuZuqoBSVcU3hxYhR0LznHncghbfzxLh1G1KOr58p76EU9innXcTOpf8eT+01RlbB0tcCvvRPFyTriVc6JwcdsMV5MVIi+TtU5yIVnrRIjs9ffyhZzdvZ2Slary7pSZmV7bJD4ukW3zz3L/eiiWNmZ0HFOLIiX/W8xNVVVCHkT9NyLkehgRT1J33HQqaqO/WuFWzgmHIlayvorI8wrEMvH5lSQaQmSviMePWP7xhyQmJNBt0leUqvryqxrJ4mIS2PqDLw9uhWNlZ07L3hUJDYom8EZS582Yp2l33Cxezgm38o64lXXCxsEiu9+SECZXIJaJF0KIzLAvXIRqr7+J767tHFm3Gvcq1TJ9RcHCyox2H9Vk85wzBAdEsGPh+RT7teYaino6ULy8E27lHJM6blrJr1YhkslPgxCiQKjfsRvn9+3m3pWL3Ll4jlJVa2S6rqW1Ge98XJNtP50lNCgKtzKOuJVzonh5J1xK2aM1k46bQqRHEg0hRIFgX6gI1V9/izN/bX12VaN6lvpJWNmZ0/WzukaM0HA6XSKJCQnoEhJITEggMSH+uefJ2+PTfJ2y3H9lXnyd6tiJ/21Pnq40xQ35516kmBr8+acpK6Sumu4x0jmeTJuaodaDPsLFo3SOtSeJhhCiwKjfoSvn9v7FvSuXCLhwFo9qNU0d0itJTEjg4O+ruHxwPwlxcfovf1XVmTo0kQfExaTusGxMkmgIIQoMu0KFqf7GW5zZuZUj69ZQqmqNPDf6Izoygm1zZhJw4dxLy2q0WjRmZmjNzNCamf/3XJv0r8bM/Nk+s7TLvVDmv3JJ2zRa7X/ltVqS5iJPov9Un/t8U37Wz29Po+zzc4u/dH8ax8oLc5ObSKESJXO0PUk0hBAFSv13unL+713cv3qJgPNn8ahe09QhZdrju3fY9O00Qh8GYm5lTetBIyhaplzayYFWi6KRviPC9CTREEIUKMlXNU7v3MKRdaspVS1vXNXwO3OSbfO+JS46CgeXonT8v0m4lPI0dVhCvJSku0KIAqdeh66YmVtw/9plbp/3NXU4GVJVlZPbNrLxm2nERUdRslJVen01W5IMkWdIoiGEKHDsnAtRvVUbAI6sW01unbcwIT6eXQvn8c+vy1FVHdVatqbrxOnYODiaOjQhMk0SDSFEgVTvnS6YmVsQeO0Kt8+eNnU4qUSFhbJu2ngu/vM3iqLhtX6DaDXoI7Rm5qYOTYgskURDCFEg2TkXokbrZ1c11q/JVVc1gvxv8dv40dy/dhlLG1s6j/uC2m3eyRN9SYR4kSQaQogCq947XTGzsCTw+lX8c8lVjes+R/h98qdEPArG2a0EPb+chWeN2qYOS4hXJomGEKLAsnVypsazvhpH15n2qoaqqhz73x9smfUVCbGxeFSvRc8ZsyhUPGfnPBAiu0miIYQo0Oq90yXpqsaNq/j7njJJDPFxsWz/4TsO//kbALXatKfz519gZWdnkniEyE6SaAghCjRbJ2dqtH4bME1fjYgnj1g75XOuHvkXjVZLq4EjaNlvMBqtNkfjEMJYJNEQQhR49Z9d1Xhw4xp+vidzrN3AG1dZPX4MD29dx8rega4TZ1D9jbdyrH0hcoIkGkKIAs/G0Ymab7YFcq6vxuVDB1j7xec8DXlC4ZKleP+r2bhXrmb0doXIaZJoCCEEUK99Z8wsLXlw8zp+Z4x3VUPV6Tj0xy/smP89ifHxlKlTnx7Tv8fRtZjR2hTClCTREEIInl3VaJ10VeOIka5qxEVHsXnWVxzf+CeQtGx9h08mYGljk+1tCZFbSKIhhBDP1HunC2aWljy8dZ1bp09k67HDgh7y++T/4+bJY2jNzWkzYizNevZDo5FOnyJ/k0RDCCGesXFwpNab7QA4mo0jUO5evsDq8aN5FOCPjaMT706eSeVmr2XLsYXI7STREEKI59Rt3xlzSyse3rrBrdM+Bh/v/L7drJs+keiIcFxLl6XXV3Mo7lUxGyIVIm+QREMIIZ5j4+BIrbeSrmoY0ldDl5jI/lVL2b34B3SJCXg1bMp7U7/BoYhLdoYrRK4niYYQQrygTrtOmFtZE+R3k5unsn5VI+ZpJBu/mcrpHZsBaNytF+1GfYa5pVV2hypErieJhhBCvOD5qxpZnVcjJPAeayZ+gv/Z05hZWNJ+9Oc06tpDVl4VBZYkGkIIkYa6yVc1/G9y8+TxTNW5fc6X1RPGEHL/LvaFXXhv2rd4NWxq5EiFyN0k0RBCiDRY2ztQu0174OVroKiqypm/tvK/mZOJffoUt/IV6PXVbIqWLptT4QqRa0miIYQQ6ajTtiMW1tYE+9/ixsljaZZJTEjg72U/sW/FYlSdjsrNW/Lu5JnYOjnncLRC5E6SaAghRDqs7R2o9dY7wLO+Gjpdiv3REeH878tJnPv7L1AUmr8/gLeGjcbMwsIU4QqRK0miIYQQGajT7tlVjdt+Ka5qPLpzm9UTxnDn0nksrK3p+Okk6rXvLJ0+hXiBJBpCCJEBazt7ardJeVXj5ikffp/0CWEPH+BYtBg9pn9P2Tr1TRypELmTmakDEEKI3K52246c3rmV4AB/ts39hms+R0BVca9cjXajP8fGwdHUIQqRa8kVDSGEeAlrO3tqv510VePa8cOgqlR/4y26TJguSYYQLyGJhhBCZEKdtzti7eCIotHQcsAQ3vhwOFozuSgsxMvIT4kQQmSClZ0dfb75AV1iIg4urqYOR4g8QxINIYTIJLtChU0dghB5jtw6EUIIIYTRSKIhhBBCCKORREMIIYQQRiOJhhBCCCGMRhINIYQQQhiNJBpCCCGEMBpJNIQQQghhNJJoCCGEEMJoJNEQQgghhNHIzKC5kKqqAISHh5s4EiGEECJtyd9Ryd9Z6ZFEIxeKiIgAwN3d3cSRCCGEEBmLiIjA0TH9VYwV9WWpiMhxOp2O+/fvY29vj6Iopg4n3woPD8fd3Z07d+7g4OBg6nBEOuQ85Q1ynnK/7D5HqqoSERFB8eLF0WjS74khVzRyIY1GQ8mSJU0dRoHh4OAgvxjzADlPeYOcp9wvO89RRlcykklnUCGEEEIYjSQaQgghhDAaSTREgWVpacmUKVOwtLQ0dSgiA3Ke8gY5T7mfqc6RdAYVQgghhNHIFQ0hhBBCGI0kGkIIIYQwGkk0hBBCCGE0kmgI8cyqVauoW7cuTk5O2NraUrt2bf744w9ThyXSEB8fz4wZMyhTpgyWlpZ4enoyc+ZMU4clXrBgwQLKli2LlZUVNWrUYNu2baYOqUA7efIkffr0oVy5ciiKwsSJE1OV+fPPP2nbti1ubm44OjrSvHlzDh06ZFC7MmGXEM+EhITQsWNHatasiZWVFZs2baJHjx5YWVnRsWNHU4cnntO7d28OHz7MlClTKFeuHH5+fjx8+NDUYYnn/Pbbb3z00UdMmDCBpk2b8vvvv9OpUycOHjxIw4YNTR1egXT48GGOHTtG06ZNefToUZpl5s6dS/ny5fnpp5+ws7NjxYoVvP766/j4+FCjRo1XaldGnQiRgaZNm+Lm5sa6detMHYp4Zvv27XTq1Ilz585RsWJFU4cj0uHl5UWLFi1YunSpflv9+vUpUqQIO3bsMGFkBZdOp9NPFe7p6cn777/PjBkzUpR5/PgxhQsXTlGnWrVqNGnShCVLlrxSu3LrRIgMFC5cmPj4eFOHIZ6zcuVKWrZsKUlGLhYVFcWNGzdo1apViu2vv/46e/fuJTY21kSRFWwZrUeS7PkkI7lO1apV8fPze/V2X7mmELlYVFQUmzZt4oMPPqBChQpYWVlha2tLjRo1mDZtGpGRkenWTUhIIDw8nLVr17Jnzx4GDx6cg5EXLK9ynnx8fChfvjzDhg3Dzs4Oe3t7evXqRUhIiAneQcGQ1fMUExODqqpYWFik2G5paUlcXJxBX1oiiSG/47IiMTGREydOUK5cuVc/iCpEPrR06VIVUAG1UqVKardu3dQ333xTtbe3VwG1YsWK6sOHD1PVCwwM1NfTarXq4sWLTRB9wfEq58nCwkK1s7NTmzZtqu7cuVP99ddfVVdXV7VDhw6meRMFwKucJ2dnZ3X8+PEptr399tsqoB4+fDgnw8+XXvV3XDIPDw91woQJL21n7ty5qlarVc+dO/fKsUqiIfKllStXqoMGDVIvXbqUYvv9+/fVWrVqqYDao0ePVPXi4+PVEydOqPv27VP/7//+TzU3N1fXr1+fU2EXOK9ynszMzFRbW1v10aNH+m3r1q1TAfXatWs5EndB8yrn6fPPP1cdHBzUrVu3qk+ePFEXLFigmpmZqYB69OjRnAw/X3rV33HJMpNoHDt2TLWyslKnTJliUKySaIgC58iRIyqgWlpaqrGxsRmW/fDDD9Xy5cvnUGTieemdJxcXF7Vhw4YpygYHB6uAunnz5pwOs8BL7zxFRkaqHTp00P/VXaJECXXKlCkqoPr5+Zku4AIgM7/jXpZo+Pn5qUWLFlW7deum6nQ6g+KRPhqiwEkeohUbG8vjx48zLFuzZk1u3bqVE2GJF6R3nipVqoSazmC5zHR2E9krvfNka2vLpk2buH//PhcuXMDPzw97e3tcXV3x9PQ0UbQFQ1Z+x6UlNDSUtm3b4unpyapVq1AUxaB45KdSFDjJiYO5uTmFChXKsOyRI0fkl6KJpHee3n77bc6fP59iHoB9+/ahKApVq1bN8TgLupf9PLm5uVGlShV0Oh0rVqygX79+ORxhwZOV33EviouLo3PnzkRFRbF582asra0Njkcm7BIFzrx58wB46623UiyX/Nprr9GlSxcqVqxITEwMmzdvZs2aNa88dlwYJr3zNHjwYH744Qc6dOjAuHHjePToEf/3f//H+++/L0mhCaR3nrZs2cL9+/epUKEC9+/fZ+7cuSQkJDB+/HhThVpgpHdOgoOD+eeff4CkUStXrlxh/fr12Nra0qZNGwCGDRvGP//8w9KlS/Hz89OPELK0tKRWrVqvFpBBN16EyGO2b9+uKoqimpubq76+vin2jRw5UvXy8lKtra3VIkWKqM2bN1e3bt1qokgLtozOk6qq6pUrV9Q33nhDtba2VgsXLqwOHTpUffr0qQkiLdgyOk/btm1Tq1SpolpZWalFihRR+/fvn+EoCJE9Mjon+/fv1/eZef7h4eGhL+Ph4fHSMlklM4OKAuPKlSs0btyYkJAQ5s6dy8iRI00dkkiDnKe8Qc5T7pNbz4n00RAFwr1793jrrbcICQlhzJgxueYHUKQk5ylvkPOU++TmcyJXNES+9+TJE5o1a8alS5fo378/y5cvN7gXtch+cp7yBjlPuU9uPyeSaIh8LTIyUr/yYOfOnfnzzz/RarWmDku8QM5T3iDnKffJC+dEEg2Rb8XGxvL222+zb98+3nzzTbZs2ZJq7QVhenKe8gY5T7lPXjkn0kdD5EuJiYn06NGDffv20axZMzZs2JArfwALOjlPeYOcp9wnL50TmUdD5Es//vgjGzduBKBIkSIMGzYszXLff/89RYoUycnQxHPkPOUNcp5yn7x0TiTREPnS80uGJ/8wpuWLL74w+Q9hQSbnKW+Q85T75KVzIn00hBBCCGE00kdDCCGEEEYjiYYQQgghjEYSDSGEEEIYjSQaQgghhDAaSTSEEEIIYTSSaAghhBDCaCTREEIIIYTRSKIhhBBCCKORREMIIYQQRiOJhhACb29vFEXB29vb1KEUSJ6eniiKQr9+/UwdihDZThINIYzs6NGjKIqCra0tCQkJ+u2hoaFotVoURSEgIMCgNvz9/VEURb6sTCQ5UXjxYW5uTpEiRWjatClffPEF9+/fN3WoQuQ4STSEMLLDhw8D0KBBA8zMzFJs1+l0uLu7U6pUKVOFJ4woISGBx48fc/jwYaZOnUqlSpUyXABLiPxIVm8VwsiSE42mTZum2H7w4ME0t5vCgQMHTB1CvlC8eHF27dqlfx0fH4+/vz8rVqxg69athIeH895773Hs2DFq1aqlL+fv72+CaIXIGXJFQwgjO3LkCJA6oTh06FCa20XeZW5uTtWqVfWPWrVq0alTJ7Zs2cKYMWMAiIuLY8aMGSaOVIicI4mGEEZ048YNgoKC0Gq1NGrUSL89JiaGEydOAJJoFBRTp07F2toagN27d6PT6UwckRA5QxINIYwo+bZJ9erVsbe312/38fEhLi4OJycnqlataqrw9DIadfJ8R9OVK1cCsGfPHtq3b0+xYsWwtLSkdOnSDB06lLt372aqvf3799O3b1/KlCmDjY0NDg4OVKtWjU8//fSlHSYvXLjAjBkzePPNNylZsiSWlpbY2dlRvnx5+vbty7FjxzKs/8UXX+jfD0BYWBjTp0+nVq1aODk5pXif2cnOzo7KlSsDEBkZyZMnT/T7Mjvq5MaNG4wePZpq1arh6OiItbU1ZcqUoV+/fpw8eTJTcfj7+/PZZ59Rp04dChcurO+w2qxZM7744gtu3bqVbt2wsDBmzpxJkyZNcHFxwcLCAjc3N9q3b8/69etRVTXDtjdu3EjHjh31583e3p4yZcrQrFkzJk2ahI+PT6beg8hjVCFEtlixYoUKGPzw8/PLctt+fn76+n379s1y/RYtWqiA2qJFiwyPvWLFCvXzzz9PN3YXFxf10qVL6bYTHR2tvvfeexm+f1tbW3XLli1p1t+/f3+mPsPPP/883RimTJmiL3ft2jXV09MzVf0VK1Zk6fPz8PBQAdXDwyPDcg0bNtS38eDBg1T1Mzp33333nWpubp7ue1YURZ00aVKG7b/sGOn9H1BVVf3777/VwoULZ1j37bffViMiIlLVTUhIULt16/bS81anTp0M4xd5k3QGFUJk2tKlSzly5AgtWrRg8ODBeHl5ERoayi+//MIvv/xCcHAwAwYM4OjRo6nqqqpK165d2b59OwDt27fn3XffpUyZMmg0Gnx8fJg1axYBAQF07dqVw4cPU7du3RTHSEhIwNbWlrZt29KyZUsqVqyIg4MDQUFBXLx4kR9++IHbt2/z9ddf4+XlRf/+/TN8P127duXevXt89NFHvPPOOzg7O3P9+nU8PDyy70N7LvYrV64AYGFhQeHChTNd97vvvuP//u//gKSrY0OHDqV8+fI4OTlx9epVfvzxR44ePcr06dMpUqQIH3/8capjTJ8+ncmTJwPg5OTEsGHDeO211yhcuDChoaGcPn2aDRs26K/0PO/w4cO0adOG+Ph4ihYtykcffUSNGjUoXrw49+/fZ+3atfz222/s2LGDvn378r///S9F/YULF7Ju3Tog6Vbhhx9+SNmyZbG1teXx48ecO3eOv/76i7CwsEx/JiIPMXWmI0R+ERoaql6+fFn/eP6v70OHDum3X7x4UbWyslIBdf369SnqXL58WY2Li8ty2zl1RQNQBw4cqOp0ulTlPvzwQ32Z06dPp9q/ZMkSFVDNzc3VnTt3phnHkydP1CpVqqiA2qRJk1T7g4OD1ZCQkHTfR2xsrNqqVSv91YWEhIRUZZ6/oqHRaNRdu3ale7zMyswVjR9//FHfbsuWLdOsn9a5u3jxov4qxJQpU9L87BMTE9X3339fBVQ7Ozv1yZMnKfafPn1a1Wg0KqB6eXmpd+7cSTfOgICAFK/j4uL0V33eeust9enTp2nWSz6/gLp79+4U+5o1a6YCaoMGDdT4+Ph02378+HG6+0TeJYmGEEby559/qoBaunTpFNt9fX1VQLW2tn6lpCItOZVouLm5qTExMWke48qVK/py8+bNS7FPp9OpZcuWVQF17NixGcayY8eOFLc2sir58wXUkydPptr/fKIxYMCALB8/LeklGvHx8er169fV8ePHq1qtVt/ui4lWRonGgAEDVECtW7dumklGspCQENXS0lIF1CVLlqTY16NHD/3tlbSSwIz88ssvKqBaWVmpQUFBGZatX7++Cqg9e/ZMsb18+fIqoI4ePTpLbYv8QTqDCmEk6c2TkdxBtG7dupibm+d4XIbo2rUrlpaWae6rUKECdnZ2AKk6FF66dImbN2/qj5GR5s2b65+ndQvmebGxsQQEBHDp0iUuXLjAhQsXUnRIPHv2bIb1e/XqleH+rLp9+3aqmUHLly/PV199RWJiIoqiMGPGDN56661MH3Pr1q0AdOnSJc3bGsmcnJyoVq0akPJz0+l07Ny5E0jq9Pv8/B2ZsWXLFgBatGiBi4tLhmWTz92L583NzQ1Iei+PHj3KUvsi75M+GkIYSXrzZCTPq9GkSZMcj8lQFStWzHC/s7MzkZGRREREpNj+/IiI54f5vsyDBw9SbXv69Ck//PADf/zxBxcvXiQxMTHd+i/7UqtevXqmYzGEg4MDLVu2ZMyYMTRr1izT9W7fvk1wcDAA48aNY9y4cZmq9/zn5ufnR2hoKECW2k6WfO527dqVYaKTXvsAffv25d9//+XGjRuUK1eOzp0706pVK5o1a0bJkiWzHJPIWyTREMIIIiIiOHfuHJD+FY3GjRvneFyGsrGxyXC/RpN0kfTFL/+goKBXai8qKirFa39/f1q2bImfn1+m6kdHR2e439nZ+ZXiSs+LM4OamZnh6OhIsWLFMv0l/bzs+NyeT7aSrywYO4YXP/cBAwZw8+ZNvv32W8LCwlixYgUrVqwAoGzZsnTo0IHhw4dTpkyZLLclcj9JNITIBp6enty+fTvNfVWqVElz+zvvvJPi9ZQpU/jiiy+yO7Rc4fnEY+vWrXh6emaqnqura4rXvXv3xs/PD0VR6N+/P++99x6VKlXSz+mgKAo6nQ6tVgvw0nkdkstll+SZQbPL85/b5MmT6datW6bq2draZnsMbdq04dtvv33l43z55ZcMGjSI1atXs3fvXo4dO0ZUVBQ3b95k9uzZzJ8/nx9++IEhQ4ZkV+gil5BEQwhhdM8P5XzVScquXLmivx01fvz4dKfxfn4irLzu+c/tVZOYIkWK6J8HBga+Ugz3798nLi7O4CTKw8OD8ePHM378eOLj4zlx4gR//vknixcvJiYmhmHDhtGgQYMs9yMRuZt0BhUiG+zevZvz58/rH3Xq1AFgwoQJKbZ36tQJSOqE+Pz28+fPM2zYMFO+BaN6/osj+dZRVl28eFH/vHv37umWy+wMmXlBmTJlcHR0BF79cytdujROTk4A/Pvvv1mun3zuTp48SVxc3CvFkBZzc3MaN27M3LlzWbNmDZB0BWr9+vXZ1obIHSTRECIbeHl56RfSqlChApcvXwagc+fOKRbZunr1KgDt2rVLsb1q1aqpbhPkJ7Vr19Z3+luyZAkxMTFZPkZCQoL++dOnT9Mtt2jRoqwHmEtptVrefvttICmZTf5/lRUajYa2bdsC8M8//3DmzJks1U++xZfct8IYXn/9df1zGZWS/0iiIUQ2O3XqFFFRUdjb21OjRg399sePH+u/KJ4fwlkQaDQaxo8fDyQNfe3Tpw+xsbHplg8PD+fHH39Msa18+fL65+mtRbJw4UI2b95seMC5yLhx49Bqteh0Orp27ZrhejKJiYmsXr06VZlPPvkEjUaDqqq89957GR7jxX19+/bF3d1df5yXXRU5dOgQ//zzT4ptv/32W4pE8UW7d+/WPy9dunSGxxd5j/TRECKbJf8ibty4cYrOhocOHUJVVcqVK0fx4sWN1v6NGzcytShY/fr19Yt85YQhQ4awZ88eNm7cyLp16zh9+jSDBw+mfv36ODo6Eh4ezpUrVzhw4ABbtmzBysqKESNG6OvXqlWLqlWrcuHCBRYvXkxISAi9e/fGzc2Nu3fv8ttvv7F+/XqaNGnyyrcZcqNq1arx/fffM3r0aC5dukTVqlUZNGgQLVu2pGjRosTExODv78/Ro0dZv349gYGBnD9/PsWw0Zo1azJ16lQmTZrEtWvXqFatGsOHD08xBbmvry8bNmxAq9Wyf/9+fV1LS0v+/PNPvL29iYyMpGXLlrz33nt07NiR0qVLo9PpCAwM5NSpU2zcuJHz588zf/58WrRooT9G7969+eSTT+jcuTONGzembNmyWFlZ8fDhQ/bs2cPChQuBpIXnsntuE5ELmHS6MCHyobZt26qAOmPGjBTbx44dm62zUT7vxWnCM/OYM2eOvn5WFlXLyMsWB4uLi1OHDh2qKory0vhenFFVVVX1zJkzqrOzc7p1qlWrpt6/f1//esqUKamO8fzMoNkls4uqvax+RrO6LlmyRLWxsXnp52ZhYaFev349zWN8+eWXqpmZWYb101tU7ejRo6q7u3um/m+tWrUqRd3M1HF0dEx3anqRt8kVDSGykU6n0/81/eLkSMkzhRa02ybPMzc3Z8GCBQwdOpSlS5dy4MABAgICiIyMxM7OjtKlS1OnTh3atGlDu3btUtWvWbMmvr6+zJw5k507d3L//n3s7e0pV64c7777LsOHD8fKysoE78z4Bg4cyDvvvMPixYvZvXs3V69eJTQ0FEtLS0qUKEG1atVo1aoVXbp0STHS5Hnjx4+nW7duLFiwgL///puAgACioqJwdnamcuXKtGrVij59+qRZt2HDhly/fp2VK1eydetWzpw5w6NHj9BoNLi4uFCpUiVatGhBly5dqFChQoq6Fy5cYPv27Rw6dIibN2/y8OFDQkNDsbe3p2LFirz55psMHTqUokWLZvvnJkxPUdWXDDQXQgghhHhF0hlUCCGEEEYjiYYQQgghjEYSDSGEEEIYjSQaQgghhDAaSTSEEEIIYTSSaAghhBDCaCTREEIIIYTRSKIhhBBCCKORREMIIYQQRiOJhhBCCCGMRhINIYQQQhiNJBpCCCGEMBpJNIQQQghhNJJoCCGEEMJoJNEQQgghhNH8P83GezXjoCPfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh4AAAGBCAYAAAApG7hBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7gklEQVR4nO3dd3wU1fr48c9syaZXWoAQOtJFEekggoBeFRXEci9FBa6KouhVQRELXstX5GJDRC/oVX8qKCpWuiDVCEiVmkJNQkhPNtlyfn9sdsmSQkKS3U3yvF+vfe3umTkzz04g++TMmWc0pZRCCCGEEMIDdN4OQAghhBD1hyQeQgghhPAYSTyEEEII4TGSeAghhBDCYyTxEEIIIYTHSOIhhBBCCI+RxEMIIYQQHiOJhxBCCCE8RhIPIYQQQniMJB5CCCGE8BhJPIQQQgjhMZJ4CCGEEMJjJPEQQgghhMdI4iGEEEIIj5HEQwhRI7744gtGjhxJ48aNMRqNhIeH065dO2666SbeeecdzGaza90JEyagaRoTJkxAKcV7771Hr169CA0NJTQ0lP79+/PZZ5+Vua/09HQ+/PBDbr/9drp27UpkZCT+/v7ExsZy1113sXXr1ovGm5ubyxtvvMGgQYNo0KABfn5+NG/enEGDBjF37lySk5NL7ZeQkMAjjzxC586dCQ4OJjAwkMsuu4xp06aRlJRUYv37778fTdMIDw8nISGh1G0uWLAATdMwGAxs2LDhorELUasoIYSoZhMnTlSA6xEcHKwCAwPd2uLj413rjx8/XgFq/PjxauzYsQpQOp1ORUREKE3TXH0mTpyo7HZ7if3Nnj3btY5er1cRERHKZDK52jRNU/Pnzy8z3j/++EPFxMS41tfpdCoyMtJtG/PmzSvR75NPPnFbx2QyqYCAANf7kJAQ9csvv7j1ycvLU507d1aA6tOnj7JYLG7L9+zZo/z9/RWgnn322codeCFqAUk8hBDVauPGja4v71dffVWlpaW5lp09e1b98ssvavz48erkyZOudmfiERYWpjRNUy+++KLKzMxUSimVkpKipk6d6voyLy2BWLhwoZo9e7aKi4tTBQUFSiml7Ha7OnbsmJo2bZrSNE3p9Xq1Y8eOEn2TkpJUgwYNFKBiYmLU559/rnJzc13b2Ldvn3ruuefUJ5984tZv5cqVSqfTKYPBoJ544gkVHx+v7Ha7stvt6q+//lJjxoxRgAoNDVWJiYlufffs2eNKUGbOnOlqL56U9OvXT1mt1soefiF8niQeQohq9eqrrypAXXfddRXu40w8ADVr1qxS1/n73/+uABUZGany8/MrFdODDz6oAHXvvfeWud2oqCiVlJRUoe3ZbDbVrl07BaiFCxeWud5NN92kADVt2rQSyxYsWOBK0NauXauUUmrKlCkKUOHh4SWSFSHqCpnjIYSoVuHh4QCkpqZis9kq1TcgIIDHH3+81GXPPvssAOfOnWPVqlWV2u4NN9wAwG+//ebWnpubyxdffAHAU089RUxMTIW2t2HDBg4fPkyDBg247777ylxv3LhxAPzyyy8llv3zn//k1ltvxW638/e//53333+fhQsXArBo0SJatGhRoViEqG0M3g5ACFG3XHvttfj7+7Nz504GDBjAvffey5AhQ2jVqtVF+/bs2ZPQ0NBSl7Vr147mzZtz4sQJ4uLiuPHGG92WHzt2jHfffZd169Zx9OhRsrOzsdvtbuucOHHC7X1cXBwWiwWgxPbKs2nTJgAyMzNp2rRpmesVFhYCkJiYWOryDz74gLi4OJKSkpgyZQoA9913H6NHj65wLELUNpJ4CCGqVZs2bfjggw/45z//yZYtW9iyZQsADRs25JprruGuu+7ipptuQtO0En2bNWtW7rabNWvGiRMnSElJcWtfvnw5d955JwUFBa620NBQ/P390TSNwsJC0tPTyc3Ndet35swZ1+vY2NgKf8ZTp04BYLFYyrzapbj8/PxS2yMiInjnnXdcSU/r1q2ZP39+heMQojaSUy1CiGp39913k5iYyHvvvcfYsWOJiYkhNTWVL7/8klGjRjFo0CCysrKqZV9paWlMmDCBgoIChgwZwvr168nLyyMzM5Pk5GTOnDnD0qVLS+1bWvJTEc5TSFdffTXKMVfuoo+yLFq0yPX65MmTHDly5JJiEqK2kMRDCFEjIiMjmTJlCp9//jlJSUkcOXKEp556Ck3T2LhxI88991yJPidPnix3m87ljRo1crX9+OOPZGVlERERwYoVKxg0aBABAQFu/YqPbBTXpEkT1+uyToeU168yfUrz9ttv891336HX6+nUqRMFBQXccccd5OXlVWm7QvgySTyEEB7Rpk0bXn75Ze666y6AUieIxsXFkZOTU2r/I0eOuOZo9OzZ09V+/PhxADp06EBgYGCpfVevXl1qe8+ePfHz8wNgxYoVFfwk0K9fP8CR0MTFxVW4X3F79uzhX//6F+CYOPvjjz8SHh7OgQMHePTRRy9pm0LUBpJ4CCGqVfF5FqVxjkbodCV//eTn5/P666+X2m/OnDmAYyRl2LBhrvawsDAADh065FYN1WnXrl1lVj0NDAzkjjvuAOCVV15xJTEXc80119C2bVsAHn30Udck0rKcO3fO7X1+fj533HEHZrOZ/v378/TTTxMbG8v7778PwPvvv89XX31VoViEqHW8dR2vEKJuuu+++9SYMWPUsmXLVHJysqs9OztbLViwQPn5+SlAzZgxw7WseAExnU6n/v3vf6usrCyllFKpqanq4YcfLrOC6KFDh5ROp1OAuvXWW9WJEyeUUkoVFBSoL774QjVs2FBFRUW5+l/o+PHjbgXEvvjiC5WXl6eUchQQ27Nnj3r88cfVxx9/7NZv9erVymAwKEBdffXVavXq1aqwsNC1/OjRo2rBggWqZ8+e6sUXX3TrW169jnvvvVcBKiIiosJ1RYSoTSTxEEJUq+LFwCgqlx4eHu7W1r9/f5WTk1OiT/GS6c7S58VLpo8bN07ZbLYS+3zyySfdth8WFqaMRqMCVKtWrdSnn35aZuKhlKNkerNmzdzKrkdFRblKl5eW8Cil1PLly1VISIhrHaPRqKKiotzKqANqzpw5rj5fffWVq33p0qUltpmbm6suu+wyBagBAwZI9VJR50jiIYSoVkeOHFFvvvmmuuWWW9Rll12mwsPDlcFgUI0aNVLDhg1T//3vf0t8mRZPPOx2u3r33XdVz549VUhIiAoODlZ9+vQpMeJwoY8//lj16tVLBQQEqMDAQNWxY0c1c+ZMlZGRodatW1du4qGUUllZWeqVV15RvXv3VuHh4crPz0/FxMSowYMHqzfeeMNt9Ka45ORkNXv2bNWrVy8VERGh9Hq9Cg0NVd27d1f33XefWr58uauMe1JSkoqIiCiziqrTzp07XcnLc889V+7nFqK20ZQq5zovIYTwgAkTJvDRRx8xfvx4lixZ4u1whBA1SCaXCiGEEMJjJPEQQgghhMfU2sTjjz/+4JVXXuHWW2+lefPmaJpWbhXC5557zrVOaY+nnnqqzL6bNm3i+uuvJzIykuDgYHr16sXHH39cbnwnTpxg4sSJNG3aFH9/f9q3b8/s2bNLvdxPCCGEqC9q7b1aXnzxRb799ttK9+vXr5/r+vvirrzyylLX/+qrrxg7dix2u52BAwfSoEED1qxZw/jx49m9e3epNQeOHDlCnz59OHv2LF26dGHAgAHExcXxwgsvsGbNGtasWYPJZKp07EIIIUSt5+3ZrZfqlVdeUbNmzVLfffedOn36tGsGeFlmz56tALV48eIK7yMtLU2FhoYqQH311Veu9jNnzqi2bdsqQK1bt65Ev379+ilAPfzww642i8WibrnlFgWo2bNnVzgGIYQQoi6ptadannzySV544QVuvPFGt/stVKcPPviArKwsbr75Zm699VZXe+PGjXnttdcAmDt3rluf7du3s2nTJho1auRaB8BgMLBgwQKMRiNvvvkmVqu1RmIWQgghfFmtPdXiCT/88AMAo0ePLrHshhtuwN/fn9WrV2M2m/H393frc+ONN5Y4ndK4cWMGDBjA2rVr+e233xg8eHCF4rDb7Zw6dYqQkJBLvpumEEIIUZOUUmRnZ9O0adNSb4ngVO8Sj7Vr17Jr1y7MZjPNmzdn5MiRZc7v+PPPPwG44oorSizz8/OjS5cuxMXFcejQIbp163bRPs72tWvXsnv37gonHqdOnSImJqZC6wohhBDedPz4cZo3b17m8nqXePzvf/9zez9r1ixuu+02lixZQnBwsKs9KyuLzMxMgDIPYPPmzYmLiyMxMdGVeCQlJV20D5R/O+2CggK3G22pohpvx48fJzQ0tNzPJ4QQQnhDVlYWMTExhISElLtevUk82rZty+uvv87IkSOJjY0lPT2dDRs28MQTT/DVV19hs9lYvny5a/3it+Yu61bbQUFBAGRnZ5foV5k+F3r55Zd5/vnnS7SHhoZK4iGEEMKnXWxKQL1JPP7+97+7vQ8KCuKuu+7immuuoWvXrnzzzTds3bqV3r17eynC82bMmMH06dNd751ZpBBCCFHb1dqrWqpLdHQ0EydOBODnn392tRc/7ZKXl1dq39zcXAC3YSVnv8r0uZDJZHKNbsgohxBCiLqk3iceAO3atQPg9OnTrrbQ0FDCwsIARxXS0jjbY2NjXW0tWrSodB8hhBCivqg3p1rKk56eDpyff+HUvXt3NmzYwI4dO+jUqZPbMovFwt69e13l0Iv3+fbbb9mxY0ep+3K2OyejViebzYbFYqn27YqyGY1G9Hq9t8MQQohao94nHkop16TSCy+BveGGG9iwYQPLli0rMUfk+++/x2w287e//c1Vw8PZ54UXXmDFihUUFBS41fJITk5m48aNRERE0K9fv2r9DGfOnCEjI6PatikqLjw8nCZNmkiNFSGEqIB6kXikpqby5ZdfMm7cOLe5FTk5OTz++ONs27aNJk2auFUnBbjvvvt46aWX+Pbbb/n6669dy1NSUnjiiScAeOyxx9z69OrVi379+rFp0yaefPJJ/vOf/wBgtVp54IEHsFgsPPzwwxiNxmr7fM6ko1GjRgQGBsoXoIcopcjLyyMlJQVwzBcSQghRPk05i0TUMj/88AMvvvii6/327dtRSnH11Ve72mbNmsUNN9xAQkICrVq1Ijg4mKuuuoro6GhSU1PZsWMHaWlphIeH8/3335c6CvHVV19x++23o5Ri8ODBREVFsXr1ajIyMpg+fXqJkukAhw8fpk+fPqSlpdG1a1c6derE77//zrFjx+jbty9r166t1E3isrKyCAsLIzMzs8REU5vNxqFDh2jUqBFRUVEV3qaoPmlpaaSkpNC+fXs57SKEqLfK+64qrtaOeKSmprJt27YS7cXbUlNTAYiKiuLJJ59k69atHDp0iM2bN6PX62nVqhUTJkzg0UcfpVmzZqXu57bbbmPDhg3MmTOHrVu3UlhYSKdOnZg6dSrjx48vtU+7du3YuXMnzz77LD///DPLly+nRYsWzJo1i5kzZ1brnWmdczrKqhsiap7z2FssFkk8hBC1hlLKKyPktXbEoz4pL4s0m83Ex8fTqlUrt7kmwnPkZyCEqI1+WrgHa6GN3je3oWGL8quNVkRFRzzkclohhBCinrEU2Ejck0bSvnPo9J4d9ZDEQ3jN4MGDeeSRR7wdhhBC1DvHD5zDZrUTEuVPZNOgi3eoRpJ4iHqnoKCAp59+mtjYWEwmEy1btuS///2vt8MSQgiPSdhzFoCW3Rp4fJ5HrZ1cKsSluv3220lOTubDDz+kbdu2nD59Grvd7u2whBDCI5RdkbAnDYBWXRt4fP+SeAivslqtTJ06lf/9738YjUbuv/9+XnjhhRrLwH/++Wd+/fVXjh07RmRkJAAtW7askX0JIYQvSknMJj+rEKO/nqbtwz2+fznVUgcppcgrtHrlUdmLpD766CMMBgPbt29n/vz5vPHGG3zwwQdlrr9x40aCg4PLfXz66adl9v/uu+/o2bMnr732Gs2aNaN9+/Y8/vjj5OfnVypuIYSorZynWVp0ikRv8HwaICMedVC+xUanZ3/xyr73vzCcQL+K/7OKiYlh3rx5aJpGhw4d2LNnD/PmzWPSpEmlrt+zZ0927dpV7jYbN25c5rJjx47x22+/4e/vz/Llyzl79iwPPPAAaWlpLF68uMJxCyFEbRW/+/z8Dm+QxEN4Ve/evd1Oq/Tp04e5c+dis9lKLcYVEBBA27ZtL3l/drsdTdP49NNPXXcffuONNxg9ejTvvvsuAQEBl7xtIYTwddnnzKSdyEHTILaLd6pdS+JRBwUY9ex/YbjX9l2TNm7cyMiRI8tdZ+HChdx9992lLouOjqZZs2aupAOgY8eOKKU4ceIE7dq1q9Z4hRDClyQUjXY0aR1GQLCfV2KQxKMO0jStUqc7vOnCsvdbt26lXbt2ZZYer+qpln79+rF06VJycnIIDg4G4NChQ+h0Opo3b1654IUQopYpfhmtt9SObydRZyUlJTF9+nSmTJnCjh07eOutt0q98Z5TVU+13HXXXbz44otMnDiR559/nrNnz/Kvf/2Le+65R06zCCHqtEKzlRMH0wFo6YXLaJ0k8RBeNW7cOPLz8+nVqxd6vZ5p06YxefLkGttfcHAwq1at4qGHHqJnz55ERUVx++23M2fOnBrbpxBC+IITB9KxWxWhDfyJiPbejUUl8RBes379etfrBQsWeGy/l112GatWrfLY/oQQwhfEe7FaaXFSx0MIIYSo45RdkegD8ztAEg8hhBCizktOzCI/24Kfv56mbcO9GoskHkIIIUQd57yMNqZTlFeqlRYniYcQQghRxyXsLropXDfvFA0rThIPIYQQog7LSssn7aSzWql353eAJB5CCCFEnZa4xzHa0aRNGP7BRi9HI4mHEEIIUac553d4s2hYcZJ4CCGEEHVUodnKiUNF1Uq9fBmtkyQeQgghRB11/MA5R7XShgFENPFetdLiJPEQXjN48GAeeeQRb4chhBB1lvM0S6uu3q1WWpwkHqJemTBhApqmlXh07tzZ26EJIUS1stsViXsdE0tb+sBltE6SeIh6Zf78+Zw+fdr1OH78OJGRkYwZM8bboQkhRLVKSSiqVhpgILpduLfDcZHEQ3iV1Wpl6tSphIWF0aBBA2bNmoVSqsb2FxYWRpMmTVyPuLg40tPTmThxYo3tUwghvCG+6DRLi86R6PW+83Uvd6eti5QCS5539m0MhEqcR/zoo4+499572b59O3FxcUyePJkWLVowadKkUtffuHEjI0eOLHebCxcu5O67767Q/j/88EOGDh1KbGxshWMWQojawNcuo3WSxKMusuTBv5t6Z98zT4FfUIVXj4mJYd68eWiaRocOHdizZw/z5s0rM/Ho2bMnu3btKnebjRs3rtC+T506xU8//cRnn31W4XiFEKI2yDqbz7lTuWg6jdguvjO/AyTxEF7Wu3dvt5nWffr0Ye7cudhsNvR6fYn1AwICaNu2bbXs+6OPPiI8PJxRo0ZVy/aEEMJXJOxxjHZEtwnDP8j71UqLk8SjLjIGOkYevLXvGlRdp1qUUvz3v//lH//4B35+ftUZohBCeJ2vnmYBSTzqJk2r1OkOb9q2bZvb+61bt9KuXbtSRzug+k61/Prrrxw5coR77723wrEKIURtUJhv5eShDMC3LqN1ksRDeFVSUhLTp09nypQp7Nixg7feeou5c+eWuX51nWr58MMPufrqq+nSpUuVtyWEEL7k+IFz2G2KsEYBRDTxvT9CJfEQXjVu3Djy8/Pp1asXer2eadOmMXny5BrdZ2ZmJl999RXz58+v0f0IIYQ3uE6z+Mi9WS4kiYfwmvXr17teL1iwwGP7DQsLIy/PS5cbCyFEDbLbFQlF1Upb+eD8DpACYkIIIUSdkRyfhTnHginQQJO2Yd4Op1SSeAghhBB1hPM0S4tOvlWttDjfjEoIIYQQleas3+Gr8ztAEg8hhBCiTiherbRFZ9+7jNZJEg8hhBCiDnDeFM4Xq5UWJ4mHEEIIUQf4+mW0TpJ4CCGEELVcYb6VU4czAGgliYcQQgghalLSfke10vDGgYQ3rtl7ZlWVJB5CCCFELXf+pnC+O6nUSRIP4TWDBw/mkUce8XYYQghRq9ntisSiaqW+Pr8DJPEQ9dCnn35K9+7dCQwMJDo6mnvuuYe0tDRvhyWEEJfkzLFMzLmOaqXRbXyzWmlxkniIemXTpk2MGzeOe++9l3379rF06VK2b9/OpEmTvB2aEEJcEle10s5R6Hy0Wmlxvh+hqNOsVitTp04lLCyMBg0aMGvWLJRSNba/LVu20LJlSx5++GFatWpF//79mTJlCtu3b6+xfQohRE1yJh6+fjWLkyQedZBSijxLnlcelU0aPvroIwwGA9u3b2f+/Pm88cYbfPDBB2Wuv3HjRoKDg8t9fPrpp2X279OnD8ePH+fHH39EKUVycjLLli3j+uuvr1TcQgjhCzJT80g/k4dOp9Gic6S3w6kQg7cDENUv35rP1Z9d7ZV9b7trG4HGil/KFRMTw7x589A0jQ4dOrBnzx7mzZtX5qmPnj17smvXrnK32bhx4zKX9evXj08//ZSxY8diNpuxWq3ceOONvPPOOxWOWQghfEXCbsf8tOh2YZgCfbdaaXGSeAiv6t27N5qmud736dOHuXPnYrPZ0Ov1JdYPCAigbdu2l7y//fv3M23aNJ599lmGDx/O6dOn+de//sU///lPPvzww0verhBCeIPrpnBda8dpFpDEo04KMASw7a5tXtt3Tdq4cSMjR44sd52FCxdy9913l7rs5Zdfpl+/fvzrX/8CoFu3bgQFBTFgwADmzJlDdHR0tccshBA1oSDfyqlDGUDtuIzWSRKPOkjTtEqd7vCmbdvcE6StW7fSrl27Ukc7oOqnWvLy8jAY3P/ZO/dVk5NahRCiuiXtS8NuV0Q0CSS8Ue34nQ+SeAgvS0pKYvr06UyZMoUdO3bw1ltvMXfu3DLXr+qplhtvvJFJkyaxYMEC16mWRx55hF69etG0adNL3q4QQnhabTzNApJ4CC8bN24c+fn59OrVC71ez7Rp05g8eXKN7W/ChAlkZ2fz9ttv89hjjxEeHs6QIUN49dVXa2yfQghR3ew2e62qVlqcJB7Ca9avX+96vWDBAo/t96GHHuKhhx7y2P6EEKK6nTmWRUGuFVOggSatQ70dTqVIHQ8hhBCilnEWDYvtUjuqlRZXu6IVQgghxPn5HbXsNAtI4iGEEELUKhkpxauVRnk7nEqTxEMIIYSoRZynWaLbhWMKqH1TNSXxEEIIIWoR52mW2nJTuAtJ4iGEEELUEgV5Fk4fzgSgZbfad5oFJPEQQgghao2kfedc1UrDGtaeaqXFSeIhhBBC1BLxu2vv1SxOkngIIYQQtYDdZidpX+2sVlqcJB7CawYPHswjjzzi7TCEEKJWOH00k4I8K/5BRpq0DvN2OJdMEg9R77zzzjt07NiRgIAAOnTowMcff+ztkIQQ4qLcqpXqNC9Hc+lq3wXAQlTBggULmDFjBosWLeKqq65i+/btTJo0iYiICG688UZvhyeEEGVK2FP7T7OAJB51klIKlZ/vlX1rAQFoWsUzcavVytSpU/nf//6H0Wjk/vvv54UXXqjUNirjf//7H1OmTGHs2LEAtG7dmt9//51XX31VEg8hhM/KSM4jIzkPnV6jRadIb4dTJZJ41EEqP5+DV1zplX132PEHWmDFL/H66KOPuPfee9m+fTtxcXFMnjyZFi1aMGnSpFLX37hxIyNHjix3mwsXLuTuu+8udVlBQQH+/v5ubQEBAWzfvh2LxYLRaKxw7EII4SnOomFN24XjVwurlRZXbdGnpqZy7Ngxzpw5Q25uLkajkfDwcFq0aEHbtm3R6/XVtSsA/vjjD1atWsX27dvZvn07J0+eBBx/7ZdnyZIlvPvuu+zfvx8/Pz969+7NM888Q9++fcvss2nTJl566SW2bt1KYWEhnTp1YurUqYwbN67MPidOnGDWrFn88ssvnDt3jhYtWnDnnXcyY8aMEl989VlMTAzz5s1D0zQ6dOjAnj17mDdvXpmJR8+ePdm1a1e522zcuHGZy4YPH84HH3zAqFGjuOKKK/jjjz/44IMPsFgsnD17lujo6Kp8HCGEqBEJdeAyWqdLTjxyc3P59ttv+emnn/j1119dX/ylMZlM9OjRg+uuu45bbrmFbt26XepuXV588UW+/fbbSvV55JFHmD9/PgEBAVx33XWYzWZWrVrFypUrWbZsGaNGjSrR56uvvmLs2LHY7XYGDhxIgwYNWLNmDePHj2f37t28/vrrJfocOXKEPn36cPbsWbp06cKAAQOIi4vjhRdeYM2aNaxZswaTyXSpH/2itIAAOuz4o8a2f7F9V0bv3r3dTqv06dOHuXPnYrPZSk1WAwICaNu27SXHN2vWLM6cOUPv3r1RStG4cWPGjx/Pa6+9hk4nc62FEL7HnGvh1BFHtdLaWibdjaqkHTt2qIkTJ6rg4GCl0+mUTqdTmqZV6OFcv2vXruq9995Tubm5ld29yyuvvKJmzZqlvvvuO3X69GllMplUeR9n1apVClBRUVHq0KFDrvbNmzcrPz8/FR4ertLT0936pKWlqdDQUAWor776ytV+5swZ1bZtWwWodevWldhXv379FKAefvhhV5vFYlG33HKLAtTs2bMr9VkzMzMVoDIzM0ssy8/PV/v371f5+fmV2qYvGDRokJo4caJb2zfffKMMBoOyWq2l9tmwYYMKCgoq9/HJJ59cdN+FhYXq+PHjymq1qnfffVeFhIQom812SZ+jNv8MhBC+7+D20+rtKWvUZ89v9XYo5Srvu6o4TamLnJsosnPnTmbNmsVPP/3kTFgAaNKkCb169eLKK6+kUaNGREZGEhERQX5+PufOnSM9PZ1Dhw7x+++/s3v3biwWCwCaphEVFcUTTzzBQw89VOURAH9/fwoKCso81XL99dfz008/MW/evBK1I6ZNm8abb77J66+/zmOPPeZqf+2113jyySe5+eab+eabb9z6LF++nFtvvZW//e1vrFixwtW+fft2rr76aho1akRSUpLb50pOTiYmJobg4GBSUlIwGCo24JSVlUVYWBiZmZmEhoa6LTObzcTHx9OqVatadwpn8ODBpKamsm/fPlfbjBkz+Pbbb9m/f3+pffLz88sdXQPHqZaQkJAKxzFo0CCaNWvGZ599VuE+xdXmn4EQwvet/HAfh39P5orhsfS5pY23wylTed9VbiqSxUyYMEHp9XrXyMWVV16p3njjDZWYmFipbKigoECtWrVKTZgwQYWFhblGQVq1aqU2btxYqW1dqLwRj7y8PNfy48ePl1i+YcMGBahBgwa5tQ8cOFAB6n//+1+pn8Xf31/5+/u7/aX77LPPKkDde++9pcYyZMiQMkdKylKXRzyCg4PVo48+qv766y/12WefqaCgIPXee+/V2D4PHjyo/ve//6lDhw6pbdu2qbFjx6rIyEgVHx9/yduszT8DIYRvs1ptatGjv6q3p6xRp45keDucclV0xKNCJ7U/+ugjDAYDkyZN4q+//iIuLo5HH32UFi1aVCob8vPzY+jQoSxevJjk5GQ+/vhjOnToQEJCAmvXrq3Utirj4MGDFBQU0LBhQ5o3b15i+RVXXAHA7t273dr//PNPt+XF+fn50aVLF8xmM4cOHapQn/L2VV+NGzeO/Px8evXqxYMPPsi0adOYPHlyje3PZrMxd+5cunfvzrBhwzCbzWzevJmWLVvW2D6FEOJSnTlSVK002EjjVuWMItQiFRrrf+CBB3jyySeJiYmpth2bTCb+/ve/c/fdd7N06VJsNlu1bftCSUlJAKUmHQBBQUGEh4eTnp5OdnY2ISEhZGVlkZmZWW6/5s2bExcXR2JiomvC7MX25WxPTEwsM96CggIKCgpc77Oyssr7eLXW+vXrXa8XLFjgkX127NiRnTt3emRfQghRVfF76ka10uIqlHi8/fbbNRaApmncfvvtNbZ9gJycHAACy6kvERQUREZGhivxcPYpr19QUBAA2dnZFd5XaX0u9PLLL/P888+XuVwIIUT94LqMtmsduJqliFw/6INmzJhBZmam63H8+HFvhySEEMLD0s/kkpmSXyeqlRZXu8ufVVBwcDAAeXl5Za6Tm5sL4LoawtnH2a+0GboX9qnIvkrrcyGTyVSjdT6EEEL4voTdjnuzNGtf+6uVFlfjn+TPP/9k2bJlnD17llatWnH33XfTrFmzmt6tG+ck2BMnTpS6PDc3l4yMDCIiIlwJQWhoqOuyoBMnTtCpU6cS/Zzbi42NddvXzp07y9xXaX2EEEKICznLpNeFaqXFVelUy++//06vXr3o27cvGRkZJZYvXLiQK6+8kn//+9+8//77zJgxg06dOrFq1aqq7LbSOnTogMlkIjU1tdQaEDt27AAoUVG1e/fubsuLs1gs7N27F39/f9q3b1+hPuXtSwghhHAy51o4fdRxgUNdmt8BVUw8VqxYQVxcHKGhoYSHh7sti4+P5+GHH8Zutzvullr0yM7OZuzYsaSmplZl15USEBDAkCFDAFi6dGmJ5cuWLQMocXfSG264wW15cd9//z1ms5mhQ4e6FY1y9lmxYoXblSngKCC2ceNGIiIi6NevXxU+kRBCiLoscW8ayq6IbBpEaIPK3YrC11Up8Vi/fj2apjFixIgSy9555x0sFgsBAQF8/fXXZGZm8uWXXxIQEEBmZibvvfdeVXZdadOnTwdgzpw5HD582NW+ZcsWFi5cSHh4OPfee69bn/vuu4/Q0FC+/fZbvv76a1d7SkoKTzzxBIBbpVOAXr160a9fP1JSUnjyySdd7VarlQceeACLxcLDDz8sd0EVQghRprp6mgWo/L1aimvdurXS6XRqzZo1JZa1bdtW6XQ69eijj7q1T58+XWmapvr27VuVXavvv/9eXX311a6HpmkKcGv7/vvv3fpMmzZNASowMFDdfPPNauTIkcpgMCi9Xq+WL19e6n6WLVvmuh/NNddco0aPHq3Cw8MVoKZPn15qn0OHDqmoqCgFqK5du6qxY8eq1q1bK0D17dtXmc3mSn3Wulq5tK6Qn4EQojpZrTb1/iOOaqWnj/p2tdLiqrVyaVmcp0uioqLc2k+ePMnRo0cBStTouO666wD466+/qrJrUlNT2bZtm+uhiu7RUrztwtM5//nPf1i8eDEdO3Zk1apVbNmyhaFDh7Jhw4ZS70wLcNttt7FhwwaGDx/Ozp07+fHHH2nbti1Llixh7ty5pfZp164dO3fuZMKECaSmprJ8+XJ0Oh2zZs2q8TvTCiGEqN1OH86gMN9KQIiRRi3rRrXS4qp0VUthYSFw/hJRp40bNwKOIlpXXXWV27LGjRsD5RfQqogJEyYwYcIEj/Tr16+f6+Z4FRUTE8PixYsr1ae