forked from yangjiaolong/Go-ICP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjly_icp3d.hpp
298 lines (236 loc) · 7.85 KB
/
jly_icp3d.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/********************************************************************
An ICP Implementation for 3D Pointset Registration
Last modified: Feb 13, 2014
"Go-ICP: Solving 3D Registration Efficiently and Globally Optimally"
Jiaolong Yang, Hongdong Li, Yunde Jia
International Conference on Computer Vision (ICCV), 2013
Copyright (C) 2013 Jiaolong Yang (BIT and ANU)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************/
#ifndef JLY_ICP3D_HPP
#define JLY_ICP3D_HPP
#include "matrix.h"
#include "nanoflann.hpp"
using namespace nanoflann;
// A custom data set class to use nanoflann
template <typename T>
struct PointCloud
{
struct Point
{
T x,y,z;
};
std::vector<Point> pts;
// Must return the number of data points
inline size_t kdtree_get_point_count() const { return pts.size(); }
// Returns the distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class:
inline T kdtree_distance(const T *p1, const size_t idx_p2,size_t size) const
{
const T d0=p1[0]-pts[idx_p2].x;
const T d1=p1[1]-pts[idx_p2].y;
const T d2=p1[2]-pts[idx_p2].z;
return d0*d0+d1*d1+d2*d2;
}
// Returns the dim'th component of the idx'th point in the class:
// Since this is inlined and the "dim" argument is typically an immediate value, the
// "if/else's" are actually solved at compile time.
inline T kdtree_get_pt(const size_t idx, int dim) const
{
if (dim==0) return pts[idx].x;
else if (dim==1) return pts[idx].y;
else return pts[idx].z;
}
// Optional bounding-box computation: return false to default to a standard bbox computation loop.
// Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again.
// Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds)
template <class BBOX>
bool kdtree_get_bbox(BBOX &bb) const { return false; }
};
struct POINTREF
{
double dis;
int id_data;
int id_model;
};
template <typename T>
class ICP3D
{
public:
ICP3D();
~ICP3D();
size_t max_iter_def;
T err_diff_def;
T trim_fraction;
bool do_trim;
void Build(T * model, size_t n);
T Run(T * data, size_t n, Matrix & R, Matrix & t);
T Run(T * data, size_t n, Matrix & R, Matrix & t, size_t max_iter);
T Run(T * data, size_t n, Matrix & R, Matrix & t, T err_diff);
T Run(T * data, size_t n, Matrix & R, Matrix & t, size_t max_iter, T err_diff);
private:
static int cmp(const void * a, const void * b);
PointCloud<T> model_;
KDTreeSingleIndexAdaptor<
L2_Simple_Adaptor<T, PointCloud<T> > ,
PointCloud<T>,
3 /* dim */
> * kdtree;
};
template <typename T>
ICP3D<T>::ICP3D()
{
max_iter_def = 10000;
err_diff_def = 0.000001;
trim_fraction = 0;
do_trim = true;
kdtree = NULL;
}
template <typename T>
ICP3D<T>::~ICP3D()
{
if(kdtree != NULL)
delete(kdtree);
}
template <typename T>
void ICP3D<T>::Build(T * model, size_t n)
{
if(kdtree != NULL)
delete(kdtree);
model_.pts.resize(n);
size_t i, idx;
for(i = 0; i < n; i++)
{
idx = i*3;
model_.pts[i].x = model[idx];
model_.pts[i].y = model[idx+1];
model_.pts[i].z = model[idx+2];
}
kdtree = new KDTreeSingleIndexAdaptor<
L2_Simple_Adaptor<T, PointCloud<T> > ,
PointCloud<T>,
3 /* dim */
>(3 /*dim*/, model_, KDTreeSingleIndexAdaptorParams(10 /* max leaf */) );
kdtree->buildIndex();
}
template <typename T>
int ICP3D<T>::cmp(const void * a, const void * b)
{
return ((struct POINTREF*)a)->dis > ((struct POINTREF*)b)->dis ? 1:-1;
