forked from yangjiaolong/Go-ICP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix.cpp
858 lines (774 loc) · 32 KB
/
matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
/*
Copyright 2011. All rights reserved.
Institute of Measurement and Control Systems
Karlsruhe Institute of Technology, Germany
Authors: Andreas Geiger
matrix is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or any later version.
matrix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
matrix; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "matrix.h"
#include <math.h>
#define SWAP(a,b) {temp=a;a=b;b=temp;}
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
static FLOAT sqrarg;
#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 : sqrarg*sqrarg)
static FLOAT maxarg1,maxarg2;
#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1) > (maxarg2) ? (maxarg1) : (maxarg2))
static int32_t iminarg1,iminarg2;
#define IMIN(a,b) (iminarg1=(a),iminarg2=(b),(iminarg1) < (iminarg2) ? (iminarg1) : (iminarg2))
using namespace std;
Matrix::Matrix () {
m = 0;
n = 0;
val = 0;
}
Matrix::Matrix (const int32_t m_,const int32_t n_) {
allocateMemory(m_,n_);
}
Matrix::Matrix (const int32_t m_,const int32_t n_,const FLOAT* val_) {
allocateMemory(m_,n_);
int32_t k=0;
for (int32_t i=0; i<m_; i++)
for (int32_t j=0; j<n_; j++)
val[i][j] = val_[k++];
}
Matrix::Matrix (const Matrix &M) {
allocateMemory(M.m,M.n);
for (int32_t i=0; i<M.m; i++)
memcpy(val[i],M.val[i],M.n*sizeof(FLOAT));
}
Matrix::~Matrix () {
releaseMemory();
}
Matrix& Matrix::operator= (const Matrix &M) {
if (this!=&M) {
if (M.m!=m || M.n!=n) {
releaseMemory();
allocateMemory(M.m,M.n);
}
if (M.n>0)
for (int32_t i=0; i<M.m; i++)
memcpy(val[i],M.val[i],M.n*sizeof(FLOAT));
}
return *this;
}
void Matrix::getData(FLOAT* val_,int32_t i1,int32_t j1,int32_t i2,int32_t j2) {
if (i2==-1) i2 = m-1;
if (j2==-1) j2 = n-1;
int32_t k=0;
for (int32_t i=i1; i<=i2; i++)
for (int32_t j=j1; j<=j2; j++)
val_[k++] = val[i][j];
}
Matrix Matrix::getMat(int32_t i1,int32_t j1,int32_t i2,int32_t j2) {
if (i2==-1) i2 = m-1;
if (j2==-1) j2 = n-1;
if (i1<0 || i2>=m || j1<0 || j2>=n || i2<i1 || j2<j1) {
cerr << "ERROR: Cannot get submatrix [" << i1 << ".." << i2 <<
"] x [" << j1 << ".." << j2 << "]" <<
" of a (" << m << "x" << n << ") matrix." << endl;
exit(0);
}
Matrix M(i2-i1+1,j2-j1+1);
for (int32_t i=0; i<M.m; i++)
for (int32_t j=0; j<M.n; j++)
M.val[i][j] = val[i1+i][j1+j];
return M;
}
void Matrix::setMat(const Matrix &M,const int32_t i1,const int32_t j1) {
if (i1<0 || j1<0 || i1+M.m>m || j1+M.n>n) {
cerr << "ERROR: Cannot set submatrix [" << i1 << ".." << i1+M.m-1 <<
"] x [" << j1 << ".." << j1+M.n-1 << "]" <<
" of a (" << m << "x" << n << ") matrix." << endl;
exit(0);
}
for (int32_t i=0; i<M.m; i++)
for (int32_t j=0; j<M.n; j++)
val[i1+i][j1+j] = M.val[i][j];
}