+GTx4MJdffjn/+c9/vB2KEEL4DOdltHWpWmlxVRrxaNiwIYBrdMPJedVK79690ev1bsvMZjNAicmoQnjC6dOnueuuu2jfvj06na7EnYqdli5dymWXXYa/vz9du3blxx9/9GygQoh6SSnlKpNeJ+d3UMXEo2fPniil+PDDD7Hb7QCkpaXx9ddfo2ka1157bYk+ziTFOfIhhCc5bxb4zDPPuC59vtDmzZu58847uffee9m5cyejRo1i1KhR7N2718PRCiHqm4zkPLJS89EZNGI61p1qpcVVKfEYN24c4Di10r9/fx5//HH69u1LZmYmBoOBu+++u0SfzZs3A9CmTZuq7FqUQymFpcDmlYdzrk1FWa1Wpk6dSlhYGA0aNGDWrFmV3kZltGzZkvnz5zNu3DjCwsJKXWf+/PmMGDGCf/3rX3Ts2JEXX3yRK664okbvWSSEEADxRfdmad4+Aj//ulOttLgqfapbbrmF0aNHs2zZMrZu3eo2yfOJJ54ocTdbm83mGg3p379/VXYtymEttPP+tF+9su/J8wdhNOkvvmKRjz76iHvvvZft27cTFxfH5MmTadGiBZMmTSp1/Y0bNzJy5Mhyt7lw4cJSk96K2rJli+vya6fhw4fzzTffXPI2hRCiIlw3haujp1mgGkqmf/7557z77rssXbqUM2fOEB0dzfjx45k4cWKp6yYnJwPnC22J+i0mJoZ58+ahaRodOnRgz549zJs3r8zEo2fPnuzatavcbVb1NN6ZM2dKbKNx48acOXOmStsVQojymHMsnCmqVhrbNeoia9deVU48dDodU6dOZerUqRdd9+67767SX6KiYgx+OibPH+S1fVdG79690bTzs7b79OnD3LlzsdlsJSYmg6MKbdu2bascpxBC+JrEfWkoBVHNggmNqlvVSourmyeQ6jlN0yp1uqM28cSpliZNmrhG5pySk5Np0qTJJW9TCCEu5vxplro72gGSeAgv27Ztm9v7rVu30q5du1JHO8Azp1r69OnDmjVr3C61XbVqFX369KnSdoUQoiw2q52kfY76HXXtpnAXqlDicfr0aaKjo2s0kDNnzshflPVQUlIS06dPZ8qUKezYsYO33nqrzIqwUD2nWpyJS05ODqmpqezatQs/Pz86deoEwLRp0xg0aBBz587lhhtu4PPPPycuLo7333+/SvsVQoiynDqSQaHZRkCIkcZ1sFppcRU6Id+mTRsefvjhUm8pX1Vffvkl3bp1k1/q9dS4cePIz8+nV69ePPjgg0ybNo3JkyfX6D579OhBjx49+OOPP/jss8/o0aMH119/vWt53759+eyzz3j//ffp3r07y5Yt45tvvqFLly41GpcQov5ynmaJ7doArQ5WKy2uQiMeVquVd955h0WLFnH77bdz9913M3ToUHS6SysDcvz4cf7f//t/LF68mEOHDqGU4q677rqkbYnaa/369a7XCxYs8Nh+K1InZMyYMYwZM8YD0Qgh6jullCvxaFXHT7NABROPvXv38uijj/LTTz/xySef8Mknn9CoUSNuvvlmevfuzVVXXUWnTp3crk4o7uzZs/z+++9s376dNWvWsHnzZpRSKKVo1qwZzz///CXdd0UIIYSo7dJP55F11ozOoNG8Y4S3w6lxFUo82rdvzw8//MDmzZuZM2cOv/zyC8nJySxatIhFixYB4OfnR1RUFBEREURERJCfn8+5c+dIT08nMzPTtS3nX5vNmzfnoYce4qGHHsLf378GPpoQQgjh+xKK7s3SvEPdrVZaXKU+Yd++ffnxxx85dOgQ//3vf1m6dCnx8fGA4x4Yp06d4tSpU2iaVupwtslkYvjw4UyaNImRI0de8qkaIYQQoq5wXUZbD06zwCVeTtu+fXteeeUVXnnlFZKSkti4cSObN2/mxIkTpKamcu7cOfz9/WnYsCENGzaka9euDBgwgF69euHn51fdn0EIIYSolfJzCjlzzHFWoC6XSS+uymM6LVq0kIqkPqAmb6wmyifHXghxqRL3FlUrbR5MSGT9mHYg5zpqOaPRCEBeXp6XI6m/nMfe+bMQQoiKcl3NUk9GO0Aql9Z6er2e8PBwUlJSAAgMDCzz6iJRvZRS5OXlkZKSQnh4eJnVVoUQojQ2q52k/eeA+jO/AyTxqBOcFV+dyYfwrPDwcKm6K4SotFOHM7CYbQSG+tEoNsTb4XiMJB51gKZpREdH06hRIywWi7fDqVeMRqOMdAghLsn5aqVRdb5aaXGSeNQher1evgSFEKIWUEq56nfUp9MsIJNLhRBCCI87dzqXrLNm9AYdMR0jvR2OR0niIYQQQniY8zRL88siMJrq10i1JB5CCCGEhyXsTgPqT9Gw4iTxEEIIITwoP7uQM/FF1Uq7Rnk5Gs+TxEMIIYTwoMS9aaCgQUwwwRH1o1ppcZJ4CCGEEB7kuilcPTzNAtV8OW1+fj5//PEHZ86cIS8vj1GjRhEaGlqduxBCCCFqLZulflYrLa5aEo/jx48zc+ZMli5d6lbAqmfPnnTq1Mn1/sMPP2ThwoWEhYWxcuVKKe0thBCiXjl5OB1LQVG10hb1p1ppcVU+1bJt2zZ69OjBZ599RmFhIUqpMu/WeeONN7J7927Wrl3LypUrq7prIYQQolZxXc1Sz6qVFlelxCMjI4Obb76Zc+fO0aRJE95991327NlT5vqNGjVi5MiRAPzwww9V2bUQQghRqyil6v38DqjiqZY333yTlJQUGjRowJYtW2jRosVF+wwdOpRvv/2W7du3V2XXQgghRK1y7lQu2efM6I06mtezaqXFVWnEY8WKFWiaxvTp0yuUdAB07twZgKNHj1Zl10IIIUStEl+8Wqlf/apWWlyVEo8jR44AMHDgwAr3iYiIACArK6squxZCCCFqFddplnp6NYtTlRIPs9kMOG4NXlG5ubkABAQEVGXXQgghRK2Rl1VIcoLjD25JPKqgUaNGAMTHx1e4z65duwBo2rRpVXYthBBC1BqJe8+CgoYtQgiOMHk7HK+qUuJx9dVXA/DTTz9VaH2lFIsWLULTNAYMGFCVXQshhBC1RsKe85fR+grL6dPYi85CeFKVEo+7774bpRSffvqpaySjPI899hh//vknAOPHj6/KroUQQohawWaxc9xZrdRHLqNVSnFqxkyOjBhB7tZtHt13lRKPm2++mWuuuQar1cq1117LggULSElJcS23Wq2cOnWKpUuXMmDAAObPn4+madx666307du3ysELIYQQvu7kIUe10qAwPxr6SLXSnPXrydu6FXtmFsbmzT26b02VVWa0gjIyMrj22mvZuXPnRUugK6Xo3bs3q1atIigoqCq7rVeysrIICwsjMzNT7n0jhBC1zIb/d5A9v56k04CmXHP3Zd4OB2WxcOymmymMjydq0n00euyxatluRb+rqlwyPTw8nC1btjBjxgxCQ0NdJdMvfAQEBPDEE0+wfv16STqEEELUC0op4vc4LqNt5SNXs6R/8SWF8fHoIyOJmjzZ4/uvlpvE+fn58dJLLzFz5kx+/fVX4uLiSElJwWazERUVRY8ePRg6dChhYWHVsTshhBCiVkg7mUvOuQIMRh3NL4vwdjjYMjM5+/bbADR8+CH0IZ4/9VMtiYdTUFAQ119/Pddff311blYIIYSolY7tSgWgecdIDD5QrfTsewuxZWTg17YN4aNHeyWGKp9qEUIIIURJaady2PlLIgBtrmjo5WigMCmJc598AkDjJ59EM1Tr2EOFSeIhhBBCVDNLoY1fFu3DarET0ymSDr2aeDskUl6fCxYLQf37E+zFWlrVlu6kpaWxZcsWjh07RnZ2Njab7aJ9nn322eravRBCCOEzNn5+iPTTuQSG+jF0Qic0XflXfda0vLg4sleuBJ2ORk/8y6uxVDnxOHPmDNOnT+err77CarVWqq8kHkIIIeqag9vOcGDzadBg2L2dCQz182o8ym4n+ZVXAQgfMwb/9u29Gk+VEo/U1FT69u1LYmIiVSwHIoQQQtR6Gcl5rP/sIABXXd+S5h28fyVL1vffY967F11QEA0fmurtcKo2x2P27NkkJCSglGLMmDGsXbuWtLQ0bDYbdrv9og8hhBCirrBabPy8aC/WAhvN2ofT84ZW3g4Je34+KW/MAyBqyhQMDbxfS6RKIx7ff/89mqbxj3/8gyVLllRTSEIIIUTts2nZEdJO5BAQYmTYPZ3ReXleB8C5JUuwnjmDsWlTIseP83Y4QBVHPFJTHdcn33PPPdUSjBBCCFEbHfkjhb2/ngRg6IROBIWbvBwRWFJSOLvoAwAaPjYdncn7MUEVE4+mTZsCSAl0IYQQ9VZmaj7r/ncAgCuGx9Kic5SXI3JIffNNVF4eAd27E+pDhT2rlHgMHDgQgD179lRLMEIIIURtYrPaWfnBXgrNNpq0DqPXTd6f1wFg/usvMr/6GoBGTz150Zu4elKVEo/HH38co9HI3LlzMZvN1RWTEEIIUStsWX6UlMRsTIEGrruvM3q99+tyKqUcl88qRej1Iwns0cPbIbmp0hHq3Lkzixcv5uDBg1x33XUcOnSouuISQgghfFr8n6n8ueY4ANdO6ERIpL+XI3LIWb+evK1b0fz8aDi9em55X52qXEDszjvvpF27dtxwww106tSJbt260b59ewIDA8vtp2kaH374YVV3L4QQQnhc9jkzaz5yzOvofm0Mrbp5/zJVAGWxkPLa/wEQOX48fs2beTmikqqceBw6dIjp06dz9uxZAP7880/+/PPPcvsopSTxEEIIUSvZbHZWfrCPgjwrjWJD6HNLG2+H5JL++RcUxsejj4wkaspkb4dTqiolHklJSQwcOJDU1FRX5dKQkBDCw8PR6bx/nksIIYSobtu/i+fMsUz8/PVcd18X9Abf+L6zZWZy9u23AWj48MPog4O9HFHpqpR4vPDCC6SkpKDT6Xjsscd44IEHaNmyZTWFJoQQQviWpH1p7Ci61f01/+hIWMMAL0d03tkF72HLzMTUri3ho2/zdjhlqlLisWbNGjRNY9q0abz22mvVFZMQQgjhc3IzCli9ZD8AXQY1o+2Vjbwc0XmFiYmc+/RTABo98SSaodpuPl/tqjQ+lJycDMBtt/luZiWEEEJUld2uWPXffeRnW4hqHky/0W29HZKblNfngsVC0IABBA/o7+1wylWlxCM6OhoAPz/v3vJXCCGEqElxP8Rz8lAGBpOeEZO6YDDqvR2SS97vv5O9ahXodDR+4l/eDueiqpR4DBs2DIDff/+9WoIRQgghfM2Jv87x+48JAAy+qwPhjcsvF+FJym53FAsDwm8fg6ldOy9HdHFVrlwaFBTEq6++yrlz56orJiGEEMIn5GUVsuq/+0FBx37RdLi6ibdDcpO1YgXmffvQBQXR8KGHvB1OhVQp8Wjbti3Lly8nOzubfv36sWrVquqKSwghhPAqZVesXrKfvKxCIqKDGDC2vbdDcmPPzyfljXkARP1zCoYo37g53cVUadrrkCFDAGjQoAEHDx5kxIgRhIeH065duwpVLl2zZk1Vdi+EEELUmB0rEzm+/xwGo47hkzpj9POdeR0AaYsXY01Oxti0KZHjxnk7nAqrUuKxfv16tzveKaVIT09n+/btZfbRNM1VuVQIIYTwRaeOZLDtu3gABtzRnqimvlWMy5KcQtqiDwBo9Phj6EwmL0dUcVVKPAYOHCgJhBBCiDrFnGNh1Yf7UHZF+6sb07FvtLdDKiH1zfmo/HwCuncnZORIb4dTKVUe8RBCCCHqCqUUaz7aT056AeGNAxl0Zwef+wPbfOAAmV8vB6DxjKd8Lr6L8Y0C8x4yePBgNE0r8/Hzzz+X2m/JkiX06tWL4OBgIiMjuf7669m8eXO5+9q0aRPXX389kZGRBAcH06tXLz7++OOa+FhCCCGqyZ9rjpOwJw29Qcd193XGz9+3KoAqpUh+9TVQitDrryfg8su9HVKl+dYR9ZDbbruN4FJuntOsWcnbBz/yyCPMnz+fgIAArrvuOsxmM6tWrWLlypUsW7aMUaNGlejz1VdfMXbsWOx2OwMHDqRBgwasWbOG8ePHs3v3bl5//fWa+FhCCCGqIDk+iy3LjwLQf0xbGsaEeDmiknLWrSdv61Y0Pz8aTp/u7XAuiaact5WtBwYPHsyvv/5KfHx8hW5mt3r1aoYNG0ZUVBRbtmyhXVFhli1btjB48GACAwOJj48nPDzc1efcuXO0atWKrKwsvvrqK2699VbAUV6+f//+HDlyhHXr1jF48OAKx52VlUVYWBiZmZmEhoZW5iMLIYSogII8C1+89DvZaWbaXNGI4ZM6+9wpDGWxcOzGmyhMSCBq0iQaPeZbiUdFv6sqNOKRlJTket2iRYtS2y9F8W35ojfeeAOAZ555xpV0APTp04d//vOfvPnmm3z44Yc89thjrmUffPABWVlZ3Hzzza6kA6Bx48a89tpr3HrrrcydO7dSiYcQQoiao5Ri3f/+IjvNTGgDf675x2U+l3QApH/+BYUJCegjI4maMtnb4VyyCiUerVq1AhyXwlqt1hLtl+LCbfma/Px81q5dC8Do0aNLLB89ejRvvvkmK1ascEs8fvjhhzL73HDDDfj7+7N69WrMZjP+/v41FL0QQoiK2vvrSY7uTEWn17juvi6YAnxvFoItM5Ozb78NQMOHH0ZfynSB2qJCR7esszG19SzNhx9+SFpaGjqdjvbt2zNq1KgSoy8HDx6koKCAhg0b0rx58xLbuOKKKwDYvXu3W/uff/7ptrw4Pz8/unTpQlxcHIcOHaJbt27V9ZGEEEJcgtTj2fy27DAAfW9tS+OWvnk6++yC97BlZmJq15bw0bX7jvAVSjwWL14MUGLoydle28yZM8ft/eOPP86sWbOYNWuWq815Gqm0pAMgKCiI8PBw0tPTyc7OJiQkhKysLDIzM8vt17x5c+Li4khMTJTEQwghvKjQbOWXRXuxWxUtuzWg25DSf297W2FiIuc+/RSARk88iWbwvRGZyqhQ9OPHj0en06HT6ejZsyedOnVytdcmAwcO5L777qNv375ER0dz/Phxli1bxpw5c3j22WcJDQ1l2rRpAOTk5ACUW/o9KCiIjIwMV+Lh7FNev6CgIACys7PL3G5BQQEFBQWu91lZWRX/kEIIIS5KKcX6Tw+SmZJPcISJa8d39Ml5HQApr88Fi4WgAQMIHtDf2+FUWaXqeNTWUytOL7zwAn//+99p3bo1AQEBtG/fnpkzZ/LNN98A8Nxzz5Gfn+/dIIGXX36ZsLAw1yMmJsbbIQkhRJ1yYPNpDv+ejKZzzOvwDzJ6O6RS5f3+O9mrVoFOR+Mn/uXtcKpFvSogVpbrrruOnj17kpGRwbZt2wBcdT7y8vLK7JebmwtASEiIW5/y+l3YpzQzZswgMzPT9Th+/HglPo0QQojypJ3MYePnhwDofXNrotuEeTmi0im7neRXXgUg/PYxmIpdXVmbSeJRxHm57OnTp4Hzl/qeOHGi1PVzc3PJyMggIiLClUSEhoYSFhZWbj9ne2xsbJmxmEwmQkND3R5CCCGqzlJg45cP9mG12GnROZIew3y3rEPWihWY9+1DFxREw4ce8nY41UYSjyLp6enA+TkYHTp0wGQykZqaysmTJ0usv2PHDoASE0S7d+/utrw4i8XC3r178ff3p3379tUavxBCiIvb8MUh0k/nEhTmx9AJndB0vjmvw56fT8ob8wCI+ucUDFFRXo6o+kjiAaSmprJx40bg/GWwAQEBDBkyBIClS5eW6LNs2TIAbrzxRrf2G264wW15cd9//z1ms5mhQ4dKDQ8hhPCwg1tP89fm02gaDLu3MwEhft4OqUxpixdjTU7G2LQpkePGeTucalVvEo/NmzfzzTffYLPZ3NoTEhK45ZZbyM3N5aabbnK7DHZ6UR38OXPmcPjwYVf7li1bWLhwIeHh4dx7771u27vvvvsIDQ3l22+/5euvv3a1p6Sk8MQTTwC4FRwTQghR89LP5LL+/znmdVz1t1Y0ax/h5YjKZklOIW3RBwA0evwxdCaTlyOqXpW+GHjixImu0xFVoWkaa9asqfJ2KurQoUNMnDiRJk2acMUVVxAeHk5iYiJ//PEHZrOZzp07s2jRIrc+Q4cOZdq0acyfP5/LL7+cYcOGUVhYyKpVq1BKsXjxYrf7tABERkby3//+l9tvv53Ro0czePBgoqKiWL16NRkZGUyfPl3KpQshhAdZC238smgf1gIbzTqEc+XIlt4OqVyp8+ej8vMJ6N6dkJEjvR1OtavwTeJ0Ol21XeOslELTtBKjDzXpwIEDvPXWW2zbto3jx4+Tnp5OUFAQHTt2ZMyYMdx///0EBASU2nfJkiW8/fbbHDhwAD8/P3r37s2sWbPo27dvmfvbtGkTc+bMYevWrRQWFtKpUyemTp16SbVP5CZxQghx6dZ/dpB9G04SEGJk7DO9CArz3REE8/79xN82GpSi5ef/r1bd9r6i31WVTjyqq5aHpxOP2kwSDyGEuDSH45JZ+cE+0OCmhy4nplOkt0Mqk1KKpAkTydu2jdDrr6fZG3O9HVKlVPS7qtJzPPbu3Yvdbq/yQ5IOIYQQNSkzNY/1n/wFwJXDY3066QDIWbeOvG3b0Pz8aDjdt255X53qzeRSIYQQ9YfNYueXRfsoNNuIbhNGrxsv/W7qnqAKC0l59TUAIsePx695My9HVHMk8RBCCFHnbFl+lNSkbExBBobd2xmd3re/7tI//4LCxET0UVFETZns7XBqlG//JIQQQohKOrYrlT/XOm41MXRCJ0Iifbtuki0jg9R33gGg4cMPoy92+426SBIPIYQQdUZWWj5rPz4AwOVDY2jZtYGXI7q4swvew56ZialdO8Jvu9Xb4dQ4STyEEELUCTabnVUf7qMgz0qjlqH0HtXG2yFdVGFCAuc++wyARk8+iWaodHmtWkcSDyGEEHXC9u+OceZYFn4BBobf1xm9wfe/4lLmzgWLhaCBAwju38/b4XhEhVOr+Ph4AJo1q7szbYUQQtROifvS2PFLEgBDxl1GaIPSC0L6ktzt28letRr0ehoX3VKjPqhw4lHebdyFEEIIb8lIzmP14v0AdB3cnDY9Gnk5ootTdjspr7wKQPjtYzC1bevliDyn7p9MEkIIUWcd+SOFtf87gMVso0FMMH1v8/15HQCZ332Hef9+dMHBNJw61dvheJQkHkIIIWodm9XO5q+OsHvdCQCatgvnuvs6YzDqvRzZxdnz8kid9x8AGvxzCoaoKO8G5GGSeAghhKhVss+Z+WXRXpLjswC4YngLrr6ptc8XCXNKW7wYa3IyxmbNiPjHP7wdjsdJ4iGEEKLWSNybxqrF+yjItWIKNHDthE606ub7tTqcLMkppH3wIQCNHn8Mncl375RbUyTxEEII4fPsdsX2Fcf446dEABrFhjB8UpdacfVKcanz56Py8wm4/HJCRozwdjheIYmHEEIIn5abWcCq/+7j5MEMALoMakb/0e3QG2vHqRUn8/79ZC5fDkDjp55E0zQvR+QdkngIIYTwWScPpbPyg33kZRViMOkZ8vfLaHdVY2+HVWlKKZJffQ2UIvSGGwi4/HJvh+Q1kngIIYTwOcqu2LEykW3fHkMpiGwaxIjJXYhoEuTt0C5Jzrp15G3bhubnR6Ppj3o7HK+SxEMIIYRPMedaWLNkPwl70gDocHUTBt3VAaPJ9y+VLY0qLCTl1dcAiJwwAWM9rwAuiYcQQgifkZyQxS/v7yX7nBm9QceAse3o1L9prZ4Pkf75FxQmJqKPiiJq8iRvh+N1kngIIYTwOqUUe389yW/LDmO3KkIbBjBiUhcatgjxdmhVYsvIIPWddwBo+PDD6IODvRyR90niIYQQwqsKzVbWf/IXh+NSAGh9eUOGjO+IKaB2f0VZTp7k1IyZ2DMzMbVrR/htt3o7JJ9Qu3+qQggharW0kzn8/P5eMpLz0Ok0+tzahu7XxtTqUytKKTK++JKU117DnpeHZjLR5NlZaAbf+so9nXOazac2c1v72zy6X986CkIIIeqNv7ac5tfPDmK12AmOMHHdfV2IbhPm7bCqpPDECU4/M4u8rVsBCLjiCqJfmoOpVSsvR3aeUopvj37Lq9tfJdeSS4vQFlzV5CqP7V8SDyGEEB5lLbSx4YtDHNh0GoCYTpEMu6cTAcF+Xo7s0im7nfTPPyfl9bmovDw0f38aTX+UiLvvRtP7ztU4Z/PP8vzm51l/Yj0A3Rp2o2FAQ4/GIImHEEIIj8lIyePn9/eSdiIHNOj1t1ZcObIlOl3tPbVSePw4p59+hrzt2wEI7NmT6Jfm4Bcb6+XI3P2c8DNzts4hsyATo87Ig5c/yITOE9DrPJsYSeIhhBDCI47uTGHtRwcoNNsICDEy7J7OxHSM9HZYl0zZ7aR/+hkpb7yBys9HCwig0WOPEXHXnWg63ynnnmHO4KVtL/Fzws8AXBZ5GS/1f4n2Ee29Eo8kHkIIIWqUzWpny9dH+XPtcQCi24Zx3b1dCI6ovXdmLUxMdIxyxMUBENirl2OUIybGy5G5W398Pc9veZ6z+WfRa3omdZvE5K6TMeqNXotJEg8hhBA1JvucmZUf7OXMsSwAegxrwdWjWqPX+86IQGUom430Tz4hZd5/UGYzWmAgjf/1OOFjx/rUKEd2YTav/f4a3xz5BoDWYa35d/9/07lBZ+8GhiQeQgghakjivjRW/3c/5lwLfgEGhk7oSKvunp3IWJ0K4uM5/fQz5O/YAUBg795Ez5mDX3PfKoG+9fRWZm2axZncM2hojO88nqk9pmLS+8YIkyQeQgghqpXdrvj9+3jifkoABQ1bhDB8UhfCGgZ4O7RLomw2zn30Manz56MKCtAFBtLoyScJv32MT9UbybPkMe+PeXx+8HMAmgc3Z07/OVzZ+EovR+ZOEg8hhBDVJi+rkFX/3ceJv9IB6DywGf3HtMVg9J1LSiuj4NgxTs+YSf6ffwIQ1Lcv0S++4HM3etuVsounf3uapOwkAMZ2GMv0K6cTaAz0cmQlSeIhhBCiWpw6nMEvH+wlL7MQg0nPNXd3oH2vJt4O65Iom41zS5aQOv9NVGEhuqAgGj31JOGjR/vUKEeBrYB3dr3Dkr1LUCgaBzbmhb4v0LdZX2+HViZJPIQQQlSJUoqdK5PY+u0xlF0RER3EiMldiIwO8nZol6TgyBFOzXwa8+7dAAQNGED0C89jjI72cmTu9qXt45nfnuFIxhEAbmpzE0/2epJQv1AvR1Y+STyEEEJcMnOuhTUfHSBh91kA2l/dmMF3XYbRVPtOrSirlbT/LubsW2+hLBZ0ISE0fuopwm69xadGOSx2Cx/s/oD3d7+PVVmJ9I9kdp/ZDGkxxNuhVYgkHkIIIS5JSmIWP7+/l+w0MzqDxsCx7enUv6lPfUlXlPnQIU7PfBrz3r0ABA0aSPTzz2Ns4lunio6kH2HmbzM5cO4AAMNihzGr9ywi/CO8HFnFSeIhhBCiUpRS7Ntwko1LD2O3KkIb+DNiclcatgjxdmiVpiwW0j78kLPvvOsY5QgNpfHMGYTdfLNPJVA2u42P93/MWzvfwmK3EOoXyjO9n2FEyxE+FWdFSOIhhBCiwgrNVtZ/epDDvycD0Kp7A64d3xFToPcqYV4q88GDnJ4xE/P+/QAEDx5Mk+efx9i4kZcjc5eUlcTTvz3NrtRdAAxsPpDn+jxHw8DaWRNFEg8hhBAVknYqh1/e30v6mTw0nUafW9pw+dCYWvcXt7JYOLtoEWcXvAcWC7qwMJo8PZPQG2/0qc9iV3a+OPgF8/6YR741nyBjEE9e9SSj2o7yqTgrSxIPIYQQZVJKkRyfxe51Jzj6Rwp2uyIo3MTw+zoT3Tbc2+FVmvnAAU7NfJqCA445EsHXXkuT2c9ibORboxync04za/Mstp3eBkCvJr14sd+LNA1u6uXIqk4SDyGEECXYrHaO/JHC7rXHSUnMdrXHdoliyLiOBIb6eTG6ylOFhZxd+D5nFy4EqxV9eDiNn3mG0Buu96nRA6UU3xz5htd+f40cSw7+en8evfJR7rjsDnSa79wLpiok8RBCCOGSm1nAvo2n2LfhJHlZhQDoDBrtr2pMt2tiauUEUvP+/ZyaMZOCgwcBCBk2jCazn8XQoIGXI3N3Nv8sz29+nvUn1gPQvWF3Xur/ErGhsd4NrJpJ4iGEEIKUxCx2rz3B4bhk7DYFQFCYH10GNadT/6a1boQDwF5YyNkFC0h7fxHYbOgjImjy7CxCRvjelSA/x//MnG1zyCzIxKgzMrXHVMZ3Go9eV/vqoVyMJB5CCFFP2Wx2ju1IZfe6467b1gM0aR1Kt2tiaH1Fw1p7+/r8PXs5PXMmBYcPAxAycgRNZs3CEBnp5cjcpZvTeWnbS/yS8AsAHSM78lL/l2gX0c7LkdUcSTyEEKKeyc8uZN/GU+z99QS5mUWnU/QabXs2ots1MTRu6dslt8tjLyzk7NvvkPbhh45RjshImjz7LKEjhns7tBLWH1/Pc5ufI82chl7TM6nbJCZ3nYxRX/suTa4MSTyEEKKeSD2eze51Jzi8PRmb1Q5AQKgfXQY2o/OApgSFmbwcYdXk797NqZkzKTxyFIDQ66+n8axnMET4VlXP7MJsXt3+Kt8e/RaA1mGt+Xf/f9O5QWcvR+YZkngIIUQdZrfZObbrLLvXHef0kUxXe6PYELoNiaHtFY3QG2vn6RQnS3IK5z7+iHOLl4Ddjr5BA5rMfpbQYcO8HVoJW05t4dnNz3Im9wwaGuM7j2dqj6mY9LU76asMSTyEEKIOMudY2L/pFHvWnyAnvQAAnU6jzRUN6TYkhsatQn1ugmVlWFNTyVq5kqyffiL/jx2gHBNiQ2+8kcYzZ/jcKEeeJY95f8zj84OfA9A8uDkv9X+JKxpf4eXIPE8SDyGEqEPSTuawe+1xDm5PxmZxnE7xDzbSeUBTugxsTnBE7f3L2pqWRvaqVWT9+BN5v//uSjYAAnr0IGrSfYQM8b07tO5M2cnTvz3N8ezjAIztMJbpV04n0Bjo5ci8QxIPIYSo5ex2RcJux+mUkwczXO0NYoLpdk0M7a5qhMFYOy/LtKank71qFdk//0zu1m1gt7uW+XfvRujIkYQOH44xOtqLUZaUYc5g3fF1rElaw4YTG1AoGgc25oV+L9C3aV9vhwdZp2Dv13BkNdy9DPSeSwck8RBCiFrKnGvhwObT7Fl/guw0MwCaBq17NKTbNTFEtw2rladTbJmZZK9eTdZPP5O7ZQvYbK5l/l26EDpyJCHDh+PXvJkXoywpOTeZtcfXsiZxDXHJcdjU+bhvbnMzT/R6glA/L14xlJ8BB76D3V9Cwm9A0YjRsfXQbqjHwpDEQwghaplzp3PZve4EB7eexlroGAEwBRno3L8pXQY1JyTS38sRVp4tO5vs1WvI+vkncjdvAYvFtczUqSOhI0YSOnIEfjExXoyypKSsJFYnrWZN4hp2n93ttqxDRAeujb2WoS2Geq8uh8UMh36GPUvh8EqwFZ5fFtMbuo2BZp6dZyKJhxBC1ALKrkjcm8budcc5fiDd1R7ZNIjuQ2Jo16sxRr/adTrFlpNDzrp1ZP34E7m//YYqnmx06EDoyBGEjhiBX8uW3gvyAkopDqUfYk3SGlYnreZw+mG35Zc3vJxrW1zLtS2uJSbUS0mS3QbxGxzJxoEVUHC+OByNOkHXMdDlNojwTil2STyEEMKHFeRb+WvzaXavP0FWar6jUYNW3RrQbUgMzdqH16rTKfbcXLLXryfrp5/I3bARVXj+L3C/tm0cczZGjsTUurUXo3RnV3Z2p+52JBuJqzmRc8K1TK/puarJVQxtMZRrWlxDo0Av3eVWKTi1A3YvhX1fQ07y+WWhzaHraOh2OzT2fq0QSTyEEMIHZSTnsXvdCf7achpLgWOugF+AgU79ouk6uDmhDQK8HGHF2fPyyNmwgayffibn119RZrNrmV+rVkXJxghM7XynTLjFbiHuTBxrktawNmktqfmprmUmvYm+TfsyNHYog5oPIswU5r1Azx6BPV86RjfOHTvfHhABnW9xjG7E9Aad79RqkcRDCCG8yFJoIz+rkLysQvIyC8nNLCBhTxpJ+9Jc60Q0CaTbkBja92qMn3/t+LVtN5vJ2bCB7J9/JnvdelR+vmuZMbbF+ZGN9u19ZsTGbDWz5dQWVietZv3x9WQVnj9FEWwMZmDzgVzb4lr6N+vv3Uths047RjV2fwmnd51vNwTAZTc4ko02Q8Dgmzf2qx3/goUQohax2+zkZ1vIy3IkEnnOxKIoucjLcrTlZxVSaLaVvhENWnaJots1MTTvGOEzX87lsRcUkPvbb46RjbVrsefluZYZmzd3zNkYORJTx44+83lyCnPYcGIDq5NW89vJ38i3nk+QIv0juSbmGq5tcS1XR1+Nn96LX+TmTNj/nWNkI34DritSNL0jyeh2O3S4HkzB3ouxgiTxEEKIClBKUZBrJTer4PwIhSuROJ9M5GUVkp9jcX0vVITeqCMozI/AUD8CQ02ENw6gY7+mhDfy/QJTqrCQnM2byf7pJ7LXrMWek+NaZmgaXXQ1ykj8u3T2mWTjnPkc64+vZ3Xiarae3orFfn5Sa5OgJgxtMZRrW1xLj0Y9vHtbeosZDv/iSDYOrQRbwfllMVc7RjY63wJBDbwX4yWQxEMIUa9ZCmyOpCGz8IKRiQtGKrIKsdsqnk1oOo2AEKMrmQh0JRaOhyPRMBEY6ofRX+8zX8oVoSwWcrduJevHn8heswZ71vlTEobGjQkdMYLQkSPw797dZz7XmdwzrsmhO1J2YFfnC5G1DG3JsNhhXBt7LZ0iO3k3ZrsNEjY6Joke+M79ipSGlzmSja6jIaKl10KsKkk8hBB1jt2uyM8+PxrhdrrD+bpomXPiZkWZggyuhCEw1K9EQuFc5h9sRKfzjS/dqlKFhRSeOEnhsaPk/Por2StXYcs8f8M5Q8OGhBQlGwGXX47mIxMZ4zPjWZO0hjWJa9ibttdtWaeoTlzbwlFjo3W4l6+gUQpO7XSMbOz96oIrUpo5Eo2uY6BxF0eFuFpOEo965tThdHatPk5gmMn9l2WxX561tbSyqPsKzVa3kQlXQlEsscjNLMScXVj8Nh4XZTDqiv4PlByZcPu/EuJX6+/kWhZls2E5fYbChAQKExMoTEh0PVtOnnSrHgqgb9CA0OuucyQbV1yBpvf+7w2lFH+d+8tV0Oto5lHXMg2NHo16MDR2KENaDKFZsA9UPU076kg29iyFtCPn2/3DofMo6Ho7tOjjU1ekVAdJPOqZc6fziP/zbLnrmAINJf6CCwg1lvilHBDiV2f+ohPeU5HRidyiZdZKjE5oGgSE+JVIKIqf4nAm3UZT7TrVcamUUlhTU7EkJlKQkFCUZCRSmJCAJem4W02NC2mBgfjFxhLQvRuhI0YSeFVPryYbSilS81NJzEokMSuRIxlHWH98PSdzTrrWMegMXB19NUNbDGVwzGAaBPjAXIjsM457pOxZ6qi74WQIgA4jHZNE21zrs1ekVAdJPOqZpu3CGXRne3LLmBhntyoK8qwU5FlJP5NX7rY0DfxDin6Zu42cnP+lHlD0bAo01Itf7AJsNjvWAhuWAjuWAmvJqzuqODphNOnd/62F+blNzHQmGPU5MbZlZLgSCudzQUICloREtytNLqQZjRhbtMCvZUv8YmPxaxlb9LolhkYNPf5/WClFekG6K7lIyko6/zo7ye0KFKcAQwD9m/VnSIshDGw+0Lv3RnEyZzoqiDqvSHHOL9H00OYax2mUy24AU4h34/QQSTzqmcjoICKjg0pdppQj6Sj+16crKXH+NeqctV/0ZZFfdElgWqlbPE9n0NzOf7v++rzgy8I/2Iim09AANMfwKJrjNc4nrdhySWYqTSmFzWrHWmDHUmjDUmDDWvTseG13byu0ORKJwqKEwvW+9PUrMwHT6aKjE8VG2mpLHYuaZs/NpTAp6XxyEX8+ybBlZJTdUafD2KxZseSi6LlVS4zR0V4ZxcgsyHQkFdmO5CIhK4GkrCSSspLItmSX2U+v6Wka3JTY0FhiQ2O5qslV9G3alwCDF4qrKeWYm5F21FHI69wxOFf0OvWQ+xUpzXudvyIluKHnY/Uy+R8sXDRNwz/IiH+QkYgmpScnTnabnfwci9slhecTFverAQryrNitipxzBeScKyh3u5ce/PmkpOitK2FxJi/n284nLufX1c7P2Srep1heo2maIynSnX+t0zn6aTqtqA3HX9mahk5XvN2xnk7n3IZ7P52Ooj5F2y/WT3fB9p39HftxbLOsRMLxbHdLFqwFtkqNMFwqnU7DYNITEGyU0YlLZC8sxHL8uCO5SHAfwbCmpJTb19C48fnEomVL1+iFsXlzdH6eH8bPs+Q5RiuyE0nMdIxYOEcx0gvSy+ynodEkqIkruWgR0sL1ullwM4x6o+c+hN0OOWdKSS7iHa8t5YwSN+jguCFbl9EQ2cpzMfsgSTzEJdHpdQSFmQgKM110XavFVkrNg/Pn8POzzw+72yz2i26vVKqobELRN6q6cKEolc6gYfTTYzTpMbiedRhNBowmHUY/PQaT3u3ZaNKV0ubsd347ekPdmhBXHZRSqLw8bBkZ2DIzzz8yir3OzMCanOKYd3HqlOPLrgz68PASiYVfbCx+LVqgCyr/j4eaYLaaOZ593O10iPP12fzy55Y1DGh4PrkILUouQmKJCY3BpL/475lqY7dD9qkLkgvnIx5KOb3joukgvAVEtobINkXPraFBO8ezjNACkngIDzAY9YRGBRAaVf7wp1IKq8WOshclChcmE878QYEqWuhsU8X/hHe1K/flrtdFKzlfX7ANZ5tCueUsSimU3fFstxe9tquidsd7u/O1KlpW7LW9+LrFltvtuG1DqfPr2d32UbQdpaD4vuwKnV7nSAguSCIcyYGuZJJg0mP006HTS3JwKZTdjj0n54KkwZFM2EskEu6P4rd7rwhdYGDJxKLoWR8eXjMfsBwWm4XjOcdd8y1c8y6yEzmTe6bcvpH+kbQIaXE+sSg2iuHREuR2G2SdvCC5iD8/emErZ2RW0zvu6upMKoonGOEt6vSk0OoiiYfwGZqm1brbeovaTdls2LKyHMlCZub5kYgSiUNRUuFsz8oqdyTiYjSjEV14GIbwcHRhYejDwtGHhZ1/REViatkSY2wshoY1M6nTZreRXZhNZmEmWQVZZBVmkVmQSVah43VWQZb7sqLXqfmpbsW3LhRiDHEftSg2iuHRiZ52G2QedyQVacVOh5w7CukJYCv7Ch50BkeBrhLJRStHcuHJ0zt1kCQeQgifoaxW7OYCVGEBymwu9bXdbEYVFKAKChxtBWbsBQWoC17bC8yogkJH36L1VUHRdgoKsOfnY88ue+JiRWgBAe4JQ1gY+nDHs87VFu7Wrg8LQwsIqJZkwq7s5FhySiQJbklEQZb7c9GyHEvOxXdQhgBDQIn5Fs7kIsJUjfeVUQqsZrDkO+ZPlPpc9LogBzKSiiUXiWAvZ3RJZ3QkF1HFRiycj7AY0Jf+9aiUIr/QSrbZSla+hSyzhax8a9GzhSyztdS2SQNa8bduTavnuNRyknjUM+ZDh8jdtBlNr0czGkCvRzMY0Qz6Ml9rej0YDGgGQ4nXmsHgeF/WazmnWSallOOvZpvN8dpmQznfO59tdrAXPSt72esoO8pmA7vzWbn1cy2z28G5zeLr2O0ou82xTNnd91vWsqJtKfsF+yu2vrLbUIWWoi//komAvcBclDAUYC8oAKvVKz8LXVCQI1lwG4W4YCSiWOLgXK4zVX7ugdVupdCaT4GtwO1RaCt0vLYWkGfNK33UofiIRGEW2YXZ5Y4+VESgIZBQUyhhfmGEmkIJ9QslzBRGqF+o6+F6bwqlUWAjGgY0RLPbSiYBZ+PBsq/8BKHM59LWy6dKc7T0fhDRqlhy0QoV2Ya84FgyjY3IKrQ7EoR8C9kFFrJSrGQlWsgyH3IlDtnmC5KKfAtWe+VjOpFeztyQekYSjxqUn5/Pyy+/zOeff05SUhKRkZGMGDGCF198kWbNvFM1L//PP0l59VXP7VBfWuJSlNQ4lxkNaPrzSQ0VzFW0iqxY0cSnIuspVeJL3/VFXFpCcJGkoipD9fWB5ueHZjKh+ZvQmfzRTCZ0JhOavz+ayc/R5u+PzuSHZvIvWs+EZvJH529C8yvq6+/v9ho/I3Y/A3Y/I5ZgE5ZAExadHbPNjLnYl3+BrYACuyMhMFvNFNpOU2BLoDC3EHOWmcKEwnKTB/e+ha7lVlX9yZW/3t+VGBR/DvMLI9QQQKjen1CdkTDNQCgGQhWEoRFit2O0mKEw1/Gw5EJeLmSkQGHRVRrOZa51ihKD8kYTaoDS+2E3BGDX+2MzBGDT+2PV+WPV+2PR+VOo8yfT2IgUQzNO6aNJUtEct4WRaVZkpVrIOu4Yhcg252FXB4ADVYpHr9MI9TcQGmAk1N9IiL+BUH8joQHOZ6NreYi/kQ6N60eNjoqQxKOGmM1mhgwZwtatW4mOjubmm28mISGBxYsX8/3337N161Zat/b8/QGSQgo506clOjvo7Aq9zfGs2RR6ux3NptDZFTqb47Xmem1Hsys0qw3NbkezOtqw2x1ttjK+RG02x1/bhYVybcklUHqdo1yy41pcKHqvdEXvdbqidTTHjHqd5nhftL7S6UBfbJmuaF3nNjTHcqUr3kcrto5z2+e362rT61DOuHQayrlMr7nalU7DbtBh9dNjM+qxGjQsRg2rUYfFqGExOF4X6BWFRrAYNAr1igK9wqbZsdgtWO1WbMqG1W51PFTRsz0fmz3ngjZryfVzrVizz7dXdYSgOhl0Bvz1Jvx0fph0RsdDb8RfZyRMH0Cozo9QnZFQDIShI1ThSBrsNkKtNkKtFkKtBZgs+ZCdB2mpUBjvnjDU8P88hYZNH4BV70gCrDp/CnUmLJo/BZqJgqJnM37kYyJf+ZFX9MhVfuTa/MixG8mxG8m2+ZFlM5BlNZJpM2JWJvLxw4wfNio7/8sClH0ljVGvlUgQnIlDiH/JNue6zgQj0K9+VLutCZJ41JA5c+awdetW+vTpw8qVKwkODgbgjTfe4LHHHuOee+5h/fr1Ho/rUKNMXhh8opq3qgOloSkw2EFnB/2FD5vjWafAYLtwHeW27qXSLvL79aK/Iirw+9muA7tW9HC+1mkorbT2C56LvVZltBd/Vm6/1BRgK3rUAdaihw8waDpMmgGTpscPPX6aDpOmw4QOPzT80DApx7OfUvgrDT8UfnbleG+346cUJrsNk7I7nm02/Ow2THYb/jYL/nYrJpsVP7uFQGshJrsVP6Uq/VVaFWZMmDV/8jV/zPiThz95mMhVJnKVP7nKRI4ykWP3I1c5luU5n3Eszy/qk68cSYQZPwowUuFhyiowGXT4G/WYDDpMRh0mQ9Frg+O1n0HnSArKSSDCiiUQJoNOEgcv0ZTbdYiiOhQWFtKoUSMyMzPZsWMHPXr0cFvevXt3du/eTVxcHFdeeeVFt5eVlUVYWBiZmZmEhlZtVviXXz5Nyqn/YdccX2F2NKya49mmgR2waZprWck2x2s7YC16tjn7F3/t7Od67Xi2FetvQ3PF4Wqrhb8IdEq5iqtqOBIgHe5tuqL/Zc52nasvaMXW1RX1d7xXpbQ5tnG+r1thVyjqd/41JV4XT9DKOtql9itju279VMnlesCgFAbnc9EXrkEpjIBeKQwKDCj0Rc9Gdf61QYEehVHh1tdtm87tuJa59zUoR399UZtzOyYPf/mXx6L0WDBgRU8BhqIvfX9y8SdPmVyJQmmvc4slCO7LHf3z8UO5/tVVnkGnYdTrMOi181/4F375G90TAX/ncuP5tor0c1u/6LWfXpKE2qCi31Uy4lEDNm3aRGZmJm3atCmRdACMHj2a3bt3s2LFigolHtWpUVAXGqS1KvoCPP/QFT007cI2e9EXm73oS8/u+vIr2WZ366uh0BV9E+mwn2/DUShDV3y9Ym3OPTpatGJb1Vxr2YuWOZfbi77qlDq/vh2wF/2yLb6uczu41nHfF6Ws63zWoTAUvdMX/Sp3O37Fjk/xY1z8c2qacjtmFx4PXbEoyjq2umLHtjir0mEr2mrx5xKvlVbm8hJtZW5Tu2Cb7sut6ItSJyj+E9SKHTOt2GfXiq3n+GyK4v++LvxXYMNRa8Xqtl17ie2Xuu+iY1f8y76w6NmiDFhwthtcy60YsGmO9zZNjxWjo10zOt5rRmzosWlGrBiwagbsmuO9rWg9u87geF/UbtcMWDUjStOj0zm+XDUc8weMeseXvZ9B5/jS12kYi76EncuMeh0Beo3Qotd+Bp0rSXCs60wYzr8+/zj/3s9wfj2jXivax/n15EtfVCdJPGrAn3/+CcAVV1xR6nJn++7duz0Wk1Pf4WMpuHY0cP7MgtuYl1sdLlViuduqpVQJVaX054L+zrMpNnXBehXYV4l4i2hF7RqOv7AV5/+SrdA2y/gMXBCbcj0XFQEr9tp+4bKifSjXNpX7NootcxVEK2cblNivo5AVyoamc3xx6YpKv+s0rejhqI/imJKhuV47l7vW1YFR0zAVra8vvlx3vk952y5r+YXcCrWV8TO58N9mWf9GSv58S992aT9rpShxLJzxa1CsTb50hahOknjUgKSkJACaN29e6nJne2JiosdicvIzOP4qEsJbnF/kpX+fy5e8EHWdJB41ICfHUZgnMLD0EsBBRfdQyC6jeFFBQQEFBedL9mZlZVVzhEIIIYR3yJ++Pujll18mLCzM9YiJifF2SEIIIUS1kMSjBjgvnc3LK/0Wybm5uQCEhJReUGbGjBlkZma6HsePH6+ZQIUQQggPk1MtNaBFixYAnDhRer0MZ3tsbGypy00mE6ZLKMUshBBC+DoZ8agB3bt3B2DHjh2lLne2d+vWzWMxCSGEEL5AEo8a0K9fP8LCwjh69Ci7du0qsXzZsmUA3HjjjR6OTAghhPAuSTxqgJ+fH1OnTgXgwQcfdM3pAEfJ9N27dzNo0CCPFw8TQgghvE1KptcQs9nM4MGD2bZtG9HR0QwYMIDExES2bdtGw4YNK3WTuOosmS6EEELUhIp+V8mIRw3x9/dn3bp1zJo1i8DAQL755hsSExOZMGECO3bs8MqdaYUQQghvkxGPWiAzM5Pw8HCOHz8uIx5CCCF8UlZWFjExMWRkZBAWFlbmenI5bS3grHAqhcSEEEL4uuzs7HITDxnxqAXsdjunTp0iJCSkTt+wypkty8hO5chxqzw5ZpdGjlvl1adjppQiOzubpk2botOVPZNDRjxqAZ1OV+YN5+qi0NDQOv8ftCbIcas8OWaXRo5b5dWXY1beSIeTTC4VQgghhMdI4iGEEEIIj5HEQ/gMk8nE7Nmz5T41lSTHrfLkmF0aOW6VJ8esJJlcKoQQQgiPkREPIYQQQniMJB5CCCGE8BhJPIQQQgjhMZJ4CJ/20Ucf0bNnT8LDwwkKCuKKK67g888/93ZYPm3JkiVomlbisX79em+H5tMGDx5c6nHTNI3Tp097Ozyf9e6779KmTRv8/f3p3r0733//vbdD8ilxcXGMGzeOtm3bomkazzzzzCWtU5dIATHh09LT0xk1ahSXX345/v7+fPPNN9x55534+/szatQob4fn03777Tf0er3rfadOnbwYje979913ycrKcmubOnUqFouF6OhoL0Xl2z755BMeeughnn76afr378//+3//j1tuuYWNGzfSu3dvb4fnEzZt2sTWrVvp378/Z8+eveR16hK5qkXUOv379yc6OpqlS5d6OxSftGTJEiZOnIjFYsFgkL8tLlV6ejqNGzfmueeeY+bMmd4Oxye1b9+eQYMGsWjRIldbr169aNCgAT/++KMXI/MddrvdVT68ZcuW/P3vf2fOnDmVXqcukVMtotaJiorCYrF4OwxRxy1fvhyLxcLYsWO9HYpPysvL48iRIwwbNsyt/dprr2XNmjUUFBR4KTLfUt49SyqzTl1Svz6t8Kq8vDy++eYb7r33Xjp06IC/vz9BQUF0796dF154gZycnDL7Wq1WsrKy+OKLL1i1ahVTpkzxYOTeU5Vj1qxZMwwGA926dWPZsmUejNr7qnLcnL744guuvPJK2rRp44GIva+yx8xsNqOUws/Pz63dZDJRWFhIfHy8J8P3iOr4dyUAJYSHLFq0SAEKUB07dlRjxoxRw4cPVyEhIQpQl112mUpOTi7R7/Tp065+er1eLVy40AvRe8elHLOff/5ZvfTSS2r16tVqxYoVatSoUQpQ33zzjZc+hedd6r81p9TUVGUwGNRrr73mwai961KOWUREhJo5c6Zb2/XXX68AtWnTJk+G7xFV/XcVGxurnn766XL3UZF1ajtJPITHLFmyRE2ePFnt37/frf3UqVOqR48eClB33nlniX4Wi0X9/vvvau3ateqJJ55QRqNRLVu2zFNhe9WlHrML9e/fX/Xq1aumwvQ5VT1u7733ngJUQkJCTYfqMy7lmD311FMqNDRUrVixQp07d069++67ymAwKEBt2bLFk+F7RFX/XUni4SCJh/AJmzdvVoAymUyqoKCg3HXvu+8+1a5dOw9F5rsqc8z+7//+T/n5+XkoMt9WkeM2ZMgQ1bt3bw9H5rvKOmY5OTnq5ptvdo0CNGvWTM2ePVsBKj4+3nsBe0FF/l1J4uEgczyET+jevTsABQUFpKWllbvu5ZdfzrFjxzwRlk+rzDET513suCUnJ/Prr7/KpNJiyjpmQUFBfPPNN5w6dYq9e/cSHx9PSEgIjRo1omXLll6K1jvk/2PFybV2wic4Ewmj0UhkZGS5627evLne/VIrTUWPmVKK5cuX06NHD0+F5tMudtyWLVuG3W5nzJgxng7NZ13smEVHRxMdHU1BQQGLFy9mwoQJHo7Q+yrzO6y+k8RD+IT58+cDMGLECLfbR19zzTXcdtttXHbZZZjNZr799ls+++wz3n//fW+F6jPKOmajR4+mV69edOvWjYKCAj744AO2bNnCd999561QfUpZx83piy++oH///jRr1szTofmsso7Zd999x6lTp+jQoQOnTp3iP//5D1artV7WPSnrGKWmpvLrr78Cjqti/vrrL5YtW0ZQUBAjR46s8Dp1irfP9Qjxww8/KE3TlNFoVLt27XJbNm3aNNW+fXsVEBCgGjRooAYOHKhWrFjhpUh9R3nHbMaMGapdu3YqICBABQQEqL59+6offvjBS5H6lvKOm1JKnTx5Ummapt5++20vROebyjtm33//vercubPy9/dXDRo0UBMnTiz3qo66qrxjtG7dOtccmOKP2NjYSq1Tl0jiIbzqwIEDKiIiQgHqP//5j7fDqRXkmF0aOW6VJ8fs4uQYVZ4kHsJrTpw4oWJjYxWgpk+f7u1wagU5ZpdGjlvlyTG7ODlGl0YSD+EVaWlpqlOnTgpQEydOVHa73dsh+Tw5ZpdGjlvlyTG7ODlGl04SD+Fx2dnZqlevXgpQt956q7Jard4OyefJMbs0ctwqT47ZxckxqhpJPIRHmc1mNWTIEAWo4cOHX7TwlZBjdqnkuFWeHLOLk2NUdZJ4CI+xWq3qlltuUYAaMGCAys3N9XZIPk+O2aWR41Z5cswuTo5R9ZA6HsJj3n77bZYvXw5AgwYNeOCBB0pd7/XXX6dBgwaeDM1nyTG7NHLcKk+O2cXJMaoekngIj0lPT3e9dv7nLc1zzz0n/2mLyDG7NHLcKk+O2cXJMaoemlJKeTsIIYQQQtQPcpM4IYQQQniMJB5CCCGE8BhJPIQQQgjhMZJ4CCGEEMJjJPEQQgghhMdI4iGEEEIIj5HEQwghhBAeI4mHEEIIITxGEg8hhBBCeIwkHkKIEgYPHoymaQwePNjbodRLLVu2RNM0JkyY4O1QhKh2kngI4WFbtmxB0zSCgoKwWq2u9oyMDPR6PZqmkZSUVKV9JCQkoGmafHl5iTNxuPBhNBpp0KAB/fv357nnnuPUqVPeDlUIj5PEQwgP27RpEwBXX301BoPBrd1utxMTE0OLFi28FZ6oQVarlbS0NDZt2sTzzz9Px44dy73ZmBB1kdydVggPcyYe/fv3d2vfuHFjqe3esH79em+HUCc0bdqUX375xfXeYrGQkJDA4sWLWbFiBVlZWdxxxx1s3bqVHj16uNZLSEjwQrRCeIaMeAjhYZs3bwZKJhi//fZbqe2i9jIajXTp0sX16NGjB7fccgvfffcd06