-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
179 lines (148 loc) · 5.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from __future__ import division
"""
Creates a ResNeXt Model as defined in:
Xie, S., Girshick, R., Dollar, P., Tu, Z., & He, K. (2016).
Aggregated residual transformations for deep neural networks.
arXiv preprint arXiv:1611.05431.
import from https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua
"""
import math
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
import torch
from padding_same_conv import Sobel_Conv
__all__ = ['resnext50', 'resnext101', 'resnext152']
class Bottleneck(nn.Module):
"""
RexNeXt bottleneck type C
"""
expansion = 4
def __init__(self, inplanes, planes, baseWidth, cardinality, stride=1, downsample=None):
""" Constructor
Args:
inplanes: input channel dimensionality
planes: output channel dimensionality
baseWidth: base width.
cardinality: num of convolution groups.
stride: conv stride. Replaces pooling layer.
"""
super(Bottleneck, self).__init__()
D = int(math.floor(planes * (baseWidth / 64)))
C = cardinality
self.conv1 = nn.Conv2d(inplanes, D*C, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(D*C)
self.conv2 = nn.Conv2d(D*C, D*C, kernel_size=3, stride=stride, padding=1, groups=C, bias=False)
self.bn2 = nn.BatchNorm2d(D*C)
self.conv3 = nn.Conv2d(D*C, planes * 4, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNeXt(nn.Module):
"""
ResNext optimized for the ImageNet dataset, as specified in
https://arxiv.org/pdf/1611.05431.pdf
"""
def __init__(self, baseWidth, cardinality, layers, num_classes):
""" Constructor
Args:
baseWidth: baseWidth for ResNeXt.
cardinality: number of convolution groups.
layers: config of layers, e.g., [3, 4, 6, 3]
num_classes: number of classes
"""
super(ResNeXt, self).__init__()
block = Bottleneck
self.cardinality = cardinality
self.baseWidth = baseWidth
self.num_classes = num_classes
self.inplanes = 64
self.output_size = 64
# add sobel filters
self.sobel_conv = Sobel_Conv()
self.conv1 = nn.Conv2d(3, 64, 7, 2, 3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], 2)
self.layer3 = self._make_layer(block, 256, layers[2], 2)
self.layer4 = self._make_layer(block, 512, layers[3], 2)
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
""" Stack n bottleneck modules where n is inferred from the depth of the network.
Args:
block: block type used to construct ResNext
planes: number of output channels (need to multiply by block.expansion)
blocks: number of blocks to be built
stride: factor to reduce the spatial dimensionality in the first bottleneck of the block.
Returns: a Module consisting of n sequential bottlenecks.
"""
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, self.baseWidth, self.cardinality, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, self.baseWidth, self.cardinality))
return nn.Sequential(*layers)
def forward(self, x):
x = self.sobel_conv(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnext50(baseWidth, cardinality):
"""
Construct ResNeXt-50.
"""
model = ResNeXt(baseWidth, cardinality, [3, 4, 6, 3], 1000)
return model
def resnext101(baseWidth, cardinality):
"""
Construct ResNeXt-101.
"""
model = ResNeXt(baseWidth, cardinality, [3, 4, 23, 3], 1000)
return model
def resnext152(baseWidth, cardinality):
"""
Construct ResNeXt-152.
"""
model = ResNeXt(baseWidth, cardinality, [3, 8, 36, 3], 1000)
return model