void Matrix::setVal(FLOAT s,int32_t i1,int32_t j1,int32_t i2,int32_t j2) {
if (i2==-1) i2 = m-1;
if (j2==-1) j2 = n-1;
if (i2<i1 || j2<j1) {
cerr << "ERROR in setVal: Indices must be ordered (i1<=i2, j1<=j2)." << endl;
exit(0);
}
for (int32_t i=i1; i<=i2; i++)
for (int32_t j=j1; j<=j2; j++)
val[i][j] = s;
}
void Matrix::setDiag(FLOAT s,int32_t i1,int32_t i2) {
if (i2==-1) i2 = min(m-1,n-1);
for (int32_t i=i1; i<=i2; i++)
val[i][i] = s;
}
void Matrix::zero() {
setVal(0);
}
Matrix Matrix::extractCols (vector<int> idx) {
Matrix M(m,idx.size());
for (int32_t j=0; j<M.n; j++)
if (idx[j]<n)
for (int32_t i=0; i<m; i++)
M.val[i][j] = val[i][idx[j]];
return M;
}
Matrix Matrix::eye (const int32_t m) {
Matrix M(m,m);
for (int32_t i=0; i<m; i++)
M.val[i][i] = 1;
return M;
}
void Matrix::eye () {
for (int32_t i=0; i<m; i++)
for (int32_t j=0; j<n; j++)
val[i][j] = 0;
for (int32_t i=0; i<min(m,n); i++)
val[i][i] = 1;
}
Matrix Matrix::ones (const int32_t m,const int32_t n) {
Matrix M(m,n);
for (int32_t i=0; i<m; i++)
for (int32_t j=0; j<n; j++)
M.val[i][j] = 1;
return M;
}
Matrix Matrix::diag (const Matrix &M) {
if (M.m>1 && M.n==1) {
Matrix D(M.m,M.m);
for (int32_t i=0; i<M.m; i++)
D.val[i][i] = M.val[i][0];
return D;
} else if (M.m==1 && M.n>1) {
Matrix D(M.n,M.n);
for (int32_t i=0; i<M.n; i++)
D.val[i][i] = M.val[0][i];
return D;
}
cout << "ERROR: Trying to create diagonal matrix from vector of size (" << M.m << "x" << M.n << ")" << endl;
exit(0);
}
Matrix Matrix::reshape(const Matrix &M,int32_t m_,int32_t n_) {
if (M.m*M.n != m_*n_) {
cerr << "ERROR: Trying to reshape a matrix of size (" << M.m << "x" << M.n <<
") to size (" << m_ << "x" << n_ << ")" << endl;
exit(0);
}
Matrix M2(m_,n_);
for (int32_t k=0; k<m_*n_; k++) {
int32_t i1 = k/M.n;
int32_t j1 = k%M.n;
int32_t i2 = k/n_;
int32_t j2 = k%n_;
M2.val[i2][j2] = M.val[i1][j1];
}
return M2;
}
Matrix Matrix::rotMatX (const FLOAT &angle) {
FLOAT s = sin(angle);
FLOAT c = cos(angle);
Matrix R(3,3);
R.val[0][0] = +1;
R.val[1][1] = +c;
R.val[1][2] = -s;
R.val[2][1] = +s;
R.val[2][2] = +c;
return R;
}
Matrix Matrix::rotMatY (const FLOAT &angle) {
FLOAT s = sin(angle);
FLOAT c = cos(angle);
Matrix R(3,3);
R.val[0][0] = +c;
R.val[0][2] = +s;
R.val[1][1] = +1;
R.val[2][0] = -s;
R.val[2][2] = +c;
return R;
}
Matrix Matrix::rotMatZ (const FLOAT &angle) {
FLOAT s = sin(angle);
FLOAT c = cos(angle);
Matrix R(3,3);
R.val[0][0] = +c;
R.val[0][1] = -s;
R.val[1][0] = +s;
R.val[1][1] = +c;
R.val[2][2] = +1;
return R;
}
Matrix Matrix::operator+ (const Matrix &M) {
const Matrix &A = *this;
const Matrix &B = M;
if (A.m!=B.m || A.n!=B.n) {
cerr << "ERROR: Trying to add matrices of size (" << A.m << "x" << A.n <<
") and (" << B.m << "x" << B.n << ")" << endl;
exit(0);
}
Matrix C(A.m,A.n);
for (int32_t i=0; i<m; i++)
for (int32_t j=0; j<n; j++)
C.val[i][j] = A.val[i][j]+B.val[i][j];