dPB6CwsJA5c+Z4OVIhPEcSDyE86MiRI6SkpKDX6+nTp4+r3Ww28/vvvwOSeNQXzz//PAEBAQCsXLkSu93u5YiE8AxJPITwIOdplm7duhESEuJq3759O4WFhYSHh9OlSxdvhedS3lUtxSeuLlmyBIBVq1Zx44030qRJE0wmE61ateL+++/nxIkTFdrfunXrGD9+PK1btyYwMJDQ0FC6du3Kv/71r4tOwNy7dy9z5sxh+PDhNG/eHJPJRHBwMO3atWP8+PFs3bq13P7PPfec6/MAZGZm8uKLL9KjRw/Cw8PdPmd1Cg4OplOnTgDk5ORw7tw517KKXtVy5MgRHn30Ubp27UpYWBgBAQG0bt2aCRMmEBcXV6E4EhISePLJJ7nyyiuJiopyTYAdMGAAzz33HMeOHSuzb2ZmJi+//DL9+vWjYcOG+Pn5ER0dzY033siyZctQSpW77+XLlzNq1CjXzy0kJITWrVszYMAAZs2axfbt2yv0GUQto4QQNWLx4sUKqPIjPj6+0vuOj4939R8/fnyl+w8aNEgBatCgQeVue/Hixeqpp54qM/aGDRuq/fv3l7mf/Px8dccdd5T7+YOCgtR3331Xav9169ZV6Bg+9dRTZcYwe/Zs13qHDh1SLVu2LNF/8eLFlTp+sbGxClCxsbHlrte7d2/XPs6cOVOif3k/u//7v/9TRqOxzM+saZqaNWtWufu/2DbK+jeglFKrV69WUVFR5fa9/vrrVXZ2dom+VqtVjRkz5qI/tyuvvLLc+EXtJJNLhRCXbNGiRWzevJlBgwYxZcoU2rdvT0ZGBh9//DEff/wxqamp3HPPPWzZsqVEX6UUo0eP5ocffgDgxhtv5Pbbb6d169bodDq2b9/O3LlzSUpKYvTo0WzatImePXu6bcNqtRIUFMQNN9zAkCFDuOyyywgNDSUlJYV9+/bx5ptvkpiYyCuvvEL79u2ZOHFiuZ9n9OjRnDx5koceeoibbrqJiIgIDh8+TGxsbPUdtGKx//XXXwD4+fkRFRVV4b7/93//xxNPPAE4Rs/uv/9+2rVrR3h4OAcPHuTtt99my5YtvPjiizRo0ICHH364xDZefPFFnn32WQDCw8N54IEHuOaaa4iKiiIjI4MdO3bw9ddfu0aCitu0aRMjR47EYrHQuHFjHnroIbp3707Tpk05deoUX3zxBZ988gk//vgj48eP56uvvnLrv2DBApYuXQo4Ti3ed999tGnThqCgINLS0ti9ezc///wzmZmZFT4mohbxduYjRF2VkZGhDhw44HoU/+v8t99+c7Xv27dP+fv7K0AtW7bMrc+BAwdUYWFhpfftqREPQE2aNEnZ7fYS6913332udXbs2FFi+fvvv68AZTQa1U8//VRqHOfOnVOdO3dWgOrXr1+J5ampqSo9Pb3Mz1FQUKCGDRvmGn2wWq0l1ik+4qHT6dQvv/xS5vYqqiIjHm+//bZrv0OGDCm1f2k/u3379rlGKWbPnl3qsbfZbOrvf/+7AlRwcLA6d+6c2/IdO3YonU6nANW+fXt1/PjxMuNMSkpye19YWOgaFRoxYoTKzc0ttZ/z5wuolStXui0bMGCAAtTVV1+tLBZLmftOS0src5movSTxEMJDvvzySwWoVq1aubXv2rVLASogIOCSkozSeCrxiI6OVmazudRt/PXXX6715s+f77bMbrerNm3aKEA99thj5cby448/up0KqSzn8QVUXFxcieXFE4977rmn0tsvTVmJh8ViUYcPH1YzZ85Uer3etd8LE6/yEo977rlHAapnz56lJh1O6enpymQyKUC9//77bsvuvPNO1+mY0pLC8nz88ccKUP7+/iolJaXcdXv16qUAddddd7m1t2vXTgHq0UcfrdS+Rd0gk0uF8JCy6nQ4J5z27NkTo9Ho8biqYvTo0ZhMplKXdejQgeDgYIASExT379/P0aNHXdsoz8CBA12vSztlU1xBQQFJSUns37+fvXv3snfvXrcJjn/++We5/e++++5yl1dWYmJiicql7dq149///jc2mw1N05gzZw4jRoyo8DZXrFgBwG233VbqaRCn8PBwunbtCrgfN7vdzk8//QQ4JhEXrx9SEd999x0AgwYNomHDhuWu6/zZXfhzi46OBhyf5ezZs5Xav6j9ZI6HEB5SVp0OZ12Pfv36eTymqrrsssvKXR4REUFOTg7Z2dlu7cWvuCh+WfHFnDlzpkRbbm4ub775Jp9//jn79u3DZrOV2f9iX3LdunWrcCxVERoaypAhQ5g+fToDBgyocL/ExERSU1MBmDFjBjNmzKhQv+LHLT4+noyMDIBK7dvJ+bP75Zdfyk18yto/wPjx49mwYQNHjhyhbdu23HrrrQwbNowBAwbQvHnzSsckahdJPITwgOzsbHbv3g2UPeLRt29fj8dVVYGBgeUu1+kcg6oXJgMpKSmXtL+8vDy39wkJCQwZMoT4+PgK9c/Pzy93eURExCXFVZYLK5caDAbCwsJo0qRJhb+0i6uO41Y8+XKOPNR0DBce93vuuYejR4/y2muvkZmZyeLFi1m8eDEAbdq04eabb+bBBx+kdevWld6X8H2SeAhRA1q2bEliYmKpyzp37lxq+0033eT2fvbs2Tz33HPVHZpPKJ6IrFixgpYtW1aoX6NGjdze/+Mf/yA+Ph5N05g4cSJ33HEHHTt2dNWU0DQNu92OXq8HuGhdCed61cVZubS6FD9uzz77LGPGjKlQv6CgoGqPYeTIkbz22muXvJ2XXnqJyZMn8+mnn7JmzRq2bt1KXl4eR48e5Y033uCtt97izTff5J///Gd1hS58hCQeQgiPK37p6KUWTfvrr79cp69mzpxZZtnx4oW5arvix+1Sk5oGDRq4Xp8+ffqSYjh16hSFhYVVTqpiY2OZOXMmM2fOxGKx8Pvvv/Pll1+ycOFCzGYzDzzwAFdffXWl56EI3yaTS4WoAStXrmTPnj2ux5VXXgnA008/7dZ+yy23AI5JjcXb9+zZwwMPPODNj1Cjin+ROE81Vda+fftcr8eOHVvmehWt4FkbtG7dmrCwMODSj1urVq0IDw8HYMOGDZXu7/zZxcXFUVhYeEkxlMZoNNK3b1/+85//8NlnnwGOEaply5ZV2z6Eb5DEQ4ga0L59e9eNwTp06MCBAwcAuPXWW91uGnbw4EEA/va3v7m1d+nSpcRphbrkiiuucE0ifP/99zGbzZXehtVqdb3Ozc0tc7333nuv8gH6KL1ez/XXXw84klvnv6vK0Ol03HDDDQD8+uuv7Ny5s1L9nacEnXMzasK1117rei1XvdQ9kngIUcP++OMP8vLyCAkJoXv37q72tLQ01xdH8UtG6wOdTsfMmTMBx6W248aNo6CgoMz1s7KyePvtt93a2rVr53pd1r1UFixYwLffflv1gH3IjBkz0Ov12O12Ro8eXe79cGw2G59++mmJdR5//HF0Oh1KKe64445yt3HhsvHjxxMTE+PazsVGTX777Td+/fVXt7ZPPvnELXG80MqVK12vW7VqVe72Re0jczyEqGHOX8x9+/Z1m7z422+/oZSibdu2NG3atMb2f+TIkQrd5KxXr16um5Z5wj//+U9WrVrF8uXLWbp0KTt27GDKlCn06tWLsLAwsrKy+Ouvv1i/fj3fffcd/v7+TJ061dW/R48edOnShb1797Jw4ULS09P5xz/+QXR0NCdOnOCTTz5h2bJl9OvX75JPS/iirl278vrrr/Poo4+yf/9+unTpwuTJkxkyZAiNGzfGbDaTkJDAli1bWLZsGadPn2bPnj1ul6lefvnlPP/888yaNYtDhw7RtWtXHnzwQbeS6bt27eLrr79Gr9ezbt06V1+TycSXX37J4MGDycnJYciQIdxxxx2MGjWKVq1aYbfbOX36NH/88QfLly9nz549vPXWWwwaNMi1jX/84x88/vjj3HrrrfTt25c2bdrg7+9PcnIyq1atYsGCBYDjRnrVXVtF+ACvli8Toh644YYbFKDmzJnj1v7YY49Va7XM4i4sa16Rx7x581z9K3OTuPJc7GZnhYWF6v7771eapl00vgsrviql1M6dO1VERESZfbp27apOnTrlej979uwS2yheubS6VPQmcRfrX17V2ffff18FBgZe9Lj5+fmpw4cPl7qNl156SRkMhnL7l3WTuC1btqiYmJgK/dv66KOP3PpWpE9YWFiZpfRF7SYjHkLUILvd7vpr+8JiTc5KpvXtNEtxRqORd999l/vvv59Fixaxfv16kpKSyMnJITg4mFatWnHllVcycuRI/va3v5Xof/nll7Nr1y5efvllfvrpJ06dOkVISAht27bl9ttv58EHH8Tf398Ln6zmTZo0iZtuuomFCxeycuVKDh48SEZGBiaTiWbNmtG1a1eGDRvGbbfd5nYlS3EzZ85kzJgxvPvuu6xevZqkpCTy8vKIiIigU6dODBs2jHHjxpXat3fv3hw+fJglS5awYsUKdu7cydmzZ9HpdDRs2JCOHTsyaNAgbrvtNjp06ODWd+/evfzwww/89ttvHD16lOTkZDIyMggJCeGyyy5j+PDh3H///TRu3Ljaj5vwPk2pi1zYLoQQQghRTWRyqRBCCCE8RhIPIYQQQniMJB5CCCGE8BhJPIQQQgjhMZJ4CCGEEMJjJPEQQgghhMdI4iGEEEIIj5HEQwghhBAeI4mHEEIIITxGEg8hhBBCeIwkHkIIIYTwGEk8hBBCCOExkngIIYQQwmMk8RBCCCGEx0jiIYQQQgiP+f9sBcZz2ytGaAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhoAAAGBCAYAAAAg8Bg7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0VElEQVR4nO3dd3hU1dbA4d+ZSe8htARCAknovbcAIoqIYAPBBihS470gVlTEevWzgCiI2BCveFUQVBBFUHrvIKGGQICEEEp6z+zvj2GGDClMmEwmCet9nnmYnLP32WsOZRZnN00ppRBCCCGEsAOdowMQQgghRPUliYYQQggh7EYSDSGEEELYjSQaQgghhLAbSTSEEEIIYTeSaAghhBDCbiTREEIIIYTdSKIhhBBCCLuRREMIIYQQdiOJhhBCCCHsRhINIYQQQtiNJBpCCCGEsBtJNIQQQghhN5JoCCGEEMJuJNEQQpSLH374gQEDBlCnTh2cnZ3x8/MjIiKCwYMHM2fOHLKzs81lR40ahaZpjBo1CqUUn376KZ07d8bHxwcfHx969uzJd999V2Jbly9f5ssvv+SBBx6gVatW1KhRAzc3N0JCQnjooYfYunXrdePNyMhgxowZ9O7dm5o1a+Li4kL9+vXp3bs3H3zwAYmJicXWO3nyJJMnT6ZFixZ4eXnh4eFB06ZNmTRpEnFxcUXKT5gwAU3T8PPz4+TJk8Vec+7cuWiahpOTE+vXr79u7EJUKUoIIWz02GOPKcD88vLyUh4eHhbHYmNjzeVHjhypADVy5Eg1bNgwBSidTqf8/f2VpmnmOo899pgyGAxF2ps+fbq5jF6vV/7+/srV1dV8TNM0NWvWrBLj3bVrlwoODjaX1+l0qkaNGhbXmDlzZpF63377rUUZV1dX5e7ubv7Z29tbrVy50qJOZmamatGihQJUt27dVF5ensX5AwcOKDc3NwWoV155pWw3XogqQBINIYRNNmzYYP6y/r//+z918eJF87kLFy6olStXqpEjR6qzZ8+aj5sSDV9fX6VpmnrjjTdUSkqKUkqp8+fPqyeffNL85V1cwjBv3jw1ffp0tXPnTpWTk6OUUspgMKgTJ06oSZMmKU3TlF6vV7t37y5SNy4uTtWsWVMBKjg4WH3//fcqIyPDfI2DBw+qV199VX377bcW9f7880+l0+mUk5OTeu6551RsbKwyGAzKYDCow4cPq6FDhypA+fj4qFOnTlnUPXDggDkhefHFF83HCychPXr0UPn5+WW9/UJUepJoCCFs8n//938KULfffrvVdUyJBqCmTZtWbJlHHnlEAapGjRoqKyurTDFFRUUpQI0ePbrE6wYEBKi4uDirrldQUKAiIiIUoObNm1diucGDBytATZo0qci5uXPnmhOyv//+Wyml1Lhx4xSg/Pz8iiQnQlQXMkZDCGETPz8/AJKSkigoKChTXXd3d5555pliz73yyisAXLp0iVWrVpXpugMHDgRg48aNFsczMjL44YcfAHjhhRcIDg626nrr16/n2LFj1KxZkyeeeKLEciNGjABg5cqVRc6NHz+e++67D4PBwCOPPMJnn33GvHnzAPj8889p0KCBVbEIUdU4OToAIUTVduutt+Lm5saePXuIjIxk9OjR9O3bl4YNG163bseOHfHx8Sn2XEREBPXr1+fMmTPs3LmTQYMGWZw/ceIEn3zyCWvWrCEmJoa0tDQMBoNFmTNnzlj8vHPnTvLy8gCKXK80mzZtAiAlJYWgoKASy+Xm5gJw6tSpYs9/8cUX7Ny5k7i4OMaNGwfAE088wZAhQ6yORYiqRhINIYRNwsLC+OKLLxg/fjxbtmxhy5YtANSqVYtbbrmFhx56iMGDB6NpWpG69erVK/Xa9erV48yZM5w/f97i+NKlS3nwwQfJyckxH/Px8cHNzQ1N08jNzeXy5ctkZGRY1Dt37pz5fUhIiNWfMT4+HoC8vLwSZ6MUlpWVVexxf39/5syZY05yGjVqxKxZs6yOQ4iqSLpOhBA2e/jhhzl16hSffvopw4YNIzg4mKSkJH788UfuueceevfuTWpqarm0dfHiRUaNGkVOTg59+/Zl7dq1ZGZmkpKSQmJiIufOnWPRokXF1i0u2bGGqUuoS5cuKOPYtuu+SvL555+b3589e5bjx4/fUExCVBWSaAghykWNGjUYN24c33//PXFxcRw/fpwXXngBTdPYsGEDr776apE6Z8+eLfWapvO1a9c2H1uxYgWpqan4+/uzbNkyevfujbu7u0W9wk8uCqtbt675fUndG6XVK0ud4syePZtff/0VvV5P8+bNycnJYfjw4WRmZtp0XSEqM0k0hBB2ERYWxttvv81DDz0EUOyAzp07d5Kenl5s/ePHj5vHWHTs2NF8/PTp0wA0adIEDw+PYuuuXr262OMdO3bExcUFgGXLlln5SaBHjx6AMYHZuXOn1fUKO3DgAM8++yxgHOi6YsUK/Pz8OHToEE899dQNXVOIqkASDSGETQqPkyiO6WmDTlf0n5usrCzef//9Yuu9+eabgPFJyW233WY+7uvrC8DRo0ctVhs12bt3b4mrinp4eDB8+HAA3nnnHXPScj233HIL4eHhADz11FPmQZ8luXTpksXPWVlZDB8+nOzsbHr27MlLL71ESEgIn332GQCfffYZP/30k1WxCFHlOGperRCienjiiSfU0KFD1eLFi1ViYqL5eFpampo7d65ycXFRgJo6dar5XOEFu3Q6nfrPf/6jUlNTlVJKJSUlqX//+98lrtB59OhRpdPpFKDuu+8+debMGaWUUjk5OeqHH35QtWrVUgEBAeb61zp9+rTFgl0//PCDyszMVEoZF+w6cOCAeuaZZ9Q333xjUW/16tXKyclJAapLly5q9erVKjc313w+JiZGzZ07V3Xs2FG98cYbFnVLWy9j9OjRClD+/v5Wr+shRFUiiYYQwiaFF9/iyvLjfn5+Fsd69uyp0tPTi9QpvAS5aSnxwkuQjxgxQhUUFBRp8/nnn7e4vq+vr3J2dlaAatiwoVq4cGGJiYZSxiXI69WrZ7GMeUBAgHkp8OISHKWUWrp0qfL29jaXcXZ2VgEBARbLkgPqzTffNNf56aefzMcXLVpU5JoZGRmqadOmClCRkZGyOqiodiTREELY5Pjx4+qjjz5S9957r2ratKny8/NTTk5Oqnbt2uq2225TX331VZEvz8KJhsFgUJ988onq2LGj8vb2Vl5eXqpbt25Fnihc65tvvlGdO3dW7u7uysPDQzVr1ky9+OKLKjk5Wa1Zs6bUREMppVJTU9U777yjunbtqvz8/JSLi4sKDg5Wffr0UTNmzLB4OlNYYmKimj59uurcubPy9/dXer1e+fj4qDZt2qgnnnhCLV261LwselxcnPL39y9xlVKTPXv2mJOVV199tdTPLURVoylVyjwsIYSwg1GjRrFgwQJGjhzJ119/7ehwhBB2JINBhRBCCGE3kmgIIYQQwm4k0RBCCCGE3UiiIYQQQgi7kcGgQgghhLAbeaIhhBBCCLuRbeIrIYPBQHx8PN7e3je826QQQghhL0op0tLSCAoKKnZ7gcIk0aiE4uPjCQ4OdnQYQgghRKlOnz5N/fr1Sy0jiUYl5O3tDRh/A318fBwcjRBCCGEpNTWV4OBg8/dVaSTRqIRM3SU+Pj6SaAghhKi0rOnel8GgQgghhLAbSTQqkTlz5tC8eXM6derk6FCEEEKIciHraFRCqamp+Pr6kpKSIl0nQgghKp2yfE/JGA0hhBCVmsFgIDc319Fh3HRcXFyuO3XVGpJoCCGEqLRyc3OJjY3FYDA4OpSbjk6no2HDhri4uNh0HUk0hBBCVEpKKRISEtDr9QQHB5fL/66FdUwLRyYkJNCgQQObFo+UREMIIUSllJ+fT2ZmJkFBQXh4eDg6nJtOrVq1iI+PJz8/H2dn5xu+jqSHN4H83AJHhyCEEGVWUGD8t8vWR/fixpjuu+n34UZJolHNxWw4ztf/WsHRVQccHYoQQtwQ2fPJMcrrvkuiUc3tWPAzOZona3+MITst29HhCCGEuMlIolHNuUcexDXrPHl6H357c6mjwxFCiGqvT58+TJ482dFhVBqSaFRzg1veQq7X16AMnEupw8Hftjs6JCGEEHaQk5PDSy+9REhICK6uroSGhvLVV185OiyZdVLdfZvbC4+AHyiIWUu2d182LT1LWI9M3PxkBLcQQlQnDzzwAImJiXz55ZeEh4eTkJBQKdYfkSca1VxGbgFv5z6BT6MVuGafJ8/Jl19e/cHRYQkhRLWWn5/Pk08+ia+vLzVr1mTatGnYc8ePP/74g3Xr1rFixQr69etHaGgo3bp1o0ePHnZr01qSaFRz43uH8XifZszK/xfalS6UC9kh7P5pjaNDE0KIMlFKkZmb75BXWZOEBQsW4OTkxPbt25k1axYzZszgiy++KLH8hg0b8PLyKvW1cOHCEuv/+uuvdOzYkXfffZd69erRuHFjnnnmGbKyssoUtz1I18lN4Ln+TUjOzGPdrjh6x60h2/NWdq64TJM+KXgG+Do6PCGEsEpWXgHNX1npkLajX++Ph4v1X5nBwcHMnDkTTdNo0qQJBw4cYObMmYwZM6bY8h07dmTv3r2lXrNOnTolnjtx4gQbN27Ezc2NpUuXcuHCBSZOnMjFixeZP3++1XHbgyQaNwFN03jznpZMys7jnHqX2vGtyHWrzc/TvuXhT6IcHZ4QQlQ7Xbt2tViHolu3bnzwwQcUFBSg1+uLlHd3dyc8PPyG2zMYDGiaxsKFC/H1Nf4HcsaMGQwZMoRPPvkEd3f3G762rSTRuEnodRozHmjL2KxJ1Ep7D3Inkmxoxsb5P9LzsQccHZ4QQlyXu7Oe6Nf7O6xte9qwYQMDBgwotcy8efN4+OGHiz0XGBhIvXr1zEkGQLNmzVBKcebMGSIiIso13rKQROMm4uKkY+6jnRmfPYZe29eS7d6X6A16WvQ/h39QXUeHJ4QQpdI0rUzdF460bds2i5+3bt1KREREsU8zwPaukx49erBo0SLS09Px8vIC4OjRo+h0OurXr1+24MuZDAa9ybi76Pno8X7sb1IDl+xE8lz8+WXafx0dlhBCVCtxcXFMmTKFI0eO8L///Y+PP/6YSZMmlVje1HVS2svb27vE+g899BABAQE89thjREdHs379ep599lkef/xxh3abgCQaNyVfd2de/lcUKf6bQBnIcO7A8nf/z9FhCSFEtTFixAiysrLo3LkzUVFRTJo0ibFjx9qtPS8vL1atWkVycjIdO3bk4YcfZtCgQXz00Ud2a9NamrLnxF5RJnPmzGHOnDkUFBRw9OhRUlJS8PHxsVt7py9msPLpd8lx641zbjJ9/1WL8HaRdmtPCCHKIjs7m9jYWBo2bIibm5ujw7nplHb/U1NT8fX1tep7Sp5oVCJRUVFER0ezY8eOCmkvOMCTLs8+gktOInkufqyfub5SzLkWQghRfUiicZNr1SKCoK45oAxkeXTjm+eeJL/A8UvWCiGEqB4k0RAMHDcKb90eALSMgXw66yUMBulRE0IIYTtJNAQAw96NwiXnPHkufnjs9uLjH5badV1+IYQQNwdJNAQArt4edHugvrELxasb7uu+Y+7KfY4OSwghRBUniYYwazmgJ3V8Thp/yHkItfYZvt54wqExCSGEqNok0RAWBr8+Ape8C+S5+uF++haO//E2S3afcXRYQgghqihJNIQFF3cX+o5oauxC8e5GvaSLfP/TD6yKTnR0aEIIIaogSTREEWG9WxNc5wIATrmPMJgFTP/ub7bEXHRwZEIIIaoaSTREse548X5cCy6R6+pH/olhPOf8AeMXbGH/mWRHhyaEEJVanz59mDx5sqPDqDQk0RDFcnFz5rbRbYx7ofh2I+5MCOMN3zLyq+0cP5/m6PCEEEIUMmrUKDRNK/Jq0aKFo0OTREOULKRrBI2CMwBwz38YHfvpmr2RR77YzpnLmQ6OTgghhMmsWbNISEgwv06fPk2NGjUYOnSoo0OTREOUrt+zA3EzJJPr6ofb8UcY7jkfj7QTPPrldpLSchwdnhBCVEr5+fk8+eST+Pr6UrNmTaZNm2bXRRB9fX2pW7eu+bVz504uX77MY489Zrc2rSWJhiiVs6sT/ce2B2Ug3a8re0504UOPWSReuMiIr7aTkpXn6BCFEDcLpSA3wzGvMiYJCxYswMnJie3btzNr1ixmzJjBF198UWL5DRs24OXlVepr4cKFVrf/5Zdf0q9fP0JCQsoUtz04OToAUfnV7xhK478Pc/SEC56Gh/gt51U+cP+SCQkTGf31Dv47ugvuLnpHhymEqO7yMuE/QY5p+8V4cPG0unhwcDAzZ85E0zSaNGnCgQMHmDlzJmPGjCm2fMeOHdm7d2+p16xTp45VbcfHx/P777/z3XffWR2vPckTDWGVWybfhjup5Lr6Uf/YcHJc9zLObTU7T11mwsJd5ObLjq9CCGHStWtXNE0z/9ytWzeOHTtGQUFBseXd3d0JDw8v9eXt7W1V2wsWLMDPz4977rmnPD6KzeSJhrCKk4ue/hM68vMnh0n178rFQ7t5sPF37CtoyNojMOXHvcwa3g69Trv+xYQQ4kY4exifLDiqbTvasGEDAwYMKLXMvHnzePjhh0sto5Tiq6++4tFHH8XFxaU8Q7xhkmgIq9VrU59mTY9y6Ah46h5iXuZxvvSZQ9/U11i+H3zcnXnrnpYWWbwQQpQbTStT94Ujbdu2zeLnrVu3EhERgV5ffDdzeXWdrFu3juPHjzN69GirY7U3STREmfSK6s2pyb+R6epHy6MPsKDTp/wWNJ+uZ57ku21x+Lk789wdTR0dphBCOFRcXBxTpkxh3Lhx7N69m48//pgPPvigxPKmrhNbffnll3Tp0oWWLVvafK3yImM0RJk4uei5fWInUAaSA7pi2NeFU6l7+aXZWgA+WRvDvHUxjg1SCCEcbMSIEWRlZdG5c2eioqKYNGkSY8eOtWubKSkp/PTTT5XqaQbIEw1xA+q1DKRFy+McPJiHq8uDfJsaw2t5XzG3Ywsm7KzL278fxtfdmeGdGzg6VCGEqHBr1641v587d26Ftevr60tmZuVbTFGeaNjBzp07GTFiBOHh4Wiaxssvv+zokMpdz3Hd8XTKJNfVj07HhvCuZw3uOPYqL3Qx5q5Tlx7gt/0JDo5SCCGEo0miYQebNm1i69at9OzZE19fX0eHYxdOLnpuj+oMSnG5Zlfq7+jIcqd8xiW8yoiOtVAKJv+wh/VHkxwdqhBCCAeSRMMO/vWvf3H06FG+/vpr/Pz8HB2O3QQ1q03Ltu4A6N2HsyqpHmcvHeFV3RcMbFmXvALFuP/uYtepSw6OVAghhKNIomEHOt3Nc