This repository has been archived by the owner on Jun 27, 2022. It is now read-only.
forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 25
/
symbol_alexnet.R
53 lines (51 loc) · 2.78 KB
/
symbol_alexnet.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
library(mxnet)
get_symbol <- function(num_classes = 1000) {
input_data <- mx.symbol.Variable(name = "data")
# stage 1
conv1 <- mx.symbol.Convolution(data = input_data, kernel = c(11, 11), stride = c(4, 4), num_filter = 96)
relu1 <- mx.symbol.Activation(data = conv1, act_type = "relu")
lrn1 <- mx.symbol.LRN(data = relu1, alpha = 0.0001, beta = 0.75, knorm = 2, nsize = 5)
pool1 <- mx.symbol.Pooling(data = lrn1, kernel = c(3, 3), stride = c(2, 2), pool_type = "max")
# stage 2
conv2 <- mx.symbol.Convolution(data = lrn1, kernel = c(5, 5), pad = c(2, 2), num_filter = 256)
relu2 <- mx.symbol.Activation(data = conv2, act_type = "relu")
lrn2 <- mx.symbol.LRN(data = relu2, alpha = 0.0001, beta = 0.75, knorm = 2, nsize = 5)
pool2 <- mx.symbol.Pooling(data = lrn2, kernel = c(3, 3), stride = c(2, 2), pool_type = "max")
# stage 3
conv3 <- mx.symbol.Convolution(data = lrn2, kernel = c(3, 3), pad = c(1, 1), num_filter = 384)
relu3 <- mx.symbol.Activation(data = conv3, act_type = "relu")
conv4 <- mx.symbol.Convolution(data = relu3, kernel = c(3, 3), pad = c(1, 1), num_filter = 384)
relu4 <- mx.symbol.Activation(data = conv4, act_type = "relu")
conv5 <- mx.symbol.Convolution(data = relu4, kernel = c(3, 3), pad = c(1, 1), num_filter = 256)
relu5 <- mx.symbol.Activation(data = conv5, act_type = "relu")
pool3 <- mx.symbol.Pooling(data = relu5, kernel = c(3, 3), stride = c(2, 2), pool_type = "max")
# stage 4
flatten <- mx.symbol.Flatten(data = pool3)
fc1 <- mx.symbol.FullyConnected(data = flatten, num_hidden = 4096)
relu6 <- mx.symbol.Activation(data = fc1, act_type = "relu")
dropout1 <- mx.symbol.Dropout(data = relu6, p = 0.5)
# stage 5
fc2 <- mx.symbol.FullyConnected(data = dropout1, num_hidden = 4096)
relu7 <- mx.symbol.Activation(data = fc2, act_type = "relu")
dropout2 <- mx.symbol.Dropout(data = relu7, p = 0.5)
# stage 6
fc3 <- mx.symbol.FullyConnected(data = dropout2, num_hidden = num_classes)
softmax <- mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax')
return(softmax)
}