return C;
}
Matrix Matrix::operator- (const Matrix &M) {
const Matrix &A = *this;
const Matrix &B = M;
if (A.m!=B.m || A.n!=B.n) {
cerr << "ERROR: Trying to subtract matrices of size (" << A.m << "x" << A.n <<
") and (" << B.m << "x" << B.n << ")" << endl;
exit(0);
}
Matrix C(A.m,A.n);
for (int32_t i=0; i<m; i++)
for (int32_t j=0; j<n; j++)
C.val[i][j] = A.val[i][j]-B.val[i][j];
return C;
}
Matrix Matrix::operator* (const Matrix &M) {
const Matrix &A = *this;
const Matrix &B = M;
if (A.n!=B.m) {
cerr << "ERROR: Trying to multiply matrices of size (" << A.m << "x" << A.n <<
") and (" << B.m << "x" << B.n << ")" << endl;
exit(0);
}
Matrix C(A.m,B.n);
for (int32_t i=0; i<A.m; i++)
for (int32_t j=0; j<B.n; j++)
for (int32_t k=0; k<A.n; k++)
C.val[i][j] += A.val[i][k]*B.val[k][j];
return C;
}
Matrix Matrix::operator* (const FLOAT &s) {
Matrix C(m,n);
for (int32_t i=0; i<m; i++)
for (int32_t j=0; j<n; j++)
C.val[i][j] = val[i][j]*s;
return C;
}
Matrix Matrix::operator/ (const Matrix &M) {
const Matrix &A = *this;
const Matrix &B = M;
if (A.m==B.m && A.n==B.n) {
Matrix C(A.m,A.n);
for (int32_t i=0; i<A.m; i++)
for (int32_t j=0; j<A.n; j++)
if (B.val[i][j]!=0)
C.val[i][j] = A.val[i][j]/B.val[i][j];
return C;
} else if (A.m==B.m && B.n==1) {
Matrix C(A.m,A.n);
for (int32_t i=0; i<A.m; i++)
for (int32_t j=0; j<A.n; j++)
if (B.val[i][0]!=0)
C.val[i][j] = A.val[i][j]/B.val[i][0];
return C;
} else if (A.n==B.n && B.m==1) {
Matrix C(A.m,A.n);
for (int32_t i=0; i<A.m; i++)
for (int32_t j=0; j<A.n; j++)
if (B.val[0][j]!=0)
C.val[i][j] = A.val[i][j]/B.val[0][j];
return C;
} else {
cerr << "ERROR: Trying to divide matrices of size (" << A.m << "x" << A.n <<
") and (" << B.m << "x" << B.n << ")" << endl;
exit(0);
}
}
Matrix Matrix::operator/ (const FLOAT &s) {
if (fabs(s)<1e-20) {
cerr << "ERROR: Trying to divide by zero!" << endl;
exit(0);
}
Matrix C(m,n);
for (int32_t i=0; i<m; i++)
for (int32_t j=0; j<n; j++)
C.val[i][j] = val[i][j]/s;
return C;
}
Matrix Matrix::operator- () {
Matrix C(m,n);
for (int32_t i=0; i<m; i++)
for (int32_t j=0; j<n; j++)
C.val[i][j] = -val[i][j];
return C;
}
Matrix Matrix::operator~ () {
Matrix C(n,m);
for (int32_t i=0; i<m; i++)
for (int32_t j=0; j<n; j++)
C.val[j][i] = val[i][j];
return C;
}
FLOAT Matrix::l2norm () {
FLOAT norm = 0;
for (int32_t i=0; i<m; i++)
for (int32_t j=0; j<n; j++)
norm += val[i][j]*val[i][j];
return sqrt(norm);
}
FLOAT Matrix::mean () {
FLOAT mean = 0;
for (int32_t i=0; i<m; i++)
for (int32_t j=0; j<n; j++)
mean += val[i][j];
return mean/(FLOAT)(m*n);
}
Matrix Matrix::cross (const Matrix &a, const Matrix &b) {
if (a.m!=3 || a.n!=1 || b.m!=3 || b.n!=1) {
cerr << "ERROR: Cross product vectors must be of size (3x1)" << endl;
exit(0);
}
Matrix c(3,1);
c.val[0][0] = a.val[1][0]*b.val[2][0]-a.val[2][0]*b.val[1][0];
c.val[1][0] = a.val[2][0]*b.val[0][0]-a.val[0][0]*b.val[2][0];