1t7jO6Ct0s2ua5+dI+5jzc9amLY/wOzInbTq3EtsvIKeGz+Dg4lpDo6VCGEEA5Qpb8Rd+3axTvvvMN9991H/fr1zdviXk9WVhavvPIKjRs3xs3NjaCgIB5//HHOnj1bAVFXL04uem6L6gzKwMVaXem8pS2f+/rgtHIqn/VVdAjxJzU7n0e/3M7JCxmODlcIIUQFq9KJxhtvvMHUqVNZunSp1UlCdnY2ffv25Y033iA9PZ27776b4OBg5s+fT7t27Thx4oSdo65+ApvUpFVHHwAKvIZz5HQd9jpruC15nPlDG9G0rjcX0nN45MttnEvJdnC0QgghKlKVnt7arVs3WrduTadOnejUqROhoaHk5JS+dfmbb77J1q1b6datG3/++SdeXl4AzJgxg6effprHH3/cYmpScnIy586dK/WaHh4eNGhwc0/l7D6yAyf/WUUafnQ7eR/vhHzHF8ln8Fkxnm8eW8gDn23n5MVMHv1yGz+O64a/Z+VYGlcIIYR9aUqVce/bSszNzY2cnBxK+ki5ubnUrl2blJQUdu/eTbt27SzOt2nThv3797Nz5046dOgAwKeffsqECRNKbbd3794WyUlhoaGhPPLII7z55ptWf47U1FR8fX1JSUnBx8fH6nqOlnD0Eks+2A2aDu/ETznSbw9vJZ2HXs9yuu0Uhny6mcTUHNoE+7HwiS54uVbpPFcIYWfZ2dnExsbSsGFD3NzcHB3OTae0+1+W76kq3XVSVps2bSIlJYWwsLAiSQbAkCFDAFi2bJn52Pjx41FKlfoqKcm42QQ2rkGrLv4A5PgNJ/ewL394esD69whOWs+3o7vg5+HMvtPJjP1mJ9l5xe9iKIQQovq4qRKNffv2AdC+fftiz5uO79+/v8JiAsjJySE1NdXiVVV1f6Qt3u55xoW8zt7Hp861SdDrYelYIpwvsOCxzni66Nkcc5F//28P+QWyvbwQonrp06cPkydPdnQYlcZNlWjExcUBUL9+/WLPm46fOnXKpnaSkpJYvHgxixcvJjMzk8OHD7N48WJ+//33Ysu//fbb+Pr6ml/BwcE2te9IhWehJNXuyrC/G/NiUAgF2Snw46O0qevK5yM74uKk48/oRF5YcgCDodr03gkhhMMsXLiQNm3a4OHhQWBgII8//jgXL150dFg3V6KRnp4OGAdvFsfT07j9cFpamk3tHDx4kKFDhzJ06FCSkpL46aefGDp0aIljPaZOnUpKSor5dfr0aZvad7TAcH9adw8AID3gQert0DO/Zl04dwB+e4bujQKY/WA79DqNxbvO8OZvh0ocVyOEEOL6Nm3axIgRIxg9ejQHDx5k0aJFbN++nTFjxjg6tJsr0agoffr0KXYsx8mTJ4st7+rqio+Pj8Wrquv2YGt8PArIdfWjTeL9/JLtwj+urrD3W9j9Dbe3qMv/3d8agK82xTL77+MOjlgIIcpPfn4+Tz75JL6+vtSsWZNp06bZ9T9UW7ZsITQ0lH//+980bNiQnj17Mm7cOLZv3263Nq11UyUapqmsJe1ul5FhXFDK29u7wmKqrpxc9PSLMm4nf75OF0asacpL9cPJ1DRY8SzE72FIh/q8cldzAD5YdZQFm086NmghRKWmlCIzL9Mhr7ImCQsWLMDJyYnt27cza9YsZsyYwRdffFFi+Q0bNuDl5VXqa+HChSXW79atG6dPn2bFihUopUhMTGTx4sXceeedZYrbHm6q+YWmtS7OnDlT7HnT8ZCQkAqLqToLDPOjdc/a7N90geTaD9Fx7Vu826c1r8bsgx9GwLh1PN6zISlZecz66xjTfz2Ir7sz97Sr5+jQhRCVUFZ+Fl2+6+KQtrc9tA0P5+K73YsTHBzMzJkz0TSNJk2acODAAWbOnFliV0bHjh3Zu3dvqdesU6dOied69OjBwoULGTZsGNnZ2eTn5zNo0CDmzJljdcz2clM90WjTpg0Au3fvLva86Xjr1q0rLKbC5syZQ/PmzenUqZND2reHbsNa4ONlINfVl2YX72fP2Uusrh0KKXGwZAwYDEzuF8Go7qEAPL1oH2uOnHdozEIIYauuXbtabInRrVs3jh07RkFB8dP63d3dCQ8PL/VV2tP26OhoJk2axCuvvMKuXbv4448/OHnyJOPHjy/3z1ZWN+2CXXv27KFt27YW54tbsMsRquqCXSU5dyKFn97dCWgEnZzLRw+e5vv4OOrkZECfqdDnBQwGxTOL9rFkz1kCPF1Y+VQvanq5Ojp0IYQDXbtglFKKrPwsh8Ti7uRu1V5aYByn16hRI7766ivzsV9++YUhQ4aQnZ2NXq8vUmfDhg0MGDCg1OvOmzePhx9+uNhzjz76KNnZ2SxatMh8bOPGjURGRhIfH09gYKBVsRdWXgt23VRdJy4uLjz55JO89dZbREVF8eeff5pnmsyYMYP9+/fTu3dvhyYZ1VHdRr606VWHfevPcyHwIQb89RYv3d2Bzw6sR7f2HajXEV1EP96+vxXRCakcPpfG1CUH+OzRDlb/xRZCVH+appWp+8KRtm3bZvHz1q1biYiIKDbJANu7TjIzM3FysvxKN7Xl6OcJVTrR+O2333jjjTfMP+fm5gLGR1Ym06ZNY+DAgeafX375ZVavXs3mzZuJiIggMjKSU6dOsW3bNmrVqmWRgYry03VoM07uOU8KvjQ6dz87oxfyTYtbGXXwL1jyBIxdh6t/CDOHtWXw7I2sik5k8a4zDO1YddcUEULcvOLi4pgyZQrjxo1j9+7dfPzxx3zwwQclljd1ndyoQYMGMWbMGObOnUv//v1JSEhg8uTJdO7cmaCgoBu+bnmo0mM0kpKS2LZtm/llytoKH0tKSrKo4+bmxpo1a5g2bRoeHh78/PPPnDp1ilGjRrF7924aNWrkiI9S7Tk56+k3oQOgSKzbhUc3NOPT1BMcqtcasi7DjyMgL5tmgT48dVtjAF5bFs2Zy8XPEBJCiMpsxIgRZGVl0blzZ6Kiopg0aRJjx461W3ujRo1ixowZzJ49m5YtWzJ06FCaNGnCkiVL7NamtarVGI3qorqN0Shs4/fR7Ft7DpecFLJy3mL1/bX54fgh3LMuQYdRMGgWBQbFA/O2sOvUZbo1CmDhE13Q6aQLRYibjWyq5liyqVo1VB1nnVyr6/1N8PXVyHX1JShzCD77T/FB2/6ABru+hj0L0es0PhjaBndnPVtOXORrWV9DCCGqLEk0KpGoqCiio6PZsWOHo0OxGydnPf3Gt8fYhdKZhza2YHnsRtZ2edRY4LcpkLCf0JqevDSwGQD/98dhjp+3bVl4IYQQjiGJhqhwdRv60ravcVGusw0eZNRqN15J2ceF8FshP9u4cqhSPNylAb0a1yIn38CUH/eRJzu9CiFElSOJhnCILvdG4OunI9fVl5r5Q4jYf5GXA3wx6F3h9FY4uQFN03j3/tb4ujuz/0wKc9bIfihCCFHVSKIhHMLJWU+/ce0wdaE8sLUFB2J38L9mvYwF1r8HQF1fN16/uwUAH/99nP1nkh0TsBBCiBtSrolGYmIi+/btY/PmzezYsYNjx46RnZ1dnk2IaqRuQ1/a3lofgLiQBxmz0o0ZmTEcdXWH2PUQZ1zwZnCbIAa2DqTAoHjqh71k5xW/hK8QQojKx6ZEY/PmzUybNo1evXrh7e1NUFAQ7du3JzIykq5du9K0aVM8PT0JDw/n4YcfZsGCBVy8eLG8Yq92boZZJ9fqck84vv56cl198dKG0GV/Lh+HNDWeXP8uYFwN8M27W1LL25WYpAzeW3nEgRELIYQoizKvo5GYmMi8efOYP38+cXFx5uPXu4xpKWknJyfuuOMOJk6cSP/+/W8g5OqvOq+jUZxzsSks+b+dKDQaH/6Ud4Yc4cfLZwkoyIMxf0M945Lwaw6f57GvjTNyvhvThe5hNR0ZthDCzmQdDccqr3U0rE404uPj+c9//sOXX35Jbm6uObHQ6/W0aNGCDh06ULt2bWrUqIG/vz9ZWVlcunSJy5cvc/ToUXbu3MmFCxeuNqxpNG/enOnTpzNkyJCyfv5q7WZLNAA2Lz7KntVncMlJITfzLfzuDeLhw+ugyUB48DtzualLDvC/7XHU83Pnj8mReLs5OzBqIYQ9SaLhWBW6qdprr73G+++/T2ZmJkopateuzbBhw7j//vvp1KkT7u7uVgUdGxvLX3/9xXfffcf69es5ePAgw4YNo0uXLnz22We0bNnSquuI6qfz3WGc2HGWlBRfal++g5+cD/AwGhz5Dc79A3WNfzZeHtiMTccvEHcpk9eXRfPe0DYOjlwIISz16dOHtm3b8uGHHzo6lErBqjEar732GhkZGfTr148//viD+Ph4Zs2aRa9evaxOMgAaNmzIE088wd9//01cXByvv/46/v7+bN26tVKsxy4cx8lZT9f7mwCQ7t2M7KMxHG92h/HklRkoAJ6uTnzwQBs0DRbtOsOfB885IlwhhKh05syZQ7NmzXB3d6dJkyZ88803jg4JsDLRuPPOO9myZQsrV67k9ttvR6ezfbJKUFAQL7/8MqdOneKdd96hVq1aNl9TVG31mhvHXGR6BtIhxp1lgWHGE9G/QNLVAaCdQmswNtK4+d3UJQe4kJ5T4bEKIURlMnfuXKZOncqrr77KwYMHee2114iKimLZsmWODk02VauMbsYxGib/fXoVqRl6ap6dx2cjLvBnfh30R36D1sPgvs/M5bLzCrh79iaOJKbRv0UdPn2kg3nAsRCierh2jIBSCpWV5ZBYNHd3q/+N6dOnj3kowH//+1+cnZ2ZMGECr7/+ut3+nerevTs9evTgvfeuPgF++umn2bZtGxs3bryha1boGA1RMebMmcOcOXMoKLh514kIalqT1F2XcTeEk5N0kO2Ro+h25Dc4sAh6Pw8Bxqccbs56Zgxrwz1zNrHyYCJL95zlvvb1HRy9EMKeVFYWR9p3cEjbTXbvQvPwsLr8ggULGD16NNu3b2fnzp2MHTuWBg0aMGbMmGLLb9iwgQEDBpR6zXnz5vHwww8Xey4nJ6dIMuDu7s727dvJy8vD2dlxA+cl0ahEoqKiiIqKMmeKN6P6rQM5vOsyyb5htI1RLGt1iG4Rt8OxP2HjDLh7jrlsiyBfJvdrzHsrjzD9l4N0bRRAkJ/1Y4aEEMJegoODmTlzJpqm0aRJEw4cOMDMmTNLTDQ6duzI3r17S71mnTp1SjzXv39/vvjiC+655x7at2/Prl27+OKLL8jLy+PChQsEBgba8nFsYvdEIzExkeXLl3PhwgUaNmzIXXfdhUcZskJxcwkMNyZY6d7BtI115rO41bzc/QM8jv0J+76HXs+Bf4i5/LhejVh9KJE9cck8u3gf/328CzqddKEIUR1p7u402b3LYW2XRdeuXS26Sbp168YHH3xAQUEBer2+SHl3d3fCw8NvOL5p06Zx7tw5unbtilKKOnXqMHLkSN59991yGVdpC5taP3ToEA888ADDhg0jOTm5yPlff/2VsLAwxo4dy4svvsiDDz5Is2bNrpu1iZuXT4A7nl4aStPT6EIjcnMyWW24DI36gCEfNn1oUd5Jr2PGA21xd9az6fhFvtly0hFhCyEqgKZp6Dw8HPKy9xiwDRs24OXlVepr4cKFJdZ3d3fnq6++IjMzk5MnTxIXF0doaCje3t4On2xh0xONn3/+mcWLF9OjRw/8/Pwszp0/f55HHnmEzMxMi+OnT59m0KBBHDp0CC8vL1uaF9VUULNaHNtxniyPRjQ+e5RfY35lcK9n4cRa2PMt9HoWfILM5RvW9OTFO5sy7ZeDvP37YXpG1CK8tvzZEkI4zrZt2yx+3rp1KxEREcU+zQDbu05MnJ2dqV/fOF7t+++/56677qraTzT++usvNE3jrrvuKnLuk08+IT09HScnJ2bMmMG+ffvMj3Di4+P5/PPPbWlaVGNBEf4AJPuG0T7GwPaE7ZyrFQ4NukNBLmz6qEidR7qGEBlRk5x8A0//uJf8AkNFhy2EEGZxcXFMmTKFI0eO8L///Y+PP/6YSZMmlVje1HVS2svb27vE+kePHuXbb7/l2LFjbN++neHDh/PPP//wn//8xx4fr0xsSjRMe520a9euyLmffvoJTdMYMWIEkydPplWrVjzzzDOMHj0apRS//vqrLU2Laiwo3A+AVJ+GdD3liUKx/MRy6P2sscCu+ZB+3qKOpmm8O6Q13m5O7DuTwidrYyo4aiGEuGrEiBFkZWXRuXNnoqKimDRpEmPHjrVbewUFBXzwwQe0adOG2267jezsbDZv3kxoaKjd2rSWTV0n588b/7GvXbu2xfELFy5w8OBBNE3joYcesjg3ePBgPv/8c6Kjo21pWlRj/oEeuHnoyc50wS2jJgEpp1kWs4zRg5ei1esIZ3fC5o/h9jcs6gX6uvPG3S2Z/MNePvrrGH2b1qZlvZtz9o4QwnHWrl1rfj937twKabNZs2bs2bOnQtoqK5ueaGRdWTglOzvb4rhpcRAXFxd69uxpcc40xaa4waNCgPHpRKC5+ySczrF6TqScIPrSIeP4DIAdX0LmpSJ1724bxJ2t6pJvUDz1w16y827eNUmEEKIysCnRqFGjBoDFdvFgHLsBxsEtLi4uFufy8/MBZCBoMebMmUPz5s3p1KmTo0NxuMAr3ScpvmHcetaYdPwa8ys07g91W0NeBmz9pEg9TdN4855W1PRy5dj5dD7480iRMkIIISqOTYlGmzbGnTO/++7qNt5ZWVksWrQITdPo27dvkTqnTp0CrBs9e7OJiooiOjqaHTt2ODoUhzON00j2DaP+0WSc8xW/x/5OniH/6lONbfMgK7lI3RqeLvzf/a0A+GJjLFtPXKygqIUQQlzLpkRj+PDhKKVYtmwZw4cPZ/bs2dx+++2cP38eTdN48MEHi9QxTfkJCQkpck4Ik5oNvHBy0ZHv7EmmPoBu53y5nHOZjWc3QtO7oFYzyEmF7Z8VW//WZnUY3ikYpeCZRftIy86r4E8ghBACbEw0RowYQc+ePVFKsWjRIiZNmsTmzZsBeOyxx2jatGmROkuWLEHTNLp3725L06Ka0+t11G1kHMiZ7BvGwETj2J5lJ5aBTge9njEW3PoJ5KQVe42X72pOfX93zlzO4s3lhyokbiGEEJZsSjR0Oh2///47U6ZMoX79+jg5OREcHMy0adOKHWm7fPlyTp48CRi3nheiNIHm7pNwGh68CEqx9vRaUnJSoMW9EBAOWZeNA0OL4eXqxPtD26Bp8MPO06yOTqy44IUQQgA2JhoAnp6evP/++5w6dYqcnBxOnjzJa6+9hpNT0ZmzPXr0IDY2lhMnTtChg2N24BNVR9CVfU9S/MJRZ8/Rw9CIPEMeK0+uBJ0eIp82FtwyG3Izi71G10YBPNGzIQAvLDnApYzcColdCCGEUYWuS+rv709ISIiMzxBWqdPIF51OI8fVj2y3AO5NagBcmX0C0Goo+IVARhLs+rrE6zx9exMiantxIT2Hl5YeQClVAdELIYSACk40hCgLZxc9tUKMS+4m+4YRFp2CXtOzL2kfp1JPgd4ZIqcYC2/+CPKyi72Om7OemcPa4qTT+P2fc/yyN76iPoIQQtz0rEo0rl2Qyx4qog1R9QQVGqeRt3sfvQM6A7AsZpmxQJsHwacepCXA3m9LvE7Ler5MujUCgGm//ENCSpZd4xZC3Lz69OnD5MmTHR1GpWFVotGwYUNmzJhhXgm0PG3fvp277rqL9957r9yvLaq+wAg/AFJrNoW8PO5LNiYLy08sx6AM4OQKPSYbC2/8EPJLHoMxoU8YbYL9SMvO59lF+zEYpAtFCFE9JCQk8NBDD9G4cWN0Ol2Jic6iRYto2rQpbm5utGrVihUrVtg9NqsSjcTERJ599llCQ0OZPn06R48etanR7OxsfvzxR/r370+3bt34/fffbbqeqL4Cw4wDQjNcAsh19iLsUDJezl6cTT/L7sTdxkLtHwWvOpByGvZ/X+K1nPQ6ZjzQBjdnHRuPX+Dbbacq4iMIIYTd5eTkUKtWLV5++WXzYprX2rx5Mw8++CCjR49mz5493HPPPdxzzz38888/do3NqkRj9erVtGjRgqSkJN58802aNWtGp06deOedd1i7di1pacWvY1DYoUOHWLBgASNGjKBOnTo8+OCDrFq1Cg8PD1566SWeeuopmz9MVSdLkBfl5ulMjSBPwDhOI2vDJvqH3A5cWVMDwNkduv/b+H7DB1CQX+L1wmp58cIdxvVd/rPiECeS0u0XvBCiXCmlyMspcMirrIPI8/PzefLJJ/H19aVmzZpMmzbNrgPRQ0NDmTVrFiNGjMDXt/jNJGfNmsUdd9zBs88+S7NmzXjjjTdo3749s2fPtltcYOXurX379mXfvn3873//46233uLQoUPs2rWL3buN/6PUNI1GjRpRu3Zt/P398ff3Jysri0uXLnH58mViYmJIT7/6D7pSCnd3d0aNGsUrr7wiy5FfERUVRVRUFKmpqSX+QbkZBYX7cSk+g5SAJtQ+so/BtOEnlrDy5Eqmdp6Km5MbdHwMNs6Ayyfhn5+gzbASrzeiWyirDiWy6fhFnl60j0XjuuGkl3HRQlR2+bkGPpu0ziFtj53VG2dXvdXlFyxYwOjRo9m+fTs7d+5k7NixNGjQgDFjxhRbfsOGDQwYMKDUa86bN4+HH364THEXtmXLFqZMmWJxrH///vz88883fE1rWL1NvGnL94ceeojVq1fzxRdfsGzZMrKyslBKcfz4cWJiYorUuzaDa926NWPGjOGRRx6RL1NhlcAIX/5Zf5bUwNZw5EeC/0miXs16nE0/y5rTaxjQcAC4eEK3KPjrddjwPrQaYlxroxg6ncZ7Q9rQ/8P17IlLZt76E0TdEl7Bn0oIUZ0FBwczc+ZMNE2jSZMmHDhwgJkzZ5aYaHTs2JG9e/eWek1b/1N+7ty5IteoU6cO586ds+m612N1olFYv3796NevHzk5OWzbto0NGzawefNmzpw5Q1JSEpcuXcLNzY1atWpRq1YtWrVqRWRkJJGRkbKGhigz08yTVPzI17uRsW49g54bxKf7PuXXmF+NiQZApzGw6SO4cBSif4GW95V8TT93Xhvcgik/7mPmqqP0blyLlvUk8RWiMnNy0TF2Vm+HtV0WXbt2RdM088/dunXjgw8+oKCgAL2+6H+C3N3dCQ+vnv/huaFEw8TV1ZVevXrRq1ev8opHiCK8/N3wDnAj7WI2KT4Ncdq7l7sCpvIpn7I5fjNJmUnU8qgFbj7QdQKsfRvWvw/N7zHui1KCe9vV48+Difxx8BxP/7iPX57sgZuz9Y9GhRAVS9O0MnVfVCUV0XVSt25dEhMtt2JITEykbt26N3xNa0jHtKgSTE810ht2AoMBv/2naFurLQZlYEVsoelZXcaBizecPwhHS5/NpGkab93bkppeLhxJTGPmKttmUwkhhIlpp3KTrVu3EhERUezTDLjadVLaa/DgwTbF1K1bN/766y+LY6tWraJbt242Xfd6JNEQVUKgad+T2s0BSF+3jkFhg4BCS5IDuPtD5yt9oOveheuM8g7wcuXt+1oD8NmGE2yPvVTOkQshbkZxcXFMmTKFI0eO8L///Y+PP/6YSZMmlVje1HVS2svb27vUNk0JSXp6OklJSezdu5fo6Gjz+UmTJvHHH3/wwQcfcPjwYV599VV27tzJk08+WW6fuziSaIgqIejKwl2X8rwxaE5kbNjI7cH9cNY5c/TyUY5cOnK1cLcocPaAhL1wfPV1r31b8zoM7VAfpeDpRXtJzyl5eqwQQlhjxIgRZGVl0blzZ6Kiopg0aRJjx461a5vt2rWjXbt27Nq1i++++4527dpZ7JTevXt3vvvuOz777DPatGnD4sWL+fnnn2nZsqVd47JpjIYQFcWvjgfu3s5kpeWRXqcpPuf+wfVoHH2C+7Dq1Cp+jfmVZ2s8ayzsWRM6Pm7c1XXduxDeDwoNyirOK4OasznmIqcvZfHWb4d4+75WFfCphBDV0dq1a83v586dW2HtWrNOx9ChQxk6dGgFRHOVPNEQVYKmaQReGaeR0bIPAOnr1zM4zNhn+duJ38g3FHoS0f1foHeFM9shdv11r+/t5sz7Q42r6f1vexxrDp8v1/iFEOJmJYmGqDJMA0JT/IxTwNLXradHvR74u/pzMfsiW+K3XC3sXRc6jDS+X2/dPjrdwgIY3bMhAM/9tJ/LGSXvmyKEEMI6kmiIKsM0IPRCuisKjeyDB+HCZe5sZOyDNO/oatJjEuic4eQGOLXl2ssV69n+TQiv7UVSWg4v//yPXZcMFkKIm4EkGqLKqFnfC2dXPbnZBvLaGNduydiw0Tz75O/Tf5OWW2jfHd/60O7KnPP171rVhpuznpkPtMVJp/HbgQR+3Rdfrp9BCCFuNpJoVCKyqVrpdHoddU27uTaLBIzjNJrXaE6Ybxg5BTmsOrXKslLPp0DTQ8zfcGaXVe20qu/Lk32N3TPTfv6HcynZ5fchhBBlJk8WHaO87rskGpVIVFQU0dHR7Nixw9GhVFpBV7pPkj2NS9lnbNoE+fnFr6kB4B8Kra9ssGblWA2AqFvCaV3fl9TsfJ77ab/8QyeEA5gWt8rNlfFSjmC67yUtMmYtm6a3xsXFAVCvXj2rAzEYDJw5cwaABg0a2NK8uAmZZp4kJkFYjRoYLl0ic/ceBrYcyKzds9iVuIszaWeo713/aqXIp2H/98aVQhP2Q2Dr67bjrNcx44E2DPxoI+uPJrFwWxyPdJV9eoSoSE5OTnh4eJCUlISzszO6UrYUEOXLYDCQlJSEh4cHTk62rYRhU+3Q0FB0Oh379++nefPmVtWJjY0lIiICnU5Hfr4sjCTKpk6oDzq9RmZqLlr322H596SvW0fdLs/SJbALWxO2svzEcsa3GX+1Us1waHEf/LPY+FRj2H+taiu8tjfP39GU15dH89Zvh+gZXpPQmp52+mRCiGtpmkZgYCCxsbGcOnXK0eHcdHQ6HQ0aNLDYHO5G2Lxg140+UpZH0eJGOLnoqR3iw7kTKaSHd8Wd70lfv446zz3L4LDBbE3YyrKYZYxrPc7yL0evZ4yJxqFf4fwhqN3MqvZGdQ9lVXQiW05cZMqPe1k0vjt6nW1/6YQQ1nNxcSEiIkK6TxzAxcWlXJ4iVfjKoKYEQx6BiRsVFOHLuRMpXHKqSz29ntzjMeSeOcutDW7F3cmduLQ49iXto23ttlcr1W4GzQbBoWWw4QO4/wur2tLpNN5/oA13zFzP7rhk5q2PYWKf6rmVsxCVlU6nw83NzdFhiBtU4d/2CQkJANfdHEaIkpjGaZw7lYl7u7YApK9fh4ezB7eF3AYUs6YGQK8rS5T/8xNcjLG6vXp+7kwf3AKAmauOEh2fesOxCyHEzaZcEg1r+m/y8vI4fPgwb731FgBNmjQpj6bFTSgwzBc0SEnKQt+tLwAZ64zLjJtmn/x+8ndyC6551BrYBhrfAcpgfKpRBve3r8dtzeuQV6CY8uNecvILbP8gQghxEyhToqHX6y1eYOwKadmyZZFz177c3Nxo0aIFq1atQtM0hgwZYpcPJKo/Vw9nAoK8AEhv0B6AjG3bMGRn06lOJ+p41CEtN411Z9YVrWx6qrHve7h80uo2NU3j7ftaEeDpwuFzacxcdczWjyGEEDeFMiUaSimLV0nHr/caOnQokydPLu/PIm4ipm3jkzLccapbF5WdTeb27eh1eu5qdBdQzJoaAPU7QqNbQBXAxg/L1GZNL1feute4q+tn62PYefKSLR9BCCFuCmUaDDp9+nSLn1977TU0TWP8+PHUrl27xHqapuHm5kZgYCDdu3cnLCzsxqIV4orAcF8OrD1DQkwKEb16kfzjj6SvW49Xr14MChvEl/98ycYzG7mUfYkabjUsK/d+Dk6sgb0LjU84fOtZ3e4dLetyf/v6/LT7DFN+3Mei8d1wddJhyrsLz6UyJeOWx0zlilZQJZWxOGZ57cLnivvZdA17TfKSuWNCGIXU8EAnM9KKpSkb5pnqdDo0TePAgQNWr6Mhri81NRVfX19SUlLw8fFxdDiVUkZKDl8/vwk0GH43nJ8chXP9+oSt+hNN0xi+fDgHLx7khc4v8HCzh4teYP5AOLUROo+DO63bB8UkNTuPO2auJ16WJhdCXHH4jTtwc7ZtBc2qpCzfUzZNb50/fz4A9evXv05JIcqXp68rPrXcSU3KIrVmEzRnZ/LOnCE3NhbXRo0YFDaIgxcPsixmWfGJRu9n4ZuNsHuBceVQ7zpWt+3j5syMYW0Z/fUOMnLLNii08LhpzXxMs/i5cDkNjWtPateUKVxOK1q82OsLIURFsSnRGDlyZHnFIUSZBYX7kpqUxbkz2dTr1ImMzZtJX7sO10aNGNBwAO/veJ+DFw8SkxxDmN813XUNe0P9TnBmB2z5GG5/s0xtd20UwIFX+1t0HVybANi6mp4QQlQHsmqWqLJM62kkHEvGq09vwLibK0ANtxr0rN8TKGFNDU2DXs8Z3+/4CjIulrl9nU5DX+ilu/LSNE2SDCGEuMKqJxrrr/zjXd569epll+uKm0OQaYO1U6m43WtMKjJ37aIgPR29lxeDwwaz9vRalp9Yzr/a/Qu97pr+04jbILAtJOyFrXPg1lcqMnwhhLgpWJVo9OnTp9z/h6ZpmmyqJmziW9sddx8XslJzSVb+uISEkHvqFBmbN+Nz++30rt8bbxdvEjMT2ZG4g66BXS0voGnGWSc/PAzbPoPu/wJ3f8d8GCGEqKas7jop61oZ1ryEsIWmaQSF+wIQfywFz97GJ2Sm7hMXvQsDQgcAJXSfADS5E2q3gNw0Y7IhhBCiXFn1RGPNmjX2jkOIGxIY7kfM7iQSjifTtFdvLn/zXzLWrUcphaZpDAobxI9Hf2TVqVW81OUlPJw9LC+g00Gvp2Hx47D1E+g6AdxkSrEQQpQXqxKN3r172zsOAcyZM4c5c+ZQUCD7aFjLNE4j4UQKbmO7orm7k5+URM6hQ7g1b06bWm1o4N2AuLQ4/or7y7wXioXm90DA23DxGOz4AiKnVOhnEEKI6kxmnVQiUVFRREdHs2PHDkeHUmUE1PfCxU1PXnYBl8/n4tmtG3C1+8T0VANKWJIcQKeHXs8Y32+ZDbkZdo9bCCFuFpJoiCpNp9OoG2Yap5GM15Wnb+lrr26oZtr7ZFvCNs5lnCv+Qi2HgH8oZF6EnfPtGrMQQtxMJNEQVZ5pg7WE48l49YoEIGvfPvIvXwagvnd9OtTpgELx24nfir+I3gl6Xuky2fwR5Mny4kIIUR5sWhn08ccfv+G6mqbx5Zdf2tK8EMDVhbvijyfjVLclro0bk3P0KBkbN+E7yPg0Y3DYYHYl7mJZzDIeb/l48dO12zwI69+DlNOw57/QeUwFfgohhKiebEo0vv766xtaX8M0I0ASDVEe6oT4oHfSkZWWR8r5LLx69ybn6FHS160zJxq3hdzGf7b9h5iUGKIvRdMioEXRCzm5QI9JsOIZ4xby7UcajwkhhLhhNnWdNGjQ4LqvgIAA4Oq21jVr1iQkJIQGDRrYHr0QgN5ZR+1Qb8D4VMPrynoaGRs2oK7M4PF28aZvcF+glDU1ANo9Cl51IfUM7PvOvoELIcRNwKZE4+TJk8TGxpb6On/+PBcuXGD27Nn4+/vj5+fHH3/8QWxsbHl9BiGuTnM9lox727bofHwoSEkha99+cxnT7JMVJ1aQZ8gr/kLObtDj38b3G2ZAgaxeK4QQtqiQwaD+/v5MnDiRTZs2cf78eQYMGMDlKwP1hCgPgVcGhMYfT0ZzcsKrZw8A0tdfnX3SLagbAW4BXM65zKazm0q+WIfHwKMmJJ+CA4vsGbYQQlR7FTrrpEmTJvz73//m5MmTfPDBBxXZtKjmAhv5ommQeiGb9Ms5ePayXI4cwEnnxMBGA4FS1tQAcPGA7k8a3294HwyygJoQQtyoCp/e2q9fPwCWLFlS0U2LaszF3YmA+l7AlWmukZGgaeREHyIv8by53OCwwQCsPb2WlJyUki/Y6Qlw84OLx+HgUjtGLoQQ1VuFJxpeXsYvg7i4uIpuWlRzQYWnuQYE4NaqFQAZG64+1WhSowmN/RuTZ8hj5cmVJV/M1Ru6TjS+3/ABGAz2ClsIIaq1Ck809uzZA4Czs3NFNy2qOdN6GgnHkwHMs0/S162zKGd6qlHq7BOALuPA1QfOR8OREhb6EkIIUaoKTTRiY2N59dVX0TSNtm3bVmTT4iZgWiH0YnwG2Rl5ePUyLkeesWkzKjfXXO7Ohnei03TsTdpLXGopT9bc/aDzWOP7de/ClSnaQgghrGfTgl3ffPPNdcsYDAYuX77Mzp07+eWXX8jMzETTNMaPH29L00IU4eHjgm9td1LOZ3EuJoWQls3R16xJwYULZO7ejWfXrgDU8qhFt6BubDq7iWUnlhHVNqrki3adCFvnwrn9cOxPaNy/gj6NEEJUDzYlGqNGjSrTyqCmRbv+/e9/M2zYMFuaFqJYQeF+pJzPIv54MqGta+IVGUnK0qWkr11nTjQABjcabEw0YpYxoc0EdFoJD/c8A6DTaOP+J+vehYjb4QZWwxVCiJuVzV0nSimrXr6+vgwePJg//viDmTNnlkfsQhRReIM1KDROo9A0V4BbGtyCp7MnZ9PPsuf8ntIv2u1JcHKDszvhxNpyjlgIIao3m55oWLO6p06nw9vbGz8/P1uaEsIqpgGh50+lkZ9bgGePHqDXk3viBLmnT+MSHAyAu5M7t4fcztLjS1kWs4wOdTqUfFHvOtBhFGz71LjpWtgt9v8gQghRTdj0RCMkJOS6r+DgYEkyRIXxqemGp68LhgJFYmwqem9vPNq3ByB9neVTDdOS5CtPriQ7/zrbwveYBHoXOLUJTpayqqgQQggLFT69VQh70jTNYjlyKNx9YjnNtUOdDgR5BpGel87a02tLv7BPELR7xPh+/XvlF7AQQlRzFZJo5OTkkJiYiEEWPRIVwLxw17FkALx6G6e5Zm7bjiEry1xOp+m4K8y4jXypS5Kb9JgMOic4sQbO7CzPkIUQotqyKdFIT09nxYoVrFixgvT09CLnL1y4wP3334+Pjw9BQUH4+/vz9NNPk5OTY0uzQpTKNE7jXGwqhgIDLuHhOAUFonJyyNi2zaLsoEbG7pPN8Zu5kHWh9Av7h0Dr4cb3694t77CFEKJasinR+Omnn7jrrrsYP348Hh4eFucMBgMDBgzg559/Ji8vD6UUaWlpfPjhhzz00EM2BS1EaQKCPHH1cCI/p4Ck0+lommZ+qpFxzeyTUN9QWtdqTYEqYMWJFde/eOQU0HRwbCXE77VD9EIIUb3YlGisXGncK+Lee+9Fp7O81A8//MCuXbsAaN++PU899RTt27dHKcXPP//MH3/8YUvTldqPP/7IwIEDCQwMxNfXl169erFx40ZHh3XT0HQadcN8gULTXE27ua5dZ17PxWRwoytLkp+4zpLkAAFh0HKI8b2M1RBCiOuyaXrrP//8g6ZpdO/evcg506qhHTp0YPPmzTg5OZGXl0dkZCQ7duxgwYIF3HHHHbY0X2l9+OGHREREMGfOHLy8vJg/fz633nor27dvp02bNo4O76YQFO7HqQMXiT+WTNt+DfDs0gXNxYW8+HhyY2JwDQ83l72j4R28s+MdDl86zJFLR2hSo0npF498Gg4sgsPL4dBy8Kp9ZXnyKwmM6b3Fr1hxjHK4xrVxYHnMGmVaat1e1xVC2E2Le8DZvcKasynROH/euP12w4YNLY7n5eWxfv16NE0jKioKJydjM87OzowfP57t27ezfft2W5qu1JYtW0ZAQID55379+tGqVSvmzJnDZ5995sDIbh7mDdZiUlBKofPwwKNLFzI2bCB93TqLRMPX1Zc+9fuwOm41y08sv36iUbspNB8M0b/ADw/b8VMIIYQdhPerOonGpUuXAHBxcbE4vmPHDrKystA0rchTi8aNGwNw7tw5W5qu1AonGWBctKxly5ZWLXAmykftEG/0zjqy0/O4fC6TGoGeePXqdSXRWE/A6NEW5QeFDTInGpPaT8JJd52/GrdOh0uxkJ1SaEly7cr7Qr9C0WPFlqeUc2W9VqEl0ou7xo244WXXb7CeLPMuhP3oK3b3dJsSDQ8PD9LS0sxPNkzWXxlwFx4eTp06dSzOubuXXxa1a9cuVq1aZX5CcvbsWYAiffDXysrK4u233+b7778nLi6OGjVqcMcdd/DGG29Qr169covPpKCggB07dtC/v2zIVVH0TjrqhPoQfyyZhOPJxkSjT28S33qLzN27KUhLQ+/tbS4fWS8SP1c/LmRdYFvCNnrU61F6AwFhMH6DnT+FEEJUfTYNBg0LCwNg7dq1FseXLl2Kpmn0ujIAr7CkpCQAateubUvTALzxxhtMnTqVpUuXmpOM68nOzqZv37688cYbpKenc/fddxMcHMz8+fNp164dJ06csDmua82ePZu4uDgmTpxY7tcWJQu6ZuEul+BgXBo2hPx8MjZttijrrHdmQMMBgJVragghhLCKTU80brvtNvbs2cMnn3xCZGQkkZGRzJ8/nx07dqBpGoMGDSpSZ//+/QAEBQXZ0jQA3bp1o3Xr1nTq1IlOnToRGhp63TU63nzzTbZu3Uq3bt34888/8fLyAmDGjBk8/fTTPP744xaJU3Jy8nW7eTw8PGjQoEGx57Zt28YLL7zAyy+/TKtWrcr2AYVNTAt3JRxLMR/z6tWLS7GxpK9fj88dlk+YBocN5n+H/8ffcX+TnpuOl4tXRYYrhBDVk7JBfHy88vX1VTqdzuKlaZpq0aKFMhgMRer06dNH6XQ6FRUVZUvTxXJ1dVWlfaScnBzl6+urALV79+4i51u3bq0AtXPnTvOxuXPnmobsl/jq3bt3se3FxsaqOnXqqKFDhxZ7L0qSkpKiAJWSkmJ1HVFUTlaemjPhbzV73F8q9WKWUkqp9M2bVXSTpupIj57KUFBgUd5gMKhBSwepll+3VEuOLnFEyEIIUSWU5XvKpq6TwMBAli1bRt26dS22hG/UqBGLFy9Gu2ZAV0xMDBs2GPu1+/XrZ0vTN2TTpk2kpKQQFhZGu3btipwfMsS4PsKyZVfXUxg/fnyx294Xfl3bdQTGJyEDBw4kNDSUBQsWFLkXwv5c3JyoFWx8KmFaT8OjQwd0Hh4UXLhAdvQhi/KapjE4zLimhnSfCCFE+bCp6wQgMjKS2NhYNm3axLlz5wgMDKRnz57mKa2FJSQkMG3aNABuv/12W5sus3379gHGBcSKYzpu6t65Ubm5udx3331kZmby999/X3cAbE5OjkWXT2pqqk3ti6sCw/04fyqN+OMpNO5cF83FBc8e3UlbtZr09etwb9nCovzAhgP5aPdH7Ezcydn0s9TzKv/BwUIIcTOxOdEA4/TWW2655brlevbsSc+ePcujyRsSFxcHQP369Ys9bzp+6tQpm9qZOHEi69at4/PPPyc2NtY8rdXV1bXYJylvv/02r732mk1tiuIFhfux76/T5g3WADx79TImGuvWUeuaAbqBXoF0rtuZbee2sTxmOePajKvgiIUQonq5qbaJN238du2+LCaenp4ApKWl2dTO6tWrMRgMjB49mm7duplf9957b7Hlp06dSkpKivl1+vRpm9oXVwWGG5civ5yQQXZ6HnB1OfLs/QfIv7IWTGGDwoyDmJedWHbdqdJCCCFKV66JRkxMDN9++y3vv/8+r7/+OhcuXGc3zGrq5MmTxY7lOHnyZLHlXV1d8fHxsXiJ8uHu7YJ/XWNiaZrm6lynDq7NmoFSZGwouhZGv5B+uDu5cyr1FPsv2NaNJoQQN7tySTR2795Nr169aNy4MSNHjuT555/ntddeK7KQ15w5c6hduzYRERHk5eWVR9NlYprKmpmZWez5jIwMALwLLeQkqj7zcuRXEg0otMnauvVFyns6e3Jrg1sBWBZjxUZrQgghSmRzorF8+XJ69OjBpk2bLP73XpwRI0aQlZXFiRMnWL58ua1Nl5lprYszZ84Ue950PCQkpMJiEvYXdKX7JP54ofU0rmwbn75pEyo/v0gdU/fJ77G/k1uQWwFRCiFE9WRTopGQkMCDDz5ITk4OzZs35/fffy91fIO3tzeDBxunD/7++++2NH1DTDun7t69u9jzpuOtW7eusJgKmzNnDs2bN6dTp04Oab+6Mj3RuBCXRl5OAQDubVqj9/XFkJJC1pXZSIV1qduF2h61Sc1NZf2Zok89hBBCWMemRGPmzJlkZGQQEhLChg0b6N+/v3lAZUn69OmDUopdu3bZ0vQN6dGjB76+vsTExLB3794i5xcvXgxQ7IqmFSEqKoro6Gh27NjhkParK+8AN7z8XTEYFOdijU81NL0ezyszoIrrPtHr9NzV6C5A1tQQQghb2JRo/PHHH2iaxtNPP42fn59VdZo2bQrgkJ1MXVxcePLJJwHjl7ppTAYYlyDfv38/vXv3pkOHDhUem7AfTdOujtMoNM3Vq8+V7pN164qtN6iRMeHccGYDl7Mv2zVGIYSormxKNEzrTXTu3NnqOqYZFaapprb47bff6Nq1q/mVm2vsSy987LfffrOo8/LLL9OlSxc2b95MREQEw4YNo2vXrjz99NPUqlWLr776yua4ROVzdYO1q+M0PHv2BE0j58gR8orZzybcP5zmAc3JV/n8HlvxXX1CCFEd2JRo5F8ZRGcwGKyuk5Ji/IfeNAPEFklJSWzbts38Mg1CLXzMtFusiZubG2vWrGHatGl4eHjw888/c+rUKUaNGsXu3btp1KiRzXGJyse0nkZibAoFBcY/r07+/rhfGbeTvr74cRimJcll9okQQtwYmxKNunXrApRpa/Xt27cDlLjbaVmMGjXquvuQjBo1qkg9d3d3Xn/9dY4fP05OTg4JCQnMnz+/xBVDRdVXo64nrp5O5OcaSIq7OmDZq3fJ01wB7gi9AyfNiX8u/sOJZOv/nAshhDCyKdGIjIxEKcWiRYusKp+bm8u8efPQNI0+ffrY0nS1JLNO7EfTaQSG+QGW28Z7XllPI2PLFgy5RaexBrgH0LOecdDoshPyVEMIIcrKpkTD9LTg119/ZdWqVaWWzc3NZcSIEcTExKBpGmPGjLGl6WpJZp3YV9CVAaHxhRbucmveHKdatVCZmWTt3FlsPfOS5DHLMCjruwmFEELYmGj06dOHYcOGoZRi0KBBPP/88+auETAuxb1582bee+89WrRowaJFi9A0jfHjx9OiRYtSrixE+QuMMI7TSDiejDIYx/NomoZnr0ig5NknvYN74+3iTWJmIjvOSRIohBBlYfPKoF9//TV33nknubm5vP/++3Tr1g1N0wDjehSRkZG88MILxMTEoJTi3nvvZdasWTYHLkRZ1WrgjZOLjpzMfC4lXJ3abF4ltIRxGq56V+4IvQOQNTWEEKKsbE40XF1dWb58OfPmzaNRo0YlDsqsX78+n3zyCYsXL0av15dH7EKUiV6vo07Dq081TDy7dwcnJ3JPniT3ypTta5lmn6w6tYrMvOL3yhFCCFGUU3ldaMyYMYwZM4bo6Gh27tzJ+fPnKSgoICAggHbt2tG+fXvzkw4hHCUo3JezRy4TfzyFlr2Ns4z0Xl54dOhA5rZtpK9bT40Rjxap16ZWG4K9gzmddpq/4v4yj9sQQghRunJLNEyaN29O8+bNr1tu165dsgLnNebMmcOcOXMoKChwdCjVVuCVhbsSjiejlDInv169exsTjfXFJxqapjEobBCf7P2EZTHLJNEQQggrlcs28WWxefNmBgwYQJcuXSq66UpPZp3YX92Gvuh0GumXc0i7mG0+blpPI3P7dgyZxXeNmPY+2ZqwlcSMRPsHK4QQ1UCFJRp//fUXt9xyC5GRkfz5558lbiUvhD05u+qp2cAbsByn4dKoEc7166Nyc8nYuq3YusHewbSv3R6F4rfY34otI4QQwlKZEw2lFEuWLGHixIkMGjSI++67jylTprB58+Ziy69du5bu3btz++23s379evPg0Ntuu83m4IW4EUFXliMvvO+Jpml49TKtElr8NFe4Oij01+O/SrIshBBWKFOicerUKdq1a8fQoUOZN28eK1as4JdffmHWrFlERkYyfPhw8/iCixcvcu+993Lrrbda7ENy9913s337dv7444/y/zRCWCGo0DiNwszLkV9JiItze+jtuOhciEmJ4dClQ/YMUwghqgWrE43c3Fzuuusu9u/fX+IU1kWLFjF16lROnz5Np06d+PVX4//6dDodDz74IPv372fp0qV07NjRnp9JiFKZliK/fC6TrLSry457dOmC5upKfkICOceOFVvX28Wbvg36ArLRmhBCWMPqRGPhwoUcPHgQTdMIDQ3liy++YNu2bezZs4fvvvuOdu3aoZRi7ty5PPTQQ5w8eRKlFPfffz/R0dEsXLhQVgMVlYKblzM1gjwBSCjUfaJzc8Ojq3GQcmndJ6YZJytiV5BnyLNjpEIIUfVZPb11yZIlANSvX5/9+/dbbPPepk0bHnjgAXr16sXmzZvZtGkTer2eL7/8khEjRpR/1NWUTG+tOIHhflyKzyD+eDKN2tUyH/fq3ZuMdevJWLeemiXsx9M9qDs13GpwKfsS/43+L+F+4SilMCgDBgygwIABgzKgUFfPXdknpch7DOangqZ6xZa79nrXtqUUClViu4qi3UGljTMprnxpdUoqX+L1ZYyLEA4xpeMUPJ09K6w9qxONffv2oWkazz77rEWSYaLT6Xj99dfp168fmqbx6KOPSpJRRlFRUURFRZGamoqvr6+jw6nWgsJ9Obj+LPHHki2Oe/XqRSKQuWcPBSkp6Iv5fXDSOTGw0UD+G/1fZu6aWTEBCyFEOZnYdmLlTDQuXrwIQMuWLUss07p1a/P7IUOG2BCWEPYVeGUn1wun08jNzsfFzfhXwaV+fVzCwsiNiSFj82Z8Bgwotv6I5iM4eukoaXlpaGjoNB2apqHD+Ot1j2k6NDSL88UdK+686Rrm96Y6hc9fU870a0mut2rvjdYttV4p50o7JYSwjbuTe4W2Z3WikZWVhaZp1K5du8QyNWvWNL+vX7++bZEJYUfeNdzwruFG2qVszp1IoUHzAPM5r969uRQTQ/q69SUmGnU96/JF/y8qKlwhhKiy7LZgl5NTua9uLkS5urptfIrFcfN6Ghs2oAyGCo9LCCGqkwpfglyIyiLoSvfJteM0PNq3Q+fpScHFi2QfPFjxgQkhRDVS5scOn3zySandJ2Up98orr5S1eSHKjWmcRuLJVAryDOidjXm35uKCZ48epP35J+nr1uPeqpUDoxRCiKpNU1bOMdPpdOW+zbtM4yyeadZJSkoKPj4+jg6n2lJK8dWzG8lOz+O+ZzsQGHZ1hknyTz+R8NLLuLVqRcNFPzowSiGEqHzK8j1Vpq6TklYEvZGXEI6maZo5ubh2OXLPyEgAsg8cIP/ChYoOTQghqg2ru07WrFljzzgEsmCXIwRF+BG77wLxx5Np3z/EfNy5dm3cmjcnOzqa9A0b8bv3HscFKYQQVZjViUbv3r3tGYdAFuxyBNMGa+diUlAGhaa72j3o2buXMdFYv04SDSGEuEEy60Tc1GrW98LZVU9OZj4X4zMsznlfSa4zNm5C5ec7IjwhhKjyJNEQNzWdXkfdRsaBTNeO03Br1Qq9vz+GtDSy9uxxQHRCCFH1SaIhbnqBJaynoen1eEb2BCB9/foKjkoIIaoHSTTETc+8cNfx5CIzorx6GbtP0teWvG28EEKIkkmiIW56dRr6oNNrZKbkknohy+KcV88eoNORc+wYefHxDopQCCGqLkk0xE3PyUVP7RBvAOKPWe57ovfzw71tWwDS12+o6NCEEKLKk0RDCK6O07h2QCgU2mRtnXSfCCFEWUmiIQSW4zSu5dXnyjTXrVsx5ORUYFRCCFH1SaIhBFA3zBc0SDmfRUaKZTLh2qQJTrVro7KyyNy+w0ERCiFE1SSJRiUyZ84cmjdvTqdOnRwdyk3HzdOZgCBPABKOW47T0DQNr95Xuk9kmqsQQpSJJBqVSFRUFNHR0ezYIf9rdoRSx2lcWSU0fb2M0xBCiLKQREOIK0obp+HRtRs4O5N3Ko6c2NiKDUwIIaowSTSEuML0ROPimXRysyz3NtF7eeLZqSMAGdJ9IoQQVpNEQ4grvPxd8anphlKQcCKlyHlPmeYqhBBlJomGEIWYuk8Srtn3BK4uR56xYyeGjIwi54UQQhQliYYQhQRG+AHFj9NwaRiKc4MGkJdHxtatFRuYEEJUUZJoCFGI6YlG4slU8vMKLM5pmnZ1lVDZZE0IIawiiYYQhfjWdsfd2xlDvuL8ybQi569Oc11fZKdXIYQQRUmiIUQhmqaVPs21cyc0NzfyExPJOXq0YoMTQogqSBINIa5R2sJdOldXPLt2BaT7RAghrCGJhhDXCLoyIPRcTAoGQ9HuEdMma7IcuRBCXJ8kGkJcI6C+F85uenKzC7h4Jr3IedOA0Kw9eyhITq7g6IQQompxcnQA4qo5c+YwZ84cCgoKrl9Y2I1OpxHYyJe46EvEH0+mVgNvi/POQUG4RkSQc+wYyT8twaNTR1R+ARgKrv5aYEAV5IPBgMq/8mtBARQYz1GQf7VMgcFcVxlMZQqg4Eqd4q5b+FdDAeQXoAxXr2u+RuHrFn44U3ggqzXvAVX4AiVdyx7XE0KUq5Cv56P386uw9iTRqESioqKIiooiNTUVX19fR4dzUwsM9yMu+hIJx5Np0ze4yHmv3r3IOXaM8++954DohBDixqkK/s+sJBpCFCPIvHBXCkopNE2zOO83dCjp69ZRkJaOptOBk9OVX/VoOj3o9Wh6Peh1aPor58zH9CXUMZY119HrQFeojul6Or25juakv1JGB4XrmI476UGnM9bVCvWUFv44hT7btZ+z8DmL94UvYM21rLpOCdcUQpQrvbf39QuVI0k0hChG7VBvdE4aWam5pJzPwq+Oh8V5l5AQGi1b5qDohBCi6pDBoEIUw8lZT51QH6D49TSEEEJYRxINIUoQWMoGa0IIIawjiYYQJShthVAhhBDWkURDiBLUDfMFDVIvZJORnOPocIQQokqSREOIEri6O1GzvhcgTzWEEOJGSaIhRClknIYQQthGEg0hSnF1nEaKYwMRQogqShINIUoRGG5cofVifDo5mXkOjkYIIaoeSTSEKIWnryu+tdxBQUKMPNUQQoiykkRDiOsIvLIceYIMCBVCiDKTREOI6wi60n0Sf0yeaAghRFlJoiHEdZg2WDt/KpX83Ird9VAIIao6STSEuA6fmu54+LpgKFAknkx1dDhCCFGlSKIhxHVommae5irjNIQQomwk0RDCCqaFu+Jl4S4hhCgTSTQqkTlz5tC8eXM6derk6FDENYIijANCz51IxVBgcHA0QghRdUiiUYlERUURHR3Njh07HB2KuEaNIC9c3J3Iyyngwpl0R4cjhBBVhiQaQlhBp9MIDDNNc012bDBCCFGFSKIhhJVMy5EnyL4nQghhNUk0hLCSeeZJTDJKKccGI4QQVYQkGkJYqXaID3onHVlpeSQnZjo6HCGEqBIk0RDCSnpnHXUa+gAyTkMIIawliYYQZSDjNIQQomwk0RCiDEzjNOJlhVAhhLCKJBpClEHdMF80DdIuZpN+OdvR4QghRKUniYYQZeDi5kTNYG9AnmoIIYQ1JNEQoozM3SfHZJyGEEJcjyQaQpRRYIRpQGiyYwMRQogqwMnRAQhR1QSG+QFwKT6D7PQ83LycHRtQFWBe4EyBunqw0HsKnbfTYmiyxpoQgHGqvqZpFdaeJBpClJGHjwt+dTxITswkISaZhm1qlVjWYFAU5BsoyDNgKLj6viDf9FIY8i1/Nr8vXMeinqKgwIAhr5g6hX42FK5XoIxf9oW+bM2Lm17zha+uLWBxrFAioIqvUyR5EEJUKo+92xMPH5cKa08SDSFuQFC4L8mJmaz731G2/nLC/CVvsPjSVyiDfNsKIW5ukmgIcQNCWtYkelMCGck5ZCTnWF1P76RD76Shd9ah019576RD76y7cs54TOdk+bO+0M+6a3421jUe0+ktfy5cR6e7+qi0yGNTDa4e0ijyVFWzrFO4rPnnQnWuvX7h8xraNWUt32hXLyuEsANnF32FtieJhhA3oGHbmtz7dHtys/ONX+x605f+NUlAocRAp9cqtF9UCCEqA0k0hLgBmqYRFOHn6DCEEKLSk+mtQgghhLAbSTSEEEIIYTeSaAghhBDCbiTREEIIIYTdSKIhhBBCCLuRREMIIYQQdiOJhhBCCCHsRhINIYQQQtiNJBpCCCGEsBtZGbQSMm2pnZqa6uBIhBBCiKJM309KXX/jSEk0KqG0tDQAgoODHRyJEEIIUbK0tDR8fX1LLaMpa9IRUaEMBgPx8fF4e3vfdJtwpaamEhwczOnTp/Hx8XF0ONWG3Ff7kPtqH3Jf7aM876tSirS0NIKCgtDpSh+FIU80KiGdTkf9+vUdHYZD+fj4yD8wdiD31T7kvtqH3Ff7KK/7er0nGSYyGFQIIYQQdiOJhhBCCCHsRhINUam4uroyffp0XF1dHR1KtSL31T7kvtqH3Ff7cNR9lcGgQgghhLAbeaIhhBBCCLuRREMIIYQQdiOJhhBCCCHsRhINUWUcOHAAJyenm36NkfKSl5fHm2++SaNGjXB1dSU0NJS3337b0WFVeQsWLKB169Z4enoSGhrKc889R2ZmpqPDqjJ27tzJiBEjCA8PR9M0Xn755WLL7d27l8jISNzd3WnYsCGzZ8+u4EirHmvu7Y8//sjAgQMJDAzE19eXXr16sXHjRpvalQW7RJUxefJkAgICHB1GtfHoo4+yadMmpk+fTnh4OLGxsSQmJjo6rCptyZIljBo1iueee47+/ftz+PBhpk6dSkpKCvPmzXN0eFXCpk2b2Lp1Kz179uTChQvFlklKSuK2226jc+fOLF++nN27dzN58mR8fX159NFHKzjiqsOae/vhhx8SERHBnDlz8PLyYv78+dx6661s376dNm3a3FjDSogqYOnSpSo0NFS98MILql69eo4Op8pbvny5cnZ2VocOHXJ0KNXKAw88oHr27GlxbPr06apGjRoOiqjqKSgoML8PCQlRL730UpEyr7/+uqpVq5bKyMgwH5swYYKKiIiokBirKmvu7YULF4rUad68uRozZswNtytdJ6LSy83N5ZlnnuGdd96RefXl5Ouvv6Zv3740bdrU0aFUK/n5+UWWdvb19cVgMDgooqrnevtmAKxcuZI777wTDw8P87GhQ4dy7NgxTpw4Yc/wqjRr7u21T411Oh0tW7YkNjb2xtu94ZpClFFmZiY///wzo0ePpkmTJri5ueHp6UmbNm14/fXXSU9PL7behx9+SK1atRg2bFgFR1w13Mh93b59OxEREUycOBEvLy+8vb15+OGHuXz5sgM+QeV0I/d15MiRrF69miVLlpCWlsbOnTv5+OOPmTBhggM+gePd6N/56zl69GiRJNn085EjR2yOuyqw1729VkFBATt27CA8PPzGL3LDz0KEKKPPP/9cAQpQzZo1U0OHDlX9+/dX3t7eClBNmzZViYmJFnXOnTunfHx81ObNm5VSxsfQ0nVi6Ubuq4uLi/Ly8lI9e/ZUv//+u/rvf/+rateure6++27HfIhK6Ebuq1JKffnll8rZ2dlc95FHHlEGg8EBn8DxbvQempT0eN/JyUnNnTvX4lhWVpYC1MKFC8v9c1RG9rq31/rwww+VXq9X+/fvv+FYJdEQFebrr79WY8eOVdHR0RbH4+PjVbt27RSgHnzwQYtzjz/+uHrggQfMP0uiUdSN3FcnJyfl6elp0R+7aNEiBaijR49WSNyV3Y3c19WrVytvb281ffp0tXbtWvX555+rWrVqqWeeeaYiQ680buQeFiaJRsnsdW8L27p1q3Jzc1PTp0+3KVZJNESlsHnzZgUoV1dXlZOTo5RS6sCBA8rFxUXt3r1bXb58WV2+fFk9//zzKigoSF2+fNlcTpSsuPuqlFK1atVSXbt2tSiblJSkAPXLL79UdJhVTkn3tU2bNmr06NEWZb/77jul1+tVfHx8RYdZqZV0Dwsr6cuwVq1a6p133rE4lpCQoAC1YsUKu8Rbldhyb01iY2NVnTp11NChQ21+IidjNESlYJo2lZOTw8WLFwE4fvw4ubm5tG/fHn9/f/z9/fm///s/4uPj8ff356uvvnJkyFVCcfcVoFmzZqgStjmyZsDYza6k+3r06NEiUwDbtGlDQUEBJ0+erMgQK72S7qE1GjduzOHDhy2OmX5u0qRJ+QRYhdlybwGSk5MZOHAgoaGhLFiwAE3TbIpH1tEQlYJppLizszM1atQAoGfPnqxZs8ai3Ndff81vv/3GokWLaNy4cYXHWdUUd18B7rzzTl5//XUuXLhAzZo1Afj777/RNI2WLVs6JNaqpKT7GhwczJ49eyzK7t69G4CQkJCKC7AKKOkeWqN///7Mnj2brKws3N3dAVi8eDERERE0atSo3GOtamy5t7m5udx3331kZmby999/m++vLSTREJXCrFmzALjjjjvMU1hr1qxJnz59LMqtXbsWV1fXIsdF8Yq7rwDjxo3jo48+4u6772bq1KlcuHCB5557jkceeYTQ0FAHRVt1lHRfx44dy/PPP09QUBB9+/bl6NGjvPzyywwePJigoCBHhVsplXQPk5KSWLduHWCcWXH48GEWL16Mp6cnAwYMAGD8+PF89NFHPPDAA0yePJk9e/Ywb948ecp5hS33duLEiaxbt47PP/+c2NhY87RWV1dX2rVrd2MB2dTxIkQ5+O2335SmacrZ2Vnt3bu31LIyGNR617uvhw8fVv369VPu7u4qICBATZgwwWIBJFG80u5rfn6+mjFjhmrWrJlyd3dXoaGh6l//+pdKTk52ULSVU2n3cM2aNebZFIVfISEhFuX27NmjevTooVxdXVWDBg3URx99VIGfoPKy9d6GhIRYdf/LQhIN4VCHDh1S/v7+ClAffviho8OpNuS+2ofcV9vJPbSfynpvJdEQDnPmzBlz9jxlyhRHh1NtyH21D7mvtpN7aD+V+d5KoiEc4uLFi6p58+YKUI899thNu6BReZP7ah9yX20n99B+Kvu9lURDVLi0tDTVuXNnBaj77rtP5efnOzqkakHuq33IfbWd3EP7qQr3VhINUaGys7NV3759FaD69+8vi26VE7mv9iH31XZyD+2nqtxbSTREhcnPz1f33nuvAlRkZKTMcCgncl/tQ+6r7eQe2k9VureyjoaoMLNnz2bp0qWAcY2MiRMnFlvu/fffNy8iJa5P7qt9yH21ndxD+6lK91YSDVFhCm9BbvoLUpxXX33V4X8xqhK5r/Yh99V2cg/tpyrdW02pEjY8EEIIIYSwkeyeJIQQQgi7kURDCCGEEHYjiYYQQggh7EYSDSGEEELYjSQaQgghhLAbSTSEEEIIYTeSaAghhBDCbiTREEIIIYTdSKIhhBBCCLuRREMIQZ8+fdA0jT59+jg6lJtSaGgomqYxatQoR4ciRLmTREMIO9uyZQuapuHp6Ul+fr75eHJyMnq9Hk3TiIuLs6mNkydPommafFk5iClRuPbl7OxMzZo16dmzJ6+++irx8fGODlWICieJhhB2tmnTJgC6dOmCk5OTxXGDwUBwcDANGjRwVHjCjvLz87l48SKbNm3itddeo1mzZqVugCVEdSS7twphZ6ZEo2fPnhbHN2zYUOxxR1i7dq2jQ6gWgoKCWLlypfnnvLw8Tp48yfz581m2bBmpqakMHz6crVu30q5dO3O5kydPOiBaISqGPNEQws42b94MFE0oNm7cWOxxUXU5OzvTsmVL86tdu3bce++9/Prrr0yZMgWA3Nxc3nzzTQdHKkTFkURDCDs6fvw458+fR6/X061bN/Px7OxsduzYAUiicbN47bXXcHd3B+DPP//EYDA4OCIhKoYkGkLYkanbpHXr1nh7e5uPb9++ndzcXPz8/GjZsqWjwjMrbdZJ4YGmX3/9NQCrVq1i0KBB1K1bF1dXVxo2bMiECRM4c+aMVe2tWbOGkSNH0qhRIzw8PPDx8aFVq1Y8++yz1x0w+c8///Dmm2/Sv39/6tevj6urK15eXkRERDBy5Ei2bt1aav1XX33V/HkAUlJSeOONN2jXrh1+fn4Wn7M8eXl50bx5cwDS09O5dOmS+Zy1s06OHz/OU089RatWrfD19cXd3Z1GjRoxatQodu7caVUcJ0+e5Pnnn6dDhw4EBASYB6xGRkby6quvcuLEiRLrpqSk8Pbbb9OjRw9q1aqFi4sLgYGBDBo0iMWLF6OUKrXtpUuXcs8995h/37y9vWnUqBGRkZFMmzaN7du3W/UZRBWjhBDlYv78+Qqw+RUbG1vmtmNjY831R44cWeb6vXv3VoDq3bt3qdeeP3++euGFF0qMvVatWio6OrrEdrKystTw4cNL/fyenp7q119/Lbb+mjVrrLqHL7zwQokxTJ8+3Vzu6NGjKjQ0tEj9+fPnl+n+hYSEKECFhISUWq5r167mNs6dO1ekfmm/d++9955ydnYu8TNrmqamTZtWavvXu0ZJfwaUUmr16tUqICCg1Lp33nmnSktLK1I3Pz9fDR069Lq/bx06dCg1flE1yWBQIYTVPv/8czZv3kzv3r0ZN24cjRs3Jjk5mW+++YZvvvmGpKQkHn/8cbZs2VKkrlKKIUOG8NtvvwEwaNAgHnjgARo1aoROp2P79u188MEHxMXFMWTIEDZt2kTHjh0trpGfn4+npycDBw6kb9++NG3aFB8fH86fP8/Bgwf56KOPOHXqFO+88w6NGzfmscceK/XzDBkyhLNnz/Kvf/2LwYMH4+/vz7FjxwgJCSm/m1Yo9sOHDwPg4uJCQECA1XXfe+89nnvuOcD4dGzChAlERETg5+fHkSNHmD17Nlu2bOGNN96gZs2a/Pvf/y5yjTfeeINXXnkFAD8/PyZOnMgtt9xCQEAAycnJ7N69myVLlpif9BS2adMmBgwYQF5eHnXq1OFf//oXbdq0ISgoiPj4eH744Qe+/fZbVqxYwciRI/npp58s6s+dO5dFixYBxq7CJ554grCwMDw9Pbl48SL79+/njz/+ICUlxep7IqoQR2c6QlQXycnJ6tChQ+ZX4f99b9y40Xz84MGDys3NTQFq8eLFFnUOHTqkcnNzy9x2RT3RANSYMWOUwWAoUu6JJ54wl9m9e3eR85999pkClLOzs/r999+LjePSpUuqRYsWClA9evQocj4pKUldvny5xM+Rk5OjbrvtNvPThfz8/CJlCj/R0Ol0auXKlSVez1rWPNGYPXu2ud2+ffsWW7+437uDBw+an0JMnz692HtfUFCgHnnkEQUoLy8vdenSJYvzu3fvVjqdTgGqcePG6vTp0yXGGRcXZ/Fzbm6u+anPHXfcoTIyMoqtZ/r9BdSff/5pcS4yMlIBqkuXLiovL6/Eti9evFjiOVF1SaIhhJ38+OOPClANGza0OL53714FKHd39xtKKopTUYlGYGCgys7OLvYahw8fNpebNWuWxTmDwaDCwsIUoJ5++ulSY1mxYoVF10ZZme4voHbu3FnkfOFE4/HHHy/z9YtTUqKRl5enjh07pl588UWl1+vN7V6baJWWaDz++OMKUB07diw2yTC5fPmycnV1VYD67LPPLM49+OCD5u6V4pLA0nzzzTcKUG5ubur8+fOllu3cubMC1EMPPWRxPCIiQgHqqaeeKlPbonqQwaBC2ElJ62SYBoh27NgRZ2fnCo/LFkOGDMHV1bXYc02aNMHLywugyIDC6OhoYmJizNcoTa9evczvi+uCKSwnJ4e4uDiio6P5559/+OeffywGJO7bt6/U+g8//HCp58vq1KlTRVYGjYiI4D//+Q8FBQVomsabb77JHXfcYfU1ly1bBsD9999fbLeGiZ+fH61atQIs75vBYOD3338HjIN+C6/fYY1ff/0VgN69e1OrVq1Sy5p+7679fQsMDASMn+XChQtlal9UfTJGQwg7KWmdDNO6Gj169KjwmGzVtGnTUs/7+/uTnp5OWlqaxfHCMyIKT/O9nnPnzhU5lpGRwUcffcT333/PwYMHKSgoKLH+9b7UWrdubXUstvDx8aFv375MmTKFyMhIq+udOnWKpKQkAKZOncrUqVOtqlf4vsXGxpKcnAxQprZNTL93K1euLDXRKal9gJEjR7J+/XqOHz9OeHg49913H7fddhuRkZHUr1+/zDGJqkUSDSHsIC0tjf379wMlP9Ho3r17hcdlKw8Pj1LP63TGh6TXfvmfP3/+htrLzMy0+PnkyZP07duX2NhYq+pnZWWVet7f3/+G4irJtSuDOjk54evrS926da3+ki6sPO5b4WTL9GTB3jFce98ff/xxYmJiePfdd0lJSWH+/PnMnz8fgLCwMO6++26ioqJo1KhRmdsSlZ8kGkKUg9DQUE6dOlXsuRYtWhR7fPDgwRY/T58+nVdffbW8Q6sUCicey5YtIzQ01Kp6tWvXtvj50UcfJTY2Fk3TeOyxxxg+fDjNmjUzr+mgaRoGgwG9Xg9w3XUdTOXKi2ll0PJS+L698sorDB061Kp6np6e5R7DgAEDePfdd2/4Om+99RZjx45l4cKF/PXXX2zdupXMzExiYmKYMWMGH3/8MR999BHjx48vr9BFJSGJhhDC7gpP5bzRRcoOHz5s7o568cUXS1zGu/BCWFVd4ft2o0lMzZo1ze8TEhJuKIb4+Hhyc3NtTqJCQkJ48cUXefHFF8nLy2PHjh38+OOPzJs3j+zsbCZOnEiXLl3KPI5EVG4yGFSIcvDnn39y4MAB86tDhw4AvPTSSxbH7733XsA4CLHw8QMHDjBx4kRHfgS7KvzFYeo6KquDBw+a3w8bNqzEctaukFkVNGrUCF9fX+DG71vDhg3x8/MDYP369WWub/q927lzJ7m5uTcUQ3GcnZ3p3r07H374Id999x1gfAK1ePHicmtDVA6SaAhRDho3bmzeSKtJkyYcOnQIgPvuu89ik60jR44AcNddd1kcb9myZZFuguqkffv25kF/n332GdnZ2WW+Rn5+vvl9RkZGieU+/fTTsgdYSen1eu68807AmMya/lyVhU6nY+DAgQCsW7eOPXv2lKm+qYvPNLbCHm699Vbze5mVUv1IoiFEOdu1axeZmZl4e3vTpk0b8/GLFy+avygKT+G8Geh0Ol588UXAOPV1xIgR5OTklFg+NTWV2bNnWxyLiIgwvy9pL5K5c+fyyy+/2B5wJTJ16lT0ej0Gg4EhQ4aUup9MQUEBCxcuLFLmmWeeQafToZRi+PDhpV7j2nMjR44kODjYfJ3rPRXZuHEj69atszj27bffWiSK1/rzzz/N7xs2bFjq9UXVI2M0hChnpn+Iu3fvbjHYcOPGjSilCA8PJygoyG7tHz9+3KpNwTp37mze5KsijB8/nlWrVrF06VIWLVrE7t27GTduHJ07d8bX15fU1FQOHz7M2rVr+fXXX3Fzc+PJJ58012/Xrh0tW7bkn3/+Yd68eVy+fJlHH32UwMBAzpw5w7fffsvixYvp0aPHDXczVEatWrXi/fff56mnniI6OpqWLVsyduxY+vbtS506dcjOzubkyZNs2bKFxYsXk5CQwIEDByymjbZt25bXXnuNadOmcfToUVq1akVUVJTFEuR79+5lyZIl6PV61qxZY67r6urKjz/+SJ8+fUhPT6dv374MHz6ce+65h4YNG2IwGEhISGDXrl0sXbqUAwcO8PHHH9O7d2/zNR599FGeeeYZ7rvvPrp3705YWBhubm4kJiayatUq5s6dCxg3nivvtU1EJeDQ5cKEqIYGDhyoAPXmm29aHH/66afLdTXKwq5dJtya18yZM831y7KpWmmutzlYbm6umjBhgtI07brxXbuiqlJK7dmzR/n7+5dYp1WrVio+Pt788/Tp04tco/DKoOXF2k3Vrle/tFVdP/vsM+Xh4XHd++bi4qKOHTtW7DXeeust5eTkVGr9kjZV27JliwoODrbqz9aCBQss6lpTx9fXt8Sl6UXVJk80hChHBoPB/L/paxdHMq0UerN1mxTm7OzMJ598woQJE/j8889Zu3YtcXFxpKen4+XlRcOGDenQoQMDBgzgrrvuKlK/bdu27N27l7fffpvff/+d+Ph4vL29CQ8P54EHHiAqKgo3NzcHfDL7GzNmDIMHD2bevHn8+eefHDlyhOTkZFxdXalXrx6tWrXitttu4/7777eYaVLYiy++yNChQ/nkk09YvXo1cXFxZGZm4u/vT/PmzbntttsYMWJEsXW7du3KsWPH+Prrr1m2bBl79uzhwoUL6HQ6atWqRbNmzejduzf3338/TZo0saj7zz//8Ntvv7Fx40ZiYmJITEwkOTkZb29vmjZtSv/+/ZkwYQJ16tQp9/smHE9T6joTzYUQQgghbpAMBhVCCCGE3UiiIYQQQgi7kURDCCGEEHYjiYYQQggh7EYSDSGEEELYjSQaQgghhLAbSTSEEEIIYTeSaAghhBDCbiTREEIIIYTdSKIhhBBCCLuRREMIIYQQdiOJhhBCCCHsRhINIYQQQtiNJBpCCCGEsBtJNIQQQghhN/8P+feCm52rSagAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for i in param_bench:\n", + " k = i\n", + " v = param_bench[k]\n", + " pieces_time(k, v[\"ll\"], v[\"ul\"])\n", + " pieces_accuracy(k, v[\"ll\"], v[\"ul\"])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/benchmarks/spacex result.png b/benchmarks/spacex result.png deleted file mode 100644 index 993964bd..00000000 Binary files a/benchmarks/spacex result.png and /dev/null differ diff --git a/benchmarks/spacex result.svg b/benchmarks/spacex result.svg deleted file mode 100644 index 40744af9..00000000 --- a/benchmarks/spacex result.svg +++ /dev/null @@ -1,1028 +0,0 @@ - - - - - - - - 2023-11-16T15:07:56.495021 - image/svg+xml - - - Matplotlib v3.6.1, https://matplotlib.org/ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/benchmarks/spacex time.png b/benchmarks/spacex time.png deleted file mode 100644 index db983e8e..00000000 Binary files a/benchmarks/spacex time.png and /dev/null differ diff --git a/benchmarks/spacex time.svg b/benchmarks/spacex time.svg deleted file mode 100644 index dbd33579..00000000 --- a/benchmarks/spacex time.svg +++ /dev/null @@ -1,960 +0,0 @@ - - - - - - - - 2023-11-16T15:07:56.164992 - image/svg+xml - - - Matplotlib v3.6.1, https://matplotlib.org/ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/benchmarks/spacex/accuracy.png b/benchmarks/spacex/accuracy.png new file mode 100644 index 00000000..a9a9ee39 Binary files /dev/null and b/benchmarks/spacex/accuracy.png differ diff --git a/benchmarks/spacex/time.png b/benchmarks/spacex/time.png new file mode 100644 index 00000000..304f3beb Binary files /dev/null and b/benchmarks/spacex/time.png differ diff --git a/benchmarks/weekend result.png b/benchmarks/weekend result.png deleted file mode 100644 index 720e299d..00000000 Binary files a/benchmarks/weekend result.png and /dev/null differ diff --git a/benchmarks/weekend result.svg b/benchmarks/weekend result.svg deleted file mode 100644 index 8fc97f4d..00000000 --- a/benchmarks/weekend result.svg +++ /dev/null @@ -1,1247 +0,0 @@ - - - - - - - - 2023-11-16T14:49:37.947369 - image/svg+xml - - - Matplotlib v3.6.1, https://matplotlib.org/ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/benchmarks/weekend time.png b/benchmarks/weekend time.png deleted file mode 100644 index cc50c040..00000000 Binary files a/benchmarks/weekend time.png and /dev/null differ diff --git a/benchmarks/weekend time.svg b/benchmarks/weekend time.svg deleted file mode 100644 index dc186f4e..00000000 --- a/benchmarks/weekend time.svg +++ /dev/null @@ -1,1010 +0,0 @@ - - - - - - - - 2023-11-16T14:49:37.517796 - image/svg+xml - - - Matplotlib v3.6.1, https://matplotlib.org/ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/benchmarks/weekend.jl b/benchmarks/weekend.jl deleted file mode 100644 index 714279b6..00000000 --- a/benchmarks/weekend.jl +++ /dev/null @@ -1,21 +0,0 @@ -using Pkg; Pkg.activate(@__DIR__) -using Dice, Distributions - -precision = 5 -DFiP = DistFix{9+precision, precision} -num_pieces = 128 - -code = @dice begin - - isWeekend = flip(2/7) - hour = if isWeekend - bitblast(DFiP, Normal(5, 4), num_pieces, 0.0, 8.0) - else - bitblast(DFiP, Normal(2, 4), num_pieces, 0.0, 8.0) - end - observe(hour == DFiP(6.0)) - isWeekend -end - -# HMC-estimated ground truth: 1.363409828 -@time pr(code) \ No newline at end of file diff --git a/benchmarks/weekend/accuracy.png b/benchmarks/weekend/accuracy.png new file mode 100644 index 00000000..b5dafef3 Binary files /dev/null and b/benchmarks/weekend/accuracy.png differ diff --git a/benchmarks/weekend/time.png b/benchmarks/weekend/time.png new file mode 100644 index 00000000..4f49a55c Binary files /dev/null and b/benchmarks/weekend/time.png differ