-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
192 lines (164 loc) · 7.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import sys
import numpy as np
import argparse
import time
import random
import cv2
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from tqdm import tqdm
from roi_data_layer.roidb import combined_roidb
from roi_data_layer.fs_loader import FewShotLoader, sampler
from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir
from model.utils.net_utils import weights_normal_init, save_net, load_net, \
adjust_learning_rate, save_checkpoint, clip_gradient
from model.utils.fsod_logger import FSODLogger
from utils import *
if __name__ == '__main__':
args = parse_args()
print(args)
cfg_from_file(args.cfg_file)
cfg_from_list(args.set_cfgs)
# make results determinable
random_seed = 1996
np.random.seed(random_seed)
random.seed(random_seed)
torch.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
cfg.CUDA = True
# prepare output dir
output_dir = os.path.join(args.save_dir, "train/checkpoints")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# prepare dataloader
cfg.TRAIN.USE_FLIPPED = args.use_flip
cfg.USE_GPU_NMS = True
imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name)
dataset = FewShotLoader(roidb, ratio_list, ratio_index, args.batch_size, \
imdb.num_classes, training=True, num_way=args.way, num_shot=args.shot)
train_size = len(roidb)
print('{:d} roidb entries'.format(len(roidb)))
sampler_batch = sampler(train_size, args.batch_size)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
sampler=sampler_batch, num_workers=args.num_workers)
# initilize the tensor holders
holders = prepare_var(support=True)
im_data = holders[0]
im_info = holders[1]
num_boxes = holders[2]
gt_boxes = holders[3]
support_ims = holders[4]
# initilize the network
pre_weight = False if args.resume else True
classes = ['fg', 'bg']
model = get_model(args.net, pretrained=pre_weight, way=args.way, shot=args.shot, classes=classes)
model.cuda()
# optimizer
lr = cfg.TRAIN.LEARNING_RATE
lr = args.lr
params = []
for key, value in dict(model.named_parameters()).items():
if value.requires_grad:
if 'bias' in key:
params += [{'params':[value],'lr':lr*(cfg.TRAIN.DOUBLE_BIAS + 1), \
'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
else:
params += [{'params':[value],'lr':lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
if args.optimizer == "adam":
optimizer = torch.optim.Adam(params)
elif args.optimizer == "sgd":
optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)
# load checkpoints
if args.resume:
load_dir = os.path.join(args.load_dir, "train/checkpoints")
load_name = os.path.join(load_dir, f'model_{args.checkepoch}_{args.checkpoint}.pth')
checkpoint = torch.load(load_name)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr = optimizer.param_groups[0]['lr']
if 'pooling_mode' in checkpoint.keys():
cfg.POOLING_MODE = checkpoint['pooling_mode']
print(f'loaded checkpoint: {load_name}')
if args.mGPUs:
model = nn.DataParallel(model)
# initialize logger
if not args.dlog:
logger_save_dir = os.path.join(args.save_dir, "train")
tb_logger = FSODLogger(logger_save_dir)
# training
iters_per_epoch = int(train_size / args.batch_size)
for epoch in range(args.start_epoch, args.max_epochs + 1):
model.train()
loss_temp = 0
start_time = time.time()
if epoch % (args.lr_decay_step + 1) == 0:
adjust_learning_rate(optimizer, args.lr_decay_gamma)
lr *= args.lr_decay_gamma
data_iter = iter(dataloader)
for step in range(iters_per_epoch):
data = next(data_iter)
with torch.no_grad():
im_data.resize_(data[0].size()).copy_(data[0])
im_info.resize_(data[1].size()).copy_(data[1])
gt_boxes.resize_(data[2].size()).copy_(data[2])
num_boxes.resize_(data[3].size()).copy_(data[3])
support_ims.resize_(data[4].size()).copy_(data[4])
model.zero_grad()
rois, cls_prob, bbox_pred, \
rpn_loss_cls, rpn_loss_box, \
RCNN_loss_cls, RCNN_loss_bbox, \
rois_label = model(im_data, im_info, gt_boxes, num_boxes, support_ims)
loss = rpn_loss_cls.mean() + rpn_loss_box.mean() \
+ RCNN_loss_cls.mean() + RCNN_loss_bbox.mean()
loss_temp += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % args.disp_interval == 0:
end_time = time.time()
if step > 0:
loss_temp /= (args.disp_interval + 1)
if args.mGPUs:
loss_rpn_cls = rpn_loss_cls.mean().item()
loss_rpn_box = rpn_loss_box.mean().item()
loss_rcnn_cls = RCNN_loss_cls.mean().item()
loss_rcnn_box = RCNN_loss_bbox.mean().item()
fg_cnt = torch.sum(rois_label.data.ne(0))
bg_cnt = rois_label.data.numel() - fg_cnt
else:
loss_rpn_cls = rpn_loss_cls.item()
loss_rpn_box = rpn_loss_box.item()
loss_rcnn_cls = RCNN_loss_cls.item()
loss_rcnn_box = RCNN_loss_bbox.item()
fg_cnt = torch.sum(rois_label.data.ne(0))
bg_cnt = rois_label.data.numel() - fg_cnt
print("[epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e" \
% (epoch, step, iters_per_epoch, loss_temp, lr))
print("\t\t\tfg/bg=(%d/%d), time cost: %f" % (fg_cnt, bg_cnt, end_time-start_time))
print("\t\t\trpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box %.4f" \
% (loss_rpn_cls, loss_rpn_box, loss_rcnn_cls, loss_rcnn_box))
info = {
'loss': loss_temp,
'loss_rpn_cls': loss_rpn_cls,
'loss_rpn_box': loss_rpn_box,
'loss_rcnn_cls': loss_rcnn_cls,
'loss_rcnn_box': loss_rcnn_box
}
loss_temp = 0
start_time = time.time()
if not args.dlog:
tb_logger.write(epoch, info, save_im=args.imlog)
save_name = os.path.join(output_dir, 'model_{}_{}.pth'.format(epoch, step))
save_checkpoint({
'epoch': epoch + 1,
'model': model.module.state_dict() if args.mGPUs else model.state_dict(),
'optimizer': optimizer.state_dict(),
'pooling_mode': cfg.POOLING_MODE,
}, save_name)
print('save model: {}'.format(save_name))