c.val[2][0] = a.val[0][0]*b.val[1][0]-a.val[1][0]*b.val[0][0];
return c;
}
Matrix Matrix::inv (const Matrix &M) {
if (M.m!=M.n) {
cerr << "ERROR: Trying to invert matrix of size (" << M.m << "x" << M.n << ")" << endl;
exit(0);
}
Matrix A(M);
Matrix B = eye(M.m);
B.solve(A);
return B;
}
bool Matrix::inv () {
if (m!=n) {
cerr << "ERROR: Trying to invert matrix of size (" << m << "x" << n << ")" << endl;
exit(0);
}
Matrix A(*this);
eye();
solve(A);
return true;
}
FLOAT Matrix::det () {
if (m != n) {
cerr << "ERROR: Trying to compute determinant of a matrix of size (" << m << "x" << n << ")" << endl;
exit(0);
}
Matrix A(*this);
int32_t *idx = (int32_t*)malloc(m*sizeof(int32_t));
FLOAT d;
A.lu(idx,d);
for( int32_t i=0; i<m; i++)
d *= A.val[i][i];
free(idx);
}
bool Matrix::solve (const Matrix &M, FLOAT eps) {
// substitutes
const Matrix &A = M;
Matrix &B = *this;
if (A.m != A.n || A.m != B.m || A.m<1 || B.n<1) {
cerr << "ERROR: Trying to eliminate matrices of size (" << A.m << "x" << A.n <<
") and (" << B.m << "x" << B.n << ")" << endl;
exit(0);
}
// index vectors for bookkeeping on the pivoting
int32_t* indxc = new int32_t[m];
int32_t* indxr = new int32_t[m];
int32_t* ipiv = new int32_t[m];
// loop variables
int32_t i, icol, irow, j, k, l, ll;
FLOAT big, dum, pivinv, temp;
// initialize pivots to zero
for (j=0;j<m;j++) ipiv[j]=0;
// main loop over the columns to be reduced
for (i=0;i<m;i++) {
big=0.0;
// search for a pivot element
for (j=0;j<m;j++)
if (ipiv[j]!=1)
for (k=0;k<m;k++)
if (ipiv[k]==0)
if (fabs(A.val[j][k])>=big) {
big=fabs(A.val[j][k]);
irow=j;
icol=k;
}
++(ipiv[icol]);
// We now have the pivot element, so we interchange rows, if needed, to put the pivot
// element on the diagonal. The columns are not physically interchanged, only relabeled.
if (irow != icol) {
for (l=0;l<m;l++) SWAP(A.val[irow][l], A.val[icol][l])
for (l=0;l<n;l++) SWAP(B.val[irow][l], B.val[icol][l])
}
indxr[i]=irow; // We are now ready to divide the pivot row by the
indxc[i]=icol; // pivot element, located at irow and icol.
// check for singularity
if (fabs(A.val[icol][icol]) < eps) {
delete[] indxc;
delete[] indxr;
delete[] ipiv;
return false;
}
pivinv=1.0/A.val[icol][icol];
A.val[icol][icol]=1.0;
for (l=0;l<m;l++) A.val[icol][l] *= pivinv;
for (l=0;l<n;l++) B.val[icol][l] *= pivinv;
// Next, we reduce the rows except for the pivot one
for (ll=0;ll<m;ll++)
if (ll!=icol) {
dum = A.val[ll][icol];
A.val[ll][icol] = 0.0;
for (l=0;l<m;l++) A.val[ll][l] -= A.val[icol][l]*dum;
for (l=0;l<n;l++) B.val[ll][l] -= B.val[icol][l]*dum;
}
}
// This is the end of the main loop over columns of the reduction. It only remains to unscramble
// the solution in view of the column interchanges. We do this by interchanging pairs of
// columns in the reverse order that the permutation was built up.