}
template <typename T>
T ICP3D<T>::Run(T * data, size_t n, Matrix & R, Matrix & t)
{
return Run(data, n, R, t, max_iter_def, err_diff_def);
}
template <typename T>
T ICP3D<T>::Run(T * data, size_t n, Matrix & R, Matrix & t, size_t max_iter)
{
return Run(data, n, R, t, max_iter, err_diff_def);
}
template <typename T>
T ICP3D<T>::Run(T * data, size_t n, Matrix & R, Matrix & t, T err_diff)
{
return Run(data, n, R, t, max_iter_def, err_diff);
}
template <typename T>
T ICP3D<T>::Run(T * data, size_t n, Matrix & R, Matrix & t, size_t max_iter, T err_diff)
{
size_t num;
T query[3];
std::vector<size_t> ret_index(1);
std::vector<T> out_dist_sqr(1);
if(do_trim)
{
num = (int)(n*(1-trim_fraction));
}
else
{
num = n;
}
struct POINTREF * points = (struct POINTREF *)malloc(sizeof(struct POINTREF)*n);
// init matrix for point correspondences
Matrix p_m(num,3); // model
Matrix p_d(num,3); // data
// init mean
Matrix mu_m(1,3);
Matrix mu_d(1,3);
size_t iter, idx, i;
T err = -1, err_new;
for(iter = 0; iter < max_iter; iter++)
{
T r00 = R.val[0][0]; T r01 = R.val[0][1]; T r02 = R.val[0][2];
T r10 = R.val[1][0]; T r11 = R.val[1][1]; T r12 = R.val[1][2];
T r20 = R.val[2][0]; T r21 = R.val[2][1]; T r22 = R.val[2][2];
T t0 = t.val[0][0]; T t1 = t.val[1][0]; T t2 = t.val[2][0];
err_new = 0;
for(i = 0; i < n; i++)
{
idx = i*3;
//transform point according to R and T
query[0] = r00*data[idx+0] + r01*data[idx+1] + r02*data[idx+2] + t0;
query[1] = r10*data[idx+0] + r11*data[idx+1] + r12*data[idx+2] + t1;
query[2] = r20*data[idx+0] + r21*data[idx+1] + r22*data[idx+2] + t2;
//search nearest neighbor
kdtree->knnSearch(&query[0], 1, &ret_index[0], &out_dist_sqr[0]);
points[i].dis = out_dist_sqr[0];
points[i].id_data = i;
points[i].id_model = ret_index[0];
}
if(do_trim)
{
qsort(points, n, sizeof(struct POINTREF), cmp);
}
for(i = 0; i < num; i++)
{
// set model point
p_m.val[i][0] = model_.pts[points[i].id_model].x; mu_m.val[0][0] += p_m.val[i][0];
p_m.val[i][1] = model_.pts[points[i].id_model].y; mu_m.val[0][1] += p_m.val[i][1];
p_m.val[i][2] = model_.pts[points[i].id_model].z; mu_m.val[0][2] += p_m.val[i][2];
idx = points[i].id_data*3;
// set query point
p_d.val[i][0] = r00*data[idx+0] + r01*data[idx+1] + r02*data[idx+2] + t0; mu_d.val[0][0] += p_d.val[i][0];
p_d.val[i][1] = r10*data[idx+0] + r11*data[idx+1] + r12*data[idx+2] + t1; mu_d.val[0][1] += p_d.val[i][1];
p_d.val[i][2] = r20*data[idx+0] + r21*data[idx+1] + r22*data[idx+2] + t2; mu_d.val[0][2] += p_d.val[i][2];
err_new += points[i].dis;
}
if(err > 0 && err - err_new < err_diff*num)
break;
err = err_new;
// subtract mean
mu_m = mu_m/(T)n;
mu_d = mu_d/(T)n;
Matrix q_m = p_m - Matrix::ones(num,1)*mu_m;
Matrix q_t = p_d - Matrix::ones(num,1)*mu_d;
// compute relative rotation matrix R and translation vector T
Matrix H = ~q_t*q_m;
Matrix U,W,V;
H.svd(U,W,V);
Matrix R_ = V*~U;
//There are some problems with Matrix::det(), so it is not used
//R11*(R22*R33-R23*R32)
T a = R_.val[0][0]*(R_.val[1][1]* R_.val[2][2] - R_.val[1][2]*R_.val[2][1]);
//R12*(R21*R33-R23*R31)
T b = -R_.val[0][1]*(R_.val[1][0]* R_.val[2][2] - R_.val[1][2]*R_.val[2][0]);
//R13*(R21*R32-R22*R31)
T c = R_.val[0][2]*(R_.val[1][0]* R_.val[2][1] - R_.val[1][1]*R_.val[2][0]);
T det = a+b+c;
Matrix tmp = Matrix::eye(3);
tmp.val[2][2] = det;
R_ = V*tmp*~U;
Matrix t_ = ~mu_m - R_*~mu_d;
// compose transformation
R = R_*R;
t = R_*t + t_;
}
return err_new;
}
#endif