-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathverify.py
119 lines (105 loc) · 5.23 KB
/
verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""Implementation of evaluate attack result."""
import os
import torch
from torch.autograd import Variable as V
from torch import nn
from torchvision import transforms as T
from Normalize import Normalize, TfNormalize
from loader import ImageNet
from torch.utils.data import DataLoader
import pretrainedmodels
batch_size = 10
input_csv = './dataset/images.csv'
input_dir = './dataset/images'
adv_dir = './incv3_pgn_outputs'
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def get_model(net_name, model_dir):
"""Load converted model"""
model_path = os.path.join(model_dir, net_name + '.npy')
if net_name == 'inception_v3':
model = torch.nn.Sequential(Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
pretrainedmodels.inceptionv3(num_classes=1000, pretrained='imagenet').eval().cuda())
elif net_name == 'inception_v4':
model = torch.nn.Sequential(Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
pretrainedmodels.inceptionv4(num_classes=1000, pretrained='imagenet').eval().cuda())
elif net_name == 'resnet_v2_50':
model = torch.nn.Sequential(Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
pretrainedmodels.resnet50(num_classes=1000, pretrained='imagenet').eval().cuda())
elif net_name == 'resnet_v2_101':
model = torch.nn.Sequential(Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
pretrainedmodels.resnet101(num_classes=1000, pretrained='imagenet').eval().cuda())
elif net_name == 'resnet_v2_152':
model = torch.nn.Sequential(Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
pretrainedmodels.resnet152(num_classes=1000, pretrained='imagenet').eval().cuda())
elif net_name == 'inc_res_v2':
model = torch.nn.Sequential(Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
pretrainedmodels.inceptionresnetv2(num_classes=1000, pretrained='imagenet').eval().cuda())
elif net_name == 'tf2torch_adv_inception_v3':
from torch_nets import tf_adv_inception_v3
net = tf_adv_inception_v3
model = nn.Sequential(
# Images for inception classifier are normalized to be in [-1, 1] interval.
TfNormalize('tensorflow'),
net.KitModel(model_path).eval().cuda(),)
elif net_name == 'tf2torch_ens3_adv_inc_v3':
from torch_nets import tf_ens3_adv_inc_v3
net = tf_ens3_adv_inc_v3
model = nn.Sequential(
# Images for inception classifier are normalized to be in [-1, 1] interval.
TfNormalize('tensorflow'),
net.KitModel(model_path).eval().cuda(),)
elif net_name == 'tf2torch_ens4_adv_inc_v3':
from torch_nets import tf_ens4_adv_inc_v3
net = tf_ens4_adv_inc_v3
model = nn.Sequential(
# Images for inception classifier are normalized to be in [-1, 1] interval.
TfNormalize('tensorflow'),
net.KitModel(model_path).eval().cuda(),)
elif net_name == 'tf2torch_ens_adv_inc_res_v2':
from torch_nets import tf_ens_adv_inc_res_v2
net = tf_ens_adv_inc_res_v2
model = nn.Sequential(
# Images for inception classifier are normalized to be in [-1, 1] interval.
TfNormalize('tensorflow'),
net.KitModel(model_path).eval().cuda(),)
else:
print('Wrong model name!')
return model
def verify(model_name, path):
img_size = 299
model = get_model(model_name, path)
X = ImageNet(adv_dir, input_csv, T.Compose([T.ToTensor(), T.Resize(img_size)]))
data_loader = DataLoader(X, batch_size=batch_size, shuffle=False, pin_memory=True, num_workers=8)
sum = 0
for images, _, gt_cpu in data_loader:
gt = gt_cpu.cuda()
images = images.cuda()
with torch.no_grad():
sum += (model(images).argmax(1) != (gt)).detach().sum().cpu()
print(model_name + ' acu = {:.2%}'.format(sum / 1000.0))
def verify_ensmodels(model_name, path):
img_size = 299
model = get_model(model_name, path)
X = ImageNet(adv_dir, input_csv, T.Compose([T.ToTensor(), T.Resize(img_size)]))
data_loader = DataLoader(X, batch_size=batch_size, shuffle=False, pin_memory=True, num_workers=8)
sum = 0
for images, _, gt_cpu in data_loader:
gt = gt_cpu.cuda()
images = images.cuda()
with torch.no_grad():
# print(sum)
sum += (model(images)[0].argmax(1) != (gt+1)).detach().sum().cpu()
print(model_name + ' acu = {:.2%}'.format(sum / 1000.0))
def main():
model_names = ['inception_v3', 'inception_v4']
model_names_ens = ['tf2torch_ens3_adv_inc_v3', 'tf2torch_ens4_adv_inc_v3'] # You can download the pretrained ens_models from https://github.com/ylhz/tf_to_pytorch_model
models_path = './models/'
for model_name in model_names:
verify(model_name, models_path)
print("===================================================")
for model_name in model_names_ens: # When we validate the ens model, we should change gt to gt+1 as the ground truth label.
verify_ensmodels(model_name, models_path)
print("===================================================")
if __name__ == '__main__':
print(adv_dir)
main()