for (l=m-1;l>=0;l--) {
if (indxr[l]!=indxc[l])
for (k=0;k<m;k++)
SWAP(A.val[k][indxr[l]], A.val[k][indxc[l]])
}
// success
delete[] indxc;
delete[] indxr;
delete[] ipiv;
return true;
}
// Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a rowwise
// permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above;
// indx[1..n] is an output vector that records the row permutation effected by the partial
// pivoting; d is output as ±1 depending on whether the number of row interchanges was even
// or odd, respectively. This routine is used in combination with lubksb to solve linear equations
// or invert a matrix.
bool Matrix::lu(int32_t *idx, FLOAT &d, FLOAT eps) {
if (m != n) {
cerr << "ERROR: Trying to LU decompose a matrix of size (" << m << "x" << n << ")" << endl;
exit(0);
}
int32_t i,imax,j,k;
FLOAT big,dum,sum,temp;
FLOAT* vv = (FLOAT*)malloc(n*sizeof(FLOAT)); // vv stores the implicit scaling of each row.
d = 1.0;
for (i=0; i<n; i++) { // Loop over rows to get the implicit scaling information.
big = 0.0;
for (j=0; j<n; j++)
if ((temp=fabs(val[i][j]))>big)
big = temp;
if (big == 0.0) { // No nonzero largest element.
free(vv);
return false;
}
vv[i] = 1.0/big; // Save the scaling.
}
for (j=0; j<n; j++) { // This is the loop over columns of Crout’s method.
for (i=0; i<j; i++) { // This is equation (2.3.12) except for i = j.
sum = val[i][j];
for (k=0; k<i; k++)
sum -= val[i][k]*val[k][j];
val[i][j] = sum;
}
big = 0.0; // Initialize the search for largest pivot element.
for (i=j; i<n; i++) {
sum = val[i][j];
for (k=0; k<j; k++)
sum -= val[i][k]*val[k][j];
val[i][j] = sum;
if ( (dum=vv[i]*fabs(sum))>=big) {
big = dum;
imax = i;
}
}
if (j!=imax) { // Do we need to interchange rows?
for (k=0; k<n; k++) { // Yes, do so...
dum = val[imax][k];
val[imax][k] = val[j][k];
val[j][k] = dum;
}
d = -d; // ...and change the parity of d.
vv[imax]=vv[j]; // Also interchange the scale factor.
}
idx[j] = imax;
if (j!=n-1) { // Now, finally, divide by the pivot element.
dum = 1.0/val[j][j];
for (i=j+1; i<n; i++)
val[i][j] *= dum;
}
} // Go back for the next column in the reduction.
// success
free(vv);
return true;
}
// Given a matrix M/A[1..m][1..n], this routine computes its singular value decomposition, M/A =
// U·W·V T. Thematrix U replaces a on output. The diagonal matrix of singular values W is output
// as a vector w[1..n]. Thematrix V (not the transpose V T ) is output as v[1..n][1..n].
void Matrix::svd(Matrix &U2,Matrix &W,Matrix &V) {
Matrix U = Matrix(*this);
U2 = Matrix(m,m);
V = Matrix(n,n);
FLOAT* w = (FLOAT*)malloc(n*sizeof(FLOAT));
FLOAT* rv1 = (FLOAT*)malloc(n*sizeof(FLOAT));
int32_t flag,i,its,j,jj,k,l,nm;
FLOAT anorm,c,f,g,h,s,scale,x,y,z;
g = scale = anorm = 0.0; // Householder reduction to bidiagonal form.
for (i=0;i<n;i++) {
l = i+1;
rv1[i] = scale*g;
g = s = scale = 0.0;
if (i < m) {
for (k=i;k<m;k++) scale += fabs(U.val[k][i]);
if (scale) {
for (k=i;k<m;k++) {
U.val[k][i] /= scale;
s += U.val[k][i]*U.val[k][i];
}
f = U.val[i][i];
g = -SIGN(sqrt(s),f);
h = f*g-s;
U.val[i][i] = f-g;
for (j=l;j<n;j++) {
for (s=0.0,k=i;k<m;k++) s += U.val[k][i]*U.val[k][j];
f = s/h;
for (k=i;k<m;k++) U.val[k][j] += f*U.val[k][i];
}
for (k=i;k<m;k++) U.val[k][i] *= scale;
}
}
w[i] = scale*g;
g = s = scale = 0.0;
if (i<m && i!=n-1) {
for (k=l;k<n;k++) scale += fabs(U.val[i][k]);
if (scale) {
for (k=l;k<n;k++) {
U.val[i][k] /= scale;
s += U.val[i][k]*U.val[i][k];
}
f = U.val[i][l];
g = -SIGN(sqrt(s),f);
h = f*g-s;
U.val[i][l] = f-g;
for (k=l;k<n;k++) rv1[k] = U.val[i][k]/h;
for (j=l;j<m;j++) {
for (s=0.0,k=l;k<n;k++) s += U.val[j][k]*U.val[i][k];
for (k=l;k<n;k++) U.val[j][k] += s*rv1[k];
}
for (k=l;k<n;k++) U.val[i][k] *= scale;
}
}
anorm = FMAX(anorm,(fabs(w[i])+fabs(rv1[i])));
}
for (i=n-1;i>=0;i--) { // Accumulation of right-hand transformations.
if (i<n-1) {
if (g) {
for (j=l;j<n;j++) // Double division to avoid possible underflow.
V.val[j][i]=(U.val[i][j]/U.val[i][l])/g;
for (j=l;j<n;j++) {
for (s=0.0,k=l;k<n;k++) s += U.val[i][k]*V.val[k][j];
for (k=l;k<n;k++) V.val[k][j] += s*V.val[k][i];
}
}
for (j=l;j<n;j++) V.val[i][j] = V.val[j][i] = 0.0;
}
V.val[i][i] = 1.0;
g = rv1[i];
l = i;
}
for (i=IMIN(m,n)-1;i>=0;i--) { // Accumulation of left-hand transformations.
l = i+1;
g = w[i];
for (j=l;j<n;j++) U.val[i][j] = 0.0;
if (g) {
g = 1.0/g;
for (j=l;j<n;j++) {
for (s=0.0,k=l;k<m;k++) s += U.val[k][i]*U.val[k][j];
f = (s/U.val[i][i])*g;
for (k=i;k<m;k++) U.val[k][j] += f*U.val[k][i];
}
for (j=i;j<m;j++) U.val[j][i] *= g;
} else for (j=i;j<m;j++) U.val[j][i]=0.0;
++U.val[i][i];
}
for (k=n-1;k>=0;k--) { // Diagonalization of the bidiagonal form: Loop over singular values,
for (its=0;its<30;its++) { // and over allowed iterations.
flag = 1;
for (l=k;l>=0;l--) { // Test for splitting.
nm = l-1;
if ((FLOAT)(fabs(rv1[l])+anorm) == anorm) { flag = 0; break; }
if ((FLOAT)(fabs( w[nm])+anorm) == anorm) { break; }
}
if (flag) {
c = 0.0; // Cancellation of rv1[l], if l > 1.
s = 1.0;
for (i=l;i<=k;i++) {
f = s*rv1[i];
rv1[i] = c*rv1[i];
if ((FLOAT)(fabs(f)+anorm) == anorm) break;
g = w[i];
h = pythag(f,g);
w[i] = h;
h = 1.0/h;
c = g*h;
s = -f*h;
for (j=0;j<m;j++) {
y = U.val[j][nm];
z = U.val[j][i];
U.val[j][nm] = y*c+z*s;
U.val[j][i] = z*c-y*s;
}
}
}
z = w[k];
if (l==k) { // Convergence.
if (z<0.0) { // Singular value is made nonnegative.
w[k] = -z;
for (j=0;j<n;j++) V.val[j][k] = -V.val[j][k];
}
break;
}
if (its == 29)
cerr << "ERROR in SVD: No convergence in 30 iterations" << endl;
x = w[l]; // Shift from bottom 2-by-2 minor.
nm = k-1;
y = w[nm];
g = rv1[nm];
h = rv1[k];
f = ((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y);
g = pythag(f,1.0);
f = ((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x;
c = s = 1.0; // Next QR transformation:
for (j=l;j<=nm;j++) {
i = j+1;
g = rv1[i];
y = w[i];
h = s*g;
g = c*g;
z = pythag(f,h);
rv1[j] = z;
c = f/z;
s = h/z;
f = x*c+g*s;
g = g*c-x*s;
h = y*s;
y *= c;
for (jj=0;jj<n;jj++) {
x = V.val[jj][j];
z = V.val[jj][i];
V.val[jj][j] = x*c+z*s;
V.val[jj][i] = z*c-x*s;
}
z = pythag(f,h);
w[j] = z; // Rotation can be arbitrary if z = 0.
if (z) {
z = 1.0/z;
c = f*z;
s = h*z;
}
f = c*g+s*y;
x = c*y-s*g;
for (jj=0;jj<m;jj++) {
y = U.val[jj][j];
z = U.val[jj][i];
U.val[jj][j] = y*c+z*s;
U.val[jj][i] = z*c-y*s;
}
}
rv1[l] = 0.0;
rv1[k] = f;
w[k] = x;
}
}
// sort singular values and corresponding columns of u and v
// by decreasing magnitude. Also, signs of corresponding columns are
// flipped so as to maximize the number of positive elements.
int32_t s2,inc=1;
FLOAT sw;
FLOAT* su = (FLOAT*)malloc(m*sizeof(FLOAT));
FLOAT* sv = (FLOAT*)malloc(n*sizeof(FLOAT));
do { inc *= 3; inc++; } while (inc <= n);
do {
inc /= 3;
for (i=inc;i<n;i++) {
sw = w[i];
for (k=0;k<m;k++) su[k] = U.val[k][i];
for (k=0;k<n;k++) sv[k] = V.val[k][i];
j = i;
while (w[j-inc] < sw) {
w[j] = w[j-inc];
for (k=0;k<m;k++) U.val[k][j] = U.val[k][j-inc];
for (k=0;k<n;k++) V.val[k][j] = V.val[k][j-inc];
j -= inc;
if (j < inc) break;
}
w[j] = sw;
for (k=0;k<m;k++) U.val[k][j] = su[k];
for (k=0;k<n;k++) V.val[k][j] = sv[k];
}
} while (inc > 1);
for (k=0;k<n;k++) { // flip signs
s2=0;
for (i=0;i<m;i++) if (U.val[i][k] < 0.0) s2++;
for (j=0;j<n;j++) if (V.val[j][k] < 0.0) s2++;
if (s2 > (m+n)/2) {
for (i=0;i<m;i++) U.val[i][k] = -U.val[i][k];
for (j=0;j<n;j++) V.val[j][k] = -V.val[j][k];
}
}
// create vector and copy singular values
W = Matrix(min(m,n),1,w);
// extract mxm submatrix U
U2.setMat(U.getMat(0,0,m-1,min(m-1,n-1)),0,0);
// release temporary memory
free(w);
free(rv1);
free(su);
free(sv);
}
ostream& operator<< (ostream& out,const Matrix& M) {
if (M.m==0 || M.n==0) {
out << "[empty matrix]";
} else {
char buffer[1024];
for (int32_t i=0; i<M.m; i++) {
for (int32_t j=0; j<M.n; j++) {
sprintf(buffer,"%12.7f ",M.val[i][j]);
out << buffer;
}
if (i<M.m-1)
out << endl;
}
}
return out;
}
void Matrix::allocateMemory (const int32_t m_,const int32_t n_) {
m = abs(m_); n = abs(n_);
if (m==0 || n==0) {
val = 0;
return;
}
val = (FLOAT**)malloc(m*sizeof(FLOAT*));
val[0] = (FLOAT*)calloc(m*n,sizeof(FLOAT));
for(int32_t i=1; i<m; i++)
val[i] = val[i-1]+n;
}
void Matrix::releaseMemory () {
if (val!=0) {
free(val[0]);
free(val);
}
}
FLOAT Matrix::pythag(FLOAT a,FLOAT b) {
FLOAT absa,absb;
absa = fabs(a);
absb = fabs(b);
if (absa > absb)
return absa*sqrt(1.0+SQR(absb/absa));
else
return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+SQR(absa/absb)));
}